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ABSTFZACT 

Variational e igen~dues  for the 1s22s 2S and ls22~ 2P states of the lithium Welec- 

tronic seqiience (3 5 Z 5 15) are calcuiated using multiple bais  sets in Hylleraas coor- 

dinates. A systemat ic convergence pattern for eadi of these nonrelat ivist ic energies is 

established, and extrapolated values are determined t o  within an  accuracy of several parts 

in 10'O to 10". An analyticd caiculation to  determine the first two coefficients and 

E( ' )  of the Z-evpansion for the above states of the lithium isoelectronic sequence is also 

present ed. LTsing improved electron-pair energies, the  t hird coefficient d2) for the above 

states is determined to twelve significant fisues, and the next several coefficients of the 

expansion are fond by applying the linear least squares fit method to the  extrapolated 

variat ional eigendues.  Finally, first order relat ivist ic and mass polarizat ion correct ions 

£rom [8], and [40] are added t o  the nonrelativistic enerses  obtained. and the resulting 

ls22s 2S - 1 ~ ~ 2 ~  * P transit ion energies are compared with evperirnent to determine the  

"experimental" QED correct ions. 
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Chapter 1 

Introduction 

The lithium isoelectronic sequence comprises lithium and al1 other atoms of higher nuclear 

charge which have b e n  stnpped of all their electrons except for the three innermost. 

The nonrelativistic description of such three electron systems includes an interaction 

between each electron and the nucleus as well as an interaction between each of the 

electrons. It is this interaction between each of the electrons which prevents one from 

obtaining exact analytic solutions to these systems. However, despite this complication, 

a particular theoretical technique know as the variational method has been used since 

the late 1920's to obtain apprcocirnate solutions for severai electron atorns. The basic idea 

of this method, as explained in detail in the first chapter, is to choose a trial wavefunction 

that depends on a number of parameters (al, c r t ,  . . .), and minimize (Q I  H 1 Q) with 

respect to  these parameters to obtain an upper bound to the energy being calculateci. 

This seems simple enough, however, there are many details about the form of the trial 

wavefunction which must be considered if one is to obtain very accurate solutions for the 

several electron systems. Some of these details include: 

1. the size of the basis set, 

2. the explicit inclusion of correlat ion &ects by incorporat ing powers of the interelec- 

tronic coordinates rv (Hylleraas coordinates), where i, j = 1,2, and 3, 



3. the usage of multiple basis sets (i.e. the explicit inclusion of multiple distance 

d e s )  Y 

4, the inclusion of nonlinear as well as linear variational parameters, 

5. the optimization of the nonlinear parameters for improved numerical stability, and 

6. the inclusion of all tems which yield a systernatic convergence pattern for increasing 

basis set size. 

wth the incorporation of all these details to  form the optimum trial wavefunction, 

time becurnes an important factor for the Lithium calculation. This is mainly due to 

the very slow convergence of integrals with several interelectronic distances rij in the 

integrand. The solution t o  this problem as well as the particulars of an optimum trial 

wavefunction have been sddressed by many atomic theorists over the last 60 years. Much 

of the success in dealing with these problerns has corne in the last 10 years as a result 

of significant increases in computational power and the application of new mathematical 

techniques. The most recent progress has b e n  made by Drake and Yan [Il] who have 

succeeded in dramatically decreasing the time required for the calculation of three elec- 

tron integrals in Hylleraas coordinates. This development along with improved methods 

for obtaining an optimum trial wavefunction have led Drake and Yan to obtain the most 

accurate results for the lithium calculation to date [38]. One of the purposes of this thesis 

is t o  present these reœnt met hods for the lithium calculat ion. 

These methods have been used in this work to  determine the nonrelativistic upper 

bound energies for the 1s22s 2S and 1 ~ ~ 2 ~  2P states of the lithium isoelectronic sequence 

for up to 2 = 15. These energies may also be determined fkom the Zacpansions for 

t hese states, narnely, 



where the leading terms do) and d ' ) c m  easily be evaluated exactly. Equat ion (1.1) arises 

by treat ing the elec t ronelec t ron interactions as an en t ire perturbation t erm and expand- 

ing the resultant total energy. In this thesis, do) and dl) are calculated analytically, 

an improved value for d2) is obtained as a weighted sum of electron-pair energies and 

singleelectron energies [7], (51, and the ne& seved terms d3), d4), . . . of the expansion 

are found by performing a least squares fit using the nonrelativistic energies obtained 

fkom extraplat  ions of the t hree electron corn put er calculat ions. 

A meanuighil cornparison with experiment can only be made once the m a s  polariza- 

tion and relativistic corrections have been added to the nonrelativistic energies. In this 

thesis, these corrections have been obtained from Chung et al. [8], [40] for both the S and 

P-states of the lithium isoe1ectronic sequence up t o  Z = 10. The  QED corrections may 

then be extracted fkom the dinerenœ between theory and experiment and the results 

may be compared to directly calculated QED results. 

1.1 Historical Survey 

The first variational calculation for lithium was done in 1930 by Eckhart [13]. He used 

the following screened type radial wavefunctions 

for the 1s and 2s orbitsls, respectively, where a and .y are the variational parameters. 

Using these analytic functions he also calculated the ground state energies for the low 

Z members of the lithium isoelectronic sequence. Ail his values except for lithium itself 

were accurate to within a few percent. The calculation for lithium turned out to be in 

error, and it was later corrected by Wilson 1121. 



The ground state calcuhtion for lithium was improved upon in that same year 

by Guillemin and Zener [17] who introduced a third parameter in place of the non- 

exponential parameter 7 in Eq. (1.3). Wit h this new three parameter wavefunct ion t hey 

obtained an improved value of -7.4183 a.u. for the ground state of lithium. Calcula- 

t ions such as these, containing simple analytic wavehnctions, cont inued t hroughout the 

eady 1930's. However, the accuracy in the energies obtainable fkom using these simple 

separate orbital wavefunctions was limited. 

In 1936, important breakthroughs were made by James and Coolidge [21] with their 

introduction of more elaborate wavefunctions. In an d o r t  to improve upon previous 

triai hnctions, they made three dinerent types of adjustments to their wavehinctions, 

and examinecl which of these adjustments resulted in significant irnprovements for the 

bound states and ionization potential of lithium. The k t  of these adjustments was the 

addit ion of new linear and nonlinear paramet ers to the radial fûnct ion represent ing the 

2s orbital. This change was made for the purpose of irnproving the represent at ion of the 

2s orbital, however, the result ant four-term funct ion yielded am improvement of l e s  t hen 

1 x a.u. for the ground state energy. The second adjustment that they made wiiis 

intended to improve the core representation. Previously, the core had been represented 

by a product of two separate orbital hnctions, u(ri) u(r2).  In the place of this product, 

James and Coolidge tried using a single hnction u(ri, r2) ,  which explicitly included the 

first two powers of the interelectronic coordinates, i.e., r12 = Iri - r21 and rf2. The use 

of such coordinates was k t  introduced, with great success, by Hyileraas [19] [20] for the 

helium calculation in 1928. As such, it seemed very likely that similar success could be 

achieved for the lithium calculation since the interelectronic coordinates would improve 

the core representation by allowing correlation effects Nithin the a r e  to  be taken into 

account. This, in fact, turned out to be the case. With the inclusion of riz and r f2 ,  

a value of -7.47268 a.u. was obtained for the ground state energy of lithium. This 

drarnatic improvement was obtained with just a six-term core and a single term valence 

orbital hnction. The success indicated that correlation effects within the core have a 



significant impact on the variational energies of lithium. 

The final adjustment made by James and Coolidge was to  abandon the separate 

orbital concept altoget her by including the interelectronic coordinats r 1s and rm in theh 

wavefunct ion. This change a l l o d  correlat ion effects between the valence orbit al and 

the core to  be taken into account, and with a new ten term wavefunction, they improved 

the ground state energy of lithium by a few parts in 16. Hence, the importance of 

polarization d e c t s  between the core and the outer electron in detemining energy levels 

for three electron systems was also demonstrated. 

At this point, one may wonder why the use of interelectronic coordinates in the 

trial wavefhction for lithium had not been introduced sooner. Eight years had gone 

by s ine  Hylleraas had first introduced and s h o w  the importance of using such coor- 

dinates in calculations for few electron systems. The reason they were not introduced 

çooner is probably because the inclusion of these coordinates for three electron systems 

enomously complicates the calcuiation of the radial integrals. Wit h the inclusion of the 

interelectronic coordinates, these integrals tuni out to be of the general fom,  

This integral may be evaluated by expanding powers of rij in terms of a series of Legendre 

functions. However, a numerical summation of an infinite series is required if all three 

powers ji2, jm, and j3i are odd. James and Coolidge got around this problem by including 

only one nonzero power of r~ in each of their terms constituting the wavefunction. 

Due to  the difficulty of solving radial integrals of the form (U), irnprovements over 

the Jarna and Coolidge results using Hylleraas type trial wavehnctions did not corne 

until almost thirty years later. In 1963, Berggren and Wood [2] evtended the wavehnction 

of James and Coolidge by adding terms alternating between the inclusion of coordinates 

r23 and 7-13 up to the third power. The  addition of these terms allowed for an improved 

description of the core-valence correlation, and their 14 term wavehnction led to an 

improved value of -7.47631 a. u. for the ground state energy of lithium. In the same year, 



a similar extension was also made by Burke [4] who obtained a slightly better value of 

-7.47695 a.u. Although these extensions by Burke, and Berggren and Wood yielded some 

improvement in the ground state energy of lithium, it was clear that even more elaborate 

extensions were necessary if any Further improvements were to  be made. Such extensions 

became possible that same year with the disoovery of a reasonably efficient algorithm 

for dealing with the case mentioned above whae  all three powers of the interelectronic 

coordinates are odd. In addition to this discovery made by Ohrn and Nordling [28], a 

wmputat ionally usehl expansion for arbitrary powers of the interelect ronic coordinat es 

was introduced by Sack [34] a year later. Perkins [a], in 1968, also provided a similar 

expansion but for only the integral powers of the coordinates ru. With the introduction 

of these powerful computational tools, the door was now open for calculations with more 

complat Hylleraas type wavefunct ions. 

In 1968, Larsson [24] made use of the new computational tools for his lithium calcu- 

lation which involved the most complex Hylleraas type wavefunctions anyone had ever 

used up until then. He performed calculations for various basis set sizes up to  a size 

which included 60 difTerent radial terms. The terms he used were select4 on the basis of 

their ability to improve the ground state energy, and with these trial and error selection 

proœsses he obtained a final energy of -7.478025 a.u. 

While various Hylleraas type variat ional calculat ions were being st  udied during the 

196û9s, the usefulness of Z-acpansions for predicting atomic properties, such as the mr- 

relation energy, were also being explored [7] [5] [39]. To make meaningfd predictions for 

the atomic properties, the expansions were carried up to second-order. The second-order 

coefficient d2) of the Z-expansion (1.1) was derived frorn electron-pair eigen funct ions. 

This rnethod for calcuhting d2) appears to have been first pointed out by Bacher and 

Goudsmit [L] in 1934. However, it wasn't unt il almost t hree decades later t hat the met hod 

was used to extend the Z-expansions for the lithium içoelectronic sequenœ. 

In 1960, Sinanoglu [37] showed that the first order wavefunction @'), [see Eqs. (3.11) 

and (3.15)], can be obtained rigorously in t m s  of the first order wavehnctions of in- 



dependent tweelectron systerns. For example, if #(')(ls2 'S), &)(1s2s 3So), &)(1~2s  

3S1), and #(')(Is~s 'S) are first-order corrections t o  the t d e c t r o n  states, then the 

6-st-order wavefunction for the lithium ground state can be written as 

where a = Isar, b = lsp, and c = 2sar are one electron hydrogenic solutions for nuclear 

charge 2, the subscripts denote electrons, and a and /3 represent spin up and spin d o m ,  

respectively. A is the t hree particle antisymmetrizer (2.11). The first-order corrections 

to the tw~electron states can be obtained individually by variational or other methods. 

Wit h the 6rst-orde.r wavefunct ion the nonrelat ivist ic energies can be calculated 

to third order, with second and third-order energies d2) and d3) written as a weighted 

sum of electron-pair enagies and certain single-electron energies. In 1965, such a calcu- 

lation was carried out to  second-order by Chisholrn and Dalgarno [7] for the ground state 

lithium isoelectronic sequence. They obtained the pair energies fiom direct two-electron 

variat ional calculat ions, and presented a method for evaluating the single-electron ener- 

@es exactly. With this work, they concluded that the nonrelativistic eigenvalues of the 

1s22s *S states of the lithium sequence were given by 

Several years later, a similar calculation was done by Chisholm et al. for the ls22p * P  

state of the lithium isoelectronic sequence [5] with the result 

It turned out, however, that  the calculated second order energies in (1.6) and (1.7) were 

slightly off. In 1969, an improved value for the pair energy d2) (1929 'S )  had been used 



by Horak et al. [39], and this led to a slightly more accurate d u e  for d 2 ) ( 1 s 2 2 s  ' S )  

than that of Chishoh and Dalgarno. They also made a correction to  one of the single- 

electron energy terms used in the calculation of the second order coefficient d 2 ) ( l s 2 2 p  

* P )  of Eq. (1.7). With these adjustments they obtained d 2 ) ( l s 2 2 s  ' S )  = 0.4081652 and 

d 2 ) ( l s 2 2 ~  * P )  = 0.5285786 for the 1s22s  *S and l s 2 2 p  2P state expansion, respectively. 

A few years later, Seung and W i n  [36] carried out a sirnilar calculation for the 

1s22s 'S state up to  the third order. Their work led to the result that the nonrelativistic 

energy for this state is given by 

To obtain this result, they used the same pair energies as Chisholm and Dalgarno, how- 

ever, their calculation for the single-electron terms was les extensive. These terms Fvere 

evaluated only apprmimately using variationally determineci representations of the twm 

electron pair functions. Rom Table 1.1 below, we see how the second and third order 

Z-expansions compared to  some of the variational calculations for the lithium ground 

state. 

During the 19707s, Larsson's work was extended with Hylleraas type variational calcu- 

lations for various states of lithium, and for the ground state of the lithium isoelectronic 

sequence [31]. Despite this progress, however, the nevt significant gains wit h these ~ypeç 

of calculations did not corne until1986 with the ground state lithium calculation by King 

and Shoup (231. The importance of the King and Shoup calculation was their employ- 

ment of a more systernatic method for extending the basis set size. Instead of increasing 

the size of the basis by using trial and error techniques, they simply included all possible 

permutations of the powers of the coordinates that added to a fixecl sum. This unbiased 

approach of extending the basis set later proved usehl for convergence studies. 

In 1989, King extended his cdculation to  the ground state lithium isoelectronic se- 



Table 1.1: Cornparison of a few lithium ground state calculations. 

Met hod Author Energy (a. u. ) 
Variat ional James and Coolidgea - 7.476û7 
Variat ional Burkeb -7.47695 
Variat ional Larssonc -7.478025 
Perturbation Horak et aLd -7.4646 1 
Perturbation SeungandWilsone -7.47262 

'Referenœ (2 11. 
Reference [4]. 
' Referenœ [24]. 
dRef-œ [39]. 
'Referenœ [36]. 

quence and to some mcited S states (221. With a total of 602 terms, they obtained 

the nonrelativistic ground date energy with an accuracy of a few parts in 10% A few 

years Iater, another clramatic improvement was made by McKenzie and Drake [25]. The 

main dserence between their wavehnction and previous wavefunctions was the use of 

a multiple basis set, that is, their basis set was divided into sectors wit h different s a l e  

factors a, p, and 7. Using up to 1134 terms in their basis set, the result they obtained 

for the ground state energy of lithium was two orders of magnitude more accurate t han 

previously obtained values. This result remained to be one of the most accurate until 

the recent calculation by Yan and Drake in 1995 1381. They improved upon the multiple 

b i s  set method by using a better partitioning of the dinerent sectors, and they also 

discovered an asymptotic expansion method which they used to deal with the slowly 

convergent integrals [ll]. This latter improvement allowed them to  carry out cornputa- 

t ionally efficient calculat ions wit h signiflcant ly larger basis set sizes. Their nonrelat ivist ic 

calculations for the 1s22s 2S, 1 ~ ~ 2 ~  2P, and ls23d *D states of lithium converged to a 

few parts in 10" - 10". These are the most accurate values to date. 



Chapter 2 

The Lithium Calculation 

In order to determine the energies and states of lithium and ot her three electron systerns, 

we must first detemine the forrn of the Hamiltonian. Once this is done, we may proceed 

to  solve the Schrodinger equation to  find nonrelativistic solutions of our systern. However, 

as we s h d  see below, no exact analytic solutions are possible for three electron systems. 

As a result, we s h d  turn t o  the variational method in Hyileraas coordinates as a means 

of obt aining appraximate high precision solutions for t hese syst ems. 

2.1 The Hamiltonian 

Assuming infinite nuclear mas,  the nonrelativistic Hamiltonian (in atomic units with 

e = f i  = 1) for three electrons in a Coulomb potential is given by 

where Z is the nuclear charge. Now substituting r = RIZ, we obtain 



the Hamiltonian in 2 - s d e d  atomic units. The form of the V: operators is derived in 

Appendix A. 

Fkom Eq. (2.2), we see that the eigenvalue equation, H!P = EQ, cannot be solved 

exactly. This is due t o  the fact that the interelectron interaction tems,  rij, cause the 

equation to be nonseparable. As a result, we resort to  the  variational method for h d i n g  

solut ions. 

2.2 The 

The variational 

Variat ional Met hod 

method is one of the principal methods used to obtain appraxirnate 

energy levels and wave functions of a system for which no exact analytic solution acists. 

The general form of the variational principle is stated as follows: 

Theorem 1 The mean u a h e  of the Hamiltonian H ,  

is statzmary if and only if the state vector IQ) to which it corresponds is an ezgenvector 

of H ,  and the stationary values of ( H )  are eigenvalues of H .  

A proof of this theorem may be found in many quantum rnechanics books (for ex- 

ample, Messiah [26]). In essence, the theorem allows us to apply the variational method 

in lieu of solving Schrodinger's equation. In doing so, it creates a means for setting up  

apprcocimate solutions of Schrodinger's equation. 

The main idea behind the method is to choose a wavehinction 9,, which may be 

~cpressed in terms of a finite linear combination of linearly independent functions whoçe 

coefficients are the parameters with respect to which (H) ,, = Et, is minimized. That is, 

qt, is expanded as 



and the c d c i e n t s  are deterinineci fiom the condition aEtr/ay  = 0, for i = O , .  . . , M. 

This procedure is e q u i d e n t  t o  solving the following generalized eigenvalue equation 

where H is the Hamiltonian rnatrix with matrix elements given by Hi, = (ail H laj), O 

is the overlap matrix with matrix elements Ou = (ai laj), and c is a column vector Nith 

elements q. To illustrate the equivalence of t h e  procedures, we begin by substituting 

(2.4) into (2.3) with 9 = etr 

Next, we differentiate with respect to  tha coefficients 

Finally, setting (2.7) equal to  zero we get the generalized eigenvalue equation (2.5). 

We have thus shown that the variational principle l a d s  us t o  solve Eq. (2.5) for the 

coefficients 4 and the comeponding eigenvalues Ai, i = O , .  . . , M. We shall now show 

that  the lowest of these eigenvalues is necessarily greater than or q u a 1  to the true ground 

date eigenvalue. That  is, we shall prove that 

where Eo is the smallest eigenvalue of H. 



To this end, we begin by choosing an arbitrary eigenfunction Qtr of the state spaœ 

of spaœ of the system. For convenienoe, we assume that iItr is normalized so that 

(atr l@tr )  = Ci [ i l 2  = 1. NOW, if this function atr is expanded in a complete set of 

eigenstates of H, denoted ai, with corresponding eigenvalues E;, where 2 = 0,1,2, - - , Mt 

then we get 

which proves (2.8). 

More generally, it can also be shown that for a spectrum which is bounded bom below, 

the remaining exact energies El, E2, . . . , EM, WU always lie below the corresponding 

higher trial energies X i ,  A*, . . . , AICI. This is known as the H~lleraas-Undheim-MacDonald 

(HUM) Theorem. It follows from the matrix interleaving theorem which states that if 

an extra row and column is added to  the matrices H and O then the M old eigendues 

interleave the M +1 new ones. As a result, ail but the highest of the M + 1 new eigenvalus 

will lie below the M old eigenvalues, and as  the size of the matrices approaches infinity, 

the exact spectrum of the bound states will be  approached fkom above. 

In the case of the Lithium calculation, the trial wavehnction was written as 

where A is the three-particle antisymmetrizer given by 



N is the number of sets of exponential parameters a,, 4, and 7, being Np is the 

numba of te= for a given set p, Q and the c,, are the linear variational coefficients, and 

and the 4,v are basis hinctions. The numbers in parentheses in Eq. (2.11) represent 

permutation operators which art  to interchange the spacial and spin coordinates of the 

t hree particle wavefunct ion. For example, the operator (1 23) represents the paniutat ion 

in which coordinate 1 takes the place of coordinate 3, coordinate 2 takes the place of 

coordinate 1, and coordinate 3 takes the place of coordinate 2. 

The hinction @,, is of the form 

where #(1s2, 2) is a variationally determined core wavefunction and 4(21, Z - 2 )  is the 

hydrogenic wavefunction with angular quantum number 1 and nuclear charge 2. The 

inclusion of b as a single term in the basis set is mainly for the purpose of improving 

upon the variational eigenvalue for a given basis set size for the higher states. To see 

how this works, consider the eigenvalues of (2.12), given by 

Equation (2.13) gives the correct b t  several figures of the true energy for the higher 

states. For example, using a 135 term core wavefunction we obtain the foLlowing values 

for the ls22p *P and ls23d 2D states of lithium 

E ~ ( ~ s ~ ~ ~ ~ P )  = -7.404 913 412 au., 

and 



The actual values determined variationally without the w r e  function [38] are given by 

-7.410 156 521 8(13) a.u. and -7.335 523 541 lO(43) a-u. for the l s22p 2~ and ls23d 2~ 

states respectively. Thus, we s e  that  there is agreement between Eo and the variational 

eigenvalues to two signi£icant figures for the P-state and four signincant figures for the 

D-state. For the S-state the  agreement is only to one signifiant figure. This result shows 

that it is n u m a i c d y  advantageous to  include 4, in the basis set for the higher states 

and rewrite the variational priniciple for AE = E - Eo, so that 

In this way, the variat ional principle is applied to  H - Eo, which yields the correct ion 

to Eo directly, so that  several significant figure in the evaluation of the matrix elements 

are saved. 

Rom (2.10), the fom of &, is given by 

where 

and 

is the spin function with Ms = 1 /2 .  

Now, kom (2.15) we sec that  in addition t o  hd ing  the optimum linear coefficients 

CWY we must alço find the optimum nonlinear parameters a,, O,, and y,. To this end, 

N sets of exponential parameten are chosen and the generalized eigenvalue problem 



(2.5) is ftst solved to find the linear coeflicients c, and the corresponding variational 

eigenvalue X for a given state. Next, the exponential parameters are separately optirnized 

for each set, and the variational eigenvalue is recalculated with the new optirnized d u e s .  

However, optirnization of these nonlinear parameters is not as straight forward as the 

optimization of the lin- parameters. The reason for this is that the equation a E / a p  = 

O, where p represents any nonhear parameter, is transcendental. This hc t  leads us 

to apply Newton's method to  h d  the zero6 of the k t  derivatives of the variational 

energy with respect to each of the nonlinear parameters. The implicit dependence of 

E on the nonlinear parameters through the Linear coefficients vanishes as a result of 

the condition aE/ac,, = O used for the optimization of the linear coefficients. Thus, 

in order to optimize the nonlinear parameters, we only have to be concerned with the 

explicit dependence of E on these parameters. This explicit dependence is given by 

Once the first derivat ives are known, the second derivat ives are estirnated by taking the 

difference between two slightly differing pre-chosen exponent ial parameter sets. Newton's 

method is then employed to find the zeros of the k t  derivatives, and given that the initial 

exponent i d  parameters are chosen close to a minimum, the proœdure converges wit hin 

several i terat ions. 

To illustrate this procedure in more detail, consider one of the exponential parameters 

p and its fi& derivative Dk = a E / &  I,,, to be given by (po, Do), and suppose another 

value for p is chosen close to po in the direction of decreasing energy. If we label this 

other value p,, and calculate the first derivative Di, we have a second point which may 



be labeled (pl, Dl). Now, through any two points there is a unique line which may be 

exptrapolated using the special case of Lagrange's classical formula for two points [32], 

where the two points are give by (11, yl) and (x2, 92). Since we want the value of p at 

a E / ô p  = O, we set P ( x )  = 0, and re8trange (2.19), to obtain 

Substituting (xi, yl) = (p,, Do), and (x2, y,) = (pl, Dl) into (2.20), we get 

This procedure is then repeated with the points (p,, Dl), and (p2, 0 2 )  to  find (p3,  D3),  

and this point may then be used together with (p2,  D2) to  find the next point, and so 

on, until the changes in the derivatives and in the successive values of the energy are 

sufficiently s m d .  

2.3 Construction of the Basis Sets 

The basis set constructions used for the results obtained in this thesis are those of Yan 

and Drake [38]. In generating the finite basis sets, all terms &om (2.15) are nominally 

included such t hat 

where 0 is a nonnegative integer. This systematic method for selecting terms for the 

basis sets d o w s  a meaningful convergence study of the eigenvalues to be perfomed as 

0 is progressively increased. However, this method alone does not guarantee adequate 



convergence. To be sure that the correct energy eigenvalues are obtained, a system- 

atic search for possible classes of terms yielding a significant lowering of the eigenvalues 

must also be carrieci out. For example, the angular coupling for a given total angular 

momentum L, is given by 

S states (L = 0) : (11, 12, 13) = (0,0, O)A, and 

f states (L = 1) : (11,12,13) = (O1O,l)A, ( 0 , 1 , 0 ) ~ ,  

where (11, 12, Z3) denotes the angular momenta being used, and the subscripts A and B 

label the dXerent nonlinear parameters for a given block of terms. Yan and Drake [38] 

found that the inclusion of at least a few (0,1, O) terms for the P states, which describe 

the core polarization, are necessary for adequate convergence. With the use of only the 

(O, O, l )n  terrns, the energy eigenvalue for the 1 ~ ~ 2 ~  2P state of lithium converged to an 

incorrect value of -7.410 136 34 a.u., even for basis set sizes as large as 1500 terms. 

In order t o  increase the rate of convergence of the basis sets for a given total number 

of texms, the total basis set used is split up into different sectors with difIerent scale 

factors a, 0, and 7, which are optimized separately. This separation into different sectors 

increasg the convergence of the basis sets by improving the representation of different 

comelations among the three electrons. The k t  block (O, O, L ) A  is partitioned into five 

sectors covering the different distance d e s  as follows: 

Thus, there are five sectors for the S states, and six sectors for the P states, since they 

contain the additional block (0,1, O)B. The  sizes of each of these sectors are controlled 



by assigning an ni value to  each of them according to  

where (a,  b)- denotes the minimum of a and b. 

2.4 Calculation of the Integrals 

In the above discussion of the variational method, it was shown that the variational 

eigenfunctions and eigenvalues may be found by solving the  general eigenvalue problem 

(2.5). To solve this equation, the ma t r i .  elements of H and O must be evaluated. In 

this section, proceedurg for solving the general form of the integrals involved in the 

evaluation of these matrix elements is presented. 

A.ll the matrix elements of H and O may be reduced to  the  evaluation of integrals of 

this form. To evaluate this integral, we begin by substituting the expansions derived by 

Perkins [3O], for the interelectronic coordinates. For example, the expansion for r z 2  is 

where L(,? = 2 and L12 (2) = y - ~ 1 2  for even values of 2 1 ~ 2 ,  and L!:) = oc and L\? = 

1 
( ~ 1 2  + 1) for odd values of v12 . Also, 312 = rnin(ri, r2) and 912 = rnax(rl, r2), and the 



where 

is the angular part of the integral and di& = sin BidOid@i. 

Fkom Eqs. (2.26) and (2.28), we have the tems s~ and gij denoting the smaller and 

greater of ri and r j  respectively. It would therefore be convenient to break up the radial 

part of (2.28) into dEerent regions covering the various possibilities of the relative sizes 

of rl , r*, and r3. For example, an integral over a hinction, F(ri  7-2, r3) = f (yl ) f (7-2) f (r3), 

may be split up in the following way 



The first term on the right of (2.30), represents the region where, rl < r2 < r3, and 

the following terrns represent the regions, rl c r3 < r2, r2 < T I  c Q, r2 < r3 < r l ,  

< rl < r,, and r3 < r2 < rl , respectively. 

Let us define 

so that for the k t  region, we have 

Now, we introduœ the following defin it ion 

The general analytic expression for t his integral, derived by Drake and Yan [l l] , is 



where 2F1 is the hypergwmetric function. Equation (2.34) is valid for 1 2 O, l+m+l ) 0,  

a n d I + m + n + 2 2 0 .  

With dehition (2.33), (2.32) may be rewritten more succinctly as  

Integrah for the other five regions may be written in a similar way using (2.33). After 

writing the integrals in this way Eq. (2.28) may be rewritten as 

where IR is the radial part. 



Evaluat ing Eq. (2. B), see Appendix B, we obtain 

for the angular part of the part of the integral. In the case of the S states the angular 

integral is particularly simple since, & = 1; = mi = mi = O, so that (2.36) simply reduces 

This result is easily arrived at by applying the triangle selection rule together with 

J3q. (2.36) and the relation 

Thus, for the S states, Eq. (2.35) reduces to 



In general, it can be seen from the 3-j symbols in Eq. (2.36), that a l l  of the sums 

must be even in order for the integral I to be nonzero. Also, from (2.36) we see that the 

triangle selection rule requires that 

NOW, from (2.26), we see that the surn over the qij's is infinite for odd values of v i j ,  

where i, j = 1,2,3. However, if at least one of the v,'s is even, the sums over the qij's 

in (2.35) become h i t e  due to the triangle inequalities (2.40). If all of the vij's are odd 

numbers, then a numerical summation of an infinite series is required. In the past, these 

i d h i t e  summations have made calculations for the larger basis sets very time consurning. 

Recently, however, this problem has b e n  overcome by Drake and Yan (111. They used an 

asymptotic-expansion method which accelerated the rate of convergence of these infinite 

series. A concise description of this method is give in the following section. 

2.4.1 The Asyrnptotic-Expansion Method 

If ~ 1 2 ,  VW, and V J ~  are dl odd numbers, then it can be seen Erom (2.26) that the surn- 

mations over q12, 423, and ~ 3 1  will be fiom zero to infinity. However, the q's are related 

by the triangle inequalities (2.40) so that, in fact , only one of the summations over the 

q's will be fiom zero to  infinity. For exarnple, if we choose the summation over q12 to  

be infinite, then the summations over qp and 931 become finite. The upper limits are 

obtained from the relations (2.40). Thus, if all three powers v12, V23, and vtlare odd, 



(2.35) rnay be written as 

where 

and q = qi2. 

In calculating the integral 1, we note that Eq. (2.41) is essentially composed of the 

W integral. The hypergeometric functions contained in this integral, Eq. (2.34), are 

calculated using the baickwazd recursion relation 

A derivation of this result is given in Appendix C. To deal with the  infinite sum over q, 

the asymptotic-expansion met hod is employed. This met hod follows from the asymptotic 

behaviour of T(q) as q + m. Rom the W integral, Eq. (2.34), we see that W - l/q2, 

and barn (2.27) we see that Cvpk - 1/q(v+1)/2. Combining the asymptotic behaviour 

hom W and the Cvqkls in (2.35), we find that 

where 

To take advantage of the asymptotic behaviour of T(q), Eq. (2.41) is split up into two 



This way, the fkst N terms are calculated directly from (2.35), and the remaining T (q) 

terrns may be estimated, for each q, hom their asyrnptotic expansions 

provided that N is chosen sufnciently large. Substituting (2.47a) into (2.46), we obtain 

where ÇN(i) = CEN+* l / k i  is the Riemann zeta hnction 4 t h  the f k t  N t e m s  s u b  

tracted. It can now be seen that the second sum in (2.48) converges as 1 / (N+ 1)'+', and 

for N sufficiently large ÇN(i + A) - 1/(N + l)i+' so that only the Çst few coefficients A, 

To determine these coefficients the infinite summation (2.47a) is truncated, and the 

new upper lirnit is taken to  be some integer M. It is assumed tha t  for a suitable choice 

of M, the directly calculated T(q) are &en exactly by the  truncated eupansion, and for 

q large enough, this assumption is true to machine precision. Hence, for a large enough 

q and a suitable value of M we may use our calculated values of T(q) to  obtain the 

following M + 1 system of equations 

T ( N  - M )  = & +  Al + = - O +  AM 
( N  - M)" (N - M)l+" (N - M)"+* 



which may be solved for the M 

Al + = * *  + AM 
(IV)'+* (N) M+A ' 

+ 1 unknonms, A,, where i = O, .  . . , M. Therefore, the 

ha1 estimate of the integral is obtained from 

The  calculation is carrieci out by increasing N until I no longer changes to  machine 

accuracy. The size of N required for convergence depends on the size of M, that is, the 

larger M is the smder N needs to be to  achieve the same convergence. However, as A4 

gets larger, the time required t o  solve (2.49) becornes greater and calculat ion become les  

efficient. Therefore, the limits of M and N are adjusted so as to optimize the convergence 

and t ime required for the calculation. 



Chapter 3 

Calculat ion of the 2-Expansions 

A Zexpansion of a particular state is simply the energy of that state expressed as a 

power series in Z-l. To see how the Z-expansion is found, we begin by breaking up our 

Hamiltonian for the three electron case, Eq. (2.2), so that we have 

where 

and 

We next define V = (& + $ + k), and X = Z-', so that, (3.1) bemmes 

H = Ho + XV. (3.4) 

With the Hamiltonian written this way, X = Z-' appears explicitly as a perturbation 

parameter mult iplying the elec tron-electron Coulomb interaction terms. 

Now, if we were to ignore XV in the total Hamiltonian (3.4), we would have a solution 



to the eigenvalue problem for the noninteracting three-electron system. The  eigenvalue 

equation for this system would be 

(with the  notation *njljmljm, ( r j )  = f ln j l j  ( î j )  xjm, (0,tP) 1 sm.)) and the eigenvalues would 

be given by the sum of hydrogenic eigenvalues 

where E,, = -1/2nT. Thus, we would have the eigenvalues and the complete set of 

eigenfunct ions for the unperturbed Hamiltonian Ho. However, we seek the eigenvalues 

for the Hamiltonian (3.4). To this end, we use the fact that the !Pr) form a cornplete 

set, so that  the eigenfunctions of (3.4) rnay be expandeci in a series involving all the  *Lo) 
as follows 

where 

and 

The subscripts in these equat ions denote the part icular eigenstate or eigenvalue, the 

superscripts in brackets denote the order of the correction, and 8, and En are the eigen- 

functions and eigenvalues, respectively, corresponding to the Hamiltonian (3.4). To be 



more compact, we rewrite (3.8) as 

where 

Using this notation, we have 

or 

(Ho + XV)@, = €,a>, 

Ekpanding out the first few terms arplicit ly, we have 

Now, collecting coefficients of qua1 powers of X yields a series of equations. For 

example, the terrns of the zeroth power in X yield Eq. (3.5), and the terms of f m t  power 

in X gives us 

va? + H ~ Q ~ )  = Ei" )~ ( l )  n + E ( l ) ~ ( 0 )  
n n (3.16) 

If we now take a scaiar product of (3.16) with a?), and assume that the cornplete basis 

set is orthonormal, that is, < QF) 1 @io) >= fSkn , we obtain 

This is the second coefficient of our energy expansion (3. IO), and it is just the expectation 

value of the potential with states Q? which are known exactly (3.6). Since the states 

are known exact ,  an exact m w i c  solution for the value of E:) from (3.17) may 



be found. Howwer, in generd we have 

which contains the states Q?-'), and for k > 1 ,  these states are not known exactly. As 

a resuit, only the k t  two coefficients, EL') and EL'), of OUT energy expansion (3.10) may 

be determined exactiy. An analytic calculation of these two terms as well as the least 

squares technique to  determine sorne of the higher terms will be presented in the nert 

two sections. These calculations will be done for the 1s22s *S and ls22p P states of the 

lithium isoelectronic sequence. 

(1) 3.1 Analytic Calculation of E?) and E~ 

Before we proceed with the andytical calculation for the first two energy coefficients fkom 

(3.10), we rnultiply this expansion by Z2 = A-' so that the energy is expressed back in 

atomic units. That is, 

Equat ion (3.19) is the 2-expansion equat ion. 

In orda to  calculate the first coefficient EL') we refer to the  separable eigenvalue 

equation (3.5) which has eigenvalues given by (3.7). Now the energy terms E,, , E,, , and 

~ n 3  b m  (3-7) correspond to the hydrogen sta tg  @n (,ml mol (r 1 ) , Qn212rn12rn, (r2) 5 and 

\k,,13,3,, (r3) respectively, and are simply the hydrogen energies - 1 /2n; (in 2-scaled 

atomic units), where j = 1, 2, or 3. Thus, for the 1s22s 2S and 1s22p 2P states these 



energies are given by 

Next we present the less trivial analytical calculation for the second energy coefficient, 
(1) 

En - 
In order to simpiify the notation, we begin by writing out our product of hydrogen 

wave functions (3.6) as 

where o! and /3 represent spin up and spin down respectively, and the subscript 1 in 

the third state represents the quantum label s or p. Now, due to the Pauli exclusion 

principle, the total wavehnct ion is the antisymmetrized product of the spin-orbit ah. 

The antisymmetrizing of (3.21) may be ~ t p r e s e d  as 

where A is the three particle antisymmetrizer given by (2.11). Writing (3.22) out euplic- 

itly, we obtain 



Rewriting the orbital and spin part separately, this becornes 

To be more compact, let us set 

14 = 1 

IV) = I 

and 

Using this more compact notation, and suppressing the spin coordinates, the second 

energy coefficient of the Zexpansion can be written as 



Now, without loss of generality, let us choose the magnetic quantum number na equal to 

zero for the state. With this choice for ml the states u, v, and w will be real and the 

above integral simplifies to 

where we have written out V explicitly. 

Evaluation of the above integral (3.27) may be futher simplified by grouping integrals 

that are the same and eliminating cases that vanish due to the orthogonality of al&) 
and Qu(r). For example, integrah such as 

JJJ u-&ud3rld3r2d3r3 = JJI~1s(~l)*1s(~)~2~(r3)-*lr(~1)*1r(~2)*21(~)d~rid~~2d~r3, 1 13 

JJJ u;f;ud3rld3r2d3r3 = JJJ *1a(r1)*21(r2)*1s(r3) - I ~1s(~1)~2~(~2)~1s(~3)d3~1d3~2d3~3 
r12 

are clearly identical, and integrals of the type 

JJJ u$vd3rl d3r2d3r3 = JI ~ ~ ~ ( ~ ~ ) ~ ~ ~ ( r ~ ) ~ ~ ~ ( ~ ~ ) - ~ ~ ~ ( ~ ~ ) ~ ~ ~ ( ~ ~ ) ~ ~ ~ ( ~ ~ ) d ~ r ~ ~ ~ ~ ~ d ~ ~ ~  1 
T l 3  

are qua1 to zero. A surnrnary of al1 such possible integrals is shown in Table 3.1. 

h m  Table 3.1 we see that there are three distinct types of integrals which have 

nonzero values. There are six integrals of type (A), three integrah of type (B) , and three 



Table 3.1: The different types of integrals involveci in the calculation of &l). 

INTEGRALS OF TYPE (D) nVTEGRALS OF TYPE (C) ' JsJ u&drld3r2d3r3 r12 = u'vd3r1d3r2d3r3 = O 
f13 [sj u ~ v d 3 r l & r 2 d 3 r 3  -3 # O 

INTEGRALS OF TYPE (A) 
ulud3rld3r2d3r3 f 13 = ju u l d 3 r l d 3 r 2 d 3 r 3  + O 

f23 

integrah of type (C). Let us choase to evaluate the integrals 

INTEGRALS OF T Y P E  ( B )  
u i d r l d 3 r 2 d 3 r 3  # O 

f l 2  

and 

from each of the three distinct types. Thus, the integral 

C (3.33) 

for the second coefficient (3.27) 

reduces to 
7 

Techniques for the evaluation of the general form of the integrals (3.31), (3.32), and 

(3.33) are given in Appendk D. In the foilowing two sections, we make use of the results 

derived in Appendk D to  calculate the first order energy corrections &) and &), f' the 

1s22s 2S and ls2zp *P states, respectively. 

In Table 3.2 the principal and angular quantum numbers for the two states for which 

the integrals t c  be evaluated are shown. For the particular state being evaluated, the 



Table 3.2: The principal and angular quantum numbers for the 1s22s 2S and ls22p P 
states. 

correspondmg quantum numbers are substituted into into (D.17) in order to determine 

the value of the angular part of the integral. 

In t egrals 
A = JlJu'ud3rld3r26r3 r13 

B = J ~ ~ v ~ v d 3 r l d 3 r 2 d 3 r 3  f13 

C = Juulwd3rld3r2d3r3 
r13 

Calculation of for the 1s22s 'S States 

From Table 3.2 we see that the angular momentum quantum riumbers for the 1s22s 2S 

state are all zero. Thus, Eq. (D. 18) becornes 

1 l l s 2 2 a 2 P 1 1  Il  1 2  112 1 1  Il I I O I O I 1 I I 1 I O I O 1  

State 
1s22s 2S 
l s 2 2 p 2 P 1  
ls223 2S 
l s 2 2 p 2 P 1  
ls223 2S 

since by the triangular rule, the 3-j symbols vanish for k # O. Thus, we have 

where r> is the greater of ri and tjl where i and j are the subsctipts of the radial integrals 

represented by R!:), see Eq. (D. 5). Now using relation (D.20), and Eqs. (D. 2 1) , (D. 22), 

nl 
1 

1 

1 

n2 

1 
1 2  
2 
2 
1 

n3 
2 

1 

1 1 1  
2 

ta; 

1 
1 1  
1 

1 2 

n; 
1 

2 
2 
1 

1 l2 
O 

O 0  
O 
1 
O 

2 
2 
1 
1 
1 

O 

O 
O 
O 

l3 
O 
1 
O 
O 
O 

1; 
O 
O 0  
O 
O 
O 

1; 
O 

O 
1 
O 

& 
O 
1 
O 
O 
O 

1 



and (D.23) we calculate the integrals A, B, and C. Calculating integral A, we get 

and caiculating integrals B, and C, we have 

and 

Thus, substituting (3.37), (3.38), and (3.39) into Eq. (3.34), we find that for the h223 

2S states the second coefficient of the Z-expansion is 



Calculation of EL') for the i s 2 2 ~  P States 

The integrals for the ls22p 2P states are calculated in a similar way. For each of the 

distinct integral cases A, B, and C, the angular momentum quantum numbers fkom Table 

3.2 are substituted into the angular part of the integral Eq. (D.17), and with the use 

of the triangular d e  and Eq. (B.4), & may be determined for each case. This angular 

part of the integral is then substituted into Eq. (D.18), and the resultant integral is 

evaluated with the use of relation (D.20), and Eqs. (D.21), (D.22), and (D.23). Following 

this procedure, we h d  that Io = 1 for the integrais A and B. Therefore, for these two 

integrah, we have 

and 

However, for integral C, we h d  that = 113. Thus, in this case, we have that 



Thus, substituthg (Ul), (3.42), and (3.43) into Eq. (3.34), we h d  that for the ls22s 

'P states the second coefficient of the Zepansion is 

3.2 Linear Least Squares Method For Obtaining the 

Remaining Coefficients 

In the previous sections, the first two coefficients of the Z-expansion, Eq. (3.19), were 

calculated for the 1s229 2S and ls22p ' P  states. We now wish to find the next sev- 

eral coefficients of this expansion. In this thesis, improved electron-pair energies are 

obtained by performing a least squares fit of helium variationai eigenvalue data provided 

by G. W. F. Drake. Using these improved electron-pair energies and the exact single- 

electron energy solutions given by Chisholm and Dalgarno [7], and Chisholm et al. [5],  

values for the second order coefficient ci2) for the 2S and 2P-states may be deterrnined 

to 12 significant figures (see the Results and Discussion chapter). N a t ,  we will turn to 

the linear least squares method [32] for obtaining approximate values for the next several 

(3) (4) coefficients E,, , E,, , . . . for these states. 

The general principle of the least squares method is to find a "srnooth" functional 

apprcucimation to a given set of N data points (xi, yi ) .  This is done by rninimizing 



where 

is the hinction modehg  the data and ci is the measurement error of the P data point. 

In Eq. (3.46), the {&), k = 1,. . . , m are arbitrary fked hnctions of xi, and the ot(m) are 

the parameters with respect t o  which x2 is minimized. The m in the parentheses denotes 

the dependence of these parameters on the set (4, ). To carry out the minimization, we 

take the derivative of X2 with respect to  d the parameters a k  (m), and set the result 

equal to zero, so t hat (3.45) becomes 

where k = 1,. . . ,m. In doing this we obtain m equations which are solved for the rn 

unknown paramet ers a j (m) . 
Before applying this method to h d  some of the other coefficients of our Zexpansion, 

we subtract the ht three t m s  fkom both sides of (3. lg) ,  to obtain 

This is done becsuse we have aiready deteminecl the first two coefficients 8:') and E!? 

analytically, and the third coefficient ~ i ~ )  will be determined by the above rnethod. Hence, 

subtracting these three terms fiom both sides ailows us to fit the remaining coefficients 
2 (0) - with a higher accuracy. Rom Eq. (3.48), we make the associations yi = E, - Zi E, 

Z&' - ci2', ak(m) = &')(m), and {#j(Zi)}  = {zL~-~) ) .  After calculating the  ~ i ~ ' ( m )  
, it remains to determine the uncertainties for each of these estimated parameters. To 

h d  these uncertainties we rnake use of the bwtstmp method [18] described below. 



3.2.1 The Bootstrap Method 

The basic idea of the bootstrap method is to generate s number of synthetic data sets 

from the actual data set, and to  calculate the standard deviation of corresponding pa- 

rametas obtained by finding the least squares fit for each data set. For example, the 

fkst parameters a(,')(rn), a r l ( m ) ,  . . . , aiN) (in) found fiom taking the least squares fit of N 

synt hetic data sets will yield a distribution around the first parameter al (m) calculated 

from the actual data set. This distribution may then be used to determine the  standard 

deviation for the fi& parameter. The method used for generating the synthetic data sets 

and calculating the standard deviation of each parameter is the following: 

1. For actual input data (21, E l ) ,  (Zz, E2), . . . , (ZN, EN), the least squares fit to Eq. (3.48) 

is determinecl, and the deviations Ai = En(Zi) - Ei are calculated. 

2. Next, N random integers &, u n i f o d y  distributed in the range 1 to N, are gener- 

ated, and the deviations AR are added to  the original Ei to obtain new energies 

E; = Ei + ARwR/Ldi, where W i  = 1/0: is the weight of the ith energy. 

3. The new energies E: constitute the fkst synt hetic data set for which a least squares 

fit is then found, and new parameters E : ~ ) ,  E?), . . . , u e  obtained. 

4. This Procedure is repeated many times until the desired number of synthetic data 

sets is generated. 

(3) (NI 5. Finally, the average value and standard deviation for each of the parameters cn , En , . . . , En 
is calculated. 



Chapter 4 

Results And Discussion 

The Tables 4.1 and 4.2 illustrate the convergence of the nonrelativistic energies with 

increasing a. If E(Q) represents the explicit dependence of the energy on 0, then the 

fourth and fiRh columns of the tables are defîned as 

and 
E(R - 1) - E ( R -  2) 

ratio = R(n) = 
E ( n )  - E ( n -  1) ' 

respectively. For a constant ratio R(Q), each series of eigenvalues in Tables 4.1 and 4.2 

would converge as a geometric series to the value 

but it t m s  out tha t  the values of R are not constant. The values of R Vary slightly 

with a, however this variation with 52 is smwth  enough for a usehl extrapolation of 

the energies to  the limit Cl + m. To take the variation of R nrith R into account, the 

extrapolations are done by assuming the functional form [IO] 



and determining the values of a and b by performing a least squares fit of the points 

(0, R(0)) .  The extrapolation converges for b < 1. Since t here is no absolute par- 

antee that the total amount of the artrapolation is correct, this amount is taken as a 

consenrative estimate of the uncertainty in the extrapolated values. 

For the *S-states, all the numerical calculat ions fkom the smallest basis set to the one 

containhg 919 terms were done in double precision (appraximately 16 decimal places). 

In order to acheive convergence to the energy values listed in Tables 4.1 and 4.2 for a 

given basis set size, the calculations ran from about 30 iterations, for the smallest bais  

set to about 8 iterations for the 919-terni basis set, with each iteration providing a step 

toward optimization of the nonlinear parameters. The last four of the 8 iterations for the 

914term basis set were performed using quadruple precision (apprmirnately 32 decimal 

digits). Quadruple precision calculations were also performed for the 1590 and 2210-tani 

basis sets, however an optimization of the nonlinear parameters was not carried out in 

these cases. This was due to the large computational time required for the opt imization of 

these largest basis sets (52 > 7). For example, apprcrcimately 330 hours of CPU tirne are 

required for just two iterations of the 1590-term basis set using an IBM RISC/6000 350 

workstation. It  is also genaally true (as long as the nonlinear pararneters remain close 

to the optimimum values) that an improvement in the energy due to an optimization 

of the nonlinear parameters is small in cornparison with the improvement possible by 

increasing the basis set size to the next 0. Thus, as long as there is no evidence of 

numerical instability, which may be detected by erratic behaviour of the ratios R(R), 

optimization of these largest basis sets is not necessary. 

The nonlinear parameters for the 1-t basis sets can be extrapolated from graphs 

showing the variation of these parameters with increasing basis size il. In this thesis, 

however, the nonlinear parameters used for the  large& basis sizes (a > 7) were simply 

those obtained fkom the near by optirnized S I  = 7 basis set parameters. 



k u l t s  for the 2P-states with nuclear charge 3 5 2 5 10 were obtained from Zong- 

Chao Yan at the Harvard-Srnithsonion Center for Astrophysics, and an extension up to 

Z = 15 was carried out in this thesis. These results were cdcuiated in a sirnilar fashion 

as those above for the *S-states. However, cornputer memory limitations prevented the 

extension up to Z = 15 barn k i n g  carried out beyond 2 10. 

Figures 4.1 to 4.6 show the variation of the nonlinear parameters as a hinction of 

112. Rom these figures we see that some of the nonlinear parameters d i b i t  "irregular 

behaviour" for Z > 5, or 6. This irregular behaviour (charactarized by sharp jurnps in the 

nonlinear parameters) may be the result of inaornplete optimization for the S2 > 7 basis 

set sizes, or it may be due to  the existence of multiple minima on the energy surface. To 

determine which of these is the case, a closer study exploring the multiple mot structure 

of the energy surface is needed. 



Table 4.1: Nonrelativistic energies for the 1s22s 2S states of the lithium içoelectronic 
sequence, in atomic units. 

- - 

0 No. of terms Energy D ifference Ratio 

2 1.9 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extraplat ion 

- - 
0 No. of ternis Energy Difference Ratio 

2 19 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Eutrapolat ion 



Table 4.1 (Continued). 

- - 

No. of tenns Energy Difference Ratio 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extrapolation 

- - 
R No. of terms Energy D ifference Ratio 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extraplat ion 



Table 4.1 ( Continued) . 
- 

0 No. of terms Energy Difference Ratio 

3 51 -48.376 863 363 39 

4 121 -48.376 894 128 34 -0.000 030 764 95 

5 257 -48.376 897 718 71 -0.000 003 590 37 8.569 

6 503 -48.376 898 260 95 -0.000 000 542 24 6.621 

7 919 -48.376 898 310 50 -0.000 000 049 55 10.943 

8 1590 -48.376 898 317 47 -0.000 000 006 97 7.109 

9 2210 -48.376 898 318 30 -0.000 O00 O00 83 8.398 

Extrapolation -48.376 898 318 43(13) 

- - 
fl No. of terrns Energy D ifference Ratio 



Table 4.1 ( Contznued). 

- - 

fl No. of terms Energy Difference Ratio 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extrapolation 

- - 
S1 No. of terms Energy Difference Ratio 

3 51 - 102.682 195 705 64 

4 121 - 102.682 227 858 93 -0.000 032 153 29 

5 257 -102.682 230 992 82 -0.000 003 133 89 10.260 

6 503 - 102.682 231 427 96 -0.000 000 435 14 7.202 

7 919 - 102.682 231 474 96 -0.000 O00 047 00 9.258 

8 1590 - 102.682 231 480 65 -0.000 000 005 69 8.260 

9 2210 -102.682 231 481 62 -0.000 O00 000 97 5.896 

htrapolation -102.682 231 481 79(17) 



Table 4. i ( Contznued) . 
- - 

S1 No. of terrns Energy D ifference Ratio 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extraplat  ion 

- - 
R No. of terms Energy DEerence Ratio 



Table 4.1 ( Continued) . 
- - 

f2 No. ofterms Energy DifTerence Ratio 

3 51 

4 121 

5 257 

6 503 

7 929 

8 1590 

9 2210 

Extraplat ion 

- - 

R No. of ternis Energy D ifference Rat io 



Table 4.1 ( Continued) . 
- - 

Ct No. of terrns Energy DifTerence Ratio 
-- - - -- - - 

3 51 

4 121 

5 257 

6 503 

7 919 

8 1590 

9 2210 

Extrapolation 



Table 4.2: Nonrdativistic energies for the ls22p * P s t a t e ~  of the lithium isoelectronic 
sequence, in atomic units. 

- - 
SI No. of terms Energy D ifference Ratio 

56 

139 

307 

623 

1175 

1846 

2466 

3047 

Ektrapolation 

- - 
No. of terms Energy DXerence Ratio 

4 56 -14.179 313 470 581 

5 139 - 14.179 330 528 846 -0.000 017 058 265 

6 307 - 14.179 332 928 492 -0.000 002 389 646 7.138 

7 623 -14.179 333 238 248 -0.000 O00 319 756 7.473 

8 1175 -14.179 333 282 444 -0.000 000 044 195 7.235 

9 1846 - 14.179 333 290 202 -0.000 000 007 758 5.697 

10 2466 -14.179 333 291 213 -0.000 ooo mi  o i r  7.673 

11 3047 -14.179 333 291 472 -0.000 000 000 259 3.905 

Elvtrapolation - 14.179 333 291 542(70) 



Table 4.2 ( Continued) . 

- - 

fl No.ofterms Energy D ifference Ratio 

4 56 

5 139 

6 307 

7 623 

8 1175 

9 1846 

10 2466 

11 3047 

Extraplat ion 

2 = 6  

f'l No.ofterms Energy D Xerence Ratio 

1175 

1846 

2466 

3047 

btrapolat ion 



Table 4.2 ( Continuai). 

- - 

C2 No. of terms Energy Difference Ratio 

56 -48.011 024 850 90 

139 -48.011 050 050 88 -0.000 025 199 98 

307 -48.011 053 805 56 -0.000 003 754 68 6.712 

623 -48.011 054 210 24 -0.000 000 404 68 9.278 

1175 -48.011 054 268 21 -0.000 000 057 97 6.981 

1846 -48.011 054 279 07 -0.000 000 010 86 5.338 

2466 -48.011 054 280 17 -0.000 000 O01 10 9.906 

3047 -48.011 054 280 54 -0.000 000 O00 38 2.922 

Ektrapolation -48.011 054 280 66(12) 

- - 
52 No. of terms Energy D ifference Ratio 

Extrapolation 



Table 4.2 ( Continued) . 

S1 No. oftenns Energy D ifference Ratio 

56 

139 

307 

623 

1175 

1846 

2466 

3047 

Ektrapolat ion 

0 No, of terms Energy Difference Ratio 



Table 4.2 ( Continuecl). 

- - 
0 No. of terms Energy Difference Ratio 

4 56 -124.631 952 538 7 

5 139 -124.631 974 018 5 -0.000 021 479 8 

6 307 - 124.631 977 293 O -0.000 003 274 5 6.560 

7 623 -124.631 977 738 9 -0.000 000 445 9 7.344 

8 1175 -124.631 977 805 4 -0.000 O00 066 5 6.705 

9 1846 -124.631 977 815 9 -0.000 000 010 5 6.333 

Extrapolation -124.631 977 817 7(18) 

- - 
$2 No. of terrns Energy Diffaence Ratio 



Table 4.2 (Continued). 

- - 
f'2 No. of tenns Energy DiEference Ratio 

- - - - - - - 

4 56 -176.443 676 192 6 

5 139 - 176.443 698 446 9 -0.000 022 254 3 

6 307 -176.443 701 737 6 -0.000 003 290 7 6.763 

7 623 - 176.443 702 193 2 -0.000 000 455 6 7.223 

8 1175 -176.443 702 262 2 -0.000 000 069 O 6.603 

9 1846 -176.443 702 272 9 -0.000 000 010 7 6.449 

Extrapolation - 176.443 702 274 8(19) 

- - 

R No. of terrns Energy Difference Ratio 

4 56 -205.724 681 924 1 

5 139 -205.724 704 192 7 -0.000 022 268 6 

6 307 -205.724 707 546 6 -0.000 003 353 9 6.640 

7 623 -205.724 708 005 9 -0.000 000 459 3 7.302 

8 1175 -205.724 708 076 6 -0.000 O00 070 7 6.496 

9 1846 -205.724 708 087 6 -0.000 000 01 1 O 6.427 

Extrapolation -205.724 708 089 6(20) 



Table 4.2 ( Continued) . 
- - 

R No. of terms Energy DBerence Ratio 

Extrapolation -237.255 781 892 6(19) 















4.1 2-Expansions Born the Least Squares Fit 

In Tables 4.1 and 4.2, we have listed the extrapolated energieç obtained hom the varia- 

tional eigenvalues. The  computation tirne required to  obtain the variational eigenvalues 

for the construction of each of these tables is about 280 hours using an IBM RISC/6000 

350 workstation and about 150 hours if the IBM RISC System/6000 3CT is used for the 

h a 1  largest basis set. Since a large amount of computation t h e  is required t o  obtain 

these results, it is advantageous at some point to simply determine the nonrelativistic 

energiea of the 1s22s *S and 1 ~ ~ 2 ~  2P states fiorn their 2-expansions. The k t  two 

coefficients and ni1) for these expansions were determined anaiytically in the pre- 

vious chapter. In this section, electron-pair energies are found and used to  determine 

more accurate values for the third coefficient ,-i2) of these expansions. Achieving higher 

accuracy for d2) is important since it is the accuracy in this coefficient which ultimately 

lirnits the accuracy to which the energies from Eq. (1.1) may be calculated. Finally, the 

least squares method is used to  determine the next several coefficients of expansion (3.48) 

for the 'S and 2P-states, and from the expansions for these states, the nonrelativistic 

energies for 3 5 Z 5 92 are calculated. 

4.1.1 The Electron-Pair Energies 

For Tables 4.3 to  4.13, the average values of d2) for each of the states were obtained 

by applying the bootstrap method, describeci in the previous chapter, to the e igendues  

for the corresponding states which were provided by G. W. F. Drake. The f o m  of the 

function used for the fit is given by 

where the do) d u e s  are given by do) = - c:=, 1/ 2n:, where n is the principal quantum 

nurnber, and the dl) values were obtained from Sanders and Scherr [35]. In Tables 4.3 

to  4.13, the numbers in parentheses in the average values of d2) denote the uncertainties 



in the finel figures quoted, which in this case are the standard deviations obtained from 

the bootstrap method. 

Table 4.3 was used to determined the number of data sets (original+synthetic) that 

are needed to produce an average value which converges to the last figure for which 

the unœrtainty is quoted. For example, it rnay be seen fiom Table 4.3 that about 10 

data sets are needed for the average value of d2)(1s2 ' S )  to  converge to the last figure 

wntaining the uncertainty. To ensure that s ta t is t icdy meaningiül standard deviations 

were obtained for the average dues ,  the number of data sets used to obtain the results 

listed in Tables 4.4 t o  4.13 was chosen to  be 100. As seen fiom Table 4.3, the standard 

deviations do not change with the use of da ta  sets larger than 100. 

One important point that arises in applying the least squares method is which number 

of pararneters m yields the best fit to a data set of size N .  If we choose rn = N ,  we can 

make x2 given by Eq. (3.45) equal to zero. However in doing ço, we lose al1 the smoot hing 

properties of the least squares method. I t  tums out t hat  the best fit is achieved as soon 

as a value of m is reached after which no significant decrease occurs in X2 [Xi]. This is 

the general nile used t o  determine the number of pararneters needed to yield the best 

values in Tables 4.5, 4.7, 4.9, 4.11, and 4.13. 

Another point that must be considered is whether the standard deviation obtained 

from the bootstrap method accurately represents the uncertainty in the average values 

of the coefficients. This point is addressed in Tables 4.4 t o  4.13. In these tables, the 

change in the average values for d2) may be seen for various parameter sizes and ranges 

of data sets used, and this change may be used as a guideline in determining where the 

uncertainty lies. In Tables 4.4 to 4.13 the change generally occurs in the 13" significant 

figure. For exarnple, from Tables 4.4, 4.6, 4.8, 4.10, and 4.12, it may be seen that the 

average values for d2) for the various parameter sizes having the same order of magnitude 

for X2, agree to  the first 12 significant figures. Also, from Tables 4.5, 4.7, 4.9, 4.11, and 

4.13, it may be seen that there is no change in the k t  12 figures of the average value 

for da) when the k t  or  last several data values are omitted. EIom these results, we 



conclude that the uncertainty obtained fkom the bootstrap rnethod is a factor of 10 too  

snd in some cases, for example, see Table 4.9. In such cases, the uncertainty was 

estimateci by comparing neighbouring values and taking the largest dserence between 

neighbouring values as the unœrtainty. In doing ço, t h e  following values were obtained 

for the electron- pair energies 

and 

d2) ( 1 ~ 2 ~  3P)  = -0.072 998 983 472 6(8). 

Comparing the h t  value d2) (1 s2 S) wit h Morgan's value [27] of -0.157 666 429 469 14, 

we see that they agree within the uncertainty quoted in the result obtained here. The 

above results for the electron-pair energies are much more accurate t han  the ones used 

by Horak et al. [39], which were accurate to  only 6 or 7 significant figures. 



4.1.2 The S and P-state Lithium Z-Expansions 

With the improved electron-pair energies, better values for the second order coefficients 

d2) (ls22s 2S) and &*) (1 s22p P) may be obtained using [39] 

where 1 = s, or p depending on the state being evaluated, and C(21) is a sum of single- 

electron integrals which are evaluated exactly by Chishokn and Dalgarno [7] for the 

S-state and by Chisholm et al. [5] for the P-state. Fapression (4.6) may be derived by 

noting that the solution Q(')  of (3.16) can be written in terms of k t  order independent 

twwdectron systems. For example, 9(') for the ground s tate  of lithium is given by 

Eq. (1.5). 

Substituting the above electron-pair energies into Eq. (4.6), we get 

and 

~ ( ~ ) ( l s * 2 ~  *P) = -0.528 578 868 140 59(11). (4.8) 

Now using values of .do), dl), and a(*) kom Eqs. (3.20), (3.40), (3.44), (4.7), and (4.8), 

and the hnction being fitted given by (3.48), the boostrap method may be applied to 

obtain the next several coefficients of the Z-expansions for the S and P-states. Tables 

4.14 to 4.21 show the results obtained for the third order coefficient of these expansions. 

The first two tables 4.14 and 4.15 were obtained to detemine the number of data sets 

needed to acheive convergence in the third order coefficients d3), and the remaining 

tables were constructed to  determine the uncertainty in the coeffcients. This was all 

done using a sirnilar proœdure t o  the one presented above for obtaining the electron-pair 

enagies. In this case however, it is seen from Tables 4.14 t o  4.21 that the third order 

coefficients of the Z-expansion are determined to only 5 or 6 signXcant figures. Also, it 



Table 4.3: Convergence with the nurnber of data sets used. (11 parameters). 

Nurnber of Average value 
data sets for d 2 ) ( l s 2  I S )  

2 -0.157 666 429 469 37(4) 
6 -0.157 666 429 469 34(3) 
10 -0.157 666 429 469 33(4) 
20 -0.157 666 429 469 33(4) 
50 -0.157 666 429 469 33(5) 
100 -0.157 666 429 469 33(4) 
200 -0.157 666 429 469 33(4) 
IO00 -0.157 666 429 469 33(4) 

Table 4.4: d2)(1s2 lS) for various parameter sizes. (100 data sets). 

Number of Average value x2 
paramet ers for d2) ( 1  s2 I S )  

6 -0.157 666 401 l(44) 4.3 x l0l4 



Table 4.5: d2) ( ls2 S) for data sets consisting of various ranges for 2. (100 data sets). 

Range for Z Average value Number of 
for d2)(1s2 ' S )  paramet ers 

2 - 18 -0.157 666 429 469 33(4) 11 

Table 4.6: .d2)(1s2s ' S )  for various parameter sizes. (100 data sets). 

Number of Average value x2 
parameters for d2)(is2s 'S) 

8 -0.114510 136 135 95(10) 1.1 x 105 
9 -0.114 510 136 316 37(13) 6.8 x lo3 

10 -0.114 510 136 154 24(10) 3.1 x 10' 
11 -0.114 510 136 167 24(85) 3.0 x  IO-^ 
12 -0.114 510 136 167 25(39) 3.7 x 1 0 - ~  
13 -0.114 510 136 163 16(15) 3.6 x  IO-^ 



Table 4.7: Average d2)(ls2a 'S) for data sets consisting of various ranges for 2. (100 
data sets). 

Range for Z Average value Number of 
for d2)(ls2s 'S) parameters 

2 -  18 -0.114 510 136 167 24(10) 11 
3- 18 -0.114 510 136 167 26(37) 10 
4 -  18 -0.114 510 136 166 50(28) 10 
5 - 18 -0.114 510 136 168 48(22) 9 
6 -  18 -0.114 510 136 166 85(49) 9 
7 -  18 -0.114 510 136 163 85(13) 8 
2 - 15 -0.114 510 136 167 17(30) 11 
2 - 16 -0.114 510 136 167 40(28) 11 
2 - 17 -0.114 510 136 167 3205)  11 

Table 4.8: d2)(ls2s 3S) for various parameter sizes. (100 data sets). 

Number of Average value x2 
parameters for d2) (1 92s S) 

8 -0.047 409 303 400(79) 6.4 x 10' 



Table 4.9: Average d2)(1s2s 3 ~ )  for data sets consisting of various ranges for 2. (100 
data sets). 

Range for Z Average value Nurnber of 
for d2)(1s2s %) parame t ers 

2 -  18 -0.047 409 304 175 398(25) 12 
3 - 18 -0.047 409 304 175 537(25) 11 
4- 18 -0.047 409 304 175 245(15) 10 
5- 18 -0.047 409 304 175 266(53) 10 
6- 18 -0.047 409 304 175 739(40) 9 
7- 18 -0.047 409 304 175 376(89) 9 
2- 15 -0.047 409 304 175 666(56) 12 
2 -  16 -0.047 409 304 175 553(81) 12 
2 -  17 -0.047 409 304 176 440(56) 11 

Table 4.10: ~ ( ~ ) ( l s 2 ~  l P )  for various parameter sizes. (100 data sets). 

Number of Average value x2 
parameters for d2)( ls2p l P) 

8 -0.157 028 661 887(70) 1.9 x l o9  



Table 4.11: Average d2)(ls2p 'P) for data sets consisting of various ranges for 2. (100 
data sets). 

Range for Z Average value Number of 
for d2) (1 s2p l P) parameters 

2- 18 -0.157 028 662 934 679 4(95) 12 

Table 4.12: d2)(ls2p P) for various parameter sizes. (100 data sets). 

Number of Average value x2 
parameters for ~ ( ~ ) ( l s 2 p  P) 

8 -0.072 998 988 18(39) 7.9 x 1010 



was found that omitting the k t  data point (2 = 3, En,), see Tables 4.20, 4.21, 4.22, 

and 4.23, yielded more stability in the values for d3) and the higher coefficients, and 

renilted in more accurate values in the energies obtained fkom these expansions. This 

result makes sense physically since the higher order t e m s  of the Zacpansion Eg. (1.1) 

are of the form 1/27", where n = 1,2,3,  . . . , so that the accuracy of our finite expansion 

determined from the fit increases with increasing 2. Hence, omitting the first data point 

( Z  = 3, En,) tends to yield a better fit to  our h i t e  expansion. Another important point 

to note, which is partially iuustrated by Tables 4.22, and 4.23 is that the 2-expansions 

becarne "unphysical" when the number of parameters used was equal to  or larger than 

eight. That is, the higher order c d c i e n t s  obtained in the expansions using a number 

of parameters greater or equal to eight became unusually large (of the order 10' for 

eight parameters, and up to 103 for nine or ten parameters). Also, the uncertainties 

(determined by the boostrap method) in these higher order coefficients are in some cases 

larger than the values of the coefficients thernselves, which is another indication that these 

values are not physically meaningful. Thus, the higher order coefficients d3), d4), . . . 

the Zacpansions are taken fiom the third columns of Tables 4.22, and 4.23. These 

higher order coefficients toget her wit h the lower order coefficients do), dl), and d2) horn 

Eqs. (3.20), (3.40), (3.44), (4.7), and (4.8) form the 2-expansions used to obtain the 

nonrelativistic values in the third column of Tables 4.24 and 4.26. 

Rom Tables 4.24, 4.26, 4.27 and 4.28 it is seen that the nonrelativist ic values obtained 

£rom the Zacpansions are accurate to 8 and 7 figures after the decimal for the 2S and *P- 

states, respectively, for Z = 15. The accuracy increases for increasing nuclear charge Z. 

A h ,  fkom Tables 4.24, 4.25, and 4.26 a cornparison is made between the nonrelativistic 

energies obtained in this thesis and those obtained by K. T. Chung [8], [40] using the 

multiconfiguration interaction method and those of F. W. King [22] using the variational 

method with Hylleraas type wavefunctions. It is seen fiom these tables that King's 

results are more accurate than those of Chung, and the results obtained in this thesis 

have irnproved these best previous results by about three orders of magnitude. A h ,  fkom 



fkom Table 4.25, we see that King's results are higher than the ones obtained in this 

thesis by 1 x ~O-~a .u .  (0.22cm-') for Z = 3 to  2 x 10-~a.u. (0.44cm-') for Z = 10. These 

diifferences do not vary much with 2, and the Z-expansions formed hom a least squares 

fit of King's results would be less accurate for a given Z. For Z = 3 the diEerence between 

King's result, and the one obtained in this thesis is of the same order of magnitude as 

the QED correction shown in Table 4.32. This shows that  King's resdts  would not be 

accurate enough to  extract good QED corrections for the lower Z values, and it also 

demonstrates the importance of having very accurate nonrelativistic values. 

4.1.3 Cornparison Wit h Experiment 

To make a meaningful cornparison with experiment, one must include the relativistic and 

m a s  polarization efFects with the nonrelativistic values. These effects were caiculated 

using f b t  orde .  perturbation theory, by K. T. Chung [8], [9] for the 1s2% 2S states, 

and by Wang et al. [40] for the ls22p 2P states. The perturbations are given by the 

expectation d u e s  (Hi + Hz), (fi) ,  (H4), and (H5), where 

(correction to the kinetic energy arising from the variation of the  masses with velocity) , 

(Darwin tenn which gives the electromagnetic correct ion to  the st a t  ic coulomb interaction 

due to the motion of the  particles) , 



Table 4.13: Average d2)(192~ 3P)  for data sets consisting of various ranges for 2. (100 
data sets). 

Range for Z Average value Number of 
for ~ ( ~ ) ( l s 2 ~  P) paramet ers 

2 - 18 -0.072 998 983 472 618(34) 12 
3- 18 -0.072 998 983 473 2 116(44) 12 
4- 18 -0.072 998 983 473 187(19) 12 
5 - 18 -0.072 998 983 473 233(15) 11 
6 - 18 -0.072 998 983 473 337(12) 10 
7- 18 -0.072 998 983 473 196(30) 10 
2 - 15 -0.072 998 983 472 040(51) 13 
2- 16 -0.072 998 983 473 393 9(98) 13 
2- 17 -0.072 998 983 473 390 5(40) 12 

Table 4.14: Convergence with the number of data sets used. (Eight parameters). 

Number of Average value 
data sets for d3)(1s22s 2S) 

2 -0.0165483(6) 



Table 415: Average d3)(ls22p *P) for data sets consisting of various ranges for 2. (300 
data sets). 

Number of Average value 
date sets for ~ ( ~ ) ( i s * 2 ~  *P) 

2 -0.069831(4) 

Table 4.16: d3)(1s22s 2S) for various parameter sizes. (300 data sets, and Z = 
3,4, - . . ,15). 

Number of Average value xZ 
parameters for d3)(1s22s 2S) 

6 -0.016 528(4) 2 . 5 ~  lo3 

Table 4.17: Average .d3)(h22s 2S) for data sets consisting of various ranges for 2. (300 
data sets). 

Range for Z Average value Number of 
for e2(ls22s *S) parameters 

3 -  15 -0.016 548 l(6) 8 
3 - 14 -0.016 547(1) 8 
3 - 13 -0.016 545 l(5) 8 
4 -  15 -0.016 551 l(2) 7 
5 - 15 -0.016 551 2(7) 7 



Table 4.18: ~(~)(ls*2~ 'P) for various parameter sizes. (300 data sets, and Z = 
3, 41.. . 15). 

Number of Average value x2 
parameters for a@) (is2Zp P) 

6 -0.069 927(45) 6 . 4 ~  103 

Table 4.19: Average ~ ( " ( 1 ~ ~ 2 ~  2P) for data sets wnsisting of various ranges for Z. (300 
data sets). 

Range for Z Average value Number of 
for €*(ls22p ' P )  pararneters 

3 - 15 -0.069 827(7) 8 

Table 4.20: d3)(1s22s *S) for various parameter sizes. (300 data sets, and Z = 
4,5,. . . 15). 

Numba of Average value x2 
pararneters for d3) (1 s2 2s 5) 

6 -0.016 433(1) 3 . 6 ~  10' 
7 -0.016 551 1(2) 6 . 3 ~  10-* 
8 -0.016 551(1) 7 . 8 ~  IO-' 
9 -0.016 565(7) 8.3~ IO-' 
10 -0.016 49(6) 1.1~10~ 



Table 4.21: ~ @ ) ( l s * 2 ~  *P) for various parameter sizes. (300 data sets, and Z = 

4,5,. . . ,15). 

Number of Average value x2 
parameters for ~ ( ~ ) ( i s * 2 ~  2P)  

6 -0.069 85(3) 8 . 4 ~  10' 

Table 4.22: Cornparison of the coefficients obtained for the 1s22s *S state 2-expansion 
for various parameter sizes and ranges. (300 data sets). 

Coefficient Z = 3 , 4  ,... ,15 Z = 4 , 5  ,..., 15 Z = 4 , 5  ,..., 15 
8 Paramet ers 7 Parameters 8 Parameters 

E ( ~ )  -0.016 548 l(5) -0.016 551 l(2) -0.016 552(1) 
E(4)  -0.040 70(3) -0.040 53(1) -0.040 49(6) 
E(5)  -0.047 O(7) -0.051 l(2) -0.052(2) 
E(a) -0.092(8) -0.038(2) -0.03(2) 
&(I l  +O. 15 (5) -0.25(1) -0.3(1) 
&(8) - 1.3(2) +0.49(3) +0.8(7) 
&(el +3&4 - 1.23(3) -2&2 
E( 10) -&4 +0.9&2 



Table 4.23: Cornparkon of the coeEcients obtained for the l s 2 2 ~  P state Zevpansion 
for various parameter sizes and ranges. (300 data sets). 

Coefficient Z = 3 , 4  ,..., 15 Z = 4 , 5  ,..., 15 Z = 4 , 5  ,..., 15 
8 Parameters 7 Parameters 8 Parameters 

d3) -0.069 827(7) -0.069 822(4) -0.069 82(2) 
E(4)  -0.092 6(3) -0.092 9(1) -0.093(1) 

-0.092(6) -0.086(2) -0.08(2) 
,pl -0.06(6) -0.14(2) -0.2*0.3 
E(7> -0.07&0.3 +0.4(1) -0.9k2 
p l  -0.6~t1 - 1.5(3) -&9 
E(9) -1.4~t2 +3.3(3) -8*20 
&O) -&2 -53~19 

Table 4.24: Cornparison of the nonrelat ivistic energies of the 1 s2 2s ' S  states of the lithium 
isoelectronic sequence with those of K. T. Chung. 

Nonrelativist ic Energy (a.u. ) 
This Work Chung" 2-expansion 

Z 1 (Variational method) (Full mre plus correiation) 
3 -7.478 060 322 74(20) -7.478 059 7(9) -7.478 052(65) 

a Reference [9]. 



Table 4.25: Cornparison of the nonrelativistic energies of the 1s22s 2S states of the lithium 
isoelectronic sequence with those of F. W. King. 

Nonrelat ivist ic Energy (a. u. ) 
This Work fie 2-expansion 

Z 1 (Variational met hod) (Variat ional met hod) 
3 -7.478 060 322 74(20) -7.478 059 -7.478 052(65) 

'Referenœ [22]. 

Table 4.26: Comparison of the nonrelativistic energies of the 1 ~ ~ 2 ~  *P  states of the 
lit hiurn isoelectronic sequence with those of Wang et al. 1391. 

Nonrelat ivis t ic Energy (a.u. ) 
This Work Wang et al." 2-expansion 

Z 1 (Variational method) (Restricted variation met hod) 
3 -7.410 156 531 252(67) -7.410 154 1 (9) -7.410 4(7) 

' Reference [40]. 



Table 4.27: The nonrelativistic energies (a.u.) fiom the Zexpansions (16 5 Z 5 54). 

Z 132s 2S States 1929 2P States 
16 -272.044 488 80(7) -271.036 910 2(7) 



Table 4.28: The nonrelativistic energies (a-u.) korn the Zexpansions (55 5 Z 5 92). 

Z 182s 2S States ls2p 2P States 
55 -3347.279 194 110 4(51) -3343.510 Y41 939(51) 



(electron-electron contact term which represents the interaction between the spin rnag- 

netic dipole moments of the electrons) , 

( m a s  polarkation effect which takes the finite mass of the nucleus into account), 

(orbit-orbit interaction which represents the correction due to the retardat ion of the 

electromagnetic field produced by one of the electrons at the site of the other), where M 

is the nuclear mass in a-u., and a = 11137.035 989 5(61) is the fine structure constant. 

In Tables 4.29, and 4.30 the above relativistic and m a s  polarkation corrections cal- 

culated by Chung et al. [8], 191, and [40] are added to  the nonrelativistic values obtained 

in this thesis. Since Chung et al. do not quote uncertainties for these corrections, the 

uncertainties shown in Tables 4.29, and 4.30 had to be estimated. Chung et al. compare 

t heir restricted configurat ion-interaction calculations for the relat ivist ic correct ions of 

the 1s2 mre states to  the more accurate high precision variational calculations of Pekeris 

[29]. The deviation between these results was used to  determine the percentage error 

for the relativistic corrections of the 1s2 core states. To estimate the uncertainties for 

the corrections shown in Tables 4.29, and 4.30 this percentage error was applied to the 

differences between the corrections of the 1s22s (or ls22p) states and those oE the 1s2 

core states. Estimating the uncertainties in this way is reasonable s i n e  the percentage 

error in the energy difference that cornes hom adding an electron to the ls2 core should 

be about the same as the percentage error in the a r e  energies. 

Using the above method for estimating the uncertainties, it was found that for the 

*P-states with Z = 3,4, and 5 the error is in the eighth or ninth figure aRer the decimal, 

however Wang et al. [40] round off their values to  seven significant figures. Thus, the error 



in the total value for t hese energies (nonrelat ivistic + relativistic and mass polarizat ions 

corrections) in Table 4.30 was calculated by assuming a round off error of +0.4 in the 

ha1 figures of the correction terms. 

In Table 4.31, the total energies hom Tables 4.29, and 4.30 are collected together and 

mmpared with srpairnent to  obtain the "experimental" QED corrections shown in the 

second column of Table 4.32. This column was constructed using 

where the E, are the experimental values kom the fourth column of Table 4.31, the 

ENR are the nonrelativistic values obtained in this thesis, and the Erei are the k t  order 

relativistic and mass polarization corrections obtained fkom Chung et  al. [a], [4O]. The 

conversion from a.u. to cm-' in Table 4.3 1 was done by mult iplying the ith energy value 

in the second column by two times the corresponding reduced Rydberg constant Rhf, 

calculateci by Chung [SI. In Table 4.32, the experirnental values for the  QED energies 

are compared to theoretical estirnates of these terms made by McKenzie and Drake [25], 

and by Chung et al. [9], [40] shown in the third and fourth columns, respectively. n o m  

this table, it may be seen that aLl the theoretical QED values, ewept for Z = 3, of 

McKenzie and Drake are consistent ly larger t han the experimen ta1 values obtained in 

this thesis. The discrepancy ranges kom about 13.8% larger For Z = 9 to about 21.3% 

larger for Z = 8. It may also be observed hom Table 4.32 t hat Chung et  al.'s t heoret ical 

QED corrections are consistently s m d e r  than the experimental values wit h a discrepancy 

between them which decreases steadily fiom 69.2% for Z = 3 to 25% for Z = 10. 

A possible explanation for Chung et a l ' s  exceptiondly small value for Z = 3 is 

given by McKenzie and Drake [25]. To determine the 1s22s ' S  - 1s22p P transition 

energies Chung et al. subtract the ionization potential of the 2S-state fkom that of the 

2P-state. For each of these states, the QED effects of the core is assumed to cancel out 

in the ionization potential. Thus, the QED corrections are evaluated by them only for 



the valence electron using the hydrogenic formulas [3] 

for the valence 2s electron, and 

for the valence 2p electron, where 

1 -1 for J = s  

In these equations, R is the Rydberg constant, n is the principal quantum number which 

equals 2 in this case, Ko(n, 1 )  are the Bethe logarithms, and Ze8 is the effective nuclear 

charge which Chung et al. estimate from the equation 

McKenzie and Drake [25] point out that the effective nucleaz charge obtained from 

Eq. (4.17) overestimates the screening of the electron density at the nucleus leading 

t o  a d u e  for Z = 3 in Table 4.32 which is much too smd. .  

The theoretical calculations for the QED corrections carried out by Mckenzie and 

Drake [25] were an extension of a method developed previously for tweelectron ions, 

and although it yields better results than the calculations of Chung et al. [9], [40] the 

discrepancy with the experimental values obtained in this thesis is still quite large. 

4.1.4 Conclusion, and Suggestions for Future Work 

It is evident that the  variational method using multiple basis sets in Hylleraas coordi- 

nates yields very accurate eigenvalues for the *S and P-states of the lithium isoelectronic 



sequaice. The nonrelativistic energies presented in this thesis are the most accurate the- 

oretical energies to  date. However, the convergence characterist ics and the  extrapolated 

energies obtained in Tables 4.1 and 4.2 may be improved upon fûrt her by invest igating 

the possibility of multiple mots in the energy surfacg (plots of the energies as a function 

of the nonlhear parameters), and by actrapolating the optimum nonlinear parameters 

for the h r ~ r  basis sets from plots of the variational nonlinear parameters versus the 

basis set size $2. 

Using the nonrelativistic energies obtained in this thesis, it has been possible t o  calcu- 

late some of the higher coefficients d3), d4), . . . of Z-expansions for the  S and * P-states. 

With these expansions, the nonrelativistic energies of the higher members of the lithium 

isuelectronic sequence (15 < Z < 92) may be calculated to 9 or 10 significant figures after 

the decimal. The ultimate accuracy of the 2-expansions for higher Z is limited only by 

the accuracy of the second order coefficients d2) which have been determined t o  about 

12  significant figures. 

With the first order relativistic and mass polarization effects calculated by Chung et 

al. (81, [40], Eq. (4.14) has been used to  extract the QED corrections kom experimental 

data, and a cornparison with theoretical est imates has been made. Fkom this comparison, 

it is seen that a substantial discrepancy exists between theory and ~cperirnent. The 

source of this discrepancy probably lies in the theoretical methods used to  obtain the 

QED corrections. To be sure, more work is needed in this area. 

In order to improve the accuracy of the experimental QED correction more accurate 

relativistic corrections are needed. Howwer, there are difficulties in calculating the ma- 

trix elements of the Breit interaction using the more accurate wavefùnctions containing 

Hylleraas coordinates. These diaculties arise from the fact t hat the integrals associated 

with these matrix elements contain inverse powers of the interelectron coordinates (fiom 

the Breit operator) which make these integrals very singular. Work on rgolving these 

diaiculties is currently being carried out by Zong-Chao Yan. These corrections could also 

be carried out for the higher Z members of the lithium isoelectronic sequence, however, 



the leading higher-order relat ivist ic contributions which are pro port ional to Z6a4 s t art 

to becorne more important for the higher nuclear charge ions. Thus, these higher-order 

corrections may also have to be calculated in order to obtain more accurate QED correc- 

tions for higher members of the lithium isoelectronic sequence. Finaliy, higher precision 

experimental values for Z > 3 will be needed as the theoretical work continues to increase 

in accuracy. 



Table 4.29: F i  order relativistic and mas polarkation corrections added to the non- 
relativist ic ls22s 2S state energies. 

z 3 4 5 
Nonrel. -7.478 060 322 74(20) - 14.324 763 175 78(17) -23.424 605 720 96(66) 
(Hl + H2) -0.000 707 48(4) -0.002 537 37(19) -0.006 722 88(43) 
(Hd 0.000 095 340(89) 0.000 273 55(35) 0.000 597 386(76) 
(H5) -0.000 023 331(2) -0.000 048 626(6) -0.000 083 357(8) 
(H4) 0.000 023 635(1) 0.000 027 603(2) 0.000 030 235(3) 
Total -7.478 672 158(97) -14.327 048 02(40) - 23.430 784 33(88) 

Z 6 7 8 
Nonrel. -34.775 511 275 ll(16) -48.376 898 318 43(13) -64.228 542 082 OO(12) 
(Hl + HÎ) -0.014 754 45(85) -0.028 489 O(13) -0.050 155 7(19) 
(H3) 0.001 111 3(14) 0.001 858 2(21) 0.002 882 8(31) 
( H 5 )  -0.000 127 541(8) -0.000 181 166(5) -0.000 244 241(3) 
(H4) 0.000 034 788(3) 0.000 035 872(3) 0.000 036 721(3) 
Totd -34.789 247 2(16) -48.403 674 4(25) -64.276 022 4(36) 

z 9 10 
Nonrel. -82.330 338 096 65(16) -102.682 231 481 79(L7) 
( H l  + 6) -0.082 350 9(27) -0.128 041 4(39) 
( H d  0.004 228 8(42) 0.005 939 9(55) 
(H5) -0.000 316 769(9) -0.000 398 74419) 
(H4) 0.000 035 397(3) 0.ûûû 037 900(3) 
Total -82.408 741 6(50) -102.804 693 8(68) 



Table 4.30: F i  order relativistic and m a s  polarization corrections added to the non- 
relativist ic 1 s22p 'P state energies. 

z 3 4 5 
Nonrel, -7.410 156 531 252(67) -14.179 333 291 542(70) -23.204 441 191 42(10) 
(Hl + XÎ) -0.000 693 3(0) -0.002 440 5(0) -0.00s 397 4(0) 
(H3) 0.ûûû 093 6(0) 0.000 263 8(0) 0.OOO 571 3(0) 
(H5) -0.000 021 3(0) -0.000 032 9(0) -0.000 033 9(0) 
(H4) 0.000 019 4(0) 0.000 010 2(0) -0.oOO a04 l(0) 
Total -7.410 758 l(1) -14.181 532 7(1) -23.210 305 3(1) 

Nonrel. -34.482 103 178 34(15) -48.011 054 280 66 (12) -63.790 739 578 21(12) 
( H I  + H2) -0.013 951 4(2) -0.026 831 6(4) -0.047 103 7(6) 
( H d  0.001 057 l(1) 0.001 762 7(2) 0.002 729 5(4) 
(H5) -0.000 016 7(1) 0.000 026 4(1) 0.OOO 103 4(0) 
(H4) -0.000 022 6(0) -0.000 041 8(1) -0.OOO Mi 5(1) 
Tot al -34.495 036 8(2) -48.036 138 6(5) -63.835 071 9(7) 

z 9 10 
Nonrel. -81.820 880 912 03(14) -102.101 324 293 732(47) 
(Hl + H2) -0.077 206 3(9) -0.119 878 2(13) 
(H3)  0.003 998 6(7) 0.005 611 8(10) 
(H5) 0.000 221 8(22) O-Oûû 389 6(6) 
(H4) -0.000 077 4(1) -0.000 102 1(i) 
Total -81.893 944 2(25) -102.215 303 2(18) 



Table 4.31: Cornparison between theory and expairnent for the 1s22s *S - ls22p * P  
transition energies of the lithium isoelectronic sequence. 

Table 4.32: Cornparison of Theory minus Evperirnent with directly caiculated QED 

Z 

correct ions. 

Thmry Elvperirnent 
(a...) (cm-') (a- ' ) 

Z Theory-Expt. QED Car.= QED Corr.' 
(cm-') (cm- ' ) (cm-') 

3 0.26(2) 0.23(2) 0.08(1) 
4 1.55(10) 0.78(5) 
5 5.1(5) 2.96(18) 
6 12.3(8) 7.69(54) 
7 25(1) 29.2 16.2(1.1) 
8 41(1) 50.0 29.6(2.4) 
9 71(2) 80.1 49.3(3.4) 
10 102(2) 120.7 76.5(5.3) 

Reference [25]. 
%ference [9], and [40]. 

3 0.067 914 O(1) 14 904.13(2) 14 903.871 689(10)a 
4 0.145 515 3(4) 31934.69(10) 31933.14(2)~ 
5 0.220 479 O(9) 48 386.3(2) 48 380.8(7)' 
6 0.294 210 4(16) 64 567.8(4) 64 555.5(7)' 
7 0.367 535 8(26) 80 660.3(6) 80 635.7(1.0)' 
8 0.4409505(37) 96771.2(8) 96 730.0(1.0)' 
9 0.5149736(56) 112981.3(1.2) 112910.7(9)* 
10 0.589 390 7(70) 129 352.7(1.5) 129 250.3(1.3)' 

" Reference [6]. 
Reference [Ml. 
Reference 1151. 
Reference 1161. 



Appendix A 

Deterrnination the Del Operators 

To determine the effect of v/, operating on a member of the basis set, we begin by 

writing the variable dependence of our trial wave function: 

form of the V: operators. For 

d d d  VI* = [(- - -) az1 1 &l a%, 

where acts oniy on the spherical part. Shen, 



where, 

Now, 

where 

and 



i a 
-2(r2*v:)--- 2 (r3 vf) -- - 

f 13 %13 

Now adding 1 and II, we get 



T herefore, 

v; = 

A similar result is obtained for V: but with the indices 1 and 2 interchanged, and also 

for ~f but with the indices 1 and 3 interchanged. 



Appendix B 

Evaluation of the Angular Integral I 

With the use of the spherical harmonic addition theorem, 

47r 
P,,(c-~*) = 

%ab + 1 c mab y&*., (6 )yPobmab (Pd 

the angular integral (2.29), becornes 

and 

(B. 2) 



and wit h the relation, 

where, M" = M + M' and (L, LI,  LI')$ = (2L + 1 ) 4 ( 2 ~ '  + 1 ) $ ( 2 ~ "  + l)?, we get 

where, si = mi - ml, and SB = m12 - m31. NOW, evaluating this iurther using again 

relation (B.3), we get 

where, so = 923 - SI. Sirnilarly, 



and 

so that, 

and with the relation, 



the integral reduces to 

Following a similar procedure for the A2 and & integrals, we get 

and 

Now, substituthg these evaluated integrais into Eq. (B.2), we obtain 



and using the relation 

C A  b 

Q& -P r 

A B C  
(B-6) 

this may be further simplified to Eq. (2.36). 



Appendix C 

Derivation of the Backward 

Recursion Relation 

We begin by considering 

where (a), = a(a + 1) (a + 2) (a + n - 1) and (a)o = 1. Nmt, we make use of the fact 

t hat 

(a), = (a)(a + l ) ( a  + 2 )  - 9 .  ( a + n  - 1) 

to rewrite Eg. (C.1) as 



Now, let us consider 

( s  - l)! 
F(l ,s+p;s;z)  = 

(s-  1 + P + N ) ! ~ ,  
( s - l + N ) !  (3 - 1 + P)! ,=, 

Letting N - 1 = n, ((2.4) becornes 

(s - 1 )  g (s + p + n)! *,+, 
F(l,s+p;s;z) = 

(3 - 1 (S + n)! 

do 

- - (3 - l)! [(s + p - l)! 
r-' + C ( s + p + n Y z n  (C.j) 

(s - 1 + p ) !  (s - l)! (S + n)! 
n -dl 1 

Findy, using (C.3), we get 

which is the relation we seek. 



Appendix D 

The General Form of the Integral 
(1) Involved in the Calculation of en 

The general form of the integrals (3.31), (3.32), and (3.33) may be expressecl as 

In this Appendk, the general form of the angular part of this integral is determineci and 

the essential integral relations for the evaluation of the radial part are given. 

To split up the radial and angular part of (DA), we begin by making 

expansion 

use of the 

(D.2) 

where Pij is the angle between ri and rj and r, is the lesser and r ,  the greater of ri and 

rj. This expansion may be rewritten as 



where we have made use of the spherical harmonic addition theorem. Now, substituting 

(D.3) into (D.l), we obtain 

where 

and 

where dQ = sin t9d9dq 

D.1 Evaluation of the Angular Part 

For the angular integral (D.6) let us set i = 1 and j = 3, and rewrite it as 

where 

and 

(D. 10) 



Rewriting (D.8), we have 

and with the cornplex conjugate of relation (B.3), this becomes 

Now using the orthonormal relation for the spherical harmonies 

together with (D.1 l), we have 

(D. 13) 

Similady, 

and 

(D. 15) 



Substituting (D.13), (D.14), and (D.15) into (D.7), we get 

(D. 16) 

NOW without loss of generality, we will choose m = O for the wavefunctions, so that 

(D. 17) 

Equation (D. 17) is the general equation for the angular part of integral (D.4), and with 

this equation (D.4) may be written as 

(D. 18) 

D.2 Integral Relations for the Evaluation of the Ra- 

dial Part 

In this section, the general integral relations for the eduation of the radial integral (D.5) 

are presented. To begin, we note that Eq. (D.5) is of the form 

(D. 19) 



where r,  = max(r,, r,), and r ,  = min(r,, rn). To evaluate this integral, it must be 

separateci in the following way 

N a t ,  the evaluat ion of (D.20) is carried out with the use of the following integral relations 

and 
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