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ABSTRACT 

This thesis extends the method of the Non-homogeneous Transfer Matrix to study 

the dynamics of inclined cables undcr distributed and concentrated loads. The NTlI 

method is different from the method of the traditional homogeneous transfer matrix 

in that it not only involves homogeneous transfer matrices but also involves non- 

homogeneous transfer vectors which are caused by non-homogeneous terms in differ- 

ential equations. This feature makes it possible to consider the dynamic response 

of the cables with concentrated loads. This thesis conlhines the NTN method with 

an approach of transforming the original coordinate system to a rotated coordinate 

system in order to analyze the inclined cable models. The models presented in this 

thesis include both horizontal and inclined extensible sagged cables with and without 

concentrated loads. The effect of concentrated loads on mode shapes is investigated. 

It is found that both the sag and the inclination of the cables have some influences 

on the mode shapes of the cables. hheover .  the effect of the inclination on the fre- 

quencies of the cables is also investigated. Closed-form expressions are derived and 

numerical results are given to show the use of the analytical formulas. 

Keywords: cable dynamics. coordinate rotation. non-homogeneous transfer matrix(NTS1) 

met hod. static analysis. dynamic analysis. mode shapes. 
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Chapter 1 

Introduction 

Cables have been investigated by many researchers since the 17th century because 

of its wide usage in many applications such as ocean and electrical engineering. The 

study of cable dynamics is important for the design of practical cable structures like 

cable-stayed bridges and guyed towers. In these applications. cable vibration is a 

crucial factor in determining the reliability of the structures [I]. 

The flexibility of cables is advantageous because it  makes them easy to be em- 

ployed in various practical situations. However. this flexibility also makes cables 

difficult to theoretically analyze. Furthermore. the flexibility of cables renders them 

susceptible to oscillations which might impair their performances. The failures of 

many suspension bridges such as Shipshaw [3] further necessitated the study of cable 

dynamics. The same problem also exists in ocean and electrical engineering. for ex- 

ample. the aeolian vibration and galloping on overhead transmission lines [4.3] and 

strumming of marine cables under the sea [6.T]. 

A brief literature review is given below as the beginning of this chapter. 

1.1 Literature review 

In 1676, Noble and Pigott found that a string has different modes of vibration, which 

initiated the research on cable dynamics (21, and the research continued until the lat- 



ter half of the 19th century. The rapid increase in the usage of cable-stayed bridges 

and high-voltage transmission lines as well as other cable-related structures in early 

20th century further extended the research on cables. Especially. a number of disas- 

trous crashes of cable-stayed bridges and suspension bridges. [" further showed the 

importance of the research in this field. 

In the early studies. it was assumed that cables were inextensible or had infinite 

stiffness. In other words. the elasticity of cables was ignored in order to make it 

possible for an asymptotic analysis. Later. H. .\I. Irrine and T. K. Caughey pointed 

out that such a model was inherently unsuitable for the study of practical cables 

because the elasticity of cables must be included in order to obtain correct results [S]. 

.I compromise made between inextensible and elastic cables was to assume that the 

cables were flat. i.e. it had small sag/length ratio. Because of the simplicity of this 

model and the wide usage of shallow sagged cables. many researchers have focused 

on such models. especially on those with horizontal supports [Bag. 101. 

However. in reality. models for large saggcd cables are needed because stiallow 

models are approximations and usually do not give correct results. -4s it was pointed 

out in (111 that investigations should be made for these models and s a n e  preliminary 

results have been obtained in [6]. Furthermore. it has been noted that not much 

attention has been paid to the cables with pointed mass or concentrated loads [L2]. 

But in the real world. such concentrated loads are common . for example. the optical 

or acoustical instruments on the cables under the sea or the detuning pendulums on 

the overhead transmission lines. 

A model with only one concentrated load was developed [15.16] . Later. more 

complicated cases with more concentrated loads are considered in [9.12] by using the 

method of transfer matrix. 

Some other researchers have also explored the problem by methods such as Finite 

Element Method (FEM) [17] and finite difference [18]. However. as it was pointed 

out in [6] that when there are many concentrated loads on the cables. for example. a 

marine cable under the sea having enormous number of acoustical instruments, FEM 

becomes awkward because of the enormous matrix manipulations. A detailed review 



on the history of cable dynamics can be found in [S.19] . 

By using the method of Yon-homogeneous Transfer Matrix (NTN) [12]. this thesis 

will investigate static and dynamic beha~ior  for both flat and large sagged cables with 

inclined as well as horizontal supporters. In particular. it concentrates on the study 

of cables with concentrated loads. Closed-form expressions and numerical results are 

obtained . 

1.2 Methodology 

Both static and dynamic analyses are given in this thesis but the latter is more 

important and more attention is paid to it. However. in order to perform the dynamic 

analysis. the static profile must be obtained first. A brief review on these two topics 

is given below. 

1 . 2 .  Coordinate rotation 

All the analyses given in this thesis are referred to a rotated coordinate system with 

respect to an inclined cable. Therefore. the rotation relationship is always needed 

when we transform the differential equations which describe the motion of the cable 

from original coordinate system to rotated coordinate system. as shown in Fig 1.1 

with z-axis in the out-of-plane direction. 

Suppose that point P see (Fig. 1.1) has the coordinates (x. y)  in the original coor- 

dinate system and (XI. y') in the rotated coordinates. then the following relationship 

holds for the transformation from original coordinate system to rotated coordinate 

system: 

and the reverse transformation from the rotated coordinate system to the original 

coordinate system is given by as: 



Figure 1.1: Coordimt e systems 

Because we frequently transform differential equations from the original coordinate 

system to the rotated coordinate system. Eq. (1.1) will be frequently used throughout 

the thesis. 

1.2.2 Static analysis 

A practical example for the cable models studied in this thesis is shown in Fig. 1.2 

[lij]. The theoretical abstraction is given in Fig. 1.2 (b) where z-axis is in out-of-plane 

direction. s denotes arc length coordinate measured along the planar equilibrium 

curve. 

By using Fig. 1.2 (b), we can derive the following equations: 



0) 
Pi 8 (s-si) As 

Figure 1.2: Cable analysis: (a) a span of a cable: and (b) cable dynamics 

Yext , balancing the forces in x direct ion yields equation T: - T' = 0. and then using 



Eq. (1.3) and (1.6) results in 

Similarly, balancing the forces in y direction gives Ty - Ti + q,As - P J ( s  - s , ) h  = 0 

which. with the aid of Eq. (1.4) and (l.7), in turn produces 

A similar treatment in 2 direction yields T, - Ti - q , l s  = 0. and substitute Eq. (1.5) 

and Eq. (1.8) into the equation to obtain 

Now. under the rotation equation given by Eq. (1.1). Eq. (1.9)- (1.11) can be written 

in the rotated coordinate system as 

where the relation T = H,$ has been used. If the cable doesn't have out-of-plane 

load g, or concentrated loads P,. then the problem becomes the special cases: ql = 0 

or P, = 0. The equations Eq. (1 .I?)- (1.14) are key equations and will be frequently 

used in the following chapters. 

We begin with a simple model which bears the simple mechanical characteristic 

of cables. This model has vertical distributed loads only due to the cable's weight. 

Then models with more complicated loads will be studied. 

The differential equations describing the static profile of the simple model can be 

found in [20] where the detailed derivation is given. In particular. [20] introduced the 

equation T = H Z  where T is the cable tension and H the horizontal component of 

the tension and s, x have the same meanings as shown in Fig. 1.2 (b). This equation 

simply indicates the mechanical characteristic of a cable provided it has no external 



Figure 1.3: Static profile 

horizontal force. Therefore. this equation is also d i d  for other situations such as 

inclined cables as long as external horizorital force is not presente. A generalization 

of this equation will be frequently used in this thesis. With the aid of the equation. 

the differential equations can be solved analytically and closed-form formulas can be 

obtained. 

1.2.3 Static tension increase 

Because the models to be discussed in the thesis are more complicated than the 

simple model. we need to generalize the results obtained from the simple model to 

allow more complicated loads. In the generalization. we should use the same kind 

of analysis in order for the general formulas obtained in the thesis still being valid 

for the simple case. However. for complicated loads. the static profile of the cable 

and the horizontal component of the cable tension differs from one case to another 



due to different external forces. Once the cable tesion is dererrnined, a similar set of 

differential equations can be solved in a similar way for the static profile associated 

with more complicated loads. Having found the static tension increase. we can then 

solve the static profile of the complicated models. 

To find the static tension increase. we introduce another equation which is similar 

to equation T = H&. dr Supposed that T is the static tension increase of the cable 

due to some additional loads and h ,  the horizontal components of the tension. then 

T = h, 2. The procedure of solving T is equivalent to that for h,. The final equation 

obtained for h, by using Hooke's Lam is always a Ord-degree polynomial which is 

similar to that found in [-L.'1O]. Corlsiclering the cable segment shown in Fig. 1.2 (b). 

and Eq. (1 3)- (1.8) can still used here. However. the expression For the forces are 

different due to the static tension increase r and the corresponding static displacement 

3 which has three components u. y, and z2. Thus. r w  have 

d y ,  8% 
T,, = -(T + T)(- + -). 

ds ds 

dy,  i31/2 d t l g l  a,y2 
Ti = -(T + T ) ( ~  + -) + -[-(T + r ) ( -  f -)]AS. (1.19) 

3s . ds ds 3s 

Then balancing the forces in each direction (see Fig. 1.2) and transfroming the equa- 

tions into the rotated coordinate system. we have 

d dx' du' 
-+(T+r ) - ]  = -Pid(s -s i ) s ine  dT ds ds 

d dy; dy; 
-[T- + (T + T)-] = Pi6(s - S ~ ) C O S O  
ds ds ds 



1 . 4  Dynamical analysis 

For dynamical analysis. we assume that the movement is measured from the static 

profile. Thus referring to the cable segment (see Fig. 1.2 (b)).  the expression for the 

forces are similar to that given by Eq. (1.13)- (1.20) except that the displacement 

8 which has three components u. yr and 22 now represents dynarnical displacement 

caused by the dynamic tension increase r .  

Suppose the rriass of the cable per unit length is r n  and the mass of the L-th 

concentrated load is mi. then there are two aciditional forces m ;,,? and m,b(s - 
---4 

d2 u 
s , ) ~  which should be added at the right-hand-side of the forces balance equations 

Eq. (1.9)- (1.11). Therefore. the equations describing dynamic response of the cables 

are 

i3 dx dru a 2  tl a2 u 

-[(T d.s + rNZ + %)I = m~ dt-  + ruld(.s - SJ  -, dt-  

The idea of the dynarnical analysis is shown in Fig. 1.4. where similar notations as 

that given in Fig. 1.3 are used. Suppose that a point has a static profile represented 

by (q. gl. :) in the original coordinate system. then its movement from the static 

curve can be decomposed into three components in the three orthogonal directions as 

u,  y2 and z2. Therefore. its dpnamical coordinates referring to the original coordinate 

system are expressed as (rl + u,  yl + M, 2 + 3). see Fig. 1.4. 

Eq. (1.24)- (1.26) ran be transformed into rotated coordinate system by using 

Eq. (1.1) and can be simplified by using the differential equations Eq. (1.12)- (1.14) 

describing the static profile. The resulting equations are: 

a aut dxf a2 U' a2 UI 
--[(T+T)-+r-] = m- + mi6(s - si)- .  
ds ds ds dt dt 



Figure 1.4: Dpnamical displacenienr 

The above equations are also key equations and will be frequently used in the following 

chapters. Cseful discussions on this topic can be found. for emiple. in [20-24). In 

order to find the frequencies of a cable. a numerical method is usually used. However. 

due to the convergence problem. it is difficult to obtain accurate high frequencies. 

The Yon-homogeneous Transfer Matrix (YTII) [12] will be the method used in this 

thesis. and allows us to  derive explicit formulas and thus overcome the convergence 

difficulty. 

The Holzer-van de Dungen method in matrix form is called the method of transfer 

matrix. It makes use of the fact that in a large class of engineering problems. the 

vibrating system is arranged in a line and the behavior of every point in the system 

is influenced by the behavior at neighboring points only [23.26] . However, this trans- 

fer matrix method is only valid for homogenous differential equations. Since NTSI 



method introduced in [12] can deal with non-homogenous differential equations. The 

cable models to be discussed in the thesis involve the points a t  which the concentrated 

forces are imposed or some points whose introductions are due to the discontinuous 

of the cable slope. the X T l l  method can be employed easily to carry out the dynamic 

analysis. More detailed description about the NTM method can be found in [El. 

1.3 Numerical computation 

;\lthough all the formulas given in the thesis are explicit expressions, numerical com- 

putation is still needed. In particular. the frequency equation needs to be solved 

numerically by an iterative approach. Once the frequencies are found. other formulas 

can be computed usirlg the explicit formulas. Therefore. the numerical computation 

can be kept to a minimiurn. 

The parameter values for the numerical cotnputation adopted from a real trans- 

mission line are given in Table B. 1 [El. 

The numerical results are obtained by implcmenting the theoretical expressions 

in C programs. The subroutines for solving the equations and numerical integration 

of the C programs can be found in [XI. The bisection method is used to solve the 

frequency equations. 

Numerical results are shown in several figures where each component of the figure 

consists of two independent mode shapes. 

1.4 Contribution of the thesis 

This thesis extends the NTSI approach to study the dynamics of inclined cables. This 

approach is applied not only to Rat cables but also to large-sagged cables and is very 

suitable for the usually complicated situation where cables are attached with many 

concentrated loads. .\ new method of discretization for the large-sagged cables with 

concentrated Loads is also introduced. The method combined with NTM makes it 

easy to find the solutions of the large-sagged cables with concentrated loads. 



1.5 Thesis outline 

The purpose of this thesis is to use the Non-homogeneous Transfer hIatrix (NTSI) 

approach to extend the study given in [I21 to inclined cables. 

Chapter 1 is an introduction including two parts: one part gives a literature 

review. and the other part provides the necessary background for the analysis given 

in this thesis. The ideas to be used in this thesis are thoroughly discussed. Also. the 

outline and the contribution of this thesis are give11 in this chapter. 

Chapter 2 begins with the discussion of flat cables. It focuses on the static and 

dynamic properties of a simple model. as well as inclined flat bare cables without 

concentrated loads. 

Chapter 3 is again devoted to considering flat cables but with cormmtrated loads. 

After obtaining the static profile of this model, we extend the traditional Homogenous 

Transfer Matrix approach to NTSI approach to obtain the dynamic response. 

In Chapter 4. we discuss large-sagged cables and study the properties of inclined 

large-sagged cables without concentrated loads. From the complexity viewpoint. this 

model is a bridge between flat cables and large-sagged cables: while from the viewpoint 

of analysis. it is a bridge between the cables with and without concentrated loads. 

Chapter 5 continues the discussion on large-sagged cables. But the cables now 

have concentrated loads. -\ new method of discretization the cable is introduced and 

the numerical results for this model are found. 

Conclusions and future work are given in Chapter 6, and various constants which 

are used throughout this thesis are given in Appendix -4. The parameter values for the 

numerical coniputation are given in Appendix B. Brief descriptions on the derivation 

of some important formulas are given in Appendix C. 



Chapter 2 

Flat bare cables 

This chapter describes a relatively simple case. i.e. a flat cable without concentrated 

loads. We may use Fig. 1.3 and Fig. 1.4 as illustrations but assume that F, = 0. The 

process of analyzing this case will follow that tlescribed in Chapter 1. That  is. we 

will first transform the differential equations which describe the cable's motion in the 

original coordinate system to those in the rotated coordinate system. 

Then. the static analysis is carried out. After finding the static tension due to ti1. 

we will finally perform the dynamic analysis. Analytical expressions and numerical 

results are also obtained for this case. For this simple model. some researchers used 

a parabolic function to approximate the static profile [as]. some other researchers 

also tried to apply coordinate rotation to analyze inclined cables [29]. However. the 

method of rotating coordinates used in this thesis is more suitable for a consistent 

analysis. 

2.1 Static analysis 

We start with finding the static profile. First consider a Rat bare cable with dis- 

tributed self-weight only. and then extend the analysis to the model with a static 

horizontal q:. Finally the dynamic analysis is carried out based on the static profile. 

The detailed discussion of the effect of out-of-plane loads on the cable can be found 

in [12]. 



2.1.1 Static analysis for the simple model 

The differential equations describing this simple model are given by Eq. (1.9)- (1.1 1) 

in the original coordinate system. and by Eq. (1.12) and Eq. (1.13) in the rotated 

coordinate system. Because this model does not have concentrated loads. we can set 

P, = 0 in these equations. 

With the assumption T $  = Hz = cmst  which is discussed in Section 12 .2 .  

Eq. (1.12) and Eq. j 1. i3) can be rewritten as: 

With the procedure detailed in .\ppendix C. 1 we can obtain the solutions of the above 

differential equations as: 

HI y' = sin 81 - cos 0- cosh (% - C:,) + 
'Ir, HI 

where C:3 and C., are arbitrary integration constants. ticternlined from the boundary 

conditions as 

in which 

n w L  
c3 = --- sinh-' (a*). 

2H, 
Hz m g L  m g L  C., = - cos 9-[cosh (-) Jq + sinh (-)a?] 
m9 2 H, 2 H,  

tanBL,? 
a2 = 

2 sinh (e) ' 

where q, = -mg have been used. Because the model under consideration is elastic, 

Hookeys Law must be satisfied and the geometric relationship. 

should hold. 



Substituting Eq. (XI), Eq. (2.4) into Eq. (2.8) yields 

Hz Q 
s = -[sinh (2 - C3) + sinh (C3 ) ] .  

QY H, 

For the special case B = 0. we have a2 = 0 and H, = H. thus 

C":] = -& ' 2 ~  and C-! = --&[cosh ( % ) I  

Therefore. when 0 = 0. Eq. (2.3) Eq. (2.4) and Eq. (2.9) become 

H rng L rny L 
y' = - {cash [- ( r  - -)] - cash ( -) }. 

rr2 y H *I - 'LH 
H mg L nlg L 

s = -{sinh (-) + sinh [-(s - - ) I ) .  
m9 2H H .I - 

It is noted from the above cliscussion that without the out-of-plane load qL. the 

system is a planar system and can be easily dealt with. -4s it was pointed out in [I?], 

the out-of-plane load greatly complicates the arialpsis because in this case the system 

is then no longer a planar system. In the case when the out-of-plane load q: # 0 is 

present. we first need to find the static tension increase due to the load qz and then do 

the static and dynamic solutions. By using the procedure described in Appendix C. 1. 

we can obtain the equations for the static tension increase h,: 

d2 U' - h,  dLr' - - (q, + mg) sin 19 ds - -  - (2.13) 
dx2 H,  + h, dz H, + h, dx2 '  

The subscript 1 denotes the static profile without q, (i.e qL = 0). while the sub- 

script 2 indicates the displacement due to q, # 0. 

Now. Hooke's Law is imposed together with Eq. (2.13) through Eq. (2.13) to find 

h,. Hooke's Law is given by: 

r ds' - ds - (d# -- - rV ry 

-4 E ds 2ds' 

where ds' << ds is assumed. 



By using Eq. (2.13) to Eq. (2.16) (a detailed derivation can be Fou~ld in .Ap 

pendis C. 1). the static tension increase due to q, f 0 can be expressed by a 3rd-degree 

polynomial as: 

where the coefficients a. 6. and c are given below: 

c = -- yQr) - - 1]P1e3+4[- +- qy ]&PI (Qz) 
4 (ntg)" (ms)*' (ms):' 

P, ( i  = 1.2.3.4) here and Q2 are given in Appendix A. 

For the special case 0 = 0. Eq. (2.18) is reduced to 

1 r = --,\L[- &' d I]. 
24 ( rng)"  

myL, 1 m g L  + sinh (-) + -sinh"-)I. 
2h, 3 3h, 

where 

A" = 6 ( - ) [ ( - )  AE H sinh - )  m g L ~  - L,] 
LeH mg H 

Note that the above expressions are identical to those given in ['LO]. 

In order to find h,, we only need to solve for the root of polynomial Eq. (2.17). I t  

is not difficult to solve Eq. (2.17), and in fact it has been shown that the polynomial 

has only one root [Ill. 



2 Static analysis for the model with out-of-plane load 

The procedure of finding the static profile of the cable with both static loads q, and q: 

is similar to that for the cable with (~y only. But now the horizontal component of the 

static tension, Hz, is the summation of that for the simple model and the horizontal 

static tension increase. h,, which has been found in the previous subsection. Since 

the procedure is similar. we therefore omit the detail here for simplicity and only list 

the differetitial equations in rotated coordiriace system and the final results here. 

The differential equations for this case can be formulated in the rotated coordinate 

system as: 

The final static profile can he found by integrating Eq. ('1.19) to Eq. ( 2 . 2  1) as 

1 
I' = - tant )yr+-  

cos 8 ' 

s: qy H= cosz eq;: + 
' = sin 8- .,J + - d - {cosh (PI,) 

(I; + (1; '16 + q; qf + q: 

,/if + (If 
- cosh [ x - S l ] } -  K 

-, - q: 
" - 

q, cos 0 Y'. 

+ sinh ( P I ,  ) }. ('2.25) 

where the constant P31 is 

CO:VSTl 

given in Appendix A and COLVST~ is given by 

sin 0 L, 
= sinh-' [ 

cosz Bq' +q: ,,= I .  
' 2 ~ ~  J s i n h (  q,, +q= Z H r  LJ 

In the special case 0 = 0, we have CONSTl = 0 and H, = H. thus Eq. (2.22) to 

Eq. (2.25) become 



yf = - qgH { C O S ~  ( JmLJ) - cash I J i j 3  Lx 
2H H (x - $I}* 

q: + q: - 

which agree with those given in [ll]. 

Note that the above static arialysis applies not only to flat cables but also to 

large-sagged cables because the only assumption made here is that the horizontal 

component of the cable tension remains constant along the whole cable. 

2.2 Dynamic analysis 

The dynamic analysis given in this section is valid only for flat cables because of 

the particular assumptions which will be stated later. So. for the large sagged cables 

studied in the following chapter. we need to generalize the met hod used in this section. 

For this case. the differential equations formulated in the origirlal coordinate sys- 

tem can be obtained from Eq. (1.24)- (1.26) by setting mi = P, = 0. Thus we have 

Substituting the static profile obtained in the previous section into the above 

equations, with the aid of the transformation relationship. result in 

where the superscript denotes the differentiation with respect to rotated coordinate 

system and the subscript 1 represents the static profile and 2 indicates the dynamic 



displacement. T is the static cable tension which is the same as that given in the last 

subsection and T is the dynamic cable tension which is a function of time t and s. 

For the two tensions T and r. we can make a similar assumption as before. i.e.. 

We will use h, instead of h , ( t )  hereafter for sirliplicity. SuLstituti~i;:  Eq. ('1.32)- 

(2.33) into Eq. (2.29)- (2.31) yields 

82 lLt 

- - nl d2u1 -- h,q, sin d 
- 

8 d . s  H,+h,  at2 H,(H,+h,)' 
a2 y!, 82. 1 - - !jl h,qu cos 0 - - - + 
a d s  H X + h x i ) t 2  H x ( H x + h z ) '  

In order to perform linear analysis. we need another two assumptions: H, >> h,. 

which is usually satisfied in real applications ar!.cl dx = ds cos B due to the assumption 

of a flat cable. The second asst~niption means that we can use the slope of the x'-auis 

to approximate the slope of the cable. Therefore. the results obtained in this chapter 

are only valid for flat cables. Large-sagged cables will be discussed in Chapters 4 

and .5. 

With the above two additional assumptions. Eq. (2.34)- (2.36) can be simplified 

By using the method of separation of variables [31,321 ? we assume that 



Then. Eq. ('2.37)- (2.39) can be transformed to 

d2C(s) qy sin 0 cos 6 + ,j2lys) = - h, 
d .s2 H? 

d L Y ( s )  qg COS' tl + J~I-(s) = h. 
d.92 H: 

d2Z(.s) q: cos 0 
ds:! + .YZ(.S) = h. 

H,' 

where 

The solutions of Eq. (2.40)- (2.42) can be easily obtained and the  integral coefficients 

can be determined from the boundary conditions. They are given by 

qv sin d cos 0 
C' (s )  = f cos (3s) + f2 sin (Js) - H:!, j2  h. x 

qu co" 6 
kw($) = J3 cos (Js) + f., sin (Js)  + ~2 3'1 h,  

f 

(1: cos 6, z(s) = f5 cos ( 3 . 5 )  + f6 sin (3s) + - ,j.L h. 
1 

where 

qy sin t9 cos 0 
fl = h. 

H: 8' 

q, sin 0 cos 19 
F2sin(,dL,) = h[ l  - cos (jL,)]. 

H2j2 

qt COS 0 
fs sin ( 3 L , )  = h[cos ( J L , )  - 11. 

H p 2  



To find the frequency equation, we need to find an equation derived from the 

Hooke's Law Eq. (2.16) .Using the following relations 

(ds')' = (dx' + d.uf)' + (dyi + dye;)' + ( d q  + h)'. 

(ds)' = (dx')' + (dV;)' + (d,-i)'. 

in Eq. (2.16) and keeping the resulting terms up to quadratic terms yields 

h, ds ., dx' du' dy; dy!, 1 d:., 
-(-)- = (-)(-) + (-)(A) + (-)(GI.  
.4E dx dx ds d ~ :  ds dx dds 

where the subscript 1 denotes the static profile obtained in Section 2.1.2 . The 

frequency equation can be now found by substituting the static profile into Eq. (2.53). 

then integrating the resulting equation from O to L,. The final form of the frequency 

equation is found to be 

[(.'L,):l - dL , ]h  + h sin (JL,) 
X - 

H';' J2[1 - cbos ( A  L , ) I  
- (-(lr i n  t)j2 f qy COS 0 f.! f Q; f6) = 0. (2.34) 

cos fqq; + q;) 

where A' is given in Appendix .I. 

Thc vibration solutions for this case are given by Eq. ('1.44)- (2.47) and Eq. (2.52). 

Once the frequencies are solved from Eq. (2.54). then the mode shapes can be explic- 

itly expressed by Eq. (2.44)- (2.46). There are two different cases needed to consider. 

according to the value of h: h = 0 or h # 0. 

1. When h = 0. it is obvious to see from Eq. (2.47)- (2.49) that f = f3 = f3 = 0. 

Then it follows from Eq. (2.44)- (2.46) that sin (JL,) must be zero because 

otherwise there are only trivial solutions. Thus in this case. the frequency 

equation Eq. (2.54) is reduced to 

(-qy sin 8 f2 + qy cos 0 f4 + q&)[1 - cos (&)I = 0 (2.55) 

provided that the cable is not entirely in the vertical direction. 

However. note that since Eq. (2.55) involves three constants f2! f4 and js, we 

need another equation to discuss the possibilities of dynamic solutions. This 



additional equation can be obtained from Eq. (2.53) by using the right-end 

boundary conditions and the static profile as 

where f I  = f3 = Jj = 0 and the static profile have been used. The constants 

-4 and B are given in Appendix -1. Now eliminating f2 from Eq. (2.55) and 

Eq. (236 )  yields the equation 

where the constants c and fi are listed in Appendix A. According to the values 

o f ?  and D. Eq. (2 .57)  may have four different solutions 

(a) If P = = 0. f l  and f6 are independent while is cieterrnined by 

Eq. (2 .56)  in terms of J4 and f6. Thus. the mode shape functions are given 

by 

fu(s) = F2sin(J.s). 

fv ( s )  = f4 sin (:3s). 

f (s) = f6 sin (.j.s). 

Hence. for this case. there are two independent mode shape functions with 

only one frequency. which is called repeated fi*equency [I?]. 

(b) If C # 0, but = 0. then Eq. (2.57) gives f4 = 0 and f6 can be chosen 

arbitrarily. Therefore. the mode shape functions are 

where /2 can be obtained from Eq. (2.56) as f2 = Bf6- 



(c) If c = 0. but D # 0. then similarly we can obtain from Eq. (2.57) that 

f6 = 0 but f 4  can be chosen arbitrarily. Thus. Eq. (2.56) results in f2 = 

-4 f 4 .  So the mode shape functions in this case are given by 

f&) = k s i n ( J s ) .  

f,(s) = f.! sin (Js) .  

f+) = 0. 

(d) Finally. if c # 0 and # 0. then from Eq. ( 2 . 3 7 ) .  we have 

and then from Eq. (2.56) one can firid 

Therefore. the mode s tiapr fiinc t ions are given by 

f )  = /.?sin ( 3 s ) .  

f J s )  = f., sin (As). 

f+) = f6 sin (3s). 

I t  should be noted that for all the four cases, there exist only one frequency. 

determined from equation sin (jL,) = 0. However. there is a significant 

difference between case (a) and the remaining three cases: in case (a). there 

exist two independent mode shapes while in the remaining three cases there 

is only one mode shape. Therefore, for the cases (b). (c) and (d). we need 

to find another independent mode shape associated with h # 0. 

2. When h # 0. the second mode shape is determined by Eq. (2.54). Due to h # O ?  

we can find from Eq. (2.50)- (2.52) that sin (JL,) # 0 and thus cos ($L,) # 1. 

Otherwise, a contradiction h = 0 will be deduced either from Eq. (2.50)- (2.52) 

or from Eq. (2.54). Thus, t2, f4 and f6 can be uniquely be determined from 



Eq. (2.50)- (2.52). Having found fi. f4 and f6. we substitute them into Eq. (2.54) 

and simplify the resulting equation to  obtain 

where = *. - and A' is given in Appendix A. 

The second frequency is then determined from Eq. (2.70) which actually gen- 

erates an infinite series of frequencies. as expected. The mode shape functions 

associated with this frequency can then be found from Eq. (2.45)- (2.46) and 

from Eq. (2.50)- ( 2 . 5 2 ) .  

Finally. the mode shapes in y' and 2' directions can be obtained as 

- q,cos'8 [ I - c o s ( j L , ) ]  Y(s) = 
h{ s i n ( j L q )  

sin (3s) + [cos ( 3 s )  - 11). (2.71) 
H; J2 

qzcosB [l - c o s ( . j L , ) ]  
Z(s)  = -- HZ j2 '' sin ( . jL , )  

sin (As) + [cos ( Js) - 11). (2.72) 
xa 

To find the mode shape in st direction. Eq. (2.33) is used again together with 

Substituting the static profile given by Eq. (2.23)- (2.25) into Eq. (2.53) with 

the aid of Eq. (2.71)- (2.73) yields the differential equation for the nmle shape 

in 1' direction 

where the constants TCSI, TCS2 and TCC are given in Appendix .I. 

Although the ul-mode defined by the differential expression Eq. ('2.74) can be 

solved analytically, it may be easy to use some numerical method such as the 

one described in [27] to obtain a numerical solution. Therefore, the three mode 

shapes for this subcase h # 0 are given by Eq. (2.71) and Eq. (2.72), and the 

integration of Eq. (2.74). 



2.3 Results and discussion 

The results obtained in this chapter are based on a practical transmission line whose 

parameter values are listed in Appendix B (121 and Fig. I .4 can serve as an illustration 

by assuming F, = 0. The cable is studied in three situations. with horizontal. 30° 

inclined, and 60" inclined supports. For each situation. we show the mode shapes in 

each direction of u'. y' and 2. 

There are two general situations according to the values of h based on the deriva- 

tions in the last section. The results given in chis chapter are obtained when both c 
and 0 are nonzero. see Eq. (2.57). Therefore. from the discussion given in the last 

section. there are two sets of mode shapes for each direction. Consequently. there 

are two curves shown in the figures. The solid lines correspond to the  situation when 

h # 0 while the dash lines correspond to the situatiori when h = 0. This feature is 

also applicable to the results given in the following chapters. and ;? in the figures 

are freqnmcies respectively correspond to the  solid and dash mode shapes. 

Because the Lagrangian coordinate along the cable differs from one case to another 

and it is different even when the angle of inclination is different. we use nondimesional 

Lagrangian coordinate to facilitate the comparison. as it was used in [6.9] . This 

nondimension characteristic will also be used in the following chapters. 

The results are shown in Fig. 2.1 to Fig. 2.6. Each figure gives vibration corn- 

ponents in u'. y' and : directions. and each component has two independent mode 

shapes. It can be seen from these figures that. for different order of frequencies. there 

always exist both symmetric and asymmetric mode shapes. especially in the (I' direc- 

tion (see part (a) in each of the figures). For the same order of frequencies. the two 

sets of mode shapes in u' direction are totally different. The center for u'-mode a t  

about the midpoint of the cable when h # 0 (solid Lines) and the cable is horizontal 

(see Fig. 2.1 and 2.2) but no such region when h = 0 (dash lines). The y' and ,- 

modes are approximately sine waves for both h = 0 and h # 0. From part (a) of 

Fig. 2.3 to Fig. 2.6, it can be observed that the central region gaduatelp moves from 

the midpoint to the left of the cable when the cable is inclined. This is reasonable 



to be seen from Fig. 1.4. However. the u mode shapes associated with h = 0 (dash 

lines) do not have the same sensitivity to the inclination of the cable. Neither do the 

y' and 2 mode shapes. 

An interesting result is observed when we compare the two mode shape curves in 

each graph on g' niode with ,- mode. The behavior of the two mode shapes associated 

respectively with h = 0 and h # 0 for the y' direction is just opposite to the behavior 

of the two mode shapes for t h ~  z direction. For warnp l~ .  in Fig. 2 . 3  [h) .  the two  mod^ 

shapes in ,I/' direction are almost superimposed while in ( c ) .  the two mode shapes in 

2 ciirection have an alnwst 180" phase difference. The same phenomenon can also be 

observed in Fig. 2.4 (b)  and (c). 

Furthermore. from the process of solving the frequency equation. we find that for 

the same order frequencies. the frequency is a little lower when the support is inclined 

than that when the support is horizontal. 
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Figure 2.1: Symmetric mode shapes associated with frequencies = 

10.32Hz. d 2  = U 2 H z  for the horizontal support: 

(a) ul-mode; (b) yl-mode; and (c) :-mode 
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Figure 2.2: Asymrnet ric mode shapes associated with frequencies 

= 10.28H:. ~2 = 12.3Hz for the horizontal support: 

(a)  ul-mode: (b) yl-mode: and ( c )  z-mode 
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Figure 2.3: Symmetric mode shapes associated with frequencies J = 

5.15Hz, w2 = 10.68Hz for the inclined support with 30°: 

(a) d-mode: (b) y'-mode: and (c) ---mode 
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Figure 2.4: Asymmetric mode shapes assoicated with frequencies 

j, = 6.08Hz, r ~ ; !  = 11.6Hz for the inclined support with 

30': 

Normalized Lagrangian coordinate 

(b)  

(a) u'-mode; (b) &mode: and ( c )  z-mode 
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Figure 2.5: Symmetric mode shapes associated with frequencies J = 

4.12H:. 4 = 6.2Hz for the inclined support with 60": 

(a) ut-mode; (b) yt-mode: and (c) :-mode 
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Figure 2.6: Asymmetric mode shapes associated with frequencies 

= 4.39Hz. ~2 = 6.8Hz for the inclined support with 

60': 

(a) d-mode; (b) yr-mode; and (c) ;-mode 



Chapter 3 

Flat cables with concentrated loads 

In Chapter 2 we have discussed both static and dynamic analysis for Hat cables 

without concentrated loads. In this chapter. we will extend the analysis to the cables 

with concentrated loads. A s  it will be seen later. the static analysis is similar to that 

in Chapter 2, while the dynamic analysis has significant difference. 

Although we will follow the similar procedure described in the previous chapter. 

it should he noted that the differential equations discussed in this chapter are piece 

wisely smooth. Therefore. not only the boundary conditiorls but also the continuity 

conditions are needed for solving the equations. hloreover. the discontinuity at the 

points where concentrated loads are imposed must he taken into account. To do this. 

&-function is introduced to makc it easy to discuss the effect of the point forces. The 

illustrating figures used in this chapter can be still referred to Fig. 1.3 and Fig. 1.4. 

3.1 Static 

In order to find 

analysis 

the static profile of the cable with concentrated loads. the first step is 

to find the static tension increase due to concentrated loads. The differential equations 

to determine the static tension increase can be formulated as 

d dx' du' 
ds[hrz+(Hz+h , )dz ]  = -Pi6(s-si)sin0.  



where the rotation relationship given by Eq. (1.1) arid the static profile described by 

Eq. (2.22)- (2.25) as well as the assumptions T = H,$ and r = h,g  have been used. 

The d represents the Dirac Delta function with the property 

In Eq. (3.1)- (3.3)).  the subscript 1 denotes the static profile of the cable without 

concentrated loads. while 2 represents the displacement caused by the concentrated 

loads. The subscript i denotes the i-th point a t  which a concentrated loads is imposed. 

CVith the properties of b-function. we can rewrite Eq. (3.1) and Eq. (3.2) as 

and integrate Eq. (3.1)- (3.3) to obtain the discontinuity conditions on the slope of 

the cable as follows: 

The subscript 2 in Eq. (3.4)- (3.8) denotes the cable displacement due to the con- 

centrated loads. The continuity conditions of the cable a t  the points can be easily 

obtained as 

The boundary conditions for the cable are assumed to be fixed as 



for the original static profile. and 

for the static tension increase. 

The solutions for Eq. ( 3 . 4 ,  (3.5) and Eq. (3.3) can be obtained as 

where C,. D,. E, and Fi are the integral constants determined from the conditions 

Eq. (3.6)- (0.17) and the explicit expressions are given in Apperdix -4. 

Following the procedure discussed in Chapter 2. we can sindarly use the Hooke's 

Law to find the equation for the static tension increase due to conceritrated loads. 

given by 

Substituting the static profile of the cable without coriceritrated loads which are 

given by Eq. (2.22)- (2.25) into Eq. (3.21) and integrating the resulting equation 

yields a similar 3rd-degree polynomial for k. 

where the coefficients a, b, and c are given in Appendix A. In the special case 0 = OI 

Eq. (3.22) becomes the one obtained in [I 11. 

We can analytically solve 2 from the polynomial Eq. (3.22) which has only one 

positive root. Hz has already been obtained in Chapter 2. so the static tension 

increase h, is uniquely determined, and thus T is found from T = h,g. 



Having found h,. we can now formulate the equations to determine the static 

profile for the cable with concentrated loads 

d dx' 
z ( H z z )  = q, sin e - P&s - s,) sin 8. 

where the equation T = H,  2 has bee11 used. h t e  that here HI il~cludes tile static 

tension increase h, due to the concentrated loads. 

With the property of &function. Eq. (3.23)- (3.24) can be further simplified as 

and integrating Eq. (3.23)- (B.25) yields the discoritinuity conditions on the 5 

the cable: 

where the subscript i again denotes the i-th point a t  which a concentrated load is 

located. The continuity conditions of the cable and the boundary conditions are given 



It is not difficult to solve the differential equations Eq. (3.26)- (3.28) with the 

boundary conditions as well as the discontinuity conditions and continuity conditions. 

The static profile given in the Lagrangian coordinate s can be obtained using the same 

method described in Section 2 .12 .  given by 

J: 
x : ( x )  = -tan@: + - 

cos 8 ' 
((1: cos ODLl - qy sin 8)q,  

~ : ( 4  = - 
q; i qf 

(1: :Jr) = gI + Dl,r  + DZi.  
qv COS I9 - - 

s~(+) = Gi + H' T I l  sinh (TI?).  

where the constants Dl,. L,. Fit, T I I ,  TI2 and Gi can be found in Appenciis -4. 

There are two constants El, and Fit. involved in the above expressions. which are 

given in coupled formulas: 

q ,  H ,  cos 0 
60 = TIo cosh (Elo) .  

(If + qf 

,/q;+f/: [- 
- sinh-I { q, cos e Pt+' H x  cos8 - TId TI1 + - sinh ( T I 3 ) } .  

TI1 1 TI1 1 

These equations can be solved by finding Eo first with a simple numerical method. 

and then all the other expressions can be explicitly obtained. 

3.2 Dynamic analysis 

The dynamic analysis on the cable with concentrated loads is more involved than 

the cable without concentrated loads. It requires to use NTM approach due to the 



esistence of the concentrated loads on the cable which give rise to non-homogeneous 

terms in the transfer matrix. The traditional met hod of transfer matrix [54] can not 

deal with the non-homogeneous terms. However. we can use the ?IT11 approach to 

easily deal with the terms as seen next. 

The differential equations describing the dynamic response of the cable are given 

in rotated coordinate system by 

where the rotation relationship 

ntJ(.s - s,) # u f  - - - h, d" J: - . (3.42) 
H,+h,  3t2 H,  + h, dxds 

T T ~ ~ ~ ( J  - s , )  # z r  - - h, d22 
- - -  . (3.44) 

H,+h, at2 H, + h,  d s d s  

Eq. ( 1.1) and the assurnptiorls T = H, 2 and r = 

h, ( t )g  have been used. The subscript '1 denotes the displacements with respect to 

the static profile. 

Substituting the static profile described by Eq. (3.38)- (3.41) into Eq. (3.42)- (3.44) 

results in 

where it has been assumed that Hz > > h,. Furthermore. with the aid of the property 

of &function. Eq. (3.45)- (3.47) can be transformed to 

The discontinuity conditions can be found by integrating Eq. (3.45)- (3.47) as 

follows: 



The boundary conditions and the continuity conditions are the same as that given in 

Section 3.1 (Eq. (3.6)- (3.17)). 

In order to derive the frequency equation. we again start from the Hooke's Law. 

which gives the equation 

h, ds dx;, du!,, d d dzl,  ( )  - - -A + -- +-- 
.4E dx J ds d x d s  d x d s  

where only terms up to quadratic are used. The subscript 1 denotes the static profile 

while 2 the dynamic displacement measured from the static profile. 

The mode shape functions can be found by using the method of separation of 

variables. It is similar to that discussed in Section 2.2. However. in this case the 

solutions are piece wisely smooth. and can be written as 

hq, sin B cos 0 
l; (s)  = Cl, cos J ( s  - .st)  + C2, sin J ( s  - s,  ) - (3.53) 

J2H,2 
hq, cos' 0 

I;(s) = C:$& cos J(s - s,) + C-!, sin J(s - s,) + 
jzH: ' 

hq: cos 6) 
Zi(s)  = Ci, cos J(s - s,) + Cfji sin J(s - s , )  + 

j 3H:  

In order to solve the integration constants. the boundary conditions and continuity 

conditions given by Eq. (3.29)- (3.37) need to be modified according to the method 

of separation of variables. The discontinuity conditions are 

i 1 i 1 ) - dL;, (ai+l) - - mi+ ld' COS 0 
- 

h Pi+ I sin t9 cos 6, c, + 
ds 

. (3.58) 
d s  Hz Hz 

The boundary conditions are 



and the continuity conditions are 

The integration constants in Eq. (3.53)- (3.57) can be obtained from these modified 

rliscontinuity rontlitions as well as bor~ndary conditions and rontinliity conditions. 

They are given by: 

h sin 0 cos 8 ( )  1 ( )  j2HZ 

where [D;] is the transfer matrix. given by 

with [D!] = I. I is 2 identity matrix. and 

( 1  1 = cos J(s, - .s,- 1 ) .  

D l (  = s in J ( s t  

m 1 
Dt-,(2.1) = - sin d(.st - s , - , )  - (-)J cos d(.si - * s ~ - ~ ) ,  

m 
m, 

0:- ( 2 . 2 )  = cos J(s, - Si- 1 )  - (-) J sin J(s, - , S i - l ) -  
m 

The vectors ?)i and T?i are given by: 



with ?)O = *O = 8. The initial value for the above recursive relations are: 

hq, sin 19 cos 9 
G o  = 

j2H2 

hq, cos 0 
C50 = - 

h sin 8 cos 0 
QDC'?, = Q.Vz( 

3 H: 
1 + 

h cos 0 
QDCtx, = Q.V:(-- J z q  ) *  

(3. T O )  

(3.71) 

(3.72) 

(3 .73)  

( 3 . 7 4 )  

(3.75) 

where 

Q D  = D:(L. 2) cos J ( L ,  - s ; ~ )  + ~ t ( 2 . 2 )  sin J ( L ,  - s , ~ ) .  

Now. the prowdure used in Chapter 2 can be applied here: substituting the static 

profile obtained in the previous section into Eq. ( 3 . 5 4 .  

And then using Eq. (3.35)- (3.57) with the boundary conditions and continuity 

conditions.and finally integrating the resulted equation yields the frequency equation 

h sin B cos 0 hq, sin B cos 6 
i 32H' 1 - - 1 )  



( i n  ( ) - Yu coso ( 2: ) - q ( ) ) j 
cos Oh +- 

q2 

= 0 

where A' is defined 

Similarly. there 

1 {(sin J(s~+, - si). 1 - cos J ( s i + ~  - si)) ( q!,*L + ~ z * t  ) } 

before and can be found in Appendix A. 

are two cases we need to discuss: h = 0 arid h # 0. 

1. When h = 0. it follows from Eq. (3.70)- (3.72) that Clu = C:lo = Cia = 0 

and the right-hand side of Eq. (3 .73) -  (3 .75)  are also equal to zero. I11 order 

for Eq. ( 3 . 5 5 ) -  (3.57) to have non-trivial solutions. it is easy to observe from 

Eq. (3.73)- (3 .75)  that QD must be zero. This yields an equation. Q D  = 0. 

which involves only one undetermined variable. frequency 3. and thus it can bc 

used to solve for 3 with a simple iterative numerical method. 

Further substituting h = 0 into Eq. (3.76) results in 

where constants -4. B. and C are listed in Appendix .A. Because there are 

three undetermined coefficients C20, C.lo and Cso in Eq. (3.77).  me need another 

equation to discuss mode shape functions. This additional equation can be 

obtained by imposing the right-end boundary conditions in Eq. (3.54). (i.e. at 

the point .V + 1. see Fig. 1.3). The final expression of the equation is given by 

where the static profile obtained in Section 3.1 has been used. The constants 

D and E are given in Appendix A. 

Now eliminating C20 from Eq. (3.78) and Eq. (3.77) produces the equation 



where the expressions for and E can be found in -Appendix -1. 

Similarly. there are four subcases we need to discuss according to the values of 

D and E. 

(a) If D = E = 0. then Eq. (3.79) suggests that both and Cfsa can be 

chosen arbitrarily while can be determined from Eq. (3.78). The mode 

shape functions are then given by 

In t,his subcase. there are two independent mode shapes Y ( s )  and Z(s) 

associated with one repeated frequency. This is similar to the cable without 

concentrated loads. 

(b) If = 0 but E # 0. then it follows from Eq. (3.79) that Cso = O while Clo 

can be chosen arbitrarily. Eq. (3.78) then gives Go = DClo. The motle 

shape functions in this subcases are given by 

Dk(1.2) 
L,., (s )  = ( cos J(.s - a s i )  sin J(Y - s,) C2,. (3.83) 

(c) If fi # 0 but E = 0: similarly. we have CZ0 = ECsa whereas Cso is 

arbitrary. and Cda is zero. The mode shape functions are then given by: 

Db(1: 2) 
U~(S)  = ( cos 13(s - si) sin d(s  - s i )  ) ( ) C (3.85) 

D i p .  2) 



(d) 1f 1) # 0 and E # 0. then solving Eq. (3.78) and Eq. (3.79) yields C60 = - 

and CZo = (D - E : ) C ~ O .  The expressions of the mode shape functions in 

this subcase are in the same form as those given in case (a). but they are 

actually different because Go C.40 and C60 take different values. 

It is noted that the first case (a) gives two independent mode shapes with one 

repeated frequency determined by Q D  = 0. while the remaining three cases 

only give one mode shape function associated with the frequency obtained from 

the same equation. The second frequency together with the second set of mode 

shapes for the three cases ( 6 ) .  (c) and ( d )  can be found next for the case h # 0. 

2. When h # 0. the mode shapes in g' and z' directions are given by Eq. (3.56) 

imd Eq. (3.37) which ran be rewritten in a more compact may as 

I;(s) = C:3r cos [?J(S - J,)] + C.lt sin [ L ~ ( s  - s,)] - (3.59) 

Z, (S)  = Cj4 cos [J(s - s , ) ]  + C,;, sin [ J ( s  - s , ) ]  - Cia (3.90) 

by using the recursive formulas given in Eq. (3.67) to Eq. (3.69) and the initial 

values for these recursions given by Eq. (3.70) to Eq. (3.72). 

With the formulas described in Appendis C.2. the mode shape in r' direction 

can be obtained by using the Hooke's Law together with Eq. (3.59). Eq. (0.90) 

and the static profile given in Section 3.1 as well as the following relation 

The final differential equation is 

where SC;, (i = 1.. .8) can be Found in Appendix A. Then, the mode shape in 

x' direction in this case can be found by integrating Eq. (3.91) with a simple 

numerical method such as that given in [27]. 



3.3 Results and discussion 

The results given here are obtained from the cable considered in the previous chapter 

(the parameter values listed in Appendix B) with two additiorial concentrated loads. 

The positions of these two concentrated loads are at f L, and L,. respectively. where 

L, is the horizontal span length. Because me are using rlordimensionalized Lagrangian 

coordinate to present our results. the positions of the concentrated loads are given as 

the relative d u e s  of the cable length L,. Note that for different inclinations the La- 

grangian coordinates for the point with the same s or x' coordinates are different. so 

the relative posit ions of concentrated loads given in the figures are slightly different. 

The weights of the two concentrated loads arc 0.902145 .V and 0.423465 .V. respec- 

tively. Simialrly. and d2 in t he figures art. frequencies respectively correspond to 

the solid and dash mode shapes. 

Similar to the figures given in previous chapter. there are two sets of mode shapes 

represented by dash and solid lines. respectively. The solid curves represent the 

mode shapes associate ~ v i t h  h = 0 while the clash curves represent those associated 

with h # 0. Also similarly. the cable is corisitlered in three situations. namely with 

horizorltal, 30" inclination. 60" inclination. 

It is obvious to see from the figures that the conceritrated loads have dramatic 

effects on the mode shapes. Jumps can be ohservd in the mode shapes. occurred at 

the positions of the imposed concentrated loads. The concentrated loads can reduce 

either the left part or the right part of the amplitude of the mode shapes. This 

randomness causes difficulty in practice to optimally control cable vibrations. 

For the same order frequencies. the mode shapes associated with h = 0 (solid 

curves) look similar. however. those associated with h # 0 (dash lines) in each of a'. 

y' and 2 directions are significantly different. It can be seen from the dash lines for 

a mode shapes that the numerical integration does not always give fully satisfactory 

results. 

For the different order frequencies. there are always three different types of mode 

shapes for each direction of u'. g' and 2. This tendency is more clear in the mode 



shapes associated with the solid curves ( h  = 0). It is noted that both the results given 

in [9.1'2] can be obtained from one of these three different mode shapes. However. 

whether quantitative relationship may exist between these three types of mode shapes 

is still under investigation. 

When the cable is inclined. it can be seen that increasing the inclination of cable 

diniinishes the effect of concentrated loads. especially in Figs. 3.7- 3.9 which represent 

the mode shapes for 60" inclination. This conclusion is also valid to both solid ( h  = 0) 

and dash ( h  # 0) mode shapes. Furthermore, unlike what found in the last chapter. 

there does riot exist any movement in the central region for the u mode shapes with 

the inclination of the cable. 

The three different types of mode shapes for different order frequencies under the 

same support conditions show the sensitivity of cables' mode shapes to the concen- 

trated loads when the inclination is not very large. which has  been noticed before 

[9]. Therefore. parametric study is necessary for practical designs to obtain optimal 

control of cable vibrations [5]. 

Similarly. for the same order frequency. the values of the frequency is a little lower 

when the support is inclined than when the support is horizontal. 
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Figure 3.2: Mode shapes associated with frequencies s t i  = 6.04H2, 

~2 = 6.8HZ for the horizontal support with concentrated 

loads. Two concentrated loads are in 0.514623LS and 

0.814665 L, respectively. 

Type 11: (a) uf-mode; (b) y'-mode: and ( c )  z-mode 
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Figure 3.3: Mode shapes associate with frequencies = 6.44H:. 

d2 = 7.22H for the horizontal support with concentrated 

loads, Two concentrated loads are in 0.314623L, and 

0.8 14665 L, respectively. 

Type 111: (a) ur-mode; (b) yr-mode; and ( c )  t-mode 
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Figure 3.4: Mode shapes associated with frequencies = 6.478;. 

a2 = 6.OHz for the support inclined 30' with concen- 

trated loads. Two concentrated loads are in O.517705LS 

and O.8l'il72 L, respectively. 

Type I: (a) 11'-mode; (b) y'-mode; and (c) z-mode 
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Figure 3.7: Mode shapes associated with = 6.74Hz. ~2 = 

6.1 H z  for the support inclined 60' with concentrated 

loads. Two concentrated loads are in 0.521817LS and 

0.821 122 L, respectively. 

T-vpe I: (a) ut-mode; (b) yt-mode; and ( c )  x n o d e  
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Figure 3.8: Mode shapes associated with = 6,-46H2. 4 = 

6.OHz for the support inclined 60" with concentrated 

loads. Two concentrated loads are in O.521817LS and 

0.821 122L, respectively. 

Type 11: (a) u'-mode; (b) &mode: and (c) z-mode 
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Figure 3.9: Mode shapes associated with = 6.18Hz. L J ~  = 

5.9Hz for the support inclined 60° with concentrated 

loads. Two concentrated loads are in 0.521817L, and 

0.821 122L, respectively. 

Type 111: (a) u'-mode: (b) yl-mode; and (c) ---mode 



Chapter 4 

Large sagged bare cables 

In Chapters 2 and 3. we have obtained both static and dynamic solutions for a flat 

cable. i.e. the sagllength ratio of the cable is small. .As we pointed out in the previous 

chapters that the static analysis for a flat cable is also valid for large sagged cables 

because no assumptions have been made there to limit the analysis. However. the 

dynamic analysis is only valid for flat cables because the assumption dx = d s  cos 0 

implies that the slope of the whole cable is a constant 5. For large sagged cables. 

the slope of the cable cannot be approximated by a constant for the whole cable. 

Therefore. we need to modify the approach given in previous chapter to allow for the 

large sagllengt h ratio. 

Since the static analyses given in Chapters 2 and 3 are still valid for this case. 

thus only dynamic analysis will be presented. 

4.1 Dynamic analysis 

For the dynamic analysis. the relations T = H,% and r = h , ( t ) 2  are still valid 

because they were derived under the assumption that the cable has no horizontal 

external forces. Some new assumptions will be introduced to incorporate the special 

properties of the large sagged cable. 

The differential equations describing the dynamic response of the cable in rotated 

coordinate system can be written as 

d2 ut k - - rn a ' '  Uk -- h, d2x' 
dxds H, + h, at? H, + h, dxds ' 



where the relations T = H$ and T = h,(t)$ have been used. The meaning of the 

subscripts are the same as before defined in the previous chapters except that i is 

replaced by k .  

Note that the assumption H, >> I ! ,  is still valid since the c-able under ronsici- 

eration is assumed to have sniall strain no matter whether the cable is flat or not. 

But for large sagged cables. we need to use dx = .I: ds cos B to replace d z  = ds cos 0 

where J: :os, is the slope of consecutive segments of the cable. 

Substituting the static profile obtained in Section '2.1.2 and the relation dx = 

.I: dscos 0 into Eq. (4.1)- (4.3) yields 

2 uk r TTLJ; cos 0 a2 U; -- 
as2 H ,  at2 

i)2$,, r r t . J i co~B8 '~~;~  -- 
8 9  Hz at" 

82 z2k m.Ji cos d a2 241, -- as:! H, at2 

If the cable is flat enough. then we use a constant to approximate the whole 

cable's slope by I.  i.e. .Ik = 1, and then Eq. (4.4)- (4.6) become the equations 

given in Section 2.2. Now. for large-sagged cables. .Ik is not a constant throughout 

the whole cable. so we need to apply NTSI method to solve the equations. This 

procedure is similar to that presented in Chapter 3 except that in this case there 

are no concentrated masses at the points marked by i. see Fig. 1.4. The points, 

marked by k in this chapter. are actually those at  which the slope of the cable is 

approximated. Therefore. the continuity conditions which are about the slope of the 

cable now become a little easier than those in Chapter 3. They are 



which are simpler than those given in Chapter 3. The continuity conditions as well 

as the boundary conditions are the same as those given in Chapter 3. The procedure 

of solving Eq. (4.4)- (4.6) is also similar and thus the details are omitted here. The 

solutions are obtained as 

hqy cos' 0 + H: ' 

where 

The integration constants Clk to Cb;k can be determined by Eq. (4.7)- (4.9) and 

the boundary conditions and continuity conditions. In the process of' determining 

these constants. the followirlg transfer rnatrices are obtained: 

where [Dt] = [D:-~][D~-~] with [D:] = 1(1 is 2 x 2 identity matrix). The matrix 

[Df-,I is given by: 



and 

*Jk- L ( 2 . 1 )  = -- sin [ J J L - ~ ( S ~  - +-I ) ] .  
Jk 

The initial values for the recursive Eq. (4.14) to Eq. (4.16) are given by 

hqg sin B cos 0 
CLO = (4.17) 

J z H :  

hqy sin 6 cos 6' 
QDC2, = ( )QY 

jS& 

hq: cos B 
QDCso = ( -  ,j2H2 ) Q-v. 

where 

QD = D: (1.2) cos [ J . J ~ ~ ( L ,  - $,)I + ~ t ( 2 . 2 )  sin [ , J * J ~ ~ ( L ,  - s,,)]. ( 4 . 2 3 )  

Q.V = 1 - D:(L I )  cos [J.JSv(L, - s,)] 

- D r ( 2 . l )  sin [ J & ( L ,  - s.)]. (4.24) 

Note that in both the recursive formulas given by Eq. (4.14)- (-1.16) and Eq. (4.17)- 

(-1.22). the non-homogeneous terms which appeared in Eq. (3.67)- (3.69) become zero 

since the point masses are all zeros here. This makes the dynamic analysis in this 

chapter relatively easier than that in Chapter 3. 

The frequency equation can still be derived using the Hookeys Law and the similar 

procedures described before as 



( w i n o  (::I) - 0 s  ( 2 )  s .  ( ) ) )  

where L, and the static profile s are the same as that defined in Chapter 2. and 

X2 = ( p) ( )''q%which is also the same as that given in Chapter '2. 
e 

Now. we can discuss the mode shape functions given by Eq. (4.10)- (4.12) and 

Eq. (4.17)- (4.22) with the help of the recursi~e fornlulas Eq. (4.14)- (4.16). The 

procedure is similar to that described in Chapter 3 except that the constants here are 

different. Thus. similarly. we need to consider two cases: h = 0 and h # 0. 

1. When h = 0. the first frequency is determined by the equation Q D  = 0. where 

QD is given by Eq. (4.23). Furthemlore. substituting h = 0 into Eq. (4.25) 

results in 

where the constants -4. B and C are given in Appendix A. Another equation 

needed For the discussion of the mode shapes can be obtained Following the same 

procedure described in Chapter 2. is giver1 by 

where the constants D and E are also given in Appendix A. Next eliminate C20 

from Eq. (4.26) and Eq. (4.27) to obtain an equation 

where F and G are given in Appendix .I. 

Therefore, by a similar discussion based on Eq. (4.28), we have the following 

results. 



(a) If F = G = 0, then Go can be obtained from Eq. (4.27) where both CJo 

and Cso can be chosen arbitrarily. The mode shapes are given by 

Z&) = ( cos [J.Jk(s - s k ) ]  sin [J*J& - s k ) ]  ) 

(b) If = 0. G # 0. then Eq. (4.27) gives = DClo where Cl0 is arbitrary 

and Eq. (4.28) results in C6() = 0. The mode shapw are 

1 i k ( s )  = ( cos [ J . J ~ ( s  - s k ) ]  sin [ . i ~ k ( . s  - s k ) ]  ) 

(c) If F f 0. = 0. then similarly, Eq. (4.27) produces CZO = ECsO where Cso 

is arbitrary while C.40 = 0 determined from Eq. (4.28). The mode shapes 

are 



(d) If F # 0. G # 0. then Eq. (4.28) gives CGO = $cJO and it Follows from 

Eq. (4.27) that C20 = (D + E : ) C ~ ~  where Cro is arbitrary. The mode 

shapes in this subcase are in the same expressions as given in case (a) but 

they are actually different due to the different values of the constants. 

Similar to discussions given in Chapter 2 and 3. the first subcase has two 

iritlependent mode shapes associated with one single repeated frequency. while 

the remaining three subcases only give one independent rriotle shape function. 

The second mode shape as well as the associated frequency can be obtained 

from the case h # 0. 

2 .  If h # 0. then the frequency is determined by Ecb (4.25). Solvirlg C20. CIo and 

CIjo from Eq. (4.20)- (4.22) and substituting them into Eq. ( 4 . 2 5 )  results in 

where 

By solving this frequency equation with a simple iterative numerical method. 

we can find the second frequency for the three cases (b). (c) and (d). 

The mode shapes in y' and I' directions are given by Eq. (4.11) and Eq. (4.12) 

which can be written as 

where CaO and C30 are given by Eq. (4.18) and Eq. (4. N), respectively. Similarly, 

the mode shape in x' direction can be obtained by using the above two equations, 



the static profile given in Chapter 2. the equation obtained from the Hooke's 

Law and the recursive formulas Eq. (4.14)- (4.16). The resulting differential 

equation for L;(s) is give11 by 

dLYk ( s )  - = L s : 3 / L s 2  - Lsl(-c3kLsb~ + c- lkLSbc) /Ls?  (4 .31 )  
ds 

Q= -- 
q, cos 0 L s l  ( - c 5 k L s b s  + C6kLSbc) /LS2  

where the  cullstant5 LS, ( i  = I . . .4 )  is give11 in -4ppentlis A. Siniilarl!. w can 

solve this differential equation by a simple nunierical approach. 

4.2 Results and discussion 

The results given in this chapter are obtained again using the cable considered in 

previous two chapters (the parameter values are given in Appendix B).  However. here 

we use discrete approximation for the slopes of the cable. Similarly. the solid and 

dash curves denote the niocle shapes associated with h # 0 and h = 0. respectively: 

and the Lagrangian coordinate is used as an independent variable ant1 three different 

inclinations are investigated: 0". 30" and GO". Similarly. and i 2  arc Frequencies in 

the figures respectively correspond to the solid and dash mode shapes. 

It is observed from the presented figures that the effect of the large sag on the 

mode shapes of the cable is more clearly revealed on the IJ and 2 mode shapes. (see 

parts (b) and (c) in each figure). Whether a mode shape is associated with h = 0 or 

h # 0. it is far different from sine waves. Contractions can be seen at the center parts 

of the mode shapes. 

For the same order frequencies. similar to that discussed in Chapter 2. the two 

sets of mode shapes in u' direction are completely different while they are similar in 

y' and 2 directions. By comparing the two sets of mode shapes in y' and ,- directions. 

we can conclude that these two sets of mode shapes behave quite differently. For 

example, in Fig. 4.1 (b), the two y' modes are almost in the opposite phase at the 

left-end part but at last almost in the same phase at  the right-end part. But the two 

modes in part (c) of the same figure begin with almost the same phase at the left-end 



part but ends with almost opposite phase a t  the right-end part. This is also true for 

other figures no matter the cable is inclined or not. 

For the different order frequencies. there are symmetric and asymmetric mode 

shapes for both the two sets of mode shapes in y' and 2 directions when the cable 

is horizontal. When the cable is inclined, this type of regularity becomes quasi- 

symmetric and quasi-asymmetric. However. although the same type of regularity 

exists for the clash curves Ih # 01 in I r  mode shapes. the solid curves ( h  = 0) of the 

u mode shapes remain symmetric. 

Nhen the cable is inclined. y and z mode shapes (both solid and dash curves) are 

more influenced than u mode shapes. This trend is clear by observing in Fig. 4.5 (b)  

(c) and Fig. 4.6 (b). ( c ) .  

Similarly. there is the decreasing trend on the Frequency. SIoreover. the decrease 

of the frequency considered in this chapter is much larger than those presented in 

previous chapters. This may be clue to the large sag of the cable. 
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Figure 4.1: .-\symmetric mode shapes associated with frequencies 

= 6.32Hz,  dz = 6.8H.z for the horizontal support 

without concentrated loads for large sagged cable 

(a) ut-mode; (b) y'-mode: and ( c )  --mode 
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Figure 4.2: Symmetric mode shapes associated with frequencies sr, = 

6 . 2 5 H i ,  4 = 77.5Hz for the horizontal support without 

concentrated loads for large sagged cable 

(a) ut-mode; (b) yt-mode; and ( c )  t-mode 
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Figure 4.3: Asymmetric mode shapes associated with dl = 5.67Hz. 

d z  = 5.9Hz for the inclined support without concen- 

trated loads for the large sagged cable with 30' 

(a) uf-mode; (b) yl-mode; and (c) :-mode 
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Figure 4.4: Symmetric mode shapes associated with frequencies d l  = 

3.93H,-, *12 = 7 . 3 H z  for the inclined support without 

concentrated loads for the large sagged cable with 30' 

(a) d-mode: (b) &mode; and ( c )  :-mode 
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Figure 4.5: Asymmetric mode shapes associated with 1'1 = 3.29Hz. 

d.2 = 3.44Hz for the inclined support without concen- 

trated loads for the large sagged cable with 60' 

(a) uf-mode; (b) y'-mode: and ( c )  i-mode 
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Figure 4.6: Symmetric mode shapes associated with = 3.44Hz. 

i ~ ; !  = 4.04Hz for the inclined support without concen- 

trated loads for the large sagged cable with 60' 

(a) u'-mode: (b) yr-mode; and (c) :-mode 



Chapter 5 

Large sagged cables with concentrated loads 

In this chapter. the last model of the large-sagged cable with concentrated loads will 

he cliscussed. The method used in this chapter is a combination of all the methods 

used in the previous chapters. 

For notations. we use two sets of subscripts to describe our rnodel: one is i which 

has the same meaning as before. i.e. the i-th point at which a concentrated load is 

imposed. the other set is k. which is introduced for approximating the cable slope. 

which is similar to that of Chapter 3. The points marked by k are obtained by dividing 

each i- th segment of the cable into I f  subsegments. which are not necessarily equal. 

Thus the i-th point at which a concentrated load is located must satisfy k = i - .\I. 

which can be used to control and identify the two sets of points. To express the 

two sets of points in a single formula. we introduce the generalized Kronecker delta 

symbol (33.341. 

The approach of analyzing the dynamic response of the cable is similar to  that 

described in the previous chapters. Therefore. only brief descriptions are given here 

for simplicity. The static analysis for the flat cable with concentrated loads considered 

in Chapter 3 is still valid for this chapter and thus omitted. 

5.1 Dynamic analysis 

First, similarly to Chapter 4, we will make some modifications on the assumptions 

which are only applicable to flat cables and then extend the analysis given in Chapter 3 

to consider the last model. 



By using the procedure of obtaining Eq. (1.27)- (1.29). orle can obtain the differ- 

ential equations describing the dynamic response of the cable formulated in rotated 

coordinate system as follows: 

3 i3ut dxt i3" ut a 2  ut 

-[(Hz + h,)- + h,-] = 
d .s ds dx dt- &L ? 

m~ + niiS(s - s,)- (5.1) 

a a& dy ; 
- -[(Hz + h,)- + h,-1 - a2 y: 

a s  dx 
+ m,d(.s - .s,)*. 

dx 
(3 .2 )  

dtl  

where the assumptions T = ~ , g  and r ( t )  = h,$. and the static profile obtained in 

Chapter 3 have been used. 

The assumption H, > > h, is still valid but another assumption dx = ds cos 9 

needs to be rnociified as clx = .I: ds cod?. Furthermore. we can express the two sets 

of points mentioned above in a single set of equations Eq. (3.1)- (.i.3) by using the 

generalized Kronecker symbol defined later. 

With the process described in Appendix C.4. wve can obtain the piece wisely 

smooth differential equations ant1 the discontinuity conditions on the slope of the 

cable by using Eq. (5.1)- (5.3).  The differential equations are 

and the discontinuity conditions are 

where the Kronecker function is defined as 



In order to find the frequency equation, we need to use the Hooke's Law. Note that 

although the static parts in this equation are the same as those given in Chapter 4. 

the dynamic parts are different. 

Applying the method of separation of variables to Eq. (5.4)- (5.6) with the aid of 

a similar Hooke's Law yields 

hq, sin 19 cos 0 
L; = c,, cos [,J.Jk(s - sk)] + C2k sin [JJ& - s k ) ]  - . (5.10) 

JW 

The integration constants can be determined from Eq. (5 .7)-  (5.9) and the continu- 

ity conditions and bourldary conditions. However. they need to be adjusted according 

to the method of separation of variables. and the modification results in 

h P,, I .I: sin 0 cos 0 + 
H; bkt  * 



where 

The constants can be found recursively with the help of transfer matrix: 

h sin 8 cos B 

Jw: 1 

h cos' B 

Jw ) 9 

h cos 0 ( 1 ;  ) = [ ( ) + ..(-- j 2 q  ) '  

where [Di] is the transfer matr ix  given by [D!] = [ D : - ~ ] [ D ~ - ' ]  with [D:] = 1(1 is a 

2 x 2 identity matrix). The matris [Df-  ,] is given by 

where 

elk- L ( 2  1 = -- sin [J.Jk- ( s c  - s k -  1 ) ]  
Jk 

The vectors ?k and & are 



The initial values for the above recursive fornlulas are 

hq, sin 0 cos 19 
C10 = 

3'H2 
hq, cos' 6) 

C30 = - 
JzH: ' 

hql cos 0 
Csa = - j2H: ' 

h sin B cos 0 
&DC20 = Q-V,( 

CPH: 
) 

h cos 6, 
QDCGU = Q.v:(-- 3.2~2 ). 

where Q D. QNz. Q-V, and Q-VL are  given in Appendis -4. 

Then. with the process described in Appendix C.4. one can find the frequency 

equation as: 

h cos' 8 - 
*j2 fc ) ) I  

qu sin 0 hsinBcos 0 + - C {(Dk. E ~ ) D L ~ ( [ D ~ ]  
Hz k=O (z::) J2H: ) ) I  

qy C O S e  -- ( ::I ) h cos' 8 
c { ( D k -  ~k)~li([Di] 

H. I.=() 
1) 1 

where the constants Act Bk, DC and Ek can be found in the Appendix A. 

As usual, there are two general cases we need to discuss for this model according 

to h = 0 and h # 0. 



1. When h = 0. the frequency is determined from equation QD = 0. Substituting 

h = 0 into Eq. (5.31) yields 

where the constants F. G, and I are given in Appendix A. 

Another equation needed to carry out the discussion for the dynamic response of 

the ~ i l h l ~  can h~ found hy evaluating Hooke's Law at tohe right-end of the cable. 

With the aid of the static profile given in Eq. (3.38)- (3.4 1) and Appendix C.4. 

we obtain the equation 

Then eliminating C20 from Eq. (5.31) arid Eq. (5.32) yields 

where D and E can be found in Appendis A. 

Therefore. we can discuss the dynamic response of the cable on the basis of 

Eq. (5.33). There are four subcases: 

(a) If b = E = 0. then Eq. (5.33) indicates that CLlo and Cso can be chosen 

arbitrarily. and then C20 is determined by Eq. (5.32). The mode shape 

functions are given by 



(b) If D = 0 but E # 0. Eq. (5.33) gives Cso = 0 and then Eq. (5 .32)  de- 

termines Go = DCAo where CJo can be chosen arbitrarily. Therefore. the 

mode shape functions are 

( c )  If # 0 but E = 0. then CJ0 = 0. = ECfiO, where C ~ o  can be chosen 

arbitrarily. The mode shape functions in this subcase are given by 

(d) If D # 0 and E # 0. then CtiO = -fClo. and Clo can be chosen arbitrar- 

ily. The mode shape functions in this subcase are expressed by the same 

formulas as those for case (a). But they are different due to the different 

values chosen for the constants. 

Note that case (a) has two independent mode shapes with one single re- 

peated frequency, determined by QD = 0. For the cases (b). (c) and (d), 

there is one mode shape associated with this frequency. The second mode 

shape and its frequency can be found from the case h # 0. 

2. When h # 0. we can solve Eq. (5.28)- (3.30) for CZ0, CdO1 and Cso Then 

substituting these expressions into 



The mode shape functions in y' ant1 2' directions are given by Eq. (5.11) and 

Eq. (5.12) which can be rewritten as 

with the aid of the initial values in the recursive fornlulas given by Eq. ( 5 . 26 )  

and Eq. (Z.27). 

The mode shape function in r' direction can be obtained from the Hooke's Law. 

;\ brief description of the process given in Appendix C.4 leads to 

where OSi ( i  = 1.. .9). OSb, and OSac can be found in Appendix A. 

5.2 Results and discussion 

The same cable considered in previous chapters are used here to discuss the nlotlels 

in the same three different situations. Two curves representing two different mode 

shapes are solid lines and dash lines. associated with h = 0 and h # 0. respectively. 

Again. we use Lagrangian coordinates to represent our results. and d2 in the 

figures are frequencies respectively correspond to the solid and dash mode shapes. 

The large sag of the cable has an obvious effect on the mode shapes of the cable. 

Comparing Fig. 5.1 with Fig. 3.1 indicates that the curves given in this chapter are 

more smooth than those given in Chapter 3. 

For the same order frequencies. the solid curves ( h  # 0) have some similarity while 

for the dash curves (h = 0) the t mode shapes are different from the y' mode shapes. 

The mode shapes when h = 0 and h + 0 still behave in an opposite sense. For 

example, in Fig. 5.1 (b) and Figure 3.2 (b), the two sets of mode shapes are almost in 

the same phase but in part ( c )  of these figures, the mode shapes have almost a 180' 

phase difference. However. this behavior changes in Fig. 3.3. where in part (b), the 



mode shapes begin with almost the same phase at the left-end part but ends with 

almost an opposite phase at the right-end part: while part (c) reverses the trend. 

For the different order frequencies. the mode shapes have no obvious changes. 

There are three different types of mode shapes in each direction for different fre- 

quencies under the same supports in Chapter 3. However. these do not exist here. 

Therefore, for each different inclination of the support. only the results of one fre- 

quencv are given. 

Similar to Chapter 3. when the cable is inclined. the mode shapes almost do not 

change. This again shows that the cables wi th  concentrated loads are not sensitive 

to the inclination of the cable support. no matter whether they are Rat cables or 

large-sagged cables. 

A similar decreasing trend is also found for the same order frequencies. which has 

been found in previous chapters. 
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Figure 5.1: Mode shapes associated with frequencies dl = 8.41 Hz. 
q = 8.5Hz for the horizontal support of large-sagged 

cable with concentrated loads. Two concentrated loads 

are at 0.517618LS and 0.817734L,. 

(a) u'-mode; (b) &mode; and ( c )  :-mode 
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Figure 5.2: Mode shapes associated with wl = 6.973Hz, W* = ?.OH2 

for the inclined support of large-sagged cable with con- 

centrated loads at 30'. Two concentrated loads are at  

0.318283Ls and 0.818236Ls. 

(a) '-mode; (b) y'-mode; and (c) z-mode 
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Figure 5.3: Mode shapes associated with wl = 4.81Hz. wz = 5.llHz 

for the inclined support of large-sagged cable with con- 

centrated loads at 60'. Two concentrated loads are at 

0.319104LS and 0.819078L3. 

(a) u'-mode; (b) y'-mode; and (c) z-mode 



Chapter 6 

Conclusions and future work 

6.1 Summary of the thesis 

In this thesis. we have studied several cable models with fixed boundary conditions by 

using the method of coordinate transformation and the Non-homogeneous Transfer 

Matrix (NTM) approach. 

There are two general models: one is for Rat cables and the other for large-sagged 

cables. Each of the two cases is divided into two subcases: one is for bare cables and 

the other for the cables with concentrated loads. A11 the cases include both horizontal 

support and inclined support. The analysis for flat cables is relatively easy because 

it is assumed that the slope of a whole cable is a constant. For large-sagged cables. 

however, a cable needs to be divided into different segments which uses different 

approximation for the $ope of the cable. 

For the dynamic analysis, the differential equation in the x' direction can not be 

decoupled because of the rotation of the coordinates. 

The inclusion of the differential equation in x' direction results in a difficulty that 

we can not discuss the dynamic response based on frequency equation only. Another 

supplementary equation is needed, which can be obtained from the evaluation of the 

Hooke's Law at  the right-end support. Then the dynamic response can be thoroughly 

discussed on the basis of this supplementary equation together with the frequency 

equation. 

The results presented in this thesis include the special cases with horizontal s u p  

ports, i.e. 0 = 0, which has been studied in [11,12]. 



6.2 Conclusions and discussions 

Although we are considering three dimensional cable models. there exist only two 

independent mode shapes which are mainly in in-plane and out-of-plane directions 

because of the constraint due to the Hook's Law. The two mode shapes are associated 

with either one repeated frequency or two independent frequencies. The mode shape 

in the x' direction always depends on one or both of the two independent mode shapes. 

This is similar to the case with horizontal support (121. 

.is to the effect of inclination. flat bare cables are more sensitive to its changes 

than the flat cables with concentrated loads or large-sagged cables. 

For the effect of concentrated loads. compared to large sagged cables. flat cables 

are easier to diminish the reliance on the inclination and can dramatically decrease 

the amplitudes of vibration. However. the mode shapes for the cables with concen- 

trated loads are sensitive to the load parameters such as the weight and the locations. 

Therefore. it is not easy to achieve an optimum design for controlling vibrations and 

a parametric study is needed [5l. 

.As to the sag of the cables. the figures presented in this thesis show that the effect 

of concentrated loads on reducing vibration amplitude is impaired by large sags. Also. 

it has been seen that with large-sagged assumptions. the cable given in this thesis is 

insensitive to cable inclination. 

Finally, it has been observed that the frequency decreases when the angle of 

inclination increases. This is true for all four models studied in this thesis. 

6.3 Future work 

We use the NTM approach combined with the coordinate rotation to obtain closed- 

form solutions. Basically, we use the method of separation of variables to convert 

original partial different equations to ordinary differential equations. h m e n c a l  ap- 

proaches, such as FEM and FED can be applied directly to the partial differential 

equations. One task of future work is to develop a numerical simulation package 

comparisons between the analytical predictions and numerical results. 



In this thesis. we only implemented program packages to compute the frequencies 

from the frequency equations to obtain the frequencies. Therefore. a complete user- 

friendly software packages needs to be developed. hioreover. for calculating high- 

order frequencies. better numerical methods should be adopted to achieve better 

convergence. -4 3-DOF model model for transmission lines with concentrated loads 

and a complete software package have been developed by Yu [S] to carry out galloping 

analvsis. However. this model is onlv applicable for horizontal supports. .A similar 

3-DOF model describing inclined cables and software package should be developed. 

For the practical design to control cable vibration. a parametric study is needed (51 

because of the sensitivity of cables on concentrated loads. A software package written 

in FORTRAX 77 for the parametric study of the 3-DOF model mentioned above has 

been developed [ 5 ] .  I t  can be used to investigate the influence of detuning pendulums 

and to analyze the effects of structural parameters in reducing the possibility of the 

indication of galloping. A similar parametric study needs to be performed for inclined 

cables by using the results obtained in this thesis. 



Appendix A 

Constants used in this thesis 

A . l  Constants used in Chapter 2 

For Section 2.1.1 

1 myLx L, 
mgLx  + 2C3) sinh (-) - - PL = - c o s ~ ( -  

m!7 H z  Hz Kr 
W L ,  m y  L, P2 = sinhe (- + Cn) sinh' (-) 
'L H, 2 Hz 

For Section 2.12 

For Section 2.2 



- (cos' O g i  + q:) Hz Jq; + 4; 
- cosh (2CO!VSTl) sinh ( 

H z  
L J  

2 cos"(i$ + q t )  5 

sin 8 L, 
CO.VST1 = sinh-' [ 

cos' Bq2 +q! dm L,) 2 ~ , / 7 s i n h (  2 H r  

I 
Qij +Q 

C0.VST2 = sin 

44: + q: 
sinh ( L, - CO.C'STl) 

'ZH, 

1 
TCS2 = - tan(B)TCSI + - 

cos 8 
1 - cos(&) 

TCC = j cos($s) - J sin (3s) 
sin(,X,) 

A.2 Constants used in Chapter 3 

For Section 3.1 



Pk sin 0 
H, + h,Ik 

H: L, cos 0 

q$Dfo + 2qvq,sinBcos8Dlo-q,2si$e 
q; + q: (q; + q';) cos' e 

- -- 

pill:* 2 q , q z s i n B ~ ~ ~ B D l i - p ~ ~ i n ' B  
dl+- q; + 9.: + (q; + q';) COS' 0 

+ 2q,q, sin 0 cos BDl(i+l) - $ sin2 t9 + 
9; + q: (q; + q;)  COS* e 

- .. . 

q'i DtN 2qyq, sin B cos @DIN - q,2 sin2 t9 + 
(q; + q:) cos2 6 



TIo sinh ( Elo) 

T I L  sinh (TI3) - Jm T I l I  sinh (TI:l l)  

For Section 3.2 

qiD:, + 2qvqr sin 0 cos ODli - qi sin2 0 
L, = L+C{[---- 

(4; + q; )  C O S ~  e I ( S ~ + ~  - 4) 
k=', Pi + Q: 

+ [l - cos 3(s i+,  - si)] sin ;30;(2,2)} 



SCI = (qz c o s e D ~ ~  - q, sin @)q,  
4;: + q: 

4: sc2 sc, = - 
q, cos 0 
(qz cos ODli - q, sin 8)q, 

SITI = 
q; + qf 

1 
SLi  = tan OSG, + tan0SC2 + - 

cos 0 

Q: sr;i = -su, 
q, cos e 

h D  (2q,q, sin 0 cos t9 D t i  - q: sin' 6) sC;T = + 
( Q ;  + Q:)  C O S ~  e 1 



A.3 Constants used in Chapter 4 

For Section 4.1 

G = .4qy E + cq, 

q9 COS e 
LCi = C0.VST2 - - s .v-+~ 

H z  
1 

LC2 = -taneLCL + - 
cos e 

q, cos e 
LSi = C0.VST2 - - s 

H z  
1 

LS2 = -tanBLS1 + - 
cos 8 

2 sin 8 -- 1 
COS'L t9 LS, + -1 cod Q 

Ls4 = 3.Jk(s - s k )  



A.4 Constants used in Chapter 5 

For Sect ion 5.1 

sin [J.Jk(sk+l - s k ) ]  

1 
- - sin [ j . J k  ( s ~ + I  - ~ k ) ]  

.j Jk 
1 - cos [j*Jk(sk.+l - " L ) ]  [ Y ~ ( . S ~ + ~ )  - Gi] sin [,JJk(sr+l - s t ) ]  + j , jk 

I - -  
.LJk 

qyqr sin 0 (I,, sin 0 + D:-, (2. ~ ) ( B ~ D ~ ~  + Ek-)} 
q; + q: Hz 

n q, cos e 
+Dk-] 

k=O Hz 
q,q: cos 0 q, cos 0 

+ D:-,(2. 2) ( Bk Dl ,  + Ek- 
q; + (1: Hz ) 1 

~ t ( 1 . 2 )  cos [BJN(L, - s,)] + 0:(2,2) sin [$JLV(L, - s,)] 



- [sLv2 + 0:(2.1)q1] sin [$l,v(L, - s,)] 
(q, cos ODlA - q, sin 9)qy 

q; + q; '' 
QCI q, cos 0 

QSI q, cos 0 
1 

tan 0QCz + tan BQCl + - 
cos 8 

(q: cos ODl, - q, sin O)q, 
- 

$f + (11 
q, cos 0 

( s t  - GL) K 
1 

tan BQSl + tan 0QS2 + - 
cos 6, 

(Iz 

q, cos 0 QS? 



Appendix B 

Parameter values for the numerical simulation 

I Parameter I Notation ( Value I 

1 Tension (Horizontal) I H, 1 15 k:V I 

Modulus Of Elasticity 

Span Length 

1 Bare cable self-weight I m 1 1.663 Kg 

Table B. 1: Parameter values for the numerical simulation 

E 

L, 

63.358 k.V/mm2 
I 

125 rn 



Appendix C 

Out line of some derivations 

C.1 Brief derivations for Chapter 2 

The process of solving the static profile of simple model 

For the differential equations 

if the cable is not entirely vertical, let 

and then Eq. (C.l)+Eq. (C.2) results in 

Thus. 

Applying the boundary conditions xf(0) = g'(0) = 0, xJ (L , )  = ,/L: + h and y t (L , )  = 

0 yields 



Because 

So substitute Eq. (C.3). Eq. (C.7) and Eq. (C.8) into Eq. (C.2) gives 

Therefore, 

and thus, 

dq 1 &- 1 + (q - sin 8)'. dx cos- 8 

H, q?J 
Y' = sin Ox - cos 0- cash [(-)L - ~~~1 + c-+ 

Qll Hz 
From the boundary conditions y'(0) = 0 and yt(L,) = 0. we find C:, and C., given by 

Eq. (2.3) and Eq. (2.6), respectively. 

The differential equations for the static tenstion increase due to out-of-plane load 

Transform Eq. (1.21)-Eq. (1.23) (Pi = 0 because there is no concentrated loads 

here)into the rotated coordinate system and use the differential equations for static 

profile to simplify the resulting equation to obtain 

d du' dz' 
- [ (T+ r ) -  + T-] = (q, + mg)sinO. 
ds ds ds 

(C. 13) 

(C. 14) 

With the aid of T = H,$ and r = h x 2 ,  Eq. (C.13)-Eq. (C.15) can be further 

simplified to 

8 u' - - (q, + mg) sin t9 ds - -- h, d2x' - 
dx2 Hz + hx dx Hz + h, dx2 ' 
d2yi - - - - (qg + rng)  cos B ds -- h, dly: - 
dx* Hz + hz dx Hz + h, dx2 * 



which are Eq. (2.13)-Eq. (2.15). 

The 3rd-degree polynomial for the static tension increase 

By using the following two equations: 

(ds')' = (dx' + du')' + (dy; + d$)' + ( d ~ ? ) ' .  

(ds)' = ( d ~ ' ) ~  + (dgi)'. 

we can transform Eq. (2.16) into: 

In order to integrate this equation to obtain a 3rd-degree polynomial. we must first 

solve Eq. (2.13) and Eq. (2.19) to find the expression for the clisplacernent increase due 

to q,. It is not difficult to solve these equations with the fixed boundary conditions 

and the static profile given in Eq. (2.3)-Eq. (2.9). The results are: 

(q, + mg) sin 19 Hz mgx = (-)' C O S ~  (- + C3) 
H, + h, nlg Hx 
h, sin0 H, mgz + - cosh (- + C3)  + D l r  + D2. 
Hz + h x  mg Hz 

where Dl to D6 are given by 

sin 0 
Dl = H z  q, (-)[(- + l)Hz + h,][cosh (C3) - C O S ~  (- 

( H z + h * ) L ,  mg mg 
mgLx + C 4 ,  
HI 

cos 8 
D3 = H z  9, mgLz + C3) - C O S ~  (C3)], (-)[(- + 1)H, + h,][cosh (- 

( H z  + h 4 X  mg mg Hz 



Y 2 Hz 2 mgLx + C3) - C O S ~  (C3)]. (-) [ C O S ~  (- 
(HI + h , ) L  mg Hz 

in which C3 and C4 have already been given by Eq. (2.5) and Eq. (2.7). 

By using Eq. (2.3). Eq. (2.4). Eq. (2.9) and Eq. (C.17) to Eq. (C.19). we can 

obtain the 3rd-degree polynomial of by integrating Eq. (C.16). This equation has 

been obtained, see Eq. (2.17). 

Frequency equation 

In order to derive the frequency equation, we need to use Eq. ('2.33). Substituting 

Eq. (2.22) to Eq. (2.25) into Eq. (2.53) yields 

h,  ds 
-(-I2 

q, cos 9 du' 1 du' 
= - tanB(CONST2 - - 9 ) -  + -- 

.4E dz H,  ds cos8 ds 
q,cosO dy; + (C0.VST2 - - 
Hz S, ds 

q z  qy cos 0 d q  +- (CONST2 - - S) -. (C.20) 
q, cos 8 Hz ds 

By using the method of separation of variables. Eq. (C.20) can be transformed into 

h ds qv cos 8 d l ;  I dC; 
- (  = - tan 0(CONST2 - - -9)- + -- 
,4E dx H, ds c o d  d~ 

4= q, cos 8 dZ +- (CO!VST, - - 
qg cos 8 HZ S ) Z *  

which can be further simplified into 

With the aid of Eq. (2.44) to Eq. (2.46): Eq. (C.22) can be transformed into the 

frequency equation Eq. (2.54)- 



Supplementary frequency equation 

The supplementary frequency equation was obtained from Eq. (C.21) and Eq. (2.44) 

to Eq. (2.46) as: 

where the fact h = 0 is used. -4 simplification of this equation results in the supple- 

r n e n t a ~  frequency equation Eq. (2 .56 ) .  

C-mode fuction 

We need to use Eq. (C.20) to derive this U-mode function. From Eq. (2.22) to 

Eq. (2.25). we can find 

ds (-y = n; + qt' q, cos 6 
(C0.VST2 - - 

q; C O S ~  e s ) ~  
dx H z  

2 sin 0 -- q, cos e 
(CONST2 - - 1 

S )  + - 
C O S ~  e H ,  C O S ~  e + 

Then using Eq. (2.71) and Eq. (2.72) together with Eq. (C.23) yields the U-mode 

function given in Eq. (2.74). 

C.2 Brief derivations for Chapter 3 

3rd-degree polynomial for the static tension increase 

In order to obtain this polynomial of &, substituting the static profile given by 



Eq. (2.22) to Eq. (2.25) and the dynamic profile given by Eq. (3.18) to Eq. (3.20) into 

Eq. (3.21) and then integrating the result produces an equation: 

Then collect the equation according to $. we can obtain the polynomial given 

by Eq. (3.22). 

Frequency equation 

Substituting the static profile given by Eq. (3.38) to Eq. (3.41) into Eq. (3.54) gives 

h, ds 
-(-)2 (q, cos B Dl - q, sin 0) q, 4v cos 0 du: 

= t an0  - + tanO-(si - Gi)- 
.4E dx 9; + 9: ds Hz ds 

1 du' (qZcosBDli-qysinO)qydy;, 
+-2- 

cos 0 ds  q i  + 42 ds 



By using the method of separation of variables. we can transform Eq. (C.25) into 

h ds q, cos e 
-(-)? = tan0 (q, cos ODli - q, sin B)q, - dL; + tan 8-(si - Gi)- dUt 
-4E dz q i  + 4: d .s H E  ds 

1 dLTi ( q I c o s e D I i - q y s i n 0 ) q u d ~ ~  + -- - 
cos e C ~ S  (2; + 4: ds 
(1, cos B -- dl;  (q:msBDI,-q,sinB)q,dZ, 

(s* - Gl)-  - 
Hr ds (q i  + y!) cos 6 ds 

With the results given by Eq. (3.55) to Eq. (3.57). Eq. (C.26) can be written as 

h q, sin 8 L* 
-Le = Dl,dL;, (s) + - /o (3,  - Gi )dLri(s)  
-4 E Hz 

A further algebraic manipulation on Eq. (C.27) leads to the frequency equation 

given by Eq. (3.76). 

Supplementary frequency equation 

In order to obtain the supplementary frequency equation. we need to evaluate Eq. (C.26) 

at the right-end point of the cable. With the ai of Eq. (3.53) to Eq. (3.57). we have 

the final result as 

q, cos 0 
[tan 0 

1 

H z  
(Ls - G N )  + COS]c20 

+ [ 
(qz cos @DLN - q, sin B)q, 

(q; + qf ) cos e + Q;(L - GN) - DhVjCSO 
H, 



which is equivalent to Eq. (3.78). 

U-mode function 

Eq. (C.25) is used to derive the U-mode function. From Eq. (3.38) to Eq. ( X U ) ,  we 

can find 

dsi q?D? 2q,,q, sin B COSB D ! !  -qi sin2 B " 

' I  + c dr )' = 11 + (4; +Q:) C O S ~  B j + !Z?$(si - Gij., jC.29) 

Then use the results given by Eq. (3.89) and Eq. (3.90) together with Eq. (C.29) to 

obtain the  equation for U-mode function gien by Eq. (3.91). 

C.3 Brief derivations for Chapter 4 

Frequency equation 

Because the static profile is the as t h a t  obtained in Chapter 2. we can directly use 

Eq. (C.22) here to derive the frequency equation. 

With the help of the Eq. (4.10) to Eq. (-4.12). we have 

h qg sin 0 ' 1 ---LC = -- 
-4 E {,{elk sin [ 3 & ( s k +  I - esk ) ]  

H.9 k=O 

which can be put inthe form Eq. (4.25). 

Supplementary frequency equation 



From the supplementary frequency equation. we can directly use Eq. (C.21) but with 

the aid of new results obtained from Eq. (4.10) to Eq. (4.12). Substituting Eq. (4.10) 

and Eq. (4.11) into Eq. (C.21) yields 

q, cos 0 
- tan 9(CO:VST2 - L ~ ) { - D ~ ( I .  2)C,-,JJNsin [$JLv(L, - s y ) ]  

H, 

1 + -(-~:(1. ~ ) c ~ ~ , J J ~ v  sin [ 3 & ( ~ ,  - sx)] 
cos 8 

+ 43'2. 2)C20JJLv ccos [J&(L, - s N ) ] }  

q, cos e + (C0.VST2 - - L,){- D;(I, z)C40&JN sin [dJ,v(Ly - sr)I  
Hz 

Q: q, cos 0 +- (CO-VST, - - L,){-  D; ( I ,  2)CsoJ.JLv sin [JJ!v(L, - s . ~ ) ]  
q, cos e Hz 

Eq. (C.30) can be further simplified as 

which is equivalent to Eq. (4.27). 

U-mode functuion 

Again, Eq. (C.20) can be used to derive this mode shape. Because the static profiles 

are the same with those given in Chapter 2, we will obtain the same result given by 

Eq. ((2.23). 

The only difference is that Eq. (4.29) and Eq. (4.30) are different from Eq. (2.71) 

and Eq. (2.72). With the aid of Eq. (4.29) and Eq. (6.30): one can finally obtain 

Eq. (4.32). 



C.4 Brief derivations for Chapter 5 

The differential equations and the continuity conditions 

From Eq. (5.1)-Eq. (5.3). when k # i . m. we have 

By using the static profile given in Eq. (3.38)-Eq. (3.41). the right-hand sides of 

Eq. (C.31)-Eq. (C.33) can be simplified. With Hz >> h, and ds = .I: dscos0 .  the 

above equations can be transformed into Eq. (5.4)-Eq. (5.6). 

If k = i -11. then from static differential equations Eq. (3.23)-Eq. (3.23) we have 

d2 t x - - q, sin P,6(s - s,) - -- sin 9.  
dxcts fL k 
$2. 1 

Li 1 qycosB P J ( s - s i )  - - - -- + cos 6. 
d.ds Hz H., 

Then substituting Eq. (C.34)-Eq. (C.33) into Eq. (5.1)-Eq. (5.3) and then integrating 

the resulting equations yields Eq. (5.7)-Eq. (5.9). 

Frequency equation 

The procedure of deriving the frequency equation is similar to finding Eq. (C.26). 

With the aid of separation of variables, we can obtain 

h ds (q, cos ODli - q, sin O)q, dL;; q, cos 0  dC'I, 
-(-)* = t an0  - + t a n 0  
.-IE dx ds H z  ( s k  - Gi)ds 

q; + 9: 
1 dCTk ( q z ~ ~ ~ 0 D l i - q Y ~ i n 0 ) q , d k  +--- - 

case ds 9: + 9: ds 



Then a direct integration of the above equation yields 

h qv sin 0 L j  

-Le = D i d ( )  + (s* - Gi)dCk(s) 
-4 E i;: f qr 

Finally, a further algebraic manipulation leads to equation Eq. (5.31). 

Supplementary frequency equation 

The supplementary frequency equation can be ot~tained using Eq. (C.37) via Eq. (5.10) 

to Eq. (5.12). The equations cn be written as 

(9, cos ODI ,v - q, sin 0) q, 
{tan 0 qy cos 0 + tan@- 

I 
v.9 - G!v) + -} 

q';: + q: H, cos 0 

( q , c o ~ O D , , ~ - ~ ~ s i n 0 ) q ,  g,cos8 
+ {- -- 

H z  
( L s  - G!d} 

4; + 9:. 
{-C3,q $.la sin [ , ~ J Q ( L ,  - s V ) ]  + C4,+U8 cos [JJ lV(L9  - sac)]} 

Theabove equations can be further simplified into 

(q, cos ODlN - qy sin B)q, q, cos 9 
[tan 0 + tan 6 

1 

Hz 
(L3 - GN) + --&j]C20 

9'; + s: 

+ [ 
(qz cos - q, sin B)q, qz 

+ -(Ls Hz - GN) - DIN]C~O 



which is equivalent to Eq. (5.32). 

C-mode function 

We can still use Eq. (C.37) to derive this mode shape function. Because the static 

profile is the same as that given in Chapter 3. a same equation as Eq. (C.28) can 

be found. However, the difference exists due to that Eq. (5.34) and Eq. (5.35) are 

different from Eq. (3.89) and Eq. (3.90). Simply using Ecb ( 5 . 3 4  and Eq. (5.35) yields 

Eq. (5.36). 
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