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Abstract 

This thesis is primarily concerned with developing methods for studying 

the set of equivariant homotopy classes of equivariant maps from a G-manifold. 

M, to a representation sphere, Sv. where G is a group. The basic idea is to study 

a related invariant of the orbit space. MIG. which is called twisted framed cobor- 

dism. The study of twisted framed cobordism leads naturally to a formulation of 

a set of axioms characterizing *'twisted generalized cohornology theories". Using 

spectral sequence arguments. I am able to make some explicit computations of 

equivariant homotopy sets. 
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Chapter 1 

Introduction 

1.1 Background 

If C: is a group which acts on two sets .Y and 1'. a map / : S -t 1' is said to 

be equivariant if f (g.x) = g. f (x) .  tn equivariant topology we assume that the 

actions and maps are continuous with respect to the topologies on .Y and Y .  111 

this thesis. I will be primarily concerned with (equivariant homotopy classes of 

) equivariant maps from smooth compact G-manifolds. :\I. into representation 

spheres, SV, (S" is the 1-point compactification of the linear G-space V ) .  This 

is a generalization of the classical situation of maps from a compact manifold, 

M, into a sphere. Sd, studied by Hopf. Pontryagin. Thom and others (see [Is] or 

[191). 

In order to provide some context for the present work. it is worth reviewing 

briefly some of the ideas of the aforementioned authors. Let xo E Sd. Using the 

smooth approximation theorem and Sard's theorem (see [3]), one can show that 



any map LCI -+ Sd can be approximated by a smooth map, f. that has xo as a 

regular value. Moreover. one can assume that all homotopies of maps are also 

smooth and have so as a regular value. This means that f-'(xQ) is a submanifold 

of ?If. Now, if LT is any disc neighbourhood of ro. then Sd - I' is contractible. So, 

up to homotopy at least. f is determined by its behaviour on a neighbourhood 

of the submanifold f-l(xoj.  In fact, to determine / up to homotopy, it only 

necessary to specify f -'(.ro) and to specify the derivative, T f Ip(,,), on f - ' ( ~ ) .  

In the case where .\I is orientable and dim .\.I = d. f-L(so) is a finite set of points 

and T f l r - l c s o )  is determined (up to homotopy) by specifying whether f preserves 

or reverses orientation around each point in f -' (so). This leads to the concept of 

the degree of the map f .  If dim A1 > d. the situation is a bit more complicated. 

Xow. /-'(so) is a (dim .CI - d)-dimensional submanifold of .It and determining 

the behaviour of T f j j- l( , , ,  amounts to specifying a framing of the normal bundle 

of f -'(lo) in .\I. Thus. we are led to the concept of framed cobordism. 

In the equivariant setting: one has several complications. Firstly. transver- 

sality does not work in general. That is. it is not ~ossible to equivariantly ap- 

proximate any equivariant map by one for which a given G-fixed point of the 

codomain is a regular value. However. if we assume that C acts freely on the 

domain manifold then transversality does indeed work (see chapter 5 ) .  Assume 

that f : M -t S" is a smooth equivariant map with 0 E 5'' a regular value. 

Then f -l(O) is a Ginvariant submanifold of M of dimension dim :\I - dim V. 

Suppose that dim C: = n. .As in the classical situation, the behaviour of f in a 

neighbourhood of f (0) gives rise to an equivariant framing of the normal bun- 

dle of f -' (0) in M .  The "equivariant dimension" of f -' (0) is dim M - dim I/' - n 



(note that the dimension of the orbit space. f-'(O)/G is dim &I - dim V - n )  

. For this reason. dim !\I - dim V - n is referred to as the "geometric stem". 

The case of the geometric 0-stem has already been analyzed in [MI. In this case. 

f -'(O) consists of a finite collection of Free G-orbits and by a careful analysis 

of the local orientation properties of f ,  one is led to a concept of "equivariant 

degree". One of the main purposes of this thesis is to dewlop met hods for an- 

alyzing higher geometric stems. The basic idea is that rather than looking at 

the (possibly high dimensional) submanifold. f- l (0) .  of .\I. i t  is advantageous to 

Factor out the action of C; and consider the corresponding submanifold of !I-I/G. 

The equivariant framing of the normal bundle of f - ' (0)  turns out to correspond 

to a certain "twisted framing" of the normal bundle of f - ' ( O ) / G ' .  From the point 

of view of making explicit computations, it seems to be easier to work with the 

orbit space M/G in this manner. rather than directly with :\I. 

1.2 Synopsis of thesis and description of main 

results 

Chapters 2, 3 and 4 contain some background material on fibrewise homotopy 

theory and equivariant homotopy theory. All of the constructions and results 

presented here are already known, although some are presented in an unorthodox 

manner in order to suit our particular needs (e.g. lemma 3.3.5 or the description 

of the Bore1 construct ion in defintion 3.3.1). Lemma 3.3.5 is of particular impor- 

tance as this underpins the relationship hetween fibrewise homotopy theory and 



equivariant homotopy theory. The guiding principle to bear in mind concerning 

this relationship may be stated as follows: If one wants to examine equivariant 

properties of a free C;-space X, it is often advantageous to consider correspond- 

ing fibrewise properties "over" a certain map X/G + BC: (this map classifies 

?I + X/G in the sense made precise in chapter 3) .  For example: a "map over 

XIC i BG" is a corlmlutative diagram 

Chapter 5 presents some basic facts on equivariant cobordism. Again. this 

material is not new. so the presentation is brief. The most important fact here 

is theorem 5.0.6 which establishes that equivariant homotopy classes of equivari- 

ant maps ~1.1 + SV correspond to cobordism classes of equivariantly V-framed 

submanifolds of M. 

In chapter 6. I present the first new results. The concept of "twisted cobor- 

disrn" is introduced. Here, the structure on the normal bundle of a submanifold 

of :CI is defined with respect to some fibre bundle over .CI. For example, in clas- 

sical (untwisted) cobordism. one can think of a framing of the normal bundle 

as an isomorphism from each normal space to a fixed vector space. In twisted 

framed cobordisrn. rather than having a fixed vector space. we associate differ- 

ent vector space to each point of M (i.e. we fix a vector bundle over M).  A 

twisted framing is an isomorphism from each normal space to the vector space 

associated to  that point. The main (new) result is theorem 6.0.12 which demon- 

strates that the equivariant framed cobordism of 1l.I is isomorphic to the twisted 



framed cobordism of M/G where the twist is described by a specified vector bun- 

dle over M/G. One can think of this theorem as being somewhat analagous to 

Eilenberg's theorem (see [24], chapter VI) which says that ordinary cohomology 

with twisted coefficients is isomorphic to equivariant ordinary cohomology of the 

universal covering space. 

Before proceeding. it must be noted that during the preparation of this thesis. 

the author became aware of work by Davis and Liicli ([6]) which overlaps with 

the material presented in chapters 7 and 5. However. the author was not aware 

of [6] until after these chapters had been completed. 

In chapter 7 we introduce the notion of twisted generalized cohomology. We 

also present the main example - at least for our purposes - of such a cohomology 

theory, namely. twisted stable cohomotopy theory. Twisted stable cohomotopy 

theory is the appropriate m*stabilization*' of twisted framed cobordism. Chapter 

S discusses an .At iyah-Hirzebruch type spect rai sequence for twisted generalized 

cohomology theories. This is an algebraic "machine' which will allow us to make 

some explicit cornputat ions. 

In chapter 9 we use the spectral sequence to make the aforementioned com- 

putations in the case of the geometric 1-stem. These computations mostly take 

the form of a short exact sequence 

where w is the object to be computed and H is an ordinary twisted cohomology 

group which happens to be fairly easily computable. Typically, w is a twisted 

stable cohornotopy group or a set of equivariant homotopy classes of equivariant 



maps. Thus. we have determined w up to an extension problem. I finish off with 

an analysis of the equivariant stable homotopy group 3$, ( EGf ). As pointed out 

in [lil] this group may be calculated via a Serre spectral sequence computation. 

However, the present methods offer some insight into the geometry of the maps 

which represent elements of 2,G,, ( EGf ) 
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1.4 Notat ion and conventions 

In this section, I will describe some notations and conventions that are used in 

this thesis. 

Throughout this thesis. I will assume that all spaces are conlpactly generated 

Hausdorff. This is of particular relevance in Chapter 2 where we consider fibrewise 

mapping spaces. 

G will always denote a group. e is the identity element of G'. [G.G'] is the 

commutator subgroup of G' and CPb := A is the abelianization of G. If G is a WI 

Lie group, then ad(G) := T,G denotes the adjoint representation of G. 

S" := VU {ca} will denote the 1-point compactification o f t  he Chepresentation 

V. Where the context makes it clear. n will be used to denote the trivial n- 

. - dimensional Erepresent at ion. For example. SV+" -- s C'+R rI . In particular. 

sn := pn. 

I denotes the unit interval [O. I ]  

JI will always be a compact smooth manifold of dimension rn and with bound- 

ary 8M. 

EG and BG denote the a universal free G-space and a classifying space For 

G, respectively. 

For go E. the map c ,  : .Y -+ Y is the constant map at yo. That is to say. 

~ ( t )  = y o  for all x E S. 

v,&V) denotes the normal bundle of !V in M. where iV is a submanifold of 

M. uzo(lV) denotes the normal space to !V at  10 (implicitly N is a submanifold 

of some manifold M). 



TM denotes the  tangent bundle of the manifold !\.I. T,, $1 denotes the tangent 

space to  M at XO. I f f  : !\.IL + .CI2 is a smooth map then Tf denotes the derivative 

o f f .  

0 will always denote an (unstable) cobordism set of some type. So, for ex- 

ample, Of, will denote (twisted) framed cobordism (defined in chapter 6 )  and nG 
will druote equivariant coborclisrli (clefinrcl in chapter 5 )  

[n chapter 9. 1 will use A l  to denote the standard i-simplex and I will use 

Whitehead's notation (see [24], chapter VI)  for singular chains, cycles etc. 

;r,(?i. xO) denotes the nth homotopy group (or set). [ISn. *): (X. ro) ] .  

If C is a category. then [CI denotes the objects of C. 



Chapter 2 

Introduction to fibrewise 

homotopy theory 

In this chapter I will present some basic results of fibrewise hornotopy theory. I t  

is. of course. possible to  develop a fibrewise homotopy theory in which both the 

domain and codomain are  nontrivial fibre bundles. see for example [5]. However. 

I am only interested in the case where the domain fibre bundle is Id : S + S 

and  the  codomain is a locally trivial fibre bundle. so I only develop the theory 

for this special case. 

2.0.1 Definition Given a space B. we define the category of pairs of spaces 

over B,  denoted Tg , as follows: The objects are triples (X, A: f) where (X. A )  is 

a pair of spaces and f : .Y + B is a continuous map. .4 morphisms 

consists of a map of pairs 3 : (X, A)  + (Y? B )  such that  g o 3 = f 



We shall be particularly interested in the case B = BG', where G is a (compact 

Lie) group, and we shall explore the relationship between TiG and the category 

frG2. whose objects are pairs of free Espaces and whose morphisms are equiv- 

ariant maps of such pairs. 

Let p : EG -t BG be a universal principal G-bundle (i.e. EC; is contractible). 

Then p induces a fimctur 

F : TiG + FrCF 

in the Following way: Given an object (.Y. -4: f )  in Tic .  let q : + .Y be the 

induced principal G-bundle over S obtained by taking pullback along f and let 

.i := g-l(.-l). Then (.?. -4) E IfrG21. khphisrns are also induced by taking 

pullback. C3 

Much of this thesis will be devoted to constructing and studying certain func- 

tors on the category TiG.  

2.0.2 Definition Let p : E + B be a locally trivial fibre bundle and let E' 

be a subspace of E such that p ( p  : E' + B is also a locally trivial fibre bundle. 

I will call the quadruple (E. E t . p .  B) a relative locally trivial fibre bundle. I will 

also say (abusing the notation in the process) that p : ( E. E') -+ B is a relative 

locally trivial fibre bundle. 

2.0.3 Lemma (See [IS]) Let (.'I, A )  be a relative CW-complex and let p : 

E + B be a fibration. Given a commutative solid diagram 



there exists F : I x .Y + E which makes the resulting diagram commute. 

Proof: First suppose that (X, .-I) = ( Bn, Sn-' ). Then there exists a homeomor- 

phism h : I x Bn -+ I x Bn such that h maps 0 x Bn U I x Sn-' h o m ~ e ~ m ~ r p h i c a l l y  

onto 0 x Bn. Thus h allows us to convert our original lifting problem into one of 

the form 

I x B n y B  

~ h i c h  can he solved. since p is a fibration. 

Now suppose that (A'. .4) is an arbitrary relative CW-complex. We argue 

by induction over the skeleta of A". Suppose that F has been constructed on 

0 x S u I x Sn. Let en+' be an ( n  + 1)-cell of .Y with  characteristic map 1 : 

(Bn+', Sn) + ( . Y " f l . S n ) .  I induces a lifting problem 

which has a solution G : I x Bn+' -+ E. C allows 11s to extend to a lift 

0 x X U I x (.Yn U en+' ). So clearly F can be extended to 0 x .Y u I x .Yn+ l .  By 

induction. we can solve the  given lifting problem. 0 

2.0.4 Definition Let p : ( E ,  E') -+ B be a relative locally trivial fibre bundle. 

Let (X, -4) be a pair of spaces. A relative lifting problem is a map u : O x (X, -4) + 

(E, E') together with a hornotopy F : I x .Y -t B such that p o u ( 0 ,  x )  = F(0, r ) .  



I will indicate such a lifting problem by a diagram of the type 

0 x ( X ?  A)  2 ( E ,  E') 

A solution to this lifting problem is a map F : I x (S. -4) -t (E. E') such that 

p o F =  F 

2.0.5 Lemma Let p : ( E l  E') + B be a relative locally trivial fibre bundle 

and let (X. -4) be a relative CW-complex. Then any relative lifting problem 

o x (-Y. -4) A ( E .  E f )  

has a solution. 

Proof: First consider the lifting problem 

This has a solution : I x -4 -+ E'. Now. E and u combine to give a map 

ii : O x S U I x -4 -+ E and we get a commutative solid diagram 

I x - Y y B  

By lemma 2.0.3. F exists making the resulting diagram commute. F is a solution 

to the given relative lifting problem. 0 



2.0.6 Definition Let p : (E, El) + B be a relative locally trivial fibre bundle 

and let (.Y,A; f) be an object in T i .  Then 

This set is topologized as a subspace of map(-Y, E). 

[(.Y, A);  ( E. E')] := {path connected components of map ((X. A);  ( E. E l ) ) }  

Let +,$ E mapl((.Y. -4); ( E. El)). We say that b and (11 are fibrewise homotopic. 

written d Zj cy i f  there is a homotopy fi : I x (.Y. -4) + (E. E') from 6 to @ such 

that 

p o H = / o p r , ~  

where pr-y : I x S -+ .Y is the projection map. 

Clearly, 

[(X. A):  (E. E1)If = { fibrewise homotopy classes of maps (S. .-I) -t ( E .  E l ) )  

2.0.7 Remark Note that if ( F. F') = ( p - ' ( b ) ,  p - ' ( b )  n El) for some b E B, 

and if cb : .Y -+ B is the constant map that sends everything to b then 

mapJX, -4); ( E ,  El)) = map((.Y. A);  (F, F' ) )  

So we can think of mapf((.';, -4); (E, E l ) )  as a "twisted" version of the classical 

mapping space. 



2.0.8 Lemma Let ( X ,  -4) be a relative CW-complex with .Y compactly gen- 

erated HausdorfT. Suppose that fL  and f2 are maps X + B which are homotopic 

via a homotopy H. Let p : (E, E') -t B be a relative locally trivial fibre bundle 

over B. Then H induces a homotopy equivalence 

H. : map,, ((S, A); ( E ,  E ' ) )  -t mapJ2((S. ;I): ( E ,  El ) )  

Proof: First I claim that the induced map 

p. : map((.Y. A);  (E. E')) + rnap(.Y. B) 

is a fibration. To see this. consider t h e  lifting problem 

0 x Y + map((.Y. -4): (E. E')) 

! 
F 

lp* 
1 x Y - rnap(.Y. B )  

The adjoint lifting problem is 

Since p : ( E. El) -t B is a relative locally 

p :  I x  Y x ( X . 4  -t ( E . E f ) .  Let P :  

trivial fibre bundle. this has a solution 

I x F -t map((S. A);  ( E ,  E l ) )  be the 

acljoint of F. Then F is a solution to the original lifting problem. Thus p. is a 

fibration as claimed. Now, f i  and f2 are points in the space map(X, B) which are 

joined by the path H. Thus H induces a hornotopy equivalence of the fibres of p. 

over fl and f2 respectively. But these fibres are precisely rnapj, ((X, A);  ( E l  E')) 

and map,, ( (X, A); ( E, E')) respectively. 0 



2.0.9 Corollary H induces a bijection 

Proof: Take no of the hornotopy equivalence in lemma 2.0.8. 

2.1 The homotopy extension property in T; 

In this section. I will formulate the appropriate notion of the homotopy extension 

property (HEP)  for objects in the category T i .  1 will also show that if (.Y. -4) is a 

relative CW-complex. then (S. .-I; f )  has HEP. The present exposition is based on 

that of Husemoller (see chapter 2 in [S]). although he looks at the same problem 

from the point of view of prolongation of cross sections rather than extensions of 

lifts. 

2.1.1 Definition Let (3'. -4: f )  be an object in T;. Let p : E + B be a locally 

trivial fibre bundle. Then we say that (S. .4: f )  has the homotopy extension 

property with respect to maps into E if. given a commutative diagram 

there exists a map 



such that the following diagram commutes: 

2.1.2 Lemma Let p : E + B be a locally trivial fibre bundle wi th  fibre F. 

Then (Bn. Sn-l: f )  has HEP with respect to maps into E. 

Proof: f ' ( p )  is a locally trivial fibre bundle over Bn. Since Bn is contractible 

/ ' ( p )  is a trivial bundle. Thus the required result follows from the classical 

homotopy estension property of the pair (Bn.  Sn-') with respect to maps into 

F .  I3 

2.1.3 Theorem Let p : E -t B be a locally trivial fibre bundle. Let (S. -4) 

be relative C W-complex and j : X -t B. Then (X. -4; /) has HEP with respect 

to maps into E. 

Proof: Let H : 0 x S u I x -4 -+ E be given as in definition 2.1. I .  We will proceed 

by induction over the skeletaof .Y. Suppose that Hn : 0 x .YuI x X n  + E has been 

constructed, extending H .  Let en+' be an (n+ 1)-cell of .Y with characteristic map 

1 :  (Bn+l,Sn) + (.YnflJn). We havea m a p i :  O X  B n f l ~ I x S n  -+ Ox?CUIxXn 

that sends(t,;) +- ( t . l ( ~ ) ) .  So ~ ~ 0 7 :  O x B n f l ~ I x S n  + E andpoffnoS= folpr2 

where prz : I x Bn+' -t Bn+' is the projection onto the second factor. By 

lemma 2.1.2 we may extend Hn o 1 to a map F : I x Bn+l + E such that 

= f o l o pr2. Since l is a characteristic map for the cell en+', P induces a 

map Hn' : O x ?C U I x (Xn  u en+') -+ E such that p o Hn* = 1 o prz. In this way 



we can extend Hn to Hn+ : 0 x .Y U I x ?("+I + E such that p o Hn+l = j o pr2. 

Now, by induction we can extend H t o  IT: I x .Y + E as required. 0 



Chapter 3 

Introduction to equivariant 

homotopy theory 

[n this chapter we will introduce some of the basic notions and conventions of 

equivariant homotopy theory. Many of the results here will be stated without 

proof. For complete details. the reader is referred to [2] or ["I] 

Throughout this chapter. C will denote a compact Lie group of dimension 

n. .A left G-space is a space .Y together with a map p : G x .Y + .Y such 

that p ( g 1 , p ( g 2 , x ) )  = p(glg2,x) and p ( e . s )  = s. p(g?  x )  will be written g.x. .A 

smooth left G-manifold is a manifold :Cl which is a left G-space such that the  

map p is smooth. If .Y and Y arc Gspaces, a map f : .Y -t Y is equivariant if 

f (9.2) = g. f (x) for all g E G and r E .Y. If f l  and f2 are equivariant maps, they 

are equivariantly homotopic if there is a homotopy H : I x X -t Y between them 

which is equivariant. The action of G on I x -I' is given by g.( t ,  x)  := ( t ,  g.r). 

[X, Y ] ~  denotes the set of equivariant hornotopy classes of equivariant maps from 



3.1 Fixed point spaces and orbit spaces 

If .Y is a G-space and H is a subgroup of G. then .YH := {.c E X1h.r = 

x for all h E H).  For x E .Y. G, := E G!g..r = .r}. S is said to h e  a 

free G-space if G, = {e} for all x L. ..Y 

3.1.1 Lemma C,., = gC~',g-~ 

3.1.2 Lemma g.SH = P H g - '  

X/G denotes space of orbits with the quotient topology. 

3.1.3 Theorem (See [TI) If :\I is a smooth compact free Grnanifold. then 

M/G has a unique smooth structure such that the quotient map p : .\I .V/G 

is a submersion. 

0 

In fact. in this case p : :\I + MIC: is an example of a principal G-bundle. 

3.1.4 Definition A !ocally trivial principal G-bundle is a map p : E + B 

such that E is a left Espace and for each x E B there is an open neighbourhood 

Lr of x in B and an equivariant homoemorphism h : p - l ( U )  + G x li such that 



the following diagram commutes 

The action of G on G x IT is given by g.(gt, u )  := (ggl. u ) .  From now on, I will 

drop the "locally trivial", and just refer to such bundles as principal Gbundles. 

3.1.5 Theorem (See [7] Let .CI be a compact smooth free G-manifold. Then 

p : .I.I -t M/G is a principal Gbundle. 

3.2 The universal principal G-bundle 

Recall the following definition (see [2  11 ) 

3.2.1 Definition Let (.Y,[j  E J )  be a family of topological spaces. The join 

*jEJ.Y, is defined in t h e  following way: Let 

- 
.Y = { ( t , ~ , ) :  j E J . t j  E I.rj E .Y,,Zt, = l . t j  = 0 for almost all j }  

Then as a set 
- 

* j C J X j  = .Y/ 

where ( t , x j )  - ( t t j y j )  if and only if t j  = u j  for all j and if t j  f 0 then xj = llj 

One has coordinate maps 



T h e  topology on *;eJ-yj is the coarsest one that  makes these maps continuous. 

Now we can give Milnor's construction of' the universal principal G-bundle. 

3.2.2 Definition Given a compact Lie group G. let 

and let 

Then q : EG + BC; is a principal G-bundle. and it is universal in the following 

sense. 

3.2.3 Theorem Let p : + .Y be a principal G-bundle where ?I is a para- 

compact space. Then there exists an equivariant map j : .? + EG' and a map 

f : .Y -t BC; such that the  following diagram is a pullback diagram. 

Moreover. f and f are unique up to hornotopy and equivariant hornotopy respec- 

This is a standard result: so the proof is omitted. The interested reader can 

consult [% 11. 



3.2.4Definition Let El + Sl and E2 -t X2 be principal G-bundles. -4 

morphism of principal G-bundles is a commutative diagram 

in which j is equivariant. 

Let k c ( S )  denote the isomorphism classes of principal C&bundles over .Y. Ap- 

plying theorem 3 . C 3  we have the  following. 

3.2.5 Corollary If -4' is a CW-complex then 

We say that BC is a classifyirig space for principal G-bundles. 

3.2.6 Corollary 

kG(sl) P ( G / G ~  )ab 

where Go is the component of G containing the identity element. 

Proof: kc(S1) [SL. BG] T , ( B G ) " ~ .  But  s l ( B G )  2 iro(G) 2 GIGo 0 

We will also need the  fact tha t  principal C-bundles are  fibrations in the cat- 

egory of G-spaces, at least in the case where t h e  domain of the lifting problem is 

a G-CW-complex (the reader should consult [XI for the definition of a G-CW- 

complex). More precisely, 



3.2.7 Theorem Given a commutative solid diagram 

where p : .v -t X is a principal G-bundle. 1' is a free G-CW-complex and f 

and F are equivariant. there exists an equivariant F which makes the resulting 

diagram commute. 

Proof: First. we will prove the  theorem in the case Y = G x I" where Y' is a 

CW-complex and G acts by left multiplication on the first factor. So we have a 

lifting problem 

We can restrict this to the nonequivariant lifting problem 

where e is the identity element of G. This has a solution F : I x e x Y' -t 

(since p is a fibration). Define F : I x C: x Y' by F(t ,g ,  Y)  := g . P ( t .  e. 9 ) .  P is a 

solution to the equivariant lifting problem. 

Now suppose that Y is an arbitrary free GCW-complex. Yo is a set of disjoint 

free G-orbits, so clearly the lifting problem can be solved over Yo. Suppose that 

we have P : I x Yn -t .q which solves the lifting problem over Yn .  Let en+L be 



an ( n  + 1)-cell of Y with characteristic map 1 : G x (Bn+', S") + (Yn+ ', Yn). F: 

f and 1 combine to give an equivariant lifting problem 

Xow. there is a homeomorphism h : I x Bn+[ + 1 x BT'+l which maps 0 x Bn+' U 

I x Sn horneomorphically to 0 x B n f l .  This allows us to transform the above 

equivariant lifting problem into one of the form 

which can be solved. Thus. we can extend our partial solution to a partial 

---n+ 1 
solution F : I x Ynf '  + .?. By induction we can find a solution F : I x  Y + .q 

as required. 



3.3 The Borel construction 

3.3.1 Definition Let ?( and Y be left G-spaces. Then the topological tensor 

produdct over G is defined by 

Here G acts on S x 1,. via the diagonal action. tha t  is, g . ( x .  y )  = (g.x?g.y). The 

equivalence class of (2. y) will be denoted by [x. Y]. If (1': I") is a pair of G-spaces 

then 

.\' xc (Y.  Y ' )  := (S X G  1.. S X G  I*-') 

3.3.2 Remark I'sually .Y x c  Y is defined for .Y a right G-space and 1' a left 

G-space. However. as we will exclusively be dealing with left Ci-spaces. the above 

definition is more convenient for us. 

3.3.3 Remark EG x Y is often referred to as the "Borel construction" 

3.3.4 Theorem Let p : E -t B be a principal G-bundle and let F be a left 

Espace .  Then the  map a : E x c  F -t B given by ~ ( [ s .  f ] )  := p ( x )  is well defined 

and is a locally trivial fibre bundle with fibre F. 

Now let ( B ,  B') be CW-pair. Let p : E -t B be a principal Gbund!e and let 

E' := p-'( B'). Suppose that 

EL EG 



is the pullback diagram whose existence is asserted by theorem 3.2.3 - so f clas- 

sifies p : E + B. Let (Y; Y') be a pair of G-spaces. Let q : EG' x Y -t EG' x c  k- 

be the principal G-bundle and let T : EC; x c  Y + BC; be the induced Y-fibre 

bundle. The following pair of results are of crucial importance for the rest of the 

thesis. 

3.3.5 Lemma 

mapc(( E. E'): (1,: I")) = mapl(( B. B'): EG x c  (Y. Y ' ) )  

Proof: Consider the  following diagram: 

This is a pullback diagram. Now consider the following diagram 

The pullback property of the right hand square establishes a bijection between 

maps u : B + EG x c  Y such that au = f and equivariant maps iL : E + EG x Y 

whose projection to the first factor is j. That is. it establishes a bijection between 

mapl( B; EG x c  Y )  and mapG( E: Y). It is easy to check that maps which send 

B' to EG x c  Y' correspond precisely to equivariant maps which send E' to Y'. 



The proof of the bicontinuity of this bijection with respect to the mapping space 

topologies is omitted. 0 

3.3.6 Remark Note that the space mapf ( (  B. B'); E C x c ( Y .  k*')) is equivalent 

to the space of sections of the bundle E xc k- + B which map B' to E x c  Y'. 

Lemma 3.3.5 is commonly formulated using this space rather than as above. 

3.3.7 Corollary 

Proof: This Follows by taking i i o  of the homeomorphism in lemma 3.3 .5 .  0 

3.3.5 and 3.&7 show the close link between fibrewise homotopy theory and equiv- 

ariant hornotopy theory. We shall mainly work eaplicity with the Former and then 

use 3.3.5 and 3.3.7 to obtain results about the latter. 



Chapter 4 

Equivariant stable homotopy 

It is not my intention here to present a complete introduction to the subject of 

equivariant stable homotopy theory - to do justice to such a project would require 

much more space than I am prepared to devote and besides. it would divert us 

too far from our main goals. I only wish to present enough of the theory to 

motivate the later sections of this thesis. In particular. I want to demonstrate 

G 
thesignificanceofstudyingtheset [(X,.-l):($",m)] where(?(,.-I)isarelatively 

free G-space. For further details on the material in this section the reader should 

consult [L 21 or [2 11. 

Throughout this section S and Y will denote based G-spaces with basepoints 

xo and yo respectively. The basepoints are G-fixed points. 



4.1 Equivariant stabilization 

[n classical nonequivariant homotopy. one stabilizes the set [S. Y] by suspending. 

That is to say, the set of stable hornotopy classes of maps from (S, xo) to (1.; yo) 

is defined by 

Note that S1 = R U  x is the 1-pt compactification of a 1-dimensional real vector 

space. The equivariant analogue of a finite dimensional real vector space is a finite 

dimensional real representation of G. Suppose that C' is such a representation. 

Let S' be the 1-pt compactification of V .  Given any equivariant map 

we define 

(J". X) A f : (5''. X)  A (S.ro)  + ( s V .  CC)  A (Y.  yo) 

to be Idsv A f. This induces a suspension homomorphism (of sets) 

G 
[(X. ro); (1: yo)]C -t [(s'. x) A (A'. zO); (5''. m )  A (Y. yo)] 

We would like to define {(X. ro ) :  (1,; yo)}c to be the direct limit over all such sus- 

pensions. However, problems arise with this naive approach since the collect ion 

of all representations of C: is not a set and thus not a very nice thing on which to 

index a direct limit. I will outline a way to deal with these problems. It is worth 

noting that these issues have been dealt with much more thoroughly elsewhere. 

I am only interested in developing the basic notions of equivariant stable homo- 

topy theory as an equivariant homology theory, so I will not deal with equivariant 

spectra in full generality (see for example [l']). 

29 



First, recall that a complete Cuniverse, U. is an infinite dimensional E 

representation such that, for each irreducible representation. C', of G, U contains 

countably infinitely many summands isomorphic to V .  Let us fix such a universe 

U. We shall use G-invariant subspaces of U to index our direct limit. Let lf 

and V be two such Cinvariant subspaces. We say that li 5 C' if L i  I.. and if 

there is a G-invariant subspace LC- of I.' such that C -  = C L - 6  I :  (riote that if G is 

a compact Lie group and V is finite dimensional. then GV always exists since Cp 

has a G-invariant inner product). Now suppose that U 5 V. V = 1-1.' 3 L and 

suppose that we have an equivariant map 

Then define 

ar.-cr( f) : (s'. m) A (.Y, so) -+ (s'. W )  A (Y. yu) 

by the following composite 

(SLV. 00) A (SLT, 133) A (S. xo) 

The first and third maps are induced by the canonical Gequivalence 



The map av-u( f )  is independent of the choice of ilY used in its definition. Thus 

we have defined the suspension 

mapc((sL', 00) A (S, ro); (5'". OO) A (k.: yo)) 

ov-o induces a homomorphism (of sets) 

Yow we may define the  set of stable equivariant homotopy classes of maps from 

(X, 20) to (1': yo) as 

G 
{(X Q); (Y. yo)} := lirn [(sY m) A (S. so); (s'. sa) A (1: yo)] + 

where the direct limit is taken over all finite dimensional C;-invariant subspaces C,' 
G 

of the C;-universeU. Note that if C' 2 W 2 % V  then the set [(s'. m) A (S, yo): (Y. yo)] 

has a canonical abelian group structure (as in the  nonequivariant setting). Thus 

{(S, xO): (k': yo)} has a canonical abelian group structure. 

For the rest of this section we will suppress mention of the basepoints and 

assume that all maps and homotopies are based. Also by "representat ion of C'?' 

we shall mean finite dimensional Ginvariant subspace of U. 

4.1.1 Definition Let I;, and be representations of C;. Then 

Also 



~j~ is an example of a (reduced) equivariant homology theory (see [I21 or ['I]). 

As we have defined it, 3C is indexed on the set of pairs of G representations 

(finite dimensional Ginvariant subspaces of U) 

4.1.2 Lemma Let dl : C; -t I.; and : I.; -t c;' be isomorphisms of G- 

represent at ions. There is a canonical isomorphism 

Proof: d; and dl induce a n  isomorphism 

By taking direct limits we get the required isomorphism 

The next lemma justifies the use of the notation C.; - 1/1 in the subscript to zG 

4.1.3 Lemma Suppose that C; c;' 1.; and c.; are C;-representations such that 

then there is a canonical isomorphism 

Proof: By assumption we have an isomorphism 



for any G-representation I J .  The result follows from the fact that the set repre- 

sentations which contain I.; is cofind and the set of representations which contain 

is cofinal. C] 

Let RO(G) denote the real character ring of the group G. Then, RO(G) 2 

{ [V]  - [ [ J ] )  where [q and [U] are isomorphism classes of representations of G. 

Thus lemmas 4.1.2 and 4.1.3 allow us to tliirik of 2" as being indexed by RO(Gj. 

4.1.4 Remark In the context of G-representations. we will often use an in- 

teger to stand for trivial representations of that dimension. Thus. for example. 

q V + n  = s\'iiRn -G 1- G 1' .- or d,( ) =GRn( ) 

4.2 The splitting of the stable equivariant ho- 

motopy groups 

Recall that if H is a subgroup of G then the Weyl group of H is 

where & ( H )  is the normalizer of H in G. Let ( H )  denote the conjugacy class of 

the subgroup fi. We have the following theorem. due to Segal for finite groups 

(see [16]) and tom Dieck for compact Lie groups (see [20]). 

4.2.1 Theorem 

where the direct sum is taken over all conjugacy classes of subgroups of G 



Thus, in order to undestand the equivariant stable stems we can study them one 

piece at a time. In other words, try to understand the groups 3 i V H ( ~ W ~ + ) .  We 

have the Following basic result (see [ I l l ) .  

4.2.2 Theorem 

where the direct limit is taken over all representations V of G and for each rep 

U .  .-la is the subspace of sL' consisting of all the nonfree orbits. 

Proof: 
G ~ , C ( E C + )  = l$ [~"+".x; : S' A EG'] 

Note that i f f  : (Sv'+", s) + (5% EG+. * )  then f must send .-ISv+,, to the base- 

point *, since all the other orbits of SV A  ECF are free. Let pr : S' A  EG+ + Sv 

be the projection. Then pr o f : (SV+". .-Isr+n ) -t ( S V .  ca). On the other hand. 

suppose that  d : (SV+".  .&v+") + (s', x). Let a : SC'+" -.-I -t EG be an equiv- 

ariant map. By theorem :3.2.3 a is unique up to equivariant homotopy. Define 

j : (Svfn. m) + ( S V ~  EG+. t) by j(s) = * For r E .Asv+. and j ( s )  = d ( r ) A a ( r )  

for x $ .-lsv+. . These constructions establish a one to one correspondence be- 

G 
tween [(SV+". oa); (s' A EG+, *)lG and [(SVfn, .&v+.); (SV ,  m)] which com- 

mutes with the suspension maps. 0 
G This theorem illustrates the importance of studying the set [(x, ;I); ( S V ,  a,)] 

where (X, .a) is a relatively free G-manifold. The main purpose of this thesis is 

to develop the machinery needed to study these sets. 



Chapter 5 

Equivariant transversality and 

equivariant framed cobordism 

Let G be a compact Lie group of dimension n. Let .<I be compact free G-manifold 

with boundary &il. .\I := .C[/C;. Let V be a real representation of G. If B is a 

submanifold of .A, vS4( B )  denotes t h e  normal bundle of B in .-I. Throughout this 

section all maps are assumed to be equivariant unless otherwise stated. 

One of the big problems with trying to generalize classical cobordisrn theory 

to the equivariant setting is that. in general. transversality does not work. as the 

following example demonst rates: 

5.0.3 Example Let G := 2 7 2  and let .Y := {*) with the trivial G' action. 

Let V be the nontrivial 1-dimensional real representation of G and consider the 

equivariant map / : X -t SV.  f(*) = 0 E SV. f cannot be equivariantly 

homotoped to any map which has 0 as a regular value, since the only fixed points 



of SV are 0 and m. (Recall that if f : S + Y is a smooth map then y E I' is a 

regular value if, for all r E f - ' (y ) ,  Txf : T x ( S )  + Ty(Y)  is surjective.) 

It is clear that the basic problem in this example is that the orbits of the do- 

main manifold are not "free enough" to map equivariantly onto all the orbits 

of the target manifold. Much work has been done to determine conditions un- 

der which equvariant transversalitp will work. See for example [E] or [?I. I am 

only interested in the following special case. (My thanks to S.R. Costenoble for 

communicating the basic argument used in the proof of the following theorem) 

5.0.4 Theorem Let C; be a compact Lie group. .i1 a compact free G-manifold 

with boundary a!Cl and let C' be a real representation of G. Then. any equivariant 

map f : (A?. t9L.l) -t (s'. CG) is equivariantly hornotopic to a map which has 0 

as a regular value. Moreover. given two maps gl and gz which have 0 as a regular 

value and which are equivariantly homotopic. w e  can find a homotopy F between 

them such that 0 is a regular value of F. 

Proof: Consider the nonequivariant map 7 := (Id. f ) / G  : (,i./~Ai):tl/~) + 
!<I x c  (SV. m). By nonequivariant transversality. f is homotopic to a map 

which is transverse to the zero section of the fibre bundle LC. x c  SV + &I. 

Suppose that F is a hornotopy of 7 to g. Now, M x S' + M xc  SV is a 

principal G-bundle, so by theorem 3.2.7 we can lift P to an equivariant homotopy 

k; : I x (!Q,&iI) -+ x (s'', OO) such that p(0. -) = (Id? f ) .  Let 6 := p(l, -). 

jl is transverse to the zero section of x Sv + ~$1. Let g := prl o 4 where 

prz : k x sV -t sV is the projection to the second factor. Then 0 is a regular 

value of g and pr2 o F' is a hornotopy of f to g. 



Now suppose that we  are given gl and g2 as in the statement of the theorem. 

Let H : I x !il -t Sv be an equivariant homotopy from gl to g2. Define maps Ti. 

g1 and as follows. 

and gi := (Id x gi)/G for i = 1.2. So is a nonequivariant hornotopy between 

nonequivariant maps 9, and &. Using nonequivariant transverality. we can find 

a map : I x I x .il/G' -+ (.<I x S v ) / G  such that 

- 
P(0. t .  [m] )  = H(t .  [m])  

F ( t .  0. [m])  = g,([m])  and F(t .  I. [ m ] )  = ?&([m]) 

F(1. -. -) : I x .CI/C; + x c  Sv is transverse to the zero section of' 

?;I X G  sV -+ !ir/c:. 

Now lift F to a G-map f: : I x I x .it -+ .GI x SC'. Then F := prsv(E;(~.  -. - ) )  : 

I x !Cl + SV is a hornotopy of gl to g which has 0 as a regular value. 0 

5.0.5 Definition Let I; be a real representation of G. Then the i/'-framed 

cobordism set of V-framed submanifolds of (LC., d i i l ) ,  denoted n:(&l. &fl), is de- 

fined as follows. Let S&$I. &it) := {(!?. $1) where iv is a G-invariant submani- 

fold of 16. such that Lv n dicl is empty and 4 : q f ( : V )  --t !v x C. is a Gequivariant 

bundle isomorphism. We define an equivalence relation, called V-framed cobor- 

disrn, on ~g($f, a$..) by the following: (iTl7 41) - (& 4 2 )  if there exists a G- 

submanifold CV of &l x I (note that $1 x I is only a manifold after we "straighten 



5.0.6 Theorem 

Proof: This is proved exactly as in the classical nonequivariant case, given that 

we have equivariant transversality (theorem 5.0.1) in this case. I shall only give a 

sketch of the proof. Given f : (:if. 8:l.l) -t ( S ' .  m), we may assume (because of 

theorem 50.4) that 0 is a regular value. So /-'(0) is a G-invariant submanifold of 

M that does not intersect &if. Moreover. T f (the derivative of f )  sends T f - ' (0 )  

to 0, so TjITj- lco,  factors to an equivariant bundle map TfI  : u&<[( f - ' ( 0 ) )  + 
To(CF) 2 V .  That is. Tf induces a V-framing of f - ' ( 0 ) .  So corresponding 

to / we have ( / - l ( ~ ) ,  T j I )  E ~ g ( . k ~ . i l ) .  Moreover. one shows that under 

this correspondence. homotopies of maps correspond to cobordisms of K-framed 

submanifolds. Thus. we obtain a homomorphism 

To invert this homomorphism, we use the equivariant Pontryagin-Thorn construe- 

tion: Given (A ,  #) E ~ : ( l $ l .  &if), wc have an equivariant tube map r : Lr + 

vlcf(#) where U is some tubular neighbourhood of iq. Let prl : iv x V + V be 

the projection onto the second Factor. Then prz o 4 o T : U + V is an equivariant 

map. Now, if we collapse the complement of U to a, we obtain an equivariant 



map f : (10, &GI) + ( S V :  m). One can show that  this construction provides the 

required inverse 



Chapter 6 

Twisted Cobordism 

In this chapter, I shall adopt the following convention. p : .it -t .CI is a principal 

G-bundle and if N c &I then !V = p-l(.V). More generally, .i' and .Y always will 

bear the  relationship that .Y is with the C; action *'rnodded out". The context 

should make it clear what "modded out" means in each case. 

Now suppose that i i l  is a free G-manifold with boundary dA?. Instead 

of looking at R ~ ( X ~ . B : G I )  directly. we shall take the Following approach. Let 

iV1 4 E ~ g ( . i l .  &ti). By modding out the action of G' we obtain a submanifold [ -  'I 
;V of iCI, together with a certain structure on the normal bundle of N .  The nature 

of this structure reflects both the action of G' on .if and on the representation I.'. 

Also, since we understand manifolds of dimensions 1 and 2. this approach offers 

the possibility of making explicit computations when dim M - dim C' -dim G 5 2 

6.0.7 Definition Let M be a compact smooth manifold with boundary &Cf. 

Let E be a vector bundle of rank k over M. Then SL(!bf: 8 M ;  c )  := { ( N ,  4 ) )  

where !V is a submanifold of .Cf of codimension k such that N n BM is empty 



and 4 : vibf(iV) -+ ( I N  is a vector bundle isomorphism. We will call S;(,CI. 8 M ;  t) 
the set of "twisted framed submanifolds of M of codimension k7?. We define 

an equivalence relation called *'twisted {-Framed cobordism" on S ~ ( M .  i )M;  t) as 

follows: ( N , .  & ) - (&, &)  if there esists a pair ( 1.V. a)  where GV is a submanifold 

of .LI x I of codimension t and 9 : U.~,,~(GV) + pr;(()lw is a vector bundle 

isomorpiiisrn (prl is the projection from .W x I onto the first factor) such that 

(LC', @ ) ( . b l x O  = (XI. QI) and (LC: @ ) 1 , ~ ~ , ,  = (&. 0,). Define 

Rfr(M.&C[;{) is t h e  set of **twisted <-framed cobordism classes of twisted [- 

framed submanifolds of L C ~  of ~~d imens ion  k" .  

6.0.8 Remark I f f  is a trivial bundle of rank k.  then 

(the classical framed cobordism set. see, for example. [LO]) .  Thus. Rfr(.C1. &\I: c) 
is a generalization of classical framed cobordism. It is now apparent why we use 

the term *'twistedg' to describe these cobordism sets. The %vist" is introduced 

by the possible nontriviality of the vector bundle c. The situation is analogous 

to ordinary twisted (co-)homology. In that case, the "twist" is introduced by the 

possible nootriviality of the local coefficient system (or bundle of abelian groups). 

6.0.9 Remark It  is possible to define twisted versions of other cobordism 

theories. For example, let i be a line bundle over M. Let S&(M, a!Cl; i) = 

{(N, (6)) where rV is a submanifold of codimension k and q5 : A k ( ( Y r ( N ) )  + < I i v  



is a bundle isomorphism (A"enotes the kth exterior power). Cobordisms are 

defined in the obvious way. One obtains R~ , (M.  &\.I: C) which generalizes the 

classical oriented cobordisrn set R,k,( M. S M ) .  

6.0.10 Theorem Let :I;I be a compact free G-manifold with boundary i)!Cl 

and let V be a real representation of G' of dimension d. Let be the vector bundle 

Then there is a bijective correspondence S'g(ii1. i):i[) o S;(.U. 0M:  e )  

Proof: We will first prove the following: 

6.0.11 Lemma Let .V be a submanifold of :\I. Then the following diagram 

is a pullback 

v ,  ( L P )  3 Yhl(i~) 

The vertical arrows are the vector bundle projections. T p  denotes the derivative 

Proof of lemma: We have the following composite of vector bundle maps 



To prove the lemma, it suffices to show that 0 is fibrewise surjective and that 

ker(8) = T#.  Surjectivity follows from the fact that p is a submersion. On the 

other hand. if u E ker(B), then T p ( c )  E TN. But ( T p ) - ' ( T N )  = T #  since p is a 

submersion. Thus. c E T# .  This proves the lemma. 0 

Now. let ( !V, @) E S$(M: c). We have the following commutative solid diagram 

where the bottom right square is a pullback by the lemma. Hence. we obtain a 

map y : !V x V' + U.~-(:V) which is an equivariant bundle isomorphism. 

On theother hand. let (.-I. 6) E ~&i1.8:(1). G V e  have the following composite 

of vector bundle maps 

.All these maps are Eeqoivariant ( G  acts trivially on the spaces in the right hand 

column). Therefore. this composite factors to a bundle isomorphism 

These constructions establish a 

and S:( &I, bM; c). 
bijective correspondence between s:(&!, &\I) 



6.0.12 Theorem Let if1 be a compact free G-manifold with boundary &GI 

and let II' be a real representation of C: of dimension d. Let [ be the vector bundle 

it1 x~ V -t !\.I. Then 

o;(!tf. ai l )  qr(!bl: [) 

Proof: We have established a bijection between elements of s~;'(A?, &GI) and ele- 

ments of Si(ib1. .I.;bI: 0. TO prove the theorem. we must show that the two notions 

of cobordism also correspond. Suppose that ($, & ), (X$, & )  E ~ z ( i C i ,  &if) are 

Ir-framed cobordant via a cobordism (%.&). :is in the proof of 6.0.10 we can 

mod out t h e  G action on (fi'.8) to obtain a twisted framed cobordisrn (LV.0) 

between ( :Vl , 01) and (.V2. oz) Conversely. if  ( LC: @ )  is a twisted framed cobor- 

dism between (!V1.~1) and (:V2,d2) E S&CI.B!CI:{), then as in 6.0.10 @ may be 

pulled back to 6 : V.~-,,,(LV) -t LCv x V .  an equivariant Cr'-framing of p. Thus 

(.Vl. & ) is V-framed cobordant to (!V2, &). 0 

6.0.13 Corollary Let .cf be a compact Free Gmanifold. let Cr- be real G- 

representation of dimension d and k t  5 be the vector bundle .il x c  I' + .\I, 

then 

Proof: This follows 

6.0.14 Corollary 

then 

immediately from theorems 5.0.6 and 6.0.12. C3 

If the vector bundle f in the previous corollary is trivial 

G 
[ ( i i 1 , a i ? ) ; ( ~ ~ , m ) ]  E [(M,~M);(s~.co)]. 

Proof: In this case Rtr(!bI. &\.I; () ~g( ! \ . r ,  B M )  2 [ ( M ?  aM); (sd,  m)]. 0 
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6.0.15 Remark The representation V induces a map iv : BG + B o d .  Also. 

the principal G-bundle !il + .CI induces a map f : M -t BG. The condition in 

the above corollary that [ is a trivial vector bundle is the same as requiring that 

the composite i v  o f be nullhomotopic. For example, this is the case if V is a 

trivial representation ( i c r  is null) or if :il + iC I  is a trivial principal G-bundle (f is 

nullhomotopic). Corollary 6.0. L-I  is the first irdicat ion that by "nloddiug out" the  

action of G we can often replace a set of equivariant homotopy classes of maps 

by something more accessible. in this case a set of (nonequivariant) homotopy 

classes of maps. Essectially, 6.0.14 gives a condition under which the "twist" 

introduced by the action of G on .il cancels out the *'twist" introduced by the 

action of' G on S V .  This process of "modding out" the action of G will allow us 

to make explicit calculations of equivariant homotopy sets later (see chapter 9). 



Chapter 7 

Twisted Generalized Cohomology 

Theories 

The constructions that we have seen so far are all unstable. We will now see 

how Ofr can b e  stabilized to give a g*twisted cohomology theory". First we must 

say what the appropriate categories are. It turns out that it is more  convenient 

to define our twisted cohomology theories on a certain category of pairs. rather 

than to talk about "reduced twisted cohornology" theories. The basic reason is 

that given a pair of free C: spaces (-q. .i) there is no canonical way to collapse 

the subspace -4 to a single free G orbit. Equivalently, given a map f : .Y -t BG' 

and a subspace -4 of .Y. there is no canonical way to replace f by a map which 

sends il to a single point. 

7.0.16 Definition Let C W i G  be the full subcategory of TiG whose objects 

are triples ( X ,  -4; f )  where (S, -4) is a relative CW-complex. 



7.0.17 Definition Let (S. A; f) be an object in T&. The prism. I x ( X .  A: f ), 

over (.Y, -4; f )  is the object ( I  x .Y. I x -4; f o pr2). There are inclusions ij : 

(.Y. .4: f) -t 1 x (X, -4: f). j = 0.1, given by i o ( x )  := (0,s) and i&) := (1.x). 

Let hTiG and hCW& denote the resulting homoto~y categories. 

7.0.18 Remark Classically (see, for example. [21]) ordinary local cohomology 

is defined using a category L' (see chapter VI of [24]) which is related to T i c  

in the following way: Let .M be a discrete ZG-module and let (S. -4: f )  E 

Suppose that .i' + .Y is a principal C;-bundle which is classified by f. Then 

?;' xc .\I .I X is a bundle of abelian groups over S in the sense of [%I. Also. 

given d : (S. .-I; f) + (1: B: g) we get a commutative diagram 

where 4 is a map of free G-spaces. This induces a bundle map 

,Y - I' 
So &I induces a functor FFbI : TiG + L' 

We can now give the following: 

7.0.19 Definition A cohomology theory on hT& (or hCkV&) is a sequence 

of contravariant functors hn : hTiG -t Abelian groups satisfying the following 

axioms: 



0 Exactness: Given (X, -4; f )  we have an exact sequnce 

where S is a natural transformation. 

0 Excision: Let (-Y: A. B) be a triad with .Y = .4 LJ B and B - .-1 c int(B). 

Suppose f : ?C -t BG. Then we have an excision isomorphism 

induced by the inclusion 

0 coefficient homotopy invariance: Given a pair (S. -4). hn  (S. -4: - ) is a func- 

tor from the fundamental groupoicl I I l (map(S.  BC;)) to abelian groups and. 

if F is a homotopy between f l  and f2 then the  following diagram commutes 

F. denotes the homomorphism induced by the homotopy F. 

I shall refer to the map f : S -t BG as the "coefficient map". We may also 

require our cohomology theories to satisfy the following axiom: 

0 Additivity: Let -Y be a disjoint union of CW-complexes .Ye and, lor each 

a suppose that we have fa : ?i, + BG. Let f be the disjoint union of the 



fa. Let .-I be a subcomplex of .Y and let -4, = S, n .-I. Then the induced 

homomorphisms 

h n ( S .  -4; f) + hn(.Ya. A,: /) 

represent hn(.Y. A; f )  as a direct product. 

7.0.20 Remark The exactness. excision and additivity axioms in the above 

definition are fairly straightforward analogues of their untwisted counterparts. 

The coefficient homotopy invariance axiom has no untwisted counterpart. Roughly 

speaking, it is there to ensure that ha does not distinguish between objects 

( X .  -4: f,) and (X. -4: Jz) when f l  is homotopic to t2. 

7.0.21 Example Our first example will be of Fundamental importance for the 

rest of this thesis. Let Caw be a cl-dimensional representation of the group G. Let 

(.Yt .A: f) be an object in hT& and consider 

(Note that we have a sphere bundle EG X G  SV +- BG.) We think of this set 

as a twisted version of [(s. A ) ;  ( S d .  x)] . In order to get a cohornology theory 

we must stabilize this set. We do this as follows: Fix a relative homeomorphism 

( I. a[)  + (9. oo). Then, there is a canonical equivariant relative homeomorphism 



which collapses SV x d? U m x I to ca. We define the suspension map to be the 

following cornposi te: 

[(s. -4) x (I. 31); EG x c  ( s V G R .  

where prs  is the projection S x I + S. We can now define *$(S. -4: f) to be 

the direct limit of t he  following diagram: 

Note that if J  is a constant map, then &$'-(-Y7 A; J )  = un(.Y. .-I). the usual stable 

cohomotopy of (.Y, A).  

7.0.22 Remark it is worth pointing out the contrast between the stabiliza- 

tion procedure introduced here and the equivariant stabilization described in 

chapter 4. There, the set [ ( X ,  A); (Y, f3)lC was stabilized by suspending with 

respect to all representations of G. By contrast, the stabilization procedure de- 
G 

scibed above may be viewed as stabilizing the set (I, .A); (s', m)] , where -9 



is a free Gspace,  by suspending only with respect to the trivial representation. 

It might be possible to introduce a "twisted theory" which corresponds to stabi- 

lizing with respect to all representations of G, however it is not necessary for my 

purposes. It is also not clear yet if anything new would be gained in this way. 

7.0.23 Theorem stv is an additive cohomology theory on hCW& 

-V+k  Proof: First note that [(A', .-I) x (I, a[)', EG x c ( 3  . M ) ]  fopr, is a group for 

i = 1 and an abelian group for i 2 2. This is proved in exactly the same way as 

the classical untwisted case. So d:(.Y. -4; j )  is an abelian group. 

Exactness: Consider the sequence 

Clearly, this composition is 0. Conversely, suppose that f E rnap,(X. EG x c  

SV+k) and that f I.4 is homotopic to a map that sends -4 to EG x c  oc. By 2.1.3 

j' may be homotoped to a map which sends .I to EG x c  a;. Thus the above 

sequence is exact. Now, by taking direct limits we see that 

is exact. To construct 6 : wp(.4; f 14 + (3': -4; f )  we first make the following 

unstable construct ion. Let 

[@] E [A x (I,  81); EG x (sVf nddfl (=)I foprx 



So d : -4 x 31 + EG x~ co We can extend Q to a map 

by setting ( a ,  t )  = +(a .  t )  for ( c t , t )  E A x I and Z ( r . 0 )  = a, f(s) where a, : 

BG + EG X G  SV'n-dfl is the m-section of p : EG x c  SV+n-d+l _t BG. Now, 

p&r, t ) = j ( r )  For all ( T .  1 )  E S x (0) u -4 x I so by the fibrewise hornotopy exten- 

sion property of (X, -4: f) ( t heorem .2.1.3),3 extends to a map @ : .Y x I -t E G  x 

s'+"-~+ I .  Let u* := a(-: I ) .  Clearly, $ : (A'. .A)  i (EGX&"+"-~+~. E C X ~ O O ) .  

Also. p o &J = f o prs .  So [v] E [(X. .-I); EG xc  (Sv+n-df . oc)] loprX. Several 

choices were made in the construction of $, and we must show that the fibre- 

wise homotopy class [yl] is independent of these choices. For example. i f  we have 

two different maps cPl and Q2 which extend 5, then 0 1  and Q2 will be fibrewise 

homotopic with respect to the fibration EG x c  S '  -t BC and thus will lead 

to the same fibrewise homotopy class ($1. In this way. we see that [dl]  is indeed 

independent of the choices made in its construction. Thus we have constructed 

a map 

Now. by taking direct limits, we get the required map 



By construction 

[.Y x (I. 81); EG' xc (s '+~ 
* 5011 /oprl 

[.A x (I .  a [ ) ;  EG X G  (SVf" m)] IoPr, 

is exact. so taking direct limits yields the exactness of 

Excision: Let (S; .4. B) be a triad as in definition 7.0.19 and let f : .\' -+ BG. 

W e  need to find an inverse to the excision homomorphism 

Let 4 E mapjlop,, ( ( A .  .4 fl B )  x ( I ,  ill)" E E  x~ (s"+"-~+~ , x)) represent an 

element of 44.-1, -4 n B: f I A ) .  We can extend Q to E rnapllOp,, ((X, B) x 

( I .  81)" EEG xc (Sv+ "-"' .m)) by defining z(r. ( t  . . . t k ) )  := a,( f (z))  for 

x E X - .A. Then the assignment [#I ct is an inverse to the excision homo- 

morp hism. 

Coefficient homotopy invariance: Let F : I x .Y + BC; be a homotopy ol  f i  to 

f2 and let p1 : (X, 4) x (131)~ -t EG x c  (SV+n-Gk ? w ) represent an element of 

w;(X A; fi). F may be lifted to a homotopy 



- 
such that F(0. - )  = bI. Let d2 := F(1. -) and let Fa([$,]) := [&I. F. is 

well defined for if FI and F2 are two different lifts of F then they are fibrewise 

homotopic (see (171). T h u s  d2 is uniquely defined up  to fibrewise homotopy. 

Moreover, F. clearly satisfies the required nat urality properties. See lemma '2.0.8. 

Additivity: It is clear that the induced morphism 

[(X. -4) x (I. 31)" EEC; x (,p""-d+':  d l i  

n [(s,. .-I,) x ( I .  3 1 ) ~ :  EG x c  (Sv+ n-d+k 4 

is a bijection. ?low. take direct limits. 0 

The group &Y. .A: f) is a twisted version of the classical stable cohornotopy 

group w " X  -4). The *'twist" depends on two things: the action of the group on 

the representation I' and the nontriviality of the homotopy class of f : .Y -t BG. 

Our main motivation for introducing these twisted cohomotopy groups is to 

[ 
G 

provide some method of computing the sets ( 1 ) :  ( ) . So a natural 

[ 
G 

question to ask is: when is ( ! ~ I , & ~ I ) :  (SLr, m)]  S &$(hl. &V: f) ( d  = dim V ) .  

We can answer this question using the equivariant Freudenthal suspension theo- 

rem (see chapter I1 in [?I]). 

7.0.24 Theorem Let (?i': .i) be a relative free G CCV-complex of cellular 

dimension rn (i.e, dim(-q/~r' ,  .i/~;) = rn) and suppose that dim V = d. Then the 

suspension with respect to the trivial representat ion 

G G [ (x ,  A); IS', a)] -t [(sl. *) A (-t, _i); ( s ~ + ~ ,  m)]  

is an isomorphism if m < 2d - 1 and an epimorphism if m < 2d. 



Proof: This follows immediately from theorem 2.10 of chapter 2 of [21] 

Now, we can interpret the above theorem as a result about the fibrewise 

suspension maps described in the definition of wt (X, -4: f )  to get: 

7.0.25 Theorem Let (S. -4) be a C W  pair and let f : .Y -t BG. Suppose 

that dim(.\', -4)  = m and that V is a G representation of dimension J. Then 

[(.Y. .A): EG X G  (s'. rm)] + [(X, -4) x ( I ,  31); EG x c  (s'+ '. m)Ilopr 

is an isomorphism if m < 2d - L and an epimorphism i f  m < '2d. 

Proof: Let .v + S be the pullback of EG -t BG along f .  Then we have a 

commutative diagram 

The vertical arrows are isomorphisms by lemma 3.:1.7. The top arrow is an 

isomorphism by theorem 7.024 and the theorem follows. 0 

Thus, under conditions given by the above theorem, computations of w $ ( X  .A: f )  

give us computations of ( , ) ; ( S L . ) ] .  in the next section. we will develop [ 
a tool that will give us some computational handle on IL'$ (X. -4; f). 



Chapter 8 

The Atiyah-Hirzebruch spectral 

sequence for twisted cohomology 

theories 

Having introduced the concept of a twisted generalized cohornology theory. a nat- 

ural question to ask is whether or not we can develop an appropriate analogue 

of the classical Atiyah-Uirzebruch spectral sequence. By analogy wi th  the classi- 

cal situation, one would expect that such a spectral sequence would have the E2 

term isomorphic to twisted ordinary cohomology with coefficients in some twisted 

system whose underlying abelian group is the generalized cohomology of a point. 

This indeed turns out to be the case. Having this spectral sequence will allow us 

to reduce (in certain cases) computations of twisted stable cohomotopy groups 

to (easier) cornput at ions of twisted ordinary cohomology groups. 

Let ( X ,  A; f )  be an object in Tic  and let h be a cohomology theory on TiG 



as defined in chapter 7. For each integer q we can define a coefficient system. C;, 

on S as follows: Let L:(x) := h q ( t ;  c ~ ( ~ ) ) .  where cf(r) : * + BG sends * to f(r). 

A path Q : I -+ .Y induces a homotopy between c ~ ( . ( ~ ) )  and cf(,(l)) and thus rr 

induces a homomorphism a* : L:(ru(l)) -t LP/(a(O)) by the coefficient hornotopy 

invariance axiom. So L9, is a coefficient system on .Y. The main results of this 

section are the following two theorems. 

8.0.26 Theorem Let h be a cohornology theory on TiG.  Let (-&A) be a 

relative C W-complex and let f : .Y + BG. Then there is a cohomological spcct ral 

sequence E ( X .  .-I: j )  such that E;"(.Y. -4: f )  Z W(S.  -4: L;) where R is ordinary 

cohomology. If the spectral sequence converges then E(.Y. -4: f )  + hR(.Y. -4; f )  

8.0.27 Theorem Given a cellular map d : (.Y. A )  + (Y. B) of relative CW- 

complexes and a map g : Y + BG. 4 induces a morphism of spectral sequences 

Whenever the spectral sequences converge, then this morphism of spectral se- 

quences in turn induces the canonical homomorphism 

The rest of this section will be devoted to proving the two preceding theorems. So 

for the rest of this sect ion. (.Y. .-I) will be a relative C W-complex and / : .Y + BG 

a continuous map. 

8.1 Construction of the spectral sequence 



8.1.1 Lemma Let xk denote the k-skeleton of S. Then there is a long exact 

sequence 

Proof: This is a standard cohornology arguement using the long exact coho- 

mology sequences associated to (.Y\ -4: /). -4: f) and (Xk+l. X k :  f )  (see 

[24). 0 

Let 

The FPv% form a filtration of hP+"(.Y. -4: I ) .  Let 

We have an exact couple 

arising from the long exact sequences in lemma S.l.1. If -I' is finite dimen- 

sional, the filtration described above is a finite one. i.e F P v q  = 0 for p )> 0 and 

FP.9  = hP+Q(X. A; f )  for p < 0. SO the resulting spectral sequence converges to 

h' (X, A; f ). That is 

The proof of theorem 8.0.27 is now immediate. For, if d : (X, -4) -t (1: B) is 

a cellular map, then clearly induces a morphism of the corresponding exact 

couples and thus induces a morphism of the corresponding spectral sequences. 



Thus far, the development proceeds exactly as in the classical untwisted case 

(see PI 

8.2 Identification of the E2 term 

The construction of the spectral sequence parallels closely that of the classical 

untwisted case. The major difference arises in the identification of the E2 term. -4 

close examination of the untwisted case reveals that the crucial step in identifying 

the E2 term uses the following well known fact: 

8.2.1 Lemma Let f : SP -+ SP he any map. Then there is an integer dl ( the 

degree of j )  such that if h is - any generalized cohomology theory. then for all k 

is multiplication by dl 0 

What is important is that the degree of a map is a concept which is independent 

of any particular cohomology theory. 

Turning to the twisted case t h e  corresponding fact is given below (lemma 

8.2.5). First we prove some preliminary results. 

Throughout this section c: will denote the constant map a t  2 

8.2.2 Lemma For x E .Y let L(x) := hk(Sn, *; cf(,] j. Then L is a bundle of 

abelian groups (local coefficient system) over .Y 

Proof: Certainly. C ( x )  is an abelian group for each x E S. Given a path 

r : I -+ ?r' with r ( 0 )  = X I  and r ( 1 )  = xz: then f o r induces a homotopy 



from CJ(=~ to c~(,,). Thus. the coefficient homotopy invariance axiom gives us a 

corresponding homomorphism L ( x 2 )  + C ( x l ) .  0 

The next lemma is the twisted version of the suspension isomorphism. It shows 

that the coefficient system defined in the previous lemma depends only on the 

difference k - n. 

8.2.3 Lemma The coefficient systems 

are canonically isomorphic 

Proof: Let x E .Y. The isomorphism Ll(x) C 2 ( x )  is the following composite: 

Note that since all the coefficient maps are constant maps, we are dealing with un- 

twisted cohornology here. q : (Dn+l: Sn) is the quotient map. 5 is the connecting 

homomorphism of the long exact sequence of the pair ( D n + l ,  Sn). i : Sn + (Sn, *) 

is the inclusion. .All the  maps in the above diagram commute with homotopies 



of the coefficient maps by the coefficient hornotopy invariance axiom of defintion 

7.0.191 hence. to prove the lemma. it suffices to show that y is a well defined 

isomorphism. Consider the following commutative diagram (the coefficient maps 

are suppressed): 

The horizontal row is part of the long exact sequence of the pair (Sn. *) and the 

vertical column is part of the long exact sequence of the pair ( D W  S n ) .  j=  is an 

isomorphism. since it is induced by the homotopy equivalence * + Dn+l.  NOW, 

it is a straightforward diagram chase to show that y is an isomorphism. El 

8.2.4 Lemma Let f : DP -+ BG. Then there are canonical isomorphisms 

and 

Proof: This follows immediately From the coefficient homotopy invariance axiom 

and the fact that 0 E DP is a deformation retract of DP. 0 

Now, we come to the key lemma of this section. 

8.2.5 Lemma Let 



and 

be characteristic maps for a pcell and a (p  + +cell respectively. Let x, := l , (O)  

and let so := l 5 ( 0 ) .  Let 

Then, there exist paths ri : I -t .Y for i = 1.. . . .d  with r i ( 0 )  = X J  and r;(l)  = x, 

and signs c; = f l such that t h e  following diagram commutes (in this diagram 

the unlabelled isomorp hisrns come from lemma S.2.4) : 

I *  Id* 
hP fq (  DP. . j 'P-l:  / o I,) & h p + q ( . Y ~ .  SZ-': f) + hP+'I(SP: f o i d / )  r 

where d is defined as follows. Let L; = h'(*; cl(-)) as in lemma 8.2.2. Then 
d 

i= 1 

The proof of this lemma is deferred till later. For now it suffices to understand 

its significance. The top row of the diagram in lemma 8.2.5 is a homomorphism 

that (for our purposes) will arise in two different contexts - the differential of the 

spectral sequence and the differential of the cellular cochain complex of S with 

coefficients in a certain local coefficient system. The lemma characterizes these 



homomorphisms in terms of intrinsic properties of the attaching maps (namely 

the paths ri) and the coefficient system L;. Thus, if the two different situations 

mentioned above give rise to the same coefficient system. then the corresponding 

homomorphisms are the same. 

Now: we will see how lemma S.1.5 allows us to identify the E2 term of the 

twisted Atiyah-Rirzebrucll spectral sequence. The differential d l  is t h e  following 

composite 

Let :Ik be an indexing set for the set of k-cells of S. Then we have isomorphisms 

and 

Thus, to identify the differential d l .  we need to identify the composite homomor- 

phism 

11 h p + q ( D p ,  PL; f 0 I,) 



for each pair (ao,po) E A, x This suffices since there are only finitely 

many celis in each dimension (See remark 8.2.6 below). Consider the following 

commutative diagram 

The arrows marked 8.2.1 are isomorphisms by lemma S.2.4. The region marked 

A commutes by lemma 8.2.5. Also. the composite marked is an isomorphism 

(this is a simple exercise in  untwisted cohornology theory). Thus we have a 

cornmutat ive diagram 

The arrow marked hl is the inclusion of one of the factors into a direct product 

and the arrow marked h2 is the projection from a direct product onto one of the 



factors. 

Now we apply a similar analysis to ordinary cohomology with coefficients in 

the bundle of abelian groups L;. Recall that L : ( x )  := hq(*: cl(,)). Recall (see, 

for example [%I) that the cellular cochain comples of .Y wi th  coefficients in t is 

the top row if the following commutative diagram: 

In order to identify the differential 8 we use a similar argument to t h e  one 

used to identify the differential d l  of the spectral sequence. One takes the di- 

agram from the previous page and replaces every ocurrence of h~+q( - .  -: f )  with 

W(- .  -: L;). The resulting diagram is, once again. commutative by lemma 8.2.5 

and therefore for each pair (a. J) E A, x !\p+l we have a commutative diagram 

where the arrow marked h l  is the inclusion of one of the factors into a direct 

product and the arrow marked h2 is the projection from a direct product onto 

one of the factors. Thus we have identified the differential dl ,  of the spectral 

sequence, with the differential a of the cellular cochain complex. Subject to the 

proof of lemma Y.2.5t this completes the proof of theorem 8.026. 



8.2.6 Remark I make the assumption that ?( is compact. since that  is the 

only case that in which I a m  interested. However. it may be possible to  obtain 

useful information fron the spectral sequence for more general spaces if one makes 

a more detailed study of the convergence issues. See [23] for a much more detailed 

discussion of these issues. 



8.3 Proof of lemma 8.2.5 

When reading this proof. one should bear in mind the analogy wi th  the degree of 

a map SP -+ SP in the untwisted situation. It would probably help the reader to 

review the proof of lemma 8.2.1. The prooF of lemma 8.2.5 uses the same ideas, 

however, we have the added complication of keeping track of all local data via 

the coefficient system L;. Now for the details. 

We may assume that x, is in general position with respect. to lBlsP Thus 

.-\Is0 there is a disc neighbourhoocl C.. of x, in S P  and disjoint disc neighbour- 

hoods U1, . . . . Lfd of yl, . . . . yd respectively. in SP such that lJI : U, -+ I.' is a 

homeomorphism. Let d q r  : DP -+ b' and $, : L I P  + I! be charts. Also. we may 

choose * the  basepoint of SP SO that * 1 l w i  

Fix orientations on DP and DP+'. The orientation on DP+' determines one on 

SP with  respect to the inward normal vector. Let 

be an orientation preserving relative homeomorphism. Let Fi : I -t Dp+' be a 

path such that r'i(0) = O and F i ( l )  = yi .  Let ri : I -t S be defined by 



Now consider the following commutative diagram of maps: 

In cohomology this induces the top part of the Following diagram: 

- 
4 is defined by the commutativity of the above diagram. Let 

where 



is the inclusion of the j t h  factor in the direct product. To prove the lemma, it 

suffices to show that the following diagram commutes: 

This follows from the commutativity of the following diagram: 

The unlabelled arrows are induced by the canonical inclusions. 

This completes the proof of lemma 8.2.5 and thus completes the proof of 

theorem 8.0.26. 



Chapter 9 

Computations and examples 

Throughout this chapter. '?dm(-: L) will mean ordinary singular homology with 

coefficients in L. I shall use the same notation as 1211 to describe singular sim- 

plices, chains, cycles etc. 

9.0.1 Theorem Let d r .  be twisted stable cohomotopy as defined in chapter 

7. Let ( X .  -1) be a CW-pair with relative dimension m and let f : S -t BG. 

Then there is an exact. sequence 

where d2 is the differential of the htiyah-Hirzebruch spectral sequence (theorem 

Y J.26) 

Proof: The E2 term of the Atiyah-Airzebruch spectral sequence for d&Y. A; f )  

is given by EiVq N= Rp+q (X, A; L;). NOW, for p > m + I, 3 i p f  q ( X ,  A; L.7) = 0 since 

dim(S, -4) = rn. Also, note that the underlying abelian group of the twisted 

coefficent system L; is the classical stable cohomotopy group a(?(*). Thus, for 



q 2 1, L; = 0 since UP(*) = 0 for q 2 1. The result now follorvs from standard 

spectral sequence arguements. 0 

Note that the coefficient system L;' has undelying abelian group d(*) 2 2 1 2  

and is therefore always a trivial system. Also t: has underlying group wU(*) S Z. 

Thus COf is determined by homomorphisms a l (Xi)  -t 2 1 2  Aut(Z) where the 

X,'s are the collriected cornporients of S. 

We will now specialize to the case (X. -4) = (M. 2)M) where !I1 is a connected 

rn-dimensional compact manifold with boundary a!\!. In this case. we can use 

a version of PoincarC duality to make explicit computations of the cohomology 

groups in theorem 9.0.1. -4 first result is: 

9.0.2 Theorem Under these hypothesis there is an exact sequence 

1 2 1 2  

by PoincarP duality. Now apply theorem 9.0.1. 

Now I will examine. in more detail. the homomorphism 

which occurs in the above exact sequence. The following lemma essentially says 

that the image of i corresponds to the nonequivariant stable 1-stem of spheres. 

9.0.3 Lemma Let U be an open disc neighbourhood in the manifold M .  Then 



Proof: Let h : ( Bm? Sm-') + (!GI, M - U )  be a relative homeomorphism. By 

the excision axiom 

is an isomorphism. Now Bm is contractible. so f o h 1. c where c : B'" + BC: is 

a const,ant map. Thus 

Mow. recall that by theorem 7.0.25, if m > 3. 

dF-L(Bm. Sm-l: f o h )  [(Elm, srn-'): E G  x c  (SV. m)I jeh 

S fir-' ( Bm. Sm-': h m ( { ) )  

where ( is the vector bundle $.. x c  C' + .CI. Since h' ([ )  is a trivial vector bun- 

dle. elements of fig-'( Bm. Sm-': h ' ( ( ) )  are represented by framed 1-dimensional 

submanifolds of Bm and it is well known that the two distinct elements of 

Qc-'( B ~ .  Sm-l: h m ( t ) )  correspond to the two different hornotopy classes of fram- 

i n g ~  of the trivial rank n - 1 vector bundle over S'. In this way, we can explicitly 

realize the elements of !\I, M - U;  f ) .  

9.0.4 Lemma The homomorphism i factors in the Following way: 

where j : (!Cl,t3&1) -t (M, M - U) is the inclusion. 



Proof: This follows from theorem S ,027 (naturality of the exact sequences). 

Thus, when m > 3: we have an explicit realizations of the image under i of the 

nontrivial element of Z/2 as follotvs: Let 1 : Rm + M be a chart for !\I. Let 
- 
!V := {(cos t,sin 1.0) E Rm;O 5 t < 2 x 1 .  Let N := l(m). Now. 1 ' ( { )  is a trivial 

vector bundle over Rm. Fix a trivialisation ti of this bundle. The nontrivial 

framing of the normal bundle of in Rm induces, via $7 and I .  an isomorphism 

vikl(:V) 2 clN. Call this isomorphism b. Then [ (N, d)] is the required element of 

q - l (  Lv. M :  0. 

9.0.5 Lemma The element. [(X o)], which we have just constructed. is a 

nontrivial element of Rr-L( . l l .  i )M:  5). 

Proof: Suppose that (N ,  o) is bordant to the empty submanifold via a bordism 

(CV, O) where CV is a 2-dimensional submanifold of LLI x I and 9 is a twisted 

framing of the normal bundle. This leads to the following situation: There is 

a %dimensional manifold LC' with boundary 8CV = S L ,  a vector bundle q over 

CV of rank m - L and a vector bundle automorphism O : q + q such that the 

following hold. r1law is a trivial bundle over BCV E S1 and elaw is a homotopically 

nontrivial automorphism of this trivial bundle. CV is homotopy equivalent to a 

wedge of circles, thus q @ q  is a trivial bundle of rank 2m - 2 over CV. 8@ Id, is an 

automorphism of q@q which restricts to a homotopically nontrival automorphisrn 

of the trivial bundle 7 @ qlarv. Autornorphisms of trivial bundles correspond to 

maps from the base space into GL(Rk). So we have a map B' : CV -t GL(RZmd2) 



such that 

81 : sL = BW -t GL(R~"-*) 

represents the nontrivial element of T~(GL(R'"-*))  272. I claim that such a 8 

cannot exist. To see this, let T : CV -+ S L v  +S1 be a homotopy equivalence. It is 

clear (from the classification of '?-dimensional manifolds) that if  pi : SL v - V  SL + 
S' is the  projection onto the ith wedge summand, then the composite 

has even degree for all i. The claim follows easily from this. This completes t he  

proof of lemma 9.0.5. 0 

9.0.6 Corollary [f m 13 then there is a short exact sequence 

Proof: Lemma 9.0.3 irnpies that the map Z/2 -t dr-l(ill. &CI: f )  is injective. 

The result follows from theorem 9.0.2. 0 

To compute the groups R"!CI. 3M:  C:) we can use PoincarC duality for (pos- 

sibly) nonorientable manifolds. Let O denote the orientation bundle on .LI. That 

is, 

@(x) := H, (M. .\I - { x ) :  Z) 

Note that 

Let a be any generator of H,(M, iII.( - {t): Z) and let Z, := a a. Now we have 

the following duality theorem: 



9.0.7 Theorem (PoincarC Duality) There is a canonical class 

1 € ?im (M. &\I; @ )  

characterized as follows: For each x E !CI the induced homomorphism 

Nm(A17 l?M; 0) + R,,,(M, M - {x}; 0) 

sends Z Z,. Moreover. 

and there is an  isomorphism 

. n ~ :  R ~ - ~ ( M . ~ . ~ ; . L )  + .tr,(.cr:r 3 0) .  

C 8 O is the  coefficient system given by 

(L 3 O ) ( x )  := L(x) 3 O ( s ) .  

9.0.8 Corollary There is a short exact sequence 

0 + Z / ~ ~ L C ' ; ~ - ~ ( ; W ~ & C I :  f )  -i?iL(M..I.!Cr;q o) -0 

0 

Now we turn to the question of computing ?lL(M. d M ;  Ly @ O). We have the 

following result concerning R&Y; L). (It is a generalization of the Hurewicz 

theorem concerning HI (X; Z) ) 

9.0.9 Theorem Let .Y be a connected CW-complex with basepoint 20 and 

let L be a local coefficient system on X whose underlying abelian group is Z. 



Then C is determined by a homomorphism ;rl(?C,xo) -t 212 Z Aut(L(ro)). Let 

IiL be the kernel of this homomorphism. If we choose a generator, a ,  of L(xo) 

then there is a corresponding surjective homomorphism 

, : I --+ R 1 ( X ; L )  

[ u ]  H [a.u] 

where u : (Al.BAl) + (.Y,xo) represents an element of IG < R~(S.X~) .  The 

kernel of this homomorphism is [ K L .  Kc] .  

Proof: (Sketch) According to [%I. t he  chain complex of singular simplices with 

coefficents in C is chain homotopy equivalent to the chain complex of singular 

simplices which send all O-simplices to so (again with coefficients in C). So in 

computing 31, we may restrict our attention to the latter chain complex. In this 

setting is quite clear, that if tc : (Al.  i)&) -t (.Y. ro) is a singular 1-simplex. then 

u is a cycle if and only if u representa an element of a@. ro) which is contained 

in lh. Thus one has an epirnorphism 

One checks. as in the proof of the classical Hurewicz theorem (see [24]) that the 

kernel of this epimorphism is [Kc ,  &I. CI 

9.0.10 Corollary Rl(?r': L) = ~2~ 

9.0.11 Corollary In the notation of theorem 9.0.9 there is an exact sequence 



&oBe is often relatively straightforward to compute. so corollary 9.0.11 gives us 
f 

useful information about dm-' ( M y  &Cl; f ). In particular, i t  tells us the order of 

W ~ - ~ ( M ,  a ~ ;  f ). 

We have already analyzed the geometry underlying the homomorphism 

in lemma 9.0.3. We would also like to understand 

in more detail. First consider the coefficient system L> Let Cv denote the bundle 

of abelian groups .if x c  [sd. sV] -t .\I ( [s? s'] is a G-module via the action of 

C on C"). Clearly. CI. 2 Ly. We will assume for the moment. that we are in the 

stable situation. that is 

(We only make this assumption to avoid having to keep mentioning (I.al)%-~ 

what  follows.) Let [ N ,  41 E O r - '  (.\I,8!\1; f). We can construct the corresponding 

element of RI  (ill; Lv O O) as follows: Clearly, we can reduce to the case ;V SL. 

Let u : Al + iV be a singular simplex representing a generator of H1(!V; Z). We 

can choose u so that it is a diffeomorphism relative to the boundary of Al. This 

choice of u determines an orientation of TIV. Now 9 : v&V) -t (iv x c  I.' -t N )  

is a bundle isomorphism. Choose an orientation of v,( , , ) (N).  Then 6 determines 

a corresponding orientation of the fibre of iV x c  V over u(eo) .  In turn, this 

determines a generator, av, of Lr*( u(eo) ) .  The aforementioned orientations of 



Uu(,eo) ( N )  and TU(,, X toget her determine a generator, a@ of O( u ( e o ) ) .  

is the required homology class. There were various choices of orient at ion made in 

the definition of av and a@:  however. it is easy to show that the homology class 

[av 8 aa.u] is independent of these choices. For example. if we change the choice 

of orientation of v , ( , , ~ (X )~  then this will introduce a -1 into a@, but also into 

av, and the resulting homology class remains unchanged. 

Throughout this section. let I I  be a fixed complete Euniverse. By Crepresentation. 

we will mean %'-invariant finite dimensional linear subspace olLi1. For any C;- 

representation I..? .-lr will denote the subspace of S' consisting of nonfree orbits. 

n = dimG 

Let G be a compact Lie group. Let textad(G) be the adjoint representation 

of G. It is possible. as pointed out in [I41 to calculate Lf+:,, ( E C F )  abstractly 

as follows: According to [ill i$ , (EGf)  in+l(EC:+ AG Sad(')). Applying 

the classical .4tiyah-Hirzebruch spectral sequence. we find that there is an exact 

sequence 

To calculate Hn+I(EGf A c  Sad(G); Z) we can apply the Serre spectral sequence 

to the relative fibration EG x c  (S"s(G), cu) + BG to get 



in the notation of the previous section. Thus, we obtain a short exact sequence 

Now, recall from chapter 1 that 

In this section we will use the techniques that we have developed to compute 

and so recover the computation of Lf+:,, (EG+).  The advantage of this method is 

that it gives insight into the geometry of the maps which represent elements of 

Since. we already have a rigorous computation of this group. I will attempt 

to emphasize the essential geometry in the arguments that follow. I feel that 

presenting all the details of the cobordism arguments would obscure the essence 

of the geometry. So the arguments may seem a little sketchy. I refer the reader 

to Iiosinski's excellent book ([lo]) for details of some of the framed cobordism 

arguments. Even though he does not consider twisted framed cobordism, the 

arguments that he gives can be generalized to our situation. 

For the proof of the following lemma, see lemma 2.1 in (1.11 

9.1.1 Lemma If U is a G-representation of dimension k such that subspace 

of free orbits, U - AU, is nonempty, then there is a compact k-dimensional G- 

subrnanifold of U - -Aw with boundary &@, such that .Aw is a Gdeformation 

retract of sLr - 1%. Thus, in particular? there is a canonical isomorphism 



Let h(rr := &/c: 

9.1.2 Theorem Let V be a C-representation of dimension d 2 3. Suppose 

that V has at least one free orbit. Then there is a short exact sequence 

o--tZ/?+ [ ( s ~ + ~ + ' .  -4~'+n+L): ( sV,  m)] G * ~ l ( i ~ ~ ; ~ v  0 0) -+0 

n = dimC;. :GI := :I.b+,+l is the submanifold of (SVfnfL - -4v+n+1),/G whose 

existence is asserted by lemma 9.1.1 and O is the  orientation bundle on :I~V+,+~. 

Proof: Clearly. !if is a n  orientable G-manifold of dimension n + d + 1 with d 2 3. 

So. we are already in the stable range. and 

where LC':, is twisted cohomotopy with respect to the Chepresentation V .  and 

f : M -+ BG' classifies .it -t ;\I. Now. dirn:l.l = d + I.  so applying corollary 

9.0.8 we obtain a short exact sequence 

B U ~  LO, a &. 0 

Now. we know that if I.' is a representation with at least one free G-orbit. 

then the free part of CI 3 V is connected (see [Id]).  Moreover, C: acts orientably 

on I/' $ V .  Thus, the set of representations on which G acts orientably and for 

which the free part is connected is cofinal in the set of all representations. We 

shall assume henceforth that any representat ion has these two properties. 
- - 

Now, as above, let iCI := iC1v+,+l and let M = : C ~ / G .  Our assumption on 

the orientability of the G-action on V implies that Cv 1 Z (the trivial coefficient 



system over M). Thus we have an exact sequence 

The homotopy exact sequence associated to the fibration &l + &I terminates as 

Let HQ := d(&) .  So we have a sequence 

which is not necessarily exact but  does have the property that qi = 0. Now. we 

have the following lemma whose proof can be found (implicitly) in [HI. 

9.1.3 Lemma Suppose that G acts orientably on V. Let a : (Al ,  anl) + 
(il.1, mo) be a loop in which preserves orientation. Then a lifts to a path 

& : Al  -t and &(el)  = g.8(eo) for some g E C such that g acts orientably on 



9.1.4 Corollary 

Now, we would like to show that the sequence 

is *'equivariantly stably esact" in the following sense: If q ( [ / ] )  = 0. then there is 

a representation CV such that [ j  A s"] is in the image of 

That would be sufficient to recover the calculation of G:, ( E C F )  that was given 

at the start of this section. Let 

[j] E [(sVtn+l --l~+n+t ); (sVV m)] G 

and let [ N ,  #] be the corresponding element of R z - l ( M t  a M ;  C). It can be shown 

([lo]) that we may assume that N is connected. In order to show that [f] is in 

the image of 

i : ZJ2- t  [ ( S ~ + " ~ ~ ~ . ~ V + ~ + ~ ) ; ( S ~ , O O ) ] ~  



it suffices to show that the inclusion !V i 11.I is nullhomotopic. For then, !V + .\I 

may be isotoped to an inclusion !V -t :\I whose image is entirely contained within 

a chart neighbourhood of iC1. Let xo E :V If a : (1,BI) -t ( N ,  s o )  is a relative 

homeomorphism. then cr Lifts to a map ir : I -t :if and & ( I )  = g.&(O) for some g 

such that gGo E h;d(Cl]. By corollary 3.2.6 there is a section a : :V + 
over S of the principal G-bundle :<I + M. It is possible that the inclusion 

a : IV + 1 I - i  is not nullhomotopic, however. $1 x C' u C.' x :if is contained in the 

free part of SV3' and the inclusion (a, 0) : ?i + x I.. u E- x .if. r H (a(x), 0) 

certainly is nullhomotopic. Thus f A SV is in the image of [ -  I 

9.2 Some interesting (unanswered) questions 

The next obvious step would be a n  analagous computation of the geometric 2- 

stem. Since '-manifolds are well understood, this should be feasible. 

.A more difficult question is the following: Using the methods developed in 

this thesis, we can characterize G-equivariant maps 

that represent nontrivial elements of 3 f ( E G + )  for k = n. n + 1. Under what 

conditions do these maps remain stably essential when we restrict symmetry to 

a subgroup H of G?  That is, what maps are in the kernel of the restriction map 



In fact, this question was part of the original problem suggested to the author. 

An analagous problem in equivariant li-theory has been studied in [13]. For 

equivariant stable homotopy it is possible to deduce some basic results from 

earlier work (see [25] or [I]) .  However, i t  appears to be quite difficult to obtain 

substantial results in this direction. 

-4s pointed o u t  in the  introduction, lrrnnia 3.3.5 underpins the connection 

between fibrewise homotopy theory and equivariant homotopy theory. From that 

point of view, it would be interesting to know to what extent the homeomorphism 

is natural with repect to homotopies of the map f : 6 + BG. Note that by the 

homotopy classification of principal Cbundles, horntopic maps B + BG induce 

isomorphic principal G-bundles. However. a specific homotopy does not induce a 

specific isomorphism of principal G-bundles. 



Bibliography 

[l] M.F. Atiyah and L. Smith, Compact Lie Groups and the Stable Homotopy Groups 

of Spheres. Topology 13 ( 197-I), l35- 1-12, 

p2] G. E. Bredon, Introduction to Compact Transformation Groups. -4cademic Press, 

Orlando, 197'2. 

[3] , Topology and Geometry, Graduate Texts in Lhhernatics. Springer. New 

York, 1993. 

[4] S. Costenoble and S. Waner, G- Trunsuersality revisited. Proceedings of the bIath- 

ematical Society 116 ( lgg'L), t5315-.546. 

[5] bI. Crabb and I. dames, Fibrewise Homotopy Theory, Springer Monographs in 

Mathematics, Springer, 1998. 

[6] J.F. Davis and W. Liick, Spaces ooer a Category and Assembly Maps in Isomor- 

phism Conjectures in li-theory and L-theory, K-Theory 15 (1998), 201-252. 

[i] J. DieudonnB, Treatise on -4 nalysis, Academic Press, 1972. 

[B] D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics, Springer, New 

York, 1994. 



[9] S.O. Kochman, Bordism. Stable Homotopy and Adarns Spectral Sequences, Amer- 

ican Mathematical Society, Providence, RI, 1996. 

[lo] A. Kosinski, Diflerential il.lani/olds, Pure and Applied illathematics, Academic 

Press, 1993. 

[ll] J.P. May L.G. Lewis and M. Steinberger (with contributions by J.E. McClure), 

Equiuariant Stable Homotopy Theory, Springer Lecture Notes in Mathematics. vol. 

1'213, Springer. 1986. 

[12] J .  P. May, Equivariant Homotopy and Cohornology Theory, Regional Conference 

Series in  Mat hematics, Published for the Conference Board of the Mat hematical 

Sciences, Washington. DC: by the American hIathernatical Society, Providence. 

RI, 1996. 

[13] J . E. hIcClure, Restriction Maps in Equivarinnt li-theory, Topology 25 (1986). 

399-409. 

[14] G .  Peschke. Degree of Certain Equiuariant :\laps into a Representation Sphere, 

Topology and its applications 59 (1994), 137-156. 

[15] L.S. Pontryagin, Smooth .Clanilolds and their .-lyplications in Homotopy Theory, 

Trudy Mat. Inst. im Steklov (1955). no. 45. (.-\XIS translations, series 2, vol. 11, 

1959). 

[16] 0. 8. Segal, Equiuariant Stable Hornotopy Theory, Actes Congr. tnternat. Math. 

2 (1970), 59-63. 

[IT] E. H. Spanier, Algebraic Topology, Springer Verlag, 1966. 

[la] A. Strom, -4 Note on Cofibmtions, Mathematics Scandinavica 19 (N66), 11-14 



[I91 R. Thorn, Quelques Propriel& Globales des Van'6tG Diflerentiables, Comm. Math. 

Helv. 28 (1958), 17-86. 

[20] T. tom Dieck. Orbittypen und .4quivariante Homologie, Arch. Math 26 (1975), 

650-662. 

['XI , Transformation Groups, de C h y t e r ,  Berlin, 1987. 

[22] A.G. Wasserman. Equicariant Dij'erential Topology, Topology 8 ( l969), 128-144. 

[23] C.  Weibel. .An Introduction to Homological .Algebra, Cambridge Studies in .Ad- 

vanced LIathematics. 38. Cambridge LTniversity Press. 1994. 

[21] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, 

Springer, Berlin, 1978. 

[25] li. Wirt  hmiiller. Equioariant flomologg and Duality, hIanuscripta Math 11 (197-I), 

373-390. 




