VARIATIONAL CALCULATIONS FOR THE LITHIUM ISOELECTRONIC SEQUENCE

By
Mauro Tambasco

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the Department of Physics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada
Feb. 21, 1997
© 1997 Mauro Tambasco

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Abstract

Variational eigenvalues for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states of the lithium isoelectronic sequence ($3 \leq Z \leq 15$) are calculated using multiple basis sets in Hylleraas coordinates. A systematic convergence pattern for each of these nonrelativistic energies is established, and extrapolated values are determined to within an accuracy of several parts in 10^{10} to 10^{11}. An analytical calculation to determine the first two coefficients $\varepsilon^{(0)}$ and $\varepsilon^{(1)}$ of the Z-expansion for the above states of the lithium isoelectronic sequence is also presented. Using improved electron-pair energies, the third coefficient $\sum^{(2)}$ for the above states is determined to twelve significant figures, and the next several coefficients of the expansion are found by applying the linear least squares fit method to the extrapolated variational eigenvalues. Finally, first order relativistic and mass polarization corrections from [8], and [40] are added to the nonrelativistic energies obtained, and the resulting $1 s^{2} 2 s^{2} S-1 s^{2} 2 p^{2} P$ transition energies are compared with experiment to determine the "experimental" QED corrections.

ACKNOWLEDGEMENTS

There are many people whom I would like to thank for their support and encouragement. In particular, I owe many thanks to my supervisor Dr. Gordon W. F. Drake for giving me the opportunity to do this work. His insightful guidance and suggestions were greatly appreciated, and his passion for the subject was very inspiring. Special thanks are also due to Dr. Zong-Chao Yan for the use of his notes and programing code for the lithium calculation, and for all his help and advice. In addition, I would also like to acknowledge the students, faculty and staff members of the Physics Department at the University of Windsor for their support. Finally, a very important thanks to my family (Giovanna, Domenica, and Joe), and my friends and colleagues T. Bastounis, J. Bissada, K. Bruce, P. Calce, M. Cassar, K. Choo, A. Debenedictis, S. Friedman, S. Hadi, J. Halliday, T. Harb, S. Jaimungal, G. Jones, C. Mokren, L. Pan, M. \& L. Vaxman, and Q. Zhang for their encouragement, knowlegde, and wisdom.

Table of Contents

Abstract iii
Acknowledgements iv
List of Tables vii
List of Figures ix
Chapter 1 Introduction 1
$1.1 \quad$ Historical Survey 3
Chapter 2 The Lithium Calculation 10
2.1 The Hamiltonian 10
2.2 The Variational Method 11
2.3 Construction of the Basis Sets 17
$2.4 \quad$ Calculation of the Integrals 19
2.4.1 The Asymptotic-Expansion Method 24
Chapter 3 Calculation of the Z-Expansions 28
3.1 Analytic Calculation of $\varepsilon^{(1)}$ and $\varepsilon^{(2)}$ 31
3.2 Linear Least Squares Method For Obtaining the Remaining Coefficients 39
3.2.1 The Bootstrap Method 41
Chapter 4 Results and Discusion 42
4.1 \quad Z-Expansions From the Least Squares Fit 65
4.1.1 The Electron-Pair Energies 65
4.1.2 \quad The S and P-state Lithium Z-Expansions 68
4.1.3 Comparison With Experiment 75
4.1.4 Conclusion, and Suggestions for Future Work 86
Appendix A Determination of the Del Operators 92
Appendix B Evaluation of the Angular Integral I 96
Appendix C Derivation of the Backward Recursion Relation 101
Appendix D The General Form of the Integral Involved in the Calculation of $\varepsilon^{(1)}$ 103
D. 1 Evaluation of the Angular Part 104
D. 2 Integral Relations for the Evaluation of the Radial Part 106
Bibliography 108
Vita Auctoris 111

List of Tables

Table 1.1 Comparison of a few lithium ground state calculations. 9
Table 3.1 The different types of integrals involved in the calculation of $\varepsilon^{(1)}$. 35
Table 3.2 The principal and angular quantum numbers for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states. 36
Table 4.1 Nonrelativistic energies for the $1 s^{2} 2 s^{2} S$ states of the lithium iso- electronic sequence, in atomic units. 45
Table 4.2 Nonrelativistic energies for the $1 s^{2} 2 p^{2} P$ states of the lithium iso- electronic sequence, in atomic units. 52
Table 4.3 Convergence with the number of data sets used. (Il parameters). 69
Table $4.4 \quad \varepsilon^{(2)}\left(1 s^{2} S\right)$ for various parameter sizes. (100 data sets). 69
Table $4.5 \quad \varepsilon^{(2)}\left(1 s^{2} S\right)$ for data sets consisting of various ranges for Z. (100 data sets). 70
Table $4.6 \quad \varepsilon^{(2)}\left(1 s 2 s^{1} S\right)$ for various parameter sizes. (100 data sets). 70
Table 4.7 Average $\varepsilon^{(2)}\left(1 s 2 s^{1} S\right)$ for data sets consisting of various ranges for Z. (100 data sets). 71
Table $4.8 \quad \varepsilon^{(2)}\left(1 s 2 s^{3} S\right)$ for various parameter sizes. (100 data sets). 71
Table 4.9 Average $\varepsilon^{(2)}\left(1 s 2 s^{3} S\right)$ for data sets consisting of various ranges for Z. (100 data sets). 72
Table $4.10 \quad \varepsilon^{(2)}\left(1 s 2 p^{1} P\right)$ for various parameter sizes. (100 data sets). 72
Table 4.11 Average $\varepsilon^{(2)}\left(1 s 2 p^{1} P\right)$ for data sets consisting of various ranges for Z. (100 data sets). 73
Table $4.12 \quad \varepsilon^{(2)}\left(1 s 2 p^{3} P\right)$ for various parameter sizes. (100 data sets). 73
Table 4.13 Average $\varepsilon^{(2)}\left(1 s 2 p^{3} P\right)$ for data sets consisting of various ranges for Z. (100 data sets). 76

Table 4.14 Convergence with the number of data sets used. (Eight parameters).
Table $4.15 \quad \begin{array}{ll}\text { Average } \varepsilon^{(2)}\left(1 s^{2} 2 p^{2} P\right) \text { for data sets consisting of various ranges for } Z . \\ & 77\end{array}$ (300 data sets).
Table $4.16 \quad \varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right.$) for various parameter sizes. (300 data sets, and $Z=3,4$, ...,15).
Table 4.17 Average $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right)$ for data sets consisting of various ranges for Z. (300 data sets).
$\begin{array}{ll}\text { Table } 4.18 \quad \varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right) \text { for various parameter sizes. (300 data sets, and } Z=3,4, \\ & \ldots, 15) .\end{array}$
Table $4.19 \quad \begin{aligned} & \text { Average } \varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right) \text { for data sets consisting of various ranges for } Z \text {. } \\ & \text { (300 data sets). }\end{aligned} \quad 78$
$\begin{array}{ll}\text { Table } 4.20 \quad \varepsilon^{(3)}\left(1 s^{2} 2 s^{2} P\right) \text { for various parameter sizes. (300 data sets, and } Z=4,5, \\ & \ldots, 15) .\end{array}$
$\begin{array}{ll}\text { Table } 4.21 \quad \varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right) \text { for various parameter sizes. (300 data sets, and } Z=4,5, \\ & \ldots, 15) .\end{array}$
$\begin{array}{lll}\text { Table 4.22 } & \begin{array}{l}\text { Comparison of the coefficients obtained for the } 1 s^{2} 2 s^{2} S \text { state } Z \text {-expan- } \\ \text { sion for various parameter sizes and ranges. (} 300 \text { data sets). }\end{array} & 79\end{array}$
$\begin{array}{lll}\text { Table 4.23 } & \begin{array}{l}\text { Comparison of the coefficients obtained for the } 1 s^{2} 2 p^{2} P \text { state } Z \text {-expan- } \\ \text { sion for various parameter sizes and ranges. (} 300 \text { data sets). }\end{array} & 80\end{array}$
$\begin{array}{ll}\text { Table 4.24 } & \begin{array}{l}\text { Comparison of the nonrelativistic energies of the } 1 s^{2} 2 s^{2} S \text { states of the } \\ \text { lithium isoelectronic sequence with those of } K . T . ~ C h u n g . ~\end{array} 80\end{array}$

Table 4.25	$\begin{array}{l}\text { Comparison of the nonrelativistic energies of the } 1 s^{2} 2 s^{2} S \text { states of the } \\ \text { lithium isoelectronic sequence with those of } \mathrm{F} \text {. W. King.. }\end{array}$
1	

$\begin{array}{lll}\text { Table 4.26 } & \begin{array}{l}\text { Comparison of the nonrelativistic energies of the } 1 s^{2} 2 p^{2} P \text { states of the } \\ \text { lithium isoelectronic sequence with those of Wang et al. }\end{array} & 81\end{array}$
Table 4.27 The nonrelativistic energies (a.u.) from the Z-expansions ($16 \leq Z \leq 54$). 82
Table 4.28 The nonrelativistic energies (a.u.) from the Z-expansions ($55 \leq Z \leq 92$). 83
$\begin{array}{lll}\text { Table 4.29 } & \text { First order relativistic and mass polarization corrections added to the } \\ \text { nonrelativistic } 1 s^{2} 2 s^{2} S \text { state energies. }\end{array}$
$\begin{array}{ll}\text { Table } 4.30 & \text { First order relativistic and mass polarization corrections added to the } \\ & \text { nonrelativistic } 1 s^{2} 2 p^{2} P \text { state energies. }\end{array} \quad 90$
Table 4.31 $\begin{aligned} & \text { Comparison between theory and experiment for the } 1 s^{2} 2 s^{2} S-1 s^{2} 2 p^{2} P \\ & \text { transition energies of the lithium isoelectronic sequence. }\end{aligned}$
$\begin{array}{lll}\text { Table 4.32 } & \text { Comparison of Theory minus Experiment with the directly calculated } \\ & \text { QED corrections. }\end{array}$

List of Figures

Figure 4.1 Nonlinear parameters $\alpha_{i j} i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s 2 s^{2} S$ states ($\Omega=7$). 59
Figure 4.2 Nonlinear parameters $\beta_{i}, i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s s^{2}{ }^{2} S$ states ($\Omega=7$). 60
Figure 4.3 Nonlinear parameters $\gamma_{i}, i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s s^{2}{ }^{2} S$ states ($\Omega=7$). 61
Figure 4.4 Nonlinear parameters $\alpha_{i}, i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s 2 p^{2} P$ states $(\Omega=8)$. 62
Figure 4.5 Nonlinear parameters $\beta_{i}, i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s 2 p^{22} P$ states ($\Omega=8$). 63
Figure 4.6 Nonlinear parameters $\gamma_{i}, i=1, \ldots, 5$ plotted as a function of inverse Z for the $1 s 2 p^{2} P$ states $(\Omega=8)$. 64

Chapter 1

Introduction

The lithium isoelectronic sequence comprises lithium and all other atoms of higher nuclear charge which have been stripped of all their electrons except for the three innermost. The nonrelativistic description of such three electron systems includes an interaction between each electron and the nucleus as well as an interaction between each of the electrons. It is this interaction between each of the electrons which prevents one from obtaining exact analytic solutions to these systems. However, despite this complication, a particular theoretical technique known as the variational method has been used since the late 1920's to obtain approximate solutions for several electron atoms. The basic idea of this method, as explained in detail in the first chapter, is to choose a trial wavefunction Ψ that depends on a number of parameters $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, and minimize $\langle\Psi| H|\Psi\rangle$ with respect to these parameters to obtain an upper bound to the energy being calculated. This seems simple enough, however, there are many details about the form of the trial wavefunction which must be considered if one is to obtain very accurate solutions for the several electron systems. Some of these details include:

1. the size of the basis set,
2. the explicit inclusion of correlation effects by incorporating powers of the interelectronic coordinates $r_{i j}$ (Hylleraas coordinates), where $i, j=1,2$, and 3,
3. the usage of multiple basis sets (i.e. the explicit inclusion of multiple distance scales),
4. the inclusion of nonlinear as well as linear variational parameters,
5. the optimization of the nonlinear parameters for improved numerical stability, and
6. the inclusion of all terms which yield a systematic convergence pattern for increasing basis set size.

With the incorporation of all these details to form the optimum trial wavefunction, time becomes an important factor for the lithium calculation. This is mainly due to the very slow convergence of integrals with several interelectronic distances $r_{i j}$ in the integrand. The solution to this problem as well as the particulars of an optimum trial wavefunction have been addressed by many atomic theorists over the last 60 years. Much of the success in dealing with these problems has come in the last 10 years as a result of significant increases in computational power and the application of new mathematical techniques. The most recent progress has been made by Drake and Yan [11] who have succeeded in dramatically decreasing the time required for the calculation of three electron integrals in Hylleraas coordinates. This development along with improved methods for obtaining an optimum trial wavefunction have led Drake and Yan to obtain the most accurate results for the lithium calculation to date [38]. One of the purposes of this thesis is to present these recent methods for the lithium calculation.

These methods have been used in this work to determine the nonrelativistic upper bound energies for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states of the lithium isoelectronic sequence for up to $Z=15$. These energies may also be determined from the Z-expansions for these states, namely,

$$
\begin{equation*}
E(Z)=\varepsilon^{(0)} Z^{2}+\varepsilon^{(1)} Z+\varepsilon^{(2)}+\varepsilon^{(3)} Z^{-1}+\varepsilon^{(4)} Z^{-2}+\cdots \tag{1.1}
\end{equation*}
$$

where the leading terms $\varepsilon^{(0)}$ and $\varepsilon^{(1)}$ can easily be evaluated exactly. Equation (1.1) arises by treating the electron-electron interactions as an entire perturbation term and expanding the resultant total energy. In this thesis, $\varepsilon^{(0)}$ and $\varepsilon^{(1)}$ are calculated analytically, an improved value for $\varepsilon^{(2)}$ is obtained as a weighted sum of electron-pair energies and single-electron energies [7], [5], and the next several terms $\varepsilon^{(3)}, \varepsilon^{(4)}, \ldots$ of the expansion are found by performing a least squares fit using the nonrelativistic energies obtained from extrapolations of the three electron computer calculations.

A meaningful comparison with experiment can only be made once the mass polarization and relativistic corrections have been added to the nonrelativistic energies. In this thesis, these corrections have been obtained from Chung et al. [8], [40] for both the S and P-states of the lithium isoelectronic sequence up to $Z=10$. The QED corrections may then be extracted from the difference between theory and experiment and the results may be compared to directly calculated QED results.

1.1 Historical Survey

The first variational calculation for lithium was done in 1930 by Eckhart [13]. He used the following screened type radial wavefunctions

$$
\begin{equation*}
u(r)=\exp (-\alpha r) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v(r)=(1-\gamma r) \exp (-\gamma r) \tag{1.3}
\end{equation*}
$$

for the $1 s$ and $2 s$ orbitals, respectively, where α and γ are the variational parameters. Using these analytic functions he also calculated the ground state energies for the low Z members of the lithium isoelectronic sequence. All his values except for lithium itself were accurate to within a few percent. The calculation for lithium turned out to be in error, and it was later corrected by Wilson [12].

The ground state calculation for lithium was improved upon in that same year by Guillemin and Zener [17] who introduced a third parameter in place of the nonexponential parameter γ in Eq. (1.3). With this new three parameter wavefunction they obtained an improved value of -7.4183 a.u. for the ground state of lithium. Calculations such as these, containing simple analytic wavefunctions, continued throughout the early 1930's. However, the accuracy in the energies obtainable from using these simple separate orbital wavefunctions was limited.

In 1936, important breakthroughs were made by James and Coolidge [21] with their introduction of more elaborate wavefunctions. In an effort to improve upon previous trial functions, they made three different types of adjustments to their wavefunctions, and examined which of these adjustments resulted in significant improvements for the bound states and ionization potential of lithium. The first of these adjustments was the addition of new linear and nonlinear parameters to the radial function representing the $2 s$ orbital. This change was made for the purpose of improving the representation of the $2 s$ orbital, however, the resultant four-term function yielded an improvement of less then 1×10^{-4} a.u. for the ground state energy. The second adjustment that they made was intended to improve the core representation. Previously, the core had been represented by a product of two separate orbital functions, $u\left(r_{1}\right) u\left(r_{2}\right)$. In the place of this product, James and Coolidge tried using a single function $u\left(r_{1}, r_{2}\right)$, which explicitly included the first two powers of the interelectronic coordinates, i.e., $r_{12}=\left|\mathbf{r}_{1}-r_{2}\right|$ and r_{12}^{2}. The use of such coordinates was first introduced, with great success, by Hylleraas [19] [20] for the helium calculation in 1928. As such, it seemed very likely that similar success could be achieved for the lithium calculation since the interelectronic coordinates would improve the core representation by allowing correlation effects within the core to be taken into account. This, in fact, turned out to be the case. With the inclusion of r_{12} and r_{12}^{2}, a value of -7.47268 a.u. was obtained for the ground state energy of lithium. This dramatic improvement was obtained with just a six-term core and a single term valence orbital function. The success indicated that correlation effects within the core have a
significant impact on the variational energies of lithium.
The final adjustment made by James and Coolidge was to abandon the separate orbital concept altogether by including the interelectronic coordinates r_{13} and r_{23} in their wavefunction. This change allowed correlation effects between the valence orbital and the core to be taken into account, and with a new ten term wavefunction, they improved the ground state energy of lithium by a few parts in 10^{3}. Hence, the importance of polarization effects between the core and the outer electron in determining energy levels for three electron systems was also demonstrated.

At this point, one may wonder why the use of interelectronic coordinates in the trial wavefunction for lithium had not been introduced sooner. Eight years had gone by since Hylleraas had first introduced and shown the importance of using such coordinates in calculations for few electron systems. The reason they were not introduced sooner is probably because the inclusion of these coordinates for three electron systems enormously complicates the calculation of the radial integrals. With the inclusion of the interelectronic coordinates, these integrals turn out to be of the general form,

$$
\begin{equation*}
I\left(j_{1}, j_{2}, j_{3}, j_{12}, j_{23}, j_{31} ; \alpha, \beta, \gamma\right)=\int d^{3} v r_{1}^{j_{1}} r_{2}^{j_{2}} r_{3}^{j_{3}} r_{12}^{j_{12}} r_{23}^{j_{23}} r_{31}^{j_{31}} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} \tag{1.4}
\end{equation*}
$$

This integral may be evaluated by expanding powers of $r_{i j}$ in terms of a series of Legendre functions. However, a numerical summation of an infinite series is required if all three powers j_{12}, j_{23}, and j_{31} are odd. James and Coolidge got around this problem by including only one nonzero power of $r_{i j}$ in each of their terms constituting the wavefunction.

Due to the difficulty of solving radial integrals of the form (1.4), improvements over the James and Coolidge results using Hylleraas type trial wavefunctions did not come until almost thirty years later. In 1963, Berggren and Wood [2] extended the wavefunction of James and Coolidge by adding terms alternating between the inclusion of coordinates r_{23} and r_{13} up to the third power. The addition of these terms allowed for an improved description of the core-valence correlation, and their 14 term wavefunction led to an improved value of -7.47631 a.u. for the ground state energy of lithium. In the same year,
a similar extension was also made by Burke [4] who obtained a slightly better value of -7.47695 a.u. Although these extensions by Burke, and Berggren and Wood yielded some improvement in the ground state energy of lithium, it was clear that even more elaborate extensions were necessary if any further improvements were to be made. Such extensions became possible that same year with the discovery of a reasonably efficient algorithm for dealing with the case mentioned above where all three powers of the interelectronic coordinates are odd. In addition to this discovery made by Öhrn and Nordling [28], a computationally useful expansion for arbitrary powers of the interelectronic coordinates was introduced by Sack [34] a year later. Perkins [30], in 1968, also provided a similar expansion but for only the integral powers of the coordinates $r_{i j}$. With the introduction of these powerful computational tools, the door was now open for calculations with more complex Hylleraas type wavefunctions.

In 1968, Larsson [24] made use of the new computational tools for his lithium calculation which involved the most complex Hylleraas type wavefunctions anyone had ever used up until then. He performed calculations for various basis set sizes up to a size which included 60 different radial terms. The terms he used were selected on the basis of their ability to improve the ground state energy, and with these trial and error selection processes he obtained a final energy of -7.478025 a.u.

While various Hylleraas type variational calculations were being studied during the 1960's, the usefulness of Z-expansions for predicting atomic properties, such as the correlation energy, were also being explored [7][5][39]. To make meaningful predictions for the atomic properties, the expansions were carried up to second-order. The second-order coefficient $\varepsilon^{(2)}$ of the Z-expansion (1.1) was derived from electron-pair eigenfunctions. This method for calculating $\varepsilon^{(2)}$ appears to have been first pointed out by Bacher and Goudsmit [1] in 1934. However, it wasn't until almost three decades later that the method was used to extend the Z-expansions for the lithium isoelectronic sequence.

In 1960, Sinanoğlu [37] showed that the first order wavefunction $\Psi^{(1)}$, [see Eqs. (3.11) and (3.15)], can be obtained rigorously in terms of the first order wavefunctions of in-
dependent two-electron systems. For example, if $\phi^{(1)}\left(1 s^{2}{ }^{1} S\right), \phi^{(1)}\left(1 s 2 s^{3} S_{0}\right), \phi^{(1)}(1 s 2 s$ $\left.{ }^{3} S_{1}\right)$, and $\phi^{(1)}\left(1 s 2 s{ }^{1} S\right)$ are first-order corrections to the two-electron states, then the first-order wavefunction for the lithium ground state can be written as

$$
\begin{align*}
\Psi^{(1)}\left(1 s^{2} 2 s^{2} S\right)= & 2^{-(1 / 2)} \mathcal{A}\left\{\phi_{12}^{(1)}\left(1 s^{21} S\right) c_{3}+2^{-(1 / 2)}\right. \\
& \left.\times\left[\phi_{12}^{(1)}\left(1 s 2 s^{3} S_{0}\right)-\phi_{12}^{(1)}\left(1 s 2 s^{1} S\right)\right] a_{3}+\phi_{12}^{(1)}\left(1 s 2 s^{3} S_{1}\right) b_{3}\right\}, \tag{1.5}
\end{align*}
$$

where $a=1 s \alpha, b=1 s \beta$, and $c=2 s \alpha$ are one electron hydrogenic solutions for nuclear charge Z, the subscripts denote electrons, and α and β represent spin up and spin down, respectively. \mathcal{A} is the three particle antisymmetrizer (2.11). The first-order corrections to the two-electron states can be obtained individually by variational or other methods.

With the first-order wavefunction $\Psi^{(1)}$, the nonrelativistic energies can be calculated to third order, with second and third-order energies $\varepsilon^{(2)}$ and $\varepsilon^{(3)}$ written as a weighted sum of electron-pair energies and certain single-electron energies. In 1965, such a calculation was carried out to second-order by Chisholm and Dalgarno [7] for the ground state lithium isoelectronic sequence. They obtained the pair energies from direct two-electron variational calculations, and presented a method for evaluating the single-electron energies exactly. With this work, they concluded that the nonrelativistic eigenvalues of the $1 s^{2} 2 s^{2} S$ states of the lithium sequence were given by

$$
\begin{equation*}
E_{\left({ }^{2} s\right)}(Z)=-1.125 Z^{2}+1.02280521 Z-0.40814899+O\left(Z^{-1}\right) \tag{1.6}
\end{equation*}
$$

Several years later, a similar calculation was done by Chisholm et al. for the $1 s^{2} 2 p{ }^{2} P$ state of the lithium isoelectronic sequence [5] with the result

$$
\begin{equation*}
E_{\left({ }^{2} P\right)}(Z)=-1.125 Z^{2}+1.02280521 Z-0.52717136+O\left(Z^{-1}\right) \tag{1.7}
\end{equation*}
$$

It turned out, however, that the calculated second order energies in (1.6) and (1.7) were slightly off. In 1969, an improved value for the pair energy $\varepsilon^{(2)}\left(1 s 2 s{ }^{1} S\right)$ had been used
by Horak et al. [39], and this led to a slightly more accurate value for $\varepsilon^{(2)}\left(1 s^{2} 2 s^{2} S\right)$ than that of Chisholm and Dalgarno. They also made a correction to one of the singleelectron energy terms used in the calculation of the second order coefficient $\varepsilon^{(2)}\left(1 s^{2} 2 p\right.$ ${ }^{2} P$) of Eq. (1.7). With these adjustments they obtained $\varepsilon^{(2)}\left(1 s^{2} 2 s^{2} S\right)=0.4081652$ and $\varepsilon^{(2)}\left(1 s^{2} 2 p^{2} P\right)=0.5285786$ for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ state expansion, respectively.

A few years later, Seung and Wilson [36] carried out a similar calculation for the $1 s^{2} 2 s^{2} S$ state up to the third order. Their work led to the result that the nonrelativistic energy for this state is given by

$$
\begin{align*}
E_{\left({ }^{2} S\right)}(Z)= & -1.125 Z^{2}+1.022805 Z-0.4083 \\
& -0.0230(1 / Z)+O\left(Z^{-2}\right) \tag{1.8}
\end{align*}
$$

To obtain this result, they used the same pair energies as Chisholm and Dalgarno, however, their calculation for the single-electron terms was less extensive. These terms were evaluated only approximately using variationally determined representations of the twoelectron pair functions. From Table 1.1 below, we see how the second and third order Z-expansions compared to some of the variational calculations for the lithium ground state.

During the 1970's, Larsson's work was extended with Hylleraas type variational calculations for various states of lithium, and for the ground state of the lithium isoelectronic sequence [31]. Despite this progress, however, the next significant gains with these cypes of calculations did not come until 1986 with the ground state lithium calculation by King and Shoup [23]. The importance of the King and Shoup calculation was their employment of a more systematic method for extending the basis set size. Instead of increasing the size of the basis by using trial and error techniques, they simply included all possible permutations of the powers of the coordinates that added to a fixed sum. This unbiased approach of extending the basis set later proved useful for convergence studies.

In 1989, King extended his calculation to the ground state lithium isoelectronic se-

Table 1.1: Comparison of a few lithium ground state calculations.

Method	Author	Energy (a.u.)
Variational	James and Coolidges	-7.47607
Variational	Burke ${ }^{\text {b }}$	-7.47695
Variational	Larsson ${ }^{\text {c }}$	-7.478025
Perturbation	Horak et al. ${ }^{\text {d }}$	-7.46461
Perturbation	Seung and Wilson ${ }^{\text {e }}$	-7.47262
	${ }^{\text {a }}$ Reference [21]. ${ }^{\mathrm{b}}$ Reference [4]. ${ }^{\text {c Reference [24]. }}$ ${ }^{\text {d Reference [39]. }}$ ${ }^{\text {e }}$ Reference [36].	

quence and to some excited S states [22]. With a total of 602 terms, they obtained the nonrelativistic ground state energy with an accuracy of a few parts in 10^{6}. A few years later, another dramatic improvement was made by McKenzie and Drake [25]. The main difference between their wavefunction and previous wavefunctions was the use of a multiple basis set, that is, their basis set was divided into sectors with different scale factors α, β, and γ. Using up to 1134 terms in their basis set, the result they obtained for the ground state energy of lithium was two orders of magnitude more accurate than previously obtained values. This result remained to be one of the most accurate until the recent calculation by Yan and Drake in 1995 [38]. They improved upon the multiple basis set method by using a better partitioning of the different sectors, and they also discovered an asymptotic expansion method which they used to deal with the slowly convergent integrals [11]. This latter improvement allowed them to carry out computationally efficient calculations with significantly larger basis set sizes. Their nonrelativistic calculations for the $1 s^{2} 2 s^{2} S, 1 s^{2} 2 p^{2} P$, and $1 s^{2} 3 d^{2} D$ states of lithium converged to a few parts in $10^{10}-10^{11}$. These are the most accurate values to date.

Chapter 2

The Lithium Calculation

In order to determine the energies and states of lithium and other three electron systems, we must first determine the form of the Hamiltonian. Once this is done, we may proceed to solve the Schrödinger equation to find nonrelativistic solutions of our system. However, as we shall see below, no exact analytic solutions are possible for three electron systems. As a result, we shall turn to the variational method in Hylleraas coordinates as a means of obtaining approximate high precision solutions for these systems.

2.1 The Hamiltonian

Assuming infinite nuclear mass, the nonrelativistic Hamiltonian (in atomic units with $e=\hbar=1$) for three electrons in a Coulomb potential is given by

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i=1}^{3} \nabla_{R_{i}}^{2}-Z \sum_{i=1}^{3} \frac{1}{R_{i}}+\sum_{i=1}^{3} \sum_{j>i}^{3} \frac{1}{R_{i j}} \tag{2.1}
\end{equation*}
$$

where Z is the nuclear charge. Now substituting $r=R / Z$, we obtain

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i=1}^{3} \nabla_{i}^{2}-\sum_{i=1}^{3} \frac{1}{r_{i}}+\frac{1}{Z} \sum_{i=1}^{3} \sum_{j>i}^{3} \frac{1}{r_{i j}} \tag{2.2}
\end{equation*}
$$

the Hamiltonian in Z-scaled atomic units. The form of the ∇_{i}^{2} operators is derived in Appendix A.

From Eq. (2.2), we see that the eigenvalue equation, $H \Psi=E \Psi$, cannot be solved exactly. This is due to the fact that the interelectron interaction terms, $r_{i j}$, cause the equation to be nonseparable. As a result, we resort to the variational method for finding solutions.

2.2 The Variational Method

The variational method is one of the principal methods used to obtain approximate energy levels and wave functions of a system for which no exact analytic solution exists. The general form of the variational principle is stated as follows:

Theorem 1 The mean value of the Hamiltonian H,

$$
\begin{equation*}
\langle H\rangle=E(\Psi)=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \tag{2.3}
\end{equation*}
$$

is stationary if and only if the state vector $|\Psi\rangle$ to which it corresponds is an eigenvector of H, and the stationary values of $\langle H\rangle$ are eigenvalues of H.

A proof of this theorem may be found in many quantum mechanics books (for example, Messiah [26]). In essence, the theorem allows us to apply the variational method in lieu of solving Schrödinger's equation. In doing so, it creates a means for setting up approximate solutions of Schrödinger's equation.

The main idea behind the method is to choose a wavefunction $\Psi_{t r}$, which may be expressed in terms of a finite linear combination of linearly independent functions whose coefficients are the parameters with respect to which $\langle H\rangle_{t r}=E_{t r}$ is minimized. That is, $\Psi_{t r}$ is expanded as

$$
\begin{equation*}
\Psi_{t r}=\sum_{i=0}^{M} c_{i} \Phi_{i} \tag{2.4}
\end{equation*}
$$

and the coefficients are determined from the condition $\partial E_{t r} / \partial c_{i}=0$, for $i=0, \ldots, M$. This procedure is equivalent to solving the following generalized eigenvalue equation

$$
\begin{equation*}
\mathbf{H c}=\lambda \mathbf{O c} \tag{2.5}
\end{equation*}
$$

where \mathbf{H} is the Hamiltonian matrix with matrix elements given by $H_{i j}=\left\langle\Phi_{i}\right| H\left|\Phi_{j}\right\rangle, \mathbf{O}$ is the overlap matrix with matrix elements $O_{i j}=\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle$, and \mathbf{c} is a column vector with elements c_{i}. To illustrate the equivalence of these procedures, we begin by substituting (2.4) into (2.3) with $\Psi=\Psi_{t r}$

$$
\begin{align*}
E_{t r} & =\frac{\left\langle\Psi_{t r}\right| H\left|\Psi_{t r}\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle} \\
& =\frac{\sum_{i j} c_{i}^{*} c_{j} H_{i j}}{\sum_{i j} c_{i}^{*} c_{j} O_{i j}} \tag{2.6}
\end{align*}
$$

Next, we differentiate with respect to the coefficients

$$
\begin{align*}
\frac{\partial E_{t r}}{\partial c_{k}} & =\frac{\sum_{i} c_{i}^{*} H_{i k}}{\sum_{i j} c_{i}^{*} c_{j} O_{i j}}-\left(\sum_{i} c_{i}^{*} c_{j} O_{i j}\right)^{-2} \sum_{i} O_{i k} c_{i}^{*} \sum_{i j} c_{i}^{*} c_{j} H_{i j} \\
& =\frac{\sum_{i} c_{i}^{*} H_{i k}}{\sum_{i j} c_{i}^{*} c_{j} O_{i j}}-\frac{E_{t r} \sum_{i} c_{i}^{*} O_{i k}}{\sum_{i j} c_{i}^{*} c_{j} O_{i j}} \tag{2.7}
\end{align*}
$$

Finally, setting (2.7) equal to zero we get the generalized eigenvalue equation (2.5).
We have thus shown that the variational principle leads us to solve Eq. (2.5) for the coefficients c_{i} and the corresponding eigenvalues $\lambda_{i}, i=0, \ldots, M$. We shall now show that the lowest of these eigenvalues is necessarily greater than or equal to the true ground state eigenvalue. That is, we shall prove that

$$
\begin{equation*}
E_{t r}=\frac{\left\langle\Psi_{t r}\right| H\left|\Psi_{t r}\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle} \geq E_{0} \tag{2.8}
\end{equation*}
$$

where E_{0} is the smallest eigenvalue of H.

To this end, we begin by choosing an arbitrary eigenfunction $\Psi_{t r}$ of the state space of space of the system. For convenience, we assume that $\Psi_{t r}$ is normalized so that $\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle=\sum_{i}\left|c_{i}\right|^{2}=1$. Now, if this function $\Psi_{t r}$ is expanded in a complete set of eigenstates of H, denoted Φ_{i}, with corresponding eigenvalues E_{i}, where $i=0,1,2, \ldots, M$, then we get

$$
\begin{align*}
E_{t r} & =\left\langle\Psi_{t r}\right| H\left|\Psi_{t r}\right\rangle=\sum_{i}^{M} \sum_{j}^{M} c_{i}^{*}\left\langle\Phi_{i}\right| H\left|\Phi_{j}\right\rangle c_{j} \\
& =\sum_{i}^{M} \sum_{j}^{M} c_{i}^{*} c_{j} E_{j}\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle \\
& =\sum_{i}^{M}\left|c_{i}\right|^{2} E_{i} \\
& \geq E_{0} \sum_{i}^{M}\left|c_{i}\right|^{2}=E_{0} \tag{2.9}
\end{align*}
$$

which proves (2.8).
More generally, it can also be shown that for a spectrum which is bounded from below, the remaining exact energies $E_{1}, E_{2}, \ldots, E_{M}$, will always lie below the corresponding higher trial energies $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}$. This is known as the Hylleraas-Undheim-MacDonald (HUM) Theorem. It follows from the matrix interleaving theorem which states that if an extra row and column is added to the matrices \mathbf{H} and O then the M old eigenvalues interleave the $M+1$ new ones. As a result, all but the highest of the $M+1$ new eigenvalues will lie below the M old eigenvalues, and as the size of the matrices approaches infinity, the exact spectrum of the bound states will be approached from above.

In the case of the lithium calculation, the trial wavefunction was written as

$$
\begin{equation*}
\Psi=\mathcal{A}\left(c_{0} \phi_{0}+\sum_{\mu=1}^{N} \sum_{v=1}^{N_{\mu}} c_{\mu v} \phi_{\mu \nu}\right) \tag{2.10}
\end{equation*}
$$

where \mathcal{A} is the three-particle antisymmetrizer given by

$$
\begin{equation*}
\mathcal{A}=(1)-(12)-(13)-(23)+(123)+(132) \tag{2.11}
\end{equation*}
$$

N is the number of sets of exponential parameters $\alpha_{\mu}, \beta_{\mu}$, and γ_{μ} being used, N_{μ} is the number of terms for a given set μ, c_{0} and the $c_{\mu \nu}$ are the linear variational coefficients, and ϕ_{0} and the $\phi_{\mu v}$ are basis functions. The numbers in parentheses in Eq. (2.11) represent permutation operators which act to interchange the spacial and spin coordinates of the three particle wavefunction. For example, the operator (123) represents the permutation in which coordinate 1 takes the place of coordinate 3 , coordinate 2 takes the place of coordinate 1, and coordinate 3 takes the place of coordinate 2 .

The function ϕ_{0} is of the form

$$
\begin{equation*}
\phi_{0}=\phi\left(1 s^{2}, Z\right) \phi(2 l, Z-2) \tag{2.12}
\end{equation*}
$$

where $\phi\left(1 s^{2}, Z\right)$ is a variationally determined core wavefunction and $\phi(2 l, Z-2)$ is the hydrogenic wavefunction with angular quantum number l and nuclear charge 2 . The inclusion of ϕ_{0} as a single term in the basis set is mainly for the purpose of improving upon the variational eigenvalue for a given basis set size for the higher states. To see how this works, consider the eigenvalues of (2.12), given by

$$
\begin{equation*}
E_{0}=E\left(1 s^{2}, Z\right)-\frac{(Z-2)^{2}}{2 n^{2}} \tag{2.13}
\end{equation*}
$$

Equation (2.13) gives the correct first several figures of the true energy for the higher states. For example, using a 135 term core wavefunction we obtain the following values for the $1 s^{2} 2 p^{2} P$ and $1 s^{2} 3 d^{2} D$ states of lithium

$$
E_{0}\left(1 s^{2} 2 p^{2} P\right)=-7.404913412 \text { a.u., }
$$

and

$$
E_{0}\left(1 s^{2} 3 d^{2} D\right)=-7.335468968 \text { a.u. }
$$

The actual values determined variationally without the core function [38] are given by $-7.4101565218(13)$ a.u. and $-7.33552354110(43)$ a.u. for the $1 s^{2} 2 p^{2} P$ and $1 s^{2} 3 d^{2} D$ states respectively. Thus, we see that there is agreement between E_{0} and the variational eigenvalues to two significant figures for the P-state and four significant figures for the D-state. For the S-state the agreement is only to one significant figure. This result shows that it is numerically advantageous to include ϕ_{0} in the basis set for the higher states and rewrite the variational priniciple for $\triangle E=E-E_{0}$, so that

$$
\begin{equation*}
\Delta E(\Psi)=\frac{\langle\Psi| H-E_{0}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\min \tag{2.14}
\end{equation*}
$$

In this way, the variational principle is applied to $H-E_{0}$, which yields the correction to E_{0} directly, so that several significant figures in the evaluation of the matrix elements are saved.

From (2.10), the form of $\phi_{\mu v}$ is given by

$$
\begin{equation*}
\phi_{\mu v}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=r_{1}^{j_{1 \mu v}} r_{2}^{j_{2 \mu v}} r_{3}^{j_{3 \mu v}} r_{12}^{j_{12} 2_{\mu v}} r_{23}^{j_{23} \beta_{\mu v}} r_{31}^{j_{31}}{ }^{2} e^{-\alpha_{\mu} r_{1}-\beta_{\mu} r_{2}-\gamma_{\mu} r_{3}} \mathcal{Y}_{\left(l_{1} l_{2}\right) l_{12}, l_{3}}^{L M}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \chi_{1}, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{Y}_{\left(l_{1} l_{2}\right) l_{12}, l_{3}}^{L M}= & r_{1}^{l_{1}} r_{2}^{l_{2 \mu v}} r_{3}^{l_{3}} \sum_{m_{i}}\left(l_{1} m_{1} ; l_{2} m_{2}\left|l_{1} l_{2} ; l_{12} M_{12}\right\rangle\left\langle l_{12} M_{12} ; l_{3} m_{3} \mid l_{12} l_{3} ; L M\right\rangle\right. \\
& \times Y_{l_{1} m_{1}}\left(\mathbf{r}_{1}\right) Y_{l_{2} m_{2}}\left(\mathbf{r}_{2}\right) Y_{l_{3} m_{3}}\left(\mathbf{r}_{3}\right) \tag{2.16}
\end{align*}
$$

and

$$
\begin{equation*}
\chi_{1}=\alpha(1) \beta(2) \alpha(3)-\beta(1) \alpha(2) \alpha(3) \tag{2.17}
\end{equation*}
$$

is the spin function with $M_{S}=1 / 2$.
Now, from (2.15) we see that in addition to finding the optimum linear coefficients $c_{\mu v}$, we must also find the optimum nonlinear parameters $\alpha_{\mu}, \beta_{\mu}$, and γ_{μ}. To this end, N sets of exponential parameters are chosen and the generalized eigenvalue problem
(2.5) is first solved to find the linear coefficients $c_{\mu v}$ and the corresponding variational eigenvalue λ for a given state. Next, the exponential parameters are separately optimized for each set, and the variational eigenvalue is recalculated with the new optimized values. However, optimization of these nonlinear parameters is not as straight forward as the optimization of the linear parameters. The reason for this is that the equation $\partial E / \partial \rho=$ 0 , where ρ represents any nonlinear parameter, is transcendental. This fact leads us to apply Newton's method to find the zeros of the first derivatives of the variational energy with respect to each of the nonlinear parameters. The implicit dependence of E on the nonlinear parameters through the linear coefficients vanishes as a result of the condition $\partial E / \partial c_{\mu v}=0$ used for the optimization of the linear coefficients. Thus, in order to optimize the nonlinear parameters, we only have to be concerned with the explicit dependence of E on these parameters. This explicit dependence is given by

$$
\begin{align*}
\partial E / \partial \rho= & \frac{\left\langle\partial \Psi_{t r} / \partial \rho\right| H\left|\Psi_{t r}\right\rangle+\left\langle\Psi_{t r}\right| H\left|\partial \Psi_{t r} / \partial \rho\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle} \\
& -\frac{\left[\left\langle\partial \Psi_{t r} / \partial \rho \mid \Psi_{t r}\right\rangle+\left\langle\Psi_{t r} \mid \partial \Psi_{t r} / \partial \rho\right\rangle\right]\left\langle\Psi_{t r}\right| H\left|\Psi_{t r}\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle^{2}} \\
= & \frac{2\left\langle\Psi_{t r}\right| H\left|\partial \Psi_{t r} / \partial \rho\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle}-\frac{2 E\left\langle\Psi_{t r} \mid \partial \Psi_{t r} / \partial \rho\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle} \\
= & \frac{2\left\langle\Psi_{t r}\right| H-E\left|\partial \Psi_{t r} / \partial \rho\right\rangle}{\left\langle\Psi_{t r} \mid \Psi_{t r}\right\rangle} \tag{2.18}
\end{align*}
$$

Once the first derivatives are known, the second derivatives are estimated by taking the difference between two slightly differing pre-chosen exponential parameter sets. Newton's method is then employed to find the zeros of the first derivatives, and given that the initial exponential parameters are chosen close to a minimum, the procedure converges within several iterations.

To illustrate this procedure in more detail, consider one of the exponential parameters ρ and its first derivative $D_{k}=\partial E /\left.\partial \rho\right|_{\rho=\rho_{k}}$ to be given by (ρ_{0}, D_{0}), and suppose another value for ρ is chosen close to ρ_{0} in the direction of decreasing energy. If we label this other value ρ_{1}, and calculate the first derivative D_{1}, we have a second point which may
be labeled (ρ_{1}, D_{1}). Now, through any two points there is a unique line which may be exptrapolated using the special case of Lagrange's classical formula for two points [32],

$$
\begin{equation*}
P(x)=\frac{\left(x-x_{2}\right)}{\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)} y_{2} \tag{2.19}
\end{equation*}
$$

where the two points are give by $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Since we want the value of ρ at $\partial E / \partial \rho=0$, we set $P(x)=0$, and rearrange (2.19), to obtain

$$
\begin{equation*}
x=\frac{\left(x_{2} y_{1}-x_{1} y_{2}\right)}{\left(y_{1}-y_{2}\right)} \tag{2.20}
\end{equation*}
$$

Substituting $\left(x_{1}, y_{1}\right)=\left(\rho_{0}, D_{0}\right)$, and $\left(x_{2}, y_{2}\right)=\left(\rho_{1}, D_{1}\right)$ into (2.20), we get

$$
\begin{equation*}
\rho_{2}=\frac{\left(\rho_{1} D_{0}-\rho_{0} D_{1}\right)}{\left(D_{0}-D_{1}\right)} \tag{2.21}
\end{equation*}
$$

This procedure is then repeated with the points (ρ_{1}, D_{1}), and (ρ_{2}, D_{2}) to find (ρ_{3}, D_{3}), and this point may then be used together with (ρ_{2}, D_{2}) to find the next point, and so on, until the changes in the derivatives and in the successive values of the energy are sufficiently small.

2.3 Construction of the Basis Sets

The basis set constructions used for the results obtained in this thesis are those of Yan and Drake [38]. In generating the finite basis sets, all terms from (2.15) are nominally included such that

$$
\begin{equation*}
j_{1_{\mu \nu}}+j_{2_{\mu \nu}}+j_{3_{\mu \nu}}+j_{12_{\mu \nu}}+j_{23_{\mu \nu}}+j_{31_{\mu \nu}} \leq \Omega \tag{2.22}
\end{equation*}
$$

where Ω is a nonnegative integer. This systematic method for selecting terms for the basis sets allows a meaningful convergence study of the eigenvalues to be performed as Ω is progressively increased. However, this method alone does not guarantee adequate
convergence. To be sure that the correct energy eigenvalues are obtained, a systematic search for possible classes of terms yielding a significant lowering of the eigenvalues must also be carried out. For example, the angular coupling for a given total angular momentum L, is given by

$$
\begin{aligned}
& S \text { states }(L=0):\left(l_{1}, l_{2}, l_{3}\right)=(0,0,0)_{A}, \text { and } \\
& P \text { states }(L=1):\left(l_{1}, l_{2}, l_{3}\right)=(0,0,1)_{A},(0,1,0)_{B}
\end{aligned}
$$

where $\left(l_{1}, l_{2}, l_{3}\right)$ denotes the angular momenta being used, and the subscripts A and B label the different nonlinear parameters for a given block of terms. Yan and Drake [38] found that the inclusion of at least a few $(0,1,0)_{B}$ terms for the P states, which describe the core polarization, are necessary for adequate convergence. With the use of only the $(0,0,1)_{A}$ terms, the energy eigenvalue for the $1 s^{2} 2 p^{2} P$ state of lithium converged to an incorrect value of -7.41013634 a.u., even for basis set sizes as large as 1500 terms.

In order to increase the rate of convergence of the basis sets for a given total number of terms, the total basis set used is split up into different sectors with different scale factors α, β, and γ, which are optimized separately. This separation into different sectors increases the convergence of the basis sets by improving the representation of different correlations among the three electrons. The first block $(0,0, L)_{A}$ is partitioned into five sectors covering the different distance scales as follows:

$$
\begin{array}{llll}
\text { sector } 1: & \text { all } j_{12}, & j_{23}=0, & j_{31}=0 \\
\text { sector 2: } & \text { all } j_{12}, & j_{23}=0, & j_{31} \neq 0 \\
\text { sector 3: } & \text { all } j_{12}, & j_{23} \neq 0, & j_{31}=0 \tag{2.23}\\
\text { sector 4: } & j_{12}=0, & j_{23} \neq 0, & j_{31} \neq 0 \\
\text { sector } 5: & j_{12} \neq 0, & j_{23} \neq 0, & j_{31} \neq 0
\end{array}
$$

Thus, there are five sectors for the S states, and six sectors for the P states, since they contain the additional block $(0,1,0)_{B}$. The sizes of each of these sectors are controlled
by assigning an Ω_{i} value to each of them according to

$$
\begin{align*}
\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}\right\} & =\left\{\Omega, \Omega, \Omega,(\Omega, 8)_{\min },(\Omega, 8)_{\min }\right\}, \text { for } L=0, \text { and } \\
\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}\right\} & =\left\{\Omega, \Omega, \Omega,(\Omega, 8)_{\min },(\Omega, 8)_{\min }, \Omega-2\right\}, \text { for } L=1, \tag{2.24}
\end{align*}
$$

where $(a, b)_{\min }$ denotes the minimum of a and b.

2.4 Calculation of the Integrals

In the above discussion of the variational method, it was shown that the variational eigenfunctions and eigenvalues may be found by solving the general eigenvalue problem (2.5). To solve this equation, the matrix elements of H and O must be evaluated. In this section, proceedures for solving the general form of the integrals involved in the evaluation of these matrix elements is presented.

Let us define, $\Phi\left(r_{1}, r_{2}, r_{3}, r_{12}, r_{23}, r_{31}\right) \equiv r_{12}^{\nu_{12}} r_{23}^{\nu_{23}} r_{31}^{u_{31}} \tilde{\Phi}\left(r_{1}, r_{2}, r_{3}\right)$, where $\widetilde{\Phi}\left(r_{1}, r_{2}, r_{3}\right)=$ $r_{1}^{j_{1}} r_{2}^{j_{2}} r_{3}^{j_{3}} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}}$. Now, consider an integral of the form

$$
\begin{align*}
I= & \int d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{3} \Phi\left(r_{1}, r_{2}, r_{3}, r_{12}, r_{23}, r_{31}\right) Y_{l_{1}^{\prime} m_{1}^{\prime}}^{*}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}^{\prime}}^{\prime}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}^{\prime}}^{*}\left(\widehat{r}_{3}\right) \\
& \times Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}\left(\widehat{r}_{3}\right) . \tag{2.25}
\end{align*}
$$

All the matrix elements of H and O may be reduced to the evaluation of integrals of this form. To evaluate this integral, we begin by substituting the expansions derived by Perkins [30], for the interelectronic coordinates. For example, the expansion for $r_{12}^{\nu_{12}}$ is

$$
\begin{equation*}
r_{12}^{\nu_{12}}=\sum_{q_{12}=0}^{L_{12}^{(1)}} P_{q_{12}}\left(\cos \theta_{12}\right) \sum_{k_{12}=0}^{L_{12}^{(2)}} C_{v_{12} q_{12} k_{12}} l_{12}^{q_{12}+2 k_{12}} g_{12}^{v_{12}-q_{12}-2 k_{12}} \tag{2.26}
\end{equation*}
$$

where $L_{12}^{(1)}=\frac{v_{12}}{2}$ and $L_{12}^{(2)}=\frac{v_{12}}{2}-q_{12}$ for even values of v_{12}, and $L_{12}^{(1)}=\infty$ and $L_{12}^{(2)}=$ $\frac{1}{2}\left(v_{12}+1\right)$ for odd values of v_{12}. Also, $s_{12}=\min \left(r_{1}, r_{2}\right)$ and $g_{12}=\max \left(r_{1}, r_{2}\right)$, and the
coefficients $C_{v_{12} q_{12} k_{12}}$ are given by

$$
\begin{equation*}
C_{v_{12} q_{12} k_{12}}=\frac{2 q_{12}+1}{\nu_{12}+2}\binom{v_{12}+2}{2 k_{12}+1} \prod_{t=0}^{S_{q_{12} v_{12}}} \frac{2 k_{12}+2 t-v_{12}}{2 k_{12}+2 q_{12}-2 t+1} \tag{2.27}
\end{equation*}
$$

where $S_{q_{12} v_{12}}=\min \left[q_{12}-1, \frac{1}{2}\left(v_{12}+1\right)\right]$. Now, if we define, $F(v q k)_{12}=C_{v_{12} q_{12} k_{12}} s_{12}^{q_{12}+2 k_{12}} g_{12}^{v_{12}-q_{12}-2 k_{12}}$, and write similar expressions for $r_{23}^{\nu_{23}}$ and $r_{31}^{U_{31}}$, Eq. (2.25) becomes

$$
\begin{align*}
I= & \sum_{q_{12}=0}^{L_{12}^{(1)}} \sum_{q_{23}=0}^{L_{23}^{(1)}} \sum_{q_{31}=0}^{L_{31}^{(1)}} \sum_{k_{12}=0}^{L_{12}^{(2)}} \sum_{k_{23}=0}^{L_{23}^{(2)}} \sum_{k_{31}=0}^{L_{31}^{(2)}} \int r_{1}^{2} d r_{1} r_{2}^{2} d r_{2} r_{3}^{2} d r_{3} \widetilde{\Phi} F(v q k)_{12} F(v q k)_{23} F(v q k)_{31} \\
& \times \widetilde{I}\left(q_{12}, q_{23}, q_{31}\right) \tag{2.28}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{I}= & \int d \Omega_{1} d \Omega_{2} d \Omega_{3} Y_{l_{1}^{\prime} m_{1}^{\prime}}^{*}\left(\widehat{r}_{1}\right) Y_{l_{2}^{\prime} m_{2}^{\prime}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{3}^{\prime} m_{3}^{\prime}}^{*}\left(\widehat{r}_{3}\right) Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}\left(\widehat{r}_{3}\right) \\
& \times P_{q_{12}}\left(\cos \theta_{12}\right) P_{q_{23}}\left(\cos \theta_{23}\right) P_{q_{31}}\left(\cos \theta_{31}\right) . \tag{2.29}
\end{align*}
$$

is the angular part of the integral and $d \Omega_{i}=\sin \theta_{i} d \theta_{i} d \phi_{i}$.
From Eqs. (2.26) and (2.28), we have the terms $s_{i j}$ and $g_{i j}$ denoting the smaller and greater of r_{i} and r_{j} respectively. It would therefore be convenient to break up the radial part of (2.28) into different regions covering the various possibilities of the relative sizes of r_{1}, r_{2}, and r_{3}. For example, an integral over a function, $F\left(r_{1}, r_{2}, r_{3}\right)=f\left(r_{1}\right) f\left(r_{2}\right) f\left(r_{3}\right)$, may be split up in the following way

$$
\begin{aligned}
\int_{0}^{\infty} f\left(r_{1}\right) d r_{1} \int_{0}^{\infty} f\left(r_{2}\right) d r_{2} \int_{0}^{\infty} f\left(r_{3}\right) d r_{3}= & \int_{0}^{\infty} f\left(r_{1}\right) d r_{1} \int_{r_{1}}^{\infty} f\left(r_{2}\right) d r_{2} \int_{r_{2}}^{\infty} f\left(r_{3}\right) d r_{3} \\
& +\int_{0}^{\infty} f\left(r_{1}\right) d r_{1} \int_{r_{1}}^{\infty} f\left(r_{3}\right) d r_{3} \int_{r_{3}}^{\infty} f\left(r_{2}\right) d r_{2} \\
& +\int_{0}^{\infty} f\left(r_{2}\right) d r_{2} \int_{r_{2}}^{\infty} f\left(r_{1}\right) d r_{1} \int_{r_{1}}^{\infty} f\left(r_{3}\right) d r_{3} \\
& +\int_{0}^{\infty} f\left(r_{2}\right) d r_{2} \int_{r_{2}}^{\infty} f\left(r_{3}\right) d r_{3} \int_{r_{3}}^{\infty} f\left(r_{1}\right) d r_{1}
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{\infty} f\left(r_{3}\right) d r_{3} \int_{r_{3}}^{\infty} f\left(r_{1}\right) d r_{1} \int_{r_{1}}^{\infty} f\left(r_{2}\right) d r_{2} \\
& +\int_{0}^{\infty} f\left(r_{3}\right) d r_{3} \int_{r_{3}}^{\infty} f\left(r_{2}\right) d r_{2} \int_{r_{2}}^{\infty} f\left(r_{1}\right) d r_{1} \tag{2.30}
\end{align*}
$$

The first term on the right of (2.30), represents the region where, $r_{1}<r_{2}<r_{3}$, and the following terms represent the regions, $r_{1}<r_{3}<r_{2}, r_{2}<r_{1}<r_{3}, r_{2}<r_{3}<r_{1}$, $r_{3}<r_{1}<r_{2}$, and $r_{3}<r_{2}<r_{1}$, respectively.

Let us define

$$
\begin{align*}
W \equiv & r_{1}^{2} r_{2}^{2} r_{3}^{2} r_{1}^{j_{1}} r_{2}^{j_{2}} r_{3}^{j_{3}} e^{-\alpha r_{1}} e^{-\beta r_{2}} e^{-\gamma r_{3}} s_{12}^{q_{12}+2 k_{12}} g_{12}^{\nu_{12}-q_{12}-2 k_{12}} s_{23}^{q_{23}+2 k_{23}} g_{23}^{\nu_{23}-q_{23}-2 k_{23}} \\
& \times s_{31}^{q_{31}+2 k_{31}} g_{31}^{u_{31}-q_{31}-2 k_{31}} \tag{2.31}
\end{align*}
$$

so that for the first region, we have

$$
\begin{align*}
W(1)= & \iiint_{1} r_{1}^{j_{1}+2} r_{2}^{j_{2}+2} r_{3}^{j_{3}+2} e^{-\alpha r_{1}} e^{-\beta r_{2}} e^{-\gamma r_{3}} r_{1}^{q_{12}+2 k_{12}} r_{2}^{v_{12}-q_{12}-2 k_{12}} r_{2}^{q_{23}+2 k_{23}} r_{3}^{\nu_{23}-q_{23}-2 k_{23}} \\
& \times r_{1}^{q_{31}+2 k_{31}} r_{3}^{\nu_{31}-q_{31}-2 k_{31}} d r_{1} d r_{2} d r_{3} \\
= & \int_{0}^{\infty} r_{1}^{j_{1}+2+g_{12}+g_{31}+2 k_{12}+2 k_{31}} e^{-\alpha r_{1}} d r_{1} \int_{r_{1}}^{\infty} r_{2}^{j_{2}+2+v_{12}-q_{12}+q_{23}-2 k_{12}+2 k_{23}} e^{-\beta r_{2}} d r_{2} \\
& \times \int_{r_{2}}^{\infty} r_{3}^{j_{3}+2+v_{23}+v_{31}-q_{23}-q_{31}-2 k_{31}-2 k_{23}} e^{-\gamma r_{3}} d r_{3} . \tag{2.32}
\end{align*}
$$

Now, we introduce the following definition

$$
\begin{equation*}
W(l, m, n ; \alpha, \beta, \gamma) \equiv \int_{0}^{\infty} d x x^{l} e^{-\alpha x} \int_{x}^{\infty} d y y^{m} e^{-\beta y} \int_{y}^{\infty} d z z^{n} e^{-\gamma z} \tag{2.33}
\end{equation*}
$$

The general analytic expression for this integral, derived by Drake and Yan [11], is

$$
\begin{align*}
W(l, m, n ; \alpha, \beta, \gamma)= & \frac{l!}{(\alpha+\beta+\gamma)^{l+m+n+3}} \sum_{p=0}^{\infty} \frac{(l+m+n+p+2)!}{(l+1+p)!(l+m+2+p)}\left(\frac{\alpha}{\alpha+\beta+\gamma}\right)^{p} \\
& \times_{2} F_{1}\left(1, l+m+n+p+3 ; l+m+p+3 ; \frac{\alpha+\beta}{\alpha+\beta+\gamma}\right), \tag{2.34}
\end{align*}
$$

where ${ }_{2} F_{1}$ is the hypergeometric function. Equation (2.34) is valid for $l \geqslant 0, l+m+1 \geqslant 0$, and $l+m+n+2 \geqslant 0$.

With definition (2.33), (2.32) may be rewritten more succinctly as

$$
\begin{aligned}
W(1)= & W\left(j_{1}+2+g_{12}+g_{31}+2 k_{12}+2 k_{31}, j_{2}+2+v_{12}-q_{12}+q_{23}-2 k_{12}+2 k_{23}\right. \\
& \left.j_{3}+2+v_{23}+v_{31}-q_{23}-q_{31}-2 k_{31}-2 k_{23} ; \alpha, \beta, \gamma\right)
\end{aligned}
$$

Integrals for the other five regions may be written in a similar way using (2.33). After writing the integrals in this way Eq. (2.28) may be rewritten as

$$
\begin{align*}
I= & I\left(l_{1}^{\prime} m_{1}^{\prime}, l_{2}^{\prime} m_{2}^{\prime}, l_{3}^{\prime} m_{3}^{\prime} ; l_{1} m_{1}, l_{2} m_{2}, l_{3} m_{3} ; j_{1}, j_{2}, j_{3}, v_{12}, v_{23}, v_{31}, \alpha, \beta, \gamma\right) \\
= & \sum_{q_{12}=0}^{L_{12}^{(1)}} \sum_{q_{23}=0}^{L_{23}^{(1)}} \sum_{q_{31}=0}^{L_{31}^{(1)}} \sum_{k_{12}=0}^{L_{12}^{(2)}} \sum_{k_{23}=0}^{L_{23}^{(2)}} \sum_{k_{31}=0}^{L_{31}^{(2)}} C_{v_{12} q_{12} k_{12}} C_{v_{23} q_{23} k_{23}} C_{v_{31} q_{31} k_{31}} \tilde{I}\left(q_{12}, q_{23}, q_{31}\right)\left[W \left(j_{1}+2\right.\right. \\
& +q_{12}+2 k_{12}+q_{31}+2 k_{31}, j_{2}+2+v_{12}-q_{12}+q_{23}-2 k_{12}+2 k_{23}, j_{3}+2+v_{23} \\
& \left.-q_{23}-2 k_{23}+v_{31}-q_{31}-2 k_{31} ; \alpha, \beta, \gamma\right)+W\left(j_{1}+2+q_{12}+2 k_{12}++q_{31}+2 k_{31}, j_{3}\right. \\
& +2+q_{23}+2 k_{23}+v_{31}-q_{31}-2 k_{31}, j_{2}+2+v_{12}-q_{12}-2 k_{12}+v_{23}-q_{23} \\
& \left.-2 k_{23} ; \alpha, \beta, \gamma\right)+W\left(j_{2}+2+q_{12}+2 k_{12}+q_{23}+2 k_{23}, j_{1}+2+v_{12}-q_{12}-2 k_{12}\right. \\
& \left.+q_{31}+2 k_{31}, j_{3}+2+v_{23}-q_{23}-2 k_{23}+v_{31}-q_{31}-2 k_{31} ; \beta, \alpha, \gamma\right)+W\left(j_{2}+2+q_{12}\right. \\
& +2 k_{12}+q_{23}+2 k_{23}, j_{3}+2+v_{23}-q_{23}-2 k_{23}+q_{31}+2 k_{31}, j_{1}+2+v_{12}-q_{12} \\
& \left.-2 k_{12}+v_{31}-q_{31}-2 k_{31} ; \beta, \gamma, \alpha\right)+W\left(j_{3}+2+q_{23}+2 k_{23}+q_{31}+2 k_{31}, j_{1}+2+q_{12}\right. \\
& \left.+2 k_{12}+v_{31}-q_{31}-2 k_{31}, j_{2}+2+v_{12}-q_{12}-2 k_{12}+v_{23}-q_{23}-2 k_{23} ; \gamma, \alpha, \beta\right) \\
& +W\left(j_{3}+2+q_{23}+2 k_{23}+q_{31}+2 k_{31}, j_{2}+2+q_{12}+2 k_{12}+v_{23}-q_{23}-2 k_{23}, j_{1}+2\right. \\
& \left.\left.+v_{12}-q_{12}-2 k_{12}+v_{31}-q_{31}-2 k_{31} ; \gamma, \beta, \alpha\right)\right] \\
\equiv & \sum_{q_{12}=0}^{L_{12}^{(1)}} \sum_{q_{23}=0}^{L_{23}^{(1)}} \sum_{q_{31}=0}^{L_{31}^{(1)}} \sum_{k_{12}=0}^{L_{12}^{(2)}} \sum_{k_{23}=0}^{L_{23}^{(2)}} \sum_{k_{31}=0}^{L_{31}^{(2)}} \widetilde{I}\left(q_{12}, q_{23}, q_{31}, l_{1}^{\prime} m_{1}^{\prime}, l_{2}^{\prime} m_{2}^{\prime}, l_{3}^{\prime} m_{3}^{\prime} ; l_{1} m_{1}, l_{2} m_{2}, l_{3} m_{3}\right) \\
& \times I_{R}\left(q_{12}, q_{23}, q_{31}, k_{12}, k_{23}, k_{31} ; j_{1}, j_{2}, j_{3}, v_{12}, v_{23}, v_{31}, \alpha, \beta, \gamma\right) \tag{2.35}
\end{align*}
$$

where I_{R} is the radial part.

Evaluating Eq. (2.29), see Appendix B, we obtain

$$
\begin{align*}
& \tilde{I}=(-1)^{m_{1}^{\prime}+m_{2}^{\prime}+m_{3}^{\prime}}(-1)^{q_{12}+q_{23}+q_{31}}\left(l_{1}, l_{2}, l_{3}, l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}\right)^{\frac{1}{2}} \sum_{n_{1} n_{2} n_{3}}\left(n_{1}, n_{2}, n_{3}\right)\left\{\begin{array}{lll}
n_{1} & n_{2} & n_{3} \\
q_{23} & q_{31} & q_{12}
\end{array}\right\} \\
& \times\left(\begin{array}{ccc}
n_{1} & n_{2} & n_{3} \\
m_{1}^{\prime}-m_{1} & m_{2}-m_{2}^{\prime} & m_{3}^{\prime}-m_{3}
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & m_{1}^{\prime}-m_{1}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
-m_{2}^{\prime} & m_{2} & m_{2}^{\prime}-m_{2}
\end{array}\right)\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
-m_{3}^{\prime} & m_{3} & m_{3}^{\prime}-m_{3}
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{3}^{\prime} & i_{3} & n_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{2} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{31} & q_{23} & n_{3} \\
0 & 0 & 0
\end{array}\right) \\
& \equiv \widetilde{I}\left(q_{12}, q_{23}, q_{31}, ; l_{1}^{\prime} m_{1}^{\prime}, l_{2}^{\prime} m_{2}^{\prime}, l_{3}^{\prime} m_{3}^{\prime} ; l_{1} m_{1}, l_{2} m_{2}, l_{3} m_{3}\right) \tag{2.36}
\end{align*}
$$

for the angular part of the part of the integral. In the case of the S states the angular integral is particularly simple since, $l_{i}=l_{i}^{\prime}=m_{i}=m_{i}^{\prime}=0$, so that (2.36) simply reduces to

$$
\begin{equation*}
\widetilde{I}=\frac{1}{\left(2 q_{12}+1\right)^{2}} \delta_{q_{12}, q_{23}} \delta_{q_{23, q_{31}}} \tag{2.37}
\end{equation*}
$$

This result is easily arrived at by applying the triangle selection rule together with Eq. (2.36) and the relation

$$
\left\{\begin{array}{ccc}
a & b & 0 \tag{2.38}\\
A & B & C
\end{array}\right\}=(-1)^{a+A+C}[(2 a+1)(2 A+1)]^{-1 / 2} \delta_{a, b} \delta_{A, B}
$$

Thus, for the S states, Eq. (2.35) reduces to

$$
\begin{equation*}
I=\sum_{q_{12}=0}^{L_{12}^{(1)}} \sum_{k_{12}=0}^{L_{12}^{(2)}} \sum_{k_{23}=0}^{L_{23}^{(2)}} \sum_{k_{31}=0}^{L_{31}^{(2)}} \frac{1}{\left(2 q_{12}+1\right)^{2}} I_{R}\left(q_{12}, k_{12}, k_{23}, k_{31} ; j_{1}, j_{2}, j_{3}, v_{12}, v_{23}, v_{31}, \alpha, \beta, \gamma\right) \tag{2.39}
\end{equation*}
$$

In general, it can be seen from the $3-j$ symbols in Eq. (2.36), that all of the sums

$$
\begin{array}{ll}
l_{1}^{\prime}+l_{1}+n_{1}, & q_{12}+q_{31}+n_{1} \\
l_{2}^{\prime}+l_{2}+n_{2}, & q_{23}+q_{12}+n_{2} \\
l_{3}^{\prime}+l_{3}+n_{3}, & q_{31}+q_{23}+n_{3}
\end{array}
$$

must be even in order for the integral I to be nonzero. Also, from (2.36) we see that the triangle selection rule requires that

$$
\begin{align*}
\left|q_{12}-q_{31}\right| & \leq n_{1} \leq\left|q_{12}+q_{31}\right| \\
\left|q_{23}-q_{12}\right| & \leq n_{2} \leq\left|q_{23}+q_{12}\right|, \text { and } \\
\left|q_{31}-q_{23}\right| & \leq n_{3} \leq\left|q_{31}+q_{23}\right| \tag{2.40}
\end{align*}
$$

Now, from (2.26), we see that the sum over the $q_{i j}$'s is infinite for odd values of $v_{i j}$, where $i, j=1,2,3$. However, if at least one of the $v_{i j}$'s is even, the sums over the $q_{i j}$'s in (2.35) become finite due to the triangle inequalities (2.40). If all of the $v_{i j}$'s are odd numbers, then a numerical summation of an infinite series is required. In the past, these infinite summations have made calculations for the larger basis sets very time consuming. Recently, however, this problem has been overcome by Drake and Yan [11]. They used an asymptotic-expansion method which accelerated the rate of convergence of these infinite series. A concise description of this method is give in the following section.

2.4.1 The Asymptotic-Expansion Method

If v_{12}, v_{23}, and v_{31} are all odd numbers, then it can be seen from (2.26) that the summations over q_{12}, q_{23}, and q_{31} will be from zero to infinity. However, the q 's are related by the triangle inequalities (2.40) so that, in fact, only one of the summations over the q 's will be from zero to infinity. For example, if we choose the summation over q_{12} to be infinite, then the summations over q_{23} and q_{31} become finite. The upper limits are obtained from the relations (2.40). Thus, if all three powers v_{12}, v_{23}, and v_{31} are odd,
(2.35) may be written as

$$
\begin{equation*}
I=\sum_{q=0}^{\infty} T(q) \tag{2.41}
\end{equation*}
$$

where

$$
\begin{align*}
T(q)= & \sum_{q_{23}=0}^{L_{23}^{(1)}} \sum_{q_{31}=0}^{L_{31}^{(1)}} \sum_{k_{12}=0}^{L_{12}^{(2)}} \sum_{k_{23}=0}^{L_{23}^{(2)}} \sum_{k_{31}=0}^{L_{31}^{(2)}} \tilde{I}\left(q_{12}, q_{23}, q_{31}, l_{1}^{\prime} m_{1}^{\prime}, l_{2}^{\prime} m_{2}^{\prime}, l_{3}^{\prime} m_{3}^{\prime} ; l_{1} m_{1}, l_{2} m_{2}, l_{3} m_{3}\right) \\
& \times I_{R}\left(q_{12}, q_{23}, q_{31}, k_{12}, k_{23}, k_{31} ; j_{1}, j_{2}, j_{3}, v_{12}, v_{23}, v_{31}, \alpha, \beta, \gamma\right) \tag{2.42}
\end{align*}
$$

and $q=q_{12}$.
In calculating the integral I, we note that Eq. (2.41) is essentially composed of the W integral. The hypergeometric functions contained in this integral, Eq. (2.34), are calculated using the backward recursion relation

$$
\begin{equation*}
{ }_{2} F_{1}(1, s+t ; s ; z)=1+\left(\frac{s+t}{s}\right) z_{2} F_{1}(1, s+t+1 ; s+1 ; z) . \tag{2.43}
\end{equation*}
$$

A derivation of this result is given in Appendix C. To deal with the infinite sum over q, the asymptotic-expansion method is employed. This method follows from the asymptotic behaviour of $T(q)$ as $q \rightarrow \infty$. From the W integral, Eq. (2.34), we see that $W \sim 1 / q^{2}$, and from (2.27) we see that $C_{v q k} \sim 1 / q^{(v+1) / 2}$. Combining the asymptotic behaviour from W and the $C_{v q k}$'s in (2.35), we find that

$$
\begin{equation*}
T(q) \sim \frac{1}{q^{\lambda}}, \text { as } q \rightarrow \infty \tag{2.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{v_{12}+1}{2}+\frac{v_{23}+1}{2}+\frac{v_{31}+1}{2}+4 . \tag{2.45}
\end{equation*}
$$

To take advantage of the asymptotic behaviour of $T(q)$, Eq. (2.41) is split up into two parts

$$
\begin{equation*}
I=\sum_{q=0}^{N} T(q)+\sum_{q=N+1}^{\infty} T(q) . \tag{2.46}
\end{equation*}
$$

This way, the first N terms are calculated directly from (2.35), and the remaining $T(q)$ terms may be estimated, for each q, from their asymptotic expansions

$$
\begin{equation*}
T(q)=\sum_{i=0}^{\infty} \frac{A_{i}}{q^{i+\lambda}} \tag{2.47a}
\end{equation*}
$$

provided that N is chosen sufficiently large. Substituting (2.47a) into (2.46), we obtain

$$
\begin{align*}
I & =\sum_{q=0}^{N} T(q)+\sum_{q=N+1}^{\infty}\left(\sum_{i=0}^{\infty} \frac{A_{i}}{q^{i+\lambda}}\right) \\
& =\sum_{q=0}^{N} T(q)+\sum_{i=0}^{\infty} A_{i}\left(\sum_{q=N+1}^{\infty} \frac{1}{q^{i+\lambda}}\right) \\
& =\sum_{q=0}^{N} T(q)+\sum_{i=0}^{\infty} A_{i} \zeta_{N}(i+\lambda), \tag{2.48}
\end{align*}
$$

where $\zeta_{N}(i)=\sum_{k=N+1}^{\infty} 1 / k^{i}$ is the Riemann zeta function with the first N terms subtracted. It can now be seen that the second sum in (2.48) converges as $1 /(N+1)^{i+\lambda}$, and for N sufficiently large $\zeta_{N}(i+\lambda) \sim 1 /(N+1)^{i+\lambda}$ so that only the first few coefficients A_{i} need to be determined.

To determine these coefficients the infinite summation (2.47a) is truncated, and the new upper limit is taken to be some integer M. It is assumed that for a suitable choice of M, the directly calculated $T(q)$ are given exactly by the truncated expansion, and for q large enough, this assumption is true to machine precision. Hence, for a large enough q and a suitable value of M we may use our calculated values of $T(q)$ to obtain the following $M+1$ system of equations

$$
\begin{aligned}
T(N-M) & =\frac{A_{0}}{(N-M)^{\lambda}}+\frac{A_{1}}{(N-M)^{1+\lambda}}+\cdots+\frac{A_{M}}{(N-M)^{M+\lambda}} \\
T(N-M+1) & =\frac{A_{0}}{(N-M+1)^{\lambda}}+\frac{A_{1}}{(N-M+1)^{1+\lambda}}+\cdots+\frac{A_{M}}{(N-M+1)^{M+\lambda}}
\end{aligned}
$$

$$
\begin{equation*}
T(N)=\frac{A_{0}}{(N)^{\lambda}}+\frac{A_{1}}{(N)^{1+\lambda}}+\cdots+\frac{A_{M}}{(N)^{M+\lambda}}, \tag{2.49}
\end{equation*}
$$

which may be solved for the $M+1$ unknowns, A_{i}, where $i=0, \ldots, M$. Therefore, the final estimate of the integral is obtained from

$$
\begin{equation*}
I=\sum_{q=0}^{N} T(q)+\sum_{i=0}^{M} A_{i} \zeta_{N}(i+\lambda) . \tag{2.50}
\end{equation*}
$$

The calculation is carried out by increasing N until I no longer changes to machine accuracy. The size of N required for convergence depends on the size of M, that is, the larger M is the smaller N needs to be to achieve the same convergence. However, as M gets larger, the time required to solve (2.49) becomes greater and calculation become less efficient. Therefore, the limits of M and N are adjusted so as to optimize the convergence and time required for the calculation.

Chapter 3

Calculation of the Z-Expansions

A Z-expansion of a particular state is simply the energy of that state expressed as a power series in Z^{-1}. To see how the Z-expansion is found, we begin by breaking up our Hamiltonian for the three electron case, Eq. (2.2), so that we have

$$
\begin{equation*}
H=H_{0}+H_{1} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \sum_{i=1}^{3}\left(\nabla_{i}^{2}-\frac{1}{r_{i}}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}=\frac{1}{Z} \sum_{i=1}^{3} \sum_{j>i}^{3} \frac{1}{r_{i j}}=\frac{1}{Z}\left(\frac{1}{r_{12}}+\frac{1}{r_{13}}+\frac{1}{r_{23}}\right) \tag{3.3}
\end{equation*}
$$

We next define $V \equiv\left(\frac{1}{r_{12}}+\frac{1}{r_{13}}+\frac{1}{r_{23}}\right)$, and $\lambda \equiv Z^{-1}$, so that, (3.1) becomes

$$
\begin{equation*}
H=H_{0}+\lambda V \tag{3.4}
\end{equation*}
$$

With the Hamiltonian written this way, $\lambda=Z^{-1}$ appears explicitly as a perturbation parameter multiplying the electron-electron Coulomb interaction terms.

Now, if we were to ignore λV in the total Hamiltonian (3.4), we would have a solution
to the eigenvalue problem for the noninteracting three-electron systern. The eigenvalue equation for this system would be

$$
\begin{equation*}
H_{0} \Psi_{n}^{(0)}=\varepsilon_{n}^{(0)} \Psi_{n}^{(0)} \tag{3.5}
\end{equation*}
$$

where the eigenfunctions would be a simple product of one electron orbitals,

$$
\begin{equation*}
\Psi_{n}^{(0)}=\Psi_{n_{1} l_{1} m_{l_{1}} m_{e_{1}}}\left(\mathbf{r}_{1}\right) \Psi_{n_{2} l_{2} m_{l_{2}} m_{e_{2}}}\left(\mathbf{r}_{2}\right) \Psi_{n_{3} l_{3} m_{l_{3}} m_{\varepsilon_{3}}}\left(\mathbf{r}_{3}\right) \tag{3.6}
\end{equation*}
$$

(with the notation $\left.\Psi_{n_{j} l_{j} m_{l_{j} m_{s j}}}\left(r_{j}\right)=R_{n_{j} l_{j}}\left(r_{j}\right) Y_{l_{j} m_{j}}(\theta, \phi)\left|s m_{s}\right\rangle\right)$ and the eigenvalues would be given by the sum of hydrogenic eigenvalues

$$
\begin{equation*}
\varepsilon_{n}^{(0)}=\varepsilon_{n_{1}}+\varepsilon_{n_{2}}+\varepsilon_{n_{3}} \tag{3.7}
\end{equation*}
$$

where $\varepsilon_{n_{i}}=-1 / 2 n_{i}^{2}$. Thus, we would have the eigenvalues and the complete set of eigenfunctions for the unperturbed Hamiltonian H_{0}. However, we seek the eigenvalues for the Hamiltonian (3.4). To this end, we use the fact that the $\Psi_{n}^{(0)}$ form a complete set, so that the eigenfunctions of (3.4) may be expanded in a series involving all the $\Psi_{n}^{(0)}$ as follows

$$
\begin{equation*}
\Phi_{n}=\Psi_{n}^{(0)}+\sum_{k \neq n} C_{n k}(\lambda) \Psi_{k}^{(0)} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n k}(\lambda)=\lambda C_{n k}^{(1)}+\lambda^{2} C_{n k}^{(2)}+\cdots, \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{n}=\sum_{i=0}^{\infty} \lambda^{i} \varepsilon_{n}^{(i)}=\varepsilon_{n}^{(0)}+\lambda \varepsilon_{n}^{(1)}+\lambda^{2} \varepsilon_{n}^{(2)}+\cdots, \tag{3.10}
\end{equation*}
$$

The subscripts in these equations denote the particular eigenstate or eigenvalue, the superscripts in brackets denote the order of the correction, and Φ_{n} and ε_{n} are the eigenfunctions and eigenvalues, respectively, corresponding to the Hamiltonian (3.4). To be
more compact, we rewrite (3.8) as

$$
\begin{equation*}
\Phi_{n}=\sum_{i=0}^{\infty} \lambda^{i} \Psi_{n}^{(i)}=\Psi_{n}^{(0)}+\lambda \Psi_{n}^{(1)}+\lambda^{2} \Psi_{n}^{(2)}+\cdots \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{n}^{(i)}=\sum_{k \neq n} C_{n k}^{(i)} \Psi_{k}^{(0)} \tag{3.12}
\end{equation*}
$$

Using this notation, we have

$$
\begin{equation*}
\left(H_{0}+\lambda V\right) \Phi_{n}=\varepsilon_{n} \Phi_{n} \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(H_{0}+\lambda V\right) \sum_{i=0}^{\infty} \lambda^{i} \Psi_{n}^{(i)}=\varepsilon_{n} \sum_{i=0}^{\infty} \lambda^{i} \Psi_{n}^{(i)} \tag{3.14}
\end{equation*}
$$

Expanding out the first few terms explicitly, we have

$$
\begin{align*}
\left(H_{0}+\lambda V\right)\left(\Psi_{n}^{(0)}+\lambda \Psi_{n}^{(1)}+\lambda^{2} \Psi_{n}^{(2)}+\cdots\right)= & \left(\varepsilon_{n}^{(0)}+\lambda \varepsilon_{n}^{(1)}+\lambda^{2} \varepsilon_{n}^{(2)}+\cdots\right) \\
& \times\left(\Psi_{n}^{(0)}+\lambda \Psi_{n}^{(1)}+\lambda^{2} \Psi_{n}^{(2)}+\cdots\right)(\tag{3.15}
\end{align*}
$$

Now, collecting coefficients of equal powers of λ yields a series of equations. For example, the terms of the zeroth power in λ yield Eq. (3.5), and the terms of first power in λ gives us

$$
\begin{equation*}
V \Psi_{n}^{(0)}+H_{0} \Psi_{n}^{(1)}=\varepsilon_{n}^{(0)} \Psi_{n}^{(1)}+\varepsilon_{n}^{(1)} \Psi_{n}^{(0)} \tag{3.16}
\end{equation*}
$$

If we now take a scalar product of (3.16) with $\Psi_{n}^{(0)}$, and assume that the complete basis set is orthonormal, that is, $\left\langle\Psi_{k}^{(0)} \mid \Psi_{n}^{(0)}\right\rangle=\delta_{k n}$, we obtain

$$
\begin{equation*}
\left.\varepsilon_{n}^{(1)}=<\Psi_{n}^{(0)}|V| \Psi_{n}^{(0)}\right\rangle \tag{3.17}
\end{equation*}
$$

This is the second coefficient of our energy expansion (3.10), and it is just the expectation value of the potential with states $\Psi_{n}^{(0)}$ which are known exactly (3.6). Since the states $\Psi_{n}^{(0)}$ are known exactly, an exact analytic solution for the value of $\varepsilon_{n}^{(1)}$ from (3.17) may
be found. However, in general we have

$$
\begin{equation*}
\left.\varepsilon_{n}^{(k)}=<\Psi_{n}^{(0)}|V| \Psi_{n}^{(k-1)}\right\rangle \tag{3.18}
\end{equation*}
$$

which contains the states $\Psi_{n}^{(k-1)}$, and for $k>1$, these states are not known exactly. As a result, only the first two coefficients, $\varepsilon_{n}^{(0)}$ and $\varepsilon_{n}^{(1)}$, of our energy expansion (3.10) may be determined exactly. An analytic calculation of these two terms as well as the least squares technique to determine some of the higher terms will be presented in the next two sections. These calculations will be done for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states of the lithium isoelectronic sequence.

3.1 Analytic Calculation of $\varepsilon_{n}^{(0)}$ and $\varepsilon_{n}^{(1)}$

Before we proceed with the analytical calculation for the first two energy coefficients from (3.10), we multiply this expansion by $Z^{2}=\lambda^{-2}$ so that the energy is expressed back in atomic units. That is,

$$
\begin{align*}
E_{n} & =Z^{2} \varepsilon_{n} \\
& =Z^{2} \varepsilon_{n}^{(0)}+Z \varepsilon_{n}^{(1)}+\varepsilon_{n}^{(2)}+Z^{-1} \varepsilon_{n}^{(3)}+\cdots \tag{3.19}
\end{align*}
$$

Equation (3.19) is the Z-expansion equation.
In order to calculate the first coefficient $\varepsilon_{n}^{(0)}$ we refer to the separable eigenvalue equation (3.5) which has eigenvalues given by (3.7). Now the energy terms $\varepsilon_{n_{1}}, \varepsilon_{n_{2}}$, and $\varepsilon_{n_{3}}$ from (3.7) correspond to the hydrogen states $\Psi_{n_{1} l_{1} m_{l_{1}} m_{\varepsilon_{1}}}\left(r_{1}\right), \Psi_{n_{2} l_{2} m_{l_{2}} m_{\varepsilon_{2}}}\left(r_{2}\right)$, and $\Psi_{n_{3} l_{3} m_{l_{3}} m_{e_{3}}}\left(\mathbf{r}_{3}\right)$ respectively, and are simply the hydrogen energies $-1 / 2 n_{j}^{2}$ (in Z-scaled atomic units), where $j=1,2$, or 3 . Thus, for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states these
energies are given by

$$
\begin{align*}
\varepsilon_{2 s}^{(0)} & =\varepsilon_{2 p}^{(0)}=-\sum_{j=1}^{3} \frac{1}{2 n_{j}^{2}} \\
& =-\frac{1}{2}-\frac{1}{2}-\frac{1}{2(2)^{2}} \\
& =-\frac{9}{8} . \tag{3.20}
\end{align*}
$$

Next we present the less trivial analytical calculation for the second energy coefficient, $\varepsilon_{n}^{(1)}$.

In order to simplify the notation, we begin by writing out our product of hydrogen wave functions (3.6) as

$$
\begin{equation*}
\left|\Psi_{1 s^{2} 2 l}^{(0)}\right\rangle=\left|\Psi_{1 s}\left(r_{1}\right) \alpha(1)\right\rangle\left|\Psi_{1 s}\left(r_{2}\right) \beta(2)\right\rangle\left|\Psi_{2 l}\left(r_{3}\right) \alpha(3)\right\rangle \tag{3.21}
\end{equation*}
$$

where α and β represent spin up and spin down respectively, and the subscript l in the third state represents the quantum label s or p. Now, due to the Pauli exclusion principle, the total wavefunction is the antisymmetrized product of the spin-orbitals. The antisymmetrizing of (3.21) may be expressed as

$$
\begin{equation*}
\left|\Psi_{1 s^{2} 2 l}^{(0)}\right\rangle=\mathcal{A}\left|\Psi_{1 s}\left(r_{1}\right) \alpha(1)\right\rangle\left|\Psi_{1 s}\left(r_{2}\right) \beta(2)\right\rangle\left|\Psi_{2 l}\left(r_{3}\right) \alpha(3)\right\rangle \tag{3.22}
\end{equation*}
$$

where \mathcal{A} is the three particle antisymmetrizer given by (2.11). Writing (3.22) out explicitly, we obtain

$$
\begin{aligned}
\left|\Psi_{1 s^{2} 2 l}^{(0)}\right\rangle= & \frac{1}{\sqrt{6}}\left[\left|\Psi_{1 s}\left(r_{1}\right) \alpha(1)\right\rangle\left|\Psi_{1 s}\left(r_{2}\right) \beta(2)\right\rangle\left|\Psi_{2 l}\left(r_{3}\right) \alpha(3)\right\rangle-\left|\Psi_{1 s}\left(r_{2}\right) \alpha(2)\right\rangle\right. \\
& \times\left|\Psi_{1 s}\left(r_{1}\right) \beta(1)\right\rangle\left|\Psi_{2 l}\left(r_{3}\right) \alpha(3)\right\rangle-\left|\Psi_{1 s}\left(r_{3}\right) \alpha(3)\right\rangle\left|\Psi_{1 s}\left(r_{2}\right) \beta(2)\right\rangle\left|\Psi_{2 l}\left(r_{1}\right) \alpha(1)\right\rangle \\
& -\left|\Psi_{1 s}\left(r_{1}\right) \alpha(1)\right\rangle\left|\Psi_{1 s}\left(r_{3}\right) \beta(3)\right\rangle\left|\Psi_{2 l}\left(r_{2}\right) \alpha(2)\right\rangle+\left|\Psi_{1 s}\left(r_{2}\right) \alpha(2)\right\rangle \\
& \left.\times\left|\Psi_{1 s}\left(r_{3}\right) \beta(3)\right\rangle\left|\Psi_{2 l}\left(r_{1}\right) \alpha(1)\right\rangle+\left|\Psi_{1 s}\left(r_{3}\right) \alpha(3)\right\rangle\left|\Psi_{1 s}\left(r_{1}\right) \beta(1)\right\rangle\left|\Psi_{2 l}\left(r_{2}\right) \alpha(2)\right\rangle\right]
\end{aligned}
$$

Rewriting the orbital and spin part separately, this becomes

$$
\begin{aligned}
\left|\Psi_{1 s^{2} 2 l}^{(0)}\right\rangle= & \frac{1}{\sqrt{6}}\left[\left|\Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{1}\right)\right\rangle|\alpha(1) \beta(2) \alpha(3)\rangle-\left|\Psi_{1 s}\left(r_{2}\right) \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{3}\right)\right\rangle\right. \\
& \times|\beta(1) \alpha(2) \alpha(3)\rangle-\left|\Psi_{1 s}\left(r_{3}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{1}\right)\right\rangle|\alpha(1) \beta(2) \alpha(3)\rangle \\
& -\left|\Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{3}\right) \Psi_{2 l}\left(r_{2}\right)\right\rangle|\alpha(1) \alpha(2) \beta(3)\rangle+\left|\Psi_{1 s}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) \Psi_{2 l}\left(r_{1}\right)\right\rangle \\
& \left.\times|\alpha(1) \alpha(2) \beta(3)\rangle+\left|\Psi_{1 s}\left(r_{3}\right) \Psi_{1 s}\left(r_{3}\right) \Psi_{2 l}\left(r_{2}\right)\right\rangle|\beta(1) \alpha(2) \alpha(3)\rangle\right] \\
= & \frac{1}{\sqrt{6}}\left[\left|\Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{3}\right)\right\rangle(|\alpha(1) \beta(2) \alpha(3)\rangle-|\beta(1) \alpha(2) \alpha(3)\rangle)\right. \\
& +\left|\Psi_{1 s}\left(r_{3}\right) \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{2}\right)\right\rangle(|\beta(1) \alpha(2) \alpha(3)\rangle-|\alpha(1) \alpha(2) \beta(3)\rangle) \\
& \left.+\left|\Psi_{1 s}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) \Psi_{2 l}\left(r_{1}\right)\right\rangle(|\alpha(1) \alpha(2) \beta(3)\rangle-|\alpha(1) \beta(2) \alpha(3)\rangle)\right]
\end{aligned}
$$

To be more compact, let us set

$$
\begin{align*}
& |u\rangle=\left|\Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{3}\right)\right\rangle \tag{3.23}\\
& |v\rangle=\left|\Psi_{1 s}\left(r_{3}\right) \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{2}\right)\right\rangle \tag{3.24}
\end{align*}
$$

and

$$
\begin{equation*}
|w\rangle=\left|\Psi_{1 s}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) \Psi_{2 l}\left(r_{1}\right)\right\rangle \tag{3.25}
\end{equation*}
$$

Using this more compact notation, and suppressing the spin coordinates, the second energy coefficient of the Z-expansion can be written as

$$
\begin{aligned}
\varepsilon_{n}^{(1)}= & \left\langle\Psi_{1 s^{2} 2 l}^{(0)}\right| V\left|\Psi_{1 s^{2} 2 l}^{(0)}\right\rangle \\
= & {[\langle u|(\langle\alpha \beta \alpha|-\langle\beta \alpha \alpha|)+\langle v|(\langle\beta \alpha \alpha|-\langle\alpha \alpha \beta|)+\langle w|(\langle\alpha \alpha \beta|-\langle\alpha \beta \alpha|)] } \\
& V[|u\rangle(|\alpha \beta \alpha\rangle-|\beta \alpha \alpha\rangle)+|v\rangle(|\beta \alpha \alpha\rangle-|\alpha \alpha \beta\rangle)+|w\rangle(|\alpha \alpha \beta\rangle-|\alpha \beta \alpha\rangle)] \\
= & \langle u| V|u\rangle(\langle\alpha \beta \alpha \mid \alpha \beta \alpha\rangle+\langle\beta \alpha \alpha \mid \beta \alpha \alpha\rangle)+\langle v| V|v\rangle(\langle\beta \alpha \alpha \mid \beta \alpha \alpha\rangle+\langle\alpha \alpha \beta \mid \alpha \alpha \beta\rangle) \\
& +\langle w| V|w\rangle(\langle\alpha \alpha \beta \mid \alpha \alpha \beta\rangle+\langle\alpha \beta \alpha \mid \alpha \beta \alpha\rangle)-\langle u| V|v\rangle\langle\beta \alpha \alpha \mid \beta \alpha \alpha\rangle \\
& -\langle u| V|w\rangle\langle\alpha \beta \alpha \mid \alpha \beta \alpha\rangle-\langle v| V|u\rangle\langle\beta \alpha \alpha \mid \beta \alpha \alpha\rangle-\langle v| V|w\rangle\langle\alpha \alpha \beta \mid \alpha \alpha \beta\rangle \\
& -\langle w| V|u\rangle\langle\alpha \beta \alpha \mid \alpha \beta \alpha\rangle-\langle w| V|v\rangle\langle\alpha \alpha \beta \mid \alpha \alpha \beta\rangle
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{6} \iiint V\left(2 u^{*} u+2 v^{*} v+2 w^{*} w-u^{*} v-v^{*} u-u^{*} w-w^{*} u\right. \\
& \left.-v^{*} w-w^{*} v\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \tag{3.26}
\end{align*}
$$

Now, without loss of generality, let us choose the magnetic quantum number m equal to zero for the $\Psi_{2 l}$ state. With this choice for m, the states u, v, and w will be real and the above integral simplifies to

$$
\begin{equation*}
\varepsilon_{n}^{(1)}=\frac{1}{3} \iiint\left(\frac{1}{r_{12}}+\frac{1}{r_{13}}+\frac{1}{r_{23}}\right)\left(u^{2}+v^{2}+w^{2}-u v-u w-v w\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \tag{3.27}
\end{equation*}
$$

where we have written out V explicitly.
Evaluation of the above integral (3.27) may be further simplified by grouping integrals that are the same and eliminating cases that vanish due to the orthogonality of $\Psi_{1 s}(r)$ and $\Psi_{21}(r)$. For example, integrals such as
$\iiint u \frac{1}{r_{13}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint \Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{3}\right) \frac{1}{r_{13}} \Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{3}\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}$,
and
$\iiint v \frac{1}{r_{12}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) \frac{1}{r_{12}} \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}$
are clearly identical, and integrals of the type

$$
\begin{align*}
\iiint u \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} & =\iiint \Psi_{1 s}\left(r_{1}\right) \Psi_{1 s}\left(r_{2}\right) \Psi_{2 l}\left(r_{3}\right) \frac{1}{r_{13}} \Psi_{1 s}\left(r_{1}\right) \Psi_{2 l}\left(r_{2}\right) \Psi_{1 s}\left(r_{3}\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \\
& =\int \frac{1}{r_{13}} \Psi_{1 s}^{2}\left(r_{1}\right)\left[\int \Psi_{2 l}\left(r_{3}\right) \Psi_{1 s}\left(r_{3}\right) d^{3} r_{3}\right] d^{3} r_{1} \int \Psi_{1 s}^{2}\left(r_{2}\right) d^{3} r_{2} \tag{3.30}
\end{align*}
$$

are equal to zero. A summary of all such possible integrals is shown in Table 3.1.
From Table 3.1 we see that there are three distinct types of integrals which have nonzero values. There are six integrals of type (A), three integrals of type (B), and three

Table 3.1: The different types of integrals involved in the calculation of $\varepsilon_{n}^{(1)}$.

INTEGRALS OF TYPE (A)	INTEGRALS OF TYPE (B)
$\iiint u \frac{1}{r_{13}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint u_{r_{23}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$	$\iiint u_{r_{12}} \underline{1} d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$
$\iiint v \frac{1}{r_{12}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint v \frac{1}{r_{23}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$	$\iiint v \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$
$\iiint w_{r_{12}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint w \frac{1}{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$	$\iiint w_{r_{23}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$
INTEGRALS OF TYPE (D)	INTEGRALS OF TYPE (C)
$\iiint u \frac{1}{r_{12}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint u \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=0$	$\iiint u \frac{1}{r_{23}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$
$\iiint u \frac{1}{r_{12}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint u \frac{1}{r_{23}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=0$	$\iiint u \frac{1}{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$
$\iiint v \frac{1}{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=\iiint v_{r_{23}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=0$	$\iiint v \frac{1}{r_{12}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \neq 0$

integrals of type (C). Let us choose to evaluate the integrals

$$
\begin{align*}
& \iiint u \frac{1}{r_{13}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=A \tag{3.31}\\
& \iiint v \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=B \tag{3.32}
\end{align*}
$$

and

$$
\begin{equation*}
\iiint u \frac{1}{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=C \tag{3.33}
\end{equation*}
$$

from each of the three distinct types. Thus, the integral for the second coefficient (3.27) reduces to

$$
\begin{equation*}
\varepsilon_{n}^{(1)}=\frac{1}{3}(6 A+3 B-3 C) \tag{3.34}
\end{equation*}
$$

Techniques for the evaluation of the general form of the integrals (3.31), (3.32), and (3.33) are given in Appendix D. In the following two sections, we make use of the results derived in Appendix D to calculate the first order energy corrections $\varepsilon_{2 s}^{(1)}$ and $\varepsilon_{2 p}^{(1)}$, for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p{ }^{2} P$ states, respectively.

In Table 3.2 the principal and angular quantum numbers for the two states for which the integrals to be evaluated are shown. For the particular state being evaluated, the

Table 3.2: The principal and angular quantum numbers for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p{ }^{2} P$ states.

Integrals	State	n_{1}	n_{2}	n_{3}	n_{1}^{\prime}	n_{2}^{\prime}	n_{3}^{\prime}	l_{1}	l_{2}	l_{3}	l_{1}^{\prime}	l_{2}^{\prime}	l_{3}^{\prime}
$A=\iiint u \frac{1}{r_{13}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}$	$1 s^{2} 2 s^{2} S$	1	1	2	1	1	2	0	0	0	0	0	0
	$1 s^{2} 2 p^{2} P$	1	1	2	1	1	2	0	0	1	0	0	1
$\bar{B}=\iiint v \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}$	$1 s^{2} 2 s^{2} S$	1	2	1	1	2	1	0	0	0	0	0	0
	$1 s^{2} 2 p^{2} P$	1	2	1	1	2	1	0	1	0	0	1	0
$C=\iiint u_{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}$	$1 s^{2} 2 s^{2} S$	1	1	2	2	1	1	0	0	0	0	0	0
	$1 s^{2} 2 p^{2} P$	1	1	2	2	1	1	0	0	,	1	0	0

corresponding quantum numbers are substituted into into (D.17) in order to determine the value of the angular part of the integral.

Calculation of $\varepsilon_{n}^{(1)}$ for the $1 s^{2} 2 s^{2} S$ States

From Table 3.2 we see that the angular momentum quantum numbers for the $1 s^{2} 2 s^{2} S$ state are all zero. Thus, Eq. (D.18) becomes

$$
\begin{align*}
I & =\sum_{k=0}^{\infty} R_{13}^{(k)} \sum_{q=-k}^{k} \frac{(2 k+1)}{4 \pi}\left(\begin{array}{lll}
k & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
k & 0 & 0 \\
q & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
k & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
k & 0 & 0 \\
q & 0 & 0
\end{array}\right) \\
& =\sum_{k=0}^{\infty} R_{13}^{(k)} \delta_{k, 0}=R_{13}^{(0)} \tag{3.35}
\end{align*}
$$

since by the triangular rule, the $3-j$ symbols vanish for $k \neq 0$. Thus, we have

$$
\begin{align*}
I= & R_{13}^{(0)} \\
= & \int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\infty} r_{3}^{2} d r_{3} R_{n_{1} 0}\left(r_{1}\right) R_{n_{2} 0}\left(r_{2}\right) R_{n_{3} 0}\left(r_{3}\right) \\
& \times \frac{1}{r_{>}} R_{n_{1}^{\prime} 0}\left(r_{1}\right) R_{n_{2}^{\prime} 0}\left(r_{2}\right) R_{n_{3}^{\prime} 0}\left(r_{3}\right), \tag{3.36}
\end{align*}
$$

where $r_{>}$is the greater of r_{i} and r_{j}, where i and j are the subscripts of the radial integrals represented by $R_{i j}^{(k)}$, see Eq. (D.5). Now using relation (D.20), and Eqs. (D.21), (D.22),
and (D.23) we calculate the integrals A, B, and C. Calculating integral A, we get

$$
\begin{align*}
A & =\iiint_{u} u \frac{1}{r_{13}} u d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=R_{13}^{(0)}(10,10,20,10,10,20) \\
& =\int_{0}^{\infty} \frac{1}{r_{7}} r_{1}^{2} R_{10}^{2}\left(r_{1}\right) d r_{1} \int_{0}^{\infty} r_{2}^{2} R_{10}^{2}\left(r_{2}\right) d r_{2} \int_{0}^{\infty} r_{3}^{2} R_{20}^{2}\left(r_{3}\right) d r_{3} \\
& =4 \int_{0}^{\infty} \frac{1}{r_{>}} r_{1}^{2} e^{-2 r_{1}} d r_{1} 4 \int_{0}^{\infty} r_{2}^{2} e^{-2 r_{2}} d r_{2} \frac{1}{8} \int_{0}^{\infty} r_{3}^{2}\left(2-r_{3}\right) e^{-r_{3} d r_{3}} \\
& =2\left[\frac{1}{r_{3}} \int_{0}^{r_{3}} r_{1}^{2} e^{-2 r_{1}} d r_{1}+\int_{r_{3}}^{\infty} r_{1} e^{-2 r_{1}} d r_{1}\right]\left[\frac{2!}{2^{3}}\right] \int_{0}^{\infty}\left(4 r_{3}^{2}-4 r_{3}^{3}-r_{3}^{4}\right) e^{-r_{3}} d r_{3} \\
& =\frac{17}{81} \tag{3.37}
\end{align*}
$$

and calculating integrals B, and C, we have

$$
\begin{align*}
B & =\iiint v \frac{1}{r_{13}} v d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=R_{13}^{(0)}(10,20,10,10,20,10) \\
& =2 \int_{0}^{\infty} \frac{1}{r_{>}} r_{1}^{2} e^{-2 r_{1}} d r_{1} \int_{0}^{\infty} r_{2}^{2}\left(2-r_{2}\right) e^{-r_{2}} d r_{2} \int_{0}^{\infty} r_{3}^{2} e^{-2 r_{3}} d r_{3} \\
& =\frac{5}{8} \tag{3.38}
\end{align*}
$$

and

$$
\begin{align*}
C & =\iiint u \frac{1}{r_{13}} w d^{3} r_{1} d^{3} r_{2} d^{3} r_{3}=R_{13}^{(0)}(10,10,20,20,10,10) \\
& =2 \int_{0}^{\infty} r_{1}^{2}\left(2-r_{1}\right) e^{-3 r_{1} / 2} d r_{1} \int_{0}^{\infty} r_{2}^{2} e^{-2 r_{2}} d r_{2} \int_{0}^{\infty} \frac{1}{r_{>}} r_{3}^{2}\left(2-r_{3}\right) e^{-3 r_{3} / 2} d r_{3} \\
& =\frac{16}{729} . \tag{3.39}
\end{align*}
$$

Thus, substituting (3.37), (3.38), and (3.39) into Eq. (3.34), we find that for the $1 s^{2} 2 s$ ${ }^{2} S$ states the second coefficient of the Z-expansion is

$$
\begin{equation*}
\varepsilon_{2 s}^{(1)}=\frac{5965}{5832} . \tag{3.40}
\end{equation*}
$$

Calculation of $\varepsilon_{n}^{(1)}$ for the $1 s^{2} 2 p{ }^{2} P$ States

The integrals for the $1 s^{2} 2 p^{2} P$ states are calculated in a similar way. For each of the distinct integral cases A, B, and C, the angular momentum quantum numbers from Table 3.2 are substituted into the angular part of the integral Eq. (D.17), and with the use of the triangular rule and Eq. (B.4), \tilde{I}_{0} may be determined for each case. This angular part of the integral is then substituted into Eq. (D.18), and the resultant integral is evaluated with the use of relation (D.20), and Eqs. (D.21), (D.22), and (D.23). Following this procedure, we find that $\widetilde{I}_{0}=1$ for the integrals A and B. Therefore, for these two integrals, we have

$$
\begin{align*}
A & =R_{13}^{(0)}(10,10,21,10,10,21) \\
& =\int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\infty} r_{3}^{2} d r_{3} \frac{1}{r_{>}} R_{10}^{2}\left(r_{1}\right) R_{10}^{2}\left(r_{2}\right) R_{21}^{2}\left(r_{3}\right) \\
& =\frac{2}{3} \int_{0}^{\infty} \frac{1}{r_{>}} r_{1}^{2} e^{-2 r_{1}} d r_{1} \int_{0}^{\infty} r_{2}^{2} e^{-2 r_{2}} d r_{2} \int_{0}^{\infty} r_{3}^{4} e^{-r_{3}} d r_{3} \\
& =\frac{59}{243} \tag{3.41}
\end{align*}
$$

and

$$
\begin{align*}
B & =R_{13}^{(0)}(10,21,10,10,21,10) \\
& =\int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\infty} r_{3}^{2} d r_{3} \frac{1}{r_{>}} R_{10}^{2}\left(r_{1}\right) R_{21}^{2}\left(r_{2}\right) R_{10}^{2}\left(r_{3}\right) \\
& =\frac{2}{3} \int_{0}^{\infty} r_{1}^{2} e^{-2 r_{1}} d r_{1} \int_{0}^{\infty} r_{2}^{4} e^{-r_{2}} d r_{2} \int_{0}^{\infty} \frac{1}{r_{>}} r_{3}^{2} e^{-2 r_{3}} d r_{3} \\
& =\frac{5}{8} . \tag{3.42}
\end{align*}
$$

However, for integral C, we find that $\widetilde{I}_{0}=1 / 3$. Thus, in this case, we have that

$$
\begin{aligned}
C & =\frac{1}{3} R_{13}^{(1)}(10,21,10,10,21,10) \\
& =\frac{1}{3} \int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\infty} r_{3}^{2} d r_{3} \frac{r_{<}}{r_{>}^{2}} R_{10}\left(r_{1}\right) R_{21}\left(r_{1}\right) R_{10}^{2}\left(r_{2}\right) R_{21}\left(r_{3}\right) R_{10}\left(r_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2}{9} \int_{0}^{\infty} \frac{r_{<}}{r_{>}^{2}} r_{1}^{3} e^{-3 r_{1} / 2} d r_{1} \int_{0}^{\infty} r_{2}^{2} e^{-2 r_{2}} d r_{2} \int_{0}^{\infty} r_{3}^{3} e^{-3 r_{3} / 2} d r_{3} \\
& =\frac{112}{6561} \tag{3.43}
\end{align*}
$$

Thus, substituting (3.41), (3.42), and (3.43) into Eq. (3.34), we find that for the $1 s^{2} 2 s$ ${ }^{2} P$ states the second coefficient of the Z-expansion is

$$
\begin{equation*}
\varepsilon_{2 p}^{(1)}=\frac{57397}{52488} . \tag{3.44}
\end{equation*}
$$

3.2 Linear Least Squares Method For Obtaining the Remaining Coefficients

In the previous sections, the first two coefficients of the Z-expansion, Eq. (3.19), were calculated for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states. We now wish to find the next several coefficients of this expansion. In this thesis, improved electron-pair energies are obtained by performing a least squares fit of helium variational eigenvalue data provided by G. W. F. Drake. Using these improved electron-pair energies and the exact singleelectron energy solutions given by Chisholm and Dalgarno [7], and Chisholm et al. [5], values for the second order coefficient $\varepsilon_{n}^{(2)}$ for the ${ }^{2} S$ and ${ }^{2} P$-states may be determined to 12 significant figures (see the Results and Discussion chapter). Next, we will turn to the linear least squares method [32] for obtaining approximate values for the next several coefficients $\varepsilon_{n}^{(3)}, \varepsilon_{n}^{(4)}, \ldots$ for these states.

The general principle of the least squares method is to find a "smooth" functional approximation to a given set of N data points $\left(x_{i}, y_{i}\right)$. This is done by minimizing

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N}\left[\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right]^{2} \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
y\left(x_{i}\right)=\sum_{k=1}^{m} a_{k}(m) \phi_{k}\left(x_{i}\right) \tag{3.46}
\end{equation*}
$$

is the function modeling the data and σ_{i} is the measurement error of the $i^{\text {th }}$ data point. In Eq. (3.46), the $\left\{\phi_{k}\right\}, k=1, \ldots, m$ are arbitrary fixed functions of x_{i}, and the $a_{k}(m)$ are the parameters with respect to which χ^{2} is minimized. The m in the parentheses denotes the dependence of these parameters on the set $\left\{\phi_{k}\right\}$. To carry out the minimization, we take the derivative of χ^{2} with respect to all the parameters $a_{k}(m)$, and set the result equal to zero, so that (3.45) becomes

$$
\begin{equation*}
0=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[y_{i}-\sum_{j=1}^{m} a_{j}(m) \phi_{j}\left(x_{i}\right)\right] \phi_{k}\left(x_{i}\right) \tag{3.47}
\end{equation*}
$$

where $k=1, \ldots, m$. In doing this we obtain m equations which are solved for the m unknown parameters $a_{j}(m)$.

Before applying this method to find some of the other coefficients of our Z-expansion, we subtract the first three terms from both sides of (3.19), to obtain

$$
\begin{equation*}
E_{n}-Z^{2} \varepsilon_{n}^{(0)}-Z \varepsilon_{n}^{(1)}-\varepsilon_{n}^{(2)}=Z^{-1} \varepsilon_{n}^{(3)}+Z^{-2} \varepsilon_{n}^{(4)}+\cdots \tag{3.48}
\end{equation*}
$$

This is done because we have already determined the first two coefficients $\varepsilon_{n}^{(0)}$ and $\varepsilon_{n}^{(1)}$ analytically, and the third coefficient $\varepsilon_{n}^{(2)}$ will be determined by the above method. Hence, subtracting these three terms from both sides allows us to fit the remaining coefficients with a higher accuracy. From Eq. (3.48), we make the associations $y_{i}=E_{n_{i}}-Z_{i}^{2} \varepsilon_{n}^{(0)}-$ $Z_{i} \varepsilon_{n}^{(1)}-\varepsilon_{n}^{(2)}, a_{k}(m)=\varepsilon_{n}^{(k)}(m)$, and $\left\{\phi_{j}\left(Z_{i}\right)\right\}=\left\{Z_{i}^{-(j-1)}\right\}$. After calculating the $\varepsilon_{n}^{(k)}(m)$, it remains to determine the uncertainties for each of these estimated parameters. To find these uncertainties we make use of the bootstrap method [18] described below.

3.2.1 The Bootstrap Method

The basic idea of the bootstrap method is to generate a number of synthetic data sets from the actual data set, and to calculate the standard deviation of corresponding parameters obtained by finding the least squares fit for each data set. For example, the first parameters $a_{1}^{(1)}(m), a_{1}^{(2)}(m), \ldots, a_{1}^{(N)}(m)$ found from taking the least squares fit of N synthetic data sets will yield a distribution around the first parameter $a_{1}(m)$ calculated from the actual data set. This distribution may then be used to determine the standard deviation for the first parameter. The method used for generating the synthetic data sets and calculating the standard deviation of each parameter is the following:

1. For actual input data $\left(Z_{1}, E_{1}\right),\left(Z_{2}, E_{2}\right), \ldots,\left(Z_{N}, E_{N}\right)$, the least squares fit to Eq. (3.48) is determined, and the deviations $\Delta_{i}=E_{n}\left(Z_{i}\right)-E_{i}$ are calculated.
2. Next, N random integers R_{i}, uniformly distributed in the range 1 to N, are generated, and the deviations $\triangle_{R_{i}}$ are added to the original E_{i} to obtain new energies $E_{i}^{\prime}=E_{i}+\triangle_{R_{i}} \omega_{R_{i}} / \omega_{i}$, where $\omega_{i}=1 / \sigma_{i}^{2}$ is the weight of the $i^{\text {th }}$ energy.
3. The new energies E_{i}^{\prime} constitute the first synthetic data set for which a least squares fit is then found, and new parameters $\varepsilon_{n}^{\prime(2)}, \varepsilon_{n}^{\prime(3)}, \ldots, \varepsilon_{n}^{\prime(N)}$ are obtained.
4. This Procedure is repeated many times until the desired number of synthetic data sets is generated.
5. Finally, the average value and standard deviation for each of the parameters $\varepsilon_{n}^{(2)}, \varepsilon_{n}^{(3)}, \ldots, \varepsilon_{n}^{(N)}$ is calculated.

Chapter 4

Results And Discussion

The Tables 4.1 and 4.2 illustrate the convergence of the nonrelativistic energies with increasing Ω. If $E(\Omega)$ represents the explicit dependence of the energy on Ω, then the fourth and fifth columns of the tables are defined as

$$
\begin{equation*}
\text { difference } \equiv E(\Omega)-E(\Omega-1) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { ratio }=R(\Omega) \equiv \frac{E(\Omega-1)-E(\Omega-2)}{E(\Omega)-E(\Omega-1)} \tag{4.2}
\end{equation*}
$$

respectively. For a constant ratio $R(\Omega)$, each series of eigenvalues in Tables 4.1 and 4.2 would converge as a geometric series to the value

$$
\begin{equation*}
E_{\text {extrap. }}=E\left(\Omega_{\max }\right)+\frac{E\left(\Omega_{\max }\right)-E\left(\Omega_{\max }-1\right)}{R-1} \tag{4.3}
\end{equation*}
$$

but it turns out that the values of R are not constant. The values of R vary slightly with Ω, however this variation with Ω is smooth enough for a useful extrapolation of the energies to the limit $\Omega \rightarrow \infty$. To take the variation of R with Ω into account, the extrapolations are done by assuming the functional form [10]

$$
\begin{equation*}
R(\Omega)=1+\frac{a}{\Omega^{b}} \tag{4.4}
\end{equation*}
$$

and determining the values of a and b by performing a least squares fit of the points $(\Omega, R(\Omega))$. The extrapolation converges for $b<1$. Since there is no absolute guarantee that the total amount of the extrapolation is correct, this amount is taken as a conservative estimate of the uncertainty in the extrapolated values.

For the ${ }^{2} S$-states, all the numerical calculations from the smallest basis set to the one containing 919 terms were done in double precision (approximately 16 decimal places). In order to acheive convergence to the energy values listed in Tables 4.1 and 4.2 for a given basis set size, the calculations ran from about 30 iterations, for the smallest basis set to about 8 iterations for the 919 -term basis set, with each iteration providing a step toward optimization of the nonlinear parameters. The last four of the 8 iterations for the 919-term basis set were performed using quadruple precision (approximately 32 decimal digits). Quadruple precision calculations were also performed for the 1590 and 2210-term basis sets, however an optimization of the nonlinear parameters was not carried out in these cases. This was due to the large computational time required for the optimization of these largest basis sets ($\Omega>7$). For example, approximately 330 hours of CPU time are required for just two iterations of the 1590-term basis set using an IBM RISC/6000 350 workstation. It is also generally true (as long as the nonlinear parameters remain close to the optimimum values) that an improvement in the energy due to an optimization of the nonlinear parameters is small in comparison with the improvement possible by increasing the basis set size to the next Ω. Thus, as long as there is no evidence of numerical instability, which may be detected by erratic behaviour of the ratios $R(\Omega)$, optimization of these largest basis sets is not necessary.

The nonlinear parameters for the largest basis sets can be extrapolated from graphs showing the variation of these parameters with increasing basis size Ω. In this thesis, however, the nonlinear parameters used for the largest basis sizes ($\Omega>7$) were simply those obtained from the near by optimized $\Omega=7$ basis set parameters.

Results for the ${ }^{2} P$-states with nuclear charge $3 \leq Z \leq 10$ were obtained from ZongChao Yan at the Harvard-Smithsonian Center for Astrophysics, and an extension up to $Z=15$ was carried out in this thesis. These results were calculated in a similar fashion as those above for the ${ }^{2} S$-states. However, computer memory limitations prevented the extension up to $Z=15$ from being carried out beyond $\Omega \geq 10$.

Figures 4.1 to 4.6 show the variation of the nonlinear parameters as a function of $1 / Z$. From these figures we see that some of the nonlinear parameters exhibit "irregular behaviour" for $Z>5$, or 6 . This irregular behaviour (charactarized by sharp jumps in the nonlinear parameters) may be the result of incomplete optimization for the $\Omega>7$ basis set sizes, or it may be due to the existence of multiple minima on the energy surface. To determine which of these is the case, a closer study exploring the multiple root structure of the energy surface is needed.

Table 4.1: Nonrelativistic energies for the $1 s^{2} 2 s^{2} S$ states of the lithium isoelectronic sequence, in atomic units.
$Z=3$

Ω	No. of terms	Energy	Difference	Ratio
2	19	-7.47755572032		
3	51	-7.47799583514	-0.00044011482	
4	121	-7.47805356730	-0.00005773216	7.623
5	257	-7.47805946446	-0.00000589716	9.790
6	503	-7.47806022808	-0.00000076362	7.723
7	919	-7.47806031078	-0.00000008270	9.234
8	1590	-7.47806032103	-0.00000001026	8.061
9	2210	-7.47806032254	-0.00000000150	6.828
	Extrapolation	$-7.47806032274(20)$		

Ω	No. of terms	Energy	Difference	Ratio
2	19	-14.32436588392		
3	51	-14.32471531921	-0.00034943528	
4	121	-14.32475849716	-0.00004317795	8.093
5	257	-14.32476250932	-0.00000401216	10.762
6	503	-14.32476309939	-0.00000059007	6.800
7	919	-14.32476316556	-0.00000006617	8.917
8	1590	-14.32476317452	-0.00000000896	7.388
9	2210	-14.32476317561	-0.00000000109	8.195
	Extrapolation	$-14.32476317578(17)$		

Table 4.1 (Continued).

$Z=5$				
Ω	No. of terms	Energy	Difference	Ratio
3	51	-23.424 56670101		
4	121	-23.424 60154440	-0.000 03484339	
5	257	-23.424 60511647	-0.000 00357207	9.754
6	503	-23.424 60565416	-0.000 00053769	6.643
7	919	-23.424 60571024	-0.000 00005608	9.588
8	1590	-23.424 60571936	-0.000 00000912	6.149
9	2210	-23.424 60572032	-0.000 00000096	9.500
	Extrapolation	-23.424 $60572050(18)$		
$Z=6$				
Ω	No. of terms	Energy	Difference	Ratio
3	51	-34.775 47541528		
4	121	-34.775 50671418	-0.000 03129890	
5	257	-34.775 51061147	-0.000 00389729	8.031
6	503	-34.775 51119923	-0.000 00058776	6.631
7	919	-34.775 51126659	-0.000 00006737	8.725
8	1590	-34.775 51127393	-0.00000000733	9.186
9	2210	-34.775 51127495	-0.00000000102	7.165
Extrapolation -34.775 511275 11(16)				

Table 4.1 (Continued).
$Z=7$

Ω	No. of terms	Energy	Difference	Ratio
3	51	-48.37686336339		
4	121	-48.37689412834	-0.00003076495	
5	257	-48.37689771871	-0.00000359037	8.569
6	503	-48.37689826095	-0.00000054224	6.621
7	919	-48.37689831050	-0.00000004955	10.943
8	1590	-48.37689831747	-0.00000000697	7.109
9	2210	-48.37689831830	-0.00000000083	8.398
	Extrapolation	$-48.37689831843(13)$		

$Z=8$

Ω	No. of terms	Energy	Difference	Ratio
3	51	-64.22850712682		
4	121	-64.22853814579	-0.00003101897	
5	257	-64.22854152049	-0.00000337470	9.192
6	503	-64.22854202778	-0.00000050729	6.652
7	919	-64.22854207485	-0.00000004707	10.777
8	1590	-64.22854208104	-0.00000000619	7.604
9	2210	-64.22854208187	-0.00000000083	7.457
	Extrapolation	$-64.22854208200(13)$		

Table 4.1 (Continued).
$Z=9$

| Ω | No. of terms | Energy | Difference | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 51 | -82.33030280599 | | |
| 4 | 121 | -82.33033434954 | -0.00003154355 | |
| 5 | 257 | -82.33033757674 | -0.00000322720 | 9.774 |
| 6 | 503 | -82.33033803907 | -0.00000046233 | 6.980 |
| 7 | 919 | -82.33033808914 | -0.00000005007 | 9.234 |
| 8 | 1590 | -82.33033809552 | -0.00000000638 | 7.848 |
| 9 | 2210 | -82.33033809649 | -0.00000000097 | 6.577 |
| | Extrapolation | $-82.33033809665(16)$ | | |

$Z=10$				
Ω	No. of terms	Energy	Difference	Ratio
3	51	-102.68219570564		
4	121	-102.68222785893	-0.00003215329	
5	257	-102.68223099282	-0.00000313389	10.260
6	503	-102.68223142796	-0.00000043514	7.202
7	919	-102.68223147496	-0.00000004700	9.258
8	1590	-102.68223148065	-0.00000000569	8.260
9	2210	-102.68223148162	-0.00000000097	5.896
	Extrapolation	$-102.68223148179(17)$		

Table 4.1 (Continued).

Ω	No. of terms	Energy	Difference	Ratio
3	51	-125.284 15910978		
4	121	-125.284 18677609	-0.000 02766631	
5	257	-125.284 19032077	-0.000 00354468	7.805
6	503	-125.284 19070136	-0.000 00038059	9.314
7	919	-125.28419074648	-0.000 00004512	8.435
8	1590	-125.284 19075202	-0.000 00000554	8.144
9	2210	-125.284 19075306	-0.000 00000104	5.357
	Extrapolation	-125.284 $19075324(18)$		
$Z=12$				
Ω	No. of terms	Energy	Difference	Ratio
3	51	-150.136 165 03727		
4	121	-150.136 19299458	-0.00002795731	
5	257	-150.136 19618418	-0.000 00318960	8.765
6	503	-150.136196553 34	-0.000 00036916	8.640
7	919	-150.136 19659748	-0.000 00004414	8.363
8	1590	-150.136196 60281	-0.000 00000533	8.281
9	2210	-150.136196 60369	-0.000 00000088	6.057
Extrapolation -150.136196603 84(15)				

Table 4.1 (Continued).
$Z=13$

| Ω | No. of terms | Energy | Difference | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 51 | -177.23820500186 | | |
| 4 | 121 | -177.23823282228 | -0.00002782042 | |
| 5 | 257 | -177.23823616079 | -0.00000333851 | 8.333 |
| 6 | 503 | -177.23823651246 | -0.00000035167 | 9.493 |
| 7 | 919 | -177.23823655230 | -0.00000003984 | 8.827 |
| 8 | 1590 | -177.23823655787 | -0.00000000557 | 7.153 |
| 9 | 2210 | -177.23823655889 | -0.00000000102 | 5.461 |
| | Extrapolation | $-177.23823655911(22)$ | | |

$Z=14$					
Ω	No. of terms	Energy	Difference	Ratio	
3	51	-206.59027086535			
4	121	-206.59029866799	-0.00002780264		
5	257	-206.59030182455	-0.00000315656	8.808	
6	503	-206.59030216614	-0.00000034159	9.241	
7	919	-206.59030220534	-0.00000003920	8.714	
8	1590	-206.59030221055	-0.00000000521	7.524	
9	2210	-206.59030221143	-0.00000000088	5.920	
	Extrapolation	$-206.59030221161(18)$			

Table 4.1 (Continued).
$Z=15$

Ω	No. of terms	Energy	Difference	Ratio
3	51	-238.19235401519		
4	121	-238.19238413135	-0.00003011616	
5	257	-238.19238729190	-0.00000316055	9.529
6	503	-238.19238764579	-0.00000035389	8.931
7	919	-238.19238768765	-0.00000004186	8.454
8	1590	-238.19238769248	-0.00000000483	8.667
9	2210	-238.19238769338	-0.00000000090	5.367
	Extrapolation	$-238.19238769356(18)$		

Table 4.2: Nonrelativistic energies for the $1 s^{2} 2 p^{2} P$ states of the lithium isoelectronic sequence, in atomic units.
$Z=3$

| Ω | No. of terms | Energy | Difference | Ratio |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 56 | -7.410146240952 | | |
| 5 | 139 | -7.410155057909 | -0.000008816956 | |
| 6 | 307 | -7.410156274821 | -0.000001216912 | 7.245 |
| 7 | 623 | -7.410156490483 | -0.000000215662 | 5.643 |
| 8 | 1175 | -7.410156524272 | -0.000000033789 | 6.383 |
| 9 | 1846 | -7.410156530070 | -0.000000005798 | 5.828 |
| 10 | 2466 | -7.410156530955 | -0.000000000885 | 6.550 |
| 11 | 3047 | -7.410156531185 | -0.000000000230 | 3.843 |
| | Extrapolation | $-7.410156531252(67)$ | | |

Z $=4$					
Ω	No. of terms	Energy	Difference	Ratio	
4	56	-14.179313470581			
5	139	-14.179330528846	-0.000017058265		
6	307	-14.179332918492	-0.000002389646	7.138	
7	623	-14.179333238248	-0.000000319756	7.473	
8	1175	-14.179333282444	-0.000000044195	7.235	
9	1846	-14.179333290202	-0.000000007758	5.697	
10	2466	-14.179333291213	-0.000000001011	7.673	
11	3047	-14.179333291472	-0.000000000259	3.905	
	Extrapolation	$-14.179333291542(70)$			

Table 4.2 (Continued).
$Z=5$

Ω	No. of terms	Energy	Difference	Ratio	
4	56	-23.20441670602			
5	139	-23.20443789683	-0.00002119081		
6	307	-23.20444072817	-0.00000283134	7.484	
7	623	-23.20444112799	-0.00000039982	7.082	
8	1175	-23.20444118080	-0.00000005281	7.571	
9	1846	-23.20444118986	-0.00000000906	5.829	
10	2466	-23.20444119098	-0.00000000112	8.089	
11	3047	-23.20444119131	-0.00000000033	3.394	
	Extrapolation	$-23.20444119142(11)$			

$Z=6$					
Ω	No. of terms	Energy	Difference	Ratio	
4	56	-34.48207604846			
5	139	-34.48209927111	-0.00002322265		
6	307	-34.48210271558	-0.00000344447	6.742	
7	623	-34.48210311119	-0.00000039561	8.707	
8	1175	-34.48210316748	-0.00000005629	7.028	
9	1846	-34.48210317667	-0.00000000919	6.122	
10	2466	-34.48210317778	-0.00000000111	8.286	
11	3047	-34.48210317819	-0.00000000041	2.684	
	Extrapolation	$-34.48210317834(15)$			

Table 4.2 (Continued).

Ω	No. of terms	Energy	Difference	Ratio
	56	-48.011 02485090		
	139	-48.011 05005088	-0.00002519998	
	307	-48.011 05380556	-0.000 00375468	6.712
	623	-48.011 05421024	-0.000 00040468	9.278
	1175	-48.011 05426821	-0.000 00005797	6.981
	1846	-48.011 05427907	-0.000 00001086	5.338
	2466	-48.011 05428017	-0.000 00000110	9.906
	3047	-48.011 05428054	-0.000 00000038	2.922
	Extrapolation	-48.011 05428066		

| Ω | No. of terms | Energy | Difference | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 56 | -63.79071455394 | | |
| 5 | 139 | -63.79073601183 | -0.00002145789 | |
| 6 | 307 | -63.79073907210 | -0.00000306027 | 7.012 |
| 7 | 623 | -63.79073950342 | -0.00000043132 | 7.095 |
| 8 | 1175 | -63.79073956600 | -0.00000006258 | 6.892 |
| 9 | 1846 | -63.79073957654 | -0.00000001054 | 5.937 |
| 10 | 2466 | -63.79073957772 | -0.00000000118 | 8.932 |
| 11 | 3047 | -63.79073957809 | -0.00000000037 | 3.189 |
| | Extrapolation | $-63.79073957821(12)$ | | |

Table 4.2 (Continued).
$Z=9$

| Ω | No. of terms | Energy | Difference | Ratio |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 56 | -81.82085624755 | | |
| 5 | 139 | -81.82087730635 | -0.00002105880 | |
| 6 | 307 | -81.82088041473 | -0.00000310838 | 6.775 |
| 7 | 623 | -81.82088083663 | -0.00000042191 | 7.368 |
| 8 | 1175 | -81.82088090023 | -0.00000006359 | 6.634 |
| 9 | 1846 | -81.82088091044 | -0.00000001021 | 6.229 |
| 10 | 2466 | -81.82088091150 | -0.00000000106 | 9.654 |
| 11 | 3047 | -81.82088091189 | -0.00000000040 | 2.656 |
| | Extrapolation | $-81.82088091203(14)$ | | |

$Z=10$

| Ω | No. of terms | Energy | Difference | Ratio |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 56 | -102.101299252851 | | |
| 5 | 139 | -102.101320579421 | -0.000021326569 | |
| 6 | 307 | -102.101323786036 | -0.000003206616 | 6.651 |
| 7 | 623 | -102.101324217958 | -0.000000431922 | 7.424 |
| 8 | 1175 | -102.101324281583 | -0.000000063625 | 6.789 |
| 9 | 1846 | -102.101324292317 | -0.000000010734 | 5.928 |
| 10 | 2466 | -102.101324293431 | -0.000000001114 | 9.638 |
| 11 | 3047 | -102.101324293685 | -0.000000000254 | 4.388 |
| | Extrapolation | $-102.101324293732(47)$ | | |

Table 4.2 (Continued).
$Z=11$

Ω	No. of terms	Energy	Difference	Ratio
4	56	-124.6319525387		
5	139	-124.6319740185	-0.0000214798	
6	307	-124.6319772930	-0.0000032745	6.560
7	623	-124.6319777389	-0.0000004459	7.344
8	1175	-124.6319778054	-0.0000000665	6.705
9	1846	-124.6319778159	-0.0000000105	6.333
	Extrapolation	$-124.6319778177(18)$		

$Z=12$				
Ω	No. of terms	Energy	Difference	Ratio
4	56	-149.4127575013		
5	139	-149.4127795325	-0.0000220312	
6	307	-149.4127828076	-0.0000032751	6.727
7	623	-149.4127832515	-0.0000004439	7.378
8	1175	-149.4127833196	-0.0000000681	6.518
9	1846	-149.4127833296	-0.0000000100	6.810
	Extrapolation	$-149.4127833313(17)$		

Table 4.2 (Continued).

$Z=13$				
Ω	No. of terms	Energy	Difference	Ratio
4	56	-176.4436761926		
5	139	-176.4436984469	-0.0000222543	
6	307	-176.4437017376	-0.0000032907	6.763
7	623	-176.4437021932	-0.0000004556	7.223
8	1175	-176.4437022622	-0.0000000690	6.603
9	1846	-176.4437022729	-0.0000000107	6.449

$Z=14$

Ω	No. of terms	Energy	Difference	Ratio
4	56	-205.7246819241		
5	139	-205.7247041927	-0.0000222686	
6	307	-205.7247075466	-0.0000033539	6.640
7	623	-205.7247080059	-0.0000004593	7.302
8	1175	-205.7247080766	-0.0000000707	6.496
9	1846	-205.7247080876	-0.0000000110	6.427
	Extrapolation	$-205.7247080896(20)$		

Table 4.2 (Continued).

Ω	No. of terms	Energy	Difference	Ratio
4	56	-237.255 7550933		
5	139	-237.255 7779629	-0.000 0228696	
6	307	-237.255 7813447	-0.000 0033818	6.763
7	623	-237.255 7818080	-0.000 0004633	7.299
8	1175	-237.255 7818797	-0.000 0000717	6.462
9	1846	-237.255 7818907	-0.000 0000110	6.518
Extrapolation -237.255 781892 6(19)				

中就

$$
\text { Figure } 4.2 \text { Nonlinear parameters } \beta_{i}, i=1, \ldots, 5 \text { plotted as a function of inverse } Z
$$

$$
\begin{aligned}
& \text { ешues }
\end{aligned}
$$

for the $1 s^{2} 2 s^{2} S$ states ($\Omega=7$).

4.1 $\quad Z$-Expansions From the Least Squares Fit

In Tables 4.1 and 4.2, we have listed the extrapolated energies obtained from the variational eigenvalues. The computation time required to obtain the variational eigenvalues for the construction of each of these tables is about 280 hours using an IBM RISC/6000 350 workstation and about 150 hours if the IBM RISC System/6000 3CT is used for the final largest basis set. Since a large amount of computation time is required to obtain these results, it is advantageous at some point to simply determine the nonrelativistic energies of the $1 s^{2} 2 s s^{2} S$ and $1 s^{2} 2 p^{2} P$ states from their Z-expansions. The first two coefficients $\varepsilon_{n}^{(0)}$ and $\varepsilon_{n}^{(1)}$ for these expansions were determined analytically in the previous chapter. In this section, electron-pair energies are found and used to determine more accurate values for the third coefficient $\varepsilon_{n}^{(2)}$ of these expansions. Achieving higher accuracy for $\varepsilon^{(2)}$ is important since it is the accuracy in this coefficient which ultimately limits the accuracy to which the energies from Eq. (1.1) may be calculated. Finally, the least squares method is used to determine the next several coefficients of expansion (3.48) for the ${ }^{2} S$ and ${ }^{2} P$-states, and from the expansions for these states, the nonrelativistic energies for $3 \leq Z \leq 92$ are calculated.

4.1.1 The Electron-Pair Energies

For Tables 4.3 to 4.13 , the average values of $\varepsilon^{(2)}$ for each of the states were obtained by applying the bootstrap method, described in the previous chapter, to the eigenvalues for the corresponding states which were provided by G. W. F. Drake. The form of the function used for the fit is given by

$$
\begin{equation*}
E_{n}-Z^{2} \varepsilon_{n}^{(0)}-Z \varepsilon_{n}^{(1)}=\varepsilon_{n}^{(2)}+Z^{-1} \varepsilon_{n}^{(3)}+Z^{-2} \varepsilon_{n}^{(4)}+\cdots, \tag{4.5}
\end{equation*}
$$

where the $\varepsilon^{(0)}$ values are given by $\varepsilon^{(0)}=-\sum_{i=1}^{2} 1 / 2 n_{i}^{2}$, where n is the principal quantum number, and the $\varepsilon^{(1)}$ values were obtained from Sanders and Scherr [35]. In Tables 4.3 to 4.13 , the numbers in parentheses in the average values of $\varepsilon^{(2)}$ denote the uncertainties
in the final figures quoted, which in this case are the standard deviations obtained from the bootstrap method.

Table 4.3 was used to determined the number of data sets (original+synthetic) that are needed to produce an average value which converges to the last figure for which the uncertainty is quoted. For example, it may be seen from Table 4.3 that about 10 data sets are needed for the average value of $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$ to converge to the last figure containing the uncertainty. To ensure that statistically meaningful standard deviations were obtained for the average values, the number of data sets used to obtain the results listed in Tables 4.4 to 4.13 was chosen to be 100. As seen from Table 4.3, the standard deviations do not change with the use of data sets larger than 100.

One important point that arises in applying the least squares method is which number of parameters m yields the best fit to a data set of size N. If we choose $m=N$, we can make χ^{2} given by Eq. (3.45) equal to zero. However in doing so, we lose all the smoothing properties of the least squares method. It turns out that the best fit is achieved as soon as a value of m is reached after which no significant decrease occurs in χ^{2} [33]. This is the general rule used to determine the number of parameters needed to yield the best values in Tables 4.5, 4.7, 4.9, 4.11, and 4.13.

Another point that must be considered is whether the standard deviation obtained from the bootstrap method accurately represents the uncertainty in the average values of the coefficients. This point is addressed in Tables 4.4 to 4.13 . In these tables, the change in the average values for $\varepsilon^{(2)}$ may be seen for various parameter sizes and ranges of data sets used, and this change may be used as a guideline in determining where the uncertainty lies. In Tables 4.4 to 4.13 the change generally occurs in the $13^{\text {th }}$ significant figure. For example, from Tables 4.4, 4.6, 4.8, 4.10, and 4.12, it may be seen that the average values for $\varepsilon^{(2)}$ for the various parameter sizes having the same order of magnitude for χ^{2}, agree to the first 12 significant figures. Also, from Tables 4.5, 4.7, 4.9, 4.11, and 4.13, it may be seen that there is no change in the first 12 figures of the average value for $\varepsilon^{(2)}$ when the first or last several data values are omitted. From these results, we
conclude that the uncertainty obtained from the bootstrap method is a factor of 10 too small in some cases, for example, see Table 4.9. In such cases, the uncertainty was estimated by comparing neighbouring values and taking the largest difference between neighbouring values as the uncertainty. In doing so, the following values were obtained for the electron-pair energies

$$
\begin{aligned}
\varepsilon^{(2)}\left(1 s^{21} S\right) & =-0.1576664294693(4) \\
\varepsilon^{(2)}\left(1 s 2 s^{2} S\right) & =-0.1145101361672(4) \\
\varepsilon^{(2)}\left(1 s 2 s^{3} S\right) & =-0.0474093041754(6) \\
\varepsilon^{(2)}\left(1 s 2 p^{1} P\right) & =-0.1570286629347(2)
\end{aligned}
$$

and

$$
\varepsilon^{(2)}\left(1 s 2 p^{3} P\right)=-0.0729989834726(8)
$$

Comparing the first value $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$ with Morgan's value [27] of -0.157666 429469 14, we see that they agree within the uncertainty quoted in the result obtained here. The above results for the electron-pair energies are much more accurate than the ones used by Horak et al. [39], which were accurate to only 6 or 7 significant figures.

4.1.2 The S and P-state Lithium Z-Expansions

With the improved electron-pair energies, better values for the second order coefficients $\varepsilon^{(2)}\left(1 s^{2} 2 s^{2} S\right)$ and $\varepsilon^{(2)}\left(1 s^{2} 2 p^{2} P\right)$ may be obtained using [39]

$$
\begin{equation*}
\varepsilon^{(2)}\left(1 s^{2} 2 l^{2} L\right)=\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)+\frac{1}{2} \varepsilon^{(2)}\left(1 s 2 l^{1} L\right)+\frac{3}{2} \varepsilon^{(2)}\left(1 s 2 l^{3} L\right)+\zeta(2 l) \tag{4.6}
\end{equation*}
$$

where $l=s$, or p depending on the state being evaluated, and $\zeta(2 l)$ is a sum of singleelectron integrals which are evaluated exactly by Chisholm and Dalgarno [7] for the S-state and by Chisholm et al. [5] for the P-state. Expression (4.6) may be derived by noting that the solution $\Psi^{(1)}$ of (3.16) can be written in terms of first order independent two-electron systems. For example, $\Psi^{(1)}$ for the ground state of lithium is given by Eq. (1.5).

Substituting the above electron-pair energies into Eq. (4.6), we get

$$
\begin{equation*}
\varepsilon^{(2)}\left(1 s^{2} 2 s^{2} S\right)=-0.408166165261 \text { 15(8) } \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon^{(2)}\left(1 s^{2} 2 p^{2} P\right)=-0.52857886814059(11) \tag{4.8}
\end{equation*}
$$

Now using values of $\varepsilon^{(0)}, \varepsilon^{(1)}$, and $\varepsilon^{(2)}$ from Eqs. (3.20), (3.40), (3.44), (4.7), and (4.8), and the function being fitted given by (3.48), the boostrap method may be applied to obtain the next several coefficients of the Z-expansions for the S and P-states. Tables 4.14 to 4.21 show the results obtained for the third order coefficient of these expansions. The first two tables 4.14 and 4.15 were obtained to determine the number of data sets needed to acheive convergence in the third order coefficients $\varepsilon^{(3)}$, and the remaining tables were constructed to determine the uncertainty in the coefficients. This was all done using a similar procedure to the one presented above for obtaining the electron-pair energies. In this case however, it is seen from Tables 4.14 to 4.21 that the third order coefficients of the Z-expansion are determined to only 5 or 6 significant figures. Also, it

Table 4.3: Convergence with the number of data sets used. (11 parameters).

Number of data sets	Average value for $\varepsilon^{(2)}\left(1 s^{21} S\right)$
2	$-0.15766642946937(4)$
6	$-0.15766642946934(3)$
10	$-0.15766642946933(4)$
20	$-0.15766642946933(4)$
50	$-0.15766642946933(5)$
100	$-0.15766642946933(4)$
200	$-0.15766642946933(4)$
1000	$-0.15766642946933(4)$

Table 4.4: $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$ for various parameter sizes. (100 data sets).

Number of parameters	Average value for $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$	χ^{2}
6	$-0.1576664011(44)$	4.3×10^{14}
7	$-0.15766643223(31)$	5.1×10^{11}
8	$-0.157666429214(26)$	4.8×10^{8}
9	$-0.1576664294934(21)$	2.9×10^{5}
10	$-0.15766642946720(17)$	1.3×10^{2}
11	$-0.15766642946933(4)$	3.4×10^{-1}
12	$-0.15766642946895(10)$	1.6×10^{-1}
13	$-0.15766642946830(50)$	1.7×10^{-1}
14	$-0.15766642946075(15)$	4.8×10^{-2}
15	$-0.15766642949354(52)$	2.0×10^{0}

Table 4.5: $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$ for data sets consisting of various ranges for Z. (100 data sets).

Range for Z	Average value for $\varepsilon^{(2)}\left(1 s^{2}{ }^{1} S\right)$	Number of parameters
$2-18$	$-0.15766642946933(4)$	11
$3-18$	$-0.15766642946994(1)$	10
$4-18$	$-0.15766642946900(8)$	10
$5-18$	$-0.15766642946934(6)$	9
$6-18$	$-0.1576664294691(2)$	9
$7-18$	$-0.1576664294694(6)$	8
$8-18$	$-0.1576664294692(2)$	8
$9-18$	$-0.1576664294697(4)$	8
$2-14$	$-0.1576664294697(2)$	11
$2-15$	$-0.15766642946950(6)$	11
$2-16$	$-0.15766642946947(3)$	11
$2-17$	$-0.15766642946945(1)$	11

Table 4.6: $\varepsilon^{(2)}\left(1 s 2 s^{1} S\right)$ for various parameter sizes. (100 data sets).

Number of parameters	Average value for $\varepsilon^{(2)}\left(1 s 2 s^{1} S\right)$	χ^{2}
8	$-0.11451013613595(10)$	1.1×10^{5}
9	$-0.11451013631637(13)$	6.8×10^{3}
10	$-0.11451013615424(10)$	3.4×10^{0}
11	$-0.11451013616724(85)$	3.0×10^{-3}
12	$-0.11451013616725(39)$	3.7×10^{-3}
13	$-0.11451013616316(15)$	3.6×10^{-3}

Table 4.7: Average $\varepsilon^{(2)}\left(1 s 2 s{ }^{1} S\right)$ for data sets consisting of various ranges for Z. (100 data sets).

Range for \bar{Z}	Average value for $\varepsilon^{(2)}\left(1 s 2 s{ }^{1} S\right)$	Number of parameters
$2-18$	$-0.11451013616724(10)$	11
$3-18$	$-0.11451013616726(37)$	10
$4-18$	$-0.11451013616650(28)$	10
$5-18$	$-0.11451013616848(22)$	9
$6-18$	$-0.11451013616685(49)$	9
$7-18$	$-0.11451013616385(13)$	8
$2-15$	$-0.11451013616717(30)$	11
$2-16$	$-0.11451013616740(28)$	11
$2-17$	$-0.11451013616732(15)$	11

Table 4.8: $\varepsilon^{(2)}\left(1 s 2 s{ }^{3} S\right)$ for various parameter sizes. (100 data sets).

Number of parameters	Average value for $\varepsilon^{(2)}\left(1 s 2 s^{3} S\right)$	χ^{2}
8	$-0.047409303400(79)$	6.4×10^{9}
9	$-0.0474093042538(60)$	5.7×10^{6}
10	$-0.04740930416840(54)$	3.8×10^{3}
11	$-0.047409304176111(50)$	2.1×10^{0}
12	$-0.047409304175398(25)$	5.3×10^{-1}
13	$-0.047409304175120(10)$	4.8×10^{-1}

Table 4.9: Average $\varepsilon^{(2)}\left(1 s 2 s{ }^{3} S\right)$ for data sets consisting of various ranges for Z. (100 data sets).

Range for Z	Average value for $\varepsilon^{(2)}\left(1 s 2 s^{3} S\right)$	Number of parameters
$2-18$	$-0.047409304175398(25)$	12
$3-18$	$-0.047409304175537(25)$	11
$4-18$	$-0.047409304175245(15)$	10
$5-18$	$-0.047409304175266(53)$	10
$6-18$	$-0.047409304175739(40)$	9
$7-18$	$-0.047409304175376(89)$	9
$2-15$	$-0.047409304175666(56)$	12
$2-16$	$-0.047409304175553(81)$	12
$2-17$	$-0.047409304176440(56)$	11

Table 4.10: $\varepsilon^{(2)}\left(1 s 2 p{ }^{1} P\right)$ for various parameter sizes. (100 data sets).

Number of parameters	Average value for $\varepsilon^{(2)}\left(1 s 2 p^{1} P\right)$	χ^{2}
8	$-0.157028661887(70)$	1.9×10^{9}
9	$-0.1570286628111(90)$	3.4×10^{6}
10	$-0.1570286629521(11)$	3.8×10^{3}
11	$-0.1570286629346794(95)$	1.8×10^{-1}
12	$-0.157028662934546(22)$	7.2×10^{-2}
13	$-0.157028662934540(12)$	9.6×10^{-2}

Table 4.11: Average $\varepsilon^{(2)}\left(1 s 2 p{ }^{1} P\right)$ for data sets consisting of various ranges for Z. (100 data sets).

Range for Z	Average value for $\varepsilon^{(2)}\left(1 s 2 p{ }^{1} P\right)$	Number of parameters
$2-18$	$-0.1570286629346794(95)$	12
$3-18$	$-0.157028662934570(19)$	11
$4-18$	$-0.157028662934560(84)$	11
$5-18$	$-0.157028662934939(12)$	9
$6-18$	$-0.157028662934934(43)$	9
$7-18$	$-0.15702866293462(13)$	9
$2-15$	$-0.157028662934723(25)$	12
$2-16$	$-0.157028662934740(13)$	11
$2-17$	$-0.157028662934582(36)$	11

Table 4.12: $\varepsilon^{(2)}\left(1 s 2 p^{3} P\right)$ for various parameter sizes. (100 data sets).

Number of parameters	Average value for $\varepsilon^{(2)}\left(1 s 2 p^{3} P\right)$	χ^{2}
8	$-0.07299898818(39)$	7.9×10^{10}
9	$-0.072998983282(11)$	7.6×10^{6}
10	$-0.0729989834552(15)$	1.0×10^{4}
11	$-0.07299898847841(37)$	2.6×10^{-2}
12	$-0.072998988472618(34)$	9.5×10^{-5}
13	$-0.0729989884733347(85)$	1.1×10^{-4}
14	$-0.072998988473129(11)$	2.9×10^{-2}

was found that omitting the first data point $\left(Z=3, E_{n_{1}}\right)$, see Tables 4.20, 4.21, 4.22, and 4.23, yielded more stability in the values for $\varepsilon^{(3)}$ and the higher coefficients, and resulted in more accurate values in the energies obtained from these expansions. This result makes sense physically since the higher order terms of the Z-expansion Eq. (1.1) are of the form $1 / Z^{n}$, where $n=1,2,3, \ldots$, so that the accuracy of our finite expansion determined from the fit increases with increasing Z. Hence, omitting the first data point ($Z=3, E_{n_{1}}$) tends to yield a better fit to our finite expansion. Another important point to note, which is partially illustrated by Tables 4.22 , and 4.23 is that the Z-expansions became "unphysical" when the number of parameters used was equal to or larger than eight. That is, the higher order coefficients obtained in the expansions using a number of parameters greater or equal to eight became unusually large (of the order 10° for eight parameters, and up to 10^{3} for nine or ten parameters). Also, the uncertainties (determined by the boostrap method) in these higher order coefficients are in some cases larger than the values of the coefficients themselves, which is another indication that these values are not physically meaningful. Thus, the higher order coefficients $\varepsilon^{(3)}, \varepsilon^{(4)}, \ldots$ the Z-expansions are taken from the third columns of Tables 4.22 , and 4.23 . These higher order coefficients together with the lower order coefficients $\varepsilon^{(0)}, \varepsilon^{(1)}$, and $\varepsilon^{(2)}$ from Eqs. (3.20), (3.40), (3.44), (4.7), and (4.8) form the Z-expansions used to obtain the nonrelativistic values in the third column of Tables 4.24 and 4.26.

From Tables 4.24, 4.26, 4.27 and 4.28 it is seen that the nonrelativistic values obtained from the Z-expansions are accurate to 8 and 7 figures after the decimal for the ${ }^{2} S$ and ${ }^{2} P$ states, respectively, for $Z=15$. The accuracy increases for increasing nuclear charge Z. Also, from Tables 4.24, 4.25, and 4.26 a comparison is made between the nonrelativistic energies obtained in this thesis and those obtained by K. T. Chung [8], [40] using the multiconfiguration interaction method and those of F. W. King [22] using the variational method with Hylleraas type wavefunctions. It is seen from these tables that King's results are more accurate than those of Chung, and the results obtained in this thesis have improved these best previous results by about three orders of magnitude. Also, from
from Table 4.25, we see that King's results are higher than the ones obtained in this thesis by 1×10^{-6} a.u. $\left(0.22 \mathrm{~cm}^{-1}\right)$ for $Z=3$ to $2 \times 10^{-6} \mathrm{a} . \mathrm{u} .\left(0.44 \mathrm{~cm}^{-1}\right)$ for $Z=10$. These differences do not vary much with Z, and the Z-expansions formed from a least squares fit of King's results would be less accurate for a given Z. For $Z=3$ the difference between King's result, and the one obtained in this thesis is of the same order of magnitude as the QED correction shown in Table 4.32. This shows that King's results would not be accurate enough to extract good QED corrections for the lower Z values, and it also demonstrates the importance of having very accurate nonrelativistic values.

4.1.3 Comparison With Experiment

To make a meaningful comparison with experiment, one must include the relativistic and mass polarization effects with the nonrelativistic values. These effects were calculated using first order perturbation theory, by K. T. Chung [8], [9] for the $1 s^{2} 2 s^{2} S$ states, and by Wang et al. [40] for the $1 s^{2} 2 p{ }^{2} P$ states. The perturbations are given by the expectation values $\left\langle H_{1}+H_{2}\right\rangle,\left\langle H_{3}\right\rangle,\left\langle H_{4}\right\rangle$, and $\left\langle H_{5}\right\rangle$, where

$$
\begin{equation*}
H_{1}=-\frac{\alpha^{2}}{8} \sum_{i=1}^{3} \mathbf{P}_{i}^{4} \tag{4.9}
\end{equation*}
$$

(correction to the kinetic energy arising from the variation of the masses with velocity),

$$
\begin{equation*}
H_{2}=\frac{Z \pi \alpha^{2}}{2} \sum_{i=1}^{3} \delta\left(\mathbf{r}_{i}\right) \tag{4.10}
\end{equation*}
$$

(Darwin term which gives the electromagnetic correction to the static coulomb interaction due to the motion of the particles),

$$
\begin{equation*}
H_{3}=-\pi \alpha^{2} \sum_{\substack{i, j=1 \\ i<j}}\left(1+\frac{8}{3} s_{i} \cdot \mathbf{s}_{j}\right) \delta\left(\mathbf{r}_{i j}\right) \tag{4.11}
\end{equation*}
$$

Table 4.13: Average $\varepsilon^{(2)}\left(1 s 2 p{ }^{3} P\right)$ for data sets consisting of various ranges for Z. (100 data sets).

Range for Z	Average value for $\varepsilon^{(2)}\left(1 s 2 p^{3} P\right)$	Number of parameters
$2-18$	$-0.072998983472618(34)$	12
$3-18$	$-0.0729989834732116(44)$	12
$4-18$	$-0.072998983473187(19)$	12
$5-18$	$-0.072998983473233(15)$	11
$6-18$	$-0.072998983473337(12)$	10
$7-18$	$-0.072998983473196(30)$	10
$2-15$	$-0.072998983472040(51)$	13
$2-16$	$-0.0729989834733939(98)$	13
$2-17$	$-0.0729989834733905(40)$	12

Table 4.14: Convergence with the number of data sets used. (Eight parameters).

Number of data sets	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right)$
2	$-0.0165483(6)$
10	$-0.0165484(7)$
50	$-0.0165483(6)$
100	$-0.0165482(6)$
200	$-0.0165481(6)$
300	$-0.0165481(6)$
1000	$-0.0165481(6)$

Table 4.15: Average $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$ for data sets consisting of various ranges for Z. (300 data sets).

Number of data sets	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$
2	$-0.069831(4)$
10	$-0.069827(7)$
50	$-0.069826(6)$
100	$-0.069827(7)$
200	$-0.069827(6)$
300	$-0.069827(7)$
1000	$-0.069827(7)$

Table 4.16: $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right.$) for various parameter sizes. (300 data sets, and $Z=$ $3,4, \ldots, 15$).

Number of parameters	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right)$	χ^{2}
6	$-0.016528(4)$	2.5×10^{3}
7	$-0.016556(2)$	1.7×10^{2}
8	$-0.0165481(6)$	9.6×10^{-1}
9	$-0.016535(2)$	7.4×10^{-1}
10	$-0.016570(9)$	8.5×10^{-1}

Table 4.17: Average $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right)$ for data sets consisting of various ranges for Z. (300 data sets).

Range for Z	Average value for $\varepsilon_{2}\left(1 s^{2} 2 s^{2} S\right)$	Number of parameters
$3-15$	$-0.0165481(6)$	8
$3-14$	$-0.016547(1)$	8
$3-13$	$-0.0165451(5)$	8
$4-15$	$-0.0165511(2)$	7
$5-15$	$-0.0165512(7)$	7

Table 4.18: $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$ for various parameter sizes. (300 data sets, and $Z=$ $3,4, \ldots, 15$).

Number of parameters	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$	χ^{2}
6	$-0.069927(45)$	6.4×10^{3}
7	$-0.069816(11)$	7.1×10^{0}
8	$-0.069827(7)$	4.4×10^{-1}
9	$-0.069818(35)$	4.1×10^{-1}
10	$-0.069886(37)$	2.0×10^{-1}

Table 4.19: Average $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$ for data sets consisting of various ranges for Z. (300 data sets).

Range for Z	Average value for $\varepsilon_{2}\left(1 s^{2} 2 p^{2} P\right)$	Number of parameters
$3-15$	$-0.069827(7)$	8
$3-14$	$-0.069829(12)$	8
$3-13$	$-0.069827(18)$	8
$4-15$	$-0.069822(4)$	7
$5-15$	$-0.069819(9)$	7

Table 4.20: $\varepsilon^{(3)}\left(1 s^{2} 2 s{ }^{2} S\right)$ for various parameter sizes. (300 data sets, and $Z=$ $4,5, \ldots, 15)$.

Number of parameters	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 s^{2} S\right)$	χ^{2}
6	$-0.016433(1)$	3.6×10^{1}
7	$-0.0165511(2)$	6.3×10^{-1}
8	$-0.016551(1)$	7.8×10^{-1}
9	$-0.016565(7)$	8.3×10^{-1}
10	$-0.01649(6)$	1.1×10^{0}

Table 4.21: $\varepsilon^{(3)}\left(1 s^{2} 2 p^{2} P\right)$ for various parameter sizes. (300 data sets, and $Z=$ $4,5, \ldots, 15$).

Number of parameters	Average value for $\varepsilon^{(3)}\left(1 s^{2} 2 p{ }^{2} P\right)$	χ^{2}
6	$-0.06985(3)$	8.4×10^{1}
7	$-0.069822(4)$	3.3×10^{-1}
8	$-0.06982(2)$	3.8×10^{-1}
9	$-0.06987(3)$	1.8×10^{-1}
10	$-0.06946(6)$	3.5×10^{-2}

Table 4.22: Comparison of the coefficients obtained for the $1 s^{2} 2 s^{2} S$ state Z-expansion for various parameter sizes and ranges. (300 data sets).

Coefficient	$\bar{Z}=3,4, \ldots, 15$ 8 Parameters	$Z=4,5, \ldots, 15$ 7 Parameters	$\begin{gathered} \hline \hline Z=4,5, \ldots, 15 \\ 8 \text { Parameters } \end{gathered}$
$\varepsilon^{(3)}$	-0.016 5481 (5)	-0.016 5511 (2)	-0.016 552(1)
$\varepsilon^{(4)}$	-0.040 70(3)	-0.040 53(1)	-0.040 49(6)
$\varepsilon^{(5)}$	-0.047 0(7)	-0.051 1(2)	-0.052(2)
$\varepsilon^{(6)}$	-0.092(8)	-0.038(2)	-0.03(2)
$\varepsilon^{(7)}$	+0.15(5)	-0.25(1)	-0.3(1)
$\varepsilon^{(8)}$	-1.3(2)	+0.49(3)	+0.8(7)
$\varepsilon^{(9)}$	$+3 \pm 4$	$-1.23(3)$	-2 ± 2
$\varepsilon^{(10)}$	-4 ± 4		$+0.9 \pm 2$

Table 4.23: Comparison of the coefficients obtained for the $1 s^{2} 2 p^{2} P$ state Z-expansion for various parameter sizes and ranges. (300 data sets).

Coefficient	$=3,4, \ldots, 15$	$Z=4,5, \ldots, 15$	$Z=4,5, \ldots, 15$
	8 Parameters	7 Parameters	8 Parameters
$\varepsilon^{(3)}$	$-0.069827(7)$	$-0.069822(4)$	$-0.06982(2)$
$\varepsilon^{(4)}$	$-0.0926(3)$	$-0.0929(1)$	$-0.093(1)$
$\varepsilon^{(5)}$	$-0.092(6)$	$-0.086(2)$	$-0.08(2)$
$\varepsilon^{(6)}$	$-0.06(6)$	$-0.14(2)$	-0.2 ± 0.3
$\varepsilon^{(7)}$	-0.07 ± 0.3	$+0.4(1)$	-0.9 ± 2
$\varepsilon^{(8)}$	-0.6 ± 1	$-1.5(3)$	-4 ± 9
$\varepsilon^{(9)}$	-1.4 ± 2	$+3.3(3)$	-8 ± 20
$\varepsilon^{(10)}$	-4 ± 2		-5 ± 19

Table 4.24: Comparison of the nonrelativistic energies of the $1 s^{2} 2 s^{2} S$ states of the lithium isoelectronic sequence with those of K. T. Chung.

Z	Nonrelativistic Energy (a.u.)		
	This Work	Chung ${ }^{\text {a }}$	Z-expansion
	(Variational method)	(Full core plus correlation)	
3	-7.478 $06032274(20)$	-7.478 059 7(9)	-7.478 052(65)
4	-14.324 $76317578(17)$	-14.324 7610 (11)	-14.324 763(15)
5	-23.424 $60572078(48)$	-23.424 6031 (13)	-23.424 605 5(51)
6	-34.775 511275 11(16)	-34.775 508 2(15)	-34.775 511 2(23)
7	-48.376 898318 43(13)	-48.376 849 9(18)	-48.376 898 3(12)
8	-64.228 $54208200(13)$	-64.228 $5385(19)$	-64.228 542 06(72)
9	-82.330 338096 65(16)	-82.330 334 8(21)	-82.330 338 09(46)
10	-102.682 $23148179(17)$	-102.682 $2278(22)$	-102.682 $23148(31)$
11	-125.284 190753 24(18)	-125.248 189 4(22)	-125.284 190 76(23)
12	-150.136 $19660384(15)$	-150.136 1958 (23)	-150.136 $19661(17)$
13	-177.238 $23655911(22)$	-177.238 $2357(23)$	-177.238 $23657(13)$
14	-206.590 $30221214(47)$	-206.590 $3017(24)$	-206.590 302 22(10)
15	-238.192 387693 56(18)	-238.192387 3(24)	-238.192 387 70(9)

${ }^{\text {a }}$ Reference [9].

Table 4.25: Comparison of the nonrelativistic energies of the $1 s^{2} 2 s^{2} S$ states of the lithium isoelectronic sequence with those of F. W. King.

	Nonrelativistic Energy (a.u.)		
Z	This Work (Variational method)	King (Variational method)	Z-expansion
3	$-7.47806032274(20)$	-7.478059	$-7.478052(65)$
4	$-14.32476317578(17)$		$-14.324763(15)$
5	$-23.42460572078(48)$	-23.424604	$-23.4246055(51)$
6	$-34.77551127511(16)$	-34.775509	$-34.7755112(23)$
7	$-48.37689831843(13)$	-48.376896	$-48.3768983(12)$
8	$-64.22854208200(13)$	-64.228540	$-64.22854206(72)$
9	$-82.33033809665(16)$	-82.330336	$-82.33033809(46)$
10	$-102.68223148179(17)$	-102.682229	$-102.68223148(31)$

${ }^{8}$ Reference [22].

Table 4.26: Comparison of the nonrelativistic energies of the $1 s^{2} 2 p^{2} P$ states of the lithium isoelectronic sequence with those of Wang et al. [39].

	Nonrelativistic Energy (a.u.) Wang et al. ${ }^{\text {a }}$		Z-expansion
Z	This Work (Variational method)	(Restricted variation method)	
3	$-7.410156531252(67)$	$-7.4101541(9)$	$-7.4104(7)$
4	$-14.179333291542(70)$	-14.1793232	$-14.1794(1)$
5	$-23.20444119142(11)$	-23.2044232	$-23.20447(5)$
6	$-34.48210317834(16)$	-34.4820811	$-34.48211(2)$
7	$-48.01105428066(12)$	-48.0110308	$-48.01106(1)$
8	$-63.79073957821(12)$	-63.7907036	$-63.790743(7)$
9	$-81.82088091203(14)$	-81.8208521	$-81.820883(5)$
10	$-102.101324293732(47)$	-102.1012881	$-102.101326(3)$
11	$-124.6319778177(18)$		$-124.631979(2)$
12	$-149.4127833313(17)$	$-149.412784(2)$	
13	$-176.4437022748(19)$	$-176.443703(1)$	
14	$-205.7247080896(20)$	$-205.724709(1)$	
15	$-237.2557818926(19)$	$-237.2557823(9)$	

${ }^{\text {a }}$ Reference [40].

Table 4.27: The nonrelativistic energies (a.u.) from the Z-expansions ($16 \leq Z \leq 54$).

Z	$1 s 2 s{ }^{2} S$ States	
16	$-272.04448880(7)$	$-271.0369102(7)$
17	$-308.14660240(6)$	$-307.0680821(6)$
18	$-346.49872618(5)$	$-345.3492900(5)$
19	$-387.10085834(4)$	$-385.8805279(4)$
20	$-429.95299749(4)$	$-428.6617910(4)$
21	$-475.05514252(3)$	$-473.6930754(3)$
22	$-522.40729256(3)$	$-520.9743781(3)$
23	$-572.00944688(3)$	$-570.5056965(3)$
24	$-623.86160490(2)$	$-622.2870287(2)$
25	$-677.96376613(2)$	$-676.3183727(2)$
26	$-734.31593018(2)$	$-732.5997273(2)$
27	$-792.918096709(18)$	$-791.13109115(19)$
28	$-853.770265422(18)$	$-851.91246323(18)$
29	$-916.872436080(16)$	$-914.94384265(16)$
30	$-982.224608473(15)$	$-980.22522865(15)$
31	$-1049.826782420(14)$	$-1047.75662057(14)$
32	$-1119.678957766(13)$	$-1117.53801782(13)$
33	$-1191.781134375(12)$	$-1189.56941990(12)$
34	$-1266.133312128(12)$	$-1263.85082637(12)$
35	$-1342.735490920(11)$	$-1340.38223684(11)$
36	$-1421.587670659(10)$	$-1419.16365096(10)$
37	$-1502.689851263(10)$	$-1500.195068422(95)$
38	$-1586.0420326613(95)$	$-1583.476488961(95)$
39	$-1671.6442147877(90)$	$-1669.007912327(90)$
40	$-1759.4963975848(86)$	$-1756.789338303(86)$
41	$-1849.5985810008(82)$	$-1846.820766691(83)$
42	$-1941.9507649890(79)$	$-1939.102197313(79)$
43	$-2036.5529495073(76)$	$-2033.633630009(76)$
44	$-2133.4051345177(73)$	$-2130.415064632(73)$
45	$-2232.5073199857(70)$	$-2229.446501052(70)$
46	$-2333.8595058800(68)$	$-2330.727939146(68)$
47	$-2437.4616921719(65)$	$-2434.259378806(65)$
48	$-2543.3138788354(63)$	$-2540.040819930(63)$
49	$-2651.4160658467(61)$	$-2648.072262427(61)$
50	$-2761.7682531839(59)$	$-2758.353706212(59)$
51	$-2874.3704408270(57)$	$-2870.885151207(57)$
52	$-2989.2226287576(55)$	$-2985.666597341(55)$
53	$-3106.3248169586(54)$	$-3102.698044548(54)$
54	$-3225.6770054143(52)$	$-3221.979492766(52)$

Table 4.28: The nonrelativistic energies (a.u.) from the Z-expansions ($55 \leq Z \leq 92$).

Z	$1 s 2 s{ }^{2} S$ States	
55	$-3347.2791941104(51)$	$-3343.510941939(51)$
56	$-3471.1313830333(49)$	$-3467.292392015(49)$
57	$-3597.2335721706(48)$	$-3593.323842945(48)$
58	$-3725.5857615109(47)$	$-3721.605294684(47)$
59	$-3856.1879510433(46)$	$-3852.136747190(46)$
60	$-3989.0401407579(44)$	$-3984.918200424(44)$
61	$-4124.1423306453(43)$	$-4119.949654348(43)$
62	$-4261.4945206970(42)$	$-4257.231108930(42)$
63	$-4401.0967109047(41)$	$-4396.762564136(41)$
64	$-4542.9489012610(40)$	$-4538.544019938(40)$
65	$-4687.0510917586(40)$	$-4682.575476307(39)$
66	$-4833.4032823909(39)$	$-4828.856933216(39)$
67	$-4982.0054731518(38)$	$-4977.388390642(38)$
68	$-5132.8576640352(37)$	$-5128.169848560(37)$
69	$-5285.9598550358(36)$	$-5281.201306949(36)$
70	$-5441.3120461483(36)$	$-5436.482765789(36)$
71	$-5598.9142373678(35)$	$-5594.014225060(35)$
72	$-5758.7664286897(34)$	$-5753.795684744(34)$
73	$-5920.8686201096(34)$	$-5915.827144823(34)$
74	$-6085.2208116238(33)$	$-6080.108605282(33)$
75	$-6251.8230032279(32)$	$-6246.640066104(32)$
76	$-6420.6751949184(32)$	$-6415.421527275(32)$
77	$-6591.7773866919(31)$	$-6586.452988782(31)$
78	$-6765.1295785450(31)$	$-6759.734450610(31)$
79	$-6940.7317704747(30)$	$-6935.265912749(30)$
80	$-7118.5839624780(30)$	$-7113.047375185(30)$
81	$-7298.6861545521(29)$	$-7293.078837908(29)$
82	$-7481.0383466943(29)$	$-7475.360300908(29)$
83	$-7665.6405389022(28)$	$-7659.891764173(28)$
84	$-7852.4927311732(28)$	$-7846.673227694(28)$
85	$-8041.5949235051(27)$	$-8035.704691463(27)$
86	$-8232.9471158957(27)$	$-8226.986155470(27)$
87	$-8426.5493083429(27)$	$-8420.517619707(27)$
88	$-8622.4015008448(26)$	$-8616.299084166(26)$
89	$-8820.5036933994(26)$	$-8814.330548839(26)$
90	$-9020.8558860050(26)$	$-9014.612013720(26)$
91	$-9223.4580786598(25)$	$-9217.143478800(25)$
92	$-9428.3102713622(25)$	$-9421.924944075(25)$

(electron-electron contact term which represents the interaction between the spin magnetic dipole moments of the electrons),

$$
\begin{equation*}
H_{4}=-\frac{1}{M} \sum_{\substack{i, j=1 \\ i<j}} \nabla_{i} \cdot \nabla_{j} \tag{4.12}
\end{equation*}
$$

(mass polarization effect which takes the finite mass of the nucleus into account),

$$
\begin{equation*}
H_{5}=-\frac{\alpha^{2}}{2} \sum_{\substack{i, j=1 \\ i<j}} \frac{1}{r_{i j}}\left[\mathbf{P}_{i} \cdot \mathbf{P}_{j}+\frac{\mathbf{r}_{i j}\left(\mathbf{r}_{i j} \cdot \mathbf{P}_{i}\right) \cdot \mathbf{P}_{j}}{\mathbf{r}_{i j}^{2}}\right] \tag{4.13}
\end{equation*}
$$

(orbit-orbit interaction which represents the correction due to the retardation of the electromagnetic field produced by one of the electrons at the site of the other), where M is the nuclear mass in a.u., and $\alpha=1 / 137.0359895(61)$ is the fine structure constant.

In Tables 4.29, and 4.30 the above relativistic and mass polarization corrections calculated by Chung et al. [8], [9], and [40] are added to the nonrelativistic values obtained in this thesis. Since Chung et al. do not quote uncertainties for these corrections, the uncertainties shown in Tables 4.29, and 4.30 had to be estimated. Chung et al. compare their restricted configuration-interaction calculations for the relativistic corrections of the $1 s^{2}$ core states to the more accurate high precision variational calculations of Pekeris [29]. The deviation between these results was used to determine the percentage error for the relativistic corrections of the $1 s^{2}$ core states. To estimate the uncertainties for the corrections shown in Tables 4.29, and 4.30 this percentage error was applied to the differences between the corrections of the $1 s^{2} 2 s$ (or $1 s^{2} 2 p$) states and those of the $1 s^{2}$ core states. Estimating the uncertainties in this way is reasonable since the percentage error in the energy difference that comes from adding an electron to the $1 s^{2}$ core should be about the same as the percentage error in the core energies.

Using the above method for estimating the uncertainties, it was found that for the ${ }^{2} P$-states with $Z=3,4$, and 5 the error is in the eighth or ninth figure after the decimal, however Wang et al. [40] round off their values to seven significant figures. Thus, the error
in the total value for these energies (nonrelativistic + relativistic and mass polarizations corrections) in Table 4.30 was calculated by assuming a round off error of ± 0.4 in the final figures of the correction terms.

In Table 4.31, the total energies from Tables 4.29, and 4.30 are collected together and compared with experiment to obtain the "experimental" QED corrections shown in the second column of Table 4.32. This column was constructed using

$$
\begin{equation*}
E_{\mathrm{QED}}=E_{\exp }-\left(E_{\mathrm{NR}}+E_{\mathrm{rel}}\right) \tag{4.14}
\end{equation*}
$$

where the $E_{\exp }$ are the experimental values from the fourth column of Table 4.31, the E_{NR} are the nonrelativistic values obtained in this thesis, and the $E_{\text {rel }}$ are the first order relativistic and mass polarization corrections obtained from Chung et al. [8], [40]. The conversion from a.u. to cm^{-1} in Table 4.31 was done by multiplying the $i^{\text {th }}$ energy value in the second column by two times the corresponding reduced Rydberg constant $R_{M_{i}}$ calculated by Chung [8]. In Table 4.32, the experimental values for the QED energies are compared to theoretical estimates of these terms made by McKenzie and Drake [25], and by Chung et al. [9], [40] shown in the third and fourth columns, respectively. From this table, it may be seen that all the theoretical QED values, except for $Z=3$, of McKenzie and Drake are consistently larger than the experimental values obtained in this thesis. The discrepancy ranges from about 13.8% larger for $Z=9$ to about 21.3% larger for $Z=8$. It may also be observed from Table 4.32 that Chung et al.'s theoretical QED corrections are consistently smaller than the experimental values with a discrepancy between them which decreases steadily from 69.2% for $Z=3$ to 25% for $Z=10$.

A possible explanation for Chung et al.'s exceptionally small value for $Z=3$ is given by McKenzie and Drake [25]. To determine the $1 s^{2} 2 s^{2} S-1 s^{2} 2 p^{2} P$ transition energies Chung et al. subtract the ionization potential of the ${ }^{2} S$-state from that of the ${ }^{2} P$-state. For each of these states, the QED effects of the core is assumed to cancel out in the ionization potential. Thus, the QED corrections are evaluated by them only for
the valence electron using the hydrogenic formulas [3]

$$
\begin{equation*}
\Delta E_{\mathrm{QED}}(n, 0)=\frac{8 Z_{\mathrm{eff}}^{4} \alpha^{3} R}{3 \pi n^{3}}\left\{\frac{19}{30}-2 \ln \left(\alpha Z_{\mathrm{eff}}\right)-\ln \left[K_{0}(n, 0)\right]\right\} \tag{4.15}
\end{equation*}
$$

for the valence 2 s electron, and

$$
\begin{equation*}
\Delta E_{\mathrm{QED}}(n, 1)=\frac{4 Z_{\mathrm{eff}}^{4} \alpha^{3} R}{3 \pi n^{3}}\left\{\frac{1}{8} C_{1 J}-\ln \left[K_{0}(n, 1)\right]\right\} \tag{4.16}
\end{equation*}
$$

for the valence 2 p electron, where

$$
C_{1 J}=\left\{\begin{array}{rl}
\frac{1}{2} & \text { for } \quad J=\frac{3}{2} \\
-1 & \text { for } \\
& J=\frac{1}{2}
\end{array} .\right.
$$

In these equations, R is the Rydberg constant, n is the principal quantum number which equals 2 in this case, $K_{0}(n, l)$ are the Bethe logarithms, and $Z_{\text {eff }}$ is the effective nuclear charge which Chung et al. estimate from the equation

$$
\begin{equation*}
E_{\text {nonrel }}\left(1 s^{2} 2 l\right)-E_{\text {noarel }}\left(1 s^{2}\right)=-\frac{Z_{\text {eff }}^{2}}{2 n^{2}} \tag{4.17}
\end{equation*}
$$

McKenzie and Drake [25] point out that the effective nuclear charge obtained from Eq. (4.17) overestimates the screening of the electron density at the nucleus leading to a value for $Z=3$ in Table 4.32 which is much too small..

The theoretical calculations for the QED corrections carried out by Mckenzie and Drake [25] were an extension of a method developed previously for two-electron ions, and although it yields better results than the calculations of Chung et al. [9], [40] the discrepancy with the experimental values obtained in this thesis is still quite large.

4.1.4 Conclusion, and Suggestions for Future Work

It is evident that the variational method using multiple basis sets in Hylleraas coordinates yields very accurate eigenvalues for the ${ }^{2} S$ and ${ }^{2} P$-states of the lithium isoelectronic
sequence. The nonrelativistic energies presented in this thesis are the most accurate theoretical energies to date. However, the convergence characteristics and the extrapolated energies obtained in Tables 4.1 and 4.2 may be improved upon further by investigating the possibility of multiple roots in the energy surfaces (plots of the energies as a function of the nonlinear parameters), and by extrapolating the optimum nonlinear parameters for the larger basis sets from plots of the variational nonlinear parameters versus the basis set size Ω.

Using the nonrelativistic energies obtained in this thesis, it has been possible to calculate some of the higher coefficients $\varepsilon^{(3)}, \varepsilon^{(4)}, \ldots$ of Z-expansions for the ${ }^{2} S$ and ${ }^{2} P$-states. With these expansions, the nonrelativistic energies of the higher members of the lithium isoelectronic sequence ($15<Z<92$) may be calculated to 9 or 10 significant figures after the decimal. The ultimate accuracy of the Z-expansions for higher Z is limited only by the accuracy of the second order coefficients $\varepsilon^{(2)}$ which have been determined to about 12 significant figures.

With the first order relativistic and mass polarization effects calculated by Chung et al. [8], [40], Eq. (4.14) has been used to extract the QED corrections from experimental data, and a comparison with theoretical estimates has been made. From this comparison, it is seen that a substantial discrepancy exists between theory and experiment. The source of this discrepancy probably lies in the theoretical methods used to obtain the QED corrections. To be sure, more work is needed in this area.

In order to improve the accuracy of the experimental QED correction more accurate relativistic corrections are needed. However, there are difficulties in calculating the matrix elements of the Breit interaction using the more accurate wavefunctions containing Hylleraas coordinates. These difficulties arise from the fact that the integrals associated with these matrix elements contain inverse powers of the interelectron coordinates (from the Breit operator) which make these integrals very singular. Work on resolving these difficulties is currently being carried out by Zong-Chao Yan. These corrections could also be carried out for the higher Z members of the lithium isoelectronic sequence, however,
the leading higher-order relativistic contributions which are proportional to $Z^{6} \alpha^{4}$ start to become more important for the higher nuclear charge ions. Thus, these higher-order corrections may also have to be calculated in order to obtain more accurate QED corrections for higher members of the lithium isoelectronic sequence. Finally, higher precision experimental values for $Z>3$ will be needed as the theoretical work continues to increase in accuracy.

Table 4.29: First order relativistic and mass polarization corrections added to the nonrelativistic $1 s^{2} 2 s^{2} S$ state energies.

Z	3		4
Nonrel.	$-7.47806032274(20)$	$-14.32476317578(17)$	$-23.42460572096(66)$
$\left\langle H_{1}+H_{2}\right\rangle$	$-0.00070748(4)$	$-0.00253737(19)$	$-0.00672288(43)$
$\left\langle H_{3}\right\rangle$	$0.000095340(89)$	$0.00027355(35)$	$0.000597386(76)$
$\left\langle H_{5}\right\rangle$	$-0.000023331(2)$	$-0.000048626(6)$	$-0.000083357(8)$
$\left\langle H_{4}\right\rangle$	$0.000023635(1)$	$0.000027603(2)$	$0.000030235(3)$
Total	$-7.478672158(97)$	$-14.32704802(40)$	$-23.43078433(88)$
Z	6	7	8
Nonrel.	$-34.77551127511(16)$	$-48.37689831843(13)$	$-64.22854208200(12)$
$\left\langle H_{1}+H_{2}\right\rangle$	$-0.01475445(85)$	$-0.0284890(13)$	$-0.0501557(19)$
$\left\langle H_{3}\right\rangle$	$0.0011113(14)$	$0.0018582(21)$	$0.0028828(31)$
$\left\langle H_{5}\right\rangle$	$-0.000127541(8)$	$-0.000181166(5)$	$-0.000244241(3)$
$\left\langle H_{4}\right\rangle$	$0.000034788(3)$	$0.000035872(3)$	$0.000036721(3)$
Total	$-34.7892472(16)$	$-48.4036744(25)$	$-64.2760224(36)$
Z		9	10
Nonrel.	$-82.33033809665(16)$	$-102.68223148179(17)$	
$\left\langle H_{1}+H_{2}\right\rangle$	$-0.0823509(27)$	$-0.1280414(39)$	
$\left\langle H_{3}\right\rangle$	$0.0042288(42)$	$0.0059399(55)$	
$\left\langle H_{5}\right\rangle$	$-0.000316769(9)$	$-0.000398744(19)$	
$\left\langle H_{4}\right\rangle$	$0.000035397(3)$	$0.000037900(3)$	
Total	$-82.4087416(50)$	$-102.8046938(68)$	

Table 4.30: First order relativistic and mass polarization corrections added to the nonrelativistic $1 s^{2} 2 p{ }^{2} P$ state energies.

Z	3	4	5
Nonrel.	-7.410 $156531252(67)$	-14.179 $333291542(70)$	-23.204 441191 42(10)
$\left\langle H_{1}+H_{2}\right\rangle$	-0.000 6933 (0)	-0.002 4405 (0)	-0.006 3974 (0)
$\left\langle H_{3}\right\rangle$	$0.0000936(0)$	$0.0002638(0)$	0.0005713 (0)
$\left\langle H_{5}\right\rangle$	-0.000 0213 (0)	-0.000 $0329(0)$	-0.000 $0339(0)$
$\left\langle H_{4}\right\rangle$	0.000019 4(0)	$0.0000102(0)$	-0.000 0041 (0)
Total	-7.410 $7581(1)$	-14.181532 7(1)	-23.210 $3053(1)$
2	6	7	8
Nonrel.	-34.482 $10317834(15)$	-48.011 $05428066(12)$	-63.790 739578 21(12)
$\left\langle H_{1}+H_{2}\right\rangle$	-0.013 $9514(2)$	-0.026 831 6(4)	-0.047 $1037(6)$
$\left\langle\mathrm{H}_{3}\right\rangle$	0.001057 1(1)	$0.0017627(2)$	0.002729 5(4)
$\left\langle H_{5}\right\rangle$	-0.000 $0167(1)$	0.000026 4(1)	$0.0001034(0)$
$\left\langle H_{4}\right\rangle$	-0.000 022 6(0)	-0.000 0418 (1)	-0.000 $0615(1)$
Total	-34.495 0368 (2)	-48.036 138 6(5)	-63.835 $0719(7)$
Z	9	10	
Nonrel.	-81.820 $88091203(14)$	-102.101 $324293732(47)$	
$\left\langle H_{1}+H_{2}\right\rangle$	-0.077 2063 (9)	-0.119 $8782(13)$	
< H_{3} 〉	0.003998 6(7)	$0.0056118(10)$	
$\left\langle H_{5}\right\rangle$	$0.0002218(22)$	0.000389 6(6)	
$\left\langle H_{4}\right\rangle$	-0.000 077 4(1)	-0.000 $1021(1)$	
Total	-81.893 944 2(25)	-102.215 $3032(18)$	

Table 4.31: Comparison between theory and experiment for the $1 s^{2} 2 s{ }^{2} S-1 s^{2} 2 p{ }^{2} P$ transition energies of the lithium isoelectronic sequence.

Z	Theory		
	$($ a.u. $)$	Experiment $\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$

Table 4.32: Comparison of Theory minus Experiment with directly calculated QED corrections.

Z	$\begin{aligned} & \text { Theory-Expt. } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{gathered} \hline \hline \text { QED Corr. }{ }^{e} \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline \text { QED Corr. } \\ & \left(\mathrm{cm}^{-1}\right) \\ & \hline \end{aligned}$
3	0.26(2)	0.23(2)	0.08(1)
4	1.55(10)		0.78(5)
5	5.1(5)		2.96(18)
6	12.3(8)		7.69(54)
7	25(1)	29.2	16.2(1.1)
8	41(1)	50.0	29.6(2.4)
9	71(2)	80.1	49.3(3.4)
10	102(2)	120.7	76.5(5.3)
${ }^{\text {e }}$ Reference [25]. ${ }^{\text {f }}$ Reference [9], and [40]			

Appendix A

Determination the Del Operators

To determine the effect of ∇_{i}^{2}, operating on a member of the basis set, we begin by writing the variable dependence of our trial wave function:

$$
\Psi=R\left(r_{1}, r_{2}, r_{3}, r_{12}, r_{13}, r_{23}\right) \Omega
$$

where $\Omega=Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}\left(\widehat{r}_{3}\right)$. Next, we apply ∇_{i}^{2} to Ψ so that we may find the form of the ∇_{i}^{2} operators. For example,

$$
\begin{align*}
\nabla_{1} \Psi= & {\left[\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial z_{1}}\right) R\right] \Omega+R \nabla_{1}^{y} \Omega } \\
= & {\left[\left(\frac{\partial R}{\partial r_{1}} \frac{\partial r_{1}}{\partial x_{1}}+\frac{\partial R}{\partial r_{12}} \frac{\partial r_{12}}{\partial x_{1}}+\frac{\partial R}{\partial r_{13}} \frac{\partial r_{13}}{\partial x_{1}}\right),\left(\frac{\partial R}{\partial r_{1}} \frac{\partial r_{1}}{\partial y_{1}}+\frac{\partial R}{\partial r_{12}} \frac{\partial r_{12}}{\partial y_{1}}+\frac{\partial R}{\partial r_{13}} \frac{\partial r_{13}}{\partial y_{1}}\right),\right.} \\
& \left.\left(\frac{\partial R}{\partial r_{1}} \frac{\partial r_{1}}{\partial z_{1}}+\frac{\partial R}{\partial r_{12}} \frac{\partial r_{12}}{\partial z_{1}}+\frac{\partial R}{\partial r_{13}} \frac{\partial r_{13}}{\partial z_{1}}\right)\right] \Omega+R \nabla_{1}^{y} \Omega \\
= & \left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right) \Omega+R \nabla_{1}^{y} \Omega \tag{A.1}
\end{align*}
$$

where ∇_{1}^{y} acts only on the spherical part. Then,

$$
\begin{align*}
\nabla_{1}^{2} \Psi & =\nabla_{1} \cdot\left[\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right) \Omega\right]+\nabla_{1} \cdot\left(R \nabla_{1}^{y} \Omega\right) \\
& =\mathrm{I}+\mathrm{II} \tag{A.2}
\end{align*}
$$

where,

$$
\begin{aligned}
\mathrm{I} & =\left[\nabla_{1} \cdot\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right)\right] \Omega, \\
\mathrm{II} & =\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right) \cdot \nabla_{1}^{y} \Omega+\left(\nabla_{1} R\right)\left(\nabla_{1}^{y} \Omega\right)+R \nabla_{1}^{2} \Omega .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathrm{I} & =\left[\nabla_{1} \cdot\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right)\right] \Omega \\
& =\left[\nabla_{1} \cdot\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}\right)+\nabla_{1} \cdot\left(\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}\right)+\nabla_{1} \cdot\left(\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right)\right] \Omega
\end{aligned}
$$

where

$$
\begin{aligned}
\nabla_{1} \cdot\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}\right) & =\frac{2}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\partial^{2} R}{\partial r_{1}^{2}}+\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{12}}{r_{1} r_{12}} \frac{\partial^{2} R}{\partial r_{12} \partial r_{1}}+\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{13}}{r_{1} r_{13}} \frac{\partial^{2} R}{\partial r_{13} \partial r_{1}} \\
\nabla_{1} \cdot\left(\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}\right) & =\frac{2}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\partial^{2} R}{\partial r_{12}^{2}}+\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{12}}{r_{1} r_{12}} \frac{\partial^{2} R}{\partial r_{1} \partial r_{12}}+\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12} r_{13}} \frac{\partial^{2} R}{\partial r_{12} \partial r_{13}}
\end{aligned}
$$

and

$$
\nabla_{1} \cdot\left(\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right)=\frac{2}{r_{13}} \frac{\partial R}{\partial r_{13}}+\frac{\partial^{2} R}{\partial r_{13}^{2}}+\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{13}}{r_{1} r_{13}} \frac{\partial^{2} R}{\partial r_{1} \partial r_{12}}+\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12} r_{13}} \frac{\partial^{2} R}{\partial r_{12} \partial r_{13}}
$$

Using the fact that $\mathbf{r}_{1} \cdot \mathbf{r}_{12}=\frac{1}{2}\left(r_{1}^{2}-r_{2}^{2}+r_{12}^{2}\right)$, and $\mathbf{r}_{12} \cdot \mathbf{r}_{13}=\frac{1}{2}\left(r_{12}^{2}-r_{12}^{2}+r_{23}^{2}\right)$, we get

$$
\begin{aligned}
I= & {\left[\frac{\partial^{2}}{\partial r_{1}^{2}}+\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{\partial^{2}}{\partial r_{13}^{2}}+2\left(\frac{1}{r_{1}} \frac{\partial}{\partial r_{1}}+\frac{1}{r_{12}} \frac{\partial}{\partial r_{12}}+\frac{1}{r_{13}} \frac{\partial}{\partial r_{13}}\right)+\left(\frac{r_{1}^{2}-r_{2}^{2}+r_{12}^{2}}{r_{1} r_{12}} \frac{\partial^{2}}{\partial r_{12} \partial r_{1}}\right.\right.} \\
& \left.\left.+\frac{r_{1}^{2}-r_{3}^{2}+r_{13}^{2}}{r_{1} r_{13}} \frac{\partial^{2}}{\partial r_{1} \partial r_{13}}+\frac{r_{12}^{2}-r_{3}^{2}+r_{23}^{2}}{r_{12} r_{13}} \frac{\partial^{2}}{\partial r_{12} \partial r_{13}}\right)\right] \Psi
\end{aligned}
$$

Also,

$$
\mathrm{II}=\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right) \cdot \nabla_{1}^{y} \Omega+\left(\nabla_{1} R\right)\left(\nabla_{1}^{y} \Omega\right)+R \nabla_{1}^{2} \Omega
$$

$$
\begin{aligned}
= & \frac{1}{r_{1}} \frac{\partial R}{\partial r_{1}}\left(\mathbf{r}_{1} \cdot \nabla_{1}^{y} \Omega\right)+\frac{1}{r_{12}} \frac{\partial R}{\partial r_{12}}\left(\mathbf{r}_{12} \cdot \nabla_{1}^{y} \Omega\right)+\frac{1}{r_{13}} \frac{\partial R}{\partial r_{13}}\left(\mathbf{r}_{13} \cdot \nabla_{1}^{y} \Omega\right) \\
& +\left(\nabla_{1} R\right)\left(\nabla_{1}^{y} \Omega\right)-R \frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}} \Omega
\end{aligned}
$$

but, $\boldsymbol{r}_{1} \perp \nabla_{1}^{y} Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right)$, so that,

$$
\begin{aligned}
\mathbf{r}_{1} \cdot \nabla_{1}^{y} \Omega & =\left[\mathbf{r}_{1} \cdot \nabla_{1}^{y} Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right)\right] Y_{l_{2} m_{2}}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}\left(\widehat{r}_{3}\right) \\
& =0
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbf{r}_{12} \cdot \nabla_{1}^{y} \Omega & =\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \cdot \nabla_{1}^{y} \Omega \\
& =\mathbf{r}_{1} \cdot \nabla_{1}^{y} \Omega-\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega \\
& =-\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega,
\end{aligned}
$$

and, $\mathbf{r}_{13} \cdot \nabla_{1}^{y} \Omega=-\mathbf{r}_{3} \cdot \nabla_{1}^{y} \Omega$. Thus,

$$
\begin{aligned}
\mathrm{II}= & -\frac{1}{r_{12}} \frac{\partial R}{\partial r_{12}}\left(\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega\right)-\frac{1}{r_{13}} \frac{\partial R}{\partial r_{13}}\left(\mathbf{r}_{3} \cdot \nabla_{1}^{y} \Omega\right)+\left(\nabla_{1} R\right)\left(\nabla_{1}^{y} \Omega\right)-R \frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}} \Omega \\
= & -\frac{1}{r_{12}} \frac{\partial R}{\partial r_{12}}\left(\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega\right)-\frac{1}{r_{13}} \frac{\partial R}{\partial r_{13}}\left(\mathbf{r}_{3} \cdot \nabla_{1}^{y} \Omega\right)+\left(\frac{\mathbf{r}_{1}}{r_{1}} \frac{\partial R}{\partial r_{1}}+\frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial R}{\partial r_{12}}+\frac{\mathbf{r}_{13}}{r_{13}} \frac{\partial R}{\partial r_{13}}\right) \\
& \times\left(\nabla_{1}^{y} \Omega\right)-R \frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}} \Omega \\
= & -\frac{1}{r_{12}} \frac{\partial R}{\partial r_{12}}\left(\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega\right)-\frac{1}{r_{13}} \frac{\partial R}{\partial r_{13}}\left(\mathbf{r}_{3} \cdot \nabla_{1}^{y} \Omega\right)-\frac{1}{r_{12}} \frac{\partial R}{\partial r_{12}}\left(\mathbf{r}_{2} \cdot \nabla_{1}^{y} \Omega\right) \\
& -\frac{1}{r_{13}} \frac{\partial R}{\partial r_{13}}\left(\mathbf{r}_{3} \cdot \nabla_{1}^{y} \Omega\right)-R \frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}} \Omega \\
= & {\left[-2\left(\mathbf{r}_{2} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{12}} \frac{\partial}{\partial r_{12}}-2\left(\mathbf{r}_{3} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{13}} \frac{\partial}{\partial r_{13}}-\frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}}\right] R \Omega . }
\end{aligned}
$$

Now adding I and II, we get

$$
\nabla_{1}^{2} \Psi=I+I I
$$

$$
\begin{aligned}
= & {\left[\frac{\partial^{2}}{\partial r_{1}^{2}}+\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{\partial^{2}}{\partial r_{13}^{2}}+2\left(\frac{1}{r_{1}} \frac{\partial}{\partial r_{1}}+\frac{1}{r_{12}} \frac{\partial}{\partial r_{12}}+\frac{1}{r_{13}} \frac{\partial}{\partial r_{13}}\right)\right.} \\
& +\frac{r_{1}^{2}-r_{2}^{2}+r_{12}^{2}}{r_{1} r_{12}} \frac{\partial^{2}}{\partial r_{12} \partial r_{1}}+\frac{r_{1}^{2}-r_{3}^{2}+r_{13}^{2}}{r_{1} r_{13}} \frac{\partial^{2}}{\partial r_{1} \partial r_{13}} \\
& +\frac{r_{12}^{2}-r_{3}^{2}+r_{23}^{2}}{r_{12} r_{13}} \frac{\partial^{2}}{\partial r_{12} \partial r_{13}}-2\left(r_{2} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{12}} \frac{\partial}{\partial r_{12}}-2\left(r_{3} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{13}} \frac{\partial}{\partial r_{13}} \\
& \left.-\frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}}\right] \Psi .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\nabla_{1}^{2}= & \frac{\partial^{2}}{\partial r_{1}^{2}}+\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{\partial^{2}}{\partial r_{13}^{2}}+2\left(\frac{1}{r_{1}} \frac{\partial}{\partial r_{1}}+\frac{1}{r_{12}} \frac{\partial}{\partial r_{12}}+\frac{1}{r_{13}} \frac{\partial}{\partial r_{13}}\right) \\
& +\frac{r_{1}^{2}-r_{2}^{2}+r_{12}^{2}}{r_{1} r_{12}} \frac{\partial^{2}}{\partial r_{12} \partial r_{1}}+\frac{r_{1}^{2}-r_{3}^{2}+r_{13}^{2}}{r_{1} r_{13}} \frac{\partial^{2}}{\partial r_{1} \partial r_{13}} \\
& +\frac{r_{12}^{2}-r_{3}^{2}+r_{23}^{2}}{r_{12} r_{13}} \frac{\partial^{2}}{\partial r_{12} \partial r_{13}}-2\left(\mathrm{r}_{2} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{12}}-2\left(\mathrm{r}_{3} \cdot \nabla_{1}^{y}\right) \frac{1}{r_{13}} \frac{\partial}{\partial r_{13}} \\
& -\frac{l_{1}\left(l_{1}+1\right)}{r_{1}^{2}} \tag{A.3}
\end{align*}
$$

A similar result is obtained for ∇_{2}^{2} but with the indices 1 and 2 interchanged, and also for ∇_{3}^{2} but with the indices 1 and 3 interchanged.

Appendix B

Evaluation of the Angular Integral \widetilde{I}

With the use of the spherical harmonic addition theorem,

$$
\begin{equation*}
P_{q_{a b}}\left(\cos \theta_{a b}\right)=\frac{4 \pi}{2 q_{a b}+1} \sum_{m_{a b}} Y_{q_{a b} m_{a b}}^{*}\left(\widehat{r}_{1}\right) Y_{q_{a b} m_{a b}}\left(\widehat{r}_{2}\right) \tag{B.1}
\end{equation*}
$$

the angular integral (2.29), becomes

$$
\begin{equation*}
\tilde{I}=\int d \Omega_{1} d \Omega_{2} d \Omega_{3} \frac{64 \pi^{3}}{\left(2 q_{12}+1\right)\left(2 q_{23}+1\right)\left(2 q_{31}+1\right)} \sum_{m_{12}} \sum_{m_{23}} \sum_{m_{31}} A_{1} A_{2} A_{3} \tag{B.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=Y_{l_{1}^{\prime} m_{1}^{\prime}}^{*}\left(\widehat{r}_{1}\right) Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right) Y_{q_{12} m_{12}}^{*}\left(\widehat{r}_{1}\right) Y_{q_{31} m_{31}}\left(\widehat{r}_{1}\right) \\
& A_{2}=Y_{l_{2}^{\prime} m_{2}^{\prime}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{2} m_{2}}\left(\widehat{r}_{2}\right) Y_{q_{12} m_{12}}^{*}\left(\widehat{r}_{2}\right) Y_{q_{23} m_{23}}\left(\widehat{r}_{2}\right)
\end{aligned}
$$

and

$$
A_{3}=Y_{l_{3}^{\prime} m_{3}^{\prime}}^{*}\left(\widehat{r_{3}}\right) Y_{l_{3} m_{3}}\left(\widehat{r}_{3}\right) Y_{q_{31} m_{31}}^{*}\left(\widehat{r}_{3}\right) Y_{q_{23} m_{23}}\left(\widehat{r}_{3}\right)
$$

Then using, $Y_{L M}^{*}=(-1)^{M} Y_{L-M}$, we obtain

$$
A_{1}=(-1)^{m_{1}^{\prime}} Y_{l_{1}^{\prime}-m_{1}^{\prime}}\left(\widehat{r}_{1}\right) Y_{l_{1} m_{1}}\left(\widehat{r}_{1}\right)(-1)^{m_{12}} Y_{q_{12}-m_{12}}\left(\widehat{r}_{1}\right) Y_{q_{31} m_{31}}\left(\widehat{r}_{1}\right)
$$

and with the relation,

$$
Y_{L M}(\widehat{r}) Y_{L^{\prime} M^{\prime}}(\widehat{r})=\sum_{L^{\prime \prime} M^{\prime \prime}} Y_{L^{\prime \prime} M^{\prime \prime}}(\widehat{r}) \frac{\left(L, L^{\prime}, L^{\prime \prime}\right)^{\frac{1}{2}}}{\sqrt{4 \pi}}(-1)^{M^{\prime \prime}}\left(\begin{array}{ccc}
L & L^{\prime} & L^{\prime \prime} \tag{B.3}\\
M & M^{\prime} & -M^{\prime \prime}
\end{array}\right)\left(\begin{array}{ccc}
L & L^{\prime} & L^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)
$$

where, $M^{\prime \prime}=M+M^{\prime}$ and $\left(L, L^{\prime}, L^{\prime \prime}\right)^{\frac{1}{2}}=(2 L+1)^{\frac{1}{2}}\left(2 L^{\prime}+1\right)^{\frac{1}{2}}\left(2 L^{\prime \prime}+1\right)^{\frac{1}{2}}$, we get

$$
\begin{aligned}
A_{1}= & (-1)^{m_{1}^{\prime}+m_{12}}\left\{\sum_{n_{1} s_{1}} \frac{\left(L, L^{\prime}, n_{1}\right)^{\frac{1}{2}}}{\sqrt{4 \pi}}\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & s_{1}
\end{array}\right)(-1)^{s_{1}} Y_{n_{1} s_{1}}^{*}\left(\widehat{r}_{1}\right)\right. \\
& \left.\times \sum_{n_{23} s_{23}} \frac{\left(q_{12}, q_{31}, q_{23}\right)^{\frac{1}{2}}}{\sqrt{4 \pi}}\left(\begin{array}{ccc}
q_{12} & q_{31} & q_{23} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
-m_{12} & m_{31} & s_{23}
\end{array}\right)(-1)^{s_{23}} Y_{n_{23} s_{23}}^{*}\left(\widehat{r}_{1}\right)\right\}
\end{aligned}
$$

where, $s_{1}=m_{1}^{\prime}-m_{1}$, and $s_{23}=m_{12}-m_{31}$. Now, evaluating this further using again relation (B.3), we get

$$
\begin{aligned}
A_{1}= & (-1)^{m_{1}^{\prime}+m_{12}} \frac{1}{(4 \pi)^{\frac{3}{2}}} \sum_{n_{1} n_{23} n_{0}} \sum_{s_{1} s_{23} s_{0}}\left(n_{1}, n_{23}\right)\left(l_{1}^{\prime}, l_{1}, q_{12}, q_{31}, n_{0}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
n_{1} & n_{23} & n_{0} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & s_{1}
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
-m_{12} & m_{31} & s_{23}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
n_{1} & n_{23} & n_{0} \\
s_{1} & s_{23} & s_{0}
\end{array}\right) Y_{n_{0} s_{0}}\left(\widehat{r}_{1}\right)(-1)^{s_{1}+s_{23}+s_{0}}
\end{aligned}
$$

where, $s_{0}=s_{23}-s_{1}$. Similarly,

$$
\begin{aligned}
A_{2}= & (-1)^{m_{2}^{\prime}+m_{23}} \frac{1}{(4 \pi)^{\frac{3}{2}}} \sum_{n_{2} n_{13} n_{0}^{\prime}} \sum_{s_{2} s_{13} s_{0}^{\prime}}\left(n_{21}, n_{13}\right)\left(l_{2}^{\prime}, l_{2}, q_{12}, q_{23}, n_{0}^{\prime}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{13} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
n_{2} & n_{13} & n_{0}^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
-m_{2}^{\prime} & m_{2} & s_{2}
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{13} \\
-m_{23} & m_{12} & s_{13}
\end{array}\right)
\end{aligned}
$$

$$
\times\left(\begin{array}{ccc}
n_{2} & n_{13} & n_{0}^{\prime} \\
s_{2} & s_{13} & s_{0}^{\prime}
\end{array}\right) Y_{n_{0}^{\prime} s_{0}^{\prime}}\left(\widehat{r_{2}}\right)(-1)^{s_{1}+s_{23}+s_{0}^{\prime}},
$$

and

$$
\begin{aligned}
A_{3}= & (-1)^{m_{3}^{\prime}+m_{31}} \frac{1}{(4 \pi)^{\frac{3}{2}}} \sum_{n_{3} n_{12} n_{0}^{\prime \prime}} \sum_{s_{3} s_{12} s_{0}^{\prime \prime}}\left(n_{3}, n_{12}\right)\left(l_{3}^{\prime}, l_{3}, q_{31}, q_{23}, n_{0}^{\prime \prime}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
c_{31} & q_{23} & n_{12} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
n_{3} & n_{12} & n_{0}^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
-m_{3}^{\prime} & m_{3} & s_{3}
\end{array}\right)\left(\begin{array}{ccc}
q_{31} & q_{23} & n_{12} \\
-m_{31} & m_{23} & s_{12}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
n_{3} & n_{12} & n_{0}^{\prime \prime} \\
s_{3} & s_{12} & s_{0}^{\prime \prime}
\end{array}\right) Y_{n_{0}^{\prime \prime} s_{0}^{\prime \prime}\left(\widehat{r}_{3}\right)(-1)^{s_{3}+s_{12}+s_{0}^{\prime \prime}} .}
\end{aligned}
$$

Now using, $\sqrt{4 \pi} \int d \Omega_{1} Y_{n_{0} s_{0}}\left(\widehat{r}_{1}\right) Y_{00}\left(\widehat{r}_{1}\right)=\sqrt{4 \pi} \delta_{n_{0}, 0} \delta_{s_{0}, 0}$, we have

$$
\int d \Omega_{1} d \Omega_{2} d \Omega_{3} Y_{n_{0} s_{0}}\left(\widehat{r}_{1}\right) Y_{n_{0}^{\prime} o_{0}^{\prime}}\left(\hat{r}_{2}\right) Y_{n_{0}^{\prime \prime} s_{0}^{\prime \prime}}\left(\widehat{r}_{3}\right)=(4 \pi)^{\frac{3}{2}} \delta_{n_{0}, 0} \delta_{n_{0}, 0} \delta_{n_{0}^{\prime}, 0} \delta_{s_{0}^{\prime}, 0} \delta_{n_{0}^{\prime \prime}, 0} \delta_{s_{0}^{\prime \prime}, 0}
$$

so that,

$$
\begin{aligned}
\int A_{1} d \Omega_{1}= & (-1)^{m_{1}^{\prime}+m_{12}} \frac{1}{4 \pi} \sum_{n_{1} n_{23}} \sum_{s_{1} s_{23}}\left(2 n_{1}+1\right)\left(2 n_{23}+1\right)\left(l_{1}^{\prime}, l_{1}, q_{12}, q_{31}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
n_{1} & n_{23} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & s_{1}
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
-m_{12} & m_{31} & s_{23}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{23} \\
-m_{12} & m_{31} & s_{23}
\end{array}\right)\left(\begin{array}{ccc}
n_{1} & n_{23} & 0 \\
s_{1} & s_{23} & 0
\end{array}\right) .
\end{aligned}
$$

and with the relation,

$$
\left(\begin{array}{ccc}
a & b & 0 \tag{B.4}\\
\alpha & \beta & 0
\end{array}\right)=(-1)^{a-\alpha} \delta_{a, b} \delta_{\alpha,-\beta}(2 a+1)^{-1 / 2}
$$

the integral reduces to

$$
\begin{aligned}
\int A_{1} d \Omega_{1}= & (-1)^{m_{1}+m_{12}} \frac{1}{4 \pi} \sum_{n_{1}}\left(2 n_{1}+1\right)\left(l_{1}^{\prime}, l_{1}, q_{12}, q_{31}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{1} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & m_{1}^{\prime}-m_{1}
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{1} \\
-m_{12} & m_{31} & m_{1}-m_{1}^{\prime}
\end{array}\right)
\end{aligned}
$$

Following a similar procedure for the A_{2} and A_{3} integrals, we get

$$
\begin{aligned}
\int A_{2} d \Omega_{2}= & (-1)^{m_{2}+m_{23}} \frac{1}{4 \pi} \sum_{n_{2}}\left(2 n_{2}+1\right)\left(l_{2}^{\prime}, l_{2}, q_{12}, q_{23}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{2} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
-m_{2}^{\prime} & m_{2} & m_{2}^{\prime}-m_{2}
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{2} \\
-m_{23} & m_{12} & m_{2}-m_{2}^{\prime}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int A_{3} d \Omega_{3}= & (-1)^{m_{3}+m_{31}} \frac{1}{4 \pi} \sum_{n_{3}}\left(2 n_{3}+1\right)\left(l_{3}^{\prime}, l_{3}, q_{31}, q_{23}\right)^{\frac{1}{2}}\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
q_{31} & q_{23} \\
n_{3} \\
0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
-m_{3}^{\prime} & m_{3} & m_{3}^{\prime}-m_{3}
\end{array}\right)\left(\begin{array}{ccc}
q_{31} & q_{23} & n_{3} \\
-m_{31} & m_{23} & m_{3}-m_{3}^{\prime}
\end{array}\right)
\end{aligned}
$$

Now, substituting these evaluated integrals into Eq. (B.2), we obtain

$$
\begin{aligned}
\tilde{I}= & (-1)^{m_{1}+m_{2}+m_{3}}\left(l_{1}, l_{2}, l_{3}, l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}\right)^{\frac{1}{2}} \sum_{m_{12} m_{23} m_{31}} \sum_{n_{1} n_{2} n_{3}}(-1)^{m_{12}+m_{23}+m_{31}}\left(n_{1}, n_{2}, n_{3}\right) \\
& \times\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{2} \\
0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
q_{31} & q_{23} & n_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1}^{\prime} & l_{1} & n_{1} \\
-m_{1}^{\prime} & m_{1} & m_{1}^{\prime}-m_{1}
\end{array}\right)\left(\begin{array}{ccc}
q_{12} & q_{31} & n_{1} \\
-m_{12} & m_{31} & m_{1}-m_{1}^{\prime}
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& \times\left(\begin{array}{ccc}
l_{2}^{\prime} & l_{2} & n_{2} \\
-m_{2}^{\prime} & m_{2} & m_{2}^{\prime}-m_{2}
\end{array}\right)\left(\begin{array}{ccc}
q_{23} & q_{12} & n_{2} \\
-m_{23} & m_{12} & m_{2}-m_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
q_{31} & q_{23} & n_{3} \\
-m_{31} & m_{23} & m_{3}-m_{3}^{\prime}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
l_{3}^{\prime} & l_{3} & n_{3} \\
-m_{3}^{\prime} & m_{3} & m_{3}^{\prime}-m_{3}
\end{array}\right) \tag{B.5}
\end{align*}
$$

and using the relation

$$
\begin{align*}
& \sum_{\alpha \beta \gamma}(-1)^{A+B+C+\alpha+\beta+\gamma}\left(\begin{array}{lll}
A & B & c \\
\alpha & -\beta & \gamma^{\prime}
\end{array}\right)\left(\begin{array}{lll}
B & C & \alpha \\
\beta & -\gamma & \alpha^{\prime}
\end{array}\right)\left(\begin{array}{lll}
C & A & b \\
\gamma & -\alpha & \beta^{\prime}
\end{array}\right) \\
= & \left\{\begin{array}{lll}
a & b & c \\
A & B & C
\end{array}\right\}\left(\begin{array}{lll}
a & b & c \\
\alpha^{\prime} & \beta^{\prime} & \gamma^{\prime}
\end{array}\right) \tag{B.6}
\end{align*}
$$

this may be further simplified to Eq. (2.36).

Appendix C

Derivation of the Backward

Recursion Relation

We begin by considering

$$
\begin{equation*}
F(1, s+1+p ; s+1 ; z)=\sum_{n=0}^{\infty} \frac{(1)_{n}(s+1+p)_{n}}{n!(s+1)} z^{n} \tag{C.1}
\end{equation*}
$$

where $(a)_{n}=a(a+1)(a+2) \cdots(a+n-1)$ and $(a)_{0}=1$. Next, we make use of the fact that

$$
\begin{align*}
(a)_{n} & =(a)(a+1)(a+2) \cdots(a+n-1) \\
& =\frac{(a+n-1)!}{(a-1)!} \tag{C.2}
\end{align*}
$$

to rewrite Eq. (C.1) as

$$
\begin{align*}
F(1, s+1+p ; s+1 ; z) & =\sum_{n=0}^{\infty} \frac{n!(s+p+n)!s!}{n!(s+p)!(s+n)!} z^{n} \\
& =\frac{s!}{(s+p)!} \sum_{n=0}^{\infty} \frac{(s+p+n)!}{(s+n)!} z^{n} \tag{C.3}
\end{align*}
$$

Now, let us consider

$$
\begin{equation*}
F(1, s+p ; s ; z)=\frac{(s-1)!}{(s-1+p)!} \sum_{N=0}^{\infty} \frac{(s-1+p+N)!}{(s-1+N)!} z^{N} \tag{C.4}
\end{equation*}
$$

Letting $N-1=n$, (C.4) becomes

$$
\begin{align*}
F(1, s+p ; s ; z) & =\frac{(s-1)!}{(s-1+p)!} \sum_{n=-1}^{\infty} \frac{(s+p+n)!}{(s+n)!} z^{n+1} \\
& =\frac{(s-1)!}{(s-1+p)!} z \sum_{n=-1}^{\infty} \frac{(s+p+n)!}{(s+n)!} z^{n} \\
& =\frac{(s-1)!}{(s-1+p)!} z\left[\frac{(s+p-1)!}{(s-1)!} z^{-1}+\sum_{n=0}^{\infty} \frac{(s+p+n)!}{(s+n)!} z^{n}\right] . \tag{C.5}
\end{align*}
$$

Finally, using (C.3), we get

$$
\begin{align*}
F(1, s+p ; s ; z) & =1+\frac{(s-1)!}{(s-1+p)!} z \frac{(s+p)!}{s!} F(1, s+1+p ; s+1 ; z) \\
& =1+\frac{s+p}{s} z F(1, s+1+p ; s+1 ; z) \tag{C.6}
\end{align*}
$$

which is the relation we seek.

Appendix D

The General Form of the Integral Involved in the Calculation of $\varepsilon_{n}^{(1)}$

The general form of the integrals (3.31), (3.32), and (3.33) may be expressed as

$$
\begin{align*}
\langle\Psi| \frac{1}{r_{i j}}|\Psi\rangle= & \iiint R_{n_{1} l_{1}}^{*}\left(r_{1}\right) R_{n_{2} l_{2}}^{*}\left(r_{2}\right) R_{n_{3} l_{3}}^{*}\left(r_{3}\right) Y_{l_{1}^{\prime} m_{1}}^{*}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}^{*}\left(\widehat{r}_{3}\right) \frac{1}{r_{i j}} R_{n_{1}^{\prime} l_{1}^{\prime}}\left(r_{1}\right) \\
& \times R_{n_{2}^{\prime} l_{2}^{\prime}}\left(r_{2}\right) R_{n_{3}^{\prime} l_{3}^{\prime}}\left(r_{3}\right) Y_{l_{1}^{\prime} m_{1}^{\prime}}\left(\widehat{r}_{1}\right) Y_{l_{2}^{\prime} m_{2}^{\prime}}\left(\widehat{r}_{2}\right) Y_{l_{3}^{\prime} m_{3}^{\prime}}\left(\widehat{r}_{3}\right) d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} . \tag{D.1}
\end{align*}
$$

In this Appendix, the general form of the angular part of this integral is determined and the essential integral relations for the evaluation of the radial part are given.

To split up the radial and angular part of (D.1), we begin by making use of the expansion

$$
\begin{equation*}
\frac{1}{r_{i j}}=\sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{k}\left(\cos \theta_{i j}\right), \tag{D.2}
\end{equation*}
$$

where $\theta_{i j}$ is the angle between r_{i} and r_{j} and $r_{<}$is the lesser and $r_{>}$the greater of r_{i} and r_{j}. This expansion may be rewritten as

$$
\begin{equation*}
\frac{1}{r_{i j}}=\sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}}\left(\frac{4 \pi}{2 k+1}\right) \sum_{q=-k}^{k} Y_{k q}^{*}\left(\widehat{r}_{i}\right) Y_{k q}\left(\widehat{r}_{j}\right) \tag{D.3}
\end{equation*}
$$

where we have made use of the spherical harmonic addition theorem. Now, substituting (D.3) into (D.1), we obtain

$$
\begin{equation*}
I=\sum_{k=0}^{\infty} R_{i j}^{(k)}\left(n_{1} l_{1}, n_{2} l_{2}, n_{3} l_{3}, n_{1}^{\prime} l_{1}^{\prime}, n_{2}^{\prime} l_{2}^{\prime}, n_{3}^{\prime} l_{3}^{\prime}\right)\left(\frac{4 \pi}{2 k+1}\right) \sum_{q=-k}^{k} \tilde{I}, \tag{D.4}
\end{equation*}
$$

where
$R_{i j}^{(k)}=\int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\infty} r_{3}^{2} d r_{3} R_{n_{1} l_{1}}^{*}\left(r_{1}\right) R_{n_{2} l_{2}}^{*}\left(r_{2}\right) R_{n_{3} l_{3}}^{*}\left(r_{3}\right) \frac{r_{<}^{k}}{r_{>}^{k+1}} R_{n_{1}^{\prime} l_{1}^{\prime}}\left(r_{1}\right) R_{n_{2}^{\prime} l_{2}^{\prime}}\left(r_{2}\right) R_{n_{3}^{\prime} l_{3}^{\prime}}\left(r_{3}\right)$,
and
$\tilde{I}=\iiint Y_{l_{1} m_{1}}^{*}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{3} m_{3}}^{*}\left(\widehat{r}_{3}\right) Y_{k q}^{*}\left(\widehat{r}_{i}\right) Y_{k q}\left(\widehat{r}_{j}\right) Y_{l_{1}^{\prime} m_{1}^{\prime}}\left(\widehat{r}_{1}\right) Y_{l_{2} m_{2}^{\prime}}\left(\widehat{r}_{2}\right) Y_{l_{3}^{\prime} m_{3}^{\prime}}\left(\widehat{r}_{3}\right) d \Omega_{1} d \Omega_{2} d \Omega_{3}$,
where $d \Omega=\sin \theta d \theta d \varphi$.

D. 1 Evaluation of the Angular Part

For the angular integral (D.6) let us set $i=1$ and $j=3$, and rewrite it as

$$
\begin{equation*}
\tilde{I}=\int A_{1} d \Omega_{1} \int A_{2} d \Omega_{2} \int A_{3} d \Omega_{3}, \tag{D.7}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{1}=Y_{l_{1} m_{1}}^{*}\left(\widehat{r}_{1}\right) Y_{k q}^{*}\left(\widehat{r}_{1}\right) Y_{l_{1}^{\prime} m_{1}^{\prime}}\left(\widehat{r}_{1}\right), \tag{D.8}\\
A_{2}=Y_{l_{2} m_{2}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{2}^{\prime} m_{2}^{\prime}}\left(\widehat{r}_{2}\right), \tag{D.9}
\end{gather*}
$$

and

$$
\begin{equation*}
A_{3}=Y_{l_{3} m_{3}}^{*}\left(\widehat{r}_{3}\right) Y_{k q}\left(\widehat{r}_{3}\right) Y_{l_{3}^{\prime} m_{3}^{\prime}}\left(\widehat{r}_{3}\right) . \tag{D.10}
\end{equation*}
$$

Rewriting (D.8), we have

$$
A_{1}=(-1)^{m_{1}^{\prime}} Y_{l_{1} m_{1}}^{*}\left(\widehat{r}_{1}\right)\left[Y_{k q}^{*}\left(\widehat{r}_{1}\right) Y_{l_{1}^{\prime} m_{1}^{\prime}}^{*}\left(\widehat{r}_{1}\right)\right]
$$

and with the complex conjugate of relation (B.3), this becomes

$$
\begin{align*}
A_{1}= & (-1)^{m_{1}^{\prime}} \sum_{\lambda_{1}=\left|k-l_{1}^{\prime}\right|}^{k+l_{1}^{\prime}} \sum_{\mu_{1}=-\lambda_{1}}^{\lambda_{1}}(-1)^{q-m^{\prime}}\left[\frac{\left(k, l_{1}^{\prime}, \lambda_{1}\right)}{4 \pi}\right]^{\frac{1}{2}}\left(\begin{array}{ccc}
k & l_{1}^{\prime} & \lambda_{1} \\
q & -m_{1}^{\prime} & \mu_{1}
\end{array}\right)\left(\begin{array}{lll}
k & l_{1}^{\prime} & \lambda_{1} \\
0 & 0 & 0
\end{array}\right) \\
& \times Y_{l_{1} m_{1}}^{*}\left(\widehat{r}_{1}\right) Y_{\lambda_{1} \mu_{1}}\left(\widehat{r}_{1}\right) . \tag{D.11}
\end{align*}
$$

Now using the orthonormal relation for the spherical harmonics

$$
\begin{equation*}
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta Y_{l m}^{*}(\hat{r}) Y_{l^{\prime} m^{\prime}}(\hat{r})=\delta_{l, l^{l^{\prime}}} \delta_{m, m^{\prime}} \tag{D.12}
\end{equation*}
$$

together with (D.11), we have

$$
\begin{align*}
\int A_{1} d \Omega_{1} & =(-1)^{q} \sum_{\lambda_{1} \mu_{1}}\left[\frac{\left(k, l_{1}^{\prime}, \lambda_{1}\right)}{4 \pi}\right]^{\frac{1}{2}}\left(\begin{array}{ccc}
k & l_{1}^{\prime} & \lambda_{1} \\
q & -m_{1}^{\prime} & \mu_{1}
\end{array}\right)\left(\begin{array}{lll}
k & l_{1}^{\prime} & \lambda_{1} \\
0 & 0 & 0
\end{array}\right) \delta_{l_{1}, \lambda_{1}} \delta_{m_{1} \mu_{1}} \\
& =(-1)^{q}\left[\frac{\left(k, l_{1}^{\prime}, l_{1}\right)}{4 \pi}\right]^{\frac{1}{2}}\left(\begin{array}{ccc}
k & l_{1}^{\prime} & l_{1} \\
q & -m_{1}^{\prime} & m_{1}
\end{array}\right)\left(\begin{array}{lll}
k & l_{1}^{\prime} & l_{1} \\
0 & 0 & 0
\end{array}\right) \tag{D.13}
\end{align*}
$$

Similarly,

$$
\int A_{3} d \Omega_{3}=(-1)^{q}\left[\frac{\left(k, l_{3}^{\prime}, l_{3}\right)}{4 \pi}\right]^{\frac{1}{2}}\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \tag{D.14}\\
q & -m_{3}^{\prime} & m_{3}
\end{array}\right)\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{equation*}
\int A_{2} d \Omega_{2}=\int Y_{l_{2} m_{2}}^{*}\left(\widehat{r}_{2}\right) Y_{l_{2}^{\prime} m_{2}^{\prime}}\left(\widehat{r}_{2}\right) d \Omega_{2}=\delta_{l_{2}, l_{2}^{\prime}} \delta_{m_{2}, m_{2}^{\prime}} \tag{D.15}
\end{equation*}
$$

Substituting (D.13), (D.14), and (D.15) into (D.7), we get

$$
\begin{align*}
\tilde{I}= & (-1)^{2 q}\left(l_{1}, l_{1}^{\prime}, l_{3}, l_{3}^{\prime}\right)^{\frac{1}{2}} \frac{(2 k+1)}{4 \pi}\left(\begin{array}{ccc}
k & l_{1}^{\prime} & l_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k & l_{1}^{\prime} & l_{1} \\
q & -m_{1}^{\prime} & m_{1}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \\
q & -m_{3}^{\prime} & m_{3}
\end{array}\right)\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \\
0 & 0 & 0
\end{array}\right) \delta_{l_{2}, l_{2}} \delta_{m_{2}, m_{2}^{\prime}} \tag{D.16}
\end{align*}
$$

Now without loss of generality, we will choose $m=0$ for the wavefunctions, so that

$$
\begin{align*}
\widetilde{I}_{0}= & \left(l_{1}, l_{1}^{\prime}, l_{3}, l_{3}^{\prime}\right)^{\frac{1}{2}} \frac{(2 k+1)}{4 \pi}\left(\begin{array}{ccc}
k & l_{1}^{\prime} & l_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k & l_{1}^{\prime} & l_{1} \\
q & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k & l_{3}^{\prime} & l_{3} \\
q & 0 & 0
\end{array}\right) \delta_{l_{2}, l_{2}^{\prime}} \delta_{m_{2}, m_{2}^{\prime}} . \tag{D.17}
\end{align*}
$$

Equation (D.17) is the general equation for the angular part of integral (D.4), and with this equation (D.4) may be written as

$$
\begin{equation*}
I=\sum_{k=0}^{\infty} R_{i j}^{(k)} \sum_{q=-k}^{k} \tilde{I}_{0} \tag{D.18}
\end{equation*}
$$

D. 2 Integral Relations for the Evaluation of the Radial Part

In this section, the general integral relations for the evaluation of the radial integral (D.5) are presented. To begin, we note that Eq. (D.5) is of the form

$$
\begin{equation*}
F_{m n}^{(k)}=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f\left(r_{l}, r_{m}, r_{n}\right) \frac{r_{<}^{k}}{r_{>}^{k+1}} d r_{l} d r_{m} d r_{n} \tag{D.19}
\end{equation*}
$$

where $r_{>}=\max \left(r_{m}, r_{n}\right)$, and $r_{<}=\min \left(r_{m}, r_{n}\right)$. To evaluate this integral, it must be separated in the following way

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f\left(r_{l}, r_{m}, r_{n}\right) \frac{r_{<}^{k}}{r_{>}^{k+1}} d r_{l} d r_{m} d r_{n}= & \int_{0}^{\infty} f\left(r_{l}\right) d r_{l} \int_{0}^{\infty} f\left(r_{m}\right) d r_{m} \\
& \times\left[\frac{1}{r_{m}^{k+1}} \int_{\substack{\left(r_{m}>r_{n}\right)}}^{r_{m}} f\left(r_{n}\right) r_{n}^{k} d r_{n}+r_{m}^{k} \int_{r_{m}}^{\infty} f\left(r_{n}\right) \frac{1}{r_{n}^{k+1}} d r_{n}\right] \tag{D.20}
\end{align*}
$$

Next, the evaluation of (D.20) is carried out with the use of the following integral relations

$$
\begin{gather*}
\int_{0}^{\infty} r^{n} e^{-\alpha r} d r=\frac{n!}{\alpha^{n+1}} \tag{D.21}\\
\int_{0}^{r^{\prime}} r^{n} e^{-\alpha r} d r=\frac{e^{-\alpha r^{\prime}}}{(-\alpha)}\left[r^{\prime n}-\frac{n r^{\prime n-1}}{(-\alpha)}+\frac{n(n-1) r^{\prime n-2}}{(-\alpha)^{2}}-\cdots \frac{(-1)^{n} n!}{(-\alpha)^{n}}\right]-\frac{(-1)^{n} n!}{(-\alpha)^{n+1}} \tag{D.22}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{r^{\prime}}^{\infty} r^{n} e^{-\alpha r} d r=-\frac{e^{-\alpha r^{\prime}}}{(-\alpha)}\left[r^{\prime n}-\frac{n r^{\prime n-1}}{(-\alpha)}+\frac{n(n-1) r^{\prime n-2}}{(-\alpha)^{2}}-\cdots \frac{(-1)^{n} n!}{(-\alpha)^{n}}\right] \tag{D.23}
\end{equation*}
$$

Bibliography

[1] R. B. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).
[2] K. F. Berggren and R. F. Wood, Phys. Rev. 130, 198 (1963).
[3] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Elsevier, New York, 1977).
[4] E. A. Burke, Phys. Rev. 130, 1871 (1963).
[5] C. D. H. Chisholm, A. Dalgarno, and F. R. Innes, Phys. Rev. 167, 60 (1968).
[6] C. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radzimeski, Bull. Am. Phys. Soc. 40, 1272 (1995).
[7] C. D. H. Chisholm and A. Dalgarno, Proc. Roy. Soc. (London) A292, 264 (1966).
[8] K. T. Chung, Phys. Rev. A 44, 5421 (1991).
[9] K. T. Chung, Phys. Rev. A 45, 7766 (1992).
[10] G. W. F. Drake. Long-Range Casimar Forces: Theory and Recent Experiments on Atomic Systems (Plenum, New York, 1993).
[11] G. W. F. Drake and Z.-C. Yan, Phys. Rev. A 52, 3681 (1995).
[12] J. E. B. Wilson, J. Chem. Phys. 1, 210 (1932).
[13] C. Eckhart, Phys. Rev. 36, 878 (1930).
[14] B. Edlén, Phys. Scr. 19, 255 (1979).
[15] B. Edlén, Phys. Scr. 28, 51, (1983).
[16] L. Engström, Phys. Scr. 29, 115 (1984).
[17] V. Guillemin and C. Zener, Zeit. f. Physik 61, 199 (1930).
[18] P. J. Huber, Robust Statistics (Wiley, New York, 1981).
[19] E. A. Hylleraas, Z. Physik 48, 469 (1928).
[20] E. A. Hylleraas, Z. Physik 54, 374 (1929).
[21] H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
[22] F. W. King, Phys. Rev. A 40, 1735 (1989).
[23] F. W. King and V. Shoup, Phys. Rev. A 33, 2940 (1986).
[24] S. Larsson, Phys. Rev. 169, 49 (1968).
[25] D. K. McKenzie and G. W. F. Drake, Phys. Rev. A 44, R6973 (1991).
[26] A. Messiah, Quantum Mechanics, Volume II (John Wiley and Sons, Inc, 1963).
[27] J. D. Morgan, Phys. Rev. A 41 Number 3, 1247 (1990).
[28] Y. Öhrn and J. Nordling, J. Chem. Phys. 39, 1864 (1963).
[29] C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 126, 143 (1962).
[30] J. F. Perkins, J. Chem. Phys. 48, 1985 (1968).
[31] J. F. Perkins, Phys. Rev. A 13, 915 (1976).
[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Press Syndicate of the University of Cambridge, second edition, 1992).
[33] A. Ralston, A First Course in Numerical Analysis (McGraw-Hill Book Company, 1965).
[34] R. A. Sack, J. Math. Phys. 5, 245 (1964).
[35] F. S. Sanders and C. W. Scherr, J. Chem Phys. 42, 4314 (1965).
[36] S. Seung and E. B. Wilson, J. Chem Phys. 47, 5343 (1967).
[37] O. Sinanoğlu, Phys. Rev. 122, 493 (1961).
[38] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 52, 3711 (1995).
[39] Z. J. Horak, M. N. Lewis, A. Dalgarno, and P. Blanchard, Phys. Rev. 185, 21 (1969).
[40] Z.-W. Wang, X.-W. Zhu, and K. T. Chung, Phys. Scr. 47, 65 (1993).

VITA AUCTORIS

NAME: Mauro Tambasco
PLACE OF BIRTH: Toronto, Ontario
YEAR OF BIRTH: 1971
EDUCATION: Jarvis Collegiate Institute, Toronto1985-1990University of Toronto, Toronto, Ontario1990-1994 B.Sc.University of Windsor, Windsor, Ontario1995-1997 M.Sc.

APPLIED 三 IMAGE. Inc 1653 East Main Street Rochester, NY 14609 USA Phone: 716/482-0300

O 1993. Applied Image. Inc.. All Rights Reserved

