FRACTAL IMAGE

COMPRESSION

by
BRUNO LACROIX
A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of
Master of Science
Information and Systems Science

Department of Mathematics and Statistics

Carleton University
Ottawa, Ontario

April, 1998

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fila Volra relérence

Qur fia Notre relérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propniété du
copyright in this thesis. Neither the droit d’auteur qui protege cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-36933-0

ACKNOWLEDGEMENTS

[would like to express my sincere thanks to my supervisor, Professor Brian Mortimer, for
providing me with the right balance of freedom and guidance throughout this research. My
thanks are extended to the Department of Mathematics and Statistics at Carleton University
for providing a constructive environment for graduate work, and financial assistance.

[wish to express my gratitude to my wife, Martine, for her constant encouragement,

patience and support during the course of my graduate studies.

ABSTRACT

This thesis examines the theory of fractal image compression and gives a survey of
such techniques for still images and video sequences. Particular attention is given to
partition iterated function systemns (pif), but recurrent iterated function systems (rif) are also dis-
cussed. We begin with a discussion of iterated function systems and there applications
in image compression and then go on to provide the theoretical basis for such systems.
as well as for pif and rif. In Chapter 3 we discuss different image models as well as the
encoding of images using pif and rif. Different modifications to the brute force pif are
then discussed in Chapter 4, and we conclude the thesis by presenting four methods

which extend the theory of pif to video sequences.

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUC TION .o 1
1.1 Why Image CompPressionoio oo et ee e eeee aeee 1
1.2 The Brute Force Fractal Image Compression Techniqueooooooiot. 4
1.3 The Origins of Fractal Image Compressioncoooeiieieeeeeommmeiieeenennn. 7
1.4 What we will cover in this Dissertationccooiioiiiroiiim e eeann 8
1.5 ConClUSIONottt e e e e e e 8

2 ITERATED FUNCTION SYSTEMS AND THE CONTRACTIVE

MAPPING FIXED POINT THEOREM i, 9
2.1 Iterated Function Systemsi it 9
2.2 Analysis of ifs and the Generalized Collage Theorem for ifs13
2.3 Recurrent Iterated Function Systems, rifs il 18
2.4 Partitioned Iterated Function Systems, pifsco.coil. e 20
2.5 Conclusionc.ocooeeeiiiiii i e el 20
3 IMAGE ENCODING USING IFS, RIFS AND PIFS 21
3.1 Image MOdelS ...ooonii e 21
3.1.1 Pixelized Data s 21
3.1.2 Functions on R ... e 22

3.2 Colour IMages . ..ovnnni e 23
3.3 IF'S Representation of Images i 26
3.4 Image Encoding with rifs and pifs 26
3.4.1 Encoding Images with Recurrent Iterated Function Systems_... 28
3.4.2 Encoding Images with Partitioned Iterated Function Systems_... 28

3.5 ConclUSION .o e 29

il

4 TMPROVED PARTITIONING AND SEARCHING METHODS31
4.1 Block Shapes 31
4.1.1 Variable Sized Square Blocks using Quadtrees 32
4.1.2 Rectangular Block Shapes using HV-Partitioning 35
4.1.3 Region Based Coding with a Heuristic Search 37
4.1.4 Other Partitioning Methodso ... 40
4.2 Improved Searching Methods 41
4.2.1 Lean Domain Pools e 41
4.2.2 Points in an Abstract Space with the FFIC Algorithm 45
4.3 ConclUSION ...t 48
5 FRACTAL COMPRESSION OF VIDEO SEQUENCES 49
5.1 Inter/Intrafram Fractal Video Encoding 49
5.1.1 Simple Motion Compensation ..., 49
5.1.2 Low Rate Video Codingo o i 50
5.2 Three Dimensional [terated Function Systems 54
5.2.1 3D Fractal Block Coding of Video Sequences54

5.2.2 Improved Searching and Classification Methods for Fractal Volume
COmMPresSION i ...58
5.3 Conclusionooiiii i 60
REFERENCES . e 62

v

LIST OF FIGURES

CHAPTER PAGE
1.1 The original image of Lena L. 2
1.2 The different steps in the construction of the Koche curve 3
1.3 The Koche snowflake i 3
1.4 The self-similar parts of Lena Rt 4
1.5 The initial image (top left), the first iterate (top right), the second iterate

(bottom left) and the tenth iterate (bottom right))
2.1 The first three iterates of the system in example 2.1, for three different initial

0 Y - e 10
2.2 The original image z, and its iterate F(z)ooeiinminiiiiiiiiiii i 11
2.3 Barmsley's [erm ... oo i 12
2.4 Two different examples of how to calculate the hausdorff distance 15
2.5 Barnsley’s fern with Sierpinski triangle leaves e 19
3.1 The three dimensional graph of Lenna and the original Lenna image 22
3.2 The flow chart of the brute force approach for colour images 25
3.3 The range blocks of an arbitrary imageooimiiiiii i 27
3.4 A few of the possible domain blocks of the same arbituary image 27
4.1 (a) An example of the quadtree partitioning of an image 33
4.1 (b) The quadtree coresponding to the partitioning in Figure 4.1a 33
4.1 (c) A representation of the Lenna image, partitioned using the quatree

algorithin ... o 34
4.1 (d) The decoded image of a dog, which was encoded with the quadtree

partitioning algorithm 34
4.2 (a) The original imagec...c....... e T 36
4.2 (b) The first partitioning of the image 36
4.2 (c) The next two partitions of the image ... 36
4.3 (a) The seed (solid line) and a possible extension (dashed line) 38

4.3
4.4

4.6

4.6

4.7
4.8
49

4.10

411
5.1
5.1
2.2
5.3
5.4

(b) A range region and its coresponding domain region -..............ceiiiiiieaiioi.. :

Which show two regions competing to include a range block and two blocks
which should not be considered as candidates to belong to another range
region, TespectiVely e
A representation of the Lenna image, partitioned using the triangular
partitioning method i,
(a) The graph of the number of domain blocks vs variance, for a quadtree
partitioning of Lenmna
(b) The actual domain blocks used (in black) for the encoding of the Lenna
IMage .oooiiiiiiniiieaeneaean.. et e et
An example of the actual derivation of the wbs code
An example of an r-tree grouping of domain blocksl
Time needed to encode the bird image using the FFIC and [IC3 methods,
and the original bird image
The graph of the RMS error vs Compression ratio for the LBF, FFIC and

[IC3 algorithms ...l
Visual comparison of the FFIC, [IC3 and LBF algorithmscoooenn....
(a) The quadtree segmentation of the foreground regioncc.coovvveeee.....
(b) The fractal encoded foreground regionc.cocoiiiiiiiiiiiiiiiiii,
An example of an R-Frame, D-Frame, range block and domain block
Flowchart of the algorithm used to determine how to split a given range block
One frame of a video sequence of an MRI. Original (upper left), 20:1
(upper center), 25:1 (upper right), 30:1 (lower left), 43:1 (lower center),
729:1 (lower Tight) ..oooiiiii

vi

CHAPTER 1

INTRODUCTION

In this Chapter, we will discuss the need for fractal image compression techniques. We
will also introduce fractals, the Brute Force fractal image compression method and discuss
some of its disadvantages. We go on to introduce the history of fractal image compression
research and conclude the Chapter with an insight of the following Chapters.

1.1: Why Image Compression

With the Internet growing at an exponential rate, the amount of people transferring
digital data from one site to another has increased dramatically. There is now, more than
ever, a need for quick data transfer methods and more efficient use of memory space. Unfor-
tunately, images are known for requiring significantly large amounts of memory and hence
are not transmittable quickly. This is where fractal image compression techniques come to
the rescue. Such techniques allow one to store an image with much less memory than it
would normally require, hence allowing it to be transmitted more quickly. For instance,
the image in Figure 1.1 requires 263 246 bytes of memory!, and would take 9.14 seconds to
transmit at a data rate of 28.8 Kb/s. However, once this image has been fractally encoded
it would require, on average, 189 538 bytes of memory and could thus be transferred in 6.58

seconds, at the same data rate.

1 At a resolution of 512 x 512, and a pixel resolution of 256

Page 1

Figure 1.1: The original image of Lena.

Although fractal image compression was only discovered ten years ago, most fractal
image compression techniques manage to compress a natural image at compression rates
between 20:1 and 40:1. This is compatible to the leading techniques used today, which have
been around for much longer. Before we explain how fractal image compression techniques

work, let us first consider fractals.

A fractal is a geometrical object who’s parts are similar to the whole and have infinite
resolution. In other words, if we were to expand any part of a fractal, at any ratio, it would
never become blurry and one could always see the same original image in that expanded part.
For instance, let us consider an image created in the following way: Begin with a straight
line divided into three equal parts, with the middle part create an equilateral triangle?,
and then delete its base. Your image should look like the one in Figure 1.2b. With each
straight line in the image, repeat the above process ad infinitum. Doing so will create the
image in Figure 1.2e, where Figures 1.2a though 1.2d show some of the intermediate steps
in achieving the final image. This image is known as the Kocke Curve. If we had repeated
this process on each part of an equilateral triangle, we would have produced the Koche
snowflake shown in Figure 1.3*.

Notice that in the magnification of any part of the Koche curve, we can see parts which
are identical to the whole Koche curve. Also, no matter how much we magnify the image,

the edges will never be smooth, ie: The Koche Curve has infinite resolution.

3 An equilateral triangle is a triangle who's sides are all of equal length
* The Koche snowflake is a rather peculiar object since it can be contained within a

circle of radius one, but has an infinite perimeter.

Page 2 ---

(a)

(b) / \
© M
m

Figures 1.2a,b,c,d and e: The different steps in the construction of the Koche curve.

Figure 1.3: The Koche snowflake.

[t is important to notice that although Figure 1.2 is quite complex, it can be created
extremely easily. Thus, if one wanted to store this image in memory, it would be much more
efficient to store the mechanism by which it is created, than it would be to store the image
itself. Storing the construction mechanism also allows one to recreate the image at any give

resolution, whereas, the stored image would be of a fixed resolution.

cee Pages oo

1.2: The Brute Force Fractal Image Compression Technique

Geometrical objects created like the ones above are called artificial fractals. Although.
naturally occurring objects cannot be created with such techniques, there are some which
resemble fractals. For instance, consider the sea coast of an island with a rocky shore. We
can magnify the shore at almost any scale and still see a rocky shore type structure, that is
until we get to the molecular level of the rocks. Such natural objects are known as natural

fractals.

Since the human eye has difficulty distinguishing between certain natural and artificial
fractals, we can exploit this for the use of image compression. Fractal image compression
algorithms try to find the reconstruction method of an image which is extremely similar to
the original one, so as to more efficiently store it. The difference between the reconstructed
image and the original can be so small that they appear to be identical to the human

observer.

Figure 1.4: The self-similar parts of Lena

Unlike the Koche Curve natural images are not usually self-similar to the whole. How-
ever, they usually contain different parts which are self-similar, an example of which is shown
in Figure 1.4. Fractal image compression methods take advantage of these self-similar parts
by considering them to be identical. They then find a mechanism for reconstructing the
image based on the knowledge of the self-similar parts. For a better understanding of how
this works, consider the following fractal image compression method for a 256 x 256 pixel

image.

Page 4

I: Assuming the image is grey-scale, we can then assign an integer value in the range

[0, 255] to each pixel.

2: Divide the image into non-overlapping Range blocks of size 8 x 8 pixels. We therefore
have 32 x 32 = 1024 range blocks. Let us denote the collection of all such range
blocks by R.

3: Also divide the image into possibly overlapping Domain blocks of size 16 x 16 pixels.
We therefore have 241 x 241 = 58 081 domain blocks.

4: For each range block R;, find the domain block D; which, physically, resembles it the
most. For a better image quality, you must compare each orientation of the block
and its mirror image. Thus performing eight comparisons for each domain block.

It is important to notice that if each range block R; is compared to each domain block
D;, then you will perform 8 x 58081 x 1024 = 475 799 552 comparisons in all, or 464 648

comparisons for each range block.

We now have a mapping of a domain block to a range block for each range block in the
image. Once this is done, we need only store the mappings for each range block in order to
reconstruct the image. Storing such data requires much less information than storing each
pixel value in the image. For example, the 256 x 256 image of Lena requires 65 536 bytes
of data, while the mappings only need 3968 bytes, thus resulting in a compression ratio of
16.5: 1.

In order to recreate the image, one must choose an arbitrary image to begin with (it
may simply be a black image), then iterate the image given the mappings stored for each
range block. As Figure 1.4 shows, each iteration will add detail at a finer and finer level,
starting at the 8 x 8 level, then 4 x 4,2 x 2,etc.... Such a system is known as a Partitioned (or
Local) [terated Function system, and is discussed in detail in the following Chapters.

Page 5

R

i

HHIHEIRE
.Em i

ﬁﬁ&ﬂ.&—.

iterate (bottom

the first iterate (top right), the second

(top left),

image

ti

left) and the tenth

The ini

Figure 1.5

ight)

iterate (bottom r

ty of the

lici

imp
ge block pa

the s

given

is of an acceptable quality,

image

ing

sult

res an enormous amoun

Although the re

Most

r1S0Ons

1T.

INn-ran

ime to find the doma
has been to decrease the number of compa

tof t

101

qui
of the work on fractal

algorithm, it re

b

ge compressi

mma

lmage.

ime needed to encode the

decrease the t

3

needed and as such

0n.

nite resolut

1

ve

like manner, they ha

actal

in a fr
hi

are created

ages

im

Since such

agnify a part

annot m

one c

ie.,

is artificial,

gher levels

1on created at

However, the resolut

e

Page 6

..

of the image and see details that were not in the original. Where other image types result in
a blocky effect when the image is magnified. since the value of the pixels is simply extended
to the larger area. Fractal image compression does not, since the mappings go on to create

artificial resolution.

Once we have the reconstruction mechanism for an image, it is extremely easy and quick
to reconstruct it. However, finding the optimal. or suitable, encoding of an image requires a
significant amount of time and resources. Therefore, fractal image compression techniques
are better suited for applications where the image is encoded once and decoded many times.
An example of such a situation is the 1992 version of the Microsoft Encarta compact disk,
where all of the images in it are fractals. In order to fit the numerous images on the cd,

Microsoft decided to compress them using fractal image compression techniques.

Although most of the research in the past was concentrated on still image compression,
video image compression is also becoming extremely popular. This is mainly due to the
fact that a suitable video image compression technique can have extremely large economical
benefits. Many companies would rather use video-conferencing instead of tele-conferencing.
However, because video sequences require large amounts of data, they must be compressed
prior to transmitting them. They must also be encoded, transmitted and decoded at such
a rate so that the decoded video sequences are not jumpy and still have a suitable image
quality. This will be the topic discussed in Chapter 5 of this dissertation.

1.3: The Origins of Fractal Image Compression

The person responsible for discovering fractal image compression is Micheal F. Barnsley,
who noticed that extremely complicated, naturally appearing objects can be created using
transformations with very short codes. He went on to name such transformations Iterated
Function Systemns, (IFS). IFS’s can be used to encode images whose parts resemble the whole.
However, as we have mentioned before, most natural images do not contain this type of
self-similarity, but rather parts of the image resemble other parts. Barnsley knew this, and
in 1988 he generalized the theory of IFS’s to Partitioned Iterated Function Systems (PIFS). He
used an algorithm similar to the one above to compress an image. However a person had to
interact with the program in order to find the domain blocks to be matched to a particular
range block. This resulted in high compression ratios, but very poor quality in the decoded
images. Much of Barnsley’s work remains secret and copyright since he and Sloan founded

Page 7

the company /lterated Systems Inc in 1987.

Only in 1990 did any ground breaking work in fractal image compression become public.
This was the result of Arnaud Jacquin’s Ph.D thesis which automated the search of the
domain-range pair. Jacquin, who was Barnsley’s Ph.D student, achieved this by restricting
the domains and range blocks to a fixed size, and transformations of a particular type,
which is discussed in Chapter 2. His algorithm is basically the one described in Section 1.1,
with the added capability of adjusting the grey-value of a pixel by one and scaling by a
number less than one. He also decreased the number of domain blocks to be searched by
classifying them into one of a few categories. For instance, one category was those blocks
with a distinctive edge.

1.4: What we will cover in this thesis

Since then, many people have revised Jaquin’s method in a variety of ways. In this
thesis, we will consider some of the better variations and suggest further improvements.
Chapter 2 provides the mathematical background and analysis to understand the reasons
such systems work. Chapter 3 introduces different image models and discusses the repre-
sentation of images using ifs’s, rifs’s and pifs’s. Chapter 4 introduces many different fractal
image compression techniques that are superior to the brute force approach discussed above.
Chapter 5 concludes the thesis with a discussion of different techniques used for fractal video

compression.

1.5: Conclusion

In this Chapter, we have shown the reasons such compression techniques are needed
and taken a brief look at how they work. We also discussed the different applications in
which they can be used and have shown some of the history of fractal image compression

research. We concluded with a summary of the following Chapters in this thesis.

Page 8

CHAPTER 2

Iterated Function Systems and the
Contractive Mapping Fixed Point Theorem

In this Chapter we will introduce contractive Iterated Function Systems and show how to ma-
nipulate them so as to create fractals. Then we will give a fairly detailed analysis of the
properties of such systems and prove the Ceneralized Collage Theorem. After which, we will
introduce Recurrent Iterated Function Systems and determine the properties of such systems. We
will conclude with an introduction of Partitioned Iterated Function Systems.

2.1: Iterated Function Systems

An iterated function system is a system of functions which are simultaneously being
iterated over a set in R? st F : R%2 — ®2. When iterated, if the system approaches a fixed
point!, then the graph of the system is called a fractal. A fractal, generally speaking, is
a geometrical object which has infinite resolution and self similarity at every scale. For a

more in depth discussion of fractals, the reader is recommended to read [1].

Example 2.1: Consider the functions defined by
A (3)-(% 52) ()
SORGIONC
5(5)- (0) (3)+ ()

! A fixed point is a point which does not change value when iterated over a function,

le., F(x)=x

Page 9

An interesting characteristic of this svstem, is that no matter what initial image we begin
with, the iterates of the system will always converge to the same final image, i.e., the graph
of the system will converge to a fixed point in ®2. The final image (the fixed point) is called
the attracter of the system and in this case is known as the Sierpinski gasket. Figure 2.1 shows
the iterates, of the system in example 2.1, for different initial images.

%

(a)

v.

.'M',
© fadh
j!i' ..;!e.. LA

Initial Image First Copy Second Copy Third Copy
Figure 2.1: The first three iterates of the system in example 2.1, for three different initial images.

Notice that the functions, F, Fs, F3, in Example 2.1, are contractions, that is, the distance
between the iterates of two points is smaller than the distance between the two points
themselves. This can formally be written as d(F(z). F(y)) < d(z,y), where d(a,b) represents
the distance between « and b.

In this Chapter, we will discuss the fact such systems, like the one in Example 2.1,
always converge to the same fixed point for an arbituary initial image. In the following
Chapters, we will discuss how such systems create completely naturally appearing images,

to the human observer.

Page 10

Let us begin by taking a closer look at iterated function systems. Consider the affine
T a b T e

F =Ax+y = + 2.1

<y> d (c d) (y> <f> -

Theorem 2.1: Let A\ and p be eigenvalues of the matrix 4 = (Z Z) . The affine function F,

function?® F. given as:
o

defined in equation (2.1), is a contraction if A £ u st [\ <1 and |u| < 1.

Let us now consider the function
T rcos® —rsin© T
F(y) - (rsz'n@ rcos@) (y) ; st <t

Notice that F satisfies Theorem 2.1, and is therefore a contraction. Also, F not only shrinks
(or expands) the image by a factor of ||, but also rotates it, counterclockwise, by an angle
of ©. See Figure 2.2.

A

Figure 2.2: The original image z, and its iterate F(z).

Example 2.2: Consider the four functions defined below, where each will begin by shrinking
the image by a factor of 1/3.

2 Affine functions are composites of a linear function, G(x) = Ax, and a translation

function, H(x) =x+y-

Page 11

A ()= (% 5) ()
& (5) = (Wt lapanters) () + ()
-(de ~us) () (%)
5 (5) = (G i) (5) - ()
(v 7))+ (%)
m(3)= (7 5)(5) (%)
Note: F; will leave the image where it is, F» will rotate it by % and shift it by 143 , F3

) i . e - 1/2 g s 2/3
will rotate it by =F and shift it by (\/:‘4/6) and Fy will shift it by (é)

The graph of the union of these four contraction mappings is known as the Koch curve and

is shown in Figure 1.2 on page 3, along with the first few iterations.

{\\%ﬁ‘{\\{\%{(«&

Figure 2.3: Barnsley’s fern.

Page 12

Example 2.3: Another extremely well known [FS fractal is Barnsley’s Fern. It can be described

by the following four functions, and is shown in Figure 2.3.

T 0 O T z 2 =26 z 0
a(3)-(=)() m(5)-(a 72) () ()

T 85 .04 T 0 T -.25 .28 T 0
a(5)-(5 %) ()6 a0)-(2 2)6)-C)

It is a result of the Contraction Mapping Theorem that such systems have the characteristic
of converging to the same final image regardless of the initial image, this theorem will be
formally stated and proven later in this Chapter. Informally the Contraction AMapping Theorem
states that if F; are contractions on ®2, for i = 1,2,3,...,n, and F(4)= UL, Fi(4), such that
A is a closed and bounded subset of %2, then F has a unique fixed set, which is a closed

and bounded subset of ®?, i.e., F(Ar) = Ar. Since all closed and bounded subsets of R? are

attracted to the set Ag, it is known as F’s attracter.

Notice, to evaluate Ar, one could evaluate the sequence 3 {F©™(z)}52 | for a given z in K2,
which can be extremely time consuming. A faster method of evaluating Ar was proposed
by Barnsley {2]. This method uses random numbers in the interval (0,1) and works for any

finite system of contractions, F; suchthat i =1,2,...,n. Barnsley’s algorithm [8] is:
Step 1: Choose an arbitrary point z in ®2.
Step 2: Generate a random number r € (0,1). Therefore rn is a random number in (0,7).
Step 3: if k <rn < k+ 1, then plot the point Fi.(z). Otherwise do not.
Step 4: Let z = Fi(z).

Step 5: With the new point z, repeat Steps 2, 3 and 4, then repeat the process as often
as needed in order to generate a reasonable representation of the attracter Ar.

2.2: Analysis of ifs and the Generalized Collage Theorem for ifs

Before we can prove the Contraction Mapping Theorem, we need a few definitions, lemmas and
theorems. We will begin by stating the following three lemmas, for a proof of each, see {12].

3 {FOn)(z)}22 | represents the nt* iterate of F on z, as n approaches infinity

Page 13

Lemma 2.1: Let F be a continuous function on ®?, and let 4 be a closed, bounded subset of
R2, Then F(A4) is also closed and bounded.

Lemma 2.2: Let T =UP 4;, st A; is a closed subset of ®2 for i =1.2,3,n, then T is closed.

Lemma 2.3: Let T = U 4;, st A4; is a bounded subset of ®2 for i = 1,2,3,....,n, then T is
bounded.

Definition 2.1: A metric space < X,p > is a nonempty set X of elements (which we call
points) together with a real-valued function p defined on XxX such that vz,y,z € X:

i: p(z,y) 20 iii = p(z.y) = p(y.)
fi: p(z,y) =0 iff z=y iv: p(z,y) < p(z,2) + p(z.y)

Note: The function p is called a metric.
Definition 2.2: A metric space X is compact, if it is both closed and bounded.

Definition 2.3: A sequence {z,}32, in a metric space is called a Cauchy Sequence, if given

n=1

€ >0 there is an N such that ¥n,m > N, we have p(zp, Tm) <e.

Theorem 2.2: Let < X, p > be a metric space, with metric p, then every convergent sequence

in X is a Cauchy sequence.
Proof: See [12]

Definition 2.4: Let < X, p > be a metric space, with metric p, if every Cauchy sequence in X
is convergent in X, then the space X is said to be a complete metric space.

Definition 2.5: Let 4 C ®2 and bounded, let € > 0, then Si. = {y: 3a € 4 st pla,y) < €} is
called the e—neighbourhood of A.

Theorem 2.3: Let A be a closed and bounded subset of ®2, then S, . is also closed and
bounded. -

Proof: See [6]

Definition 2.6: The Hausdorff Space of X is defined as H(X) = {B c X : B is compact}

Page 14

Definition 2.7: Let 4, B € H(.X) . then the Hausdorff metric is defined as

h(A, B) = maz{inf{e: B€ Sy} inf{e: A€ Sp}}

For examples of the Hausdorff metric, see Figure 2.4, where the line is the Hausdorff distance
between the two sets A and B.

A

Figure 2.4: Two different examples of how to calculate the Hausdorff distance.

Theorem 2.4: [4]. Let < X,p > be a complete metric space with metric p, then H(X), with

the Hausdorff metric k, is a complete metric space.
Proof: See [1]

Definition 2.8: [4]. Let X be a metric space with metric p. A map w: X — X is Lipschitz with
Lipschitz factor s if 3s >0, st s € ® and

plw(z),w(y)) < sp(z,y) Vr,yeX

Furthermore a mapping is contractive if f s < 1.

Note: The rest of the theorems and proofs in this Chapter are taken from [4].
Theorem 2.5: If f: X — X is Lipschitz, then f is continuous.

Proof: See [4] pg 34

Theorem 2.6: If w; : ®? — R2 is contractive, with contractivity factor s;, i = 1,2,...,n, then
W =uUl,w; : H(R?) — H(R®) is contractive, in the Hausdorff metric, with contractivity factor
s=maz{s; :1=1,2,..,n}.

Proof: See [4] pg 34

Page 15

Note: The notation f(°(z) represents the n** interate of z over f.

Theorem 2.7: (The Contractive Mapping Fixed-Point Theorem) Let X be a complete metric
space and f: X — X be a contractive mapping. Then there exists a unique point zy € X

such that vz e X

z = f(zs) = lim fO(z).
Proof: Let z € X, then for n > m we have

PO (2), £ (@) < sp(fOm D (@), FO V(@) < ™oz, SO (=)

Now we can use equation 2.2 and the triangle inequality repeatedly,

plz, O (z)) < p(x, fOV(z)) + p(f OV (z), O (z))
< p(z, f(z)) + p(f(z), F(f(2) + -+ p(FO (), FO) ()
<A +s+...+ 552+ 55 p(z, f(z))
< (=) oz, £(2)-

Therefore, we can rewrite equation (2.3) as

p(FO™ (@), FON (&) < (32 ol £(@))

(22)

(2.3)

Now since s < 1, the left side can be made arbitrarily small for sufficiently large n and

m. Therefore, the sequence {f(®}%2, is a Cauchy sequence. Since X is assumed to be a

complete space, the limit point of the sequence z; = lim,—f(z) is in X. By Theorem

2.5, f is continuous, and so f(xy) = flimp—oof©®™) = liMn_co fO* TV (z) = zf.

To prove the uniqueness of z;, suppose z; # z», st z; and z, are both fixed points. Then
p(f(z1), f(z2)) = plzy,z2), but we have shown that p(f(z1), f(z2)) < p(z1,z2), therefore we get a

contradiction.

Corollary 2.1: (Collage Theorem) With the hypothesis of the Contractive Mapping Fized point

Theorem,

p(z,2p) < (1) ol £(2).

Page 16

Proof: In Equation (2.3) we showed that
plz, FO9(2)) < (=)l f(2))
Therefore, simply let & — co.

Definition 2.9: A Lipschitz function f is called eventually contractive, if 3n st fO) is contractive.

n is called the exponent of eventual contractivity.

Note: Even if Jw;, i =7,....0 st 1 <j < ... <l <n are not contractive, W = U"_,w; may still be

eventually contractive.

Corollary 2.2: (The Generalized Collage Theorem) Let f be eventually contractive with
exponent n, then Iz e X st vz eX

zy = f(zs) = lim fO(z).

In this case

oz, z) < (0) (o) ol £(2),

where s is the contractivity of f®* and o is the Lipschitz factor of f.

Proof: Let g = f(®. We want to show that (%) converges to z,4; that is, f(°¥)(z) is arbitrarily
close to z, Vk sufficiently large. For any k, we can write £ = gn+r, with 0 <r <n. Therefore,

p(fON(z),z5) = p(fO"+) (),)
< p(fO N (z), FO™ (2)) + p(fOT™) (), z4)
= p(g®2(f) (2)), 9P (2)) + p(°*9) (), z,)
< s%(fO7 (), z) + p(9°°? (2), z4)

Note: g(z) = f@")(x)

However, both of these terms can be made arbitrarily small for 0 <r <= and ¢ sufficiently
large. The fixed point condition follows from the continuity of f, and uniqueness follows

from the uniqueness of z,.
For the inequality, we know from Corollary 2.1 that:

—)o(z. 5(z)) (2.4)

1—s

p(z,25) < (

Page 17

and

p(z.g(z)) = pl(z. O™ (z))

<3P (@), £V z)

=1

<pz. fz) Y ot

=1

< (F=%) otz 1) (25)

1—0o

The result follows from equations (2.4) and (2.5).

Note: It is sufficient for there to exist an n for which f is contractive, we do not need f to

be contractive for all large n.

2.3: Recurrent Iterated Function Systems, rifs

The notion of ifs can be extended to rifs. Given a finite collection of ifs, an rifs is simply

an ifs with the added capability of mapping different ifs into one image.

Example 2.4: Say you wanted to create the Barnsley fern with Sierpinski triangle leaves.
We then need two ifs, one would create the Sierpinski triangle, the other would place the
triangles in position of the leaves in the fern and would copy the Sierpinski triangle. The

resulting image is shown in Figure 2.5.

Page 18

Figure 2.5: Barnsley’s fern with Sierpinski triangle leaves.

One can think of rif's as being the collection of affine mappings w; for i =1,2,..,n and a
digraph G such that each node of the digraph represents an affine mapping, and each edge

(wi,w;) means that the composition w; o w; is allowed.

Note: [t is important to notice that all of the relevant properties of ifs theory are carried
over to rifs theory. We will now go on to define what is meant by a mapping between

spaces.

Let < X;,h; > be a complete metric space for i = 1,2,...,n, and let A ="H; x Ha--- x Hy,
st H; is the set of non-empty compact subsets of X;. Therefore we have a typical element
(Ay, As, ..., A,) € H st A; is a non-empty subset of X;. Define the metric r* as;

R ((Ar, o An), (Bl vy Br)) = maz{hi(Ai, B;) :i=1,2,...n}
Therefore, < f,h* > is a complete space.

Let Wi; : H; — H; where W;; = Ugwijx St wije is the k** contractive mapping from X; to
X;.

We can now take W : H — H st W(A;, Aa, ..., An) = (U;W1(A;), ..., U;Wa;(A4;)). Lt is important to
notice that there must exist at least one mapping W;; (for each i) with a non-empty image.

Theorem 2.8: For W defined above 3zy = (A;, Ao, ..., An) st zp = W(zy).

Page 19

Proof: This follows immediately from theorem 2.7.

2.4: Partitioned Iterated Function Systems, pifs

Most of the methods of fractal image compression techniques described in this disser-
tation use pifs, which are a generalization of ifs. Using pifs to encode images simplifies the
encoding of images who’s parts are not self similar to the whole but rather to other parts
of the same image. Basically, the method works by limiting the domains of the mapping to

parts of the space.

Definition 2.10: from [4]. Let X be a complete metric space, and let D; C X for i =1,2,...,n.
A partitioned iterated function system is a collection of contractive maps w: : D; — X for

i=1,2,...,n.

The analysis, for the general form, of pifs has not been developed yet. In particular,
for pifs there is no equivalent theorem to the Contractive Mapping Fixed-Point Theorem
(theorem 2.7). However, pifs are well understood and work very well for the techniques

described in the following Chapters.

2.5: Conclusion

In this Chapter, we have shown how to manipulate iterated Function Systems so as to
create fractals, the different characteristics such systems have, and the reasons they have
them. Because of this work we were able to prove the Generalized Collage Theorem, which
will allow us to compress images using ifs. We went on to describe two stronger kinds of
iterated function systems called recurrent iterated function systems, and partitioned iterated
function systems. Recurrent iterated function systems allow us to create complicated images
much more easily than using ifs. The analysis of the existence of a unique fixed point in such
systems was given. Partitioned iterated function systems where introduced and a formal

definition was given.

Page 20

CHAPTER 3

Image Encoding using IFS’s, RIFS’s and PIFS’s

This Chapter introduces two image models of particular importance to fractal image com-

pression of greyscale and colour images. We then conclude with a discussion concerning the

representation of images using ifs, rifs and pifs.

3.1: Image models

To be able to work with and manipulate images, one must decide which of the available
image models to use. Since the Computer can only work with the Pizelized Data model and
our analysis of fractal image compression is much easier when working with the Functions in

®2 model, these are the only two image models we will discuss.

3.1.1: Pixelized Data

Imagine evenly dividing a grey-scale image into small dots, each of which is a shade of
grey. We can therefore assign a discrete value to each dot, in the range 0 to b, corresponding
to its shade of grey. If we only use one byte of data to represent the grey level value of the
dot (which is typical), then it will be in the range of 0 to 255. By increasing the number of
bytes used to store the grey level value, we increase the grey-scale resolution. Pixels can be
thought of as such dots, such that the number of pixels used in an image corresponds to its

resolution.

We can now think of an image as a vector x = (z1, z2, ..., z¢), Where g is the total number
of pixels used in the image, and z; is a value in the range 0 to 255. Therefore, to calculate

Page 21

the distance between two images x and y. one would use the Root Mean Square. rms, metric
defined as;

Prms(X. y)=llz~- y“2 = (3-1)

To calculate the difference between two images, one usually uses the Peak signai-to-noise ratio.
PSNR, which is measured in decibels dB, and is defined as;

b
PS.(VR =20 logw (%)

for b defined above. Note that in our example b = 255.

3.1.2: Functions on %2

Although the computer can only deal with images as sets of pixels, when developing
the analysis of rifs and pifs it is easier to represent an image as the graph of a function. Let
f:1? — I represent the grey value of the image, where the unit square /2 = {{(z,y):0< z,y <
1}, and I ={0,1]. Therefore f(z,y) = = represents the grey-level value at the point (z,v) € I
One should notice that the graph of f is formed of the points (z,v, f(z,v)), and is therefore a
subset of ®%. See Figure (3.1a), which is the graph of the Lenna image, such that the height
is the grey-level going from black (low) to white (high), and see Figure (3.1b), which is the

original Lenna image.

Figures 3.1a and 3.1b: The three dimensional graph of Lenna and the original Lenna image.

Page 22

Before discuss f as an image model, we provide a few definitions.

Definition 3.1: Two functions g and & are said to be equal if the set of points on which they

differ has measure 0. In such a case we say that g = h almost everywhere, a.e.

Definition 3.2: The essential supremum, ess sup, of a function f(¢) as defined in terms of Lebesque

measure m is;
ess supf(t) =inf{N -m{t: f(t) > N} =0}

Definition 3.3: Consider the L?(I?) spaces, such that fe LP iff |/f]] <oo where
L

pe(f.9) =IIf —gllr = { (frz Lf —gi”) T l1<p<oo
ess suplf—gl p=o0

This metric is known as the L metric. For a detailed discussion of the LP space the reader

is recommended to read [12].

In our analysis of rifs and pifs it is not always useful to use the L>= metric, therefore, let

us also define the supremum metric.

Definition 3.4: Given two functions f and g, the distance between them, with respect to the

supremum metric, Is;
psup(f>9) = sup{|f(z.v) — 9(z,)| : (z.v) € [*}

Definition 3.5: Let us define the space of images as F = {f : [*> — R} st f is a measurable

function.
Theorem 3.1: < F, p,,, > 1S a complete metric space.
Proof: [13]

We are now equipped with all of the necessary tools to discuss image processing with rifs
and pifs. Since most images which one would want to compress are probably colour images,
we will provide a brief discussion of image models for colour images.

3.2: Colour Images

The visible light spectrum is composed of a continuous range of frequencies, each de-

scribing a colour. However, the sensitivity of the human visual system is limited. A colour

Page 23 ---

perceived by a human observer can be approximated by superposing red, green and blue
values. One should not think that the red, green and blue system is the only way of recre-
ating the colour spectrum. for human observers, there are other systems as well. such as

YIQ, YUV, HSL and the CMY(K) system.

A brute force approach to fractal compression of colour images would be to work with
three versions of the same image, the green, red and blue versions. One could then encode
each separately, creating three pifs codes for the same image. To recreate the image, one
would decode each separately and subsequently superpose them, thus recreating the colour
image. Figure 3.2 shows the flow chart depicting this brute force approach.

Obviously, this method is extremely inefficient and completely unpractical. A much
better approach would be to consider the high correlations between the fractal codes for the
same block in each version of the image and the high correlation between colour planes. For
instance, the correlation between the blue and red plane is approximately 0.78, between the
red and green it is approximately 0.89 and between the green and blue it is approximately
0.94. Exploiting these correlations results in 2 much more efficient encoding of the image

with very little degradation in quality.

Such correlations between colour planes are not restricted to the red, green, blue system
but also exist in the (L,[,Q) and (Y,U,V) systems. As such, one can work with the system

of his choice, without a significant effect to the compression ratio and image fidelity.

To convert an image from the (R,G,B) system to the (L,I,Q), one finds the red, green
and blue components of each pixel, then convert each (R,G,B) triplet to its corresponding
(Y,I,Q) triplet. This can be done with the following transformation;

Yi .299 .587 114 R;
L | = 896 -—-274 —.322 Gi
Q: 211 —-.523 312 B;

We can now use the same method of encoding the image with this system as with the

(R,G,B) system.

By exploiting such correlations, the compression ratio is 2 to 2.7 times more efficient
for colour images than the corresponding grey-scale image. The rest of this dissertation, for

simplicity, will only deal with grey-scale images.

Page 24

Original image

Y

Red Component

Y

Red Encoding

Y

Y

Y

Green Component

Blue Component

Y

Y

Green Encoding

Blue Encoding

Y

Y

Y

Encoded File

Y

Red component
of the encoded file

Y

Decoded Red
Component

Y

Y

Y

Green component
of the encoded file

Blue component
of the encoded file

Y

Y

Decoded Green
Component

Decoded Blue
Component

Y

Y

Y

Decoded Image

Figures 3.2: The flow chart of the brute force approach for colour images.

Page 25 ---

3.3: IFS Representation of Images

[n fractal image coding, one tries to exploit self-similarity between parts of the image
and the image as a whole. [f we can find a contractive affine mapping f(x) = Ax+y which
converges to the desired image when iterated, then we could store the image, much more
efficiently than storing the value of each pixel in the image. For example. consider Barnsley’s
fern, to store it in memory, using the value of each pixel, requires 65 536 bytes. However,
to store the representation of its corresponding affine mapping, W, only requires 96 bytes
L. To recreate the image, we iterate W on any initial image, where each iteration has a
closer resemblance to the final image. Therefore, such a representation would be extremely

efficient with regards to memory, and hence image transmition.

Once we have W it is rather easy to recreate the image, however for real images finding
W is difficult and computationaly long. Also, real images are not usually self similar to
the whole image, but rather, different parts of the image are similar to other parts. Using
mappings from one part of the image to another creates a much better quality than using
mappings of the whole image to different parts of the image. Such methods are used when

encoding images with rifs and pifs, which is the subject of the next Section.

3.4: Image Encoding with rifs and pifs

Divide the image, I°, into non-overlapping squares called Range blocks. R;, st Ur_ | R; = 2.
Then divide I? into squares, called Domain dlocks, D;, possibly overlapping, that are twice the
size of the range blocks. For clarity, see Figures 3.3 and 3.4.

L 4 transformations x 6 numbers/transformation x 32 bits/number x 1 byte/8 bits
= 96 bytes

Page 26

Figure 3.3: The range blocks of an arbitrary image.

Figure 3.4: A few of the possible domain blocks of the same arbituary image.

In both methods, rifs and pifs, we will use contractive mappings from domain blocks, D;
to range blocks R;. However, the way in which each chooses which D; will map to a given
R; is different.

To encode grey-scale images we will use mappings of the form;

a; b; O T €;
C-GEI0- -
0 0 Si < (25

Where the coordinates z and y, in Equation 3.2, represents a pixel, and z represents its
grey-scale value. The coefficient s; controls the luminance and the coefficient o; controls
the luminance offset. One can think of them as the contrast and the brightness controls,

[~]

respectively.

In Chapter 2, all of our proofs were based on the Hausderf metric, however, we could also
have used the Root Mean Square Error metric, rms, defined in Equation 3.1. The reason we used

Page 27 ---

the Hausdorf metric and not the rms, is to simplify the proofs. However, in practice one should

use the rms metric since it is computationally easier to calculate.

At this point pifs and rifs diverge, so we will consider each system separately.

3.4.1: Encoding Images with Recurrent Iterated Function Systems

For the mappings defined in Equation (3.2) and the space # = (R; x I, ..., R, x [), we can
define W as a mapping from H to H such that;

Wi . = w;i Rj C D;
=77 |1 ¢ otherwise

Notice that the domain blocks D; are simply the union of range blocks, R;. Consider 4;
as the graph of the grey-scale function over R;, then a point in H is of the form (4, Az, ..., 4a).
The proof of the following theorem is lengthy and is omitted.

Theorem 3.2: < H,p;,, > is a complete metric space, where p;,, is defined as;

p;up((A13 biad] An)a (Bla -y Bn)) = Sup{Psup(Air Bl) - 1 S. i S n'}

In Chapter 2 Section 2.3, we defined the mapping W which can now be written as;
“V(A]_, ooy An) = (ijl(Aj), ...,ij,-(AJ-), cees ijn(AJ-)) st Rj cD; i=1l.n
It is important to notice that our definition of p;,, is only sensitive along the z-azis, the
grey-scale component, and not the z and y-azis, the spatial components. Therefore, if W is

eventually contractive, then the spatial components may actually expand without effecting

the convergence of the system.

3.4.2: Encoding Images with Partitioned Iterated Function Systems

For the mappings defined in Equation (3.2) and the space H = (R, x I, ..., R, x I), We can

define W as;
W =UL w;, st w;: R — 33

Page 28

Notice that ¥, can be contractive even if w; is only contractive for the z-aris.

Definition 3.6: [4], pg 50 If w: ®® — R is a map with (z',v.2) = w(z,y,z1) and (z.y.2) =
w(z,y, z2), then w is called z contractive if 3Is € (0,1) st

’ ,
[21 = 2] < slz1 — 2]

where ' and 3’ are independent of z; or z Yz,y, z;, 2.

Theorem 3.3: Let w; for i = 1...n. be z contractive mappings from ®* to ®3. Then the collection
of these mappings UL w; (which we will call W), is contractive in F with the supremum

=

metric.

Proof: [4] pg 51 Let s = maz{s; : L < i < n}, where s; are the z contractive components of w;

then
psup(W(f), W(q)) =sup{|W(f)(x,y) —W(g)(z,v)|: (z.y) € [*}

= sup{z—component of |wi(z,y. f(z,y)) —wi(z.y,9(z. y))| :
(z,y) € Dyyi=1,..,n}

< sup{si|f(z.¥) —g(z,y)| :i=1,...,n}

< sup{s|f(z.y) — g(z, y)I}

< s-sup{|f(z,y) —g(z,)i}

S s - psup(f7g)

Note: By the Contractive Mapping Fixed Point Theorem, we are assured that W has a

unique fixed point in F, even if the z-contractive maps are expanding along the z and y axis.

The challenge of using pifs, for fractal image compression, is finding a pifs representation
of an arbitrary digital image such that when iterated, the image produced appears to be
the same to the human observer. We will discuss various methods of finding such pifs in

the following chapters.

3.5: Conclusion

In this Chapter we discussed the different practical image models for fractal image
compression and showed how to calculate the difference between two images using each

model. We also discussed how to represent colour images efficiently for our models. We

Page 29

concluded with a discussion of image representations using ifs. rifs and pifs for grey-scale
images, and showed some of the analysis which causes such systems to work.

-« Page30 ---

CHAPTER 4

Improved Partitioning and Searching Methods

So far we have used a brute force approach to fractal image compression, which divides an
image into fixed size non-overlapping range blocks and overlapping domain blocks that are
twice the size of the range blocks. Then, each range block is compared to each possible
transformation of each domain block, storing the transformations once found. As its name
implies, this method is not very efficient. There are many ways in which we could improve

the brute force algorithm with respect to compression ratio, fidelity and speed.

The compression ratio is mostly dependant on the number of transformations needed
to store the image, by increasing the size of the range blocks used we reduce the number
of transformations needed, thus improving the compression ratioc. However, there are many
ways of reducing the number of transformations, some of which may result in a loss of
fidelity. The next Section describes methods of varying the size and/or shape of the blocks
to be used. By varying the size, we are able to cover larger parts of an image using only a
single range block and thus increasing the compression ratio, or we can cover areas of high
detail with smaller range blocks, thus increasing the fidelity.

Another way in which we can improve the brute force approach is by reducing the
processing time needed to encode an image. We can reduce encoding times in various ways,
such as increasing the strength of the processor, or even better, by limiting the total number
of comparisons to be performed, in an intelligent way of course. Algorithms applying this
method are discussed in Section 4.2.

4.1: Block Shapes

In this Section we will present different methods of varying the size and/or shape of the
blocks to be used, and discuss the effects of doing so.

--- Page31 ---

4.1.1: Variable Sized Square Blocks using Quadtrees

Quadtree partitioning is a rather simple method of dividing an image into variable sized
blocks so as to satisfy an error limit. When using the brute force algorithm, we simply find
the domain block which resembles a particular range block the most. However, this does
not set an upper limit on the difference between the two blocks, and thus it is possible that
the best domain-range block pairing is a poor one. If there are a significant number of such
matchings, or if the blocks in question are in a particularly high detail area, then it is likely
that the decoded image will be of poor quality.

The Quadtree algorithm sets an upper limit for the difference between the domain-
range matchings, thus improving the quality of the decoded image. It does so by dividing
the original image into overlapping domain blocks of various sizes. For example, an image
of size 256 x 256 could have domain blocks whose sides are of length 8,12, 16, 24, 32,48 and 64.
Then it recursively divides the original image into non-overlapping range blocks until they
are of a specified size, 32 x 32 for example. For each range block, it searches the domain pool
for the domain block which resembles it the most (minimizing the rms difference). If the
rms difference is smaller or equal to the maximum error, then save the transformation and
delete the range block from the range pool. If no domain block is found, divide the range
block into four equal subsquares, which are the new range blocks, and search the domain
pool again, deleting the range block if a match is found. Repeat until the pool of range
blocks is empty or the size of the range blocks is less than a specified lower limit.

This method is called the Quadtree algorithm since it can be represented by a tree who's
root is the original image and each node has, potentially, four subnodes which correspond
to the range blocks of the image. For a better understanding, see Figures 4.1a/b/c/d, such
that Figure 4.1a shows an example of the quadtree partitioning of an image, Figure 4.1b
shows its corresponding quadtree, Figure 4.1c shows the partitioning of the Lenna image
and Figure 4.1d is the decode image of a dog using the quadtree algorithm.

-+- Page 32

[nuzl Node First Partitioning

Second Partitioning Third Partitioning

Figure 4.1a: An example of the quadtree partitioning of an image.

—
Bl =
=
._:—5
=

Figure 4.1b: The quadtree corresponding to the partitioning in Figure 4.1a.

Page 33

Figure 4.1d: The decoded image of a dog, which was encoded with the quadtree partitioning
algorithm.

Notice that in order to compare the domain and range blocks, we must reduce the
number of pixels in the larger domain block. If we are comparing the domain blocks which
are twice the size of the range blocks, then the number of pixels in the domain blocks must
be decreased to one quarter of the original amount. There are two obvious ways of doing so,
the preferred way is to take the average pixel values as the new pixel value, which is known
as sub-sampling, the other is to choose a representative pixel as the new pixel value. It is
also important to note that using the transformations described in Equation 3.2 of Chapter
3, we are multiplying each pixel value by scaling factor |s;]. Thus if |s;] > 1 for the mapping
w;, then it is possible that W = Uw; may not be eventually contractive, and therefore we
are not guaranteed convergence of the decoded image. As such, the values for which |s;| > 1,

must be truncated to some fixed smaz-

.-~ Page34 ---

To decode the image. begin by taking an arbitrary image, divide the image into the final
quadtree partitioning we had so as to determine the position of the range blocks. For each
range block, the domain block that maps to it is spatially reduced by a factor of two using
sub-sampling. Each pixel value is then multiplied by the scaling factor s;, and o; is added to
it before it is placed in its proper place in the range block, which depends of the orientation
of the transformation. The whole image is iterated in this way until the difference between

two subsequent iterations is smaller than a given threshold value.

For a more profound discussion of this method, the reader is suggested to read [4], in

which Fisher discuses, among other things, the effects of varying sm.. and the domain pool.

4.1.2: Rectangular Block Shapes Using HV-Partitioning

Although the quadtree algorithm is much better than the brute force algorithm, it does
not take advantage of natural structures in the image. A better method, which also has
variable sized blocks, is the Horizontal- Vertical partitioning method, or simply the HV partitioning
method. Similarly to the Quadtree algorithm, an image is recursively partitioned, however,
the partitions are not necessarily and usually not square shaped. This increases the power
of the algorithm since the positions of the partitions are not fixed and thus can be exploited
to take advantage of self-similar structures. This method also has the advantage of using
larger range sizes than the Quadtree method, since the Quadtree method always partitions a
range block into four range blocks which are one fourth of its size, where as the HV-method

allows you to partition a range block into two rectangles.

Example 4.1: Consider the image in Figure 4.2a. We can then divide the rectangle R, into
the two rectangles R; and R,, shown in Figure 4.2b, such that R; contains the diamond and
Rs contains the diagonal line. We can then divide R, vertically into two rectangles R3 and
R,. Dividing each of Rs and R, into two rectangles creates the partitioning shown in Figure
4.2c. Therefore, each of the smaller rectangles in R, can be mapped from R, by a simple
transformation.

--- Page 35

Figure 4.2a: The original image.

Figure 4.2b: The first partitioning of the image.

Figure 4.2c: The next two partitions of the image-

Ideally we would like to partition a block along the distinct horizontal and vertical lines
of that block and along distinctive edges, without creating extremely narrow rectangular
range blocks. To do so, imagine an image created of pixel values r;; such that 1 <i< N~
and 1 < j < M. A distinct horizontal edge in the image will correspond to a significant
difference in pixel values from one row to another. We would like to partition the image
along the most significant horizontal or vertical edge present. Therefore, we can begin by
calculating the average difference between rows of pixels. Notice the difference between
rows i and i +1 is (Z §Tid — 2 r,-H,j) /M, repeat that calculation for each pair of subsequent
rows. In order to find the most distinctive horizontal line, it suffices to take the maximum
difference calculated, however, we would like to avoid extremely narrow rectangles. As such
the linear biased function min(i, N —1—1) is introduced by multiplying it with the differences
calculated. Performing similar calculations along the vertical columns of the image yields

(Zj Tig — Zj 7'i+1,j)

; =min{t, N —1—1 t1<i

h; = min{i, N i} Y st1<i<N
2oiTig — 2iTig+l

v,-=min{i,M-—1—i}< e — i) st1<i<M

Page 36

Without loss of generality, assume |h;| > |h,| ¥p and that [v| > [v,| Y. We now partition the
image horizontally along row [if || > [vk|, otherwise partition the image vertically along

column k.

Given a range block, the domain pool through which we will search for a match will
consist of all rectangles who's sides are larger by a factor of 2 or 3, where each side can
have a different factor. In order to compare the domain and range blocks, the pixels in the
domain blocks are averaged in groups of 2 x 2, despite the ratio of range to domain side.
Similarly to the Quadtree approach, we perform a certain number of partitions before we
begin to search for domain-range block matchings and continuously partition the particular
range block until a predetermined threshold difference value is satisfied or the range block

is smaller than a predetermined size.

Recall that once an image has been encoded, it can be decoded at any size. Y. Fisher
and S. Menlove took advantage of this in a decoding algorithm which they describe in [4].
The algorithm considers an N x M image as an element of #V*¥ . The method of calculating
the fixed point, the final image, is by decoding the image at L™, L**, L and fnally } of
the final image size, in that order. By doing so, you perform much less calculation than you
normally would at the beginning of the decoding process, and once you decode the image

at the final size you only need to perform two iterates before achieving the final image.

It is interesting to note that one could modify the H-V partitioning method so as to
include partitions along lines of 0, 45, 90 and 135 degrees. This would increase the strength
of the method since one would not be confined to strictly vertical or horizontal lines.

4.1.3: Region based Coding with a Heuristic Search

So far we have been confined to square and rectangular shaped range blocks, however
there is another method, called FAC-P, which uses irregular shaped range regions, and was
developed by Laster Thomas and Farzin Deravi [15]. This method begins by dividing an image
into the standard, square, range and domain blocks. An arbitrary range block, called the
seed, is chosen from the range block pool and its corresponding domain block match is
found. This sole range block is now referred to as the range region, and the domain block
as the domain region. The algorithm then recursively tries to extend the range region both

horizontally and vertically by verifying if the extended region has the same parameters as

Page 37 ---

the original seed transformation and that the range block being absorbed into the region
is within a given threshold value of the mean squared error distance. Each time a block is
absorbed into a range region it is deleted from the range pool, the algorithm continues until
the range pool is empty. For a better understanding see Figures 4.3a and 4.3b, such that
Figure 4.3a shows the seed and domain block matching along with a possible extension. and
Figure 4.3b shows a range region and its corresponding domain region.

v

*fmn

H
S

Passihle Extension

Figure 4.3a: The seed (solid line) and a possible extension (dashed line).

; Region Based
Transformation

Figure 4.3b: A range region and its corresponding domain region.

One may notice that the region developed about a given seed, depends a lot upon the
seed chosen. It may be that the domain region cannot be extended in the corresponding
direction because it is at the edge of the image, or the range block being rejected would
be accepted if the domain region was shifted. Thomas and Deravi knew this, and as such
modified there algorithm, calling it FAC-AP. The FAC-AP algorithm is identical to the
FAC-P algorithm with the exception that when a range block is rejected, before considering
another range block, the domain region is shifted horizontally or vertically, by one block,

Page 38 ---

in the opposite direction of the rejected range block. The algorithm then checks the new
transformation for each block already in the range region. in order to ensure that the change
is acceptable for each one as well as the range block being considered as an extension to the

region.

Thomas and Deravi also knew that a block along the edge of region S, may have been
accepted by an adjacent region T if it was still available when T was being created. It may
also have created a better encoding if such a block had belonged to region T. They further
improved the algorithm, to take such cases into consideration, and called the modified
algorithm the FAC-ACP method. It basically allows for competition between adjacent
regions for any range block that can be encoded with a smaller error by one region and that
does not breakup the original region to which it belonged, see Figures 4.4a and 4.4b.

Already encoded

region \

®

The image block -
being competed for 2t

S

Do not overwrite this block

New region being
encoded

Figure 4.4a and 4.4b: Which show two regions competing to include a range block and a block

which should not be considered as a candidate to belong to another range region, respectively.

Compared to the standard brute force algorithm, when using the Lenna image, they
achieved almost the same PSNR, a difference of .3 dB, but attained a compression ratio of

41:1, compared to 19:1 for the brute force image.

Page 39

4.1.4: Other Partitioning Methods

There are many different ways in which one can partition an image into domain and
range blocks. An interesting method not mentioned so far is one which uses triangular
shaped blocks of variable sizes. In triangular partitioning, one divides the original image
diagonally into two triangles. We then recursively subdivide each triangle into four triangles
by connecting the midpoint of the sides of the triangle. This method is potentially stronger
than the previously mentioned methods since the triangles can have any orientation and it
can be adjusted so that triangles have self-similar properties. Figure 4.5 shows a partitioning

of the Lenna image using triangular partitioning.

Figure 4.5: A representation of the Lenna image, partitioned using the triangular partitioning

method.

Despite the shape of the blocks one may use, the main differences between blocks will
be along the edges, since local self-similarity at different scales is unlikely to be perfect.
Fisher proposed that the only method of solving this problem, without postprocessing is to
use an algorithm which is sensitive to the edges. He went on to describe the algorithm as

follows.
1: Vectorize all edges of an image, forming chains of points.

2: Encode the edge chains using a 2-dimensional fractal method, which will map one
arc to another. Create domain and range blocks with the two arcs, respectively.

3: Calculate the optimal grey-level scaling and offset for each block.

Page 40

4: Since all parts of the image containing an edge will be partitioned, those parts of the
image remaining can be partitioned using any of the methods previously discussed.

4.2: Improved Searching Methods

In the previously mentioned methods, except the region based method, the domain pool
consisted of all possible domain blocks of a particular shape. It is the exhaustive search
of all possible domain blocks that takes the largest portion of time to fractally encode an
image. Luckily there are many ways one could speed up this process. for instance, one could
simply look for the first occurrence of a domain block that is within a given threshold error
value, or one could search through the domain pool in an intelligent manner, which is the

topic of the next Subsections.

4.2.1: Lean Domain Pools

In [14] Dietmar Saupe published the results of a quadtree partitioning algorithm which
limited its search of domain blocks only to those with a high variance. By noticing that
most domain blocks used, in the quadtree algorithm described above, were those with a
high level of variance, he proceeded to limit the domain blocks that could be piaced in
the domain pool to those with a high level of variance. As such, only a small portion of
blocks would not have an optimal domain-range matching, but the processing time would
be significantly decreased. Figure 4.6a shows the variance plotted against the number of
domains and Figure 4.6b shows the 8 x 8 domain blocks used, in black, in the Lenna image.

Page 41

500 Y -7
All domams ——
Used comams —
200 .
£
E a0 4
8
k-3
S
‘| 200 B
2
=
160 b
0 D e e S 1
] 20 4C 5] 80 100

Varance

Figure 4.6a: The graph of the number of domain blocks vs variance, for a quadtree partitioning

of Lenna.

Figure 4.6b: The actual domain blocks used (in black) for the encoding of the Lenna image.

Let o denote the portion of domain blocks which are kept in the pool, therefore as
o decreases so will the processing time. This is to be expected since there will be fewer
domain blocks to search through in order to find a domain-range block matching. However,
since we are using a quadtree approach, the fidelity will actually increase, since some of the
large range blocks that could previously be matched must now be subdivided into smaller
sub-squares. By increasing the number of range blocks, one increases the quality of the

--- Paged2 ---

decoded image. but decreases the compression ratio, even though it is only slightly in this

case.

[n order to increase the compression ratio back to that of the brute force approach,
Saupe found a more efficient way of storing the domain indexes. If one considers a 512 x 512
pixel image with domain blocks of size 8 x 8, then there are 4096 = 2!2 domain blocks in
total. Storing the index value of so many blocks requires 12 bits per block. Since only a
fraction of the total number of blocks are used, say 1000, we can use a more efficient index
storing system, namely the white bleck skipping method, wbs. Think of the 1000 domain blocks
as a bitmap, then the wbs method, described in [17], describes a way of encoding a bitmap
as follows: If the whole bitmap is white, mark it as 0 and stop, otherwise, mark it as 1 and
partition it in a quadtree manner. Repeat this for each subblock of the bitmap in a counter
clockwise direction until you have reached a single value which is either encoded as a 0 for

white, or 1 for non-white. For a better understanding see Figure 4.7.

Page 43

PN ﬁﬂomdnm e

oW} SUIPOOUS Ul 9SBOIOUL
Juedyrusls € 10j pastwoidwod 9q ued AJienb swos a1oym SuO)Rn)IS Ul [NJasn AJSTIIIXS

SI pue SWTILIOSTe UOISSoIdwod 19YJ0 YIm JIom 03 pajsnfpe aq UBD PoyjowW ' [Yomng

"Spuodas g Jo sy} uolssaidmod pajiodal oy 2A0QE PIQLIDSIP POI[IaW Y3 10]
a[IyMm ‘spuooas g-cl Jo sewmry uolssaidwod pajrodsi adneg yoeoidde 9010] 99Mi1q 93 10] ‘SWTy
Surpoous a3 03 SpIeSal Yjmm ST POYIOT ST} 0F d8ejueApe [Ba1 9y, "gP ¢'0 £q 193799 ST Yorym
YNSd © pue ‘yoeoidde ao10] 2301q 9Yy3 03 S[qyedwod st YPIym ‘gg 1 Jo orjel uossaidwod
2ASMYOE oM (g0 = © JO anJeA B YIIA 20 > © JO S9nfea 10j I19339q SI JNq ‘Spoyjlsw pIepue)s
93 Uey) 9SI10m ST SUTPOJUS 9A0QE 93} ‘1> © > L0 I0] 18] 1S953NS $I[NS3] [RJUSWIIDAXT]

-9po2 SqA 977 JO UOITEAIISP Tenjoe ayj jo ajdwexe uy :4°F 2ansSig

([{1101110{0110}1{000T }1]1)
@X[{o101)10{0011 3111 2(0X(1) (ro1 1] ot101]10X(1)

AHVADVAﬂun@vﬁﬁv ¢9)

4.2.2: Points in an Abstract Space with the FFIC Algorithm

Let us consider a block of pixels as a point which can be mapped to an abstract space,
such that any two points which are close in the space are perceptually similiar to the human
observer. In doing so, one could find the optimal domain-range block matching very quickly,
simply by considering those domain blocks which are close to the range block in the space.

John Kominek [10], developed an algorithm he called the FFIC aigorithm, which uses this
idea. The FFIC algorithm begins by partitioning an image in the same way as the brute
force approach, ie: non-overlapping range blocks whose union covers the entire image, and
overlapping domain blocks twice the size of the range blocks, such that their union covers
the entire image. In order to map the blocks into the same space, the domain blocks must
be subsampled to the size of the range blocks. We can now consider each n x n block as an

n? dimensional vector.

Since we compare each possible affine transformation of a domain block for each range
block, we must take this into account when converting our blocks to points. This can be

done by normalizing each block so that its pixels have a fixed mean and variance.
l n
— ’ ’ — 2
T=— T, =0 var:EX;(:t:i—:z:) =co
1=

Where z, are the normalized pixel values. Thus, when all of the blocks are mapped to the
space, any two blocks which are close together will be perceptually similar to the human

observer, through some affine transformation.

The FFIC algorithm uses r-trees to map the blocks to the space and limit the domain
blocks to be compared, for any particular range block. An r-tree is a data-structure capable
of efficiently indexing a multi-dimensional space, for a better understanding see [7]. For the
FFIC algorithm, the r-tree basically groups the domain blocks into nested sets of rectangles.
Then, for any given range block, the algorithm finds the rectangle in which it belongs and
compares the range block to those domain blocks which are in the same rectangle. See the
example in Figure 4.8 for a better understanding.

The distance metric used to compare domain and range blocks is a question of choice,
but the absolute error and the root mean square metrics are satisfactory.

.-+ Page 45

Rl

. R4

Figure 4.8: An example of an r-tree grouping of domain blocks.

Komenik tested his algorithm on a 486DX2-66 with 16MB RAM and concluded, among
other things, that a branching factor of 16 is satisfactory. So as to have a fair evaluation of
his method, he compared the compression speed, fidelity and compression ratios achievable
to that of the leading fractal image compression program at the time, 1995. As Figure 4.9a
shows, for the bird image (Figure 4.9b), the FFIC algorithm encodes much more quickly,
about 30 times faster, than the /IC3! program. Figure 4.10 is a graph of the rms error vs
the compression ratio of the same bird image for the FFIC, IIC3 and LBF? algorithms.
Although the fidelity of the FFIC algorithm is not always better than the IIC3, it does
perform well and is faster than the LBF algorithm.

L JIC3 is the acronym for Iterated Systems Incorporated Images Incorporated III program,

which was run on the setting "best”.
2 LBF stands for #ght brute force, which is the same as the brute force algorithm,

except that the domain blocks do not overlap.

Page 46

Fractal Compression of Bird

i ”r"_""’——i-“\'_\‘ Legend
SR oot | ® 3
Elﬁ"‘"-l—'--[——o-f—-—--ol—-.l_.,A
] I | | |
. | [| .
wG i0 20 30 40 50 50

Compression Rafio -

Figures 4.9a and 4.9b: Time needed to encode the bird image using the FFIC and IIC3

methods, and the original bird image.

Fractal Compresston of Bird

RMS Riror
-

o
i
a8
|
&
s
a

Figure 4.10: The graph of the RMS error vs Compression ratio for the LBF, FFIC and IIC3
algorithms.

Figure 4.11 gives a visual comparison between the FFIC, IIC3 and LBF algorithms.
Although the FFIC algorithm has a small rms error, it tends to blur contours and becomes

blocky at a compression ratio of 30:1.

Page 47

Figure 4.11: Visual comparison of the FFIC, IIC3 and LBF algorithms.
Top Left: LBF 20:1, rms 4.06
Top Centre: IIC3 20:1, rms 6.21
Top Right: FFIC 20:1, rms 4.63
Bottom Left: LBF 30:1, rms 5.40
Bottom Centre: IIC3 30:1, rms 7.05
Bottom Right: FFIC 30:1, rms 6.12

4.3: Conclusion

In this Chapter we introduced various methods of improving the compression ratio,
image fidelity and encoding time, compared to the brute force method. We discussed the
different effects obtained by varying the block shapes and have presented some non-trivial
methods of efficiently searching for a satisfiable domain-range block pairing.

CHAPTER 5

Fractal Compression of Video Sequences

As most people know, video sequences give the appearance of continuous smooth motion
by displaying a sequence of still images, known as frames, at a certain rate. With this in
mind, there are a few obvious ways in which fractal image compression can be extended to
fractal video compression. For instance, one could encode each frame individually, or one
could encode a subset of the total frames together by considering three dimensional domain
and range blocks, such that time is the third dimension. Each has its potential advantages
and each is applied very differently than the other, and as with fractal still image encoding
methods, each can be done differently. In this Chapter we will discuss different methods that
have been developed using three dimensional blocks and encoding each frame independently:

5.1: Inter/Intraframe Fractal Video Encoding

There are methods which fractally encode the first frame, then will approximate the
subsequent frames using domain regions from the current frame, intraframe, and/or previous
frames, interframe. By doing so, they can improve the image quality and/or compression
ratio. The following subsections describe methods which use these techniques.

5.1.1: Simple Motion Compensation

A very simple motion compensation fractal video algorithm would be to partition each
frame in the same way, regardless of the image. Fractally encode the first frame using
any method which does not change the domain or range block shapes. This can be the
brute force algorithm, or a simple improvement to it using an improved searching method.
Compare frames z; and z;_; and let T denote the set of range blocks which are significantly

Page 49

different, ie: greater than a given error threshold. Such a comparison can be very quick, for
instance one may simply find the difference in grey-scale value for each pixel. The range
blocks who’s difference in pixel values is greater than the threshold can then be placed in 7.
In order to encode frame z;, we do not have to encode all of it, but rather only those range
blocks which belong to 7. Doing so will greatly increase the compression ratio while effecting
the quality of the decoded image very little. Notice that we can still control the decoded
images quality by adjusting the error threshold for the difference in grey-scale values of

consecutive frames.

There are a few options with regards to the domain pool to be considered for the
encoding process. We could include those domain blocks of the current frame and/or those
of the previous frame or frames. Obviously, a larger domain pool will result in better quality
decodings, but will also slow down the encoding time.

Since the partitioning is independent of the image and the domain and range blocks are
of a fixed size, this method is not practical. It is however, the basic idea of much better
algorithms which improve its compression ratio, encoding time and resulting image quality

and, as such, allow for practical approaches to fractal video compression.

5.1.2: Low Rate Video Coding

Bernd Hiirtgen and Peter Biittgen[8| developed a practical fractal video compression algo-
rithm which is based on the method described in Section 5.1.1. In their research, they
concentrated on low-rate video coding with applications in mobile video telephony, telecon-
ferencing and narrow band ISDN distributed audio-visual services from 4.8 to 64 Kb/s.

Their method uses the difference in grey-scale values d, between the current frame z,, and
the previously decoded frame z,_,, in order to determine which regions must be considered
in the next encoding. Since the value of d, = z,—z,_, shows those areas which have changed
in grey-level value, we can divide the frame into two regions. The first region is referred
to as the background and consists of the union of regions for which the decoded image
(which they refer to as the prediction) is satisfactory. The other is called the foreground
and consists of those areas where the prediction is unsatisfactory. We can then concentrate

solely on encoding and transmition of the foreground image.

Page 50

The domain pool which Hirtgen and Buttgen use consists only of those blocks in the
current frame, both background and foreground. [t is important not to use only those
domain blocks from the foreground since the foreground may be very small at times, thus
resulting in a poorer quality decoding. Using blocks from both the foreground and back-
ground also increases the flexibility of the encoding scheme regardless of the size of the

foreground.

The partitioning method they employ is different from those that have been discussed
in this dissertation, but is based on the simple quadtree approach with variable block sizes
of 4 x 4, 8 x 8 and 16 x 16. The partitioning is performed prior to and independently of the
encoding of the image. Doing so increases the processing speed since only those blocks chosen
by the segmentation must be considered, and forces one to incorporate a priori knowledge
into the segmentation algorithm. The way in which they incorporate this knowledge is
by employing a gain/cost criterion, which is basically the trade off between the cost of
encoding a certain block and the gain in the reduced visual error of doing so. The aim
of the segmentation is to find the foreground image which maximizes the total gain/cost
relation. It is important to notice that the cost of encoding a block is the same for all

blocks, therefore, the only criterion that must be considered is the gain.

Prior knowledge is incorporated in the method by estimating the reconstruction error,
or decoding error, for each block. Hurtgen and Biittgen showed that this reconstruction
error is highly correlated with the block size, and thus estimate it by only considering the
block size. They go on to suggest that considering the grey-level distribution as well as the

block size would yield improvements.

For a better understanding of the segmentation procedure, let us denote an N, by ¥,
pixel image by an N-dimensional point z = (z1,z2,...zx)T = (z:)T e R such that I<i< N =
Ny -N, and z; represents the grey-levels of the image.

Let U (z) = (z;.)7, st zj, € ® and ji € RY), be the j** block within image z, where
RO denotes the set of all indices of elements belonging to the j** block and 1 <k < M =
My, - My, < N = N - Ny is the number of elements within the block.

Let P(z) denote the power (level of error) of an image, and let P(6U)(z)) denote the power

Page 51

of the j** block within the image x. Therefore using the euclidean norm we can write

N
P(z) =Y |zl = ||z|? PO (@) = Y |zul? =19 @)
=1

JeEnW)

Recall that we only want to encode those blocks that belong to T ie: those which are in
the foreground. Notice that the total number of blocks ~g which can be encoded is limited

by the maximum data rate and the segmentation overhead.

Begin by calculating the power P,;(bU(d,)) for each block 9)(d,) which is in the fore-

ground. Then calculate the reconstruction error P.(6%(z,)), using the following Equation.
P.(Y)(z,)) = p1 - M*?

where M is the block size and p, and p; are determined so as to maximize the reconstruction
quality. Through experimental results Hiirtgen and Biittgen found that p; and p. only
needed to be adjusted once.

The coding improvement is now calculated for each block by using the Equation
APY = P(69)(z0)) — Pa(6Y (dn))

If P.(3Y)(z,)) > Ps(b9)(d,)), ie: the error introduced by encoding a block is greater than the
prediction error, then the block is not taken into consideration for encoding. If P.(60)(z,)) <
Ps(b9)(d,)), then encoding the block will yield an improvement and is therefore a valid
candidate for encoding. However, since we are limited in the number of blocks we can
encode, we must then sort the blocks in descending order of improvement APY, and only
encode the first Ng blocks. This process is then repeated iteratively.

Note: Since we are using a quadtree structure of block partitioning, we are limited in the
choice of blocks we can take. Figure 5.1a shows the quadtree segmentation while Figure

5.1b shows the corresponding fractal encoded foreground regions.

Page 52

Figure 5.1a: The quadtree segmentation of the foreground region.

| A

Figure 5.1b: The fractal encoded foreground region.

Hiirtgen and Biittgen claim that with a 64 Kb/s ISDN B-channel, a frame rate of 25 Hz
and only encoding every third frame (the skipped frames are interpolated at the receiver)
we only have 7680 bits of data for each frame. Using the quadtree segmentation requires
approximately 1000 bits of overhead, thus leaving approximately 6700 bits of data with
which we can encode the foreground image. They tested their method on the Miss America
test sequence and obtained a quality of 34-35 dB, showing that their method can encode
typical videophone sequences, with reasonable quality, at the practical data rate of 64 Kb/s.

--- Page 53

5.2: Three Dimensional Iterated Function Systems

Perhaps the most obvious extension of fractal image compression to fractal video com-
pression. is to add an extra dimension representing time. We can then encode the video
sequence as a 3D object which is bounded in two dimensions (spacial dimensions z and y)
and unbounded, practically, in the third temporal dimension z. Notice that we can take z to
be any finite positive number, if z =1 then it is considered to be a still image, otherwise it
can be considered a video sequence. The mathematical analysis showing why such methods
work is extremely similar to the analysis shown in Chapter 2 and as such, is not discussed

any further.

5.2.1: 3D Fractal Block Coding of Video Sequences

M.S. Lazar and L.T. Bruton[ll] have developed an algorithm which will use 3D pifs to
encode video sequences. They consider ten frame sequences at a time and encode them
using three dimensional range and domain blocks. The range blocks are of size B x B x T,
where B represents the spacial length of the frame and T the temporal length of the sequence.
The domain blocks are taken to be of size M; - B x Ms - B x M3 - T, where M; is a scaler for
i1=1,2,3.

Each range and domain block is chosen from an R-Frame and D-Frame respectively,
which consist of consecutive non-overlapping groups of input frames. Each R-Frame is
associated to a D-Frame such that the R-Frame is physically inside the D-Frame, but both
end at the same temporal location. Notice that a D-Frame can start prior to its associated
R-Frame and is limited in spacial size by the size of the frames and limited in temporal size
by the number of frames from the first frame to the current. The temporal limitation on
the D-Frames may be too large and as such we must limit it in temporal length by j- A5 -T
frames such that j € ®\{0}.

The indexing of the frames within the R-Frames and D-Frames begins at the most
recent frame and increases as we move backwards. We also denote the R-Frame and D-
Frame beginning at time t by R-Frame(t) and D-Frame(t) respectively. See Figure 5.2 for a

better understanding.

Page 54

---------- Domain
Block
Range
Block
Domain Domain
_______ Block Block
Domain
Block

“€— R-Frame — ™€ R.Frame —™

< D-Frame —

Figure 5.2: An example of an R-Frame, D-Frame, range block and domain block.

Since the motion on most video signals changes smoothly, which is especially true for
teleconferencing, each frame will be similar to the last. Thus, we do not have to consider all
of the possible pixel shuffiing operations, of which there are obviously many more than in 2D
fractal encodings. Lazar and Bruton limited the number of isometries by only considering
transformations which were the result of first performing intra-frame transformations, then
inter-frame transformations. Doing so greatly reduces the number of possible isometries
and brings them into the practical realm. We can now describe all possible isometries by
S(I) = Sinter(I) + Sinera(I). The intra-frame isometries are the same as in the 2D case but the
inter-frame isometries are limited to two kinds, the frames which remain unaltered and the

frames who’s order is reversed.

Page 55

Since the search for a reasonable domain-range block matching is what basically deter-
mines the speed of the encoding, of which there are too many possible combinations in our
case, Lazar and Bruton employ an efficient searching method. They restricted their search
to those domain blocks which are physically near the given range block and denote the
matching function by N(I). Therefore if the address of the range block is (N1, N3, N3), then
only those domain blocks whose addresses are given by (N +k; - Ly, No+ka- Lo, N3 +k3- L3) are
considered, such that Where —K; < k; < K;, i =1,2,3, (K., Ko, K3) are fixed for all R-Frames
and (L,, Ls, L3) are the search step sizes. Notice that in order to address a domain block we

need only give (k, ko, k3).

In order to improve the decoded image quality of the frames, they use a three dimen-
sional equivalent to the quadtree splitting method as well as a temporal splitting method.
Range blocks can either be split spatially by four or temporally by two depending on the
distribution of errors in the original range block and the overall encoding error. When the
encoding error for a given block is greater than a fixed threshold, the block is split in one
of the two ways. If the errors are distributed evenly throughout the frames of the range
block, then the block is split spatially into four equally sized blocks who’s depth remains
unchange. If the errors are not evenly distributed throughout the frames, then the block is
split temporally in half, where the spacial size remains the same but the temporal size is
half of the original block. For a better understanding see Figure 5.3.

The method in which the frame encoding errors are determined is by computing the
distance between each frame from the encoded block r, and the original frames from the
block ;. If the normalized difference between the maximum and minimum of these distances
d(r;, ;) is greater than a given threshold, then the error distribution is said to be uneven,

otherwise it is said to be evenly distributed.

Once the encoding is done, we can decode each R-Frame in a similar iterative manner as
that used for 2D encodings. Notice however that we need all of the frames corresponding to
the appropriate D-Frame so as to decode a given R-Frame. If there is data outside of the R-
Frame which is contained in the D-Frame, then such data will also be required for decoding
the respective R-Frame, but it will not be iterated. The range blocks who’s corresponding
domain block is completely contained in such an area, outside of the R-Block, can be decode

in a single iteration.

Page 56

Range Block r;

Yes
Do Not Split

max percentage

diff. in fframe Yes
erros within Split Block
lock = T, Temporally

Split Block Spatially

Figure 5.3: Flowchart of the algorithm used to determine how to split a given range block.

Since adjacent frames of a video sequence are usually similar, it is better to begin with
the previous frame as an initial frame for the current frame and then iterate, ie: The final
iteration for R-Frame(t — k- T) is the same as the first for R-Frame(z).

Page 57 ---

Using experimental results on the standard salesman and Miss America video sequences,
Lazar and Bruton show that their method results in a compression ratio of 40:1 to 77:1, with
an acceptable image quality for teleconferancing. They admit however, that the decoded
video sequence has a jerkiness effect on those areas of rapid movement. Because of the high
computational costs and approximately fixed cost of decoding, their algorithm would be
better applied to those applications which need only be encoded once, but decoded many

time. An example of this is multi-media.

5.2.2: Improved Searching and Classification Methods for Fractal Volume
Compression

Cochran, Hart and Flynn [3] have also researched fractal image compression of video
sequences using 3D blocks, and have developed a better method than the one discussed
in the previous Section. Their method uses a combination of classification by principal

component analysis, a down-sampled nearest neighbour search and macro blocks.

Ao — A <€ A3—A <€ Ay— M\ <€ class
true true true midrange
true true false mixed edge
true false false double edge
false true false single edge
false false false mixed edge

Table 5.1: The five block categories.

They use the principal component analysis of volumetric blocks to classify the blocks
into one of five classes, shade, midrange, mixed edge, double edge and simple edge. Doing
so greatly reduces the searching time for an adequate domain-range block pairing. This
method begins by calculating the value v(z) of a scalar volumetric dataset of the point
z € R3, ie: a 3D domain or range block. The total mass M of the block is then defined as
Y zenv(z) and the centroid ceR as &3 s z-v(z). The matrix S=3 o v(z)(x~c}(z~-)T is
then found, along with its associated eigenvalues \; < Ay < A3 and eigenvectors 9,,3. and 9.
[t is important to notice that S is a symmetric 3 x 3 positive semidefinite matrix, as such,
its eigenvalues \;, i =1,2,3 will be non-negative real numbers. We then go on to normalize
the eigenvalues as A\, = Ai/A3, Ay = A2/A3 and A; = 1 and find a threshold value e < 1. Doing

SO

Page 58

will allow us to place each block into one of the five categories according to their normalized

eigenvalues using Table 5.1.

Classifying the blocks in such a way obviously decreases the total number of compar-
isons performed and consequently reduces the search time considerably. Although when
considering mixed edge blocks one must consider all 48 possible isometries. Cochran et/al
developed a method of reducing the number of isometries considered for single edge and
double edge range blocks by considering vectors associated with them. For simple edge
blocks, the vector w#, is found such that it is normal to the plane that fits the most dense
region of the block, where as for double edge blocks, the vector @, is taken as being parallel
to each significant edge in the block. Thus, when we are considering an isometry I;, we can
find the eigenvector affected by this isometry and denote it as :(9p), such that,

. w1 if R is a stmple edge range block i
we tf R is a double edge range block

_Jw if Disa simple edge range block
D=V w2 if D is a double edge range block

We only continue to consider an isometry if I(@p) and 4p are approximately parallel, or
perpendicular, ie: |og - L;(dp)] ~ 1.

In their test results the authors showed that using this classification scheme only re-
duces the image quality by a few tenths of a decibel, while decreasing the encoding time
significantly.

To further decrease the encoding time, Cochran et/al also apply a nearest neighbour
searching method. Doing so increases the search space and thus increases the fidelity of
the decoded image, however, since we are dealing with 3D blocks, the dimensionality of
the search space increases drastically. In order to keep things at a manageable size, the
authors suggest down sampling the blocks first, which will reduce the dimension of the
kd-tree used. Although doing so does decrease the dimension to a manageable size, we are
no longer guaranteed an optimal match but only an adequate match. We then need only
search through the n nearest neighbours of a range block to find the optimal match from
those, or we can take the first acceptable match.

Using such a nearest neighbour search is essential to reducing the encoding time from
hours to minutes. The authors did not test the effects of such a search on image fidelity

Page 59

(because of the huge computational cost), but they claim it to be negligible. The algorithm

can be further enhanced with the use of macroblocks or localized searching.

Using localized searching, one can search only a small number of spatially close blocks.
Using the identity transformation and a brute force approach. we can divide the blocks into
two groups. The first and second groups consist of those blocks for which the comparison
was acceptable, and those that were not, respectively. We can then perform a second search
through the second group, considering all possible transformations. For this search to be

manageable, we can employ one of the improved searching methods previously discussed.

To use macroblocks, one must divide the whole volumetric data into large blocks and
work with the blocks individually. Finding the kd-tree for each block increases the com-
pression time, but also increases the compression ratio. Experimental results conducted by
the authors show that the loss in image fidelity, because of the limited domain pool, is only
a few tenths of a decibel. Figure 5.4 shows the fidelity, for different compression ratios, of
the above algorithm.

5.3: Conclusion

In this Chapter we have shown how easily fractal image compression can be extended
to fractal video compression. Both motion compensation and three dimensional iterated
function systems have advantages over the other and over other encoding techniques, but
both remain to be fully developed. Because of the short decoding times but lengthy encoding
times, fractal video compression techniques, like fractal still image techniques, are better
suited for multi-media applications. Even though fractal video compression is only in its
early stage of development, it surpasses Vector Quantization methods and is within one
decibel PSNR of the Domain Cosine Transform techniques.

Page 60

1 (upper

20

One frame of a video sequence of an MRI. Original (upper left),

Figure 5.4

1 (lower right).

729

1 (lower center),

43

1 (lower left),

30

ht),

1g

1 (upper r

center), 25

References

[1] ML.F. Barnsley; “Fractals Everywhere,” Academic Press, San Diego, 1988.

[2] M.F. Barnsley, L.P. Hurd; “Fractal Image Compression,” AK Peters, Wellesley MA,
1993.

[3] Wayne Cochran, John Hart, Partick Flynn; “Fractal Volume Compression,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 2, no. 4, pp. 313-322, December
1996.

[4] Yuval Fisher; “Fractal Image Compression. Theory and Applications,” Springer Verlag,
New York, 1994.

(5] Yuval Fisher; “Fractal Image Compression,” SIGGRAPH 92 Course Notes, 1992.
(6] Denny Gulick; “Encounter with Chaos,” McGraw-Hill, 1992.

[7] A. Guttman; “R-trees: A Dynamic Index Structure for Spatial Searching,” Proceedings
of ACM SIGMOD Conference on Management of Data, pp. 47-57, 1984.

[8] Bernd Hiirtgen, Peter Biittgen; “Fractal Approach to Low Rate Video Coding,” Pro-
ceedings from SPIE Visual Communications and Image Processing, vol. 2094, pp. 120-131,
1993.

[9] B. Hrtgen, P. Mols, S. F. Simon; “Fractal Transform Coding of Color Images,” Pro-
ceedings of the International Conference on Visual Communications and Image Processing,
SPIE 94, vol. 2308, pp. 1683-1691, Chicago, Illinois, USA, 1994.

[10] John Kominek; “Algorithm for Fast Fractal Image Compression,” Proceedings of SPIE,
Volume 2419,1995.

[11} ML.S. Lazar, L.T. Bruton; “Fractal Block Coding of Digital Video Coding,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 4, no. 3, pp. 297-308, 1994.

Page 62

{12] H.L. Royden; “Real Analysis,” Macmillan, New York, 1988.
[L3] W. Ruden; “Real and Complex Analysis,” McGraw-Hill, New York. 1972.

[14] Dietmar Saupe; “Lean Domain Pools for Fractal Image Compression,” Proceedings of
SPIE Electronic [maging 96, Science and Technology Still Image Compression [I, vol 2669,
1996.

[15] Lester Thomas, Farzin Deravi; “Region-Based Fractal Image Compression Using Heuris-
tic Search,” IEEE Transactions on Image Processing, vol. 4, no. 6, June 1995, pp. 832-838.

(16] Cristopher J. Wein, [an F. Blake; “On the Performance of Fractal Compression with
Clustering” IEEE Transactions on Image Processing, vol. 3, no. 3, March 1996, pp. 522-
526.

[17] R.E. Woods, R.C. Gonzales; “Digital Image Processing,” Addison-Wesley, Reading,
1992.

Page 63

IMAGE EVALUATION
TEST TARGET (QA-3)

09 USA
00

t

SO0

25

I
Il 8 =g

KL EEEEE

|

2.2

20

It}
L6

ll
|

o
I

28

1653 East Main Stree
Rochester, NY 14
Phone: 716/482-0:
Fax: 716/288-598!

32
=
IMAGE . Inc

L4

=

e
—

y

aao——

I

150mm
6

3
g4
—
m——

O

125

I

APPLIED

© 1993, Applied Image. Inc., All Rights Reserved

