
FRACTAL IMAGE

COMPRESSION

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial m r n e n t of

the requirernents for the degree of

Master of Science

Information and S ystems Science

Department of Mathematics and S tatistics

Carleton University

Ottawa, Ontario

April, 1998

National Library I * B of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Weltington
Ottawa ON KI A ON4 Ottawa ON KI A ON4
Canada Canada

Yow fik Votre referenco

Our Ne Notre rëftirence

The author has granted a non- L'auteur a accorde une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distriiute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fome de microfiche/nlm, de

reproduction sur papier ou sur fomat
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

ACKNOWLEDGEMENTS

I would iike to express my sincere t hanks to my s u p e ~ s o ~ ~ Professor Bnan h[ortimrr, for

providing me with the rïght balance of freedom and ,guidance throughout this research. My
thanks are extended to the Department of Mat hematics and Statistics at Carleton University

for providing a constructive environment for graduate work, and hancial assistance.

1 nish to express my gratitude to mu wife; Martine, for her constant encouragement,

patience and support during the course of my graduate stu&es.

ABSTRACT

This thesis examines the theory of kactal image compression and gives a survey of

such techniques for stitl images and vide0 sequences. Particular attention is given to

partition iterated function systerns (pif), but recurrent iterated function s y s t e m (ri/) are also dis-

cussed. We begïn Wth a discussion of iterated h c t i o n systems and there applications

in image compression and then go on to provide the theoretical basis for such systems.

as well as for pif and rif- In Chapter 3 we discuss different image models as well as the

encoding of images using pi/ and rif- Ditferent m o ~ c a t i o n s to the brute force pif are

then discussed in Chapter 4, and we conclude the thesis by presenting four methods

which extend the theory of pif to video sequences.

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION ... 1
1.1 Why Image Compression .. 1

1.2 The Brute Force Fractal Image Compression Technique - 4

1.3 The Ongins of Fractal Image Compression .. 7
1.4 W'hat we d l cover in this Dissertation .. 8

1.5 Conclusion ... 8

2 PTERATED FUNCTION SYSTEMS AND THE CONTRACTNE
MAPPING FIXED POINT THEOREM .. 9
2.1 Iterated Function Systems .. - 9

2.2 Analysis of ifs and the Generalized Collage Theorem for Zs -13

2.3 Recurrent Iterated Function Systems, rifs ... -18
2.4 Partitioned Iterated Function Systems, pifs ... -20
2.5 Conclusion ... 20

IMAGE ENCODING USING IFS. RIFS AND PIFS -21
3 -1 Image Models .. 21

3.1.1 Pixelized Data .. -21
3.1.2 Functions on 8" .. 22

3.2 Colour Images ... 23

3.3 IFS Representation of Images ... -26
3.4 Image Encoding mith rifs and pifs .. -26

................ 3.4.1 Encoding Images with Recurrent Iterated Function Systems 28
.............. 3.4.2 Encoding Images nrith Partitioned Iterated Function Systems -28

3.5 Conclusion ... 29

.... 4 IMFROVED PARTITIOhmG AND SEARCHING METHODS 31
4.1 Block Shapes -31

............................... 4.1.1 Variable Sized Square Blocks using Quadtrees -32
............................ 4.1 -2 Rectangular Block Shapes using HV-Partitioning -35

................................. 4.1 -3 Region Based Coding wit h a Heuris tic Search 37

4.1.4 Other Partitioning Methods ... 40

4.2 Improved Searching Methods ... -41
4.2.1 Lean Domain Pools ... 41

...................... 4.2.2 Points in an Abstract Space with the FFIC Algorithm -45
4.3 Conclusion ... 48

................ 5 FRACTAL COMPRESSION OF VIDE0 SEQUENCES -49
... 5.1 Inter/lntraham Fractal Video Encoding -49

. ... 5.1.1 Simple Motion Compensation .. -49

5-12 Low Rate Video Coding .. 50

....................................... 5 -2 Shree Dimensional Iterated Function Systems 84

.................................. 5.2.1 3D Fractal Block Coding of Video Sequences 54

5.2 -2 Improved Searching and Classification Methods for Fractal Volume
Compression ... 58

5.3 Conclusion .. -60

LIST OF FIGURES

CHAPTER PAGE

... 1.1 The orio$nal image of Lena 2
............................ 1.2 The different steps in the construction of the Koche cuve - 3

.. 1 -3 The Koche sno&ake 3
... 1.4 The self-similar parts of Lena - 4

1.5 The initial image (top left) , the &st iterate (top right), the second iterate
...................................... (bottom leR) and the tenth iterate (bottom right) 6

2.1 The h s t thtee iterates of the system in example 2.1, for three different initial
... images 10

... 2.2 The original image x, and its iterate F(x) 11
.. 2.3 Barnsley's fern 12

.................. 2 -4 Two different examples of how to calculate the hausdorff distance -15
.. 2.5 Barnsley's fern with Sierpinski triangle leaves 19

3.1 The three dimensional graph of Lema and the original Lerma image -22
........................ 3.2 The flow chart of the brute Force approach for colour images -25

... 3.3 The range blocks of an arbitrary image 27
................... 3.4 A few of the possible domain blocks of the same arbituary image -27

............................ 4.1 (a) An example of the quadtree partitioning of an image -33
................... 4.1 (b) The quadtree coresponding to the partitioning in Figure 4.la -33

4.1 (c) A representation of the Lenna image. partitioned using the quatree
.. algori t hm 34

4.1 (d) The decoded image of a d o ~ , which was encoded with the quadtree
partitioning algorithm .. -34

4.2 (a) The original image ... 36
.. 4.2 (b) The f is t partitioning of the image -36

4.2 (c) The next two partitions of the image ... -36
..................... 4.3 (a) The seed (solid Line) and a possible extension (dashed line) -38

4.3 (b) A range region and its coresponding domûin region -. -.. 38
4.4 Which show hro regions competing to include a range block and two blocks

which should not be considered as candidates to belong to another range

region: respectively - - - . - . . . - - - - - . - - . . . - . - - - . - - - -39
4.3 A representation of the Lenna image, partitioned using the tnangular

partitioning method ..-. -. . . - - - -. . _. , . . . -. _, - - -. -. . . .- ,- -. . .- - - .. - - -. - -. - - - - 40

4.6 (a) The graph of the number of domain blocks vs variance: For a quadtree

partitioning of Lenna -. - - - . .. - - - -. - - 42
4.6 (b) The actual domain blocks used (in black) for the encoding of the Lenna

4.7 h example of the actual derivation of the wbs code- -.-. .. 44

4.8 A n example of an r-tree grouping of domain blocks . -46

4.9 Time needed to encode the bird image using the FFIC and IIC3 methods,

and the original bird image -47

4.10 The graph of the EMS enor vs Compression ratio for the LBF; FFIC and

IIC3 a1g0nth.m~ . . . - --. --. -.- -. ..-a ,, .. _. .--. -. . .- - - . -. - - -. 47

4.11 Visual comparison of the FFIC, IIC3 and LBF algonthms- 48
3.1 (a) The quadtree se,pentation of the foregound region 53
5.1 (b) The hactal encoded foregound region . - . -53 - - 3.2 An example of an R-Frame, D-Frame, range block and domain block aa
5.3 Flowchart of the algorithm used to determine how to split a given range block . . . -57
5.4 One frame of a video sequence of an MRI. O~gina l (upper left), 2 0 3

(upper center), 25:l (upper right), 30: 1 (lower le&), 43:1 (lower center),

729:l (lower right) . -. . - - -. 61

CHAPTER 1

INTRODUCTION

In this Chapter, we will discuss the need for hactal image compression techniques. Wë
wiil also introduce Fractals, the Brute Force fractal image compression method and discuss

some OF its disadvantages. We go on to introduce the history of hactal image compression

research and conclude the Chapter with an insight of the follosving Chapters.

1.1: Why Image Compression

With the Internet growing at an exponential rate, the amount of people transfemng

digital data kom one site to another has increased drarnatically. 'ïhere is now, more than

ewr, a need for quick data transfer methods and more efficient use of memory space. Unfor-

tunately, images are knonm for requiring si,@icantly large amounts of memory and hence

are not transmittable quickly. This is where kactal image compression techniques corne to

the rescue. Such techniques allow one to store an image with much less mernory than it

would normally require, hence allowing it to be transmitted more quickly For instance,

the image in Fibgure 1.1 requires 263 246 bytes of rnemoryl, and would take 9.14 seconds to

transmit at a data rate of 25.8 Kb/s. However, once this image has been fractally encoded

it would require, on average, 189 538 bytes of memory and couid thus be transferred in 6.58
seconds, at the same data rate.

At a resolution of 512 x 512: and a pixel resolution of 256

. -. Page I - - -

Figure 1.1: The original image of Lena.

Although fractal image compression was only discovered ten years aga: rnost fractal

imagexompression techniques manage to compress a natural image at compression rates

between 20:l and 40:l. This is compatible to the leading techniques used today, which have

been around for much longer. Before w e explain honr hactal image compression techniques

work, let us hrst consider fractals.

A hactal is a geometrical object mho's parts are similar to the nrhole and have inûnïte

resolution. In other words, if ive were to e-xpand any part of a hactal, at any ratio, it w o d d

never become blurry and one could always see the same original image in that expanded part.

For instance, let us consider an image created in the follonring way: Begin nrith a straight

line divided into three equal parts: Mth the middle part create an equilateral triangle3,

and then delete its base. Your image should look like the one in Fi,we 1.2b. With each

straight line in the image, repeat the above process ad infinitum. Doing so wiU create the

image in Fiowe I.Se, where Figures 1.2a though l.2d show some of the intermediate steps

in achieving the &al image. This image is known as the K0ch.e Curue. If we had repeated

this process on each part of an equilateral triangle, we would have produced the Koche

snodake sho- in Figure 1.3?

Notice that in the magrLification of any part of the Koche nre can see parts which
are identical to the whole Koche cuve. Also, no matter how much we rnagnify the image,

the edges ni11 never be smooth, ie: The Koche Cuve has idb i te resolution.

An equilateral triangle is a triangle who's sides are all of equal length
The Koche snodake is a rather peculiar object since it can be contained withïn a

circle of radius one, but has an infinite perimeter.

Figures 1.2a,b,c,d and e: The different steps in the construction of the Koche c w e -

Figure 1.3: The Koche snowfiake.

It is important to notice that although Figure 1.2 is quite complex, it can be created

e.utrernely easily. Shus, if one manted to store this image in memory, it would be much more
efficient to store the mechanisrn by which it is created, than it would be to store the image

itself. Storing the construction mechanisrn also allows one to recreate the image at any give
resolution, whereas, the stored image would be of a fked resolution.

. .. Page 3 ...

1.2: The Brute Force Fractal Image Compression Technique

Geometrical objects created like the ones above are c d e d artificid hactals. Although.

naturally occum-ng objects cannot be created with such techniques, there are some which

resemble Eractals. For instance, consider the sea coast of an island with a rocky shore. !je

can magnify the shore a t almos t any scale and still see a rocky shore type structure, that is

until we get to the molecular level of the rocks. Such natural objects are known as natural

fkac t als .

Since the human eye has ditnculty distinguishing between certain natural and artificial

Eractals, we can exploit this for the use of image compression. Fractal image compression

algorithms try to find the reconstruction method of an image which is e-utremely sirnilar to

the original one, so as to more &ciently store it. The difference between the reconstt-ucted

image and the original can be so small that they appear to be identical to the human

observer.

Figure 1.4: The self-simiIar parts of Lena

Unlike the Koche C u v e natural images are not usually self-sirnilar to the whole. Hon

ever, they usually contain different parts mhich are self-similar, an esample of which is shonm

in Figure 1.4. Fractal image compression methods take advantage of these self-similar parts

by considering them to be identical. They then h d a mechanism for reconstructing the

image based on the knowledge of the self-similar parts. For a better understanding of how

this works, consider the following fractal image compression method for a 256 x 256 pixel

image.

1: Assuming the image is gre-scale. we can then a s s i s an integer value in the range
[O; 2551 to each pixel.

2: Divide the image into non-overlapping Range blocks of size 8 x 8 pixels. We therefore

haw 32 x 32 = 1024 range bblcks. Let us denote the collection of dl such range

blocks by R.

3: L%lso divide the image into possibly overlapping Domain blocks of size 16 x 16 piuels.

Mie therefore have 241 x 241 = 58 081 domain blocks.

4: For each range block a, h d the domain block Dj whict, physically, resembles it the
rnost. For a better image quality, you m u t compare each orientation of the block
and its mirror image. Thus performing eight cornparisons for each domain block.

It is important to notice that if each range block Ri is compared to each domain block

Dj, then you *Il perform 8 x 58081 x 1024 = 475 799 552 cornparisons in d l , or 464 6.L8

comparisons for each range block.

Wë now have a mapping of a domain block to a range block for each range block in the

image. Once this is done, we need only store the mappings for each range block in order to

reconstruct the image. Storing such data requires much less information than storing each
pixel value in the image. For example, the 256 x 256 image of Lena requires 65 536 bytes

of data, rvhile the mappings only need 3968 bytes, thus resulting in a compression ratio of
16.5 : 1.

In order to recreate the image, one must choose an arbitrary image to begin Nith (it

rnay simply be a black image), then iterate the image given the mappings stored for each

range block. As Figure 1.4 shows, each iteration will add detail at a b e r and h e r level,

starting at the 8 x 8 level, then 4 x 4,2 x 2, etc Such a system is knonm as a Partitioncd (or

Local) Iterated Fùnction system, and is discussed in detail in the following Chapters.

.-. Page 5 .--

Figure 1.5: The initial image (top Iefi), the fbst iterate (top right), the second iterate (bottom

left) and the tenth iterate (bottom right).

Although the resulting image is of an acceptable quality, given the simplicity of the

algorithm, it requires an enormous amount of time to h d the domain-range block pair. Most

of the work on fractal image compression, has been to decrease the number of comparisons

needed and as such, decrease the time needed to encode the image.

Since such images are created in a h-actal like manner, they have infinite resolution.

However, the resolution created a t higher levels is artificial, Le., one cannot maohfy a part

- - - Page 6 - - -

of the image and see details that were not in the ori,ginal. Where other image ttypes result in

a blockq- effect when the image is magnified. since the value of the pixels is simply e-xtended

to the larger area. Fractal image compression does not. since the mappings go on to create

artificial resolution.

Once we have the reconstruction mechanism for an image, it is extremely easy and quick

to reconstnict it. However, finding the optimal. or suitable, encoding of an image requires a

si,gnïficant amount of time and resources. Therefore, fracta1 image compression techniques

are better suited for applications where the image is encoded once and decoded many times.

An example of such a situation is the 1992 version of the Microsoft Encarta compact disk,

where al1 of the images in it are Eractals. In order to Bt the numerous images on the cd,

Microsoft decided to compress them using fractal image co~pression techniques.

Although most of the resertrch in the past \vas concentrated on still image compression,

video image compression is also becoming elctremely popular. This is mainly due to the

fact that a suitable video image compression technique can have extrernely large economical

benefits. Many companies would rather use video-conferencing ïnstead of tele-conferencing.

However, because video sequences require large amounts of data: they must be compressed

prior to transmitting them. They must also be encoded, transmitted and decoded at such

a rate so that the decoded video sequences are not jumpy and still have a suitable image

quality. This will be the topic discussed in Chapter 5 of this dissertation.

1.3: The Origins of Fractal Image Compression

The person responsible for discovering fractal image compression is Micheal F. Barnsley,

who noticed that e-xtremely complicated, naturally appearïng objects can be created using

transformations nrith very short codes. He went on to name such transformations fterated

Function Systems, (IFS). IFS's can be used to encode images whose parts resemble the whole.

However, as we have mentiooed before, most natural images do not contain this type of

self-similarity, but rather parts of the image resernble other parts. Barnsley knew this, and

in 1988 he generalized the theory of IFS's to Partitioned Itemted Function Sys tems (PIFS). He
used an algorithm similar to the one above to compress an image. However a person had to

interact with the program in order to h d the domain blocks to be matched to a particular

range block. This resulted in high compression ratios, but very poor quality in the decoded

images. Much of Barnsley's work remains secret and copyright since he and Sloan founded

.-- Page 7 - - -

the Company Iterated Systems hc in 1987.

Only in 1990 did any gound breaking work in fractal image compression become public.

This \vas the result of 4rnaud Jacquin's Ph.D thesis which aiitomated the search of the

domain-range pair. Jacquin, who was Barnsley's Ph-D student. achieved this by restricting

the domains and range blocks to a fixed size, and transformations of a particular type,

which is discussed in Chap ter 2. His algorithm is basically the one descnbed in Section 1.1:
nith the added capability of adjusting the grey-value of a pixel by- one and scaling by a

number less than one. He also decreased the number of domain blocks to be searched by

classifying them into one of a few categories. For instance, one category nras those blocks

FVith a distinctive edge.

1.4: What we will cover in this thesis

Since then, many people have revised Jaquin's method in a variety of ways. In this

thesis, we will consider some of the better variations and sugest furttier irnprovements.

Chapter 2 provides the mathematical background and analyçis to understand the reasons

such systems work. Chapter 3 introduces different image models and discusses the repre-

sentation of images using 2fs1s, rifs7s and pifs's. Chapter 4 introduces many different kactal

image compression techniques that are superior to the brute Force approach discussed above.

Chapter 5 concludes the thesis with a discussion of différent techniques used for hactal video

compression.

1.5: Conclusion

In this Chapter, we have shom the reasom such compression techniques are needed

and taken a brief look at how they work. We also discussed the different applications in

which they can be used and have s h o m some of the history of fractal image compression

research. We concluded with a siirnmary of the following Chapters in this thesis.

... Page 8 - - -

CHAPTER 2

Iterated Function Systems and the

Contract ive Mapping Fixed Point Theorem

In this Chapter Ive nrill introduce contractive Iterated Function Systems and show how to ma-
nipulate them so as to create fractuk. Then we d l give a fairly detailed analysis of the

properties of such systems and prove the Genedized Collage Tbeorem. After which, Ive d l

introduce Recurrent Iterated Function Systems and determine the properties of such systems. We
will conclude nit h an introduction of Partitioned Itemted Function Sgstems.

2.1: Iterated Function Systems

An iterated h c t i o n system is a system of fùnctions which are simultaneously being
iterated over a set in %* s t F : IR2 - s2. W3en iterated, if the system approaches a fked

point1, then the graph of the system is called a fractaZ. A fractal, generally speaking, is

a geometrical object which hûs infinite resohtion and self similarity at every scale. For a

more in depth discussion of kactals, the reader is recornmended to read [l].

Example 2.1: Consider the hc t ions defined by

A fixed point is a point which does not change value when iterated over a function,

Le., F (x) = x

--. Page 9 - - -

A n interesting characteristic of this systern. is that no matter what initial image we begin

with, the iterates of the system 1viI.l always converge to the same h a 1 image, Le., the g a p h

of the system will converge to a fked point in L2. The final image (the Lsed point) is called

the uttracter of the sys tem and in this case is known as the Szérpimli.5 gasket. Fibgure 2.1 shows

the iterates, of the system in example 2.1: for different initial images es.

Initial Image First Copy Second Copy Third Copy

Figure 2.1: The Erst three iterates of the system in example 2.1, for three dBerent initial images.

Notice that the functions, f i , F2, F3) in Example 2.1, are contract ioq that is, the distance

between the iterates of two points is smaller than the distance between the two points

themselves. This can formally be written as d (F(x) ,F (y)) < d(x, 3); where d(a, b) represents

the distance between a and b.

In this Chapter, we d l discuss the fact such systems, like the one in Example 2.1:
always converge to the same fmed point for an arbituary initial image. In the folloning

Chapters, nre nrill discuss how such systems create completely naturally appearing images,

to the hurnan observer.

.-- Page 10 - - -

Let us begin by taking a closer look at iterated Function systems. Consider the &ne

function2 F. given as:

Theorem 2.1: Let ,\ and p be eigenvalues of the matr is A = (d) . The a h e h c t i o n F ,

dehed in equation (2.1); is a contraction if ,\ # p st IXI c L and 1p1 < i-

Let us now consider the hnction

Notice that F satisfies Sheorem 2.1, and is therefore a contraction. Nso, P not ody shrinks

(or e.xpands) the image by a factor of Ir!, but also rotates it, counterclockwise, by an angle

OF 8. See Fiame 2.2.

Figure 2.2: The original image x, and its iterate F(x) .

Exampie 2.2: Consider the four functions delined below, where each will be$p by shrinking
the image by a factor of 1/3.

Affine Functions are composites of a linear function, G(x) = AX, and a translation

hinction, H (x) = x + y.
-- . Page II -

Note: Fi will leave the image where it is_ F2 dl rotate it by f and rhift it by (' O 3) ; F3

nill rotate it by and shift it by () und F, w i ~ shift it by ('0")
The graph of the union of these four contraction mappings is Imown as the Koch came and

is shonm in Figure 1.2 on page 3> dong mith the first few iterations.

Figure 2.3: Barnsley's fern.

- -. Page 12 - - -

Example 2.3: Another extremely well knom IFS fractal is Barnsley's Fern. I t can be descrïbed

by the fo1Zowing four hnctions, and is shoxvn in Figure 2.3.

FI (;) = (: P.) (y)
F. (r) = (:: :85) (;) + (3) F~ (1) = (-::6 LE) (;) + (.:)

It is a result of the Contraction Mapping meorem that such systems have the characteristic

of converging to the same final image regardless of the initial image, this theorem d l be

formally stated and proven later in this Chapter. Lnformally the Contmction hfupping Theorem

states that if Fi are contractions on 912, for i = i ,2 ,3 , .,., n, and Fc4)= ~i",, Fi(A), such that

A is a closed and bounded subset of P, then F has a unique fked set, which is a closed

and bounded subset of i.e-, F (A ~) = AF. Since all closed and bounded subsets of are

attracted to the set AF7 it is hem as F's attracter.

Notice, to evaluate AF; one codd evaluate the sequence {~(O")(z)}r==, for a @en z in g2,

which can be extremely time consuming. A faster method of evaluating AF was proposed

by Barnsley [2]. This method uses random numbers in the interval (O, 1) and works for any

f&te system of contractions: 4 suchthut i = 1,2, ..., n. Barnsley's algorithm [6] is:

Step 1: Choose an arbitrary point z in Z2.

Step 2: Generate a random number r E (O, 1). Therefore rn is a random number in (O7 n).

Step 3: if ~t < r n 5 ~s + 1, then plot the point ~ ~ (2) . Othernrise do not.

Step 4: Let z = Fk(z).

Step 5: With the new point z, repeat Steps 2, 3 and 4, then repeat the process as often

as needed in order to generate a reasonable representation of the attracter Ag.

2.2: Analysis of ifs and the Generalized Collage Theorem for ifs

Before we can prove the Contmction Mapping Theorem, we need a few definitions, lemmas and

theorems. Wë will begïn by stating the folloming three lemmas, for a proof of each, see [12].

3 {~(O")(z)}r=, represents the nth iterate of F on z, as n approaches infinity

- -. Page 13 - - -

Lemma 2.1: Let F be a continuous function on P, and let -4 be a closed, bounded subset of

X 2 ; Then F@) is aIso ciosed and bounded.

Lemma 2.2: Let T = Uy==,Ai, st Ai is a closed subset of 3' for i = 1'2,3. n7 then T is closed.

Lemma 2.3: Let T = q= ,A i , s t Ai is a bounded subset of @ f o r i = 1,2'3, ...: n; then T is

bo~mded.

Dehition 2.1: A metric space < X l p > is a nonempty set X of elements (which we call

points) together ~ 5 t h a real-valued h c t i o n p defhed on ~ X X such that QX, y, z E X:

i : p(x,y) L 0 iiï p(x: y) = p(y , z)

ü: p(x,y) = O iff x = y iv : p(x, y) < p (2 , z) + Y)

Note: The function p is cdled a rnetric.

Definition 2.2: A metnc space X is compact, if it is both closed and bounded.

Definition 2.3: A sequence {x,)Z, in a metric space is called a Cauchy Sequence, if @en

E > 0 there is an N such that hl rn > we have p(z,, x,) c t.

Theorem 2.2: Let < X, p > be a metric space, with metric p: then every convergent sequence

in x is a Cauchy sequence.

ProoE See [12]

Definition 2.4: Let < X , p > be a metric space, wïth rnetric p, if every Cauchy sequence in X

is convergent in X, then the space X is said to be a cornpiete metric space.

Definition 2.5: Let A c x2 and bounded, let E > O, then SA,. = {y : 3a E A st p (a . 3) 5 E } is

called the E-neighbmrhood of A.

Theorem 2.3: Let A be a closed and bounded subset of IR'? then SA, is also closed and

bounded.

Proofi See [6]

Definition 2.6: The Hausdorff Space of X is dehed as H (X) = { B c X : B is compact)

..- Page 14 - - -

Definition 2.7: Let .4, B E H (X) then the Hausdorff rnetric is dehed as

For examples of the Hausdorff rnetric; see Fi,we 2.4, where the line is the Hausdorff distance

between the two sets A and B.

Figure 2.4: Two dB'rent examples of how to calculate the Hausdorff distance.

Theorem 2.4: [4]. Let < X,p > be a complete mctric space with metrîc p: then H (X) , with

the Hausdorff metnc h, is a cornplete metrïc space.

Proof: See [II

Deution 2.8: [4]. Let X be a metnc space nith metnc p. A map w : X - X is Lipschik with

Lipschitz factor s if 3s > O, st s E 'R and

Furthermore a mapping is contractive iff s < i.

Note: The rest of the theorems and proofs in this Chapter are taken from 141.

Theorem 2.5: Lf 1 : X - X is Lipschitz, then f is continuous.

Proof: See [4] pg 34

Theorem 2.6: If wi : s2 -t !R2 is contractive, with contractivity factor Si, i = 1,2, ..., n, then

PV = q=lwi : ~ (8 ~) - H (x ~) is contractive, in the Hausdorff metric, with contractivity factor

s = max{si : i = 1,2, ..., R) .

Proof: See [4] pg 34

-.. Page 15 - - -

Note: The notation f (On)(x) represents the nt" interate of I over f .

Theorem 2.7: (The Contractive Mapping Fixed-Point Theorem) Let X be a complete metrk

space and f : x - x be a contractive mapping. Shen there e>cists a unique point xf E X

such that vx E x

Proof: Let x E ,Yy then for n > rn we have

Wow we can use equation 2.2 and the triangle inequalitg repeatedly,

p(z, f(Ok)(x)) .p(x7 f(Ok-qz)) +p(f(0k-1)(x)7f(0k)(x))

< p(z, f (x)) + p(f (4 , f (f (4) + --- + ~(f'~'-~'(x), f'Ok'(x)) -

< (l + s + ... + sk-' + S"~)P(X, f (x)) +

Therefore, we can rewrite equation (2.3) as

Now since s c 1, the left side can be made arbitrarily small for sufkiently large n and

m. Therefore, the sequence {f(On)}?, is a Cauchy sequence. Since x is assumed to be a

complete space, the lirnit point of the sequence = lirn,-, f(On)(z) is in X . By Theorem

2.5, f is continuous, and so f (x,) = f (limn-- f (On)) = ~ i m ~ - ~ ~ f (OnfL)(x) = xf.

To prove the uniqueness of XI, suppose xl + x2, st z l and x2 are both fked points. Shen

p(f(x~), f(z2)) = p(xi.x2), but we have shown that ~ (f (x ~) , f(x2)) < p(z1,x2), therefore we get a
contradiction.

Coroiiary 2.1: (Collage Theorem) With the hpothesis of the Contnzctiue Mapping Füed point

Theurem,

..- Page 16 - - -

Proof: In Equation (2.3) we showed that

Therefore, simply let X- - cm.
Definition 2.9: Lzpschitzfibnction f is called euentualiy contmctiue: if 371 st f(On) is contractive.

n is called the q o n e n t of euentual contractiuity.

Note: Even if 3ztli, i = j? ..+: t s t 1 < j < .-, < 1 5 n are not contractive, I V = q=,wi malr still be

eventualy contractive.

Corollary 2.2: (The Generalized Coilage Theorem) Let f be eventuau- contractive with

exponent n, then 3!xf E X st v x E x

In this case

w-here s is the contractivity of f (O n) and o is the Lipschitz factor of J.

Proof: Let g = f(On). We want to show that f (O k) converges to 2,; that is, f(~~)(x) is arbitrarily

close to x, V k sdc ien t ly large. For any k , we can mite k = qn tr, with 0 5 r < n. Therefore,

Note: g(x) = f(On)(x)

However, both of these terms can be made arbikrarily small for 0 5 r c n and q suEciently

large. The &xed point condition Çollows from the continuity of f , and uniqueness follonrs

from the uniqueness of x,.

For the inequality! we know fÎom Corollary 2.1 that:

and

The result follows horn equations (24) and (2.5).

Note: It is suificient for there to exist an n For which f is contractive, we do not need f to

be contractive for all large n.

2.3: Recurrent Iterated Function Syst ems, rifs

The notion of ifs can be extended to ri fs . Given a fküte collection of ifs, an ri f s is simply

an ifs with the added capability of mapping different i f s into one image.

Example 2.4: Say you wanted to create the Barnsley fern with Sierpinski triangle leaves.

Pie then need two i f s , one would create the Sierpinski triangle, the other would place the

triangles in position of the leaves in the fern and would copy the Sierpinski triangle. The
resulting image is shown in Figure 2.5.

- . . Page 18 --•

Figure 2.5: Barnsley's fern with Sierpinski triangle Ieaves.

One can think of R f's as being the coilection of ,fine mappings wi for i = 1,2, ..., n and a

digraph G such that each node of the digraph represents an a&e mapping, and each edge

(wî' w j) means that the composition wj o wi is allowed.

Note: It is important to notice that all of the relevant properties of ifs theory are camed

over to r i f s theory. We will now go on to define what is meant by a mapping betnreen

sp aces .

Let < h, > be a complete metric space for i = 1: 2' ..., n, and let H = -Hl x H 2 . - - x Hn

s t H, is the set of non-empty compact subsets of &. Therefore we have a typical element

(AI, A?, --., A,) E ï~ st is a non-empty subset of Xi. D e h e the metnc h* as;

h*((All .-.,An), (BI , .--, Bn)) = rnczx{h.&&, Bi) : i = 1,2, - - -n}

Therefore, < H, h' > is a cornplete space.

Let pKj : Hi -i H j where Vcj = ukwqk st wijk is the kth contractive mapping hem Xi to

,Yj -

We can nom tale W : H - II st W(Al, Azl --., A,) = (LJjWlj(Aj). .--, LJjWnj(Aj)). It is important to

notice that there must exist at Ieast one mapping W&- (for each i) with a non-empty image.

Theorem 2.8: For VV defined above !3xr = (Al, A2, ..-,A,) ~t xi = CV(xf).

- - - Page 19 - - -

Proof: This Collows immediately from theorem 2.7.

2.4: Partitioned Iterated Function S ys t ems, pifs

Most of the methods of Çractal image compression techniques descrîbed in this disser-

tation use pifs, whïch are a generalization of ifs Using pifs to encode images simplines the

encoding of images who's parts are not self similar to the whole but rather to other parts

of the same image. Basically, the method works by limiting the domains of the mapping to

parts of the space.

Definition 2.10: fkom [4]. Let X be a complete metric space, and let Di X for i = i ,2 , ..., n.

A partitioned iterated fùnction system is a collection of contractive maps wi : Di - x for

i = 2,2 ,.-., n.

The analysis, for the general form, of piis has not been developed yet. In particular.

for pifs there is no equivalent theorem to the Contractive Mapping Fixed-Point Sheorem

(theorem 2.7). However, pifs are well understood and work very well for the techniques

descnbed in the followîng Chap ters.

2.5: Conclusion

In this Chapter, we have shown how to manipulate Itemted Function System so as to

create Fractals, the different characteris tics such systems have, and the reasons t hey have

them. Because of this work we were able to prove the Genemlùed Collage Theurem, Rrhich

will allow us to compress images using ifs. We went on to describe two stronger kinds of

iterated function systems called recurrent iterated function systems, and partitioned iterated

hmction systems . Recurrent iterated hinction systems allow us to create complicated images

much more easily than using ifs. The analysis of the existence of a unique f?xed point in such

systems was given. Partitioned iterated function systems where introduced and a forma1

definition was given.

- -. Page 20 - - -

CHAPTER 3

Image Encoding using IFS'S, RIFS's and PIFS'S

This Chapter introduces two image models of particular importance to fractal image com-

pression of greyscale and colour images. We then conclude nith a discussion concerning the

representation of images using ifs, rtJs and pifs.

3.1: Image models

To be able to work with and manipulate images, one must decide which of the available

image modeis to use. Since the Computer can ody work with the Pixelked Data mode1 and

our analysis of fracta1 image compression is much easier when working with the Functions in

!R2 model' these are the only two image models we will discuss.

3.1.1: Pixelized Data

Imagine evenly dividing a grey-scale image into small dotso each of nrhich is a shade of

grey We can therefore a s s i s a discrete value to each dot, in the range O to b, corresponding

to its shade of gey. If ive only use one byte of data to represent the grey level value of the

dot (which is tjpical): then it will be in the range of O to 255. By increasing the number of
bytes used to store the grey level value, we increase the grey-scale resolution. Pixels can be

thought of as such dots, such that the number of pixels used in an image corresponds to its

resolution.

We can now think of an image as a vector x = (xl, 1 2 , ..., x,), where q is the total number

of pixels used in the image, and xi is a value in the range O to 255. Therefore, to calculate

the distance betnreen two images x and y_ one would use the Root Mean Square. m: metSc

d e h e d as;

To calculate the difference betnreen two images, one usually uses the Peak %nai-to-noise mtio.

PSArR7 which is measured in decibels d B , and is defined as;

for b defined above. Note that in our example b = 235.

Although the computer can only deal 116th images as sets of pixels, when developing

the analysis of nfs and pi/s it is easier to represent an image as the gaph of a function. Let
/ : P - r represent the grey value of the image, where the unit square P = {(x: y) : 0 5 r: y 5

i}, and r = [O, il. Therefore f (x, y) = z represents the grey-level value at the point (x. y) E I?

One should notice that the graph of f is formed of the points (x, y, /(x, y)), and is therefore a

subset of x3. See Figure (3.la), which is the graph of the Lenna image, such that the height

is the grey-level going from black (low) to white (high), and see Fiawe (3.lb), which is the

original Lenna image.

Figures 3.la and 3.lb: The three dimensional graph of Lenna and the original Lema image.

Before discuss f as an image model, we provide a few definitions.

Definition 3.1: Two functions g and h are said to be equal if the set of points on which they

differ has measure O. In such a case we Say that g = h almost everywhere. a-e.

Definition 3.2: The essential supremum, ess mp, of a function f (t) as dehed in terrns of Lebesque

measure m 1s;

ess supf (t) = in f {IV r m{t : f (t) > N) = 0)

Dennition 3.3: Consider the u (P) spaces, such that f E LP if f 11 f 11 < w where

This m e t ~ c is known as the LJ' metnc. For a detailed discussion of the LP space the reader

is recommended to read [12].

In our analysis of rifs and pifs it is not always usehl to use the Lm metric, therefore, let

us also define the s-upremum metric.

Definition 3.4: Given two h c t i o n s f and g: the distance between them, with respect to the

Dennition 3.5: Let us define the space of images as F = {f : f2 - R)
func tion.

Theorem 3.1: < F, pSup > is a complete metric space.

We are now equipped with all of the necessary tools to discuss image processing with rifs

and pifs. Since most images which one would want to cornpress are probably colour images,

we nrill provide a brief discussion of image models for colour images.

3.2: Colour Images

The visible light spectrum is composed of a continuous range of hequencies, each de-

scribing a colour. However, the sensitivïty of the human visuai system is Iimited. A colour

-.- Page 23 - -

perceived by a h~~rnan observer can be approlrimated b - superposing red. green and blue

values. One sho~dd not t hink t hat the red, green and blue systern is the only way of recre-

ating the colour spectrum. for human observers, there are other systems as well. siich as

MQ; YLW, HSL and the C'/Di(I<) system.

A brute force approach to fractal compression of colour images would be to work ~ 5 t h

three versions of the same image: the green: red and blue versions. One could then encode

each separately, creating three pifs codes for the same image. To recreate the image. one

would decode each separately and subsequently superpose thern, thus recreating the colour

image. Fi,we 3.2 shows the Born chart depicting this brute Force approach.

Obviously, this method is extremely inefficient and completely unpractical. 4 much

better approach would be to consider the high correlations between the fkactal codes for the

same block in each version of the image and the high correlation between colour planes. For
instance, the correlation between the blue and red plane is approximately 0 -78, between the

red and green it is approxïmately 0.89 and between the green and blue it is approximately

0.94. Exploiting these correlations results in a much more eEcient encoding of the image

svith very little degradation in quality.

Such correlations between colour planes are not restrïcted to the red, green: blue system

but also exïst in the (L,I,Q) and (Y,U,V) systems. As such, one can work Nith the system
of his choice, without a si,@ficant effect to the compression ratio and image fidelity.

To convert an image kom the (R,G,B) system to the (L,I,Q), one h d s the red. green

and blue components of each pixel, then convert each (R,G,B) triplet to its corresponding

(Y,I,Q) triplet. This can be done with the following transformation;

We can now use the same method of encoding the image with this system as ~ 5 t h the

(R,G,B) system.

By eqloiting such correlations, the compression ratio is 2 to 2.7 times more efficient

for colour images than the corresponding grey-scale image. The rest of this dissertation, for

simplicity, nill only deal with grey-scale images.

. . . Page 24 - - -

Encoded File Y

Red Component Green Component

Red component

Blue C omp onent

Green comp onent Blue component

?{ !+

Cornponent
Decoded Green

Blue Enco ding
A

Red Enco ding

Component

j

G r e m Encaclùzg
C- *

I
-

Decoded Image I
Figures 3.2: The flow chart of the brute force approach for colour images.

. .- Page 25 - - -

3.3: IFS Representation of Images

In hactal image coding, one tries to exploit self-similarïty between parts of the image

and the image as a svwhole. If we can fhd a contractive aEne mapping f (x) = AX + y which
converges to the desired image when iterated, then we could store the image: much more

efficiently than storing the value of each pkel in the image. For example. consider Barnsley's

fern, to store it in memory, using the value of each pixel, requires 65 536 bytes- However,

to store the representation of its corresponding a 5 e rnapping, W: only requires 96 bytes

. 'ïo recreate the image, we iterate w on any initial Mage, where each iteration has a

closer resernblance to the final image. Therefore, such a representation would be extremely

efficient wïth regards to memory, and hence image transmition.

Once we hzve TV it is rather easy to recreate the image, however for real images h d i n g
w is difficult and cornputationaly long. Also, real images are not usuatly self similar to

the ivhole image, but rather, different parts of the image are similar to other parts. Using

rnappings Erom one part of the image to another creates a much better quality than using

mappings of the whole image to different parts of the image. Such methods are used when

encoding images with r i f s and pifs: which is the subject of the nest Section.

3.4: Image Enco ding wit h rifs and pifs

Divide the imagee: r"-Y into non-overlapping squares called Range blocks. st u:=,& = 1'.

Shen divide 12 into squares, called Domain bloch, Di, possibly overlapping, that are twice the

size of the range blocks. For clanty, see Figures 3.3 and 3.4.

4 transformations x 6 numbers/transformation x 32 bitslnumber x 1 byte18 bits

= 96 bytes

------- y*.
Figure 3.3: The range blocks of an arbitrary image.

Figure 3.4: A few of the possible domain blocks of the s a m e arbituary image-

In both methods, rifs and pifs, ive will use contractive rnappings f?om domain blocks, Di

to range blocks Rj. However, the way in which each chooses wkch Di will map to a given

Rj is different.

To encode grey-scale images we wïll use mappings of the form;

Wlere the coordinates x and y, in Equation 3.2, represents a pixel, and z represents its

grey-scale value. The coefficient si controls the luminance and the coefficient oi controls

the luminance offset. One can think of them as the contrast and the brightness controls?

In Chapter 2: al1 of our proofs were based on the Hawdorf metrie, however, we could also

have used the Root h a n Square E m r metric, m, defhed in Equation 3.1. The reason we used

.- . Page 27 - - .

the Hamdorf metric and no t the m, is to simplifq- t.he proofs. However? in practice one shodd

use the m s metric since it is computationally easier to calculate.

At this point pifs and n/s diverge; so we will consider each system separately.

3.4.1: Encoding Images with Recurrent Iterated Function Systems

d e h e w as a niapping £corn H to H such that;

Notice that the domain blocks D~ are simpIy the union of range blocks, &. Consider &
as the graph of the grey-scale function over a, then a point in H is of the form (Al, A*, ..., An).

The proof of the following theorem is lengthy and is omitted.

In Chapter 2 Section 2.3, we defined the mapping ÇV which can now be mitten as;

It is important to notice that our dehïtion of p;,, is only sensitive along the -mis7 the

grey-scale component, and not the 2 and y-&, the spatial components. Sherefore, if W is

eventually contractive, then the spatial components may actually e.xpand e thout effecting

the convergence of the system.

3.4.2: Encoding Images with Partitioned Iterated Function Systems

For the mappings defined in Equation (3.2) and the space H = (RI x 1, ..., x 1), we can

define w as;

W =u;=,w,, st wi : SR^ - s3
- -. Page 28 --•

Notice that CF;, can be contractive even if w; is only contractive for the Z--.

1 1 1 r r ,

Dennition 3.6: [41, pg 50 If zu : !R3 - @ is a map with (x , y z,) = w(xl y7 ZL) and (x .y . z2) =

ZL'(X, g, 4, then w is called z contractiue if 3s E (O, 1) st

where x' and gr are independent of q or z2 Vx, g, zl: 3 -

Theorem 3.3: Let wi for i = 1..n be z contractive rnappings from !IP to !P. Then the collection

of these rnappings u:=,wi (which we M U c d W); is contractive in F nrith the supremum

rnetric.

ProoE [4] pg 51 Let s = rnax{si : 1 4 i 5 n), where si are the z contractive components of zu,

then
psup(~v(f), W g)) = ~ ~ p { l W f)(x, Y) - WW, Y)[: (2, Y) E 12}

(x, y) E Di, i = 1, -.-, n)

Note: By the Contractive Mapping Fixed Point Theorem, we are assured that w has a

unique fixed point in F , even if the z-contractive maps are expanding along the x and y a'cis.

The challenge of using pifs, for fractal image compression, is h d i n g a pifs representation

of an arbitrary digital image such that when iterated, the image produced appears to be

the same to the human observer. We Rrill discuss various methods of hinding such pils in

the following chapters.

3.5: Conclusion

In this Chapter we discussed the different practical image models for fracta1 image

compression and showed how to calculate the difference between two images using each

model. We also discussed how to represent colour images efficiently for our models. We

... Page 29 --•

concluded nrith a discussion of image representations using ifs. ri/s and pijs For grey-scale

images, and showed some of the andysis which causes such systerns to work.

..- Page 30 -.

CHAPTER 4

Improved Partitionhg and Searchirig Methods

So h r we have used a brute force approach to Fractal image compression, which divides an

image into fked size non-overlapping range blocks and overlapping domain blocks that are

tnice the size of the range blocks. Then; each range block is compared to each possible

transformation of each domain block, storing the transformations once found. As its narne

implies, this method is not very efficient. There are many ways in which we could improve

the brute force algorithm with respect to compression ratio; Edelity and speed.

The compression ratio is mostly dependant on the number of transformations needed

to store the image, by increasing the size of the range blocks used we reduce the number

of transformations needed, thus irnproving the compression ratio. However, there are many

ways of reducing the number of transformations, some of mhich may result in a loss of

fidelity. The next Section describes methods of varying the size and/or sfiape OF the blocks

to be used. By varying the size; we are able to cover larger parts of an image using only a

single range block and thus increasing the compression ratio, or we can cover areas of hi&
detail with smaller range blocks! thus increasing the fidelity.

Another way in which we can improve the brute force approach is by reducing the

processing time needed to encode an image. We can reduce encoding times in various ways,

such as increasing the strength of the processor, or even better, by limiting the total number

of comparisons to be performed, in an intelligent way of course. Algorïthms applyîng this

method are discussed in Section 4.2.

4.1: Block Shapes

In this Section we will present dBerent methods of varying the size and/or shape of the

blocks to be used, and discuss the effects of doing so.

. - - Page 31 - - -

4.1.1: Variable Sized Square Blocks using Quadtrees

Quadtree partitioning is a rather simple method of di~lding an image into variable sized

blocks so as to satisfy an error limit. When using the brute force algorithm, we simply find

the domain block which resembies a particular range block the most. However, this does

not set an upper Lmit on the difference between the two blocks, and thus it is possible that

the best domain-range block pairing is a poor one. If there are a si,gn&cant nurnber of such

matchings, or if the blocks in question are in a particularly high detail area, then it is Likely

that the decoded image will be of poor quaLïty.

The Quadtree algorithm sets an upper limit for the difference between the domain-

range mmatchings, thus improving the quality of the decoded image. It does so by dividing

the original image into overlapping domain blocks of various sizes. For example, a n image
of size 256 x 256 could have domain blocks whose sides are of length 8,12,16,24,32, and 64.

Shen it recursively divides the original image into non-overlapping range blocks until they

are of a specified size, 32 x 32 for example. For each range block, it searches the domain pool

For the domain block which resembles it the most (minimizing the rms difference). If the

rms difference is smaller or equal to the maximum error; then save the transformation and

delete the range block fkom the range pool. If no domain block is found, divide the range

block into four equal subsquares, which are the new range blocks, and search the domain

pool again, deleting the range block if a match is found. Repeat until the pool of range

blocks is ernpty or the size of the range blocks is less tiian a specified lower limit.

This method is called the Quadtree algorithm since it can be represented by a tree who's

root is the original image and each node bas, potentially: four subnodes which correspond

to the range blocks of the image. For a better understanding? see Figures 4.la/b/c/d, such

that Fi,we 4.la shows an example of the quadtree partitioning of an image, Fiome 4.lb

shows its corresponding quadtree, Fi,gure 4 .k shows the partitioning of the Lema image

and Fi,we 4.ld is the decode image of a dog using the quadtree algorithm.

-. - Page 32 - - -

Figure 4.la: An example of the quadtree partitioning of an image.

Figure 4.lb: The quadtree corresponding to the partitioning in Figure 4.la.

... Page 33 - - .

Figure 4.1~: A representation of the Lenna image, partitioned using the quatre aigorithm.

< Figure 4.ld: The decoded image

algorithm.

~f a dog, which was encoded with the quadtree partitioning

Notice that in order to compare the domain and range blockst we must reduce the
number of pixels in the larger domain block. Lf we are comparing the dornain blocks rvhich
are t e c e the size of the range blocks, then the number of pivels in the domain blocks must

be decreased to one quarter or the original amount. There are hvo obvious ways of doing so:
the preferred way is to take the average pixel values as the new pixel wlue, wliich is known

as sub-sarnpling: the other is to choose a representative pixel as the riew pixel value. It is
also important to note that usirig the transformations described in Equation 3.2 of Chapter

3, we are multiplying each pisel wlue by scaiing factor Thus if /si[> 1 for the mapping
wi, then it is possible that CC; = Uizüi may not be eventually contractive, and therefore ive
are not guaranteed convergence of the decoded image. As such, the values for mhich IsiI > 1,

must be truncated to some fixed s,,,.

- - . Page 34 - - -

To decode the image. begïn by taking an arbitrary image; divide the image into the b a l

quadtree partitioning we had so as to determine the position of the range blocks. For each

range block, the domain block that maps to it is spatially reduced by a factor of t ~ o using

sub-sampling. Each pixel value is then mdtiplied by the scaling factor si, and oi is added to

it before it is placed in its proper place in the range block, which depends OF the orientation

of the transformation. The whole image is iterated in this w - until the difference betiveen

two subsequent iterations is srnaller than a gïven threshold value.

For a more profound discussion of this rnethod, the reader is suggested to read [4]: in

which Fisher diseuses, among other things, the effects of varying s,,, and the domain pool.

4.1.2: Rectangular Block Shapes Using HV-Partitionhg

Although the quadtree algorithm is much better than the brute force algorithm, it does

not take advantage of natural structures in the image. A better method. which also has

variable sized blocks; is the Horizontal- Vertical partitioning rnethod: or simply the H V partitioning

rnethod. Similarly to the Quadtree algorithm, an image is recursively partitioned, however,

the partitions are not necessarily and usually not square shaped. This increases the power

of the algorithm since the positions of the partitions are not !îxed and thus can be esploited

to take advantage of self-similar structures. This method also has the advantage of using

larger range sizes than the Quadtree method, since the Quadtree method always partitions a

range bblock into four range blocks which are one fourth of its size, where as the HV-method
alloivs you to partition a range block into two rectangles.

Example 4.1: Consider the image in Fi,we 4.2a. VVe can then divide the rectangle & into

the h o rectangles RI and R2, shom in Fi,gure 42b, such that R~ contains the diamond and

R2 contains the diagonal line. We can then divide RI vertically into b o rectangles Rt and

&. Dividing each of R3 and & into two rectangles creates the partitioning shown in Fi,g.re
4.2~- Therefore, each of the smaller rectangles in R~ can be mapped Grom R2 by a simple
transformation.

.-- Page 35 - - -

Figure 42a: The original image-

Figure 4.2b: The first partitioning of the image.

Figure 4.3~: The next two partitions of the image.

Ideally we would like to partition a block along the distinct horizontal and vertical lines

of that block and along distinctive edges: nrit hoiit creating extremely narrow rectan,dar

range blocks. To do so: imagine an image created of pixel values such that 1 5 i 5 iv
and 1 5 j 5 M. A distinct horizonta1 edge in the image Nill correspond to a signifkant

difference in pixel values hem one row to another. We wodd Like to prtition the image

along the most sigdicant horizontal or vertical edge present. Therefore, we can begin by

calculating the average difference between rows of pixels. Notice the clifFerence between

rows i and i + 1 is (xj +i,j -xi +i+Irj) / M t repeat that calcdation for each pair of subsequent

rows. In order to find the most distinctive horizontal line, it suffices to take the maximum

difference calculated, however, we would like to avoid extremely narrow rectangles. As such

the linear biased h c t i o n min(i, N - i -i) is introduced by mdtiplying it with the differences

calculated. Performing similar calculations along the vertical columns of the image yields

Without loss of geenerality, assume Ihll 2 [h,l ~p and that loti 2 lvql v*. We now partition the
image horizontally along rom Z if lhli 1 Ivrl, ot-herMse partition the image vertically dong

column k.

Civen a range block, the domain pool through which we d l search for a match Nill

consist of al1 rectangles who's sides are larger by a factor of 2 or 3' where each side c m

have a a e r e n t factor. In order to compare the domain and range blocks, the pixels in the

domain blocks are averaged in groups of 2 x 2, despite the ratio of range to domain side.

Similady to the Quadtree approach, we perform a certain number of partitions before we

begin to search for domain-range block matchings and continuously partition the particular

range block until a predetermined threshold difference value is satisfied or the range block

is smaller than a predetermined size-

Recall that once an image has been encoded, it can be decoded at any size. Y. Fisher
and S. Menlove took advantage of this in a decoding algorithm which they describe in [4].

The algorithm considers an N x image as an element of The method of calculating

the fked point, the final image, is by decoding the image at kth7 ith, ith and finally $ of

the final image size, in that order. By doing so, you perform much l e s calculation than you

normally wodd at the beginning of the decoding process, and once you decode the image

at the h a 1 size you only need to perform two iterates before achieving the final image.

It is interesting to note that one could modify the H-V partitioning method so as to

include partitions dong lines of 0, 45, 90 and 135 degrees. This would increase the strength

of the method since one would not be confined to s t ~ c t l y vertical or horizontal Lines.

4.1.3: Region based Coding with a Heuristic Search

So far we have been confined to square and rectaneda shaped range blocks, however

there is another method, called FAC-P, which uses irregular shaped range regions, and was

developed by Laster Thomas and Fanin Deravi [15]. This method begins by dividing an image

into the standard, square, range and domain blocks. An arbitrary range block, called the

seed, is chosen from the range block pool and its corresponding domain block match is

found. This sole range block is now referred to as the range region, and the domain block

as the domain region. The algorithm then recursive-ely tries to extend the range region both
horizontally and vertically by verifying if the extended region has the same parameters as

- .- Page 37 - - -

the original seed transformation and that the range block being absorbed into the region

is within a gïven threshold value of the mean squared error distance. Each time a block is

absorbed into a range region it is deleted from the range pool, the algorithm continues until

the range pool is empty. For a better understanding see Figures 4.3a and 4.3b: such chat

Fi,gure 4.3a shows the seed and domain block rnatchïng along n?th a possible estension. and

Figure 4.3b shows a range region and its corresponding domain region.

Figure 4.3a: The seed (solid line) and a possible extension (dashed Line) .

Figure 4.3b: A range region and its corresponding domain region.

One may notice that the region developed about a given seed, depends a lot upon the

seed chosen. It may be that the domain region cannot be extended in the corresponding

direction because it is at the edge of the image: or the range block being rejected would

be accepted if the domain region was shifted. Thomas and Deravi knew this, and as such

modified there algorithm, calling it FAC-AP. The FAC-AP algorithm is identical to the
FAC-P algorithm with the exception that when a range bblock is rejected, before considering

another range block, the domain region is shiFted horizontally or vertically, by one block,

--• Page 38 a - .

in the opposite direction of the rejected range block. The aigorithm then checks the new

transformation for each block already in the range region. in order to ensure that the change

is acceptable for each one as well as the range block being considered as an extension to the

region.

Thomas and Deravi also knew that a block along the edge oE region S: may have been

accepted by an adjacent region T if it was stiU available mhen T was being created. It may

also have created a better encoding if such a block had belonged to region T. They hrther

improved the algorithrn, to take such cases into consideration, and called the rnodified

algorit hm the FAC-ACP method. It basically allows for competition between adjacent
rcgïons for any range block that can be encoded with a smaller error by one region and that

does not breakup the original region to which it belonged, see Fi,wes 4.4a and 4.4b.

Already enca ded

The image block
being competed for

New region beuig i \ Do not ovmmite this block

Figure 4-4a and 4-4b: Which show two regions competing ta include a range block and a block

which should not be considered as a candidate to belong ta anot her range region, respectively-

Compared to the standard brute Force algorithrn, when using the Lenna image, they

achîeved almost the same PSNR, a difference of -3 dB, but attained a compression ratio of

41:1, compared to 19:l for the brute force image.

-.. Page 39 ..-

4.1.4: Other Partitionhg Methods

There are many different ways in which one can partition a n image into domain and

range blocks. A n interesting method not mentioneci so far is one which uses trian,dar

shaped blocks oE variable sizes. In trian,dar partitioning, one divides the original image

diagonally into two triangles. We then recursively subdivide each triangle into four triangles

by connecting the midpoint of the sides of the triangle. This method is potentially stronger

than the previously mentioned methods since the triangles can have any orientation and it

can be adjusted so that triangles have self-similar properties. Fiame. 4.5 shows a partitioning

of the Lenna image using triangular partitioning.

Figure 4.5: A representation of the Lenna image, partitioned using the triangdar partitioning

method.

Despite the shape of the blocks one may use, the main differences between blocks wi11

be along the edges, since local self-si mi la rit^ at different scales is unlikely to be perfect.

Fisher proposed that the only method of solving this problem, without postprocessing is to

use an algorithm which is sensitive to the edges. He went on to describe the algorithm as

follows.

1: Vectorïze all edges of an image, forming chains of points.

2: Encode the edge chains using a 2-dimensional bacta1 method, which nill map one

arc to another. Create domain and range blocks with the two arcs, respectively.

3: Calculate the optimal grey-level scaling and offset for each block.

. .- Page 40 - - -

4: Since al1 parts of the image containing an edge will be partitioned, those parts of the

image remaining can be partitioned using any of the methods previously discussed.

4.2: Improved Searching Methods

In the previously mentioned methods, except the region based method, the dornain pool

consisted of al1 possible domain blocks of a particular shape. It is the exhaustive search

of al1 possible domain blocks that takes the largest portion of time to fractally encode an

image- Luckily there are many ways one could speed up this process. for instance, one could

simply look for the first occurrence of a domain block chat is nrithin a gïven tlxeshold error

vaiue, or one could search through the dornain pool in an intelligent manner: which is the

topic of the next Subsections.

4.2.1: Lean Domairi Pools

In [14] Dietmar Satipe published the results of a quadtree partitioning algorithm which

Iimited its search OF domain bbcks only to those nrith a high variance. By noticing that

most domain blocks used, in the quadtree algorithm described above, were those with a

high level of variance, he proceeded to limit the domain blocks that could be piaced in

the domain pool to those with a high level of variance. As such, only a small portion of

blocks would not have an optimal domain-range matching, but the processing time would

be si,pnificantly decreased. Fiove 4.6a shows the variance plotted against the number of

domains and Figure 4.6b shows the 8 x 8 domain blocks used, in black, in the Lema image.

Figure 4.6a: The graph of the number of domain blocks vs variance, for a quadtree partitionhg

of Lenna

Figure 4.6b: The actual domain blocks used (in biack) for the encoding of the Lenna image.

Let a denote the portion of domain blocks which are kept in the pool, therefore as

a decreases so will the processing tirne. This is to be expected since there Nil1 be fewer

domain blocks to search through in order to find a domain-range block matching. However,

since we are using a quadtree approach, the fidelity will actually increase, since some of the

large range blocks that could previously be matched must now be subdivided into smaller

sub-squares. By increasing the number of range blocks, one increases the quality of the

- -. Page 42 - - -

decoded image. but decreases the compression ratio, even though it is only slightly in this

case.

In order to increase the compression ratio back to that of the brute force approach,

Saupe Çound a more efficient nray of s t o ~ g the domain indexes. LE one considers a 512 x 512

pixel image wîth domain blocks of size 8 x 8, then there are 4096 = 2" domain blocks in

total. Storinp the index value of so many blocks requires 12 bits per block. Since only a

fraction of the total number of blocks are used, say 1000, we can use a more efficient index

storing systern, namely the white bhck skTpping method, tubs. Think of the 1000 domain blocks

as a bitmap, then the wbs method, described in [U], describes a way of encoding a bitmap

as follows: If the whole bitmap is white, mark it as O and stop, otherwise, mark it as 1 and

partition it in a quadtree manner. Repeat this for each subblock of the bitmap in a counter

clochvïse direction until you have reached a single value which is either encoded as a O for

white: or 1 for non-white. For a better understanding see Figure 4.7.

... Page 43 - - -

4.2.2: Points in an Abstract Space with the FFIC Algorithm

Let us consider a block of pixels as a point which cûn be mapped to an absitract space,

such that any tivo points which are close in the space are perceptually simiiiar to the human

observer. In doing so: one could End the optimal domain-range block matching very quickly,

simpLy by consideLing those dornain blocks which are close to the range block in the space.

John Kominek [IO]: developed an algorithm he called the F F X algorithm, which uses this

idea. The FFIC algorithm beegins by partitioning an image in the same way as the brute

force approach, ie: non-overlapping range blocks whose union covers the entire image, and

overlapping domain blocks tTvice the size of the range blocks, such that their union covers

the entire image. In order to map the blocks into the same space, the domain blocks m u t

be subsampled to the size of the range blocks. \Vë can now consider each n x R block as an

nWmmensiona1 vector.

Since we compare each possible a 5 e transformation of a domain block for each range

block, we must take tfiis into account when converting our blocks to points. This can be

done by normalizing each block so that its pixels have a fked mean and variance.

1
var = -C(zI n - T) ~ =

Where z: are the normalized pixel values. Thus, when all of the blocks are mapped to the
space, any two blocks whkh are close together wïll be perceptually simiIar to the human

observer, through some &ne transformation.

The FFIC algorithm uses r-trees to map the blocks to the space and limit the domain

blocks to be compared, for any particular range block. An r-tree is a data-structure capable

of efficiently indexing a multi-dimensional space, for a better understanding see [7]. For the

FFIC algorïthm, the r-tree basically groups the domain blocks into nested sets of rectangles.

Shen, for any given range block, the algorithm finds the rectangle in which it belongs and

compares the range block to those dornain blocks which are in the same rectangle. See the
esample in Fiopre 4.8 for a better understanding.

The distance metric used to compare domain and range blocks is a question of choice,

but the absolute error and the root mean square metrics are satisfactory.

- .- Page 45 -

Figure 4.8: An example of an r-tree grouping of domain biocks-

Komenik tested his algorithm on a 486DX2-66 wîth 16MB RAM and concluded, among

other things, that a branching factor of 16 is satisfactory. So as to have a Fair evaluation of

his rnethod, he compared the compression speed, fidelity and compression ratios achiewble
to that of the leading kactal image compression program at the time, 1995. As Fiove 4-9a

shows, for the bird image (Fimgne 4.9b), the FFIC algonthm encodes much more quickly*?

about 30 times faster, than the ïIC9' program. Figure 4.10 is a graph of the rms error vs

the compression ratio of the same bird image for the FFIC, IIC3 and LBF2 algorîthms.

Although the fidelity of the FFIC algorîthm is not always better than the IIC3, it does

perform well and is faster than the LBF algorithm.

IIC3 is the acronym for Iterated Sgstems Incurporated Images hcorporated III program,

which \vas run on the setting " best".
LBF stands for h ~ h t brute force, which is the same as the brute force algorithrn,

except that the domain biocks do not overlap.

... Page 46 - - -

Fractal Compression of Bird

Figures 4.9a and 4.9b: Time needed to encode the bird image using the FFIC and IIC3

methods, and the o r i g i d bird image-

Fractal Compression of Bird

Figure 4.10: The graph of the R M S error vs Compression ratio for the LBF, FFIC and IIC3

algorithms.

Figure 4.11 gives a visual cornparison between the FFIC, IIC3 and LBF algorithms.

Although the FFIC algorithm has a small rms error, it tends to blur contours and becomes
blocky at a compression ratio of 30:l.

Figure 4.11: Visual cornparison of the FFIC, IIC3 and LBF algorithms.

Top Left: LBF 20:1, rms 4.06

Top Centre: IIC3 20:1, rrns 6.21

Top Right: FFIC 20:1, rrns 4.63

Bottom Lefi: LBF 30:1, rms 5.40

Eottorn Centre: IIC3 30:1, r m s 7.05

Bottom Right: FFIC 30:1, rrns 6.12

4.3: Conclusion

In this Chapter we introduced various methods of irnproving the compression ratio,

image fidelity and encoding time, compared to the brute force method. We discussed the

different effects obtained by varying the block shapes and have presented some non-trivial

rnethods of efficiently searching for a satisfiable domain-range block pairing.

CHAPTER 5

Fracta1 Compression of Video Sequerices

As most people know: video sequences gïve the appearance of continuous smooth motion

by displaying a sequence of still images, honm as h-ames, at a certain rate. With this in

mind, there are a few obvious ways in which h-actal image compression can be extended to

fractal video compression. For instance, one could encode each frame individually, or one

could encode a subset of the total hames together by considering three dimensional domain

and range blocks, such that time is the third dimension. Each has its potential advantages

and each is applied very differently than the other, and as with fractal still image encoding

methods, each can be done differently. In this Chapter we will discuss different methods that

have been developed using three dimensional blocks and encoding each kame independently.

5.1: Inter/htraframe Fkact al Video Encoding

There are methods which fractally encode the first frame, then Fvill approximate the

subsequent hames using domain regions £rom the current barne, intrahame: and/or previous

kames, interfiame. By doing so, they can improve the image quality andior compression

ratio. The following subsections describe methods &ch use t hese techniques.

5.1.1: Simple Motion Compensation

A very simple motion compensation hactal video algorithm would be to partition each

bame in the same way, regardless of the image. Fractally encode the first hame using

any method which does not change the domain or range block shapes. This can be the

brute force algorithm, or a simple improvement to it using an improved searching method.

Compare Erames xi and xi-l and let T denote the set of range blocks which are si,@icantly

. -- Page 49 - . a

different, ie: geater than a given error threshold. Such a cornparison can be very quick. for

instance one may simpiy find tlie clifference in gre-scale v-due for each pisel. The range

blocks who's difference in pixel values is greater than the threshold can then be placed in T.

In order to encode Frame xi, we do not have to encode al1 of it, but rather only those range

blocks which belong to T. Doing so wïll greatly increase the compression ratio while effecting

the quality of the decoded image wry Little. Notice that we can still control the decoded

images quality by adjusting the error threshold for the di8èrence in grey-scale values of

consecutive hames.

There are a few options with regards to the domain pool to be considered for the

encoding process. We could include those domain blocks of the curent £rame and/or those

of the preevious kame or hames. Obviously, a larger domain pool wïll result in better qualit-

decodings, but svill also slow down the encoding time.

Since the partitioning is independent of the image and the domain and range blocks are

of a fked size, this method is not practical. It is however, the basic idea of much better

algorithrns which improve its compression ratio, encoding time and resulting image quality

and, as such, d o w for practical approaches to h-actal video compression.

5.1.2: Low Rate Video Coding

Bernd Hürtgen and Peter ~ u t t ~ e n [8 1 developed a practical fkactal video compression algo-

rithm nrhich is based on the method described in Section 5.1.1. In the5 research, they

concentrated on low-rate video coding with applications in mobile video telephony? telecon-

ferencing and narrow band ISDN distnbuted audio-visual services Erom 4.8 to 64 Kb/s.

Their method uses the difference in ge-scale values d, between the curent frame x, and

the previously decoded frame xk-,, in order to determine n-hich regions must be considered

in the next encoding. Since the value of 6 = Zn -x:-, shows those areas which have changed

in grey-level value, we can divide the frame into two regions. The fmt region is referred

to as the background and consists of the union of regions for which the decoded image

(which they refer to as the prediction) is satisfactory. The other is called the foreground

and consists of those areas where tlie prediction is unsatisfactory. VVe can then concentrate

solely on encoding and transmition of the foreground image.

. . . Page 50 - - -

The domain pool nrhich Hürtgea and Büttgen use consists only of those blocks in the
curent £&me; both background and foregrouud. It is important not to use only those

domain blocks lrom the foreground since the Çoreground ma- be very small at times, thus

resdting in a poorer quality decoding. Using blocks From both the foreground and back-

ground also increases the flexibility of the encoding scheme regardless of the size of the

foreground.

The partitioning method they employ is different From those that have been discussed

in this dissertation, but is based on the simple quadtree appioach nrith variable block sizes

of 4 x 4, 8 x 8 and 16 x 16. The partitioning is performed pnor to and independently of the

encoding of the image. Doing so increases the processing speed since only those blocks chosen

by- the se,aentation must be considered, and forces one to incorporate a priori howledge

into the segmentation algorithm. The way in which they incorporate this knowledge is

by employing a gain/cost criterion, which is basically the trade off between the cost of

encoding a certain block and the gain in the reduced visual error of doing so. The aim

of the segmentation is to &ci the foreground image which maximizes the total gain/cost

relation. It is important to notice that the cost of encoding a block is the same for all

biocks, therefore, the only criterion that must be considered is the gain.

Pnor knowledge is incorporated in the method by estimating the reconstruction error,

or decoding error, for each block. Hürtgen and Büttgen showed that this reconstruction
error is highly correlated nith the block size, and thus estimate it by only considenng the

block size. They go on to suggest that considering the grey-Ievel distribution as well as the

block size would yield improvements.

For a better understanding of the segmentation procedure, let us denote an N, by 1~~

pixel image bby an N-dimensional point x = (xl, 2 2 , ---, x,V)= = E 8 such that i 5 i < N =

N, N, and xi represents the grey-levels of the image.

Let bG)(x) = (z~,)~, st xjk E P and jk E NU): be the jth block within image s, where

~ (j) denotes the set of al1 indices of elements belongïng to the jCh blo& and 1 5 k 5 11.1 =

k&. - filbv /~b, N = Aiz . Ny is the nurnber of elements within the block.

Let P(Z) denote the power (level of error) of an image, and let ~(b(j)(x)) denote the power

of the jth block nrithin the image 3. Therefore using the euclidean norm we can wïte

Recall that we only want to encode those blocks that belong to T, ie: those which are in

the foreground. Notice that the total number of blocks NB which can be encoded is limited

by the rnavimum data rate and the se,mentation overhead-

Begin by calculating the power pd(bG)(dn)) for each block bu)(&) which is in the fore-

gound. Shen calculate the reconstruction error P~(~~)(X,)), using the following Equation.

where ibf is the block size and pl and p2 are d e t e r a d so as to maxirnize the reconstruction

quality. Through experimental results Hürtgen and Büttgen found that pl and pz only

needed to be adjusted once.

The coding improvement is nom calculated for each block by using the Equation

If p,(b(j)(x,)) 2 pd(b(j)(d,)), ie: the error introduced by encoding a block is greater than the

prediction error, then the block is not taken into consideration for encoding. If ~,(bb) (2,)) c
~ d (b (j) (&)) , then encoding the block will yield an improwment and is therefore a valid

candidate Çor encoding. However, since we are limited in the number of blocks we can

encode, we must then sort the blocks in descending order of improvement h ~ (j) , and only

encode the Ç s t & blocks. This process is theo repeated iteratively.

Note: Since ive are using a quadtree structure of block partitioning, we are limited in the

choice of blocks Ive can take. Figure 5.la shows the quadtree segmentation while Fi,we

5. l b shows the corresponding Çactal encoded foreground regions.

. -. Page 52 - - -

Figure 5.la: The quadtree segmentation of the foreground region.

Figure 5. lb: The fkactal encoded foreground region.

Hürtgen and Büttgen claim that wïth a 64 Kb/s ISDN B-charnel, a frame rate of 25 Hz
and only encoding every third Erame (the skipped kames are interpolated at the receiver)

we ody have 7680 bits of data for each frame. Using the quadtree se,mentation requires

approximately 1000 bits of overhead, tnus leaving approximately 6700 bits of data with
wliich we can encode the foreground image. They tested their method on the Miss Arnerica

test sequence and obtained a quality of 34-35 dB, showing that their method can encode

typical videophone sequences, with reasonable quality, at the practical data rate of 64 Kb/s.

. - - Page 53 - - -

5.2: Three Dimensional Iterated Function S ystems

Perhaps the most obvious extension of fractal image compression to fractal video com-
pression. is to add an e-utra dimension representing time. Wë can then encode the video

sequence as a 3D object which is bounded in two dimensions (spacial dimensions x and y)

and unbounded, practically, in the third temporal dimension z. Sotice thai we can take z to

be any finite positive number, if z = 1 then it is considered to be a still image, othenvise it

can be considered a video sequence. The mathematical analysis showing why such methods

work is extremely similar to the analysis shown in Chapter 2 and as such, is not discussed

any Eurther.

5.2.1: 3D fiactal Block Coding of Video Sequences

1l.1.S. Lazur and LT- ~ r u t o n [l l] have developed an algorithm which nill use 3D pifs to

encode video sequences. They consider ten Erame sequences at a time and encode them

using three dimensional range and domain blocks. The range blocks are of size B x B x T,

where B represents the spacial length of the kame and T the temporal length of the sequence.

The domain blocks are taken to be of size M~ - B x 1bf2 - B x - T , where Mi is a scaler for

i = l ,2 ,3 .

Each range and domain block is chosen Gom an R-Frame and D-Frame respectively,

which consist of consecutive non-overlapping groups of input frames. Each R-Frame is

associated to a D-Frame such that the R-Frame is physically inside the D-Frame, but both

end at the same temporal location. Notice that a D-Frarne can start pnor to its associated

R-Frame and is limited in spacial size by the size of the hames and limited in temporal size

by the number of frames from the b s t Frame to the current. The temporal limitation on

the D-Frames mal- be too large and as such we must limit it in temporal length by j - hi3 - T

fiames such that j E H\{o).

The indexing of the fiames within the R-Frames and D-Frames begins at the most

recent kame and increases as we move backwards. W5 also denote the R-Frarne and D-
Frame beginning at tirne t by R-Frame(t) and D-Frame(t) respectively. See Fi,gure 5.2 for a

better understanding.

... Page 54 --•

Figure 5.2: An example of an R-Frame, D-Rame, range block and domain block-

Since the motion on most video signals changes smoothly, which is especially true for

teieconferencing, each Erame will be similar to the last. Thus, we do not have to consider a11

of the possible pixel s h a n g operations, of which there are obviously many more than in 2D
lractal encodings. Lazar and Bruton limited the number of isometries by only considering

transformations which tvere the result of Erst perforrning intra-hame transformations, then

inter-frame transformations. Doing so greatly reduces the number of possible isometries

and bnngs them into the practical realm. We can now describe all possible isometries by

S(I) = Sinter (1) + SintTa([). The intra-frarne isometries are the same as in the 2D case but the
inter-frame isometries are limited to two kïnds, the frames which remain unaltered and the

kames who's order is reversed.

- .- Page 55 --•

Since the search For a reasonable domain-range block matchïng is what basically deter-

mines the speed of the encoding, of which there are too many possible combinations in our

case, Lazar and Bniton employ an efficient searching rnethod. They restricted their search

to those donain blocks which are phyçically near the given range block and denote the

matchhg lmction by N (I) . Sherefore if the address of the range block is (Nl, &, N3), then

o d y those domàin blocks whose addresses are given by (NI +kL -LI! 4 2 f k2 - L2, 1V3 +k3 - L 3) are

considered. such that Where -K, 5 ki 5 Ki, i = i ,2,3, (f i , K2: K3) are fked for all R-Frarnes

and (LI, L2, L3) are the search step sizes. Notice that in order to address a domain block we

need only give (kLl ks, k3)-

In order to improve the decoded image quality of the Erames, they use a three dimen-

sional ecluivalent to the quadtree splitting method as well as a temporal splittinp method.

Range blocks can either be split spatially by four or temporally by two depending on the

distribution of errors in the onginal range block and the overall encoding error. When the

encoding error for a given block is p a t e r than a Exed threshold, the block is split in one

of the two ways. If the errors are distnbuted evenly throughout the fiames of the range

block, then the block is split spat idy into four equally sized blocks who's depth remains

unchange. If the errors are not evenly distributed throughout the hames, then the block is

spiit temporally in half, where the spacial size remains the same but the temporal size is

haK of the original block. For a better understanding see Figure 5.3.

The method in which the frame encoding errors are determined is by computing the

distance between each frame fiom the encoded block rl and t.he original kames from the

block ri. If the normalized difference between the maximum and minimum of these distances

d(r:, ri) is greater than a given threshold, then the error distribution is said to be uneven,

otherwise it is said to be evenly distributed.

Once the encoding is done, we can decode each R-Frame in a similar iterative manner as

that used for 22D encodings. Notice however that we need all of the hames corresponding to

the appropriate D-Frame so as to decode a @en R-Frame. If there is data outside of the R-
Frame which is contained in the D-Frame, then such data dl also be required for decoding

the respective R-Frame, but it rvïll not be iterated. The range blocks who's corresponding

domain block is completely contained in such an area, outside of the R-Block, can be decode

in a single iteration.

-.. Page 56 --•

Figure 5.3: Flowchart of the aigorithm used to determine how to split a given range block.

Since adjacent frames of a video sequence are usualty similar, it is better to begin with

the previous frame as an initial frame for the current hame and then iterate, ie: The final

iterstion for R-Frame(t - k - T) is the same as the &st for R-Frame(t).

. .- Page 57 - - -

Using experirnental results on the standard salesman and Miss Arnerica vide0 sequences,

Lazar and Bruton show that their method results in a compression ratio of40:Z to 77:1, with

an acceptable image quality for teleconferancing. The? admit however, that the decoded

vide0 sequence has a jerkiness effect on those areas of rapid rnovement. Because of the high

computational costs and approximately fixed cost of decoding, their algorithm would be

bet ter applied to those applications which need onlj- be encoded once, but decoded many

time. An example of this is multi-media.

5.2.2: Improved Searching and Classification Met hods for Fractal Volume
Compression

Cochran, Kart and Flynn [3] have also researched fractal image compression of video

sequences using 3D blocks, and have developed a better method than the one discussed

in the previous Section. Their method uses a combination of classiscation by principal

component analysis, a down-sampled nearest neighbour seardi and macro blockç.

Table 5.1: The five block categories.

I

A? - A , E

true
true
true

f alse
f aise

They use the principal component analysis of volumetric blocks to classify the blocks
into one of five classes, shade, midrange, rnixed edgeo double edge and simple edge. Doing

so greatly reduces the searching time for an adecluate domain-range block pairing. This

method beOins by calculating the value V (X) of a scalar volumetric dataset of the point

3: E @, ie: a 3D domain or range block. The total mass M of the block is then defined as

C,,, V (X) and the centroid c E P as + CI,, x - v (x) . The rnatrix S = C,,, v(x)(x - c)(x - c) ~ is

then found, along with its associated eigewalues 5 xz f A3 and eigenvectors ü1,û2 and û3.

It is important to notice that S is a sjmmetric 3 x 3 positive semidefinite matrix? as such,

its eigenvalues Xi, i = 1,2,3 will be non-negative real numbers. We then go on to normalîze

the eigenvalues as A; = ,\l/,\~, X; = A ~ / x ~ and = i and find a threshold value E c: 1. Doing

SO

... Page 58 - - -

class
midrange

mked edge
double edge
single edge
mixed edge

r ~3 - A ~ 5 E 1 Y\3 - diI 5 E

true
true
f alse
trzte

f alse

t rue
f alse
Ialse
f alse
f alse

Ml1 allow us to place each block into one of the five categories according to their normalized

eigenvalues using Table 5.1 -

Classif~ng the blocks in such a way obviously decreases the total number of compar-

isons perforrned and consecpently reduces the search time considerably- Nthough when

considering rnixed edge bblcks one must consider all 48 possible isometries. Cochran et/aZ

developed a method of reducing the number of isometries considered For single edge and
double edge range blocks by considering vectors associated with them. For simple edge

blocks, the vector zül is found such that it is normal to the plane that fits the rnost dense

region of the block, where as for double edge blocks, the vector 7& is taken as being parallel

to each significant edge in the block. Thus, when we are considering an isometry 1,: we can

h d the eigenvector affected by this isometry and denote it as r , (c~)? süch that,

WL if R ïs a simple edge r a n g e block
GR =

w 2 if R is a double edge r a n g e block

22rl if D is a simple edge r a n g e block
G D =

122 if D is a double edge range block

We only continue to consider an isometry if &(GD) and û~ are approxïmatel- parallel, or

perpendicular, ie: 1 5 ~ - r;(ûD)l 5 1.

In their test results the authors showed that using this classification scheme o d y re-

duces the image quality by a fenr tenths of a decibel, while decreasing the encoding time

significant ly.

To hirther decrease the encoding time, Cochran et/aZ also apply a nearest neighbour
searching method. Doing so increases the search space and thus increases the fidelity of

the decoded image, however, since we are dealing with 3D blocks, the dimensionality of

the search space increases drastically. In order to keep things at a manageable size, the

authors suggest d o m sampling the blocks fbst, which will reduce the dimension of the

kd-tree used. Although doing so does decrease the dimension to a manageable size, we are

no longer guaranteed an optimal match but only an adequate match. We then need only

search through the n nearest neighbours of a range block to find the optimal match from

those, or ure can take the h s t acceptable match.

Using such a nearest neighbour search is essential to reducing the encoding time from
hours to minutes. The authors did not test the effects of such a search on image fidelity

(because of the huge computational cost), but they claim it to be negligible. The algorithm

can be further enhanced with the use of macroblocks or localized searching.

Using localized searching, one can search only a smalI number of spatiall y close blocks.

Using the identitÿ transformation and a brute force approach. ure can divide the blocks into

two groups. The first and second goups consist of those blocks for which the comparïson

was acceptable, and those that were not, respectively. We c m then perform a second search

through the second group, considering all possible transformations. For this search to be

manageable, we can employ one of the irnproved searching methods previously discussed.

To use macroblocks, one must divide the whole v o l ~ e t r i c data into large blocks and

work with the blocks indi~idually. Finding the kd-tree for each block increases the com-

pression tirne: but also increases the compression ratio. Experimental results conducted by

the authors show that the loss in Mage fidelity, because of the limited domain pool, is only

a few tenths of a decibel. Figure 5.4 shows the fidelity, for different compression ratios, of

the above algorithm.

5.3: Conclusion

In this Chapter Ive have shonm how easily hactal image compression can be extended

to fractal video compression. Both motion compensation and three dimensional iterated

function systems have advantages over the other and over other encoding techniques, but

both remain to be M y developed. Because of the short decoding times but lengthy encoding

times, fractal video compression techniques, like bacta1 still image techniques, are better
suited for multi-media applications. Even though fractal video compression is only in its

early stage of development, it surpasses Vector Quantization rnethods and is Mthin one

decibel PSNR of the Domain Cosine Transform techniques.

.-. Page GO - - -

Figure 5.4: One fiame of a video sequence

center), 25:l (upper right), 30:l (lower left),

of a n IlvIRL. Original (upper lefi), 20:l (upper

43:l (Iowes center), 729:l (Iower right) ,

. . - Page 61 - - -

Referenees

[II M.F. Barnsley; "Fractals Everywhere," Academic Press, San Diego, 1988.

[2] M.F. Barnsley, L .P. Hurd; 'Fractal Image Compression," AK Peters, Wellesley MA,
1993.

[3] Wayne Cochran, John Hart, Partick Flynn; "Fractal Volume Compression," IEEE Trans

actions on Visualization and Computer Graphics. vol. 2, no. 4, pp. 313-322, December

1996-

[4] Yuval Fisher; "Fractal Image Compression. Theory and Applications," Springer Verlag,
New York, 1994.

[SI Yuval Fisher; "Fractal Image Compression," SIGGRAPH 92 Course Notes, 1992.

[6] Demy Gulick; "Encounter with Chaos," McGraw-Hill; 1992.

[7] A. Guttman; "R-trees: A Dynamic Index Structure For Spatial Searching," Proceedings

of ACM SIGMOD Conference on Management of Data, pp. 47-57, 1984.

[8] Bernd Hürtgeen, Peter Büttgen; "Fractal Approach to Low Rate Video Coding," Pro-

ceedings from SPIE Visual Communications and Image P rocessing, vol. 2094, pp. 120- 13 1,

1993.

(91 B. Hrtgen, P. Mols, S. F. Simon; "Fractal Transform Coding of Color Images," Pro-

ceedings of the International Conference on Visual Communications and Image Processing,

SPIE 94, vol. 2305, pp. 1683-1691, Chicago, Illinois, USA, 1994.

[IO] John Kominek; "Algorithm for Fast Fractal Image Compression," Proceedings of SPIE,

Volume 2419,1995.

[Il] M.S. Lazar, L.T. Bruton; "Fracta.1 Block Coding OF Digital Video Coding," IEEE Trans.

Circuits and Systems for Video Technology, vol. 4' no. 3, pp. 297-308, 1994.

. .- Page 62 - -

[121 H.L. Royden; "Real Analysis," hfacrnilian; New b r k : 1988.

[13] W. Ruden; "Real and Cornplex Analysis,:' McGraw-Hill, Xew York. 1972.

[14] Dietmar Saupe; "Lean Domain Pools for Fractal Image Compression." Proceedings of

SPIE Electronic Imaging 96' Science and Technology Still Image Compression II; vol 2669:

1996.

[le] Lester Thomas, Farzin Deravi; "Region-Based Fractal Image Compression Using Heuris-

tic Search," IEEE Transactions on Image Processing, vol. 4, no. 6, June 1995, pp. 832-838.

[16] Crîstopher J. Wein, Ian F. Blake; "On the Performance of Fractal Compression with
Clustering' IEEE Transactions on Image Processing, vol. 5, no. 3, March 1996: pp. 522-
526.

[17] R.E. Woods, R.C. Gonzales; "Digital Image Processing," Addison-LVesley, Reading,
199'2-

... Page 63 --•

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLJED 4 IMAGE. lnc
3 1653 East Main Street - Rochester. NY 14609 USA --- .-As Phone: 716/482-0300 -- --CL Fax: 71 61286-5989

