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ABSTRACT

This thesis extends the method of the Non-homogeneous Transfer Matrix to study
the dynamics of inclined cables under distributed and concentrated loads. The NT\[
method is different from the method of the traditional homogeneous transfer matrix
in that it not only involves homogeneous transfer matrices but also involves non-
homogeneous transfer vectors which are caused by non-homogeneous terms in differ-
ential equations. This feature makes it possible to consider the dynamic response
of the cables with concentrated loads. This thesis combines the NTM method with
an approach of transforming the original coordinate systemn to a rotated coordinate
system in order to analvze the inclined cable models. The models presented in this
thesis include both horizontal and inclined extensible sagged cables with and without
concentrated loads. The effect of concentrated loads on mode shapes is investigated.
[t is found that both the sag and the inclination of the cables have some influences
on the mode shapes of the cables. Moreover. the effect of the inclination on the fre-
quencies of the cables is also investigated. Closed-form expressions are derived and

numerical results are given to show the use of the analytical formulas.

Keywords: cable dynamics. coordinate rotation. non-homogeneous transfer matrix(NTM)

method. static analysis, dynamic analysis, mode shapes.
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Chapter 1

Introduction

Cables have been investigated by many researchers since the 17th century because
of its wide usage in many applications such as ocean and electrical engineering. The
study of cable dvnamics is important for the design of practical cable structures like
cable-staved bridges and guved towers. In these applications. cable vibration is a
crucial factor in determining the reliability of the structures (1].

The fexibility of cables is advantageous because it makes them easyv to be em-
ploved in various practical situations. However. this flexibility also makes cables
difficult to theoretically analyze. Furthermore. the flexibility of cables renders them
susceptible to oscillations which might impair their performances. The failures of
many suspension bridges such as Shipshaw (3] further necessitated the study of cable
dynamics. The same problem also exists in ocean and electrical engineering, for ex-
ample, the aeolian vibration and galloping on overhead transmission lines [4.5] and
strumming of marine cables under the sea [6.7].

A brief literature review is given below as the beginning of this chapter.

1.1 Literature review

In 1676, Noble and Pigott found that a string has different modes of vibration, which

initiated the research on cable dynamics (2], and the research continued until the lat-



[3V]

ter half of the 19th century. The rapid increase in the usage of cable-stayed bridges
and high-voltage transmission lines as well as other cable-related structures in early
20th century further extended the research on cables. Especially, a number of disas-
trous crashes of cable-stayed bridges and suspension bridges, (2] further showed the
importance of the research in this field.

In the early studies. it was assumed that cables were inextensible or had infinite
stiffness. In other words. the elasticity of cables was ignored in order to make it
possible for an asvmptotic analysis. Later, H. M. Irvine and T. K. Caughev pointed
out that such a model was inherently unsuitable for the study of practical cables
because the elasticity of cables must be included in order to obtain correct results (8].
A compromise made between inextensible and elastic cables was to assume that the
cables were flat. i.e. it had small sag/length ratio. Because of the simplicity of this
model and the wide usage of shallow sagged cables. many researchers have focused
on such models, especially on those with horizontal supports {8.9.10].

However, in reality. models for large sagged cables are needed because shallow
models are approximations and usually do not give correct results. As it was pointed
out in [11] that investigations should be made for these models and some preliminary
results have been obtained in [6]. Furthermore. it has been noted that not much
attention has been paid to the cables with pointed mass or concentrated loads [12].
But in the real world, such concentrated loads are common . for example. the optical
or acoustical instruments on the cables under the sea or the detuning pendulums on
the overhead transmission lines.

A model with only one concentrated load was developed [13.16] . Later. more
complicated cases with more concentrated loads are considered in [9.12] by using the
method of transfer matrix.

Some other researchers have also explored the problem by methods such as Finite
Element Method (FEM) [17] and finite difference {18]. However, as it was pointed
out in [6] that when there are many concentrated loads on the cables, for example. a
marine cable under the sea having enormous number of acoustical instruments, FEM

becomes awkward because of the enormous matrix manipulations. A detailed review



on the history of cable dynamics can be found in [8.19] .

By using the method of Non-homogeneous Transfer Matrix (NTM) [12]. this thesis
will investigate static and dynamic behavior for both flat and large sagged cables with
inclined as well as horizontal supporters. In particular. it concentrates on the study

of cables with concentrated loads. Closed-form expressions and numerical results are

obtained.

1.2 Methodology

Both static and dynamic analyses are given in this thesis but the latter is more
important and more attention is paid to it. However. in order to perform the dvnamic

analysis. the static profile must be obtained first. A brief review on these two topics

is given below.

1.2.1 Coordinate rotation

All the analyses given in this thesis are referred to a rotated coordinate system with
respect to an inclined cable. Therefore. the rotation relationship is alwayvs needed
when we transform the differential equations which describe the motion of the cable
from original coordinate system to rotated coordinate system. as shown in Fig 1.1
with z-axis in the out-of-plane direction.

Suppose that point P see (Fig. 1.1) has the coordinates (. y) in the original coor-
dinate system and (z’. y') in the rotated coordinates. then the following relationship

holds for the transformation from original coordinate system to rotated coordinate
system:
I cosf sinf I
= ] . (1.1)
Yy —sinf cosé y
and the reverse transformation from the rotated coordinate system to the original

coordinate system is given by as:

' cosf —sinf I

i
o
=
o
S’

7

y sinf cos@ Yy



Figure 1.1: Coordinate systems

Because we frequently transform differential equations from the original coordinate

svstem to the rotated coordinate system. Eq. (1.1) will be frequently used throughout

the thesis.
1.2.2  Static analysis

A practical example for the cable models studied in this thesis is shown in Fig. 1.2
[15]. The theoretical abstraction is given in Fig. 1.2 (b) where z-axis is in out-of-plane
direction. s denotes arc length coordinate measured along the planar equilibrium

curve.

By using Fig. 1.2 (b), we can derive the following equations:

T, = 7%, (1.3)
ds
dy
T, = -T3, (1.4)



Pi d(s-si) As

(b)

Figure 1.2: Cable analysis: (a) a span of a cable: and (b) cable dynamics

T, = Tj—b (1.5)
T = T%+;—S(T3§)As. (1.6)
T, = —T%-{—%(—Tj—i)‘_\s, (1.7)
T = Tj—;-e—dis(Tj—z)As. (1.8)

Next, balancing the forces in z direction yields equation T, — T, = 0. and then using



Eq. (1.3) and (1.6) results in

d _dr

d_s(Td_s) = 0 (1.9)
Similarly, balancing the forces in y direction gives T, ~ T, +q,As — P,d(s —5,)As = 0
which. with the aid of Eq. (1.4) and (1.7), in turn produces

4 pdy

(15 (lb') = —Qy + PIO(S - sl) (1'10)

A similar treatment in = direction vields T. — 7] — ¢.As = 0. and substitute Eq. (1.3)

and Eq. (1.8) into the equation to obtain

d _d=z
—(T—) = -gq.. (1.11)
ds

ds

Now. under the rotation equation given by Eq. (1.1). Eq. (1.9)- (1.11) can be written

in the rotated coordinate system as

!
4o Hy - gy 5in6 — P.o(s — s,)sin 6. (1.12)
ds dr

dy' .

il—( ,—'2-) = —qycosf + Pd(s — 5;)cosb. (1.13)
ds dr
d dz
(_l:(HtIL-) = —{q-. (ll'l)

where the relation T = H::—; has been used. If the cable doesn’t have out-of-plane
load g, or concentrated loads P;. then the problem becomes the special cases: ¢, =0
or P, = 0. The equations Eq. (1.12)- (1.14) are kev equations and will be frequently
used in the following chapters.

We begin with a simple model which bears the simple mechanical characteristic
of cables. This model has vertical distributed loads only due to the cable’s weight.
Then models with more complicated loads will be studied.

The differential equations describing the static profile of the simple model can be
found in [20] where the detailed derivation is given. In particular. [20] introduced the
equation T = H % where T is the cable tension and H the horizontal component of
the tension and s, z have the same meanings as shown in Fig. 1.2 (b). This equation

simply indicates the mechanical characteristic of a cable provided it has no external
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Figure 1.3: Static profile

horizontal force. Therefore. this equation is also valid for other situations such as
inclined cables as long as external horizontal force is not presente. A generalization
of this equation will be frequently used in this thesis. With the aid of the equation.

the differential equations can be solved analytically and closed-form formulas can be

obtained.

1.2.3 Static tension increase

Because the models to be discussed in the thesis are more complicated than the
simple model, we need to generalize the results obtained from the simple model to
allow more complicated loads. In the generalization, we should use the same kind
of analysis in order for the general formulas obtained in the thesis still being valid
for the simple case. However. for complicated loads. the static profile of the cable

and the horizontal component of the cable tension differs from one case to another



due to different external forces. Once the cable tesion is determined. a similar set of
differential equations can be solved in a similar way for the static profile associated
with more complicated loads. Having found the static tension increase. we can then
solve the static profile of the complicated models.

To find the static tension increase, we introduce another equation which is similar
to equation 7 = H j—; Supposed that 7 is the static tension increase of the cable
due to some additional loads and h, the horizontal components of the tension. then
T = h[j—i-. The procedure of solving 7 is equivalent to that for ~A,. The final equation
obtained for h, by using Hooke's Law is alwayvs a 3rd-degree polynomial which is
similar to that found in [4.20]. Considering the cable segment shown in Fig. 1.2 (b).
and Eq. (1.3)- (1.8) can still used here. However. the expression for the forces are
different due to the static tension increase 7 and the corresponding static displacement

V which has three components . y» and z». Thus. we have

T, = (T+r)(%+%). (1.15)
I, = —(T+r)(%+%). (1.16)
T. = (T+r)(—£+%—:§). (1.17)
o= (s %—f) Lir r)(i—f+gf—:)]_x.,-. (1.18)
T, = -(T+r)(%+a;f)+&‘%[—(7‘+r)(%+%)]As- (1.19)
T. = (T+ )(%‘—_‘+%—fjH%[(TM)(%Jr%?)]As. (1.20)

Then balancing the forces in each direction (see Fig. 1.2) and transfroming the equa-

tions into the rotated coordinate system, we have

d . dr’' du’

EE[T'JQ +(T+T)-a;] = —PJd(s—s;)sinb (1.21)
v 2

%[T% +(T + 1) %yf-] = P(s — s;)cosf (1.22)

d dzl d2~2 _ 5

dS[T ds + (T )E == O (1._3)



1.2.4 Dynamical analysis

For dynamical analysis. we assume that the movement is measured from the static
profile. Thus referring to the cable segment (see Fig. 1.2 (b)). the expression for the
forces are similar to that given by Eq. (1.153)- (1.20) except that the displacement
ﬁ which has three components u. y» and z» now represents dynamical displacement
caused by the dynamic tension increase 7.

Suppose the mass of the cable per unit length is m and the mass of the i-th
concentrated load is m;. then there are two additional forces m%fg and m;d(s —

3;)2 dU which should be added at the right-hand-side of the forces balance equations

Eq. (1.9)- (1.11). Therefore. the equations describing dvnamic response of the cables

are
d dr Ju 0?1 _ 0?
ST+ + 50 = de‘ o (s — ,)d—t” (1.24)
Q (\m dy, | Oy _ Y o &y
ST +nGe+ 3 = MG Up
=gy + Po(s = 5,) (1.25)
3, 5, 0y P N
I[(T'{-T)(Z--{-I')] = m—aT-l'-!n,O(h—bL)T)jt?
-q-. (1.26)

The idea of the dynamical analysis is shown in Fig. 1.4. where similar notations as
that given in Fig. 1.3 are used. Suppose that a point has a static profile represented
by (r;.y:.2) in the original coordinate system. then its movement from the static
curve can be decomposed into three components in the three orthogonal directions as
u, y2 and zy. Therefore. its dynamical coordinates referring to the original coordinate
system are expressed as (r; + u, Yy + Y2, = + o). see Fig. 1.4.

Eq. (1.24)- (1.26) can be transformed into rotated coordinate system by using
Eq. (1.1) and can be simplified by using the differential equations Eq. (1.12)- (1.14)

describing the static profile. The resulting equations are:

ou'  dr’ o’ . 0%y’ -

[T+T T-{*TT{S— = o2 i (b—'S,')—at—z—. (1.27)
3 d 0y’ R 22y,

—[(T +7 ay2 Tiys_l] = m% + m,-O(S - Si)-b%: (1 28)
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Figure 1.4: Dynamical displacement
d dz;  dz, 0%z N .
I[(T + T)-a; + 7 gl = MoE + m;o(s ~ n,)—a?. (1.29)

The above equations are also key equations and will be frequently used in the following
chapters. Useful discussions on this topic can be found.. for exmple. in [20-24]. In
order to find the frequencies of a cable. a numerical method is usually used. However,
due to the convergence problem. it is difficult to obtain accurate high frequencies.
The Non-homogeneous Transfer Matrix (NTM) [12] will be the method used in this
thesis, and allows us to derive explicit formulas and thus overcome the convergence
difficulty.

The Holzer-van de Dungen method in matrix form is called the method of transfer
matrix. [t makes use of the fact that in a large class of engineering problems, the
vibrating system is arranged in a line and the behavior of every point in the system
is influenced by the behavior at neighboring points only {25,26] . However, this trans-

fer matrix method is only valid for homogenous differential equations. Since NTM
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method introduced in [12] can deal with non-homogenous differential equations. The
cable models to be discussed in the thesis involve the points at which the concentrated
forces are imposed or some points whose introductions are due to the discontinuous
of the cable slope. the NTM method can be employed easily to carry out the dvnamic

analysis. More detailed description about the NTM method can be found in [12].

1.3 Numerical computation

Although all the formulas given in the thesis are explicit expressions, numerical com-
putation is still needed. In particular. the frequency equation needs to be solved
numerically by an iterative approach. Once the frequencies are found. other formulas
can be computed using the explicit formulas. Therefore. the numerical computation
can be kept to a minimium.

The parameter values for the numerical computation adopted from a real trans-
mission line are given in Table B.1 [12].

The numerical results are obtained by implementing the theoretical expressions
in C programs. The subroutines for solving the equations and numerical integration
of the C programs can be found in [27]. The bisection method is used to solve the
frequency equations.

Numerical results are shown in several figures where each component of the figure

consists of two independent mode shapes.

1.4 Contribution of the thesis

This thesis extends the NTM approach to study the dynamics of inclined cables. This
approach is applied not only to flat cables but also to large-sagged cables and is very
suitable for the usually complicated situation where cables are attached with many
concentrated loads. A new method of discretization for the large-sagged cables with
concentrated loads is also introduced. The method combined with NTM makes it

easy to find the solutions of the large-sagged cables with concentrated loads.



1.5 Thesis outline

The purpose of this thesis is to use the Non-homogeneous Transfer Matrix (NTM)
approach to extend the study given in {12] to inclined cables.

Chapter 1 is an introduction including two parts: one part gives a literature
review, and the other part provides the necessary background for the analysis given
in this thesis. The ideas to be used in this thesis are thoroughly discussed. Also. the
outline and the contribution of this thesis are given in this chapter.

Chapter 2 begins with the discussion of flat cables. It focuses on the static and
dynamic properties of a simple model. as well as inclined flat bare cables without
concentrated loads.

Chapter 3 is again devoted to considering flat cables but with concentrated loads.
After obtaining the static profile of this model, we extend the traditional Homogenous
Transfer Matrix approach to NTM approach to obtain the dynamic response.

In Chapter 4. we discuss large-sagged cables and study the properties of inclined
large-sagged cables without concentrated loads. From the complexity viewpoint. this
model is a bridge between flat cables and large-sagged cables: while from the viewpoint
of analvsis. it is a bridge between the cables with and without concentrated loads.

Chapter 5 continues the discussion on large-sagged cables. But the cables now
have concentrated loads. A new method of discretization the cable is introduced and
the numerical results for this model are found.

Conclusions and future work are given in Chapter 6. and various constants which
are used throughout this thesis are given in Appendix A. The parameter values for the
numerical computation are given in Appendix B. Brief descriptions on the derivation

of some important formulas are given in Appendix C.



Chapter 2

Flat bare cables

This chapter describes a relatively simple case. i.e. a flat cable without concentrated
loads. We may use Fig. 1.3 and Fig. 1.4 as illustrations but assume that F; = 0. The
process of analyzing this case will follow that described in Chapter 1. That is. we
will first transform the differential equations which describe the cable’s motion in the
original coordinate system to those in the rotated coordinate system.

Then. the static analysis is carried out. After finding the static tension due to ¢.,
we will finally perform the dynamic analvsis. Analvtical expressions and numerical
results are also obtained for this case. For this simple model. some researchers used
a parabolic function to approximate the static profile [28]. some other researchers
also tried to apply coordinate rotation to analyze inclined cables [29]. However. the

method of rotating coordinates used in this thesis is more suitable for a consistent

analysis.

2.1 Static analysis

We start with finding the static profile. First consider a flat bare cable with dis-
tributed self-weight only. and then extend the analysis to the model with a static
horizontal q.. Finally the dynamic analysis is carried out based on the static profile.

The detailed discussion of the effect of out-of-plane loads on the cable can be found
in [12].

13
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2.1.1 Static analysis for the simple model

The differential equations describing this simple model are given by Eq. (1.9)- (1.11)
in the original coordinate system. and by Eq. (1.12) and Eq. (1.13) in the rotated
coordinate system. Because this model does not have concentrated loads. we can set

P, =0 in these equations.

With the assumption T%f = H, = const which is discussed in Section 1.2.2

Eq. (1.12) and Eq. (1.13) can be rewritten as:

d*r’ _ds
IF = qysmf)d—x. (21)
4y ds
Hr(d'% = —q COSGﬁ. (2.2)

With the procedure detailed in Appendix C.1 we can obtain the solutions of the above

differential equations as:

' = cosfr +sin 9E cosh (qy.c - (Cy) = Cytané. (2.3)
qy r

y' = sinfr — cos 9& cosh (ﬂr -C3) +Cy. (2.4)
4y H,

where C3 and C are arbitrary integration constants. determined from the boundary

conditions as

o —";:;’{LI‘ ~ sinh™! (au). (2.3)
C, = —cos Hi—;[cosh (n;if: )m + sinh(rﬁif: Jas] (2.6)
in which
_ tanGLI;'L}f ’ 2.1)
2sinh (52f<)
where g, = —mg have been used. Because the model under consideration is elastic,

Hooke's Law must be satisfied and the geometric relationship.

ds dr’ . dy'.,
= \/(E)2+(E) (2.8)

should hold.



Substituting Eq. (2.3), Eq. (2.4) into Eq. (2.8) vields

s = &[smh (&- - C;;) + sinh (C3)] (29)
qy H,

For the special case 8 = 0, we have ay =0 and H, = H. thus

Cy = —ng—HL- and C,= {COSh (E.’%Il;)]

Therefore. when 8 = 0. Eq. (2.3) Eq. (2.4) and Eq. (2.9) become

' = r (2.10)
, _ H ‘ mg 3 mgL 5

y = ’ng{CObh[ o (r )] cosh ( )H )}. (2.11)
5 = —{smh HL) sinh{n[;g - —)]} (2.12)

[t is noted from the above discussion that without the out-of-plane load gq.. the
svstem is a planar system and can be easily dealt with. As it was pointed out in [12],
the out-of-plane load greatly complicates the analysis because in this case the system
is then no longer a planar system. In the case when the out-of-plane load ¢, # 0 is
present. we first need to find the static tension increase due to the load ¢. and then do
the static and dynamic solutions. By using the procedure described in Appendix C.1.

we can obtain the equations for the static tension increase h,:

d*u' _ (gy + mg)sinf ds hy A0 (2.13)
de2 — Ho+h, dz H,+h,dz?’ -
dzy‘lz — —’((Iy + mg)cos() d_’ _ h'J: d"lj[ (-) 14)
2 H. +h, dr H,+h; dc*’ B
d?z, -g. ds

- = : . 2.15
dr? H,+h.dx (2.12)

The subscript 1 denotes the static profile without ¢. (i.e ¢. = 0). while the sub-
script 2 indicates the displacement due to ¢, # 0.
Now. Hooke's Law is imposed together with Eq. (2.13) through Eq. (2.13) to find

h.. Hooke’s Law is given by:

T ds'—ds _ (ds')? = (ds)? .
AE = ds T 2ds? (216)

where ds’' << ds is assumed.
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By using Eq. (2.13) to Eq. (2.16) (a detailed derivation can be found in Ap-
pendix C.1). the static tension increase due to g. # 0 can be expressed by a 3rd-degree

polynomial as:

hy
H,

)3+Mﬁif+mﬁi

‘ m) Ty,

J+¢c =0 (2.17)
where the coefficients a. b. and ¢ are given below:

1
a = 2+IP1I)3+2P_)P;.

b:1+1ﬂﬂ+4 PP, + ﬂﬁﬂ@aa. (2.18)
(mg)? (mg)
L (Q2) (@2) qy
c = —= PP+ 4 + ~| P, P,
timgy ~ PP Al * Gge P2
(Q2 ) 1 2qy
ik [ mg)* (mg)? > T (mg)3 ]P)P‘
P;(i = 1.2.3.4) here and @, are given in Appendix A.
For the special case § = 0. Eq. (2.18) is reduced to
L.,
a = 2+ﬂ\ .
| R
. = [_Q_’ _
)4 (mg)?
_ m_;L mgL, 1 . 3 mglL, mgL,
L. = —[smh( ~ 3. )+§bmh( T ‘_’H)
mgL,, 1 . 45 mgL,
+ sin h( .2h,_: )+§smh (2—1"’1—)]
where
” AF  H mgL,
A = -L,
6 7)) sinh (P5%) — L]

Note that the above expressions are identical to those given in [20].
In order to find h;, we only need to solve for the root of polynomial Eq. (2.17). It

is not difficult to solve Eq. (2.17), and in fact it has been shown that the polynomial

has only one root [11].
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2.1.2 Static analysis for the model with out-of-plane load

The procedure of finding the static profile of the cable with both static loads g, and q.
is similar to that for the cable with ¢, only. But now the horizontal component of the
static tension, H;, is the summation of that for the simple model and the horizontal
static tension increase. h,, which has been found in the previous subsection. Since
the procedure is similar. we therefore omit the detail here for simplicity and only list
the differential equations in rotated coordinate system and the final resuits here.

The differential equations for this case can be formulated in the rotated coordinate

system as:
d*x’ ds
—_— = 1 _ 9
H, s qy blanI. (2.19)
d*y' ds
_ = = —_— )
H, T qy costI. (2.20)
d*: ds
H— = —-q¢—. 2.2
dr? P (2.21)

The final static profile can be found by integrating Eq. (2.19) to Eq. (2.21) as

" = —~tanby' + . 2,22
o noy cosd ( )
q: JHe |cos?8q? + g2
y = siné fy - + f{’ — (TRE {cosh (Ps))
’IJ q: qy +4: ‘I: +q2
q; + q2
— cosh [+= L — Py} (2.23)
H,
s = A= R
N ay cosf’ (2:24)
H;\/cos?8q2 + q2 q: +q?
s = ‘ ——{sinh [*——1r - P.
’ cos 8(q2 + ¢2) { [ H, z = Byl
+sinh (Py)}, (2.25)

where the constant Pj; is given in Appendix A and CONST; is given by

CONST, = sinh™'] sin 6L
2H, |t fffq sinh ( qu g L)

In the special case # = 0, we have CONST|, =0 and H, = H. thus Eq. (2.22) to
Eq. (2.25) become
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o B o (VI BT Ly

cosh (Y———L,) — cos r— =)}
a@;+q: 2H H 2
z = cosh (———1L,) — . ZE
42 + ¢? 2H €os H 773
+¢ q, + ¢

s = {smh x——]+ inh (1 L)}

4 + ¢ 2H

which agree with those given in [11].
Note that the above static analysis applies not only to flat cables but also to
large-sagged cables because the only assumption made here is that the horizontal

component of the cable tension remains constant along the whole cable.

2.2 Dynamic analysis

The dynamic analysis given in this section is valid only for flat cables because of
the particular assumptions which will be stated later. So. for the large sagged cables
studied in the following chapter. we need to generalize the method used in this section.

For this case. the differential equations formulated in the original coordinate sys-

tem can be obtained from Eq. (1.24)- (1.26) by setting m; = P, = 0. Thus we have

a d.r Ou & u
N = Moz, 2.2
03[(T i )( T o a5 | T o (2.26)
2
EMT+ﬂ£ﬂ+%b}= 3?—%. (2.27)
d.. 0z 023')
—MT+ + 57 = mer - (2.28)

Substituting the static profile obtained in the previous section into the above

equations, with the aid of the transformation relationship. result in

0 o’ dz’' o’

@y - 22 2.9
as[(T—+—7’) PR +T7 T m 5 (2.29)
3 dy,  dy 8y,
%KT+)5P+(£]= maﬁ, (2.30)
E, 8z,  dz 8z
%KT+ﬂa§+Td] =rm&§, (2.31)

where the superscript denotes the differentiation with respect to rotated coordinate

system and the subscript 1 represents the static profile and 2 indicates the dynamic
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displacement. T is the static cable tension which is the same as that given in the last
subsection and 7 is the dynamic cable tension which is a function of time ¢ and s.

For the two tensions T and 7. we can make a similar assumption as before. i.e..

ds
= _ 9D 29
T = Hyo (2.32)
d
s t) = ho(t)=. (2.33)
dr

We will use A, instead of h (i) hereafter for simplicity. Substituting Eq. (2.32)-

(2.33) into Eq. (2.29)- (2.31) vields

82 u' _ m 82 u,lr _ h‘:qy sin § (.-) 34)
drds ~ H,+h, 0 H.(H.+h;) Bl
Oy _ o _m Dy hetyeosh (2.35)
Jrds H, + h, Ot? H.(H, + h;)

( 2:-) i 2:" h;r z

Fn m  Jd°z q: (2.36)

9205 | H,+h, 0  H,(H,+hy)
In order to perform linear analysis, we need another two assumptions: H, >> h,,
which is usually satisfied in real applications ard dx = ds cos # due to the assumption
of a flat cable. The second assumption means that we can use the slope of the r'-axis
to approximate the slope of the cable. Therefore. the results obtained in this chapter
are only valid for flat cables. Large-sagged cables will be discussed in Chapters 4
and 3.

With the above two additional assumptions. Eq. (2.34)- (2.36) can be simplified

to
f;;’_m;zs()@aztz;' _ _qysil};};osﬂ B (2.37)
R (2.39)
c’j;sz;_m;zsﬁa;zz = q:;%sehr (2.39)

By using the method of separation of variables [31,32] , we assume that

W'(s.t) = U(s)e.
y(s,t) = Y(s)e™,



H(s.t) = Z(s)er",

he(t) = he*t.

Then. Eq. (2.37)- (2.39) can be transformed to

&¢U(s) q, sin # cos §
PU(s) = -—WARTCST, 2.
T+ IUGs) o (2.40)
d'_’y S . 4
TYG) L ey = w58, (2.41)
ds? 2
dlZ 3 ) . COS
,(,”) L3275 = & Co,fgh. (2.42)
ds? I
where
. W cos §
.jz _ mw= COs . 24
= (2.43)

The solutions of Eq. (2.40)- (2.42) can be easily obtained and the integral coefficients

can be determined from the boundary conditions. They are given by

gy sinf cos @

U(s) = ficos(Jds)+ fysin(Jds) — X h. (2.44)
Y(s) = fscos(ds)+ fisin(Js) + "”;;iah. (2.43)
Z(s) = fscos(ds)+ fosin (Is) + ";;f;fh. (2.46)
where

f = @%h (2.47)

fs = —q”;;ieh. (2.48)

5 = —%%ﬁ (2.49)
Fasin(3L,) = C—Iy—s—ig-géo—sﬁh[l-cos(d[.s)], (2.50)
fusin(3L,) = qy;;;zgh[cos(ﬂ:,)—l]. (2.51)
fosin(BL,) = ES0p0s (3L, — 11, (2.52)

H23?



To find the frequency equation, we need to find an equation derived from the

Hooke's Law Eq. (2.16).Using the following relations

(ds')? = (do’ +du')® + (dy) + d-y"l)2 +(dz, +dz,)°.
(ds)* = (da')?+ (dy})* + (d=})*

in Eq. (2.16) and keeping the resulting terms up to quadratic terms vields

h, ds dr’ . du' dy;

_45(35)2 = (E)(Tig) + (E)(

dy’, dz,
— + —
ds dr

d:-_)

(==

). (2.53)

where the subscript 1 denotes the static profile obtained in Section 2.1.2 . The
frequency equation can be now found by substituting the static profile into Eq. (2.53).
then integrating the resulting equation from 0 to L,. The final form of the frequency

equation is found to be

(L)
A2

[

— (—qysin8fy + gy cosbf; + q: fs)

— 3L,k + hsin (JL,)

ML UL oy
cos (g2 + q3)

where A’ is given in Appendix A.
The vibration solutions for this case are given by Eq. (2.44)- (2.47) and Eq. (2.32).
Once the frequencies are solved from Eq. (2.54). then the mode shapes can be explic-

itly expressed by Eq. (2.44)- (2.46). There are two different cases needed to consider.

according to the value of h: h=0o0r h #0.

1. When h = 0. it is obvious to see from Eq. (2.47)- (2.49) that f, = fs = f; =0.
Then it follows from Eq. (2.44)- (2.46) that sin(3L,) must be zero because

otherwise there are only trivial solutions. Thus in this case. the frequency

equation Eq. (2.54) is reduced to

(~qy sin6f; +qy cos 6f, + q.fs)[1 — cos (3L,)] = 0 (2.5

o
(W]
(S}
~—

provided that the cable is not entirely in the vertical direction.

However, note that since Eq. (2.55) involves three constants f;, f; and fg, we

need another equation to discuss the possibilities of dynamic solutions. This
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additional equation can be obtained from Eq. (2.33) by using the right-end

boundary conditions and the static profile as

fr = Afs+ Bfs. (2.56)

where f, = f3 = f; = 0 and the static profile have been used. The constants
A and B are given in Appendix A. Now eliminating f, from Eq. (2.33) and

Eq. (2.36) vields the equation
Cfi+Dfs = 0 (2.57)

where the constants C and D are listed in Appendix A. According to the values

of C and D. Eq. (2.57) may have four different solutions

(a) IfC = D = 0. f, and fs are independent while f, is determined by

Eq. (2.36) in terms of f; and fs. Thus. the mode shape functions are given

by
fu(s) = fosin(Js). (2.58)
fy(s) = faisin(Js). (2.59)
f:(s) = fgsin(Js). (2.60)

Hence. for this case. there are two independent mode shape.functions with

only one frequency. which is called repeated frequency [12].

(b) If C # 0, but D = 0. then Eq. (2.57) gives f; = 0 and fs can be chosen

arbitrarily. Therefore, the mode shape functions are

fu(8) = fasin(Js). (2.61)
fy(s) = 0, (2.62)
f:(s) = fesin(3s), (2.63)

where f, can be obtained from Eq. (2.36) as f» = B fs.



{(c) If C = 0. but D # 0. then similarly we can obtain from Eq. (2.37) that
fs = 0 but f, can be chosen arbitrarily. Thus, Eq. (2.56) results in f, =

Afy. So the mode shape functions in this case are given by

fu(8) = fysin(Js). (2.64)
fy(s) = fisin(ds). (2.63)
f-(s) = 0. (2.66)

and then from Eq. (2.36) one can find

fr = (4= B%)h-

Therefore. the mode shape functions are given by

fuls) = fasin(Js). (2.67)
fu(s) = fisin(Js). (2.68)
f:(s) = fesin(Jds). (2.69)

It should be noted that for all the four cases, there exist only one frequency.
determined from equation sin (JL,) = 0. However. there is a significant
difference between case (a) and the remaining three cases: in case (a). there
exist two independent mode shapes while in the remaining three cases there
is only one mode shape. Therefore, for the cases (b). (c) and (d). we need

to find another independent mode shape associated with ~ # 0.

2. When h # 0, the second mode shape is determined by Eq. (2.54). Dueto h # 0,
we can find from Eq. (2.30)- (2.52) that sin (3L,) # 0 and thus cos (JL,) # L.
Otherwise, a contradiction A = 0 will be deduced either from Eq. (2.50)- (2.52)

or from Eq. (2.54). Thus, f;, f, and f¢ can be uniquely be determined from



Eq. (2.30)- (2.52). Having found f,. f; and fs. we substitute them into Eq. (2.54)

and simplify the resulting equation to obtain
~3

A2

where v = 3£+ and \? is given in Appendix A.

sin ()] ~~v+tan(vy)] =0 (2.7

[}V
-1
o
=

The second frequency is then determined from Eq. (2.70) which actually gen-
erates an infinite series of frequencies. as expected. The mode shape functions
associated with this frequency can then be found from Eq. (2.43)- (2.46) and

from Eq. (2.30)- (2.32).

Finally, the mode shapes in y’ and =’ directions can be obtained as

. qyeos® 8, [1 —cos(3IL,)] | N B o
Y(s) = - JHEJ’ h{ sln(JL ) in (Js) + [cos (Js) = 1]}, (2.71)
Z(s) = -d=cost {[1 cos (L) G (as) + [cos (Js) — 1]}, (2.72)

H?3? am(iL )

To find the mode shape in ' direction. Eq. (2.33) is used again together with

ds ., ', dy' dz' .,
—_) = —_—) —_ - 9 T
(=) ()" + dx) (2.73)

dr dr ;e

Substituting the static profile given by Eq. (2.23)- (2.23) into Eq. (2.33) with
the aid of Eq. (2.71)- (2.73) vields the differential equation for the mode shape
in 1’ direction

dL' _ —\L‘E[q(f C:Sq OTCS- :(:r'loTCSl coslzﬂl

ds TCS,

TCS 42 hTCC

TCS,
LSTCS BEBIRTCC
: (2.74)
TCS,

where the constants TCS;, TCS, and TCC are given in Appendix A.

+

qy c0s 8

Although the u'-mode defined by the differential expression Eq. (2.74) can be
solved analytically, it may be easy to use some numerical method such as the
one described in [27] to obtain a numerical solution. Therefore, the three mode

shapes for this subcase h # 0 are given by Eq. (2.71) and Eq. (2.72), and the
integration of Eq. (2.74).
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2.3 Results and discussion

The results obtained in this chapter are based on a practical transmission line whose
parameter values are listed in Appendix B [12] and Fig. 1.4 can serve as an illustration
by assuming F; = 0. The cable is studied in three situations. with horizontal, 30°
inclined, and 60° inclined supports. For each situation. we show the mode shapes in
each direction of «’. y’ and :.

There are two general situations according to the values of A based on the deriva-
tions in the last section. The results given in this chapter are obtained when both C
and D are nonzero. see Eq. (2.57). Therefore. from the discussion given in the last
section. there are two sets of mode shapes for each direction. Consequently. there
are two curves shown in the figures. The solid lines correspond to the situation when
h # 0 while the dash lines correspond to the situation when A = 0. This feature is
also applicable to the results given in the following chapters. «; and «, in the figures
are frequencies respectively correspond to the solid and dash mode shapes.

Because the Lagrangian coordinate along the cable differs from one case to another
and it is different even when the angle of inclination is different. we use nondimesional
Lagrangian coordinate to facilitate the comparison. as it was used in [6.9] . This
nondimension characteristic will also be used in the following chapters.

The results are shown in Fig. 2.1 to Fig. 2.6. Each figure gives vibration com-
ponents in «'. y' and : directions. and each component has two independent mode
shapes. It can be seen from these figures that, for different order of frequencies. there
always exist both symmetric and asymmetric mode shapes. especially in the u’ direc-
tion (see part (a) in each of the figures). For the same order of frequencies. the two
sets of mode shapes in «’ direction are totally different. The center for «'-mode at
about the midpoint of the cable when h # 0 (solid lines) and the cable is horizontal
(see Fig. 2.1 and 2.2) but no such region when h = 0 (dash lines). The y’ and =
modes are approximately sine waves for both 2 = 0 and 2 # 0. From part (a) of
Fig. 2.3 to Fig. 2.6, it can be observed that the central region graduately moves from

the midpoint to the left of the cable when the cabie is inclined. This is reasonable



to be seen from Fig. 1.4. However. the u mode shapes associated with 2 = 0 (dash
lines) do not have the same sensitivity to the inclination of the cable. Neither do the
y' and = mode shapes.

An interesting result is observed when we compare the two mode shape curves in
each graph on y’ mode with z mode. The behavior of the two mode shapes associated
respectively with h = 0 and h # 0 for the y' direction is just opposite to the behavior
of the two mode shapes for rhe = direction. For example. in Fig. 2.3 (b). the two mode
shapes in y’ direction are almost superimposed while in (¢). the two mode shapes in
= direction have an almost 180° phase difference. The same phenomenon can also be
observed in Fig. 2.4 (b) and (c).

Furthermore. from the process of solving the frequency equation. we find that for

the same order frequencies. the frequency is a little lower when the support is inclined

than that when the support is horizontal.
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Chapter 3

Flat cables with concentrated loads

In Chapter 2 we have discussed both static and dynamic analvsis for flat cables
without concentrated loads. In this chapter. we will extend the analysis to the cables
with concentrated loads. As it will be seen later. the static analysis is similar to that
in Chapter 2. while the dynamic analysis has significant difference.

Although we will follow the similar procedure described in the previous chapter.
it should be noted that the differential equations discussed in this chapter are piece
wisely smooth. Therefore. not only the boundary conditions but also the continuity
conditions are needed for solving the equations. Moreover. the discontinuity at the
points where concentrated loads are imposed must be taken into account. To do this.
d-function is introduced to make it easy to discuss the effect of the point forces. The

illustrating figures used in this chapter can be still referred to Fig. 1.3 and Fig. 1.4

3.1 Static analysis

In order to find the static profile of the cable with concentrated loads. the first step is
to find the static tension increase due to concentrated loads. The differential equations

to determine the static tension increase can be formulated as

d ., dr du’ . .

% —[he— o + (H; + h, )d:z:] = —P,d(s — s;)siné, (3.1)
d , dy dy}, _ n _ 5
e (hz i + (H: + hy) dx] = P,(s — s;) cosé. (3.2)
d d.. d22 _

d—[h e+ (He+ho)==] = 0, (3.3)
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where the rotation relationship given by Eq. (1.1) and the static profile described by
Eq. (2.22)- (2.25) as well as the assumptions T = H, 5> 4 and r = h, ‘13 have been used.

The & represents the Dirac Delta function with the property

/Mc 50) = 1

-2
[n Eq. (3.1)- (3.3)), the subscript 1 denotes the static profile of the cable without
concentrated loads, while 2 represents the displacement caused by the concentrated
loads. The subscript i denotes the i-th point at which a concentrated loads is imposed.

With the properties of J-function. we can rewrite Eq. (3.1) and Eq. (3.2) as

d dr du’

—lhe + (H, + s )—‘—] = 0. (3.4)
d, d d 3 ]
E_[h —dy‘ +(H; + h;)—djg ] 0. (3.3)

and integrate Eq. (3.1)- (3.3) to obtain the discontinuity conditions on the slope of

the cable as follows:

duj \(ri)  du(ry) _ ~P,  sinf
dr dr - H, + hr (3-6)
dysi((Lis1) _ dya,(Lie1) _ P, coséd 3.7
dr dr H,+h, ' ’
dzyiey(Lig1) _ dzy,(r,41) Y (3.8)
dr dr

The subscript 2 in Eq. (3.4)- (3.8) denotes the cable displacement due to the con-

centrated loads. The continuity conditions of the cable at the points can be easily

obtained as
u:—{»—l('rl-('-l) = U:(Ii+l)v (39)
Yaist(Lis1) = You(Li1), (3.10)
224 1(Ziv1) = 22(Tis)- (3.11)

The boundary conditions for the cable are assumed to be fixed as
'(0)=0 I'(L;)=L. (3.12)

y(0)=0  y(L:) =0, (3.13)
2(0)=0 z(L;) =0, (3.14)



for the original static profile, and

uh(0) =0  uy(L;) =0. (3.15)
Uol0) =0 ghy(Le) =0, (3.16)
320(0) =0 Z'_)N(L,_-) = 0. (317)

for the static tension increase.

The solutions for Eq. (3.4), (3.3) and Eq. (3.3) can be obtained as

' Cl h‘I X
u, = H.z'*'h-xr_ hI+HI.Li+D,. (3.18)
, E. h, ,
i = Hz+hxl_ H:-i-hryl'_i-F" (3.19)
he
Sn = - 2. X 2
i H,+ h, ! (3.20)

where C,, D;. E; and F; are the integral constants determined from the conditions
Eq. (3.6)- (3.17) and the explicit expressions are given in Appendix A.
Following the procedure discussed in Chapter 2. we can similarly use the Hooke's

Law to find the equation for the static tension increase due to concentrated loads,

given by
he ds .y L duj, 1 dy., d-,, )
EG = G )
dr’ dul dljl dJ:, d:l d:'_g,'
—_ ) |3 1 _* =t ‘)
* d;r)( dr ) dr iy dx + dr A dr ) (3-21)

Substituting the static profile of the cable without concentrated loads which are
given by Eq. (2.22)- (2.25) into Eq. (3.21) and integrating the resulting equation
. . . h
vields a similar 3rd-degree polynomial for 2=

(7 +al

he oy , he
7 &,

)+c = 0. (3.22)
where the coefficients a, b, and ¢ are given in Appendix A. In the special case § = 0,
Eq. (3.22) becomes the one obtained in [11].

We can analytically solve ff; from the polynomial Eq. (3.22) which has only one
positive root. H, has already been obtained in Chapter 2. so the static tension

increase h, is uniquely determined, and thus 7 is found from 7 = htf’E’.
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Having found h,. we can now formulate the equations to determine the static

profile for the cable with concentrated loads

d dr’

—_ _ = i _ i- S =8 1 9. -2

ds(sz;r) qysinf — P,o(s — s,) sin (3.23)
d dy' -

- -) = - 0 0(s — s54) ¢ . 2

ds(dex) gy cost + Pd(s — s;)cosf (3.24)
d dz

—(H, ==} = —g.. .23
ds(HIdr) e (3.25)

where the equation T = H,;‘—; has been used. Note that here H, includes the static

tension increase h, due to the concentrated loads.

With the property of d-function. Eq. (3.23)- (3.24) can be further simplified as

d*r! qysiné  ds,

¢ _ (hnv,as 3.9
dr? ( H, )d;r' (3.26)
d*y! g, cos 8 ds;

LI i Yl 3.27
dr? w (3:27)
d*:! q. . ds;

— = (=2 2
= - Cnlw (3.28)

and integrating Eq. (3.23)- (3.23) vields the discontinuity conditions on the slope of
the cable:

di (L) _ dri(ri)  _ _M (3.29)
dr dr H:
d i i d i\ Pl 9
y +;(; +1) _ 4y (d-iﬂ) — +1HCOS ) (3.30)
dz; ; dz,(x,
+;1(:+l) _ (dIIH) - 0 (3.31)

where the subscript : again denotes the i-th point at which a concentrated load is

located. The continuity conditions of the cable and the boundary conditions are given
by

i (Tiv) = Li(Tin), (3.32)
Yirt(Zin1) = yilzin). (3.33)
Sa(Tinl) = Z(Ti), (3.34)
z5(0)=0  ziy(L;) = L. (3.35)
%0)=0  yy(L:)=0, (3.36)

%(0) =0 zy(L:) =0. (3.37)
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It is not difficult to solve the differential equations Eq. (3.26)- (3.28) with the
boundary conditions as well as the discontinuity conditions and continuity conditions.
The static profile given in the Lagrangian coordinate s can be obtained using the same

method described in Section 2.1.2, given by

I
"(r) = —tanfy. + —. 3.
I{r) tanfy; + e (3.38)
) = - (- cos BQ;, '— cly)y sinf)q,
qy T {3
H,cos8
~ BT cosh (TL) + Fu.. (3.39)

qJ + q-

a{r) = 2 Jl + Dy, + Dy, (3.40)
qy cosf
H, .

si(r) = Gi+ ————Tll sinh (T'1,). (3.41)

\/Q + 43

where the constants Dy,. D,,. Fy,, TI,. TI, and G; can be found in Appendix A.
There are two constants E'}; and Fj,. involved in the above expressions. which are

given in coupled formulas:

qyHycos 8

Frop = ——-—‘—-—T[q cosh (E\p).
i + ¢
- )
Fiy = (q-cos 9Dy qy‘aln )qu MT{\(OSh(T[;\)
QJ + q qJ
, 9
Fioey = Fu+ e Tl + %Oi—[TI”Losh(Tln) T, cosh (T L))
| y T _
Va5 + 4
Eyivy = —yH—IH-l
4 24q? 1 cos
sinh ™" { .,ch”osé‘ - Pl+"‘ S Th TIl sinh (T I3) }
) TI, TTL v

These equations can be solved by finding Ej first with a simple numerical method.

and then all the other expressions can be explicitly obtained.

3.2 Dynamic analysis

The dynamic analysis on the cable with concentrated loads is more involved than

the cable without concentrated loads. It requires to use NTM approach due to the
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existence of the concentrated loads on the cable which give rise to non-homogeneous
terms in the transfer matrix. The traditional method of transfer matrix [34] can not
deal with the non-homogeneous terms. However. we can use the NTM approach to
easily deal with the terms as seen next.

The differential equations describing the dynamic response of the cable are given

in rotated coordinate syvstem by

Fu'  m Pu md(s ~si) P ___h 2r (3.42)
drds H, + h, ot? H.,+h, o0t H, + h,drds’ T
Py, m %y _ mid(s = i) &%yl _ o he d*y’ (3.43)
drds H,+ h, ot? H.,+h, Ot H, + h,dzrds -
0%z, _m Pz, _ md(s = ) &z ___h 25 (3.44)
drds H, + h, Ot H.+h, Ot H, + h,drds’ -

where the rotation relationship Eq. (1.1) and the assumptions T = HI(‘:—,; and 7 =
h,(t)ﬁi— have been used. The subscript 2 denotes the displacements with respect to
the static profile.

Substituting the static profile described by Eq. (3.38)- (3.41) into Eq. (3.42)- (3.44)

results in
izi _ _[r_l_é)zu' _ m,d(s - .s'l) &*u' - _thy sin 6 h.rP:‘S(S — Si)sma(:} 45)
105 _ H, oF H o H; H; |
ﬂ’z_ _ ﬂazyé _md(s — s, 2%y _ hegycos — h Pd(s — s;)cosb (3.46)
9rds _ H, ot H, Ot? H? H? (3.
_Q?_:E_ B 282:2 3 md(s — s,) 2 _ heq: (3.47)
ozds  H, o8  H, o  HI o

where it has been assumed that H, >> h,. Furthermore. with the aid of the property

of d-function. Eq. (3.45)- (3.47) can be transformed to

du; mcos§du; _ h.q,sinfcosf

9s2  H, o2 H? ’ (3-48)
&y, mecosf &y, h.q, cos® 6

o | H, o¢ HI (3-49)
0%z, mcosf &%, h.q. cosf .
6% H, o¢ | HI (330

The discontinuity conditions can be found by integrating Eq. (3.43)- (3.47) as

follows:
iy (Siv1) _ Ouilsiz1) Mg &y,  h Py, sin@
oz oz T H, o H?

(3.51)
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Y1y (Siv1) _ Oyni(sis) _ M Oy, _ hePiyicost (3.52)
dr dr H, ot H? T

a32(i+1)(3i+1) 0z2i(5i+1) _ My 02y o=
oz oz H, o (3:53)

The boundary conditions and the continuity conditions are the same as that given in
Section 3.1 (Eq. (3.6)- (3.17)).
In order to derive the frequency equation. we again start from the Hooke's Law.
which gives the equation
h; (_d._s)._, _ dr\, du,, dy), dy),  dzydzy
AE dr dr ds dr ds dr ds

where only terms up to quadratic are used. The subscript 1 denotes the static profile

(3.54)

while 2 the dvnamic displacement measured from the static profile.
The mode shape functions can be found by using the method of separation of
variables. It is similar to that discussed in Section 2.2. However. in this case the

solutions are piece wisely smooth, and can be written as

hq, sin  cos

Us) = Cucosd(s —s,) + Cosin I(s - 5,) — "”—3"‘%2 (3.53)
. . hg, cos* 8 )

Yi(s) = Cscosd(s—s,)+Cyusind(s —s,) + R (3.36)

Zi(s) = Cscosd(s —s,) + Cesin J(s — 5,) + "‘S—C;’ﬁ (3.57)

In order to solve the integration constants. the boundary conditions and continuity

conditions given by Eq. (3.29)- (3.37) need to be modified according to the method

of separation of variables. The discontinuity conditions are

dUisi(si1)  dUi(sis1) _ mugw?cos® . hPysinfcosd .
ds ds H, ot g (398
dYir1(Sis1) _ dYi(Sis1) _ ma’+1w2 Ccos f)y _ hPi, cos® 6 3.59)
ds ds H, H (3:3
dZis1(siv1)  dZi(sis)) _ mi+w-’2 cos
ds ds - H, Zi (3.60)
The boundary conditions are
UQ(O) = UN(LS) =0. (361)
Yo(0)=0 Yy(L,) =0, (3.62)

Zy(0) =0  Zn(Ls)=0. (3.63)



and the continuity conditions are
Uir1(si+) = Uilsin).
Yivi(sir) = Yi(sin).
Ziv1(si+) = Zi(5i1)-
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(3.64)
(3.65)
(3.66)

The integration constants in Eq. (3.33)- (3.37) can be obtained from these modified

discontinuitv conditions as well as boundarv conditions and continuity conditions.

Theyv are given by:
Cu Cuo hsinf cos @
= [Dj + ?1 i)
(C'_’i) [ 0](010) ( P )
C:h ; C:;o h C052 7,
= [Dq - P75 )-
( Chi ) [ 0] ( Cyo ) ( JH; )

Cs, Cso hcost
= Dl ’ - ?‘ 1o
( Cﬁ“ ) [ 01 ( CSO ) ( j-HE )

where [D{] is the transfer matrix. given by

(D3] = [Di\JiDy'].

[Di_i] = [

Di_,(1.1) D'_,(1.
D:_ (2.1) D'_ (2.

~—
—

[V R

with [DJ] = I. I is 2 identity matrix. and

D;_l(l.l) = COSJ(Si-*.‘:‘i_l).

D:-l(l-'z) = sind(si — 5.-4).

D:_(2.1) = —sind(s; - si_\) - (%)dcos J(si — si-1).

D'_((2,2) = cosd(s, —si_t) ~ (%)‘dsin 35 = 5i21)-
The vectors 7, and F; are given by:

7,

7= [Dﬁ_ll?i_1+(

[D!_l]—r*,-_w(_, 0_ ) i=2.3...., n
J[Pz'*'( )Qy]

(3.67)

(3.68)

(3.69)



with 7y = §p = T. The initial value for the above recursive relations are:
hgq, sin 8 cos
Cra = MySIMOCOST
10 JH?
_ hgycos®0
o0 = T
hq. cos 6
Co =~
hsin8cos @
20 = N(—5)-
QDCw = QN5
hcos? 6
v = QNV(——55)
QDCw = QNy(~"5p)
hcos@
= ON.(- .
QDCoo = QN.(=5p)
where
QD = D{(1.2)cos d(L, —sy)+ Dy (2.2)sin (L, - sy).
QN: = gy —[rvi+ ‘IyDi)V(la D)]cos I(L, = sv)
—[ry2 +q,D5 (2.1)]sin 3(L, - sv).
QN, = QN..
QN. = q.-[Dy(l. 1)q. + svi]cos J(L, = sy)
- [D&(2.1)q- + sya)sin (L, — sy).
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Now. the procedure used in Chapter 2 can be applied here: substituting the static
profile obtained in the previous section into Eq. (3.54).
And then using Eq. (3.33)- (3.37) with the boundary conditions and continuity

conditions.and finally integrating the resulted equation vields the frequency equation

FL

[- v ~ JcosOL,|h
F*H?%sinf &
——-——'—‘—Z{P Do(l I)Cm-i-DO(l 2)Cy
hsmecose hq, sin 8 cos 8
J3H2c039
+_(I—Z{P DO (1, 1)C30+D0( ,2)Cyo
hcos?@ hg,cos?8
~ral ,32H§) ;211; I



+ j-iﬁ Z {(sin 3(siz1 — 8:). 1 — cos I(si+1 — 5:))[Dp] -

q k=0
C. ]
qysin o) _ gy cos b S Cso }

Cao Cyo Ceo

9 n
Coz- h Z{ (sin J(si+1 — ;). 1 — cos I(sis1 — si)) ( (1_.,7; +¢.7, )}
k=0
=0 (3.76)

where \? is defined before and can be found in Appendix A.

Similarly. there are two cases we need to discuss: h =0 and h # 0.

l. When h = 0. it follows from Eq. (3.70)- (3.72) that Cyy = Cy = C50 = 0
and the right-hand side of Eq. (3.73)- (3.75) are also equal to zero. In order
for Eq. (3.35)- (3.57) to have non-trivial solutions. it is easy to observe from
Eq. (3.73)- (3.73) that @D must be zero. This vields an equation. QD = 0.
which involves only one undetermined variable, frequency J. and thus it can be

used to solve for J with a simple iterative numerical method.

Further substituting A = 0 into Eq. (3.76) results in
([yc;)g.'l + qu,mB - q:CGUC =0 (377)

where constants A. B. and C are listed in Appendix A. Because there are
three undetermined coefficients Cag, Cyo and Cgg in Eq. (3.77). we need another
equation to discuss mode shape functions. This additional equation can be
obtained by imposing the right-end boundary conditions in Eq. (3.54). (i.e. at

the point .V + 1. see Fig. 1.3). The final expression of the equation is given by
Cy = DCAm + ECg, (3.78)

where the static profile obtained in Section 3.1 has been used. The constants

D and E are given in Appendix A.

Now eliminating Cy from Eq. (3.78) and Eq. (3.77) produces the equation

DC40+ECGQ = 0, (379)
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where the expressions for D and E can be found in Appendix A.

Similarly. there are four subcases we need to discuss according to the values of
D and E.
(a) If D = E = 0. then Eq. (3.79) suggests that both Cy and Cso can be

chosen arbitrarily while Cy can be determined from Eq. (3.78). The mode

shape functions are then given by

3 9

Ui(s) = ((cos 3(s — %) sind(s ~ ) ) ( g"g;; ) Cao. (3.80)
5(2,2
] 9

Yi(s) = ( cos I(s — ;) sinJ(s — s;) ) ( goti-}; )cw (3.81)
0 -y o

Z(s) = ( cos (s — ;) sin I(s — s;) ) (

2
—
S5 =
.
o v
— S

: Ceo- 3.82
Di(2.: ) 60 ( )

In this subcase. there are two independent mode shapes Y'(s) and Z(s)
associated with one repeated frequency. This is similar to the cable without

concentrated loads.

(b) If D =0 but E # 0. then it follows from Eq. (3.79) that Cso = 0 while Cy
can be chosen arbitrarily. Eq. (3.78) then gives Cyg = DCy. The mode
shape functions in this subcases are given by

' Di(1.2
Ui(s) = ( cos 3(s = 5:) sinJd(s ~ ) ) ( ol ); )C._,o. (3.83)

Di(2.:

Di(1.2
Yi(s) = ( cos (s — s;) sind(s — s;) ) ( th‘l?; ) Cio. (3.84)
Z(s)=0. (3.85)
(c) If D # 0 but E =0, similarly, we have Cy = ECg whereas Cyy is

arbitrary, and Cyg is zero. The mode shape functions are then given by:

Ui(s) = ( cos 3(s — s;) sin3(s — s;) ) ( D?gi; ) Ca, (3.86)
5(2.2

Yi(s) =0, (3.87)
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Di(1.
Di(2.

o N
N’

Zi(s) = ( cos J(s — s;) sin I(s — 3y) ) ( ) ) Céo- (3.88)

(d) If D # 0and E # 0. then solving Eq. (3.78) and Eq. (3.79) vields Cgo = —2
and Cyy =(D-F %)Cm. The expressions of the mode shape functions in
this subcase are in the same form as those given in case (a), but thev are

actually different because Cg. Cyg and Chp take different values.

It is noted that the first case (a) gives two independent mode shapes with one
repeated frequency determined by QD = 0. while the remaining three cases
only give one mode shape function associated with the frequency obtained from
the same equation. The second frequency together with the second set of mode

shapes for the three cases (b). (¢) and (d) can be found next for the case h # 0.

2. When h # 0. the mode shapes in y’ and ' directions are given by Eq. (3.36)

and Eq. (3.537) which can be rewritten in a more compact way as
Yi(s) = Cycos[d(s —s,)] + Cyusin[3(s — 5;)] — Cao. (3.89)
Zi(s) = Csicos[J(s —s,)] + Cosin[I(s — 5,)] — Cso (3.90)
bv using the recursive formulas given in Eq. (3.67) to Eq. (3.69) and the initial
values for these recursions given by Eq. (3.70) to Eq. (3.72).

With the formulas described in Appendix C.2. the mode shape in ' direction
can be obtained by using the Hooke's Law together with Eq. (3.89). Eq. (3.90)

and the static profile given in Section 3.1 as well as the following relation

dsiv, _dxi,  dyi, dii
(dr) - (dr) (d;r +(cla:)'
The final differential equation is
dU; . . .
—Ldis) = (SUs + SUs + SUs)/SUs (3.91)

where SU; (i =1...8) can be found in Appendix A. Then, the mode shape in
r’ direction in this case can be found by integrating Eq. (3.91) with a simple

numerical method such as that given in [27].



3.3 Results and discussion

The results given here are obtained from the cable considered in the previous chapter
(the parameter values listed in Appendix B) with two additional concentrated loads.
The positions of these two concentrated loads are at 3L, and =;L . respectively. where
L, is the horizontal span length. Because we are using nondimensionalized Lagrangian
coordinate to present our results. the positions of the concentrated loads are given as
the relative values of the cable length L,. Note that for different inclinations the La-
grangian coordinates for the point with the same r or 1’ coordinates are different. so
the relative positions of concentrated loads given in the figures are slightly different.
The weights of the two concentrated loads are 0.902145 .V and 0.423465 V. respec-
tively. Simialrly. w; and w» in the figures are frequencies respectively correspond to
the solid and dash mode shapes.

Similar to the figures given in previous chapter. there are two sets of mode shapes
represented by dash and solid lines. respectively. The solid curves represent the
mode shapes associate with 2 = 0 while the dash curves represent those associated
with h # 0. Also similarly. the cable is considered in three situations. namelyv with
horizontal. 30? inclination. 60° inclination.

[t is obvious to see from the figures that the concentrated loads have dramatic
effects on the mode shapes. Jumps can be observed in the mode shapes. occurred at
the positions of the imposed concentrated loads. The concentrated loads can reduce
either the left part or the right part of the amplitude of the mode shapes. This
randomness causes difficulty in practice to optimally control cable vibrations.

For the same order frequencies. the mode shapes associated with A = 0 (solid
curves) look similar, however, those associated with A # 0 (dash lines) in each of u'.
y' and : directions are significantly different. It can be seen from the dash lines for
u mode shapes that the numerical integration does not always give fully satisfactory
results.

For the different order frequencies. there are always three different types of mode

shapes for each direction of v/, ¥’ and z. This tendency is more clear in the mode
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shapes associated with the solid curves (h = 0). It is noted that both the results given
in [9.12] can be obtained from one of these three different mode shapes. However.
whether quantitative relationship may exist between these three types of mode shapes
is still under investigation.

When the cable is inclined, it can be seen that increasing the inclination of cable
diminishes the effect of concentrated loads. especially in Figs. 3.7- 3.9 which represent
the mode shapes for 60° inclination. This conclusion is also valid to both solid (h = 0)
and dash (h # 0) mode shapes. Furthermore. unlike what found in the last chapter.
there does not exist any movement in the central region for the u mode shapes with
the inclination of the cable.

The three different types of mode shapes for different order frequencies under the
same support conditions show the sensitivity of cables’ mode shapes to the concen-
trated loads when the inclination is not very large. which has been noticed before
[9]. Therefore. parametric study is necessary for practical designs to obtain optimal
control of cable vibrations [5].

Similarly. for the same order frequency. the values of the frequency is a little lower

when the support is inclined than when the support is horizontal.
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Chapter 4

Large sagged bare cables

In Chapters 2 and 3, we have obtained both static and dynamic solutions for a flat
cable. i.e. the sag/length ratio of the cable is small. As we pointed out in the previous
chapters that the static analysis for a flat cable is also valid for large sagged cables
because no assumptions have been made there to limit the analysis. However, the
dvnamic analysis is only valid for flat cables because the assumption dr = dscosd

implies that the slope of the whole cable is a constant —=. For large sagged cables.
b casf 8 g8

the slope of the cable cannot be approximated by a constant for the whole cable.
Therefore. we need to modify the approach given in previous chapter to allow for the
large sag/length ratio.

Since the static analyvses given in Chapters 2 and 3 are still valid for this case.

thus only dynamic analysis will be presented.

4.1 Dynamic analysis

For the dynamic analysis. the relations T = Hx% and T = hx(t)g—:_ are still valid
because they were derived under the assumption that the cable has no horizontal
external forces. Some new assumptions will be introduced to incorporate the special
properties of the large sagged cable.
The differential equations describing the dynamic response of the cable in rotated
coordinate system can be written as
Pup, m_ Pup  h, &7
drds  H.+h, 82  H,+ hydxds’

(4.1)



Qi
~]

0*yhy _ m Py hs  Ey (42)
0rds H, + h, 0Ot? H. + h,drds’ -
0P 2ok _ m 9z _h 22 (4.3)
0x0s H, + h, 0Ot? H, + h,drds’ ’

where the relations T = H Idﬁs and T = hI(t)% have been used. The meaning of the
subscripts are the same as before defined in the previous chapters except that i is
replaced by k.

Note that the assumption H, >> h, is still valid since the cable under consid-
eration is assumed to have small strain no matter whether the cable is flat or not.
But for large sagged cables. we need to use dr = J? dscosé to replace dr = dscos 8
where 7:;1-0_;5 is the slope of consecutive segments of the cable.

Substituting the static profile obtained in Section 2.1.2 and the relation dr =

3 dscos 6 into Eq. (4.1)- (4.3) vields

Puy  mJicosd P uy _ heqy,JZ sinf cos 6 (44)
. H, o A ‘
Py mJicos Pyy _ heqyJ} cos? 6 (45)
95 H, o8 HE ‘
0% 2ok _ mJE cos 8 9%z _ hq.J? cos 8 (16)
952 H, o HT '

If the cable is flat enough. then we use a constant to approximate the whole
cable’s slope by 1. i.e. Jp = 1. and then Eq. (4.4)- (4.6) become the equations
given in Section 2.2. Now. for large-sagged cables. .J; is not a constant throughout
the whole cable, so we need to apply NTM method to solve the equations. This
procedure is similar to that presented in Chapter 3 except that in this case there
are no concentrated masses at the points marked by i. see Fig. 1.4. The points,
marked by k in this chapter. are actually those at which the slope of the cable is
approximated. Therefore, the continuity conditions which are about the slope of the

cable now become a little easier than those in Chapter 3. They are

dUk.(..[ (5k+1) _ dU’k(Sk-{-l)

ds B ds (1)
dYok1(sk+1) _ dYor(Sk+1)

I = T . (4.8)
dZok+1(Sk+1) _ dZok(Sk+1) ,

ds - ds (+9)



which are simpler than those given in Chapter 3. The continuity conditions as well
as the boundary conditions are the same as those given in Chapter 3. The procedure

of solving Eq. (4.4)- (4.6) is also similar and thus the details are omitted here. The

solutions are obtained as

LUils) = Ciecos[IJe(s — sk)] + Copsin [ 3T (s — i)

hgqysinf cosd
- —_J9H§ . (4.10)
Yor(s) = Caxcos[ (s — s¢)] + Cuesin [ (s — 5¢))
hq, cos® 8
W. (4-11)
ng(.s') = (s cos [J]L(a - Sk)] + Cegr sin [J]k(s - .Sk)]
hy. cos 8
2 5
FHT (4.12)
where
mcos 8
J = W 1
i, (4.13)

The integration constants Cy; to Cg can be determined by Eq. (4.7)- (4.9) and
the boundary conditions and continuity conditions. In the process of determining

these constants. the following transfer matrices are obtained:

Cie \ _ hr [ Cro
(CM)_[D(A(C%). 414
C3Ic k C.’!O
=|D .
(c2)-en(e)
CS _ k C50
()-en ()
2

where (D] = [D5_|][D§™!) with [D8] = I([ is 2 x 2 identity matrix). The matrix

[Df_,] is given by:
1,2)
2,9) |’

(1.13)

Dt_(1,1) Df_(
k — k-1 k-1
Dl [02-1(2,1) Df_\(



and

k(1) = cos[ITeoi(Sk — sk=1)]-

Di_1(1.2) = sin[3Jeoi(sk — se=1)].

Jeot |

Dt—x(z-l) = - ;kISIH[JJk—l('Sk-Sk—l)]s
J

Dt (2.2) = k]—klcos[dlk sk = sk-1)]-

The initial values for the recursive Eq. (4.14) to Eq. (4.16) are given by

hq, sin 8 cos 8 -
Cwo = q"—b-jz[_{?—— (4.17)
h 20
Cyp = Q;LIO;) . (4.18)
__— hq. cos 6
Cs = FHT (4.19)
hq, sin 6 cos ¢
QDCy = (—EE—JT)Q;V. (4.20)
~ hg, cos- 8
QDCy = (- ’jH,)Q\ (4.21)
hq. cos 8 .
QDCiy = (==m)QN. (4.22)
: r

where

QD = DY(1.2)cos{3Jy(L, — sn)} + Dy (2.2)sin[3Jyv (L, — 5,)].  (4.23)
QN

~ DY (1.1) cos [3Tv(Ls = 5,)]

— DY (2.1)sin [3Jy(Ls — 5n))- (4.24)

Note that in both the recursive formulas given by Eq. (4.14)- (4.16) and Eq. (4.17)-
(4.22). the non-homogeneous terms which appeared in Eq. (3.67)- (3.69) become zero
since the point masses are all zeros here. This makes the dynamic analysis in this
chapter relatively easier than that in Chapter 3.

The frequency equation can still be derived using the Hooke’s Law and the similar

procedures described before as

3373
['J)é" — 3L, cos@)h
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FPHEE 1
+ 5 3 {=(sin [ k(5641 — 3k)]- L — cos [ (se1 — se)))[Dg]
¢ i Je
_ C. 5
gy sin @ o) - geosf| ° ) —q o b
Cig Cio Ceo
W (4.25)

where L, and the static profile s are the same as that defined in Chapter 2. and
A= (%)(ﬁ‘;)“q;’ which is also the same as that given in Chapter 2.

Now. we can discuss the mode shape functions given by Eq. (4.10)- (4.12) and
Eq. (4.17)- (4.22) with the help of the recursive formulas Eq. (4.14)- (4.16). The
procedure is similar to that described in Chapter 3 except that the constants here are

different. Thus, similarly, we need to consider two cases: h = 0 and h # 0.

1. When h = 0. the first frequency is determined by the equation @D = 0. where
QD is given by Eq. (4.23). Furthermore. substituting h = 0 into Eq. (4.25)

results in
Aqu'_go + quC.m + C(]:Cﬁo = 0 (426)

where the constants 4. B and C are given in Appendix A. Another equation
needed for the discussion of the mode shapes can be obtained following the same

procedure described in Chapter 2. is given by
C-gg = DC40 + ECG(] (-127)

where the constants D and E are also given in Appendix A. Next eliminate Cy

from Eq. (4.26) and Eq. (4.27) to obtain an equation
FCw+GCq = 0 (4.28)

where F and G are given in Appendix A.

Therefore, by a similar discussion based on Eq. (4.28), we have the following

results.
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(a) If F = G =0, then Cs can be obtained from Eq. (4.27) where both Cyg

and Cgo can be chosen arbitrarilv. The mode shapes are given by

Uk(s) = ( cos[dJi(s = se)] sin[dJ(s = sx)] )

N
>
—_——

[V

Zz

I
—~—~
[
o
w
—
S
_—
—_—

(b) If F=0.G # 0. then Eq. (4.27) gives Cy = DC'yy where Cyp is arbitrary

and Eq. (4.28) results in Cgq = 0. The mode shapes are

Uk(s) = ( cos [3Je(s — si)] sin[3Jk(s — s¢)] )

D§(1.2)
(%u))Q”

Yaels) = ( cos[dJe(s = 5e)] sin[3Je(s = 5x)] )
DE(1.2)
(%uw)cm

(¢) If F # 0. G = 0. then similarly, Eq. (4.27) produces Cyy = ECgsy where Ceq

is arbitrary while Cyy = 0 determined from Eq. (4.28). The mode shapes

[ NVRE V]

are
Uk(s) = ( cos [JJk(s — sk)] sin[dJk(s — sk)] )
DE(1.2)
(mmm)aw
Yae(s) = 0,
Zxu(s) = ( cos [BJk(s — sk)] sin[3Jk(s — s)] )



A

DE(1.2)
( DE(2.2) ) Coo

(d) If F # 0. G # 0. then Eq. (4.28) gives Cgg = £Cjg and it follows from

o

Eq. (4.27) that Cy = (D + Eg)Cm where Cyq is arbitrarv. The mode
shapes in this subcase are in the same expressions as given in case (a) but

thev are actually different due to the different values of the constants.

Similar to discussions given in Chapter 2 and 3. the first subcase has two
independent mode shapes associated with one single repeated frequency, while
the remaining three subcases only give one independent mode shape function.

The second mode shape as well as the associated frequency can be obtained

from the case h # 0.

2. If h # 0. then the frequency is determined by Eq. (4.25). Solving Cag. Cyg and

Ceo from Eq. (4.20)- (4.22) and substituting them into Eq. (4.25) results in

[(JL*)S - JL cosB]—i—cos()i{i( i b )[Dk] l b=20
A2 * oo ey T\ & )
= Qb

where

‘1 = sin [,J'Ik('sk-t-l - Sk)].

Vo = 1 —cos[3Jk(sk+1 — 5¢)]-

By solving this frequency equation with a simple iterative numerical method.

we can find the second frequency for the three cases (b). (¢) and (d).
The mode shapes in y’ and =’ directions are given by Eq. (4.11) and Eq. (4.12)
which can be written as
sz(s) = Cgk COos [,UJk(S - Sk)] + C.u, sin [,dJk(S - Sk)] — C;;Q, (4.29)
Zyk(s) = Cskcos[3Jk(s — sk)] + Cersin [3Ji(s — s)] — Cso.  (4.30)

where Cyg and Cjq are given by Eq. (4.18) and Eq. (4.19), respectively. Similarly,

the mode shape in 1’ direction can be obtained by using the above two equations,
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the static profile given in Chapter 2. the equation obtained from the Hooke’s
Law and the recursive formulas Eq. (4.14)- (4.16). The resulting differential

equation for Lk(s) is given by

dL:(S) = LS3/LS; — LS\ (—C3xLSks + Cax LSpc)/LS- (4.31)
S
— & 1S (~C5LSps + CskLSic)/LSs (4.32)
gy COS

where the constants LS; (i = 1...4) is given in Appendix A. Similarly. we can

solve this differential equation by a simple numerical approach.

4.2 Results and discussion

The results given in this chapter are obtained again using the cable considered in
previous two chapters (the parameter values are given in Appendix B). However. here
we use discrete approximation for the slopes of the cable. Similarly. the solid and
dash curves denote the mode shapes associated with A # 0 and h = 0. respectively:
and the Lagrangian coordinate is used as an independent variable and three different
inclinations are investigated: 0°. 30° and 60°. Similarly, w, and «, are frequencies in
the figures respectively correspond to the solid and dash mode shapes.

[t is observed from the presented figures that the effect of the large sag on the
mode shapes of the cable is more clearly revealed on the y and = mode shapes. (see
parts (b) and (é) in each figure). Whether a mode shape is associated with A = 0 or
h # 0. it is far different from sine waves. Contractions can be seen at the center parts
of the mode shapes.

For the same order frequencies. similar to that discussed in Chapter 2, the two
sets of mode shapes in u’ direction are completely different while they are similar in
y' and z directions. By comparing the two sets of mode shapes in y' and : directions,
we can conclude that these two sets of mode shapes behave quite differently. For
example, in Fig. 4.1 (b), the two y’ modes are almost in the opposite phase at the
left-end part but at last almost in the same phase at the right-end part. But the two

modes in part (c) of the same figure begin with almost the same phase at the left-end
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part but ends with almost opposite phase at the right-end part. This is also true for
other figures no matter the cable is inclined or not.

For the different order frequencies. there are symmetric and asymmetric mode
shapes for both the two sets of mode shapes in y’ and = directions when the cable
is horizontal. When the cable is inclined. this type of regularity becomes quasi-
svmmetric and quasi-asvmmetric. However. although the same type of regularity
exists for the dash curves (h # 0) in « mode shapes. the solid curves (h = 0) of the
1 mode shapes remain symmetric.

When the cable is inclined. y and = mode shapes (both solid and dash curves) are
more influenced than u mode shapes. This trend is clear by observing in Fig. 4.5 (b)
(c) and Fig. 4.6 (b). (¢).

Similarly. there is the decreasing trend on the frequency. Moreover. the decrease
of the frequency considered in this chapter is much larger than those presented in

previous chapters. This may be due to the large sag of the cable.
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Chapter 5

Large sagged cables with concentrated loads

In this chapter. the last model of the large-sagged cable with concentrated loads will
be discussed. The method used in this chapter is a combination of all the methods
used in the previous chapters.

For notations, we use two sets of subscripts to describe our model: one is ¢ which
has the same meaning as before, i.e. the i-th point at which a concentrated load is
imposed. the other set is k. which is introduced for approximating the cable slope.
which is similar to that of Chapter 3. The points marked by k are obtained by dividing
each i-th segment of the cable into M subsegments. which are not necessarily equal.
Thus the i-th point at which a concentrated load is located must satisfy & = i - M.
which can be used to control and identifv the two sets of points. To express the
two sets of points in a single formula. we introduce the generalized Kronecker delta
symbol {33.34].

The approach of analyzing the dynamic response of the cable is similar to that
described in the previous chapters. Therefore, only brief descriptions are given here
for simplicity. The static analysis for the flat cable with concentrated loads considered

in Chapter 3 is still valid for this chapter and thus omitted.

5.1 Dynamic analysis

First, similarly to Chapter 4, we will make some modifications on the assumptions
which are only applicable to flat cables and then extend the analysis given in Chapter 3

to consider the last model.
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By using the procedure of obtaining Eq. (1.27)- (1.29). one can obtain the differ-

ential equations describing the dvnamic response of the cable formulated in rotated

coordinate systemn as follows:

d ou’ dr' 2’ N 9Py

s t e = = B 10(s — 5, P d.
33[(H +h )01' +h d.r] mat') + m;o(s 5)(%2 (5.1)
a ()y) dyl ()Zy’) . azyé _
JR— z et —-—'—'— !() S — 31 = '2
C)b[(HI-*-h )a ] m— > +m (5 S ) at_) (O )
() a~) d..'..' 82‘- 0’.’:)

—I k h _] = _ { (ﬁ — Ny . 3.t
I5" (H,+h_ ()1 + r ) mdt + m,d \()t-’ (5.3)

where the assumptions T = H, and 7(t) = hI . and the static profile obtained in
Chapter 3 have been used.

The assumption H,; >> h; is still valid but another assumption dr = dscosé
needs to be modified as dr = J} dscosf. Furthermore. we can express the two sets
of points mentioned above in a single set of equations Eq. (3.1)- (5.3) by using the
generalized Kronecker symbol defined later.

With the process described in Appendix C.4. we can obtain the piece wisely
smooth differential equations and the discontinuity conditions on the slope of the

cable by using Eq. (3.1)- (3.3). The differential equations are

Q*uf,  mecosf ,0%u} h.q,sinfcosf
- = ———J;. 3.
o T H ow RN (54)
Py, meceosh L,y h.q,cos28
= - ] = I :]-). —.'-
952 H, *or HZ % (5:9)
Pz meceosl Bz h.q.cos@ _, ;
52 T H om = —m (5.6)
and the discontinuity conditions are
ouy (s ou} (s i1 0%, . h P, sin@ .
uk+éf:k+l) _ ng::-kl) — n;;l —5:70“ + __;;25111 Oki- (5-7)
Wog o1 (Sk+1) _ Oy (Sk+1) _ My % P h. P, cos 90- ) = 8
oz or  H, o2 ™ H (5:8)
Ozaks1(8k41) _ O2ak(sk41) _ mMan ﬁo- _ (5.9)
oz oz H, o2 " '

where the Kronecker function is defined as



In order to find the frequency equation, we need to use the Hooke's Law. Note that

although the static parts in this equation are the same as those given in Chapter 4.

the dvnamic parts are different.

Applying the method of separation of variables to Eq. (3.4)- (5.6) with the aid of

a similar Hooke's Law yields
L‘.k = Clk cos [J]k(b - sk)] +C3kSi[1 [.jfk(b - Sk)] -
Yor = Caecos[3Ji(s — se)] + Cuesin [3Je(s — si)] +

Zay = C(Cscos [d]k(': - Sk)} + Cex sin [J]k(s - 5/:)1 +

hg,sinfcosf  _
R
hq, cos*# 3
hq. cos 6 _
R (3.12)

The integration constants can be determined from Eq. (3.7)- (3.9) and the continu-

ity conditions and boundary conditions. However. they need to be adjusted according

to the method of separation of variables,

dUk 41 (k1) _ dUk(5k+1)
ds ds

dYk+l(3k+l) _ dYk(-"k+l)
ds ds

dZys1(5k+1)  dZk(Sk+1)
ds ds

Uk+l(5k+l)

Yk-l»-l(SIcH)

Zri1(Sk+1)

[J()(O) = 0

Yo(0) =0

Zy(0) =0

+

and the modification results in

My

I Uk (Sk41) 0k
m

hP., J¢sinfcos@

mi, g

I Tk (Sk41) 0k
m

hP ) J}cos?
4 1/} COS

i Oks.

Miti 2 -
" J -]ka(SkH)‘)kx‘»

Uk(Sk+1)s

Yk(sk-i-l)»

Zi(Sk+1):

Us(Ls) =0,
Y.\?(Ls) = 07
Zy(L,) =0,

Fr) ki
15 o 1
r



where

J = m;;rs O‘U.

N o= (V+D)M -1

The constants can be found recursively with the help of transfer matrix:

Ci ik Cio hsinf cosf -
( Cou ) = D] ( Cu ) T P2 H; - )
Cax Ak Cao = _hcos"’f) = 3
(c.;k) - ( Ci ) M 2
Cr,k _ k C hcos@ -
( Coexk ) = D3] ( Cso ) + S HZ FHE O

where [D¥] is the transfer matrix given by [DE] = [Df_|[D5™!] with [D8] = I([ is a
2 x 2 identity matrix). The matrix [Df_,] is given by

. Df_ (1.1} DF_(1.
[Dt’—ll = ’; l . k .
Df_(2.1) Df_ (2.

lv IQ
[

where

Dt-—l(ll) = COS[J.]k_.l(Sk—h'k,_l)].

Dt—l(l'z) = sin[JSk-1 (5% — sk-1)],
Jx

Dia(21) = === sin 3o (56 = s
m, J? .
— — =L 3cos [ ko1 (5k = Sk-1)|0kis
m Ji
k(o s Jk-1
Df_(2.2) = 7—(05[31;: 1(5% = sk-1)]
k
m J?
m ;kldCOS[JJk 1(Sk - Sk-1 ]Ok,

The vectors 7 and & are
X 0
—?k = [Dk-l]?k‘l + ’ , J2 - .

J
| 0
_S)k = [D:_ll?k—-l + ( } JE_I' ' ) .
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with 7o = T = ﬁ

The initial values for the above recursive formulas are

Cio = ——hq”f;;‘fzgosg. (5.25)
Cyn = -2%5‘32—5;—6. (5.26)
Cso = —EQT:;—*’G (5.27)
QDCy = Q-\/’z(%)- (5.28)
QDCy = Q.V'y(-%‘%;g). (5.29)
QDCe = Q.V:(—hjic;;f ). (5.30)

where QD. QN,. Q.N, and Q.V; are given in Appendix A.
Then. with the process described in Appendix C.4. one can find the frequency

equation as:

h _ qy4:sind er | Cuwo P hsin 8 cos 8
—lEL - qJ+q- I;){ -lk BA. Dl! D -) L( sz) ))}
L cos 6 k hcos 7]
- (A ; D
PR ki;){ k. Bi) Dyi( ]( ) Tk FH? N}
U S (A BaDu(D8] [ € )+ Rl
4 + 4 o ’ N Ceo J*H}
C hsiné 7]
MRTLLLY ST R NT Bl P i Asal oy
H: k=0 Cx j'HE

_gycosf & ik [ Cao _hcos®8
H, kgo{(DkEk)Dh([Do] ( Cu ) + T}k( Jsz ))}

q: « Cso hcosf
- kazzo{(Dk’Ek)Du([Dg] ( Ces ) +?k(_32_h'§))}

where the constants .4, By, Dx and Ej can be found in the Appendix A.

As usual, there are two general cases we need to discuss for this model according

toh=0and h #0.



1. When h = 0. the frequency is determined from equation @D = 0. Substituting
h =0 into Eq. (3.31)} vields

FCy+GCyp+1ICy = 0 (5.31)

where the constants F. GG, and [ are given in Appendix A.

Another equation needed to carry out the discussion for the dvnamic response of
the cable can be found by evaluating Hooke's Law at the right-end of the cable.
With the aid of the static profile given in Eq. (3.38)- (3.41) and Appendix C.4.

we obtain the equation
Cxn = DCy+ ECg. (3.32)
Then eliminating Cy from Eq. (3.31) and Eq. (3.32) vields
DCy+ECs = 0 (5.33)

where D and E can be found in Appendix A.

Therefore. we can discuss the dynamic response of the cable on the basis of

Eq. (3.33). There are four subcases:

(a) If D = E = 0. then Eq. (5.33) indicates that Cyy and Cgo can be chosen
arbitrarily. and then Cy is determined by Eq. (3.32). The mode shape

functions are given by

Ui(s) = ( cos[3Jk(s — s)] sin[dJe(s — s¢)] )

Yau(s) = (cos[3Ji(s — )] sin[dJi(s — )] )
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(b) If D = 0 but E # 0. Eq. (5.33) gives Cso = 0 and then Eq. (5.32) de-
termines (g = DCyy where Cyg can be chosen arbitrarilv. Therefore. the

mode shape functions are

Ue(s) = ( cos [JJk(s — sg)] sin[dJk(s = sk)] )

D§(1.2)
( DE(2.2) ) Can,

Yor(s) = ( cos (3 Je(s — se)] sin (k{5 — s54)] )
DE(1.:
2( ) C40$
DO(:-)Y- )

(c) If D # 0 but E = 0. then Cy = 0. Cy = ECg. where Cyg can be chosen

[NV (V]

Zx(s) = 0.

arbitrarily. The mode shape functions in this subcase are given by

Li(s) = ( cos [dJi(s — sk)] sin[3Jc(s — s¢)] )
Dk(1.2)
( DE(2.2) )C”'

Zo(s) = ( cos [3Je(s = se)] sin[dJk(s = s¢)) )

DA(1.2)
( DE(2.2) ) Coo

(d) If D # 0 and E # 0. then Cygo = —%C.,o. and Cyg can be chosen arbitrar-

Fa(s) = 0.

ily. The mode shape functions in this subcase are expressed by the same
formulas as those for case (a). But they are different due to the different
values chosen for the constants.

Note that case (a) has two independent mode shapes with one single re-
peated frequency, determined by @D = 0. For the cases (b), (c¢) and (d),
there is one mode shape associated with this frequency. The second mode

shape and its frequency can be found from the case h # 0.

2. When h # 0. we can solve Eq. (5.28)- (5.30) for Cy, Cyp, and Cg. Then

substituting these expressions into



The mode shape functions in y’ and ' directions are given by Eq. (3.11) and

Eq. (5.12) which can be rewritten as

Yor = Cyecos[I3Je(s = sp)] + Cuesin[3Jk(s — s5¢)] — Cao,  (3.34)
Zy = Csicos [d]k(s - sk)] + Cex sin [,d./k(s - Sk)] — Cs. (5.35)

with the aid of the initial values in the recursive formulas given by Eq. (5.26)

and Eq. (5.27).

The mode shape function in r’ direction can be obtained from the Hooke's Law.

A brief description of the process given in Appendix C.4 leads to

dUk(s) 0SS, 0S5,
= — + —(-C; " kO She
+ O—Sg(—CBkOSbs + CsxO Spe ). (5.36)
085,

where OS; (i =1...9). OSy, and OSy. can be found in Appendix A.

5.2 Results and discussion

The same cable considered in previous chapters are used here to discuss the models
in the same three different situations. Two curves representing two different mode
shapes are solid lines and dash lines. associated with h = 0 and h # 0. respectively.
Again. we use Lagrangian coordinates to represent our results. w, and ., in the
figures are frequencies respectively correspond to the solid and dash mode shapes.

The large sag of the cable has an obvious effect on the mode shapes of the cable.
Comparing Fig. 5.1 with Fig. 3.1 indicates that the curves given in this chapter are
more smooth than those given in Chapter 3.

For the same order frequencies, the solid curves (h # 0) have some similarity while
for the dash curves (h = 0) the z mode shapes are different from the y’ mode shapes.
The mode shapes when A = 0 and h # 0 still behave in an opposite sense. For
example, in Fig. 5.1 (b) and Figure 5.2 (b), the two sets of mode shapes are almost in
the same phase but in part (c) of these figures, the mode shapes have almost a 180°

phase difference. However, this behavior changes in Fig. 5.3. where in part (b), the



mode shapes begin with almost the same phase at the left-end part but ends with
almost an opposite phase at the right-end part: while part (c) reverses the trend.

For the different order frequencies. the mode shapes have no obvious changes.
There are three different tyvpes of mode shapes in each direction for different fre-
quencies under the same supports in Chapter 3. However, these do not exist here.
Therefore, for each different inclination of the support. only the results of one fre-
quencv are given.

Similar to Chapter 3. when the cable is inclined. the mode shapes almost do not
change. This again shows that the cables with concentrated loads are not sensitive
to the inclination of the cable support. no matter whether they are flat cables or
large-sagged cables.

A similar decreasing trend is also found for the same order frequencies. which has

been found in previous chapters.
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Chapter 6

Conclusions and future work

6.1 Summary of the thesis

In this thesis, we have studied several cable models with fixed boundary conditions by
using the method of coordinate transformation and the Non-homogeneous Transfer
Matrix (NTM) approach.

There are two general models: one is for flat cables and the other for large-sagged
cables. Each of the two cases is divided into two subcases: one is for bare cables and
the other for the cables with concentrated loads. All the cases include both horizontal
support and inclined support. The analysis for flat cables is relatively easy because
it is assumed that the slope of a whole cable is a constant. For large-sagged cables.
however, a cable needs to be divided into different segments which uses different
approximation for the slope of the cable.

For the dynamic analysis, the differential equation in the r’ direction can not be
decoupled because of the rotation of the coordinates.

The inclusion of the differential equation in z’ direction results in a difficulty that
we can not discuss the dynamic response based on frequency equation only. Another
supplementary equation is needed, which can be obtained from the evaluation of the
Hooke’s Law at the right-end support. Then the dynamic response can be thoroughly
discussed on the basis of this supplementary equation together with the frequency

equation.

The results presented in this thesis include the special cases with horizontal sup-

ports, i.e. # = 0, which has been studied in [11,12].
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6.2 Conclusions and discussions

Although we are considering three dimensional cable models, there exist only two
independent mode shapes which are mainly in in-plane and out-of-plane directions
because of the constraint due to the Hook’s Law. The two mode shapes are associated
with either one repeated frequency or two independent frequencies. The mode shape
in the r’ direction always depends on one or both of the two independent mode shapes.
This is similar to the case with horizontal support (12].

As to the effect of inclination. flat bare cables are more sensitive to its changes
than the flat cables with concentrated loads or large-sagged cables.

For the effect of concentrated loads. compared to large sagged cables, flat cables
are easier to diminish the reliance on the inclination and can dramatically decrease
the amplitudes of vibration. However. the mode shapes for the cables with concen-
trated loads are sensitive to the load parameters such as the weight and the locations.
Therefore. it is not easy to achieve an optimum design for controlling vibrations and
a parametric study is needed [3].

As to the sag of the cables, the figures presented in this thesis show that the effect
of concentrated loads on reducing vibration amplitude is impaired by large sags. Also.
it has been seen that with large-sagged assumptions. the cable given in this thesis is
insensitive to cable inclination.

Finally, it has been observed that the frequency decreases when the angle of

inclination increases. This is true for all four models studied in this thesis.

6.3 Future work

We use the NTM approach combined with the coordinate rotation to obtain closed-
form solutions. Basically, we use the method of separation of variables to convert
original partial different equations to ordinary differential equations. Numerical ap-
proaches, such as FEM and FED can be applied directly to the partial differential
equations. One task of future work is to develop a numerical simulation package

comparisons between the analytical predictions and numerical results.



85

In this thesis, we only implemented program packages to compute the frequencies
from the frequency equations to obtain the frequencies. Therefore. a complete user-
friendly software packages needs to be developed. Moreover. for calculating high-
order frequencies, better numerical methods should be adopted to achieve better
convergence. A 3-DOF model model for transmission lines with concentrated loads
and a complete software package have been developed by Yu [5] to carry out galloping
analvsis. However. this model is only applicable for horizontal supports. A similar
3-DOF model describing inclined cables and software package should be developed.

For the practical design to control cable vibration. a parametric study is needed [3]
because of the sensitivity of cables on concentrated loads. A software package written
in FORTRAN 77 for the parametric study of the 3-DOF model mentioned above has
been developed [3]. It can be used to investigate the influence of detuning pendulums
and to analyze the effects of structural parameters in reducing the possibility of the
indication of galloping. A similar parametric study needs to be performed for inclined

cables by using the results obtained in this thesis.



Appendix A

Constants used in this thesis

A.1 Constants used in Chapter 2

For Section 2.1.1

For Section 2.1.2

For Section 2.2

1 mgL, . mgL, L.
- o) s _ =z
s osh ( i 2(C3) sinh ( I, ) .

. 2,mgL; . .a2,mgL,

sinh” ( S, + C3) sinh* ( 30, )

AE

L.

AFH,

L.L,

2, 2

q, +4:

H,. . mgL, 1 . mglL., \
—m—g[smh( ;_7[1 +C'3)+§smh3(—-fr+C3J

—sinh (C3) — %sinh3 (C3)]

VB +q?
VY _CONST,

P =
31 2 H,
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CONST,

CONST,

20¢2 + ¢%)H, VG T @
(cos” b, q~)‘ > cosh (2CONST,) sinh (—2—=1L,)
2cos?8(q2 + ¢3)2 H,

(cos? 82 + ¢?)L,
2cos? (g2 + ¢2)

AE L, ) . :
(NG + ) cost
sin@L
sinh ™! [ — = —]|
2H,\ [ BT sinh (L)
.4 q —
sm()qs jq_-:, + pe _: 7 \/cos? g2 + ¢2 -
a2 +q2
sinh (—jH——LI — CONST,)
C
Ctanf — secé
qy cos 8
Ctanf —secé
[,
CONST, - & Z"S L

(—qy sinfA4 + g, cos @)1 — cos(JL,)]

(—qysindB + q.)[1 — cos(JL,)]
gycost

CO./VSTl — Tb

rr

~tan(@)TCS, + L

cos@
1 — cos(3L,)

sn(3L.) Jcos(3ds) — Isin(Js)

A.2 Constants used in Chapter 3

For Section 3.1

212

2+ %TC‘lTC'g

N

1+ TC\TC; — TC, 3 [Cilzivy — )]

k=0

Noa2 -2
TC, Y {[Ci" + Ei )(zis1 + 1)}

k=0

1
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TC,

TC,

TGy

TC,

TCy

S

TI,

Th

TI),

Ty

_IC , )
H l Z{[E C tanB][ (Liv1) — ¥ (Ii)]}
T k=0
N
- TG, Z[Ci(IHl - l‘i)]
k=0
L
ZPkSmg ZPksmB+h s
I k= T
Z P siné R
k
o He + b
Z Picos(— — 1)+ ) Picost
k= L, k=1
Z Py (.OSH.L’k
H,+h,
.4E
2H.L,
AE
H2L,cosé
L: dy' .  qi+q?
! -d Yy >
/u (d;r) I(q;jcoszf))
iL,
sinh [T + CONST|

\/ q2 (I
sinh [——-y—-—-— L

H,;

cos® 0¢° + g H 1.1
3 13 L ) ——(TCy — TCs + =TC} - -TC3)
cos? 8(q2 + ¢?) \/q +q? 3 3

szsmé) L ZPk sin @

1+ q: D%, N 2¢,q. sinf cos 8 Do — g2 sin* §
\ Q2 +q? (g7 + q2) cos? 6

1+ qu%i + 2q,q.sinfcos8D,; — q§ sin® @
' g+ (g2 + g?) cos? 6

1+ q!%D%(iH) 2qyq. sin @ cos 0Dy(i11) — g3 sin? @
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¢:Diy . 2qyq.sinfcos Dy — g2 sin® 4
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TI,
Tl
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TI,

.
Gitvt

For Section 3.2
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= —‘_g_"l'wl Ey;
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SCy
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SC,
5Cs
S,
Sty
SUs
SU;
SUs

S U','
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SUse
SUss

(SCy + SC5)/SCs
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(g.cos @Dy — g, sinf)q,
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tE (=G
1
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A.3 Constants used in Chapter 4

For Section 4.1

Qe I o

LC,
LC,
LS,
LS,

LS;
LS,
LS,
LS.
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=~ 1 . .
Z{j—{sm (8Jk(Ske1 — 5k)|D5(1.2) sin @
k=0 7k

+ DE(2.2){1 = cos [3Jk(ske1 — 5¢)]} sin8}}

n 1 ) ) .
Z{]—{‘ sin [dJe(Sk+1 — Sk)]DS(L 2) cos b
k=0 "k

— D5(2.2){1 = cos [3Je(sk+1 — sk)]} cosB}}

S~ {- (- sin [Helsens = ok 1DA(1.2)
k=0

— D§(2.2){1 - cos[3Jk(ske1 — k)] }}}

_Lay
LC,
% cc:)sﬁLCl
LC,
Aq,D + Bq,
AgyE + cq:
0s
CONST, - W27, |
H,
—tan@LC, + L
cosd
0s §
CONST, — "y;’j s
—tanfLS, + !
cos @

h @2+q¢ _, 2sinf

—= - —ZLS +
AF [qf, cos2f "' cos2g !

3Jk(s — sk)
3J,sin (LS,)
8J, cos (LS,)

1

cos? 0]



A.4 Constants used in Chapter 5

For Section 3.1

.-lk = CO0s [,’JJk(S;H.l - Sk)] -1
B, = sin[3Ji(sk+1 — k)]
Dy = ['51('5!:-4—1) - Gi]CUb' [JJk(b‘kH - 5!:)] - si(sk) + G|

1 .
— —sin [3Jk(Sk41 — 5¢)]

3
) 1
Ek = [s,(skﬂ) - G,] sin [JJI:(SIH-I e Sk)] + ﬁ(‘OS [,d.]k(skﬂ - -"k)l
Jx
_ b
JJi
n .sinf g, sin 6
F = Dt (1.2){ 4D, 2L p B
g{ k-1 )[k 1 q§+q'_:’ + LUy H, ]
.siné g, sin
D% (2.2)(B. D, 2307 | g Y
+ Di_\( )(qu;f'f'(ﬁ S }
1 . 7} cos 8
G = —S{DF_ (1.2)(4:,D, 2% p U
g){ e-1(1.2)[Ae Dy pEgp + Dy 7 ]
. 6 cos 8
Df_,(2.2)(BeD, B2 L g B
+ Dy _(2,2)(By Dy 2+ + Ex I, )}
= . ‘In-) q-
I = Df_ (1.))[AeD)i—2— - D=
S (DE (L 2 Du g = Dufe
2
k4 ¢ q, q: -
+Dk-l(212)(Bleiq§ -!qu - Ekﬁ:)}
D = (QC, +QC3)/QCs
E = (QC:+QCy— D 3)/QCs
N = (N+1)M -1
D = F-D+G
e = F-E+1

QD = D{(1.2)cos[BIn(Ls — sa)] + DY (2,2)sin [3Jy (L, — 5p))]
QN; = Qy — [er + D(IJV(L 1)Qy] Cos [ﬁJN(Ls - Sn)]
~ [rn2 + DY (2, 1)g,]sin [BJn(Ls — sn)]



QN, = gq,—[ry1 + Dy’ (1. 1)g cos [3In(Ls — sn)]
— [rv2 + DY (2.1)q,] sin [3Jv(Ls — sa)]
QN:. = q.— [3;\/1 + D(‘)V(]" l)q.:] cos [JJN(Ls - bn)]

- [SN'Z + Df)v(z 1)‘1:] sin [HJN(LS - Sn)]
(g2cos D,y — qysinf)q,

QC, = LY
l g + ¢
q:
Cy, =
QC q_‘,cost‘)QCl
q, cos @
ey = W20 ~ay)
_ 4 ,
Qe = qycos()QC"
1
QC; = tandQC, +tanbQC, + —;
cos §
0S, = (g:cos8D,, — g, sinb)g,
: q; +q2
y cos 6
QS = gJH—(s,-—G,)
1
QS; = tanfQS, +tanbQS, + —
cosd
Qs-l = - QSl
qy cos
_ q:
Qs = qycoseQS2
h q:D?  2q,q.sinfcosD); — ¢?sin*6
@5 = —lE{[1+ 2y l2+ : 2 o 2 ~29y ]
) Ty + 94: (¢2 + g2) cos
‘ 2+ q? y
L (= G)

0Ss = 0S, +0S,

0Sy = 05,4+0S;—-D,y-D5
OSp, = JIJgsin[3Jk(s — s¢)]
OSee = 3Jkcos [3Jk(s — si)]



Appendix B

Parameter values for the numerical simulation

Parameter Notation | Value
Cross-Section Area A 102.9 mm?
Modulus Of Elasticity | E 63.358 k.N/mm?
Span Length L, 125 m

Tension (Horizontal) | H, 15 kN

Bare cable self-weight | m 1.663 A'g

Table B.1: Parameter values for the numerical simulation
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Appendix C

Outline of some derivations

C.1 Brief derivations for Chapter 2

The process of solving the static profile of simple model

For the differential equations

d*r’ . ds
Hz—d? = ¢, sin HE'
d*y’ ds
HIF = —q,COos 92;'
if the cable is not entirely vertical. let
b=
dy
7 a4
and then Eq. (C.1)+Eq. (C.2) results in
p = —tanfq+C,.
Thus,
' = tanfy +C,r +C,.

Applying the boundary conditions z’(0) = y'(0) = 0, £'(L;)

0 yields

1

G = 0s 8’

Il
(=]

C,
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(C.6)

= /L2 +hand y(L;) =
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Because

ds ; >
o - VPt (C.9)

So substitute Eq. (C.3), Eq. (C.7) and Eq. (C.8) into Eq. (C.2) gives

1

H,Z—Z = —q,co0s 6\/1 + coszﬂ(q ~sin#)?. (C.10)
Therefore,

q = sin0—cos€sinh[(z1—y)x—C'3]. (C.11)
and thus,

I _ . H.l.' Qy &
y' = sinfzr — cosf— cosh [(=-)r - Cy] + Cy. (C.12)
Ay H,

From the boundary conditions y'(0) = 0 and y'(L,) = 0. we find C3 and C, given by
Eq. (2.3) and Eq. (2.6), respectively.

The differential equations for the static tenstion increase due to out-of-plane load

Transform Eq. (1.21)-Eq. (1.23) (P, = 0 because there is no concentrated loads
here)into the rotated coordinate system and use the differential equations for static

profile to simplify the resulting equation to obtain

d du’ dr’ : .

T (T + T)E + T:i; = (g, + mg)sin6. (C.13)
d dy, dy,
Eﬂ@+ﬂ£§+rﬁ1= (g, + mg) cos. (C.14)
d d22 dZ] _ -
d—s[(T'i‘T)'E's“ +T£ = q.. (CLD)

With the aid of T = H,‘%; and 7 = hxgzi, Eq. (C.13)-Eq. (C.15) can be further
simplified to

d*u (gy + mg)sinf ds h, d%z'

dz? H,+h, dr H,+h,de?

d*yy, _ —(gy +mg)cosfds h. d%y
dz H.+h, dr H,+h, dz?’
d?z, —q, ds

dz? H, + h.dz’
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which are Eq. (2.13)-Eq. (2.13).
The 3rd-degree polynomial for the static tension increase

By using the following two equations:

(ds'y? = (dr’ +du')* + (dy| + dyy)* + (dz2)*.
(ds)2 = (d:r')2 + (dy{)g.

we can transform Eq. (2.16) into:

he ds g  dafdu’ 1 du',  dyydyy 1 dy,., )
ED T e 3w TG dx+2(d sl

In order to integrate this equation to obtain a 3rd-degree polynomial. we must first
solve Eq. (2.13) and Eq. (2.13) to find the expression for the displacement increase due
to ¢.. It is not difficult to solve these equations with the fixed boundary conditions

and the static profile given in Eq. (2.3)-Eq. (2.9). The results are:

g = ;I"fzi“”(%)‘-’cosh(’”}f +Cy)
+ gzi“}ig—;cosh(”;fgj +C3) + Doz + Do, (C.17)
g = _(qy;m-f)hcose(%)zcosh(”;fj_+_C3)
- ;‘[ Cishiﬂcosh (";: +C3) + Dsz + Dy, (C.18)
2 =~ +h (—) (”;?II+C,3)+DE,J:+DS. (C.19)
where D, to Dg are given by
D = w8 (A )[(—— +1)H, + hy][cosh (C5) — cosh (M2 4 ¢3)),
(H: + h: )L mg P
D, = _HSlieh () eosh (G Iy -+ DH+ bl
Dy = (72?:")'17(59)[( 2 DH, + hofeosh Hf + C3) — cosh (C3)],
Di = (o) cosh (Calll2 + D, + b,
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= ___gi__ é_ 2 . mng _ '
Ds = (H. + ho)L, (mg) [cosh ( H. + C3) — cosh (C3)],
: H,
Ds = I, (:'_h (— ) cosh (C3),

in which C; and C; have already been given by Eq. (2.5) and Eq. (2.7).

By using Eq. (2.3), Eq. (2.4). Eq. (2.9) and Eq. (C.17) to Eq. (C.19). we can
obtain the 3rd-degree polynomial of %f by integrating Eq. (C.16). This equation has
been obtained, see Eq. (2.17).

Frequency equation

In order to derive the frequency equation, we need to use Eq. (2.33). Substituting

Eq. (2.22) to Eq. (2.23) into Eq. (2.33) yields

hy ds ., g, cos§ du 1 du
:—'=—'9 l .}_—y 1.
A% tan8(CONSTz = =) 45 ¥ os0 ds

gycosf  dy,

NST) = =———s)—=

+ (CONST, I s) I

: _qycosﬂ‘ dz, 5
+ Py cosB(CO NST, A )d.5 (C.20)

By using the method of separation of variables. Eq. (C.20) can be transformed into

T"E-(Z—;) = —tan8(CONST; — q”;{‘ise ‘;LS + colse%
+ (CONST; - q”;;’:gs)%
+ qycos *_(CONST, - q“;ffg )’fi (C.21)
which can be further simplified into
%L = _‘Iu;i:”’ /0 " Us)ds + ql;ie OL’ Y (s)ds
o [ 2s)as. (C22)

With the aid of Eq. (2.44) to Eq. (2.46), Eq. (C.22) can be transformed into the
frequency equation Eq. (2.34).
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Supplementary frequency equation

The supplementary frequency equation was obtained from Eq. (C.21) and Eq. (2.44)

to Eq. (2.46) as:

qycosé
A,

+ —L—[—fld sin (JL;) + fodcos (3L,)]
cos 8

— tan§(CONST; —

Ly)[-fidsin(IL,) + fadcos (3L,))

+ (CONST, — %u<os?

L,)[—f3dsin (IL,) + fi3cos (IL,)]

q- gy cos 8
N 2 =
qy cos (CONST, H,

=0

Ly)[—fs3sin(3L,) + fed cos (IL,))

where the fact h = 0 is used. A simplification of this equation results in the supple-

mentary frequency equation Eq. (2.56).

U-mode fuction

We need to use Eq. (C.20) to derive this U-mode function. From Eq. (2.22) to
Eq. (2.25), we can find

ds , qj + q" gycosf .,
—)° = NST, - -
& 9% o g OV T .Y
2sind g, cos 6 1 .
= o8 (CONST, - yHI $) + oyl (C.23)

Then using Eq. (2.71) and Eq. (2.72) together with Eq. (C.23) vields the U-mode
function given in Eq. (2.74).

C.2 Brief derivations for Chapter 3

3rd-degree polynomial for the static tension increase

In order to obtain this polynomial of %‘;, substituting the static profile given by
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Eq. (2.2

2) to Eq. (2.25) and the dynamic profile given by Eq. (3.18) to Eq. (3.20) into
Eq. (3.2

1) and then integrating the result produces an equation

hs h?

_ Le dyfy, @+ 4
1E T 2(H,+h )2/0 ) dx(q'z cos? 8

yilz)]}

v

(H +h Z {[Citan8 — Ely\(£is1) -
=0
v

+ 55— Z

(H; + h,)?
h L

~L‘z+l - -[i)]

2(H: + h;)*L + ZQ(H; + h;)"cos™ 6
h, N th
[Ci(z,
T (HI TRy cm,ag (Lis1r — L)) = T h)7e0sd
__he i‘:(dyl 24y tly+Q'

H. + h; 0 dr q cos? F))
1

(Hy + h,
L]
(H; + h;) cosf

h.L 1
H,+ hcos@

+ Z{(E" - é, tan 9)[9’1(1—';'-%-1) - yll(-tl)]}
k=0

M<

Il+l - .L’
k:l)

Ay
L,. .2
(Hy + hz) cos? 8 (C.24)
Then collect the equation dccordmg to 7=. we can obtain the polynomial given
by Eq. (3.22).

hzx

Frequency equation

Substituting the static profile given by Eq. (3.38) to Eq. (3.41) into Eq. (3.54) gives

h: ds.. (g: cos8Dy; — q, sinf)q, du! gy cos @ du!
E(E)z = tanf q2l+q2y )q”—gg-+tan9 ”H (s.-—Gi)Es—
: 2 + ¢2 x
+ 1 duj (g:cos@Dy; — gysinf)q, dyy
cosf ds q: +q? ds
_ gycosf dyy;  (g:cos6Dy; — gy sinb)q. dzy;
HI (sl G ) ds

(g2 +g2) cos® ds
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q. d 2. dz. i

~ = (si ~ G) =2 + Dy—— 25
AN )2+ Dy—=. (C.25)

By using the method of separation of variables. we can transform Eq. (C.25) into

h  ds., .cos 8D, — g, sin#)q, dU; cos @ J,
TE(‘CC:—.L‘)~ = tan9(q' €£+q§y n )deis an ﬁqy (si— )CZLS
1 dU; (g.cos8Dy; —q,sinf)q, dY,
cosf ds Q2 + q? ds
qy cosfl . _ G-)ﬂ _ (g:c088D\; — qysinb)q. dZ;
H, 7' "Yds (g2 + q?) cos® ds
- (-GS + DU (C.26)

With the results given by Eq. (3.33) to Eq. (3.57), Eq. (C.26) can be written as

h _ Qyg:sinf rls oL Qysing rls [
.'1EL€ - qé + qf 0 Dltdbl(b) + H, A ('51 G.)d(,,(a)
qyq:cos§ rLs . qycosd fLs ]
- W87 [ Dudyi(s) - 5. = GdY.
2+q Jo T (s) H, /[; (si — Gi)dY,(s)
g q:
—_ d _ 4= _
Q2 + ¢ / Dudz,(s H,.[o (5. — Gi)dZ,(s)
+/ Dudzi(s) (C.27)

A further algebraic manipulation on Eq. (C.27} leads to the frequency equation

given by Eq. (3.76).
Supplementary frequency equation

In order to obtain the supplementary frequency equation, we need to evaluate Eq. (C.26)

at the right-end point of the cable. With the ai of Eq. (3.33) to Eq. (3.57), we have

the final result as

ftan (q_ cos@Dy — gy sinf)q, + tan g 3% g
g2 +¢? H,
_ lgzcos8D,y — gq,sinf)q, g, cosd
- [ 2 2 +
qy + q: H.’L'

(qzcos8Dy — gysinf)g. g ,
[ (g2 + q2) cos P HI(L’ Gn) — Din|Ceo (C.28)

1
(Ly —Gn) + coq]czo

(Ls — Gn)ICs0
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which is equivalent to Eq. (3.78).

U-mode function

Eq. (C.25) is used to derive the U-mode function. From Eq. (3.38) to Eq. (3.41), we

can find
ds; ., 2p2 3 i 2 gin? 242
, 3 q; D3, -q,,q:amﬂcosBD!!—q!mn a, BrE a2 Tab
(—-—dr) —[1+q3+q.§ + @) cosTd + (s G- (C.29)

Then use the results given by Eq. (3.89) and Eq. (3.90) together with Eq. (C.29) to

obtain the equation for U-mode function gien by Eq. (3.91).

C.3 Brief derivations for Chapter 4
Frequency equation
Because the static profile is the as that obtained in Chapter 2. we can directly use

Eq. (C.22) here to derive the frequency equation.

With the help of the Eq. (4.10) to Eq. (4.12), we have

h gy sind
gL = - H 3 Z{ {C'u:bln [3Jk(ske1 = 5]
- C'zk cos [dJ/c (k1 = s)] + Co }}
gy cos f

"H.3 Z{ ~{Cansin[0Je(x41 = 3¢
— C'.;k cos [dJk (k1 = se)] + Cu}}

Y H3 P A sin [3Jk(Sk+1 — si)]

— Cer cos [BJi(sk+1 — se)] + Cox }}
(g + ) cost
BzHg $1

which can be put inthe form Eq. (4.25).

<+

Supplementary frequency equation



103

From the supplementary frequency equation, we can directly use Eq. (C.21) but with
the aid of new results obtained from Eq. (1.10) to Eq. (4.12). Substituting Eq. (4.10)
and Eq. (1.11) into Eq. (C.21) yields

qy cos @

—tan§(CONST, - L =Dy(1,2)Cy3 Ty sin[3Jy(Ls — sx)]

+ DY (2.2)Cao3Jy cos (B3I~ (Ls — sn)]}
1 .

+ coso{—Dév(l.'Z)CzoﬁJN sin{3Jy(Ls = sv)]
+ DY (2.2)Co03Jy cos [3Jx(Ly = sn)]}

+ (CONST, - qy;fsgz;,){—oa“(l, 2)Cio8Jx sin [3Jy (L, — sy)]
+ Dy (2.2)Ciod Iy cos[3T v (L, — sn)]}
+ —,_(CONST, - W50 ) (_ DY (1,2)Coo Ty sin (3w (L, — 5]
qy cos @ r
+ Dév(L. 2)Co03 v cos (3w (L, — sy)|}
. (C.30)

Eq. (C.30) can be further simplified as

qy cosf 1 . qy cos 8
—tan8(CONST, - s) + —|Cs NST, - s
[~ tan8(CONST, I L)+ cosa]c'o + (CONST, . L,)Cy
q: qy cosé
NST, - = .
“ cosG(CO ST, - L)}Ceo

= 0,

which is equivalent to Eq. (4.27).
U-mode functuion

Again, Eq. (C.20) can be used to derive this mode shape. Because the static profiles
are the same with those given in Chapter 2, we will obtain the same resuit given by
Eq. (C.23).

The only difference is that Eq. (4.29) and Eq. (4.30) are different from Eq. (2.71)

and Eq. (2.72). With the aid of Eq. (4.29) and Eq. (4.30), one can finally obtain
Eq. (4.32).
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C.4 Brief derivations for Chapter 5

The differential equations and the continuity conditions

From Eq. (5.1)-Eq. (3.3). when k # ¢ - m. we have

FPu,  m BFu _ __hs d’r), (C.31)
drds H.+h, Ot? H, + h;dzxds’ )
a2y'.,3k _ m azy".)k - h‘l' d‘zyik (C 32)
drds H;+ h, Ot? H, + h,drds’ )
Py m Py _ __hs d?z), (C.33)
dxds H,+ h, Ot? H, + h, dzds’ '

By using the static profile given in Eq. (3.38)-Eq. (3.41). the right-hand sides of
Eq. (C.31)-Eq. (C.33) can be simplified. With H, >> h; and ds = J? dscosf. the
above equations can be transformed into Eq. (5.4)-Eq. (5.6).

If Kk = i- M. then from static differential equations Eq. (3.23)-Eq. (3.23) we have

d*r’ gysing  Pd(s—s;) .

= - f. C.
drds H, H, " (€-34)
d*y, gycos@  Po(s — 3;) .
Tods = i, + . cos®f, (C.33)
d*z qs

= 1z C.36
drds H, ( )

Then substituting Eq. (C.34)-Eq. (C.33) into Eq. (5.1)-Eq. (3.3) and then integrating
the resulting equations vields Eq. (5.7)-Eq. (3.9).

Frequency equation

The procedure of deriving the frequency equation is similar to finding Eq. (C.26).
With the aid of separation of variables, we can obtain
h  ds, (g2 cos8Dy; — gy sin B)q, dUx g, cos 8 dUy
AE) T 2+ gs TR0y e m G
1 dUx (g.cos0D,; — q,sinf)q, dYi

cosf ds 2 + q? ds
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_ qycosB(‘ 3 G'-)dn 3 (q: cos8Dy; — gysinf)q. dZ;
H, % 7V (Z + @) cos8  ds
q: , dZy dZy a-
Hr(bk Gi)—— Is +Dy—=. (C.37)
Then a direct integration of the above equation vields
h qyq-sinf [Ls . q,sind rLs .
—L, = —F/—— Dy;dUy(: — G)dU(s
TEk = g ), Dudlils) + B [T sk = Gadli(s)
gyq-cosf [Ls -\ gycos@ L -
- BT Jy Dudvits) = B [ - Godtis)
‘I- / 4: /
- D\, dZ -GydZ
P 1dZ(s) “H b (sk }dZ(s)
+ [0 DudZi(s). (C.38)

Finally, a further algebraic manipulation leads to equation Eq. (5.31).
Supplementary frequency equation

The supplementary frequency equation can be obtained using Eq. (C.37) via Eq. (5.10)
to Eq. (5.12). The equations cn be written as

g.cosf@D,y - g, sinB)q qy cos 8 1
q§+q"' ¥ HJHI (L,—G,lv)ﬁ-ggs—é}
{-Ciy3Jgsin[35(L, — sg)] + Cog3J g cos [3J5(Ls — s g)}

(- C"S"ig\; qusmo)qy - 9201, Gy

{-CagdJgsin[3Jg(L, — sg)] + Cyy 3Ty cos[3Tg(L, — sg)]}
+ {_(q; COSB'DlN - gysinf)g. L
(g2 +q2)cosf H,
{-Csx8Jgsin[8J5(Ls — s3)] + CondJy cos[3J5(Ls — s5)]}

= 0. (C.39)

{tan 0(

Ly —Gn)+ Dy}

Theabove equations can be further simplified into

(q_ cosdD\y — qy sin 6)q, + tan g0 cos@

[ta. q n q 0 ( GN ]Cgo
] z I
cos@Dn — q,sinf cosf
— [(Q- ql2N+ QQy )Qy qu ( .- GN)]C40
y T4z z

: cos 8Dy, sinf)g. g
. (g2 -:-‘;2) (?(!;SG s + '[q{—(LS —Gn) — Din}Ceo
y T4 ::

+|
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which is equivalent to Eq. (5.32).

U-mode function

We can still use Eq. (C.37) to derive this mode shape function. Because the static
profile is the same as that given in Chapter 3, a same equation as Eq. (C.28) can
be found. However, the difference exists due to that Eq. (53.34) and Eq. (5.35) are
different from Eq. (3.89) and Eq. (3.90). Simply using Eq. (5.34) and Eq. (5.35) yields
Eq. (5.36).
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