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Abstract 

This work presents high-order. arbitrary-band delta-sigma oscillators. They are a 

class of digital circuits which. augmented with a minimum of analog circuitry requiring no 

trimming. genente fully programmable. high-quality analop sinusoidal signals. A general- 

ization of previous work, they c m  meet arbitrary signal-band and SNR specifications at a 

minimum digital hardware cost. and without the previously reponed stability problems. It 

is shown that multitone generation requires but simple modifications to the basic oscillator 

topology; this signal generation scheme is thus highly attractive for endowing mixed-sig- 

na1 integrated circuits and systerns with self-test capabilities. Delta-sigma oscillators can 

be useful in other applications as well. 

An essential building block of delta-sigma oscillntors is a one-bit digital delta- 

sigma rnodulator with unity Signal-Transfer-Function. A cornplete. computer-aided design 

method. relying on a novel high-order rnodulator topology allowing the use of power-of- 

two coefficients. is forrnulated and justified. Although the resulting modulators are aimed 

specificaily at usage in delta-sigma oscillators. they can find applications in oversampled 

DIA conversion in general as they require a minimal amount of digital hardware. 

DSMOD is the cornputer-aided design tool which waï developed to automate the 

design. simulation and prototyping processes. It implements a numbrr of involved design 

algorithms. and allows for a quick cornparison of theoretical. simulated and prototype 

behavior. with the use of a graphical user interface. It is written mostly for MATLAB and 

is thus highly portable and expandable. 

The measurements performed on prototypes prove the soundness. Hexibility and 

efficiency of DSMOD. They also prove that low hardware cost and high performance lev- 

els are attainable with the novel delta-sigma modulator and oscillator topologies presented 

here. 



Résumé 

Cette thèse présente des oscillateurs delta-sigma de haut ordre et à bande de 

fréquence arbitraire. II s'agit d'une classe de circuits numériques, utiles pour la génération 

d'ondes analogiques sinusoidaies. entièrement programmables et de haute qualité. En tant 

que généralisations d'un circuit proposé antérieurement. ils permettent de satisfaire des 

spécifications arbitraires de la fréquence et du rapport signal-bruit des ondes générées. et 

ce à un coût minimal et sans problèmes de stabilité. Il est aussi démontré que la génération 

simultanée de multiples ondes sinusoidaies ne requiert que de simples modifications à la 

configuration de base de l'oscillateur. Ce mode de génération de signal est donc très 

attrayant pour douer des circuits ou systèmes analogiques-numériques de la capacité 

d'autotest. Les oscillateurs delta-sigma peuvent aussi trouver une utilité dans d'autres 

applications. 

Une composante essentielle d'un oscillateur delta-sigma est un modulateur delta- 

sigma ii sortie 1 bit et dont la fonction de transfert du signal est unitaire. Une méthode de 

conception de ces circuits complète et informatisée est présentée. Elle est basée sur une 

nouvelle topologie utilisant des coefficients Cgaux à des puissances de deux. Bien qu'elle 

vise tout particulièrement 1' application aux oscillateurs delta-sigma. cette méthode est 

jugée utile pour la conceprian de tout système de conversion numérique à analogique 

suréchantillonée. 

DSMOD est l'outil de conception assistée par ordinateur développé afin d'automa- 

tiser cette méthode et d'évaluer ses résultais par des simulations et des prototypes. Ce 

logiciel est Çcrit pour MATLAB et est donc fxilement portable et augmentable. 

Les expériences réalisées sur des prototypes d'oscillateurs et de modulateurs prou- 

vent la validité et I'efficacité des méthodes présentées dans cette thèse. Elles démontrent 

aussi les hauts niveaux de performance rendus possibles par les nouveaux circuits pro- 

posés. 
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Chapter 1 

Introduction 

1.1 Self-Testable Mixed-Signal Systems 

A substantial portion of the cost of manufacturing elcctronic circuits and systems 

is taken up by testing. The fundamental reason is that integrated-circuit fabrication exhib- 

its significant random device puameter variations and as a result the working circuits 

must be sorted from the bad ones based on some test. In addition. testing is capital-inten- 

sive. as opposed to design which is almost purely knowledge-intensive. Finally. part of the 

product value resides in the confidence that the customer places in it. which a manufac- 

turer c m  not guarantee solely by good design practices but necessarily also by testing. 

Testing may be done on a system's components at each fabrication step and 

throughout its entire life-time. However the amount of testing done at each stage of the 

system's life depends on economic issues and cannot be worked out as a general rule. 

Another testing issue regards which tests are to be performed by external devices. and 

which are to be part of self-test schemes. There are many factors pushing manufacturers to 

adopt self-test strategies for their products. One is that external testers are extremely 

expensive. and that the circuits must be tested sequentially. so that the test duration has a 

significant impact on the cost of a circuit. Self-testablç circuits need only be powered-up 

and instructed to self-test and to report the result. which requires a fraction of the cüpitai 

immobilized in a full-fledged tester. Another factor is the need for system-level diagnostic 

tests for servicing installed equipment. Finding the fiailcd component in a complex system 

is costly if an operator or technician is assigned to the job. Components which signal the 

host system when they no longer meet specifications thus reduce maintenance costs (the 
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trade-off bcing increased component complexity and cost). Yet another motivation for 

self-testability is the technical difficulty of bringing signals in and out of the drvice under 

test over a significant length of connector (a few feet). especially at high frequencies (for 

instance at the 1 GHz range used in wireless communications). a problem which is not as 

acute in a self-test scheme. The proper way to view built-in self-test is as an investment in 

hardware. or even a reuse of existing hardware. which retums profits whenever the device 

or system must be tested. 

Requirenents for self-testability should thus be incorporated in the system specifi- 

cations so ri'; to reflect choices made according to the economics of development. fabrica- 

tion and maintenance of its components. and also according to the Irvel of confidence in 

the Anal product required by the consumer. Such issues have been dealt with for a variety 

of purely digital circuits such as mernories and microprocessors. and digital Built-In-Self- 

Test ( B  IST) is now widespread [ 1 1. The same can not be said of mixed-signai circuits and 

systems (i.e. containting both digital and analog circuits). rnainly because analog self-test 

remains a technical challenge. 

Mixed-signal circuits play an increasingly important role in the microelectronics 

industry. In an overwhelming number of applications. electronic systems are designcd to 

accept analog electric signals generatrd by sensors k g .  microphones. light detectors. 

acce le rat ion detectors. receiving antennas). or to provide analog outputs to "actuators" 

( c g .  speakers. displays. electric motors. transmission antennas). or both. Although they 

interface with analog signais. much of the processin_o needcd in such systerns is performed 

by digital circuits (hence the name of ~~tirrd-s<qmil systems) which o f i r  more reliability. 

precision and insensitivity to manu~~cturing variations than their rinalog counterparts. in  

some cases the analog components may be reduced to as littlr as analog-to-digi ta1 and dig- 

ital-to-analog converters ( ADC's and DAC'S) but some analog circuit. will always be 

required. 

The fundamental hurdle in testing the functionality of a mixed-signal system is 

that i t  involves generating or reading analog signals. üccording to a scheme which exposes 

the devices not meeting specifications. The researcher's role is then to devrlop design 

principles and paradigms for self-testability. applied to mixed-signal systems. and to 

expose the design trade-offs which are involved so that engineers have tools enabling 
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them to meet the self-testability specifications. Any proposai for endowing mixed-signal 

circuits with self-testing capability will be doubly attractive if it integrates into the exist- 

ing digital BIST schemes and reuses existing digital hardware. 

A number of such principles have been proposed recently. such as the Mixed-Ana- 

log-Digital Built-In-Self-Test (MADBIST) scheme [2)[3] .  and more are being drveloped. 

0 test- such as the IEEE 1149.4 standard [4J which defines a chip- and system-level analo, 

bus. The present work deals with one cornponent of the iMADBIST scheme. narnely the 

analog sinewave source. in an attempt to generalize and improve previous work done in 

that field [51[61[7][8] and to automate the design of this crucial circuit in the emeging 

ruea of mixed-signal self-test. This work also makes possible the use of high-quality on- 

chip signal sources in other. unforeseen applications. 

1.2 Literature Review on Analog Sinewave Generation 

One key principle of the MADBIST is that the analog source is a mostly digital 

circuit and can thus be tested by a standard digital BIST before it is used to excite the 

mixed-signal and analog circuits under test. The literature on analog signal generation is 

reviewed next. in light of this particular requirement. 

1.2.1 Analog Resonators 

Purely analog oscillators [9] are not reviewed in any drtail here because they are 

hard to integrate reliably, as argued in [SI. Some reasons are that integraied inductors 

needed in passive implementations have poor quality factors and are prohibitively large. 

and crystals are not integratable at d l .  Active implementations of analog oscillators using 

opamps display limited precision and are affected by device parameter variations. Inte- 

grated precision analog components require trimming, which adds to the hbricütion cost. 

Finally. in a mixed-signal self-test scheme. the circuit generating the test stimulus must be 

tested in the first place. It is obvious that using an analog implementation for the signal 

source does not get one very far in this regard. Signal generation methods relying on digi- 

tal circuits combined with digitd-to-anülog conversion are reviewed insteüd. 
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- k 

Fig. 1.1 : Lossless Discrete Integrator î LDI) resonator. 

1.2.2 Direct Digital Frequency Synthesis 

Direct Digital Frequency Synthesis or DDFS. as used in [ I O ]  for example. consists 

in storing in a RO-M the vaiues of a norrnalized sinusoid taken at ri large number of evenly- 

spaced time-instants. An indexing variable (representing the instantaneous phase of the 

sional) C stored in an accumulator cycles through the ROM addresses with a chosen phase 

increment. The shoncomings of this melhod are that frequrncy selectivity cornes at the 

pnce of a large number of ROM words. while decent S S R  performance enrails a large 

word-length. making for a significant area overhead. In addition. arbitran- signal srnpli- 

tude requires that the output of the R0.M be scaled, another costly operation. Moreover. 

the ROM cannot be implemented by reusing digital hard\\.are. XII in al1 the hardware cost 

ciin be prohibitive for hish-precision signal generation. Finally. a high-precision digital- 

to-analog converter is needed. In a mixed-signal seIf-test scheme this converter would not 

be testable and would thus impair the scherne's reliabiliry. 

1.2.3 LDI Resonator 

LDI-resonators and their implementation are discussed to great Isngth in [ 1 11. An 

LDI-resonator such as the one shown in Fig. 1 . 1  genentes a digital sinusoidal signal based 

on its registers' initial conditions and an input parameter k. It consists of two discrete-time 

integrators which hoid the resonator's state \-ariables s l ( r i i  and x d n ) .  and a multiplier 
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which implements the scaling-by-k operation. Provided that O < k c 4. the output .r2(n) is a 

sinusoidal signal described by the following equation: 

-r,(n) - = Asin (Ron + 9) . ( 1 . 1 )  

where the normalized angular frequency Go. the amplitude A and the phase 6 of the sinu- 

soid depend on the loop coefficient k and the initial conditions q(0)  and ~ ~ 1 0 )  and are 

given by: 

R, = acos I - - ( 3 

and 

Since three independent variables ( k .  .rl(0) and ~ ~ ( 0 ) )  are available to çonrrol the 

circuit's operation. the three parameters of the sinusoid (A. Ru. and O) can independently 

be set to arbitra. values. For instance. to obtain a period of oscillation of T samples and 

an amplitude A. the loop coefficient and the initial values of the two integrator variables .q 

and A-, can be set according to: 

As argued in [ 5 ] ,  the LDI resonator. due to its simplicity and prograrnrnability. is 

an attractive alternative to a ROM-büsed digital sinusoidal generator. as long as the multi- 

plier implementing the scaiing factor k is kept simple. The resolution of the generated sig- 

nal depends on the number of bits used in the implementation of each of the circuit's 

blocks. However. just tike DDFS, this signal generation scheme implies the use of a high- 
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1 S Z  Modulator 

Output 
(1 bit) 

Fig. 12: znd-order delta-sigma orillator. 

resolution digital-to-analog converter. and again this solution. although potentiail>- more 

sconomical than DDFS. is not cnrirely suitable for use in a mixed-signal self-tesr cherne. 

1.2.1 Delta-Sigma OsciHator 

The delta-sigma osciIlator rivas proposed in 151 to overcorne the need for a multi- 

plier and a high-resolution DAC while retaining al1 the advanrages of analop signal gencr- 

arion b a s d  on an LDI-resonator. This circuit consists of an LDI-resonator. a 2nd-order 

delta-sigma modulator and a :-input multipleser. a, shon-n in Fi:. 1.2. W thui refer to i r  
1 nd- a - order delta-sigma-oscillator. Its operation is dsscribed next. 

In order to rsplain the operation of the delta-sigma oscillator. u.e rint take a look 

at hou the digital sinusoid generared b!. the LDI-resonator of Fig. 1 . 1  could be convened 

to a continuous-time analos signal. This c m  bs achiewd with a minimai amount of analog 

hard~r-are usin: a digital delta-sigma modularor (this circuit u-il1 k discussed in detaii in 

Chapter 2 ,. a one-bit DAC and a linear analog filter as .;hoam in Fig. 1.7. The input to the 

modulator must be highly oversampled (i.e. the simple rate must be sipnificmtly larger 

than the signal banda-idrhi. a-hich allou-s the modulator ro compute a one-bit representa- 

tion of the signal. The input digital signal is encoded in the a\.erags of the modulator out- 

put over some significant number of samples. hence the requirement for oversarnpling. 

The one-bit DAC is used to create an analog qui \ -dent  of the modulator output. which is 
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Fig. 1.3: Analog sinewave generation using an LDI-resonator and a de1t.a- 
sigma modulator. 

LDI 
Rcsonaror 

then srnoothed by a lowpass filter to produce a highly accurate analog counterpan to the 

digital input. This process is described in more detail in Section 1.1. 

The delta-sigma oscillator of Fig. 1.2 is an attractive variant on the scheme shown 

in Fig. 1.3. The modulator has been inserted in the resonator loop: as it  introduces a uni t  

dela- the inteptors  in the resonator have been modified to take this into account. The jus- 

tification for insening the modulator in the resoriator is that at low frequencies the modula- 

tor reproduces its input hithfully. while whatever noise it generates at high frequencies 

will be attenuated by the resonator integrators. If the programmable scaling-by-k operation 

is done on the modulator output then i t  can be cheaply implemented by a simple 2-way 

multiplexcr. instead of a full-fledged multiplier. This is possible because the modulator 

outputs a one-bit signd. The generated signal is smbedded in rhe modulator output bit 

Stream and is obtained with the use of a one-bit DAC and some analog lowpass filtering. 

just as in Fig. 1.3. Xote that the amplitude of the generated sinusoidal signal must be lirn- 

ited to slightly less than the modulator's reference level. othenvise the oscillator will 

becorne unstable due to non-linear effects. 

The inband power density spectrum for one possible delta-sigma oscillator output 

is shown in Fig. 1.4, This plot shows a bandwidth rqual to one 1 2 8 ' ~  of the digital sarnple 

rate. The spectral plots were obtained by running a 21X-point FlT on simulated data and 

averaging over 8 bins. The generated sinusoid is represented by the shrtrp pouer-density 

spike at the frequency 0.001 x FS. Its power is roughly -55 dB relative to the output level 

of the delta-sigma modulator. equivalent to an amplitude of 0.5. The modulator produces 

the spectrally-shaped noise floor whose totai inband power is equal to -75 dB relative to 

the modulator output level. The signai-to-noise-power ratio (SNR) for this simulation is 

. v - f - T t 
* 1 -Rit 

DAC 
lI 

\fodulri~or 

Anaiog 

FiIicr 
+ b 
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Fig. 1.4: Power spectral density of a signal generated by a 2"'-order delta- 
sigma oscillator. 

thus 70 dB. Over a smaller bandwidth. the SNR figure would be larger. and conversely if  

the bandwidth were increased. The maximum possible SNR is fixed for a given ratio of 

the digital sarnpling rate to the signal bandwidth. according to a relationship provided in 

Pl- 
The znd-order deltasigma oscillator meets the MADBIST requirement of using 

mostly digital hardware. Some analos filtering is also required, but is assumed to be 

present in the circuit under test. If not this filtering openition can be implemented by a 

cheap RC-network with very loose specifications (i.e large tolerances on the component 

values and matching). No trimming is required on thcse analog componcnts. Because it is 

built mostly using digitai hardware. this signal source is fully and accurately progmmma- 

ble. impervious to process and temperature variations. and as strited above, self-testable by 

the standard methods applicable to digital circuits. It can reuse digital hardware such as 

adders and registers already present in the system. or even trmsform ü digital tester into an 

analog tester with the help of a programmable analog filter. 

Since [5]  a number of improvements have been proposed to delta-sigma oscilla- 

tors. They are: multitone signal generation [6][6][7], bandpass delta-sigma oscillators and 

their use in high-frequency signai generation [12] and more specifically in ii proposed 

MADBIST for wireless systems [13]. FM-signal generation [14J. and high-order delta- 

sigma oscillators [ 161. Al1 of these topics except the latter two are also treated in [ 15). The 
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present thesis deals essentially with high-order and arbitrary-signal-band oscillators. as 

welt ris their cornputer-aided design [ 181. The resulting irnprovements rue Iisted next. 

1.3 Proposed Improvements 

There are some important limitations to the 2"d-order delta-sigma oscillator. which 

require explanations and solutions. The object of this thesis is to present a general. auto- 

mated design framework which addresses these limitations. 

1.3.1 Arbitrary Signal Band Location 

In many applications signais occupy an arbitrary frequency band within the 

Nyquist interval. as in the case of communications systerns in which the signal is modu- 

lated and occupies a given portion of the frequency spectrum. Thus there is ü need for sig- 

nal sources capable of generating clean tones near some arbitrary center frequency in 

[O.F42], i.c. bandpass or hiphpass oscillators. This is addressed both in Chapter 2.  where 

bandpass and highpass modulators are discussed, and in Chapter 3. where it is shown how 

to set the center frequency of the signal band to an arbitrary value. 

1.3.2 Arbitrary Stable Bandwidth 

There is a limit to the bandwidth over which the oscillator can generate a stable 

tone. This has been verified experimentally for the Yd-order oscillator in [ 5 ]  and [15]. 

This stability probiem can be explained by the hct that the delta-sigma modulator noise 

constitutes an additional input which can throw the oscillator out of its intended limit 

cycle. The solution here is to use a slightly more cornplex oscillator topology in which the 

amount of noise-injection can be controlled, as fïrst proposed in [16]. The resulting oscil- 

lators are described in Chapter 3, dong with a study of their stability properties. 
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1.3.3 Arbitrary SNR 

Another limitation is the introduction of noise by the delta-sigma modulator in the 

signal band. This noise limits the signal-to-noise ratio of the genented tone. If  the OSR is 

defined as the ratio of half the sampling rate to the signal bandwidth. then the inband noise 

power is fixed for a given value of the OSR for a @-order delta-sigma oscillator. For a 

oiven digital clocking rate. the oscillator may not be able to produce tones with a high b 

SNR over a sufficient bandwidth. The solution resides in using a modulator of higher 

order which keeps the oscillator loop cntically stable while creliting a lower noise-floor. 

Such modulators were first proposed in [17] and are presented in detail in Chapter 2: they 

are designed to be implemented using a minimal amount of digital hardware. 

1.3.4 Design Automation 

The present work explains how the trade-offs between bandwidth. stability. SNR 

and hardware cost can be addressed. However the design techniques which are presented. 

although they are simple to understand. are computationally involved. To demonstrate 

their applicability, a cornputer-aided-design (CAD) tool had to bc developed [ 18 J. It is pre- 

sented in Chapter 4. 



Chapter 2 

Low-Cost One-Bit High- 

Order Digital Delta-Sigma 

Modulators 

2.1 Introduction 

Delta-sigma modulation has become a technique of choice for implementing reli- 

able and accurate integrated data converters for narrowband signals. This technique makes 

high-precision data-conversion possible with the use of a couse DAC (for DIA conver- 

sion) or ADC (for A D  conversion [19]) and digital and analog filters. Because it is 

required that the signal to be converted occupy a small bandwidth relative to the sample 

rate. we speak of oversampling data conversion. The oversampling ratio (OSR) is defined 

as the ratio of half the sampling rate F, to the signal bandwidth BW 

A lowpass oversampling DIA converter using a single-bit DAC and a digital delta- 

sigma modulator is depicted in Fig. 2.1. It consists of three stages: the digital delta-sigma 

modulator having a one-bit output, followed by the one-bit DAC operating at the digital 

sample rate. and a lowpass analog filter with corner frequency at the signal band edge. 
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On the left of the block diagram are shown the input and output of each block in 

the time domain. on the right in the frequency domain. The input of the modulator is the 

digital signal to be converted to the analog domain. In the present example it is a high-res- 

olution sinusoid whose frequency is much smailer than the sample rate F,. The moduiator 

outputs a Stream of + L  and -1 values whose local density equais its instantaneous iriput. 

This fundamental aspect of the delta-sigma modulation process is better illustrated in the 

spectral density plot shown in Fig. 2.1 (d): the low-frequency input signal is very faithfully 

reproduced while large amounts of noise are introduced at higher frequencies. Note that 

the modulator does introduce some low-power noise in the signal band. 

The single-bit DAC then creates an analog signal corresponding to the Stream of 

+l's and - 1's generated by the rnodulator: each digital bit coming from the modulator 

translates into a finite-duration pulse. with non-zero rise-tirne and t'dl-time. Finally, the 

analog lowpass filter attenuates the high-frequency noise introduced by the modulator. As 

a result of this filtering operation, the fast-changing pulse-train coming from the 2-level 

DAC is smoothed to an accurate. continuous-time. continuous-valued version of the digi- 

tal sinusoidal input. 

Note that Our example showed a lowpass D/A conversion system; a sirnilar con- 

verter for bandpass signals is realized by using a bandpass delta-sigma modulator. i.e. one 

that introduces very little noise over some midband range of frequencies. and a bandpass 

analog filter. Likewise. highpass D/A conversion systems can be builr from a highpass 

delta-sigma modulator and a highpass analog filter. Oversampling AfD converters func- 

tion in an analogous manner. usinp a sampled-data analog modulator. a coarse ADC and a 

digital filter. 

The major advantage of oversampling D/A conversion over its Nyquist-mte coun- 

terpart is that it works with a low-resolution, high-speed "Nyquist-rate" DAC. even 

fhough the conversion itself is highly accurate. The trade-off is that digital-signal-process- 

ing hardware is required to implement the delta-sigma modulator and that only bandlirn- 

ited signals can thus be converted. For bandlimited. integrated applications this trade-off 

is more than acceptable, since high-resolution "Nyquist-rate" D/A converters are difficult 

to hbricate reliably, whereas digital-delta-sigma modulators, just like other digital-signal- 

processing devices. are more easily and reliably integrated. Moreover. the resolution of 
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the conversion can be increased either by using higher-order delta-sigma modulation or by 

increasing the OSR. without necessitating better analog component precision. 

The contributions to the field of delta-sigma modulation which are the most signif- 

icant to the present work. specifically for one-bit delta-sigma DIA conversion. are 

reviewed in Section 2.2. The beauty of delta-sigma modulation is that it replaces the prob- 

lem of component matching and accuracy encountered in the design of Nyquist-rate con- 

verters with a speciai kind of transfer-function design problem. Indeed. even though it is a 

non-linear device. the functionality of a delta-sigma rnodulator c m  be accurately modelled 

and designed as that of a linear system described by two transfer functions. which are 

defined in Section 2.3. The constraints posed by the specific application of delta-sigma 

modulation to delta-sigma oscillators are the object of Section 2.1. Section 2.5 presents a 

complete method for designing high-order. arbitnry-signal-band modulators for use in 

delta-sigma oscillators with a minimal amount of digital hardware. based on an appropri- 

ate choice of modulator topology and on the idea of coefficient quantization. The issues of 

simulation and prototyping are also üddressed. Finally, conclusions are drawn in Section 

3.6. 

2.2 Literature Review on Delta-Sigma Modulation 

A comprehensive review of delta-sigma modulation techniques used in oversam- 

pling N D  converters is presented in [?O]. This is relevant here because many principles 

and modulator architectures for iVD conversion can be reused in the context of oversam- 

pling DIA conversion. A slightly older publication [ 2  I I  sums up some of the most impor- 

tant contributions to the field of delta-sigma modulation since the 1960's. both for DIA 

and A D  conversion. To the best of Our knowledge. delta-sigma modulation was first 

applied to D/A conversion. as opposed to A/D conversion. in (221. A high-order DIA 

delta-sigma modulator using a single-bit DAC wüs reported as early as 1987 in [13].  One- 

bit modulators work best at large oversampling ratios (at least 16. sometimes larger than 

100) and thus require significant amounts of digital processing powcr. However their 

advantage lies in the simplicity of the two-level DAC used in conjunction with them. In 
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fÿct a one-bit DAC is an inherently linear device and thus introduces less harrnonic distor- 

tion than rnulti-bit DACs. even without trimming. The DACs presented in 1-41 are good 

examples of such relatively simple andog circuits which can be used in high-resolution D/ 

A conversion systems. A large portion of the literature focuses on one-bit modulators. In 

pÿrticular, the maximum SNR achievable by one-bit modulators of orden 1 to 8 is given 

in [Z5] for various values of the oversampling ratio 

Nonetheless. oversampling data converters using multi-bit DACs are often deemed 

;i good compromise between one-bit. highly-oversampled converters and Nyquist-rate 

converters [26]. The main reason is that they grant the benefits of noise-shaping while 

irnproving the stability properties of the modulator and keeping its complexity low. Sorne 

delta-sigma modulator architectures which necessitate a multi-bit DAC are multi-stage or 

iMASH modulators [27]. time-interleaved modulators [ZS] and pualle1 modulators [29]. It 

has recently been shown that the error created by the non-idealities of a multi-bit DAC can 

be whitened and even spectrally-shaped out of the signal band [30]. making multi-bit 

delta-sigma modulation very attractive for both DIA and A/D conversion. This technique 

requires only a reasonable amount of additional digital hardware. This is a recent develop- 

ment and no experimental results are available to support it  yet. Therefore the present the- 

sis deds  exclusively with one-bi t delta-sigma modulators. Also. in certain applications the 

use of a single-bit DAC and hence modulator is preferable. in particular when the com- 

plexity of the analog circuitry must be kept to a strict minimum. such as for mixed-analog- 

digital built-in-self-test [3] and oversampled anülog signal generation [6][8][ 161. There is 

thus a need for a rnethod to design one-bit digital delta-sigma modulators with a minimum 

amount of digital hardware. Providing such a method is the goal of this chapter. 

Delta-sigma modulation has recently been generalized to include bandpass [3 11 

modulators. which. together with highpass modulators. are ziven consideration in the 

present work. Other further extensions of delta-sigma modulation. such as  complex modu- 

h o r s  [32]. are not treated here. Most of the work presented in this chapter was first intro- 

duced in [ 171. 
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Fig. 2.2: Signal-flow graph of a general high-order delta-sigma modulator. 

Fig. 2.3: Linear mode1 of the general high-order delta-sigma modulator. 

2.3 Linear Mode1 of Delta-Sigma Modulation 

Without loss of generality. it may be assumed that any high-order one-bit delta- 

sigma modulator can be represented by the block-diagram shown in Fig. 2.1. It consisis of 

three main blocks: two linear filters H I  and Hz and a one-bit (or  two-level) quantizer. The 

bandlimitcd input signal. x. is filtered by H I  and the ferdback signal from 4 is subtracted 

from the result to produce e. the input to the quantizer. The output of the quantizer is fed 

directly to the modulator output y It is also filtered by H7 to create the feedback signal. A 

delta-sigma modulator is thus a non-linear system with feedback. 

The quantizer can be modelled as an additive noise-source so as to obtain a linear 

mode1 of the delta-sigma modulator. as shown in Fig. 2.3. Specifically. the quantizer has 
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been replaced by a surnmer whose inputs are the quantizer input r and a noise source q. 

and whose output is the quantizer output y The noise input q is equd to the quantization 

error made at each sampling instant by the Xeve l  quantizer. As explained in [19]. it is 

then straightfonvard to relate the output to the signal input x and to the noise input q in 

the frequency domain (the uppercase notation is used to indicate the 2-transform of a sig- 

nal): 

We define the signal-transfer-function STF(:) and the noise-transfer-function 

NTFtz) as follows: 

The spectral behavior of any delta-sigma modulator (even those which do nor have 

the form of the block diagram shown in Fig. 2.2) can then be fully described by thesr two 

triinsfer functions. That is. the 2-transform of the output J is written as: 

Y (z) = S T F ( z )  - X(z) + N T F ( z )  - Q ( z ) .  (2 .5)  

81:). the Z-transforrn of q. is assumed to be white noise. The incentive for making 

this assumption is that rnulti-bit quantizers are traditionally rnodelled as additive white 

noise sources. In general. this model is far from valid for a one-bit quantizer. but i t  turns 

out that it is accurate enough when applied to high-order delta-sigma modulators. as veri- 

fied below from simulation results. From Eqn. (7.1). it is ciear that if the magnitude of 

H d : )  is large in the signal band, the noise input cl will be attenuated. At these frequencies. 

H I ( : )  must be correspondingly large for the signal -Y to be passed unaltered to the output y. 

In other words we want the STF to be close to 1 and the NTF close to O in the signai band. 

The linear model given by Eqn. (2.5) is not complete unless the Power Spectrd 

Density (PSD) of Q(z)  is estimated. For multi-bit quantizers. this PSD is taken to be white 

noise with average power equal to PQ = -, where A is the size of the quantiration inter- 
12 
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val. However this approximation is only valid because the quantization error is practica 

evenly distributed in any quantization interval. regardless of the signal level. which is 1 

the case for a one-bit quantizer. 

Luckily. for al1 practical purposes the quantization noise can still be assumed to be 

white in high-order modulators, but the average quantization error power Pa depends on 

the signal level and is derived in another fashion. First. let us have the following defini- 

tions. The PSD of the modulator input X k )  is defined as S,@ = I~ ( ; ) l~ l -  - .,:,, . 
C - and the 

PSD of the quantization error Q(:) is assumed to be ü constant. Le. independent of fre- 

quency. which we denote as Sp. The signal power is then given by Px  = t Sy(f)df. and 

the quantization error power by Pp = fi S,df = f,S,. where f,. is the digital sarnple rate. 

Assuming the signal and the quantization noise to be uncorrelated, the output PSD is 

derived from Eqn. (2.5) to be: 

Integrating Eqn. (2.6) over lrequency yields the following expression for the output 

power: 

Sincc the output J is always + l  or - 1.  its power P y  is rqual to 1. Note also that the modula- 

tors used in delta-sigma oscillators have STF ( r' ' ) = 1 this is explained in Sec- 

tion 2.1.3). Eqn. (2.7) thus simplifies to 

or equivdently. 

where f I N T F  (8' U/l) ) l'dl ir the average value of the NTF-magnitude-squued on the 

unit circle, scaled by f,. This last equation gives a good estirnate of the actual quantization 
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Fig. 2.4: (a) Nyquist-band and (b) Inband power spectrum for a 6th-order 
modulator. The solid line represents simulation data, while the dotted line 
represents the noise spectrum predicted by the linear model. 

noise power density. We finally obtain the following estimate of the modulator output's 

PSD by using this expression for SQ in Eqn. (3.6): 

A' 
If the input s is ü sinusoid with amplitude A. then its average power is 7 and the PSD of - 

The linear model of the output spectrum predicted by Eqn. (2.10) has been verified 

by simulating a @"order modulator designed as per the method of Section 3 . 7 .  The sim- 

ulated and predicted spectra are represented in Fig. 2.4. by a solid and dotted line. respec- 

tively. It is clear from these plots that the linear model yields a very accurate estimate of 

the noise power density, both within the signal band and over the Nyquist interval. Note 
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that in these two plots and in a11 subsequent spectral plots. the signal is shown as power. 

whereas the noise is shown as power density per signal band'. The SNR is simply reüd as 

the ratio of the signal level (-10 dB) to the average noise level ( -  110 dB), that is. 130 dB. 

Note also the absence of any perceptible hmonics  of the signal tone. proof of the high 

linearity of one-bit delta-sigma rnodulators. despite the presence of the highly non-Iinear 

one-bit quantizer in the circuit. 

To surnmarize. a one-bit delta-sigma modulator takes as input an "oversampled" 

multi-bit bandlimited signal and uses the extra bandwidth to encode the input in a stream 

of single bits. The one-bit output consists of an accurate replica of the input signal plus 

quantization noise which has been "spectrally shaped" so as to be greatly attenuated in the 

signal band. 

2.4 Special Requirements for Use in AX Oscillators 

As explained in Chapter 1 and in Chapter 3. the modulators which c m  be used in a 

delta-sigma oscillator have two special characteristics. Thesr are reiterated and treated 

below. 

2.4.1 One-Bit Quantizer 

In the context of mixed-signal self test. delta-sigma oscillators must have a single 

bit output so as to rninirnize the cornplexity of the analog circuitry to a one-bit DAC and a 

linear filter. Thus the modulator used in the oscillator must use a one-bit quantizer. As a 

result. stability of the modulator is a non-trivial issue. and it will be dealt with in Section 

- -  - - 

1 .  Let BtV be the signal bandwidth. f.JN the resolution bandwidth of the N-point FiT ( i-e.  the size o f  

one FFT bin). and p, the noisr power found in the ilh FFT bin. Then the noise powrr density per 
nrv - signal band for that bin is defined as p,  . - lV. The total inband noise powrr is rasily obtained 

1, 
3s the average of the inband noise power density per signal band. 
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Fig. 2.5: Signal-fiow graph of a general high-order delta-sigma modulator 
with unity STF. 

2.4.2 Unity Signal Transfer Function 

It will be demonstrated in Section 3.2 that the rnodulator must have a STF strictly 

rqual to unity in order to be used in a delta-sigma oscillator. Here WC present an overdl 

modulator topology with that property. 

Frorn Eqns. (2.3) and (2.4). it is clear that if the linear filters HI and H ,  c m  be 

made to realize arbitrary transfer functions then the STF and NTF of the modulator of Fig. 

2.1 can be set arbitrarily and independently of each other. Indced, the NTF depends on H2 

only and to obtain a desired STF one c m  set HI  according to: 

To müke the STF equd to unity. we need H I ( : )  = 1 + H,(r) . which is realized by the sig- - 
nal-flow graph shown in Fig. 2.5. 

One can trmsforrn this signal-flow graph so that a single block H(:) is used to real- 

ize both the feedback gain -H7(:) and the feedfonvard gain I+H,(r). instead of two dis- 

tinct blocks as in Fig. 2.5. One such overall modulator structure guuanteeing a unity S?F 

and using ü single instance of Hf:) is presented in [33] and reproduced in Fig. 1.6. Here 

the quantization error is fed back as e while any feedback of the input signal x cancels out. 

Thus the STF is unity. By direct analysis. the NTF is found to be: 
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Fig. 2.6: An overall structure for delta-sigma modulators with unity 
Signal Transfer Function. 

Fig. 2.7: Proposed alternative overaIl structure for delta-sigma 
modulators with unity Signal Transfer Function. The poles of the linear 
block H(z) are also the zeros of the Noise Transfer Function, which is a 
desired property of the modulator structure. 

Another topology can be obtained by a straightfonviird manipulation of the signal- 

flow graph of Fig. 2.6. yielding the rnodulator topology shown in Fig. 7.7. When the quan- 

tizer is replaced by its linear model. the input signal feeds strnight to the output and back 

to the filter input: it also feeds fonvard to the filter input with the opposite sign. and so the 

signal feedback is cancelled, resulting in a unity STF. The NTF is again equal io 
1 

. This topology requires one less subtractor than the one of Fig. 2.6. We thus use 
1 + H ( z )  

it instead. 
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Since we have shown that the STF can be set to 1 independently of the NTF. the 

rest of this chapter wil! focus on the design and the implementation of the NTF. or equiva- 

lently. of the Iinear filter H(z).  

2.5 Design Method 

A complete method by which a rnodulator is designed so as to convert high-preci- 

sion signals to one bit over a given portion of the Nyquist interval with a given signal-to- 

noise power ratio (SNR) is presented here. The resulting modulators are meant to be used 

spccifically in oscillator applications and we describe how to design them using as little 

hardware as possible. 

This method comprises three main steps. First an NTF of the appropriate order. 

OSR and inband noise rejection is computed. Then a rnodulator topology is chosen and its 

coefficients are computed so that the desired NTF is realized. Finally. these coefficients 

are quantized to powen-of-two or canonical-signed digits (Le. surns or differences of a 

few powers-of-two) so that they can be implemented more cheaply than using muftipliers. 

This last process results in an actual NTF which departs from the desired one. but for care- 

fully chosen rnodulator topologies this departure is kept to a minimum. 

2.5.1 Noise-Transfer-Function Design 

Rather than directly designing the transfer tùnction Hf:). we focus instead on the 

noise transfer function. It is designed to attenuate the quaniization noise enough in the 

band of interest so as to produce the desired SNR. If the passband type is bandpass or 

highpass. a lowpass prototype with the same oversampling ratio is desisned first. Section 

1.5.3. explains how the bandpass or highpass rnodulator is obtained tiom the realization of 

the lowpass prototype. We are thus faced with a pole-zero placement problem. albeit one 

with special constraints. 

The first of these speciai constraints has to do with stability. In panicular. since 

delta-sigma modulators are circuits with a highly non-linear element (the one-bit quan- 

tizer). their stability cannot be predicted using the methods for linear systems only. Fonu- 
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nately. conditional stability c m  be guaranteed by an empirical critenon expressed in the 

frequency domain. An absolute requirement for stability. given in [31]. is that the magni- 

tude of the NTF be less than 2.0 at al1 frequencies. i.e.. 

I ~ ~ . ~ ( ~ N T F ( ~ J ~ ~ J ~ I , ,  ,/, c 7.0 . (-• 13) 

As documented in (251, simulations show that the higher this maximum. the 

srnaller the range of input amplitudes for which the modulator is stable. However. as the 

bound decreases toward 1 .O, the NTF magnitude in the signal band increases and so does 

the inband noise power. The bound on the NTF which results in the maiimum SNR is thus 

some value between I .O and 2.0. Finding the bound y ielding the maximum SNR involves 

trying successive values of the bound. and for each of them finding the input level yielding 

the maximum SNR. through simulation. This process requires repetitive simulations and 

can be performed by the computer program presented in Chüpter 4. Note that the tradi- 

tional stability criterion for discrete-time linear systems. namely that the poles must lie 

within the unit circle in the Z-plane. also appiies. 

The second constraint is that the rnodulator be realizable. Recall that al1 feedback 

loops in a realizable discrete-time system must have at least a unit delay. In the case of the 

rnodulator of Fig. 1.7, the transfer function H(z)  must be strictly causal. This implies that 

the denominator of H(:) is of higher order than the numerator. which in turns implies that 

the NTF is strictly proper. Le. that its numerator and denorninator have identical orciers 

and ieading coefficients. Formally. we write: 

N m r ) I -  = _ = 1 . t 2.14) - 
In order to maximize the SNR. the zeros of the YTF. which are also the poles of 

H f : ) .  should lie on the unit circle within the signal band. The optimal zero locations for a 

given OSR are given in [?5] for lowpass modulators. The NTF poles can be designed 

using specialized filter-design software such as the one presented in [33]. Altematively. a 

more generaily available tool such as MATLAB can be used instead to design a Butter- 

worth. Chebychev or Elliptic pole configurations for the NTF (our CAD tool does just 

that). In all cases one can refer to the data in [25] to obtain the NTF order which is 

required to meet the SNR specification for the given OSR. 
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Fig. 2.8: (a) Pole-zero configuration of a fith-order noise transfer function 
designed for an oversampling ratio of 32. (b) Magnitude of the NTF over the 
Nyquist interval; (c) in the signal band. 

As examples. two 6'h order NTFs. one for an OSR of 32 and the other for lin OSR 

of 128. were designed using the same method as in [Z]. The bound on the NTF magni- 

tude was arbitrarily set to 1.5 which in general is ü good first approximation in designing a 

modulator with optimal performance. Fig. 1.8(a) shows the pole-zero configuration of the 

NTF for an OSR of 31. Note the poles in a buttenvorth configuration. inside the unit cir- 
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de. around the signal band. The zeros are on the unit circle ai low frequencies. within the 

signal band. Fig. 1.8 (b) and (c) show the magnitude of the same NTF. As expected from 

the pole-zero configuration. the NTF magnitude is very small in the signal band (low fre- 

quencies). The 3 pairs of zeros create the three notches seen in  the magnitude plot. At high 

frequencies the magnitude reaches a maximum of approximately 3 dB (corresponding to a 

gain of 1.5). Fig. 1.9 shows the same information for the NTF designed for an OSR equd 

to 128. 

2.5.2 Moduiator Topologies 

Wr now tum to the problem of realizing a rnodulator with a given NTF of arbitrary 

order. We explore a variety of modulator structures. and will later evalurtte which ones 

give good results with quantized coefficients, in Section 2.5.4. The three structures we will 

retain for that purpose are the resonator cascade. the integrator cascade. and the lossless- 

discrete-integrator ladder. or LDI ladder for short. They are discussed below. 

The problem of realizing a modulator amounts to finding the structure coefficients 

which yield the desired NTF. For this. each terrn in the numerator and denominator of the 

NTF is expressed as a function of the structure coefficients. and these equations are solved 

simultÿneously. Solving these non-linear equations is computationally intensive. and this 

is one of the reasons for which the entire design method presented herr was coded into a 

cornputer-aided-design tool presented in detail in Chüpter 1. The remainder of this section 

describes the modulator topoiogies under consideration. 

X now widely-used high-order delta-sigma rnoduiator realization was first intro- 

duced in [34] and [35]  and is s h o w  in Fig. 2 .  I I .  Here the realization of HI:) consists of a 

cascade of integrators. with feedback applied from each integrator output to the input to 

set the poles. Feedforward branches to the output set the zeros. We thus cd1 this structure 

the "integrator cascade with feedback and feedfonvard branches". or "integrator cascade" 

for short. Variants of this structure have since been used in successful switched-capacitor 

implementarions [36 ] [37 ]  as well as digital ones [XI. One can modify the structure of Fie. 

2.11 to give a unity STF by using the overall topology of Fis. 1.7. as shown in Fig. 2.1 1. 
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Fig. 2.9: (a) Pole-zero configuration of a oth-order noise transfer function 
designed for an oversampling ratio of 128, with magnitude bounded by 1.5. 
(b) Magnitude of the NTF over the Nyquist interval; (cl in the signal band. 

Another modulator topology, used in 1241 and reproduced in Fig. 1.12. is often 

used to realize digital delta-sigma modulators. This is due to the hct that the 6 coefficients 

are multiplying single-bit values: these operations are cheaply implemented by two-input 

rnultiplexen instead of rnultipliers. However this topology's STF is not unity. The stmc- 

ture can be modified to have unity STF as shown in Fig. 2-12, but then the B coefficients 
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Fig. 2.10: Realization of an N~-order  delta-sigma modulator using Chao's 
multiloop-feedback integrator structure. 

28 
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Fig. 2. I l  : Realization of an  ord or der delta-sigma modulator based on 
Chao's rnultiloop-feedback integrator structure, using the overall structure 
resulting in a unity signal transfer function. 
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Fig. 2.12: Realization of  an  ord or der delta-sigma modulator based on 1241. 
Note that the STF is not unity in this case. 

30 
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Fig. 2-13: Realization of an  ord or der delta-sigma modulator based on [24], 
but modified to have unity STF. 
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must be irnplemented by multiplien. Altematively the B coefficients c m  be placed in 

another münner as shown in Fig. 2.15. and we cd1 this particular realization a resonator- 

cascade. Note that in this particular structure the forward and backward integrators are 

interleaved and grouped two-by-two as resonators. In this case also we can no longer play 

the trick of irnplernenting the B coefficients using rnultiplexers because they are used to 

scale a multi-bit signal instead of a sinsle-bit one. This in tum is a result of the STF being 

equal to unity. 

Finally. an essentid contribution of this work is an LDI-ladder structure. similar to 

the ladder structures used to realize high quality analog filters because of their superior 

sensitivity properties. LDI-ladder fil ters were introduced in [38]; the modulator LDi-lad- 

der structure we propose is shown in Fig. 1.15. It is composed of discrete-time integrators. 

The output of each integrator is first scalcd by a coefficient Ai and then is fed forward to 

the next integrittor in the ladder as well as back to the previous one (except for the first and 

1 s t  integrators). Each integrator output is also further scaled by a coefficient Bi and fed 

Sorward to the quantizer input. Note that this structure displays the main characteristic of 

Iadders. that is. the way the feedback is distributed around the integrators. and for that rea- 

son we expect it  to have low sensitivity to coefficient variations. In general. LDI Iadders 

rire designed from a continuous-time prototype which is mapped to ri discretc-time equiva- 

lent. as described in [38]. However here we use a more direct approach to obtain the real- 

ization coefficients. Namely. we solve the non-linex equütions relating the coefficients to 

the NTF terms. as for the integrator and resonator cascade structures. 

2.5.3 Passband Mapping 

In the case when the signal band is not centered around DC. the modulator struc- 

tures presented in Section 2 - 5 2  must be modified to implernent a bandpass or highpass 

NTF. In general. any linear system can be transformed from lowpass io bandpass or high- 

pass by mapping the 2-variable to a new variable [39] .  For a bandpass modulator with 
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Fig. 2.14: Realization of an  ord or der modulator based on a resonator 
cascade, with unity STF. 
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Fig. 2.15: Realization of an N"-order modulator hased on the Lossless 
Discrete Integrator (LDI) ladder, with an overall structure yielding a signal 
transfer function equal to unity. 

anal bandwidth to half the center frequency o, and an OSR defined as the rritio of the si, 

sampling rate, the mapping is described by: 
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Equivalent biquads in bandpass modulator 

Fig. 2.16: Integrator-to-biquad mappings for bandpass modulators. 

COS OC c = -  . . 
II: cos( ) 

2 .  OSR 

In terms of modulator realization. once C has bern lound. the in tep tors  in the 

lowpass prototype realization must be replaced by the appropriate biquads. shown in Fig. 

2.16 and described by the following rquations: 

and 
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One very interesting case aises when the center frequency oc is equal to dl. In 

that case C is O and the 2-variable rnappings reduces to: 

which amounts to doubling each delay element in the circuit. 

Finally. to obtain a highpas modutator. the mapping is given by: 

The integrators then map according to: 

and 

2.5.4 Coefficient Quantization 

The modulators realized with any of the topologies presented in Section 2.5.3 are 

not suited for an economical digital implementation. because they require multipliers to 

implement the scaling coefficients. However. if an approximation of the drsired NTF can 

be found with al1 coefficients of the realization squal to powers-of-two. then the modulator 

çün  be implemented using only adders. subtrxtors. registers and fixed-shift units. The fol- 

lowing section exposes our strategy for coming up with such an efficient realization. and 

the results for each of the topologies described above. 

Atier the NTF has been designed and the corresponding modulator coefficients 

have been obtained, a method inspired from the one presented in [-IO] is used to quantize 

these coefficients to powers-of-two (including the biquad coefficients in a bandpass modu- 

lator). Each coefficient in the structure is rounded either upward or downwürd to the near- 

est power-of-two, independently of the other coefficients. For ri structure with tz 

coefficients. this gives rises <O 1" possible approximations. Among the stable realizations 

thus obtained. the one yielding the largest average inband noise attenuation. whilc respect- 

ing the chosen bound on the NTF-magnitude. is retained. i f  any exists. Note that the NTF- 
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magnitude bound may have to be relaxed to a slightly larger value than that used for the 

original NTF design. 

If a finer quantization is required. the coefficients can be realized by canonical 

signed digits (CSD). that is sums or differences of a few powers-of-two. This requires 

more hardware but results in smaller coefficient changes. which helps obtain a 'quantized' 

NTF closer to the desired one. It is a trade-off which the designer must address on a case- 

per-case basis. Xote that the biquad coefficient in  a bandpass modulator may have to be 

quüntizrd to a CSD of as rnany as four terms so as to locate the signal band with enough 

precision. 

This quantization process is simple in principle but even more computationally 

intensive than soiving for the coefficients of a structure, and therefore the use of the CAD 

tool presented in Chapter 4. or a similar one. is absolutely essentid here. 

As a result of this quantization process. the zeros and poles of the XTF move off 

their init iai  locations. in a manner depending on the modulator structure's sensitivity to its 

coefficients. Fig. 2.17 shows the zeros and poles obtained by quantizing the coefficients 

for both our 6'h order example NTF's to powers-of-two. for the integrator cascade struc- 

ture. The initial poles and zeros. the ones of the modulator with non-powers-of-two coeffi- 

cients. are marked by asterisks (*). The various possible locations of the poles when each 

coefficient is quantized either upwud or downward are identified by the 'x '  symbols on 

Figs. 2.17(a) and 2.17k). Note that for clarity not al1 2'' possible poles tire s h o w  but 

rathrr a represrntative subset of them. Similarly. the zeros of the possible realizations with 

quantized coefficients are represenred with 'O' markers. on Figs. 2.17(b and 2.17(d ). 

Our results show that the integrator cascade has serious drciwbacks with respect to 

coefficient quantization. First. in rnany instances the zeros mow far off the unit circle. 

decreasing the inband noise attenuation. Thus. designs realized with the integrator cascade 

with powers-of-two coefficients are likely to have a significantly poorer performance thÿn 

is desired. 

iMuch worse is the behavior of the NTF poles under quantization of the coeffi- 

cients. For high-order. small-bandwidth modulators. al1 of the 2" sers of quantized coeffi- 

cients result either in poles lying outside the unit circle. or in a NTF magnitude excreding 

the allowed maximum of 2.0 given in Section 2-51.  In either case the resulting modulator 
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x 
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+: Poles/zeros before quantization 
x: Possible poles after coefficient quantizrition 
O: Possible zeros after coefficient quantization 

Fig. 2-17: NTF zeros and poles realized by quantized coefficients in the 
integrator cascade modulator structure. for our 6'h-order examples: (a)  
poks. OSR=32: (b) zeros, OSR=32; ( c )  poles. OSR= 128; (d)  zeros. OSR= 128. 

is unstable. Thus Our design strategy fails completely for this structure and we conclude 

that it is extremely difficult to design high-order delta-sigma modulators with powers-of- 

two coefficients for the integrator cascade structure. 
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*: Poies/zeros before quantization 
x: Possible poles after coefficient quantization 
O: Possible zeros after coefficient quantization 

Fig. 2.18: NTF zeros and poles realized by quantized coefficients in the 
LDI-ladder structure, for our 6th-order examples: (a) poles, OSR=32; (b) 
zeros, OSR=32; ( c )  poles, OSR=l28; (d) zeros, OSR=128. 

These results seem to indicate that coefficient quantization requires a realization 

hüving good coefficient sensitivity properties. We now tum to the effeci of quantizing the 

coefficients of an LDI Iadder realization. Just as Fig. 1.17. Fig. 2.18 shows the possible 

poles and zeros of the ladder-based structure with quantized coefficients. Note. in Figs. 

2.18(b) and 7.18(d). that al1 the zeros are located on the unit circle. at angles close to their 
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onginai values. Since no damping is present in the Iadder. the poles of Hf:), which are also 

the zeros of the NTF. remain on the unit circle when the coefficients are quantized. which 

is not the case with the previous integrator cascade structure. 

In addition. the N T F  poles remain much closer to their original position than with 

the cascade structure (seen in Figs. 2.18(a) and 2.18(c)). This is explaincd by two facts. 

Considering that the poles of Hf:) change very little when the B coefficients are quantized, 

the tnnsfer functions from the input to each integrator output do not Vary significantly 

either. ~Moreover. the change in a specific coefficient Ai can be partially cancelled by an 

opposite change in the corresponding feedfonvard coefficient Bi. thus keeping the transfer 

functions from each integrator output to the filter output nearly unchanged. 

Overall. with powers-of-two coefficients only. the ladder structure is capable of 

realizing a close approximation to the desired modulator functionality described by an 

NTF pole-zero distribution such as those in Fip. 7.8 and Fig. 2.9. The quantized coeffi- 

cients of both design examples are @en in Table 2.1 : 

Table 2.1: Quantized coefficients of the tith-order designs realized with an LDI-ladder 
topoIogy, for OSR=32 and OSR=128 

Fig. 2.19 displays the inband magnitude of the desired NTFs and of the ones real- 
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ized by a multiplier-free Iadder with the best set of quantized coefficicnts. for both Cith- 

order designs. The solid curves represent the NTF of the modulators with quantized coef- 
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- - - Desired NTF 
- NTF realized with powers-of-two coefficients 

- 1 30;) 
0.005 0.01 0.015 0.5 1 1.5 2 2.5 3 3.5 

-200; 

Frequency (FIFs) Frequency (FIFs) 1nA3 

Fig. 2.19: Inband magnitude of the desired NTF tdashed Iine) and its 
approximation with powers-of-two ladder coefficients (solid line). for our 6th- 
order exam ples: (a) OSR=32, (b) OSR=128. 

ficients. while the dashed curves depict the desired NTF. The difference between the two 

NTF's is at most I O  dB. both for OSR=32 and for OSR= 128. These plots thus dernonstrate 

that quantizing the coefficients of an LDI-ladder-based rnodulator is viable way to 

reduce the hardware complexity without sacrificing too much performance. An Mh-order 

design with quantized coefficients requires 2N adders. N subtractors. 2N shift units. N reg- 

isters and a sign detector. 

As for the resonator cascade realization. it does not yield stable modulators with 

coefficients al1 equal to a single power-of-two. at least for our two NTF examples. How- 

ever. if the B coefficients are quantized to sums or differences of 2 powers-of-two. Le. 2-  

term CSDs, a good approximation of the desired NTF is obtained. 

For bandpass modulators. the biquad coefficient C rnust also be quantized. gener- 

ally to more than a single term so as to locate the signal band of the quantized design with 

enough precision. 
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2.5.5 Simulation 

The modulator design cycle is not complete until simulations and prototypes have 

demonstrated the stabiiity of the design for the intended inputs. There are two reasons for 

this. First. ü delta-sigma modulator is a system with a hard non-linearity and thus its stabil- 

ity is conditional on the input level in a way which is difficult to predict. Second. in a dig- 

ital irnplementation. finite-register length effects may create noise at significant levels. or 

even instabiiity. 

Simulation of the delta-sigma modulator. assurning floating-point precision. is eas- 

ily performed by a simple C program. A given modulator design can be sirnulated at vari- 

ous signai levels so as to determine the maximum SNR and the corresponding input level. 

as well as the available dynamic range. This was done for both our 6'h order examples. 

The inputs were sinusoids having periods 138 and 5 12. respectively. for the designs with 

OSR=31 and OSR=128. (The periods are powers-of-' to ensurc coherence of the input 

with the observation interval of 214 sarnples). The input amplitude was varied from IO-' to 

0.9 so as to capture the input Ievel at which the modulator becornes unstable (Le. when the 

SNR suddenly drops). The output was then processed using the continuoiis-fi fth-deriva- 

tive window found in [45]. This window has rüpidly decaying sidelobes in the frequency 

domain and thus dramaticülly reduces the frequency smearing due to the unavoidable 

incoherence of the delta-sigma modulator output. as explained in Appendix A. 

Fig. 2.20 shows the results of these amplitude sweep simulations for both designs. 

One can clearly notice that the SNR suddenly drops at input levels close to 0.5. This hap- 

pens becüuse the modulator is no longer stable. For the modulator with an OSR of 32. the 

available dynamic range is 90 dB. For the modulator witli an OSR of 128. it is 160 dB. 

Fig. 1.2 1 shows the inband power spectral density of the simulation outputs for a 

0.5 signal amplitude. Clearly. the noise power assumes the spectral distribution predicted 

by the NTF in Fig. T I ? .  assuming a white quantization noise (the predicted noise spec- 

trurn is shown as a dashed curve). The zeros can be seen at the predicted frequencies and 

the signal shows no harmonic distortion. The output of the modulator with OSR=32 dis- 

plays an SNR of 80 dB. while the one with OSR=128 has an SNR of 155 dB. 
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Fig. 2.20: Simulated SNR versus input amplitude for the 6th-order designs: 
(a) OSR=32, (b) OSR=128. 
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Fig. 2.21: Simulated inband power spectrum for the fith-order designs: (a) 
OSR=32, (b) OSR=128. 

2.5.6 Proto typing 

Prototyping can be accomplished by synthesizing an HDL description of the cir- 

cuit to a Field-Programmable-Gate-Array (FPGA). The register lengths can be rnodified 

until a prototype using minimum hardware and yielding the expected SNR performance is 
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-- 
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Fig. 2.22: inband power spectra for the hth-order prototypes: (a) OSR=32, (b) 
OSR= 128. 

obtained. The CAD tool described in Chapter 4 can generate VHDL code describine a 

given modulator design. Such code h a ï  been compiled to implement the 6Lh-order modula- 

tor with OSR=32 onto a Xilinx 4010 FPGA with a 16-bit register length and 3 integer bits. 

The inband spectral densiiy of its output when stimulated by a sinusoidal signal of arnpli- 

tude 0.5 and period 142.7 is shown in Fig. 7.11(a). Likewise. Fig. 2.2l(b) displays the 

inband spectrum for the OSR=118 prototype with an input sinusoid of amplitude 0.5 and 

period 568.9. which was implemented using a register length of 32 bits and 3 integer bits. 

The spectra were obtained by sampling the digital bit strearn at thc output of the FPGA 

and performing a Fast Fourier Transform on the data. Notice thüt the noise spectra are vir- 

tually identical to the ones obtained from floating-point simulations. shown in Fig. 2.21. 

The major difference is that the zeros of the NTF cannot be seen as sharply defined for the 

prototypes as for the simulations. This is due to the noise fioor generated by the finite reg- 

ister lengths used in the prototypes. A DC error is also seen on these plots at a level signif- 

icantly higher than the noise floor. The source of this offset is unknown. and it was not 

seen in the results of simulations performed on the VHDL description of the prototypes. 

This DC component was ignored when computing the SNR. 

The SNR figures are comparable to those obtained from simulations. namely 80 

dB and 155 dB, respectively for the low- and the high-OSR design. The prototypes thus 
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validate the assumption that the fixed-point implementations of the rnodulator designs 

behave as predicted by the linear mode1 and by simulation. Bandpass and highpass proto- 

types can be realized and tested in the same fashion with similar results. 

2.5.7 Optimal NTF Design 

An empirical study of one-bit delta-sigma modulators [15] sives the maximum 

SNR that c m  be achieved by a modulator of a given order and OSR. The parameter which 

must be optimized for maximum SNR is the NTF bound. The CAD tool presented in 

Chapter 4 is capable of finding the optimal NTF bound. 

The rnethod consists of gradually increasing the NTF bound, and for each value 

thereof. simulating the modulator with a variety of tone amplitudes and recording the 

maximum SNR achieved over al1 these amplitudes. White i t  is a brute-force method, the 

use of the CAD tool d e s  it reasonably fast, as described in more detail in Section 1.4.7. 

2.6 Conclusion 

This chapter contains two important contributions. The first is an overall modula- 

tor topology for which the STF is unity, and this is essential for use in delta-sigma oscilla- 

tor. The second is a complere design framework and interna1 modulator topology. the LDI- 

lüddcr realization. Together. this rnethod and topology yield hardware-efficient realiza- 

tions of high-order digital one-bit delta-sigma modulütor. whether for lowpüss. highpass. 

or ÿrbitrary bandpass signal bands. based on quantizing the rnodulator coefficients to pow- 

ers-of-two. Finally, simulations and prototypes prove the validity and practicality of these 

modulator designs. 
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Chapter 3 

Arbitrary-Precision Delta- 

Sigma Oscillators 

3.1 Introduction 

As pointed out in Chapter 1. a general delta-sigma oscillator topology is intro- 

duced and explained in detail in this chapter. I t  overcomes the limited stability of Lu. Rob- 

erts and Johns' [ 5 ]  original ?"'-order design (shown in Fig. 1.2). offers complete 

îlexibility in setting the location of the signal band in the Nyquist intrrvai. and allows for 

the use of a high-order modulator. for the purpose of reducing the inband noise power. 

The generalized delta-sigma oscillator topology is shown in Fig. 3.1. Like Lu's 

design. it is constructed from a pair of discrete time integrators. a delta-sigma modulator. 

and a multiplexer which implements the loop-gain coefficient ko I t  also displays two new 

fratures. First of all. the delta-sigma modulator is not any more the traditional ?"'-order 

circuit with two zeros at DC. but a modulator of arbitrar) order and topology whose Sig- 

nal Transfer-Function (STF) is equal to 1.  The second new feature is an additional feed- 

back loop around the integrators which bypasses the modulator and multiplexer and 

implements a scaling coefficient k t .  

The special requirement of unity-STF imposed on the modulator is justified in Sec- 

tion 3.2. which presents a Iinear mode1 for the oscillator. Section 3.3 shows how the stabil- 

ity of the circuit depends on the scaling coefficient in the modulator-multiplexer loop. ko. 
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while Section 3.4 demonstrates how the extra loop coefficient k l  is used to keep the oscil- 

Iütor stable by maintaining the multiplexed coefficient ko under an acceptable threshold. 

no matter what the generated tone frequency is. It is also shown how to implement k l  with 

ri minimal amount of hardware. 

This chapter goes beyond the principles of operation and the design of single-tone. 

lowpass delta-sigma oscillators. Section 3 -5.1 explains how the sarne generalized topology 

crin be used to generate signais over any a rb i t rq  band within the Nyquist intemal. i.e. to 

realize bandpass and highpass osciltators. Some simple modifications to the hardware. 

drscribed in Section 3 - 5 2 ,  result in rnultitone generators. useful in panicular to excite a 

circuit for intermodulation distortion measurements. Section 3.5.3 explains how the noise- 

spectrum of the generated signal c m  be optirnized in the context of mixed-signal self-test. 

3.2 Linear Mode1 

As was explained in Section 2.3. the delta-sigma modulator embedded in the oscil- 

lator as shown in Fig. 3.1 can be represented by a linear model. even though it is a non-lin- 

car circuit. This rnodel consists of a Signal-tram fer-Function (STF) from input to output. 

Fig. 3.1: Generalized Delta-Sigma Oscillator (DSO). 
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and a Noise-Trnnsfer-Function (NTF) from the quantization noise input q. intemal to the 

modulator. to its output. Typically, the quantization error q introduced by the one-bit quan- 

tizer inside a delta-sigma modulator is assumed to be additive white noise (this was dis- 

cussed in detail in Section 1.3). The rnodulator is then characterized by STF(:)  and 

NTF( L). üccording to the following equations: 

Y(:) = STF ( z )  X, ( , )  + NTF ( z )  Q W .  (3.1) 

whrre Y(:).  X2(:) and Q(r) are the Z-transforms o f ~ ( i t ) ,  .r,(ii) - and y(rz). respectively. 

The linear model of the delta-sigma modulator, summed up by Eqn. (3.1 ). irnplies 

a simila- model for the delta-sigma oscillator circuit. The first part of this mode1 ignores 

the quantization noise and predicts the oscillatory behavior of the circuit. and is the coun- 

terpart to the STF modelling of a modulator's behavior with respect to its input signal. The 

second part of the mode1 consists of a new noise-transfer-function NTF9(:). which. dong 

with an estimate of the Power Spectral Density (PSD) of Q(:). describes the oscillator's 

output noise spectrum. 

In order to derive the signal behavior of the oscillator. let us assume for now that 

the noise input y of the rnodulator in Fig. 3.1 is zero. or rquivalently set Q(r) to O in Eqn. 

(3.1 ). The circuit resonates if its loop gain has the following form: 

In other words. the characteristic polynomial of the linear system must be: 

1 + ( k - 2 ) : - '  +:-', (3 .3)  

where k is the total loop gain in the system. In that case the solution to the difference equa- 

tions describing the output of the system with no input will be a sinusoid depending on the 

initial conditions ( ~ ~ ( 0 )  and x,(O)) and the loop gain k as drscribed by Eqn. ( 1.1 ). provided 

that 04x4. 

The actual loop gain of the circuit of Fig. 3.1 is found by breaking the loop at the 

output of either of the integrators and is given by: 
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Comparing Eqn. (3.2) with Eqn. (3.4, indicates that the circuit will resonate. Le. produce a 

sinusoidal output. provided that S T F t )  is unity for al1 :. In that case the total loop gain is 

given by: 

k = k"+k, (3.5, 

and the frequency of oscillation. amplitude and phase of the output tone are stiil given by 

Eqns. 1 1 -2 1. ( 1.3 and ( 1 A). respectively. 

Let us now develop an expression for the noise spectmm created by the oscillator 

circuit. due to the quantization noise in the delta-sigma modulator. The oscillator c m  be 

considered as a linear filter with an input y located within the modulator. For purposes of 

computing the inband noise. this input is considered to be white noise. even though in fact 

i t  is correlated with the signal being modulated. If :VTFtr  is the transfer function from q to 

the modulator output. then we cal1 NTF'(:) the oscillator's Noise-Transfer-Function. that 

is the transfrr function from q to the oscillator output .  It is given by: 

In addition to the poles and zeros of the modulator NTF. iWF*(z ,  bas a pair of 

zeros and a pair of poles located on the unit circle in the 2-plane (i.e. a< physical frequen- 

cirs 1. provided that O < Ikl 1 < 4 and O < Iko + k ,  1 < 1. The nea zeros have a radial posi- 

tion equnl to a ( 1 - k 2 %.hile the nru. poles are located at 

kacos ( 1 - Ik,, + k 1  1 / 2 )  . the frequency of the senerated sinusoid. The presence of the 

added zeros. if they fa11 in the signai band. is somewhat beneficial in reducing the total 

amount of inband noise power. The poles on the unit circle represent the  fact rhat the sys- 

rem is critically stable. 

In Section 2.3 an estimate of the PSD of Q ( z )  was derived for delta-sigma rnodula- 

tors and given by Eqn. (3.9). The same argument Ieads to an rquivalent expression for the 

PSD of the quantization noise in the oscillator case: 
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Note that N F ' ( : )  has taken the place of N7F(:) in Eqn. (1.9). What remains to be deter- 

rnined to complete the model is the signal power at the output of the modulator. PS. Note 

that it is equal to the power of the modulator input signal .rl since S T F t ) = l .  

According to the previous discussion. we assume x2 to be a sinusoidal signal and 

will prove the validity of this assurnption Iater. If the amplitude is programmed ro be equal 

to A. then the PSD of the noise component of the output. according to Eqn. (3.7). is @en 

by 

The signal - feeds back toward the input of the rnodulator. seeing a transfer func- 

tion @en by: 

If Xi, is srnall. then this transfer function is small everywhere rxcept close to the pole fre- 

quency and we c m  assume that the out-of-band noise is sufficiently attenuated for -Y? to be 

rffectively modelled by a sinusoid. thereby validating Our initial xssumption. 

A 6Ih-order design h a  been simulaied to prove the \.alidity of Eqn. (3.8,. The 

rnodulator is the same as the one used in the example of Section 2.3. The tone period is set 

to 1021. or equivalently the frequency is 0.00098. irnplemented with 4,=-2.34~10-' and 

kl=T'4=6.1~xl~-j. Fig. 3 .3a)  shows the spectral content of the ouiput signal over the 

Nyquist interval for a signal amplitude equal to 0.25 (-12 dB). Fig. 3 .3b)  shows the 

inband power spectrurn (represented by the solid line). as well ai; the spectmm predicted 

by the linear model (shown with a dotted line). Note that the continuous fifth-derivative 

uindow has been applied to the data kfore  the FF? u s  computed. as explained in 

Appendix A. The SNR of the generated tone over the displayed frequency band is 130 dB. 

This is 60 dB better than the 70 dB achieved by the 2nd order oscillator over the same sig- 

nal bandwidth (Fig. 1.3). This example illustrates the gain in signal precision obtained 

when a higher-order modulator replaces the 2"'hder modulator. and the possibility to 
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Fig. 3.2: (a) Nyquist-band and (b) Inband power spectrum for a fith-order 
oscillator. The solid line represents simulation data, while the dotted line 
represents the noise spectrum predicted by the linear model. 

achieve virtually Iimitless SNR (for all practical purposes) over small signal bandwidths. 

as set out in Section 1.3.3. 

3.3 Stability Study 

Classification of Long-Term Behavior 

Just like delta-sigma modulators. delta-sigma oscillators are non-linear systems. 

and thus their stability propenies depend on the input signal and cannot be predicted by 

frequency domain methods. However. the fact that the linearized system described by 

Eqn. (3.4) (with no noise input) is critically stable gives us hope that the actual non-linear 

system may. in some cases, be critically stable too. Unfortunately it is not known how to 

prove it rigorously. The stability of delta-sigma modulators is in general equally difficult 

to assess rigorously, although in their case empirical findings [25] compensate for our lack 

of theoreticai knowledge. What is thus needed here is the equivalent empiricül study 

applying to delta-sigma oscillators. This section presents such a study. 
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Fig. 3.3: Simulation of a 2"d-order oscillator: (a) tone amplitude; (b) power 
spectral density of a 64k sample taken after IO' iterations. 

Some non-linear effects c m  still be predicted in a qualitative way. using the linear 

model. Becnuse the delta-sigma modulator output çan be equal to + l or - l only. the state 

variables of the oscillator (q and s,) loop can only take on a set of quantized values. After 

each period of oscillation. these state variables may have values which correspond to ü 

slightly different amplitude of oscillation. This imprecision will affect the amplitude of 

oscillation over time. We cm foresee two cases. one in which the amplitude of oscillation 

converges to a value. hopefully close to the intended amplitude. and another one in which 

the amplitude drifts away without bound. until the modulator reüches instability. 

Fig. 3.3(a) illustntes the first of these possibilities. The amplitude is initialiy set to 

0.1. but settles to 0.106 after about 300.000 samples. The simulation shown here lasted 

5.000.000 iterations. after which time an FFT of the output was computed. It is shown in 

Fig. 3.3(b). The tone displays an SNR of 68 dB. 

The other case. in which the tone amplitude changes slowly but with no bound. is 

illustrited by Fig. 3.4(a). which shows the simulated amplitude of a 6'h order oscillator 

with OSR 64. The penod is 256. The tone amplitude is initinlly set to 0.1 but has 

decreased to 0.03 after 108 samples. However it changes so slowly that at any given time 

the quality of the signal is as predicted by the Iinear model. Fig. 3.4(b) shows the FFT of 
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Fig. 3.4: Simulation of a dh-order ascillator: (a) tone amplitude: (h I power 

spectral density of a 64k sampk taken after 10"terations. 

the sirnulated output over a 64k interval. taken at the end of the simulation. alter 10' sam- 

ples. Although the signal power is -30 dB rather than the intended -20 dB. the SNR is 96 

dB. This oscillator could still be very useful in an application which can compensate for 

the variation in tone amplitude. 

In the spectral dornain. these depanures frorn the lineür behavior c m  br said to be 

caused by the noise seeneerated by the modulator. This noise is scaled by 4, before being 

injected into the resonator. If ko is large. then the disturbance created by this noise is likely 

ro throw the oscillator into instability very rapidly. I f :  oii the corzrrm-y k,, is snitril. flzerz if i . ~  

rrtrsorzrrbk ro rissirnie f l m  fhr msdting cfosrd-loop circllif m i y  d i sp iq  fhr scime oscillu- 

rory helzavior us rlir pure digiml rrsoitnfor (as argued in the previous section ). at leas t over 

some significant period of time after the initial conditions have been set. In other words if 

the noise injected in the resonator loop is small enough. we expect the oscillator to be able 

to compensüte for this disturbance. For this reason. ko must be kept under a certain thresh- 

old to prevent the injected noise from throwing the system into instübility. The object of 

Our empirical study is thus to find this threshold for various oscillator designs. 
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3.3.2 Method 

In order to obtain an overali estimate of what constitutes an appropriately small 

value of ko, extensive simulations were conducted. for a vanety of lowpass oscillator 

designs. Six designs were simulated. using modulators of orders 2.1. and 6. and for OSRs 

equal to 33 and 128. In each case the modulator was designed to offer the maximum SNR 

Tor the given order and OSR, as described in Section 1.5.7. using the resonator cascade 

structure with non-quantized coefficients (note that the modulator coefficients need not be 

quantized for this study, and thus any modulator structure will yield the same results). The 

oscillators were designed with k l=O.  i.e. with no feedback loop other than through the 

multiplexer coefficient ko, as in the original znd-order delta-sigma oscillator of [5] .  

Increasing values of ko were used; they were chosen so as to make visible the m a -  

imum range for which the various oscillator designs are stable. with the tone always being 

genented within the signai band. Increasing tone amplitudes were ülso used. In each case 

the time during which the oscillator rernained stable was recorded. up to ri maximum of 

10' samples. This is an upper bound on the requirements of a practical test. i.e. a I second 

test at ü 100 MHz rate. Stability was defined as follows: the modulator is stable as long as 

the rnodulator quantizer input is less than ten tirnes larger than the quantizer output Ievel. 

in absolute value. This criterion is arbitrary but. from experiencr. captures the essential 

facts about modulator and oscillator stability. When the oscillritor wris still stable at the 

end of the simulation. the amplitude and SNR of the generated tone were computed. 

3.3.3 Results 

Note that only results for lowpass oscillators are presented here. Similar results 

hold for bandpass and highpüss oscillators. 

The following six tables contain the simulation results. Each column corresponds 

to a given value of ko. The value of the tone frequency is siven relative to the sarnpling 

rate as f, and relative to the upper signai-band-edge frequency as fK,. Ai is the tone ampli- 

tude programmed by the initial register values in the oscillator. Each table cell is shaded so 

as to represent the outcome of the simulation in the following rnanner. If at the end of the 
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simulation the tone amplitude w u  still within 10% of the intended value. the ce11 is not 

shaded and displays the final tone amplitude A p n d  the SNR at the ena of the simulation. 

If the modulator was still stable but the tone amplitude had departed from the intended 

value by more than 10'37, the corresponding table ce11 is lightly shaded. and again contains 

the values of A p n d  of the SNR. Finally. when the modulator had become unstable before 

the end of the simulation time, the ce11 is a darker shüde of grey and displays the simula- 

tion iteration at which instability was reached. 

Table 3.1: Oscillator Stability Results for N=2, OSR = 32 

l?.% 

A, = 

A,  = 
O. 1 

A,  = 
0.25 

.1, = 
0.5 

Table 3.2: Oscillator Stability Results for N=2, OSR=128 

O.O/O 

Af = 0.0167 

,'II = 0.780 

SNR = 56.7 d B  

O. 032 

.&\, = 0.264 
0.025 1 SNR = 36.9 dB 

A,-= 0.109 
SNR = 45.6 dB 

AI- = 0 . 3 4  
SNR = 54.1 dB 

.a\/. = 0-542 

SNR = 57.8 d B  

A, = 0.78 1 

SNR = 56.5 dB 

SNR = 51.7 dB 
- - 

A, = 0.187 
SNR = 56.4 dB 

A/- = 0.796 
SNR = 56.0 dB 

AI = 0.808 
SNR = 55.5 dB 

ko 

1' 

f 7jir 

.4 , = 
0.025 

A,  = 
O. 1 

1  

l . f j ~ l ~ - "  

O. 04 1 

Al. = 0.0245 
SNR = 60.7 dB 

At- = 0.0997 
SNR = 73.9 dB 

1  o - ~  

5 .0 .~10*~ 

O. 129 

Al.= 0.024 1 
SNR = 60.9dB 

A,= 0,100 
SNR = 74.5 dB 

1  

1.6-~10-~ 

0.40 7 

Af = 0-0258 
SNR = 58.1 dB 

A, = 0.0060 

SNR = 7 1.8 dB 

5.r / O-' 

3 -6.r /O-' 

O. 9 11 

A,. = 0.0248 
SNR = 53.2 dB 

A = 0.0923 
SNR = 65.3 dB 
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Table 3.2: Oscillator Stability Results for N=2,OSR=128 

j / j L  

A, = 
0 3  

A1. = 0.503 
SNR = 87.3 dB 

Table 3.3: Oscillator Stability Results for N=J,OSR=32 

O. 04 l 

Al- = 0.250 
S N R  = 82.4 dB 

A, = 0.752 
SNR = 83.1 dB 

AI = 0.504 

SNR = 87.7 dB 

A/ = 0.274 
SNR = 74.0 dB 

O- 129 

A,- = 0.219 
SNR = 81.0 dB 

A, = 0.75 1 

SNR = 86.2 dB 

0.025 

,-\ , = 
O. I 

- - - 

unstable at unstable at 
t=9.37&+07 t= I .035e+07 

At  = 0.5 i 7 
SNR = 86.3 dB 

O. 40 7 

Al.= 0.246 

SNR = 79.8 dB 

A,-= 0.30 1 

SNR = 73.1 dB 

.-\, = 0.752 
SNR = 89.3 dB 

SNR = 54.4 dB 

Af = 0.0997 
SNR = 66.3 dB 

Table 3.4: Oscillator Stability Results for N=4,OSR=128 

O. 511 

..if = 0.243 
SNR = 72.3 dB 

A, = 0.744 
SNR = 80.2 dB 

.-\ , = 
0.5 

.-\, = 
0.75 

SNR = 54. 1 dB 

At = O. 104 
SNR = 65.7 dB 

SNR = 52.9 dB 

unstable at 
t=2.320e.ç07 

;1/ = 0.535 
SNR = 79.7 dB  

unstable at 
t=181 

flfic 

.4, = 
0.025 

unstable at 
t=1.31 Ie+07 

unstable rit 
t=930 

O. 04 l 

AI = 0.0248 
SNR = 108.9 dB 

unstable at 
t=3.074e+06 

unstable at 
t=3 18 

O. 129 

A, = 0.0246 

SNR = 108.0 dB 

0.407 

A, = 0.0256 
SNR = 10-1.2 dB 

0. 91 1 

A, = 0.0298 
SNR = 96.8 dB 
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Table 3.4: Oscillator Stability Results for N=4,OSR=128 

O. O4 l 

A, = A,- = O. 1 O 0  

SNR = 1 19.0 dB 

A, = At. = 0.150 1 0.15 1 SNR = 127.2 dB 

O. 129 

At-= 0.101 

SNR = 119.1 dB 

.A, = 0.500 
SNR = 132.3 dB 

O. 40 7 

A/-= 0.996 

SNR = 1 1  3.7 dB 

A/ = 0.25 1 

SNR = 127.1 dB 

At- = 0.50 1 l unstable at unstable at 
SNR = 133.3 dB t=5.6 1 Sem7 t=8.308e+07 

O. 9 1 / 

Al= O. 113 
SNR = 110.4 dB 

unstable at 
t=4.9ûûe+û 1 

At = 0.747 
SNR = 117.4 dB 

unstable at 
t=4.500e+û 1 

A1. = 0.256 
SNR = 1 16.0 dB 

unstabie rit 

t= I.760e+02 

Table 3.5: Oscillator Stability Results for N=6, OSR=32 

Ar= O. 1% 

SNR = 83.0 dB 

j / / f rc  

A, = 
0.035 

unstable at 
t-1.707e47 

0.010 

Ai = 0.0218 

SNR = 68.1 dB 

unstable at 
1 

t=2.2 19e+07 
Al. = 0.16 1 

SNR = 87.7 dB 

unstabie at 
t=3.645e+05 

-- - -  

O. 032 

Al- = 0.0024X 

SNR = 67.8 dB 

A,. = 0.375 
SNR = 90.9 dB 

unstable at 
t=8..156e+W 

- 

O. 102 

At = 0.0289 
SNR = 68.1 dB 

Table 3.6: Oscillator Stability Results for N=6,OSR=128 

f i t  

A , = 
0.025 

0.04 1 

A/.= 0.0250 
SNR = 146.6 dB 

(1.129 

ri, = 0.025 
SNR = 117.5 dB 

0- 40 7 

Af = 0.0350 
SNR = 1 4 . 3  dB 

O. 911 

A, = 0.025 1 

SNR = 140.2 d B  
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Table 3.6: Osciliator S tability Results for N=6,OSR=128 

The following trends are cleÿrly visible from the collected data. First of all. oscilla- 

tors designed for the lower OSR value (Le. 32) remain stable only for small values of b. 
such as IO? When ko is set to 10-j the low-OSR oscillators remain stable only for small 

signal amplitudes. This is tme for al1 three orders in these results. namely 2 .  4 and 6. 

Another trend is that as the modulator order is increased. the range of stable input ampli- 

tudes diminishcs. This is not surprising. siven that the same fact holds for delta-sigma 

modulators. Finally. one should note the accuracy of the tone amplitude for the 6'h-order 

design with OSR=118. throughout the entire range of values of (These values of ko 

span most of the signal band for an OSR of 128). Very little variation in  amplitude is 

observed. 

These results. which were collected with k ,  set to O. lead to the expected conclu- 

sion that /io must be kept smaller than some threshold value. This will be accomplished in 

the next section by letting kl take non-zero values. 

hl 

f 

$374 

4 = 
0.1 

.-Il = 
0.25 

.i, = 
0.5 

.Ar  = 
0.75 

1 .6~1  o4 

O. 04 1 

A, = 0.100 
SNR = 157.1 dB 

A, = 0.250 
SNR = 165.6 d~ 

unstable at 
t=9 1 63 

unstable at 
t=38 

5 . 0 ~  1 o4 

O. 129 

+= 0.100 
SNR = 157.0 dB 

A,- = 0.350 
SNR = 165.2 JB 

unstable zit 

t=6989 

unstable at 
t=39 

f xf 

i-t5.t1fT3 

O. 40 7 

.-If = O.  1 0 0  

SNR = 151.5 dB 

A, = 0.250 
SNR = 163.7 d~ 

unstable at 
t= 1 629 

unstable at  
t=43 

5-r 1 O~ 

3.6.r 10'' 

0.911 

.4, = O.  100 

SNR = 157.1 dB 

A, = 0.25 i 
SNR = 165.0 dB 

unstable at 
t4712 

unstable at 
t= 1 46 
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3.4 Minimal Realization of Stable Oscillator 

3.4.1 Design Method 

We now tum to the problem of realizing an oscillator capable of generating stable 

tones over a given signal band. If the signal band extends from the radial frequencies o, to 

q,. then the total loop gain k must be programmable in the rünge [k,.kh] given by: 

ku. ,  = I ( 1 - COSU,-,) (3.10) 

An ernpirical study similar to the ones presented in Section 3.3 rnust be conducted so as to 

obtain a bound on ko which ensures enough stability. Once this bound is known. a set of 

discrete values for k l  are chosen. so thüt the difference between nny two adjacent values of 

k l  is less than twice the bound on ko. These discrete values of k l  are chosen so that they 

can dl be realized by surns and differences of only a few powers-of-two. An aigorithm 

which computes a set of appropriate values of k ,  and their CSD realizations is imple- 

mented in the CAD tool and explained in Section 1.4.5. 

3.4.2 Design Exarnple 

A s  an example. consider the design used in the previous section for S=-t and 

OSR=128. The \dues of k for which the tone frequency spans the signal band are in the 

intemal [O.O. 6 . 0 7 ~ 1 0 ~ ] .  The stability study perîomed in Section 3.3 reveaied that the 

oscillator is stable for signal amplitudes up to 0.5 for k0= IO-' but not for ko= 10-'. We thus 

set the bound on ko to j x  IO". A possible set of CSD values for k l  auch that X-,,+kl spans 

the intesal (0.0.6.02~ IO-'] with the constraint that k@n IO-' is then given below in Table 

3.7. 

Table 3.7: Discrete values of k 1 and their CSD reaIizations 
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Table 3.7: Discrete values of ki and their CSD mlizations 

! 
I 

5.49~ IO- i 3 - 1  i 7-12 
I - - -  

Thsse ~ d u e s  cm be reaiized by the simple arrangement shoxn in Fio. 3.5. using 
C 

hve fixed-shih units. three multiplexers. one adder and one numsric invener. The tixed- or 

hard-wired-shift units irnplement the multiplications by the poa-ers-of-tu-o 2.' ' to 2-". To 

program the oscillator to operats at a given frequency. the follou-ing mrthod applies. Finr 
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the appropriate loop gain k is computed. Then the closest available d u e  of k l  is selrcted 

and the multiplexers in the schematic of Fig. 3.5 are set so as to implement it. Findly. kl, is 

computed as the difference between k and k t .  

As an example. Table 3.8 gives the revised stability results for two values of k. 

Also listed are the values of ko and k t .  These results. when compared to those of Table 3.4. 

show that the use of the CSD-coefficient LI indeed solves the stability problems previ- 

ously encountered. 

Table 3.8: Revised OsciIIator Stability Results for N=4,OSR=138 

O. 40 7 O. 911 

A, = 0.0253 .A, = 0.0248 

0.025 SsR= 108.7ciB SXR = 108.1 d B  

1 -4, = 1 unstabie at 1 unstable at 1 

This oscillator design is thus very stable. and offers a [vide tone dynamic range. 

The latter facacr is illustrateci by the results of simulations for mid-band tones of amplitudes 

v q i n g  from IO-' up to p s t  the onset of instability. with results shown in Fig. 3.6. These 

simulations were again conducted over 10' samples. The peak SNR is approxirnately 130 

dB. 
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l n ~ u t  Amplitude 

Fig. 3.6: SNR vs programmed tone amplitude for the N=J, OSR=128 

3.4.3 FPGA Prototype 

The stable 4'h-order design presented in the previous section was to be imple- 

mented on a Xilinx FPGA. using VHDL-code generated by DSMOD. the CAD tool pre- 

sented in Chapter 4. The rnodulator uses a 74-bit numerical format with 2 integer bits. 

while the oscillator uses a 38-bit register-Iength. Shorter registers could be used in the 

oscillator by scaling its interna1 variables. but at the cost of reduced frequency resolution. 

Unfortunately. once synthesized (using the Sy nopsys FPGA compiler) the prototype 

required more hardware than is contained in a single Xilinx 10 1 O FPGA. the prototyping 

platform available for this research work. However. previous experience has demonstrated 

that for smaller circuits the FPGA prototype behaves üccording to a simulation of the 

VHDL code as performed by the Synopsys VHDL simulator. 

The inband spectrum produced by the VHDL-level simulation of this prototype for 

a total loop gain of 5x IO-' and a tone amplitude of 0.5 is displayed in Fig. 3.7. The SNR is 

equal to 130 dB as predicted by the DSMOD simulations. 



Chapter 3: Arbitrary-Preciskn Delta-Sigma Oscillators 

Normalized Frequency (F/Fs) 
ln-3 

Fig. 3.7: Inband power spectrum generated by the  order der oscillator 
prototype with OSR=128. 

3.5 Additional Improvements 

In the context of the generation of stimuli for frequency-testing anülog circuits. 

three additional improvements are presented. The first is the generation of tones over an 

arbitrary frequency band. The second is the sirnultansous generation of multiple tones. 

and the third is the matching of the oscillator's noise spectrum to the response of the cir- 

cuit under test. 

3.5.1 Arbitrary Passband 

So far it has been aîsumed that a sinusoid was to be generated at a frequency close 

to DC. i.e. that we were dealing with lowpass oscillators built using lowpass modulators. 

In many applications it rnay be desirable to generate tones in an arbitnry frequency band 
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- 120 -- - - I -- 
O 0.1 0.2 0.3 0.4 O. 5 

Nomalized Frequency (FIFs) 

VI -180' 
0.2485 0.249 0.2495 0.25 0.2505 0.251 0.2515 

Nomalized Frequency (FIFs) 

Fig. 3.8: Power spectrum of the signal generated by an  order der bandpass 
oscillator: (a} Nyquist interva[; (b) signal band. 

in the Nyquist interval. In that case the modulator must be designed for the same signal 

band: in other words a bandpass or highpass modulator must be used. 

The topology for a bandpass oversampled oscillator presented in [ 121 and [ 151 c m  

be used with a high-order bandpass delta-sigma modulütor to create a high-quality band- 

p a s  signal generator. Altematively. the topology of Fig. 3.1 can be used: k ,  must be cho- 

sen so as to keep the vdue  of ko small when frequencies in the signal band are generated. 

The delta-sigma modulator used in the circuit must be a bandpass rnodulator whose signal 

band corresponds to the oscillator's range of tone frequencies. A bandpass modulator c m  

be obtained from a lowpass modulator by replacing each integrator by an appropriate 

biquad. based on a frequency transformation equation for discrete-tirne systems. as 

explaineci in detail in Section 2.5.3. 

Fig. 3.8 shows the spectrurn generated by an 8ch-order bandpass oscillator with 

OSR= 118. The signal in this example is centered at a quaner of the sample rate. but any 

other center frequency is possible. The modulator is realized with quantizrd coefficients 

for hardware-efficiency. Simulations over a billion samples indicate that this design is sta- 

ble. The spectral plots of the output show an SNR equal to 130 dB for a signal amplitude 

of O S .  Notice the zeros of the noise spectrum in the signal band; four of the notches corre- 

spond to the zeros of the modulator NTF, while the fifth one at midband is created by the 
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resonator loop. As a cornparison. a bandpass modulator of order 4 such as the one pre- 

sented in [ 12) provides an SNR of 85 dB for a signal amplitude of 0.5. and an OSR of 128. 

This examplifies the fact that increasing the order of the modulator increases the SNR of 

the generated tone for bandpass oscillators also. Note also that one advantage of the band- 

p a s  oscillator over the lowpass version is that no harmonics of the generated signal are 

present in the signal band. 

Highpass oscillators are also possible. The CSD loop gain coefficient k ,  is set to a 

value near 4, and a highpass modulator as described in Section 2.5.3 is used. 

3.5.2 Multi tone Oscillators 

Multitone signal generators are essential for frequency response and intermodula- 

tion tests, such as the ones presented in [3] .  The principle of time-division multiplexing is 

used to modify a single-tone oscillator to a multitone one. as rxplained in [6] and [8]. To 

obtain an M-tone circuit. each register in the original circuit must be replaced by M regis- 

ters in series. both in the resonator loop and in the modulator. as shown in Fig. 3.9. Note 

also that the resonator coefficients and k ,  are cycled through M distinct values. corre- 

sponding to the frequencies of the M tones. This is üchieved by using a simple multiplex- 

in;! scheme and multiples of the main clock signal. 

Although previous studies were concerned with rnultitone generators using I " ~ -  

order lowpass [6] and 4th-order bandpass modulators [ 121 only. the principle applies 

cqually to higher order circuits. as first reponed in [Ml .  A higher-order generator is capa- 

ble of generating more tones at a given SNR. or alternatively it c m  spread the sarnr num- 

ber of tones over a wider signal band. stiil with the same SNR. Thus. even when extremely 

low noise levels are not required. higher-order oscillators can still be used to speed up the 

testing process by exciting an analog circuit ai a greater number of frequencies simulta- 

neously, or to test circuits over a wider bandwidth. 

Fig. 3.10 shows the simulated output of a four-tone generator based on a 4'h order 

lowpass delta-sigma modulator. The amplitude of each <one was set to 0.25 or -15 dB. 

Since the Cour tones are actually time-domain multiplexed. their effective power is divided 
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by four. resulting in -21 dB tones as seen on the plot (the tones are actually slightly lower 

on the plot due to the windowing of the data before the FFT is computed). 

An attractive feature of this generation scheme is that the parameters of rach sinu- 

soid (amplitude. frequency and phase) can bç set independently of the other sinusoid. This 

is very useful to control the crest factor of the cornplex sinusoid used to excite the analog 

circuit under test. so as to avoid saturation and other non-linear effects. Note dso  that 

bandpass and highpass mu1 titone generators are also possible. 

k , ( l )  
1 1 1 

MUX 
a 
a I 
0 I 

Delta-Sigma Modu- 
lator 

Fig. 3.9: kl-tone signal generator. 
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- 180; 
O. 5 1 1.5 2 2.5 

Namialitecf Frequency (F/Fs) .Y 

Fig. 3.10: Simulated inband spectrum of a four-tone, dth-order lowpass 
oscillator. 

Fig. 3.11: Overall structure of a typical mixed-signal IC 

3.5.3 Optimized Noise Spectrurn 

The additional degrees of freedom provided by a high-order design c m  be used to 

shape the out-of-band noise in the digital domain so as to accommodüte the limitations of 

the analog circuit under test. (This concept has bren proposed for the design of delta- 

sigma modulators in general in [46]). 

To illustrate this concept we consider the situation in which the analog-to-digital 

00 a sinu- converter contained in a simple lowpass codec (shown in Fig. 3.1 1) must under, 

soidal-input based test. In rnüny instances the anti-aliasing filter ( AAF) preceding the 

ADC-proper will be much less sensitive to high levels of high-frequency input-noise than 

the ADC. since it is designed to attenuate such inputs. High noise levels at some frequen- 

cies outside the signal band could trigger non-linear effecis and corresponding responses 

of the ADC in the signal band. which would decrease the test accuracy. 
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Our strategy here is to match the noise spectrurn of the signal source to the transfer 

function of the AAF, so that the ADC sees n u n i f o n n  noise power spectrum in addition to 

the sinewave input. In effect. this kind of noise-shaping maximizes the dynamic range of 

the test stimulus seen by the ADC by using the AAF as a lowpass filter. 

3.6 Conclusion 

High-order delta-sigma modulation- based analog signal generation has been 

shown to be feasible. both with respect to issues of stability and of hardware cost. The 

increased accuracy of high-order designs. which has been demonstrated by simulation 

results and experimental data. c m  be used to achieve various improvements in the quality 

and speed of on-chip testing of analog circuits. In particular. for a given signal bündwidth 

and digital clocking rate. high-order designs present two major improvements over lower- 

order designs previously presented: purer tones can be produced and more simultaneous 

tones of a given SNR can be produced. Afso. the characteristics of the analog device being 

tested can be better matched so as to reduce unwanted non-Iinear responses to the out-of 

band noise associated with delta-sigma-modulation-basrd signal generation. which would 

drgrade the test. All these improvements were made possible by limiting the gain k,, in the 

delta-sigma modulator loop; this in turn was accomplished by including an additional. 

hardware-efficient scaling loop with gain k , .  which bypasses the modulütor. 



Chapter 4 

A Cornputer-Aided-Design 

Tool: DSMOD 

4.1 Motivation and Requirements 

The delta-sigma modulators and oscillators presented in Chapter 2 and Chapter 3 

are difficult to design by hand. because many of the design steps are computationally 

intensive. Some of these require solving non-linear equations WTF design. structure map- 

pin,) while some are exhaustive searches through a solution space (coefficient quantiza- 

tion. oscillator design. optimal NTF design). Also. simulation is essential to determine 

stability and frequency-domain measures such as S N R  and h m o n i c  distortion. Finally. 

fast prototyping of these circuits is desirable in order to assess the effects of finite word- 

lengrh and their behavior over very long periods of time. before they are integrated onto 

silicon. which represents a much larger investment in time and resources thm prototyping. 

Quick prototyping is possible with Field-Programmable-Gate-Xrrriys (FPGAs ). which cm 

be synthesized with a Hardware-Description-Langage (HDL) compiler. Hand-coding the 

HDL description of a circuit requires technical knowledgr of the language and may take 

some time to debug, and this can advantageously be automated too. 

These facts rnotivated the creation of a cornputer-aided design (CXD) tool ro 

implement design. simulation. and prototyping of digital delta-sigma modulators and 
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oscillators of ubitrary order and signal band. This tool bears the name DSMOD for 

"Delta-Sigma Modulator and Oscillator Designei'. 

Section 4.2 of this chapter coven the existing CAD tools which solve problerns 

similar to the ones at hand. and discusses their applicabiiity to the design of delta-sigma 

oscillators. Based on that brief discussion. Section 4.3 explains the choices that were made 

regarding the actual implementation of DSMOD. Section 4.4 presents each of the capabil- 

ities of the tool in detail. including a description of the user interface and of the algo- 

rithms. Possible improvements to the tool are discussed in Section 1.5. 

4.2 Existing CAD Tools 

Yumerous general-purpose filter and circuit design tools exist but they are not 

reviewed here because they cannot provide an integrated environment used to design. sim- 

date and impiement digital delta-sigma modulators and oscillators. .More specialized tools 

which ded with specific aspects of these three tasks are regularly reported in the litsrature. 

FiltorX [46], for instance. can design continuous time filters of any order. according to a 

vmiety of optimization cnm-ia and ngainst a r b i t r q  sets of constraints on the magnitude 

and phase response. This tool could be used to design a NTF. The shoncoming is that the 

rest of the design and simulation work must still be performed by another tool. Hoivever 

when a very special 9TF is needed rsuch as for optimizing the noise spectrum of a signal 

source in a mixed-signal testing application. as proposed in Section 3.5.3). a tool such as 

FiltorX should be used. and the resulting NTF c m  then be passed on to the delta-sigma 

oxillator CAD tool. 

Another design step for which a number of tools sxist is coefficient quantization. 

or digital filter design with CSD coefficients. .Many such tools optimize the design of 

finite-impulse response ( R R )  filters u.ith CSD coefficients [10][-11][17][13]. These filters 

have a large number of zerGs (sometimes more t h m  100)  and the tools generally seek to 

minimize the maximum npple in the passband and stopband. The linear filters embedded 

in delta-sigma oscillators are generally infinite-impulse response ([IR) filters. and there- 
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fore the aforementioned these tools cannot be used. In addition it may be difficult to inte- 

orate these specialized tools with Our delta-sigma oscillator design tool. 
C 

DSiMOD. which is the focus of the remainder of this chapter. was first presented in 

[18] ;LS an integrated design and prototyping environment for delta-sigma oscillators. 

4.3 Implementation Choices 

4.3.1 Programming Platform 

The preceding section points to the fact that even though a specialized CAD tool is 

potverfd to solve part of the design problem. it ma? be difficult to link it to the rest of the 

design flow. For this reason the tool presented here was propmmed for .MATLAB [Ml. 

due to the Hexibility and widespread use of this computation and visualization software 

package. In other words. MATLAB constitutes the common basis rhrough which a number 

of toois c m  communicate at a high-level of abstraction by sharing variables and functions. 

In addition. .MATLAB handles al1 the computational aspects of the design problem and 

crin be supplemented with a variety of toolboxes containing high-level functions such as 

trcinsfer function design and non-linear equation solving. as well as graphical user inter- 

f x e  (GUI I capabilities. thereby greatly reducing the difficulty of the rask of programming 

the CXD tool. Finally. -MATLAB is an interactive software as well as a programming lan- 

guage. md thus debugging the tool is made e q  by direct access to al1 the variables and 

tùnctions. The only drawbacks are that -MATLXB has little provisions for object-oriented 

programrning. has no data structures except maus. and its language is interpreted rather 

than compiled. 

Simulations require simpler mathematical operations since the' implement simple 

difference equations. Thus t h e  are better implemented in a compiled language. C u-as 

chosen for this purpose. given its widespread use across al1 cornputer platforms. and even 

as a functional modelling language in some instances. for example for Digital Signal Pro- 

cessors. The simulators are interfaced with the rest of the tool via data files using a prede- 

termined format. 
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4.3.2 Graphical User Interface 

The advantages of graphical user interfaces (GUIS) need not be proven here. as vir- 

tually al1 of today's software incorporate one. The CAD tool should make the design flow 

explicit. and let the user see only the relevant design parameters. The result is that no time 

is rvasted wondering what is the next design step and what parameters are important. 

Rather. any extra time c m  be used to evaluate the impact of a wider variety of design 

choices. 

A CAD tool c m  dso be useful as a teaching tool. since it exposes the user to al1 

aspects of the design. Actually. since the design of delta-sigma modulators and oscillators 

cannot be done by hand. due to the complexity of the taîk. learning to design them 

amounts to learning how a compter  can design them. This leaming process would be 

impeded if a specific language had to be Iearned in order to do the design and visualize the 

results. With a graphical interface. the user focuses solely on the design steps. pruarnrters 

and results < transfer function plots. coefficient values. circuit topologies. simulation out- 

puts) without getting involved in producing al1 these results. DS-MOD hris been used at 

.McGill University in the graduate VLSI design projeci course. 

Exarnples of the GUI will be s h o w  in the next section. a'; the- relate to rach indi- 

vidual module of the CAD tool. 

4.4 Design Flow and Algorithms 

Let us reiterate the problem to be solved by the oscillator designer using DS-MOD. 

Givcn specifications on the signal bandwidth and on the SSR of the generated tone over 

the signal band. a detailed signal flow graph (SFG) of a delta-sigma oscillator must be 

obtained and validated through simulation and prototyping. This signal flow graph rnay 

look like the one shown in Fig. 1 . 1 .  It consists of tivo main digital blocks: ri Lossless-Dis- 

crete-Integrator (LDI) resonator and a 1 -bit digital delta-sigma moduiator (here a lowpass. 

LDI-ladder based modulator is depicted. although modulators of other topologies and 

passband types could be used; refer to Section 2.5.2 and Section 3.5.3). The modulator is 

of arbitrary order 3. Al1 the scaling coefficients except ko (ill to A,. B I  to B y  and k l  to 
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kM) are CSDs (sums/differences of powers of two) and so are realized by shift units and 

adders instead of rnultipliers. As demonstrated in Chapter 3. when al1 the coefficients and 

the initial values of the resonator integrators ( ~ ~ ( 0 )  and .r? (0)) are properly chosen, the cir- 

cuit resonates and creates a one-bit output whose power density spectrum is cornposed of 

a single tone and noise concentrated at frequencies outside the signal band. The design 

objectives are to determine the modulator topology. the order of the modulator (Le. the 

number of integrators in the modulator), a set of cheaply realizable modulator coefficients 

and a set of power-of-two resonator coefficients ( zL1 to zLtt)  which implernent the pro- 

grammable coefficient k l  so as to ensure that the oscillator is stable and produces tones of 

the required SNR over the given signal band. 

The next section describes the entire design flow frorn a global perspective. The 

following sections explain each design step in detail. In each case the graphical interface 

and design parameters are presented, the relevant algorithrns are explained. and the out- 

p u t ~  (text. plots and files) created by the tooI rire described. 

4.4.1 Overview of the Design Flow 

The delta-sigma modulator used in the osciliator sets the resolution and bandwidth 

of the oscillator's output signal. Thus. as shown in Fig. 4.2. the design Row starts with the 

creation of a delta-sigma modulator (represented by the grey box). more specifically by 

specifyinz the signal band and designing a modulator NTF which results in an appropri- 

ately low noise floor in the signal band. An arbi t rq  NTF can be designed. or altematively 

DSMOD can search for an NTF which maximizes the SNR of the modulator output (note 

that it is hard to predict the input Ievel at which the maximum SNR is reached, thus the 

need to perform a search). In either case the result is a pair of polynornials or equivalently 

a set of poles and zeros representing the desired NTF. 

At this point the user can elect to either design an oscillator or to continue the mod- 

ulator design procedure. The latter option requires that the user select a rnodulator topol- 

ogy, for which DSMOD cornputes the coefficients which realize the desired NTF (shown 

as "Structure Mapping" in Fig. 4.2). 
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Modulator Design 

7 7 
NTF Design Optimal NTF 

Design 

Structure Mapping Oscillator Design 

Fig. 4.2: Overview of the DSMOD's design flow. 

After the modulator coefficients have been computed, the tool can perfom a simu- 

lation of the modulator or of the oscillator (if one has been designed. as implied by the 

dashed arrows), which is needed to establish stability, SNR. and distortion level. Another 

available option is to quantize the coefficients to CSDs, which also leads to the possibility 

of simulating the resulting design. 

Designing the oscillator amounts to computing a minimal set of power-of-two val- 

ues of zL1  to 2L,t1 which ensure that tones can be generated ai frequencies throughout the 

signal band while kO is kept below a threshold specified by the user. The modulator need 
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Fig. 4.3: (a) Power spectn of the simulated output of oscillators using 
delta-sigma modulaton of order 2 ,4  and 6; (b) using a fith-order modulator, 
for two different bandwidths. 

not be designed for this step; only the signal band must be known by the tool. However. 

simulating the oscillator (and thus proving its stability) requires that a modulator have 

been designed up to "Structure Mapping". 

Lastly. a prototype can be generated only if the modulator coefficients have been 

quantized. Again. either a modulator or an oscillator prototype crin be generated. 

4.4.2 NTF Design 

Fig. 4.3(a) shows examples of power spectra for oscillator designs using modula- 

ton of various orders N. It illustrates one of the basic design trade-offs involved here: 

modulator order vs. dynamic range. It can be seen that higher-order designs result in a 

lower noise-floor in the passband, while they require more hardware. Using DSMOD. one 

c m  quickly find the modulator order needed to meet the design specifications. Another 

trade-off is that of bandwidth vs. dynamic range. If the range of signal frequencies is 

extended relative to the digital clock rate F, and the order of the modulator kept constant. 

then the noise Roor is raised. as illustrated by Fig. 4.3(b). However, if the physical band- 

width is fixed, this means that a slower digital clock rate can be used. The NTF design 

module lets the user explore and optimize both these trade-offs. 
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Fig. 4.4: Dialog box for the NTF design module. 

The user-interface for the N F  design is shown in Fig. 4.4. The design parameters 

c m  be subdivided in two sets. The passband type, the oversampling ratio (OSR) and the 

center frequency Fc define the signal band. The other pararneters determine the shape of 

the NTF. The NTF c m  be elliptic. butterworth with optirnally-located zeros. or supplied 

by the user; this is controlled by the 'NTF Type'. The order of the NTF is given by 'LPP 

Order' if ir is lowpass or highpass. or twice 'LPP Order' if it is bandpass. Finally. the NTF 

Bound allows for controlling the stability of the modulator. It c m  be set to any value 

between 1.0 and 2.0; values closer to 2.0 yield modulators with a higher inband noise 

attenuation but a smaller range of stable input amplitudes. Finally. the bandwidth factor 

("B W Factor" in the dialog box) allows for designing a NTF attenuating the quantization 

noise over a smaller or larger band than the actual signal bandwidth; this may be desired to 

adjust the design against subsequent alterations of the NTF due to coefficient quantization 

effects. 

The "Opt. Butter." NTF type stands for "Buttenvorth with optimally located 

zeros". This design option produces the best NTFs. in our experience. The design algo- 

rithm designs a lowpass prototype NTF as follows. Let us first recall that. as stated in Sec- 



Chapter 4: A Cornputer-Aided-Design Tool: DSMOD 

(4 

Fig. 4.5: Plots created by the NTF 
Inband plot of the NTF magnitude, ( c )  Nyquist-band plot of the NTF 

design module: (a) Pole-Zero plot, (b) 

tion 2.5.1. the NTF numerator and denominator must have equal leading coefficients. 

DSMOD designs a succession of highpass butterwonh transfer functions with that prop- 

eny: the only degree of freedom is the natural frequency of the transfer function. As the 

natural frequency increases above 0, the maximum value of the NTF magnitude increase 

above 1.0. The procedure is stopped when the NTF bound has reached the desired value. 

The poles of the resulting transfer function are kept. and the zeros at DC are replaced by 

zeros on the unit circle, optirnally located in the signal band so as to rnaxirnize the average 

inband attenuation. The optimal zero locations are taken from [25] .  If the desired NTF is 

bandpass or highpass, the poles and zeros are then mapped as explained in Section 2.5.3. 

Fig. 4.5 shows the graphical output of the NTF design operation. Three plots are 



Chapter 4: A Cornputer-Aided-Design Tool: DSMOD 

created; the first displays the poles (x's) and zeros (0's) of the designed NTF. the other two 

show the NTF magnitude response over the signai band and over the Nyquist interval. that 

is from DC to half the sarnpling rate. 

4.43 Structure Mapping 

DSMOD offers a choice of three rnodulator topologies, narnely the integrator cas- 

cade. the resonator cascade. and the LDI-ladder. These are shown in Fig. 2.11. Fig. 2.15 

and Fig. 2.15. respectively, in Section 1.5.2. Once the user h a .  selected one of these three 

topologies (via a trivial didog box, not shown here for the sake of conciseness). the tool 

cornputes the A and B coefficients for which the rnodulator will have the desired NTF. 

This is done by simuItaneovsly solving the equations expressing each t e m  of the NTF 

numerator and denominator in terrns of the modulator coefficients. It turns out that for the 

three topologies the numerator of the NTF depends only on the A coefficients. and thus the 

procedure of solving the equations is broken up in two distinct steps. first for the A coeffi- 

cients, then the B coefficients. 

For instance, the equations relating the NTF of a 4'h-order lowpass LDI-ladder 

modulator to its coefficients are given below: 

where 

and 
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Fig. 4.6: Dialog box for the coefficient quantization module. 

The tool solves the non-linear expressions piven by Eqns. (4.2) and (4.3) simultaneously 

using MATLAB's optirnization toolbox, and thus obtains the A coefficients. It then solves 

the linear matrix equation given by Eqn. (4.2) so as to obtain the B coefficients. Similar 

equations describing al1 three topologies, for orders 2 to 6. are programmed into DSMOD. 

If the modulator is highpass, the same equations apply. and the integrators are 

replaced by differentiators. as explained in Section 2.5.3. If it is bandpass. the integrators 

are replaced by biquads descnbed by a single coefficient C, and the equation for this 

biquad coefficient, Eqn. (2.16). is solved in addition to the lowpass equations. 

4.4.4 Coefficient Quantization 

Fig. 4.6 shows the dialog box for the coefficient quantization operation. and Fig. 

4.7 represents the algorithm. Each of the coefficients c m  be quantized to a specified num- 

ber of power-of-two terrns, from 1 to 6 ("#CSDs for A B C ' ) .  If more than 1 CSD term is 

chosen, then the precision of the quantized coefficient values to be used is specified in bits. 

That is, if the precision is 8 bits, then the CSD tenns for a single coefficients will not differ 
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Fig. 4.8: Plots created by the coefficient quantization module: (a) NTF poles under 
quantization, (b) NTF zeros under quantization. 

noise power. The 1 s t  parameter controlling the search, the NTF bound, fixes an upper 

bound on the maximum of the NTF magnitude resulting from the coefficient quantization 

process. Coefficient sets resulting in NTFs which violate this bound are rejected. When 

the search is complete. the coefficient set resulting in the stable rnodulator NTF with the 

lowest inband noise power is kept. 

Feedback on the search is given via two plots showing the behavior of the NTF 

poles and zeros under the coefficient quantization process. These are shown in Fig. 48(a )  

and (b). respectively. The stars (*) represent the initiai pole/zero location. while the 'x's 

and '0's  represent the poles and zeros of al1 the possible XTF's that were explored. These 

plots give useful feedback about the effectiveness of the coefficient quantization process. 

If no 'x's are found near the original NTF pole locations, for instance. then the quantiza- 

tion process will not yield any usable coefficient set, and the user is made aware of the 

necessity of increasing the number of CSD terms per coefficient. of increasing the extent 

of the search, or of using a different modulator structure. 
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4.4.5 Oscillator Design 

Once the signai band has been specified. the design of a delta-sigma oscillator. 

apart from the rnodulator design, amounts to selecting the set of discrete values that k l  

must be able to take on, and how to implement these values efficiently. The principles of 

this design problem are explained in Section 3.4. The user specifies the maximum value 

that the multiplexed coefficient. ka. c m  take; this bound is called ko,,. Recall that, 

according to Section 3.3. kOmCLr controls the stabiiity of the oscillator. Any two adjacent 

values of k ,  cannot differ by more than Zko,,~r. and the goal becomes finding a small set 

of values of k,. implemented using a minimum number of CSDs. for which this constraint 

is respected. The smaller is kh,, the more stable the oscillator. but also the larger the set 

of values of kl will be and the more costly it will be to implement. 

DSMOD tackles the problem using the algorithm depicted in Fig. 4.9. The range 

of values which the total loop coefficient k must be able to take on. [k,,,. km]. is corn- 

puted frorn the lower and upper edge frequencies defining the signal band. The first value 

of k l ,  which we cal1 kl( 1), must fall between km, and Ln + k,,, . If zero CSD (Le. 

kl=O) is not enough to find such a value. more CSDs are added until this value. kl(l) .  is 

found. Then the next interval in which the algorithm seeks to find a new value of k l ,  i.e. 

Lq(2). is computed; this intervai is equal to: 

[ka,',] = [ ( k l ( l )  +ko,nar)*(k,(l) 1 -  (4.5) 

with 

t ion 

The search procedure is repeated until a value of kl  has been found which lies 

in kOnl,,, of k,,,, the upper bound on the loop gain k. The output of this entire opera- 

is a table of values of kl. expressed as sums and ditferences of powers-of-two. 

4.4.6 Simulation 

Simulations allow the user to assess whether a design is stable for a given signal 

level and frequency. The motivation for this capability is that delta-sigma modulators, 

being non-linear circuits, are only conditionally stable. When embedded in oscillator cir- 

cuits, it becomes very difficult to predict their stability properties. Simulations thus serve 

to validate a given design in a few minutes. 



Chapter 4: A Computer-Aided-Derign Tool: DSMOD 

Compute bounds on k: 
km, & k m  

Set #CSDs for k, to O 

I 

Compute Intewal for Next 
value of k , :  ka & kb 

1 1 lncrement #CSDs for kl 

Choose largest CSD value 
of kl in [k,,kd 

Fig. 4.9: Algorithm for oscillator design with a bound on ko. 

The tool includes a simulation library. capable of producing the outputs of al1 the 

modulator and oscillator topologies that i t  can design. If finite-register-Iength effects are 

not considered, simulating these circuits mounts to iterating through simple difference 
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Fig. 4.10: Dialog box for simulation. 

equations. This is easily programmed in the C language: the advantage over simulating 

using MATLAB is a tremendous gain in speed because the simulators are compiled 

instead of interpreted. The interface between the MATLAB platforni on which most of 

DSMOD runs and the simulators consists in a set a files of a predetermined format. 

through which the simulation parameters and results are cornmunicated. 

The simulation parameters are set by the user via the dialog box shown in Fig. 

4.10. A typical simulation will produce plots of the output's power spectral density such as 

the ones shown in Fig. 4.1 1. dong with a computed estimate displayed as a dotted curve. 

Note also the possibility of perforrning a sweep of the signal amplitude. This fea- 

ture can be used to quickly obtain the maximum SNR that a design c m  achieve. Since one 

cannot predict the input level at which this maximum is attained. it is read from a plot of 

the circuit's SNR versus the input level based on simulation results, as shown in Fig. 4.3. 
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Fig. 4.11: Plots created from simulation output: (a) Nyquist-band power 
spectral density, (b) Inband power spectral density. 

4.4.7 Optimal NTF Design 

The functions of NTF design. structure mapping, and amplitude-sweep simulation 

can be combined to design an NTF which rnaxirnizes the SNR for a given modulator order 

and OSR. The algorithm is a basic search controlled by the parameters of the dialog box 

shown in Fig. 4.13. These are: the NTF bounds to design NTFs for, the signai amplitudes 

to simulate the designs with, the simulation tirne, the sample size over which the SNR is 

cornputed, the signal band parameters. and finaily the rnodulator order. Fig. 4.14 illustrates 

this algorithm: NTFs are designed for a range of NTF bounds, using "Buttexworth with 

optimal zeros" method. For each NTF, the coefficients of an arbitrary modulator structure 

are computed (DSMOD makes use of the resonator cascade for this purpose) and an 

amplitude-sweep simulation is performed. The NTF which yields the highest SNR is 

retumed as the optimal solution for the given search parameters. 
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Fig. 4.12: Plot created from the output of an amplitude-sweep simulation. 

4.4.8 FPGA Prototyping 

Floating point simulations are very practical on a workstation but they may not 

reveal limitations of actuai implementations (usuaily based on fixed-point aithmetic). In 

particular. some designs may become unstable over very long periods of operation. and 

the SNR performance may be impaired by finite-register-length effects. The tool addresses 

this problem by generating and testing actual prototypes of the designed oscillator. 

First, the required register-lengths are entered by the user in the dialog box shown 

in Fig. 4.15. VHDL code is then automatically generated, dong with the scripts needed to 

simulate it and then compile it using an extemal synthesis tool (Synopsys) for a Field-Pro- 

grammable-Gate-Amy (FPGA) technology (Xilinx 40 10). 

In the case of the LDI ladder structure, the integrator variables can be scaled so as 

to make optimal usage of the available register bits. Simulations are perfonned to estab- 
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Fig. 4.13: Dialog box for the optimal NTF design. 

lish the maximum value that each register must be capable of holding. These values are 

then rounded up to the nearest power of two. If these values are called 2'"l to 2 " ' ~  then the 

scaled LDI-ladder modulator which is implernented in the prototype is shown in Fig. 4.16. 

The scaled coefficients ensure that al1 integrators will have maximum values in the same 

range as the first integrator. thereby maximizing the dynamic range of the signals rhrough- 

out the ladder. The number of integer bits in the numerical representation is chosen so as 

to accommodate the maximum possible integrator value. The VHDL code describing the 

tith order LDI-ladder modulator for OSR=32 described in Chapter 2. is @en in Appendix 

B. 

The state variables in an LDI resonator can also be scaied so as to make a rnost 

efficient use of the available register length. To do so we note that. when referring to Fig. 

1.1. both integrators have the sarne gain at any given frequency of oscillation. In addition 

the product of the two integrator gains and of the loop coefficient k must equal 1 ,  since the 

amplitude and frequency of oscillation is sustained over time. As a result each integrator 

contributes a gain equal to l / & .  The scaling is based on the smallest required non-zero 
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Fig. 4.15: Dialog box for prototype code generation. 

.r 1 
n 

Fig. 4.17: Scaled Lossless Discrete Integrator (LDI) resonator when k< 1. 

value of k, called k,,,, which determines the frequency resolution of the resonator. A 

properly scaled LDI resonator is then shown in Fig. 4.17 for the case in which k< 1. and 

Fig. 4.17 for k> 1. The sarne scaiing operation is valid for a delta-sigma oscillator and is 

performed by DSMOD before VHDL code is generated for an oscillator prototype. Note 

that both ko and k ,  (as labelled in Fig. 3.1) must be scaled. 
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Fig. 4.16: Scaled LDI-ladder-based modulator used to implement the prototypes. 

4.5 Possible Improvements 

This tool is still undergoing development. New features are added as research on 

signal generation progresses. 
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Fig. 4.18: Scaled Lossless Discrete Integrator (LDI) resonator when k>l.  

4.5.1 Implementation 

The computing speed of DSMOD could be greatly increased if  it were written in a 

lower-level language. such as C. This cornes about principaily because DSMOD uses 

müny iterative loops. such as in the coefficient-quantization modules. which are ineffi- 

ciently run by the MATLAB software. Fortunately it may be possible to avoid reprogram- 

ming the tool from scratch by automatically generating C-code from the MATLAB code, 

using a newly released MATLAB product. This strategy would allow one to maintain 

MATLAB as the development platform for DSMOD. with al1 the ease-of-debugging 

offered by interactivity and interpreted code. 

4.5.2 Improving Modulator Design 

Arbitrary NTF shapes are greatly desirable in the context of mixed-signal testing 

applications. as argued in Section 3.5.3. A module similar to FiltorX could be developed 

for this purpose. or altematively FiltorX [46] itself could be interfaced to DSMOD or even 

re-coded for MATLAB. 

Because of its rnodularity, the tool cen easily be extended to include new rnodula- 

tor and oscillator topologies. as well as new prototyping technologies. In particular. modu- 

lator topologies optimized for DIA and A D  conversion could be included in the tool. A 

module for scÿling coefficients for SC implementation can be designed, as well as another 

one for decimation and anti-aliasing filters. The trend proposed hrre is to evolve toward a 

block-by-block system design tool. or collection of tools. 
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4.5.3 Improving Simulation 

A module for fixed-point simulations would be quickly redizable based on the 

fixed-point module for SIMULINK, an extension package for MATLAB. 

4.5.4 Improving Prototyping 

For use in industrial settings. the tool could be interfaced with a silicon compiler 

via the VHDL language. so as to produce functional silicon liiyouts in a few hours. In this 

context. estimating the silicon area occupied by the oscillator or modulator would help 

with ff oor-planning an integrated circuit containing other components. 

Finally, the size of each register and computational element in a given design could 

be computed. Simulations c m  help predict the largest possible numerical value at any 

given point in the circuit while a linear mode1 of noise injection due to number tmncation 

can predict the effect of finite-register length. The combination of these two techniques 

should allow one to choose the nurnber of integer and fractional bits needed at rvery point 

in the circuit. This would funher minimize the hardware cost of the designed circuits. 

4.6 Conclusion 

Most of the DSMOD software is written for iMATLAB, a programmable. generai- 

purpose matrix-algebra software. The advantages are multiple. First. the tool is based on a 

powerful. proven mathematical engine. Second. MATLAB provides an ideal flexible 

work-area to supplement the tool and to ailow it to communicate with other similar tools. 

Lastly. the code and the user-interface are usable without any changes across al1 computer 

platforms supported by MATLAB. For these reasons this tool could easily incorporate 

contributions from widespread sources. 

This chapter explained how and why our CAD tool is crucial in allowing a specific 

class of signal generator to be painlessly incorporated in more complex systems. The tool 

is based on a design module specialized for delta-sigma modulators and LDI resonaton. 

and on simulation and prototyping modules for rapid and easy design validation. Our 
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research group has used this tool very successfully in its own research on signai genera- 

tion. 

Such a tool is usable by system-level designers with little knowledge of delta- 

sigma modulation for designing self-testable system. It c m  be viewed as one among a col- 

lection of expert tools that could be used to quickly assemble complex systerns at the 

VHDL-code level or signal-flow-graph level. 
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Conclusions 

5.1 Discussion of Results 

The aim of the research presented her ein has been to explore ways in which d 

sigma signal generation could be improved. Two types of irnprovements were sought: to 

increase the signal qudity for a given bandwidth. and to design delta-sigma oscillators sta- 

ble over an arbitrary signal band. Chapters 2 and 3 presented low-hardware cost solutions 

to these problems. One is the LDI-ladder-based delta-sigma modulator with single-bit out- 

put and unity STF, which can be designed to have cheaply-implementable power-O f-two 

coefficients. Another is the stable delta-sigma oscillator topology. which makes use of an 

additional feedback loop as compared to the original oscillator design. It has been argued 

why these particular circuits were better suited for use in delta-sigma signal generation 

than other ones of the sarne kind. Multitone generation has been addressed too and shown 

to require very simple modifications to the single-tone circuits. 

However this thesis is meant to be more than sirnply an account of these results. It 

strives to formaiize the methods by which the circuits are designed. One key benefit of 

such a formalization is the possibility of automating these design methods. In fact. many 

of them are computationally intensive and necessitate automation. Another goal has been 

to include prototyping into a fast design cycle. Prototyping using Field-Programmable 

devices offers a valuable compromise between lengthy and imprecise simulations and 

costly silicon prototypes. Not only do the FPGA prototypes reponed herein support the 

validity of our results, they also demonstrate how prototyping can be used to rapidly close 

the design cycle with a hardware-level validation of a given design. 
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As a result of the needs for automation and prototyping. DSMOD has been devel- 

oped into a full-8 edged delta-sigma oscillator design software. and presented in Chapter 4. 

It demonstrates the following points: that it is possible to simultaneously develop new cir- 

cuits and the tools needed to design and evaluate them: and that a complex computer- 

aided design tool for a very specific class of digital circuits c m  be built on the MATLAB 

platform and used to design working prototypes in but a few hours. with no expert knowl- 

edge required. 

The motivation for this research is the need for low-cost self-test solutions for 

mixed-signal circuits and systems. The fact that delta-sigma oscillaton are digital circuits 

makes them suitable for a system-design strategy in which hardware is re-used to imple- 

ment the self-test functionality. This should contribute to lowering the cost of endowing a 

4ven mixed-signal device or system with self-test capability. Perhaps the greatest advan- t 

tage of these circuits is that they are fully programmable and are as insensitive to process 

and temperature variations as any digital hardware; the süme is certainly not true of signal 

generation circuits based on andog solutions. 

5.2 Future Directions 

The original  order der oscillütor has been successfully incorponted in a voiceband 

codec [2][3]. The novel oscillators presented here should make possible the irnplementa- 

tion of self-testable mixed-signal circuits more complex and more demanding in perfor- 

mance. Telecommunications systems. with their strict constraints on reliability and the 

huge costs associated with their maintenance. should benefit greatly from on-board high- 

precision testing capability. 

Although the issue of signal genention has now been addressed in much depth. the 

mixed-signai self-test aigorithms and their irnplementation have not been greatly debated 

since [3] was published. There is a definite need to upgrade rhese aigorithms to make use 

of the new possibilities offered by arbitrary-precision delta-sigma oscillators. 

There also is a need to assess the cost trade-offs involved in implementing self- 

testability in mixed-signal integrated circuits, boards and systems. Although such issues 
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are ultirnately deait with by industry, pointing to specific, econornically viable applica- 

tions of mixed-signal self-test would allow industry to more rapidly take over the burden 

of developing prototypes -- and working products. 



Appendix A 

Windowing 

Principles of Windowing 

Consider the task of testing a linear time-invariant discrete-time system. Since the 

system is L.T.I.. one can obtain its transfer function (frequency response) and predict the 

Fourier transform of the output given the input. using Fourier nnalysis. If the system's 

tnnsfer function is H(jo) and the input is x ( r 1 ) .  then the Fourier transform of the ouput -In) 

is given by (see [39], p. 203): 

jwn Yuo) = H UO) .ï ( n )  e . 

In fact, information about the expected output signal is riot only easily obtained but 

also easily çxpressed in the frequency domain. For this reason the specifications of a linear 

system are rnost often given in the frequency domain, and the goal of testing is then to 

decide whether the frequency domain speci fications are met. 

The design is usually tested iigainst its specifications either through simulation or 

by fabricating and testing a real irnplementation. In both cases. typical tests in the fre- 

quency domain consist in observing the system7s response to a sinusoidal or DC input and 

cornparing it to the theoretical response at the same frequency. 

One major problem arises here: sinusoidal and DC inputs extend over an infinite 

period of time. and so do their corresponding outputs. Simulations and physical tests. on 

the contrary, c m  generate only a finite numher of output samples. The complete output of 
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the real system is thus unavailable, and it is impossible to directly compare the Fourier 

transform of the desired output to the one of the actual output. 

However. the finite number of output samples c m  be processed so that they give 

rise to a good approximation of the Fourier transform of the infinite-duration output 

(which would be obtained if the test or the simulation ran forever). Windowing is the 

name given to this type of processing, in which IV output samples are weighted üccording 

to their time-index. so as to reduce the rffects of using a finite-extent output sequence. 

In the mathematical formulation that follows. it is assumed that the complete out- 

put sequence y(n) is available, and that the window has zero value everywhere except in 

the observation interval. This tnck allows us to think of the windowed, finite-duration out- 

put as the product of the complete output with another sequence. even though the com- 

plete output is unavailable. Additional assumptions are that N is even and that the 

observation interval is [-N/2, N/2- I l .  

In addition to being equd to zero everywhere except in the observation interval, 

the window ii.*(n) must be even except for its last value in the observation interval. which 

equrils O (see 1481). To summarize. the constraints on w(n) are: 

The Fourier transform of the windowed output is given by: 

Before examining in details the effects of windowing, it is pertinent to realize that 

nothing tells us a-priori that the Fourier transform of a finite number of unprocessed sam- 

ples will appropriately approximate the Fourier transform of the complete signal. In fact 

the key to windowing is choosing how to weight the samples in the finite-duration obser- 
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Fig. A.l: (a) A typical 1-bit noise-shaped data converter output sequence; 
(b) its Fourier transform 

vation interval so that their Fourier transform constitutes a good approximation, depend- 

ing on the pwticularities of the system [48] and the features of the output signal which are 

to bc observed. 

The specific effects of windowing are best explained through an example. Fig. A. 1 

shows part of one possible output ofa  discrete-time systcm. namely the output of a one-bit 

delta-sigma converter. The Fourier transform of the output is also shown. (In the case of 

the delta-sigma converter, which is not a linear system. the expectsd Fourier transform of 

the output is obtained after the system has been linearized.) Note that the output sequrnce 

has infinite duration. In this particular example the Fourier transform indicates that the 

signal is composed of two low-frequency sinusoids plus a fair arnount of noise at high-fre- 

quency and very little noise at Iow-frequency 

As previsousiy explained, only a finite-extent output sequence is obtained from 

simulation or testing. and this truncated output can be thought of as the product of the infi- 
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Fig. A.2: (a) Processing window; (b) Fourier transform of the same 
window. 

nite-duration sequence with a window which has non-zero values only in the observation 

interval. A typical window and its Fourier transform are shown in Fig. A.3. 

Multiplication of two signals in the time-domain becomes convolution in the fre- 

quency domain. Thus the Fourier transform of the infinite-duration signal ( Fig. A. 1 (b)) is 

convolved with the Fourier transform of the window (Fig. A.3(b)) to result in the Fourier 

transform of the windowed, finite-duration signal, shown in Fig. A.3. 

Windowing results in a deforrnation of the initial Fourier transform. Tones at sin- 

d e  frequencies are spread over a non-zero frequency intervd: the information at frequen- 
C 

cies between two nearby tones is thus lost. Furthemore. the low-power noise floor at low 

frequency is lost under the smearing of the more powerful tones and high-frequency noise. 

In spite of seemingly disastrous results, a carefully chosen window does preserve 

the essential features of the Fourier transform. If the initial signal contains tones at very 

nearby frequencies. then a window with a narrow mainlobe must be used. If the dynamic 

range is initially very large. then a window with low sidelobes is to be chosen. If, as in the 
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Fig. A.3: (a) Windowed output sequence; (b) Fourier transform of the 
windowed sequence. 

case of noise-shaped signals. there are two frequency regions with very different power 

levels. then a window with a fast sidelobe decay is preferred so as to minimize the inter- 

ference of one region over the other. The theoretical details of windowing are presented in 

[48 1 - 
Finally. the Fourier transforrn of the windowed signal is computed at discrete fre- 

quencies by an FFT dgorithm; in the time domain this corresponds to periodically extend- 

ing the signal, as shown in Fig. A.3. 

Additional considerations corne into play in obtaining a reasonable approximation 

to the desired Fourier transforrn. 

First. the effect of start-up transients must be minirnized. This is accomplished by 

discarding the initial samples of a simulation or a test. and keeping the rest of the samples 

for analysis. As a rule of thumb. the second half of the results can be used for frequency 

analysis, while the first half should be ignored. 
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Fig. A.4: (a) Periodic extension of the finite-duration sequence; (b) discrete 
Fourier transform of the finite-duration sequence. 

The second consideration is a trick that takes advantage of a property of most win- 

dows and of the use of the discrete Fourier transform. The Founer transform of an N-point 

window equds zero at al1 multiples of k / X  except at low-frequencies. Also. the discrete 

Fourier transform has values only at frequencies that are multiples of M N .  Thus. a tone at 

one of these discretized frequencies will spread only to nearby frequency bins. In practical 

terms. the penod of such a tone must br a divisor of the sarnpie-size. 

A.2 High-Performance Windows 

Nuttail [45] identifies a basic tradeoW in designing or choosing a window: that 

between a low main sidelobe level and fast-decaying sidelobes at higher frequencies. Here 

we focus on windows providing fast-decaying sidelobes. since we are worried about very- 
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high resolution single tones being smeared across the signal band because of their inevita- 

ble incoherence due to delta-sigma modulation. 

Fast decaying sidelobes are obtained when many derivatives of the window at its 

edges are continuous. In general. a raised-cosine window is defined as: 

where K+1 is the number of cosine terms making up the window and N is the window 

length. A K+ 1-term window c m  be made to have al1 its derivatives up to the ( X - l  

equal to zero everywhere. provided the following equation is respected: 

As an example. the coefficients of the 4-term. continuous-fifth-derivative raised-cosine 

window are given in [45] to be: 
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reset: in bit); 
-- pragma template 

end modulator; 

architecture structural of modulator is 

signal subfirst-out: bit-vector(size-1 downto O)  ; 
signal subl-out: bit-vector(size-1 downto 0); 
signal intl-out: bit-vector(size-1 downto O); 
signal ad&-inl: bit-vector(size+2-1 downto O ) ;  
signal sub2-out: bit-vector(size-l downto 0 )  ; 
signal int2-out: bit-vector(size-1 downto G ) ;  
signal add2-out: bit-vector(size-l downto O) ; 
signal ad&-in2: bit-vector(sizet2-1 downto O); 
signal sub3-out: bit-vector(size-1 downto O); 
signal int3-out: bit-vector (size-i downto 0 ; 
signal add3-out: bit-vector(size-1 downto O);  
signal addb-in3: bit-vector(size+S-l downto O); 
signal sub4-out: bit-vector(size-1 downto O); 
signal int4-out: bit-vector(size-1 downto O); 
signal add4-out: bit-vector(size-l downto O); 
signal addb-in4: bit-vector(size+2-1 downto O) ; 
signal sub5-out: bit-vector(size-1 downto O); 
signal int5-out: Dit-vector(size-1 downto O ) ;  
signal add5-out: bit-vector(size-1 downto 3 ) ;  
signal addb-in5 : bit-vector (sizet2-1 downto O)  ; 
signal ad&-in6 : bit-vector (size+l-1 downto O) ; 
signal int6-out: bit-vector(size-1 downto O); 
signal ad&-out: bit-vector(size+2-l downto 0) ; 
signal addq-out: bit-vector(sizet2-1 downto O )  ; 
signal addq-inl: bit-vector(sizet2-1 downto O) ; 
signal comp-out: bit-vector(size-1 downto O )  ; 
signal mod-in: bit-vector(size-1 downto O); 
signal alu-out,alu-in: bit-vectorisize-l downto 0 )  ; 
signal alu-1-out,alu-1-in: bit-vectorisize-1 dowrito 
signal aSu_out,a2u_in: bit-vector(size-1 downto O )  ; 
signal a2u-l-out,a2u-l-in: bit-vector(size-1 downto 
signal a3u_out,a3u_in: bit-vector(size-1 downto O! ; 
signal a3u-l-out,a3u-l-in: bit-vector(size-l downto 
signal a4u_out,a4u_in: bit-vector(size-1 downto O); 
signal a4u-l-out,a4u-l-in: bit-vector(size-1 downto 
signal a5u-out,a5u-in: bit-vector(size-1 downto O) ; 
signal a5u-1-out,aSu-1-in: bit-vector(size-l downto 
signal a3d_out,a2d_in: bit-vector(size-1 downto O) ; 
signal aSd-l-out,a2d-l-in: bit-vector(size-1 downto 
signal a3d_out,a3d_in: bit-vector(size-1 downto O); 
signal a3d-l-out,a3d-l-in: bit-vector(size-1 downto 
signal a4d_ouc,a4d_in: bit-vector(size-1 downto O); 
signal a4d-l-out,a4d-l-in: bit-vector(size-1 downto 
signal a5d-out,aSd-in: bit-vector(size-l downto O); 
signal aSd-l-out,a5d-l-in: bit-vector(size-1 downto 
signal aod_out,a6d_in: bit-vector(size-l downto O); 
signal a6d-1-out,a6d-1-in: bit-vector(size-1 downto 
signal bl-out,bl-in: bit-vector(size-1 downto O); 
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signal bl-1-out,bl-1-in: bit-vector(size-1 downto O ) ;  
signal b2-out, b2-in: bit-vector (size-1 downto O } ; 
signal b2-1-out,bS-l-in: bit-vector(size-1 downto O); 
signal b3-outlb3_in: bit-vector(size-1 downto O); 
signal b3-1-out,b3-1-in: bit-vector(size-1 downto O )  ; 
signal b4-out, b4-in: bit-vector (size-1 downto O 1 ; 
signal b4-1-out,b4-1-in: bit-vector(size-l downto O ) ;  
signal b5-out,b5-in: bit-vector(size-l downto O); 
signal b5-1-out,b5-1-in: bit-vector(size-1 downto O); 
signal b6_out,b6_in: bit,vector(size-1 dowrito 0); 
signal b6-1-out,b6-1-in: bit-vector(size-1 downto G ) ;  

begin 

- -  Connect 1-bit output to comparator nulti-bit output 
mod-in <= a(size-1 downto O ) ;  

- -  Connect 1-bit output to comparator multi-bit output 
x c =  not comp-out(size-1); 

- - instantiate comparator 
cornp: comparator 

generic map(size, int-bits) 
port map(comp-out, addq_out(size+S-1) ) ;  

addq: adder2 
generic map (size+2,0,0 i 
port map(addq_out,addq_inl,addbbout); 

addq-in1 <= sxt Imod-in, size+2) ; 

addb: adder6 
generic map(size+2,0,0,0,0,@,0) 
port 

map(addb-o~t,addb-inl,addb~in2,addb-in3,addb-i~4,addb-inS,addb-i~6) ; 

addb-in1 <= sxt (bl-out, sizet2) ; 
addb-in2 c =  sxt(b2-out,size+2); 
addb-in3 < =  sxt(b3-out,size+2); 
addb-in4 <= sxt(b4-out,size+2); 
aàdb-in5 <= sxt(b5-out,size+2); 
addb-in6 c= sxt(b6-out,size+2); 

subfirst: adder2 
generic rnap(size,O,l) 
port map(subfirst~out,mod~in,comp~ou~); 

subl: adder2 
generic map(size,O,l) 
port rnap(subl~out,subfirst~out,aSd_out); 

sub2: adder2 
generic map(size,O,l) 
port map(sub2~out1a1u~out,a3d~out); 

sub3:  adder2 
generic map(size,O,l) 
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port map(sub3-o~it,a2u-out,a4d_out); 

sub4: adder2 
generic map(size, 0,l) 
port map(sub4~out,a3u~out,aSd~out) ; 

sub5: adder2 
generic map(size,O,l) 
port rnap (sub5-out, a4u_out, a6d-out) ; 

intl: b-int 
generic map(size1 
port rnap(intl~out,subl~out,clk,reset~ ; 

int2: f - i n t  
generic rnap(size1 
port map(int2~out,sub2~out,clk,xeset); 

int3: b-int 
generic map(size1 
port map(int3~out,sub3~out,clk,reset); 

int4: f-int 
generic map(size) 
port map (int4_out, sub4_out, clk, reset ; 

int5: b-int 
generic map(size) 
port map(int5-out,sub5-out,clK,reset) ; 

int6: f-int 
generic rnap(size) 
port map(int6-out,a5u-out,rik.reset); 

alu-in < =  intl-out; 
alu: shift-right 
generic rnap(s ize ,  1 )  
port map(alu-out,alu-in); 

a2u-in <= int2-out; 
a2u: shift-right 
generic rnapisize,3) 
port map(a2u-out,aSu-in); 

a3u-in <= int3-out; 
a3u: shift-right 
generic map(size,2) 
port map(a3u-out,a3u-in); 

a4u-in <= int4-out; 
a4u: shift-right 
generic map(size,3) 
port map (a4u_out, a4u-in) ; 
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a5u-in <= int5-out; 
a5u: shift-right 
generic map (size, 4) 
port map(aSu-out,a5u-in) ; 

a2d-in <= int2-out; 
a2d: shift-right 
generic map(size,8) 
port map (a2d-out, a2d-in) ; 

a3d-in <= int3-out; 
a3d: shift-right 
generic map(size, 5 )  

port map(a3d_out,a3d_in); 

a4d-in <= inc4-out; 
a4d: shift-right 
generic rnap(size,7) 
port map (a4d_out, a4d-in) ; 

a5d-in <= int5-out; 
a5d: shift-right 
generic map(size,6) 
port rnap(a5d_out,a5d_in); 

a6à-in <= int6-out; 
a6d: shift-right 
generic map(size,4) 
port map (a6d_out, a6d-in) ; 

Dl-in <=  intl-out; 
bi : shif t-right 
generic map(size,l) 
port rnap (bl-out , DI-in) ; 

b2,in <= intS-out; 
b2 : shi f t-right 
generic map(size,l) 
port map (b2-out, b2-in) ; 

b3-in <= int3-out; 
b3 : shift-right 
generic map(size,l) 
port map (b3-out, b3-in) ; 

bLin <= int4-out; 
b4: shift-right 
generic map (size, 1) 
port map (b4-out, b4-in) ; 

b5-in <= int5-out; 
b5 : shif t-right 
generic map(size,3) 
port map (b5-out, b5-in) ; 
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b6-in <= int6-out; 
b6 : shi f t-right 

generic map(size, 3 )  
port map I b6_out, b6-in) ; 

end structural ; 
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