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ABSTRACT 

This thesis examines the theory of kactal image compression and gives a survey of 

such techniques for stitl images and vide0 sequences. Particular attention is given to 

partition iterated function systerns (pif), but recurrent iterated function s y s t e m  (ri/) are also dis- 

cussed. We begïn Wth a discussion of iterated h c t i o n  systems and there applications 

in image compression and then go on to provide the theoretical basis for such systems. 

as well as for pif and rif- In Chapter 3 we discuss different image models as well as the 

encoding of images using pi/ and rif- Ditferent m o ~ c a t i o n s  to the brute force pif are 

then discussed in Chapter 4, and we conclude the thesis by presenting four methods 

which extend the theory of pif to video sequences. 
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CHAPTER 1 

INTRODUCTION 

In this Chapter, we will discuss the need for hactal image compression techniques. Wë 
wiil also introduce Fractals, the Brute Force fractal image compression method and discuss 

some OF its disadvantages. We go on to introduce the history of hactal image compression 

research and conclude the Chapter with an insight of the follosving Chapters. 

1.1: Why Image Compression 

With the Internet growing at an exponential rate, the amount of people transfemng 

digital data kom one site to another has increased drarnatically. 'ïhere is now, more than 

ewr, a need for quick data transfer methods and more efficient use of memory space. Unfor- 

tunately, images are knonm for requiring si,@icantly large amounts of memory and hence 

are not transmittable quickly. This is where kactal image compression techniques corne to 

the rescue. Such techniques allow one to store an  image with much less mernory than it  

would normally require, hence allowing it to be transmitted more quickly For instance, 

the image in Fibgure 1.1 requires 263 246 bytes of rnemoryl, and would take 9.14 seconds to 

transmit at  a data rate of 25.8 Kb/s. However, once this image has been fractally encoded 

it would require, on average, 189 538 bytes of memory and couid thus be transferred in 6.58 
seconds, at  the same data rate. 

At a resolution of 512 x 512: and a pixel resolution of 256 
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Figure 1.1: The original image of Lena. 

Although fractal image compression was only discovered ten years aga: rnost fractal 

imagexompression techniques manage to compress a natural image at compression rates 

between 20:l and 40:l. This is compatible to the leading techniques used today, which have 

been around for much longer. Before w e  explain honr hactal image compression techniques 

work, let us hrst consider fractals. 

A hactal is a geometrical object mho's parts are similar to the nrhole and have inûnïte 

resolution. In other words, if ive were to e-xpand any part of a hactal, at any ratio, it w o d d  

never become blurry and one could always see the same original image in that expanded part. 

For instance, let us consider an image created in the follonring way: Begin nrith a straight 

line divided into three equal parts: Mth the middle part create an equilateral triangle3, 

and then delete its base. Your image should look like the one in Fi,we 1.2b. With each 

straight line in the image, repeat the above process ad infinitum. Doing so wiU create the 

image in Fiowe I.Se, where Figures 1.2a though l.2d show some of the intermediate steps 

in achieving the &al image. This image is known as the K0ch.e Curue. If we had repeated 

this process on each part of an equilateral triangle, we would have produced the Koche 

snodake sho- in Figure 1.3? 

Notice that in the magrLification of any part of the Koche nre can see parts which 
are identical to the whole Koche cuve. Also, no matter how much we rnagnify the image, 

the edges ni11 never be smooth, ie: The Koche Cuve  has idb i te  resolution. 

An equilateral triangle is a triangle who's sides are all of equal length 
The Koche snodake is a rather peculiar object since it can be contained withïn a 

circle of radius one, but has an infinite perimeter. 



Figures 1.2a,b,c,d and e: The different steps in the construction of the Koche c w e -  

Figure 1.3: The Koche snowfiake. 

It is important to notice that although Figure 1.2 is quite complex, it can be created 

e.utrernely easily. Shus, if one manted to store this image in memory, it would be much more 
efficient to store the mechanisrn by which it is created, than it would be to store the image 

itself. Storing the construction mechanisrn also allows one to recreate the image at any give 
resolution, whereas, the stored image would be of a fked resolution. 

. .. Page 3 ... 



1.2: The Brute Force Fractal Image Compression Technique 

Geometrical objects created like the ones above are c d e d  artificid hactals. Although. 

naturally occum-ng objects cannot be created with such techniques, there are some which 

resemble Eractals. For instance, consider the sea coast of an island with a rocky shore. !je 

can magnify the shore a t  almos t any scale and still see a rocky shore type structure, that is 

until we get to the molecular level of the rocks. Such natural objects are known as natural 

fkac t als . 

Since the human eye has ditnculty distinguishing between certain natural and artificial 

Eractals, we can exploit this for the use of image compression. Fractal image compression 

algorithms try to find the reconstruction method of an  image which is e-utremely sirnilar to 

the original one, so as to more &ciently store it. The difference between the reconstt-ucted 

image and the original can be so small that they appear to be identical to the human 

observer. 

Figure 1.4: The self-simiIar parts of Lena 

Unlike the Koche C u v e  natural images are not usually self-sirnilar to the whole. Hon 

ever, they usually contain different parts mhich are self-similar, an esample of which is shonm 

in Figure 1.4. Fractal image compression methods take advantage of these self-similar parts 

by considering them to be identical. They then h d  a mechanism for reconstructing the 

image based on the knowledge of the self-similar parts. For a better understanding of how 

this works, consider the following fractal image compression method for a 256 x 256 pixel 

image. 



1: Assuming the image is gre-scale. we can then a s s i s  an integer value in the range 
[O; 2551 to each pixel. 

2: Divide the image into non-overlapping Range blocks of size 8 x 8 pixels. We therefore 

haw 32 x 32 = 1024 range bblcks. Let us denote the collection of dl such range 

blocks by R. 

3: L%lso divide the image into possibly overlapping Domain blocks of size 16 x 16 piuels. 

Mie therefore have 241 x 241 = 58 081 domain blocks. 

4: For each range block a, h d  the domain block Dj whict, physically, resembles it the 
rnost. For a better image quality, you m u t  compare each orientation of the block 
and its mirror image. Thus performing eight cornparisons for each domain block. 

It is important to notice that if each range block Ri is compared to each domain block 

Dj, then you *Il perform 8 x 58081 x 1024 = 475 799 552 cornparisons in d l ,  or 464 6.L8 

comparisons for each range block. 

Wë now have a mapping of a domain block to a range block for each range block in the 

image. Once this is done, we need only store the mappings for each range block in order to 

reconstruct the image. Storing such data requires much less information than storing each 
pixel value in the image. For example, the 256 x 256 image of Lena requires 65 536 bytes 

of data, rvhile the mappings only need 3968 bytes, thus resulting in a compression ratio of 
16.5 : 1. 

In order to recreate the image, one must choose an arbitrary image to begin Nith (it 

rnay simply be a black image), then iterate the image given the mappings stored for each 

range block. As Figure 1.4 shows, each iteration will add detail at  a b e r  and h e r  level, 

starting at  the 8 x 8 level, then 4 x 4,2 x 2, etc  .... Such a system is knonm as a Partitioncd (or 

Local) Iterated Fùnction system, and is discussed in detail in the following Chapters. 
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Figure 1.5: The initial image (top Iefi), the fbst iterate (top right), the second iterate (bottom 

left) and the tenth iterate (bottom right). 

Although the resulting image is of an acceptable quality, given the simplicity of the 

algorithm, it requires an enormous amount of time to h d  the domain-range block pair. Most 

of the work on fractal image compression, has been to decrease the number of comparisons 

needed and as such, decrease the time needed to encode the image. 

Since such images are created in a h-actal like manner, they have infinite resolution. 

However, the resolution created a t  higher levels is artificial, Le., one cannot maohfy a part 
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of the image and see details that were not in the ori,ginal. Where other image ttypes result in 

a blockq- effect when the image is magnified. since the value of the pixels is simply e-xtended 

to the larger area. Fractal image compression does not. since the mappings go on to create 

artificial resolution. 

Once we have the reconstruction mechanism for an image, it is extremely easy and quick 

to reconstnict it. However, finding the optimal. or suitable, encoding of an image requires a 

si,gnïficant amount of time and resources. Therefore, fracta1 image compression techniques 

are better suited for applications where the image is encoded once and decoded many times. 

An example of such a situation is the 1992 version of the Microsoft Encarta compact disk, 

where al1 of the images in it are Eractals. In order to Bt the numerous images on the cd, 

Microsoft decided to compress them using fractal image co~pression techniques. 

Although most of the resertrch in the past \vas concentrated on still image compression, 

video image compression is also becoming elctremely popular. This is mainly due to the 

fact that a suitable video image compression technique can have extrernely large economical 

benefits. Many companies would rather use video-conferencing ïnstead of tele-conferencing. 

However, because video sequences require large amounts of data: they must be compressed 

prior to transmitting them. They must also be encoded, transmitted and decoded at such 

a rate so that the decoded video sequences are not jumpy and still have a suitable image 

quality. This will be the topic discussed in Chapter 5 of this dissertation. 

1.3: The Origins of Fractal Image Compression 

The person responsible for discovering fractal image compression is Micheal F. Barnsley, 

who noticed that e-xtremely complicated, naturally appearïng objects can be created using 

transformations nrith very short codes. He went on to name such transformations fterated 

Function Systems,  (IFS). IFS's can be used to encode images whose parts resemble the whole. 

However, as we have mentiooed before, most natural images do not contain this type of 

self-similarity, but rather parts of the image resernble other parts. Barnsley knew this, and 

in 1988 he generalized the theory of IFS's to Partitioned Itemted Function Sys tems  (PIFS). He 
used an algorithm similar to the one above to compress an image. However a person had to 

interact with the program in order to h d  the domain blocks to be matched to a particular 

range block. This resulted in high compression ratios, but very poor quality in the decoded 

images. Much of Barnsley's work remains secret and copyright since he and Sloan founded 
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the Company Iterated Systems hc in 1987. 

Only in 1990 did any gound breaking work in fractal image compression become public. 

This \vas the result of 4rnaud Jacquin's Ph.D thesis which aiitomated the search of the 

domain-range pair. Jacquin, who was Barnsley's Ph-D student. achieved this by restricting 

the domains and range blocks to a fixed size, and transformations of a particular type, 

which is discussed in Chap ter 2. His algorithm is basically the one descnbed in Section 1.1: 
nith the added capability of adjusting the grey-value of a pixel by- one and scaling by a 

number less than one. He also decreased the number of domain blocks to be searched by 

classifying them into one of a few categories. For instance, one category nras those blocks 

FVith a distinctive edge. 

1.4: What we will cover in this thesis 

Since then, many people have revised Jaquin's method in a variety of ways. In this 

thesis, we will consider some of the better variations and sugest furttier irnprovements. 

Chapter 2 provides the mathematical background and analyçis to understand the reasons 

such systems work. Chapter 3 introduces different image models and discusses the repre- 

sentation of images using 2fs1s, rifs7s and pifs's. Chapter 4 introduces many different kactal 

image compression techniques that are superior to the brute Force approach discussed above. 

Chapter 5 concludes the thesis with a discussion of différent techniques used for hactal video 

compression. 

1.5: Conclusion 

In this Chapter, we have shom the reasom such compression techniques are needed 

and taken a brief look at how they work. We also discussed the different applications in 

which they can be used and have s h o m  some of the history of fractal image compression 

research. We concluded with a siirnmary of the following Chapters in this thesis. 

... Page 8 - - -  



CHAPTER 2 

Iterated Function Systems and the 

Contract ive Mapping Fixed Point Theorem 

In this Chapter Ive nrill introduce contractive Iterated Function Systems and show how to ma- 
nipulate them so as to create fractuk. Then we d l  give a fairly detailed analysis of the 

properties of such systems and prove the Genedized Collage Tbeorem. After which, Ive d l  

introduce Recurrent Iterated Function Systems and determine the properties of such systems. We 
will conclude nit h an introduction of Partitioned Itemted Function Sgstems. 

2.1: Iterated Function Systems 

An iterated h c t i o n  system is a system of fùnctions which are simultaneously being 
iterated over a set in %* s t  F : IR2 - s2. W3en iterated, if the system approaches a fked 

point1, then the graph of the system is called a fractaZ. A fractal, generally speaking, is 

a geometrical object which hûs infinite resohtion and self similarity at every scale. For a 

more in depth discussion of kactals, the reader is recornmended to read [l]. 

Example 2.1: Consider the hc t ions  defined by 

A fixed point is a point which does not change value when iterated over a function, 

Le., F ( x )  = x 
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A n  interesting characteristic of this systern. is that no matter what initial image we begin 

with, the iterates of the system 1viI.l always converge to the same h a 1  image, Le., the g a p h  

of the system will converge to a fked point in L2. The final image (the Lsed point) is called 

the uttracter of the sys tem and in this case is known as the Szérpimli.5 gasket. Fibgure 2.1 shows 

the iterates, of the system in example 2.1: for different initial images es. 

Initial Image First Copy Second Copy Third Copy 

Figure 2.1: The Erst three iterates of the system in example 2.1, for three dBerent initial images. 

Notice that the functions, f i ,  F2, F3) in Example 2.1, are contract ioq that is, the distance 

between the iterates of two points is smaller than the distance between the two points 

themselves. This can formally be written as d (F(x ) ,F (y ) )  < d(x, 3); where d(a, b)  represents 

the distance between a and b. 

In this Chapter, we d l  discuss the fact such systems, like the one in Example 2.1: 
always converge to the same fmed point for an arbituary initial image. In the folloning 

Chapters, nre nrill discuss how such systems create completely naturally appearing images, 

to the hurnan observer. 

.-- Page 10 - - -  



Let us begin by taking a closer look at iterated Function systems. Consider the &ne 

function2 F. given as: 

Theorem 2.1: Let ,\ and p be eigenvalues of the matr is  A = ( d)  . The a h e  h c t i o n  F ,  

dehed in equation (2.1); is a contraction if ,\ # p st IXI c L and 1p1 < i- 

Let us now consider the hnction 

Notice that F satisfies Sheorem 2.1, and is therefore a contraction. Nso, P not ody  shrinks 

(or e.xpands) the image by a factor of Ir!, but also rotates it, counterclockwise, by an angle 

OF 8. See Fiame 2.2. 

Figure 2.2: The original image x, and its iterate F(x) .  

Exampie 2.2: Consider the four functions delined below, where each will be$p by shrinking 
the image by a factor of 1/3. 

Affine Functions are composites of a linear function, G(x) = AX, and a translation 

hinction, H ( x )  = x + y. 
-- .  Page II - 



Note: Fi will leave the image where it is_ F2 dl rotate it by f and rhift it by ( ' O 3 ) ;  F3 

nill rotate it by and shift it by ( )  und F, w i ~  shift it by ('0") 
The graph of the union of these four contraction mappings is Imown as the Koch came and 

is shonm in Figure 1.2 on page 3> dong mith the first few iterations. 

Figure 2.3: Barnsley's fern. 
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Example 2.3: Another extremely well knom IFS fractal is Barnsley's Fern. I t  can be descrïbed 

by the fo1Zowing four hnctions, and is shoxvn in Figure 2.3. 

FI (;) = (: P.) ( y )  
F. (r) = (:: :85) (;) + (3) F~ (1) = (-::6 LE) (;) + (.:) 

It is a result of the Contraction Mapping meorem that such systems have the characteristic 

of converging to the same final image regardless of the initial image, this theorem d l  be 

formally stated and proven later in this Chapter. Lnformally the Contmction hfupping Theorem 

states that if Fi are contractions on 912, for i = i ,2 ,3 ,  .,., n, and Fc4)= ~i",, Fi(A), such that 

A is a closed and bounded subset of P, then F has a unique fked set, which is a closed 

and bounded subset of i.e-, F ( A ~ )  = AF. Since all closed and bounded subsets of are 

attracted to the set AF7 it is hem as F's attracter. 

Notice, to evaluate AF; one codd evaluate the sequence {~(O")(z)}r==, for a @en z in g2, 

which can be extremely time consuming. A faster method of evaluating AF was proposed 

by Barnsley [2]. This method uses random numbers in the interval (O, 1) and works for any 

f&te system of contractions: 4 suchthut i = 1,2, ..., n. Barnsley's algorithm [6] is: 

Step 1: Choose an arbitrary point z in Z2. 

Step 2: Generate a random number r E (O, 1). Therefore rn is a random number in (O7 n). 

Step 3: if ~t < r n  5 ~s + 1, then plot the point ~ ~ ( 2 ) .  Othernrise do not. 

Step 4: Let z = Fk(z). 

Step 5: With the new point z, repeat Steps 2, 3 and 4, then repeat the process as often 

as needed in order to generate a reasonable representation of the attracter Ag.  

2.2: Analysis of ifs and the Generalized Collage Theorem for ifs 

Before we can prove the Contmction Mapping Theorem, we need a few definitions, lemmas and 

theorems. Wë will begïn by stating the folloming three lemmas, for a proof of each, see [12]. 

3 {~(O")(z)}r=, represents the nth iterate of F on z, as n approaches infinity 
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Lemma 2.1: Let F be a continuous function on P, and let -4 be a closed, bounded subset of 

X 2 ;  Then F@) is aIso ciosed and bounded. 

Lemma 2.2: Let T = Uy==,Ai, st Ai is a closed subset of 3' for i = 1'2,3. .... n7 then T is closed. 

Lemma 2.3: Let T = q= ,A i ,  s t  Ai is a bounded subset of @ f o r  i = 1,2'3, ...: n; then T is 

bo~mded. 

Dehition 2.1: A metric space < X l p  > is a nonempty set X of elements (which we call 

points) together ~ 5 t h  a real-valued h c t i o n  p defhed on ~ X X  such that QX, y, z E X: 

i : p(x,y) L 0 iiï p(x: y )  = p(y ,  z) 

ü: p(x,y) = O  iff x = y  iv : p(x, y )  < p ( 2 ,  z )  + Y) 

Note: The function p is cdled a rnetric. 

Definition 2.2: A metnc space X is compact, if it is both closed and bounded. 

Definition 2.3: A sequence {x,)Z, in a metric space is called a Cauchy Sequence, if @en 

E > 0 there is an N such that hl rn > we have p(z,, x,) c t. 

Theorem 2.2: Let < X, p > be a metric space, with metric p: then every convergent sequence 

in x is a Cauchy sequence. 

ProoE See [12] 

Definition 2.4: Let < X , p  > be a metric space, wïth rnetric p, if every Cauchy sequence in X 

is convergent in X, then the space X is said to be a cornpiete metric space. 

Definition 2.5: Let A c x2 and bounded, let E > O, then SA,. = {y : 3a E A st p ( a . 3 )  5 E }  is 

called the E-neighbmrhood of A. 

Theorem 2.3: Let A be a closed and bounded subset of IR'? then SA, is also closed and 

bounded. 

Proofi See [6] 

Definition 2.6: The Hausdorff Space of X is dehed  as H ( X )  = { B  c X : B is compact) 
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Definition 2.7: Let .4, B E H ( X )  then the Hausdorff rnetric is dehed as 

For examples of the Hausdorff rnetric; see Fi,we 2.4, where the line is the Hausdorff distance 

between the two sets A and B. 

Figure 2.4: Two dB'rent examples of how to calculate the Hausdorff distance. 

Theorem 2.4: [4]. Let < X,p > be a complete mctric space with metrîc p: then H ( X ) ,  with 

the Hausdorff metnc h, is a cornplete metrïc space. 

Proof: See [II 

Deution 2.8: [4]. Let X be a metnc space nith metnc p. A map w : X - X is Lipschik with 

Lipschitz factor s if 3s > O, st s E 'R and 

Furthermore a mapping is contractive iff s < i. 

Note: The rest of the theorems and proofs in this Chapter are taken from 141. 

Theorem 2.5: Lf 1 : X - X is Lipschitz, then f is continuous. 

Proof: See [4] pg 34 

Theorem 2.6: If wi : s2 -t !R2 is contractive, with contractivity factor Si, i = 1,2, ..., n, then 

PV = q=lwi  : ~ ( 8 ~ )  - H ( x ~ )  is contractive, in the Hausdorff metric, with contractivity factor 

s = max{si : i = 1,2, ..., R ) .  

Proof: See [4] pg 34 
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Note: The notation f (On)(x) represents the nt" interate of I over f .  

Theorem 2.7: (The Contractive Mapping Fixed-Point Theorem) Let X be a complete metrk 

space and f : x - x be a contractive mapping. Shen there e>cists a unique point xf E X 

such that vx E x 

Proof: Let x E ,Yy then for n > rn we have 

Wow we can use equation 2.2 and the triangle inequalitg repeatedly, 

p(z, f(Ok)(x)) .p(x7 f(Ok-qz)) +p(f(0k-1)(x)7f(0k)(x)) 

< p(z, f (x)) + p(f ( 4 ,  f (f (4) + --- + ~(f'~'-~'(x), f'Ok'(x)) - 

< (l + s + ... + sk-' + S"~)P(X, f (x) )  + 

Therefore, we can rewrite equation (2.3) as 

Now since s c 1, the left side can be made arbitrarily small for sufkiently large n and 

m. Therefore, the sequence {f(On)}?,  is a Cauchy sequence. Since x is assumed to be a 

complete space, the lirnit point of the sequence = lirn,-, f(On)(z) is in X .  By Theorem 

2.5, f is continuous, and so f (x,) = f (limn-- f (On)) = ~ i m ~ - ~ ~  f (OnfL)(x) = xf. 

To prove the uniqueness of XI, suppose xl + x2, st z l  and x2 are both fked points. Shen 

p(f(x~), f(z2)) = p(xi.x2), but we have shown that ~ ( f ( x ~ ) ,  f(x2)) < p(z1,x2), therefore we get a 
contradiction. 

Coroiiary 2.1: (Collage Theorem) With the hpothesis of the Contnzctiue Mapping Füed point 

Theurem, 
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Proof: In Equation (2.3) we showed that 

Therefore, simply let X- - cm. 
Definition 2.9: Lzpschitzfibnction f is called euentualiy contmctiue: if 371 st f(On) is contractive. 

n is called the q o n e n t  of euentual contractiuity. 

Note: Even if 3ztli, i = j? ..+: t s t  1 < j < .-, < 1 5 n are not contractive, I V  = q=,wi malr still be 

eventualy contractive. 

Corollary 2.2: (The Generalized Coilage Theorem) Let f be eventuau- contractive with 

exponent n, then 3!xf E X st v x  E x 

In this case 

w-here s is the contractivity of f ( O n )  and o is the Lipschitz factor of J. 

Proof: Let g = f(On). We want to show that f ( O k )  converges to 2,; that is, f(~~)(x) is arbitrarily 

close to x, V k  sdc ien t ly  large. For any k ,  we can mite  k = qn tr, with 0 5 r < n. Therefore, 

Note: g(x)  = f(On)(x) 

However, both of these terms can be made arbikrarily small for 0 5 r c n and q suEciently 

large. The &xed point condition Çollows from the continuity of f ,  and uniqueness follonrs 

from the uniqueness of x,. 

For the inequality! we know fÎom Corollary 2.1 that: 



and 

The result follows horn equations (24) and (2.5). 

Note: It  is suificient for there to exist an n For which f is contractive, we do not need f to 

be contractive for all large n. 

2.3: Recurrent Iterated Function Syst ems, rifs 

The notion of ifs can be extended to ri fs .  Given a fküte collection of ifs, an ri f s is simply 

an ifs with the added capability of mapping different i f s  into one image. 

Example 2.4: Say you wanted to create the Barnsley fern with Sierpinski triangle leaves. 

Pie then need two i f s ,  one would create the Sierpinski triangle, the other would place the 

triangles in position of the leaves in the fern and would copy the Sierpinski triangle. The 
resulting image is shown in Figure 2.5. 
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Figure 2.5: Barnsley's fern with Sierpinski triangle Ieaves. 

One can think of R f's as being the coilection of ,fine mappings wi for i = 1,2, ..., n and a 

digraph G such that each node of the digraph represents an a&e mapping, and each edge 

(wî' w j )  means that the composition wj o wi is allowed. 

Note: It is important to notice that all of the relevant properties of ifs theory are camed 

over to r i f s  theory. We will now go on to define what is meant by a mapping betnreen 

sp aces . 

Let < h, > be a complete metric space for i = 1: 2' ..., n, and let H = -Hl x H 2 .  - - x Hn 

s t  H, is the set of non-empty compact subsets of &. Therefore we have a typical element 

(AI, A?, --., A,) E ï~ st is a non-empty subset of Xi. D e h e  the metnc h* as; 

h*((All .-.,An), (BI ,  .--, Bn)) = rnczx{h.&&, Bi) : i = 1,2, - - -n} 

Therefore, < H, h' > is a cornplete space. 

Let pKj : Hi -i H j  where Vcj = ukwqk st wijk is the kth contractive mapping hem Xi to 

,Yj - 

We can nom tale W : H - II st W(Al, Azl --., A,) = (LJjWlj(Aj). .--, LJjWnj(Aj)). It is important to 

notice that there must exist at Ieast one mapping W&- (for each i) with a non-empty image. 

Theorem 2.8: For VV defined above !3xr = (Al, A2, ..-,A,) ~t xi = CV(xf). 
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Proof: This Collows immediately from theorem 2.7. 

2.4: Partitioned Iterated Function S ys t  ems, pifs 

Most of the methods of Çractal image compression techniques descrîbed in this disser- 

tation use pifs, whïch are a generalization of ifs Using pifs to encode images simplines the 

encoding of images who's parts are not self similar to the whole but rather to other parts 

of the same image. Basically, the method works by limiting the domains of the mapping to 

parts of the space. 

Definition 2.10: fkom [4]. Let X be a complete metric space, and let Di X for i = i ,2 ,  ..., n. 

A partitioned iterated fùnction system is a collection of contractive maps wi : Di - x for 

i = 2,2 ,.-., n. 

The analysis, for the general form, of piis has not been developed yet. In particular. 

for pifs there is no equivalent theorem to the Contractive Mapping Fixed-Point Sheorem 

(theorem 2.7). However, pifs are well understood and work very well for the techniques 

descnbed in the followîng Chap ters. 

2.5: Conclusion 

In this Chapter, we have shown how to manipulate Itemted Function System so as to 

create Fractals, the different characteris tics such systems have, and the reasons t hey have 

them. Because of this work we were able to prove the Genemlùed Collage Theurem, Rrhich 

will allow us to compress images using ifs. We went on to describe two stronger kinds of 

iterated function systems called recurrent iterated function systems, and partitioned iterated 

hmction systems . Recurrent iterated hinction systems allow us to create complicated images 

much more easily than using ifs. The analysis of the existence of a unique f?xed point in such 

systems was given. Partitioned iterated function systems where introduced and a forma1 

definition was given. 
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CHAPTER 3 

Image Encoding using IFS'S, RIFS's and PIFS'S 

This Chapter introduces two image models of particular importance to fractal image com- 

pression of greyscale and colour images. We then conclude nith a discussion concerning the 

representation of images using ifs, rtJs and pifs. 

3.1: Image models 

To be able to work with and manipulate images, one must decide which of the available 

image modeis to use. Since the Computer can ody work with the Pixelked Data mode1 and 

our analysis of fracta1 image compression is much easier when working with the Functions in 

!R2 model' these are the only two image models we will discuss. 

3.1.1: Pixelized Data 

Imagine evenly dividing a grey-scale image into small dotso each of nrhich is a shade of 

grey We can therefore a s s i s  a discrete value to each dot, in the range O to b,  corresponding 

to its shade of gey. If ive only use one byte of data to represent the grey level value of the 

dot (which is tjpical): then it will be in the range of O to 255. By increasing the number of 
bytes used to store the grey level value, we increase the grey-scale resolution. Pixels can be 

thought of as such dots, such that the number of pixels used in an image corresponds to its 

resolution. 

We can now think of an image as a vector x = (xl, 1 2 ,  ..., x,), where q is the total number 

of pixels used in the image, and xi is a value in the range O to 255. Therefore, to calculate 



the distance betnreen two images x and y_ one would use the Root Mean Square. m: metSc 

d e h e d  as; 

To calculate the difference betnreen two images, one usually uses the Peak %nai-to-noise mtio. 

PSArR7 which is measured in decibels d B ,  and is defined as; 

for b defined above. Note that in our example b = 235. 

Although the computer can only deal 116th images as sets of pixels, when developing 

the analysis of nfs and pi/s it is easier to represent an image as the gaph  of a function. Let 
/ : P - r represent the grey value of the image, where the unit square P = {(x:  y) : 0 5 r: y 5 

i}, and r = [O, il. Therefore f (x, y) = z represents the grey-level value at the point (x. y) E I? 

One should notice that the graph of f is formed of the points (x, y, /(x, y)), and is therefore a 

subset of x3. See Figure (3.la), which is the graph of the Lenna image, such that the height 

is the grey-level going from black (low) to white (high), and see Fiawe (3.lb), which is the 

original Lenna image. 

Figures 3.la and 3.lb: The three dimensional graph of Lenna and the original Lema image. 



Before discuss f as an image model, we provide a few definitions. 

Definition 3.1: Two functions g and h are said to be equal if the set of points on which they 

differ has measure O. In such a case we Say that g = h almost everywhere. a-e. 

Definition 3.2: The essential supremum, ess mp, of a function f ( t )  as dehed in terrns of Lebesque 

measure m 1s; 

ess supf (t) = in f {IV r m{t : f ( t )  > N )  = 0) 

Dennition 3.3: Consider the u ( P )  spaces, such that f E LP if f 11 f 11 < w where 

This m e t ~ c  is known as the LJ' metnc. For a detailed discussion of the LP space the reader 

is recommended to read [12]. 

In our analysis of rifs and pifs it is not always usehl to use the Lm metric, therefore, let 

us also define the s-upremum metric. 

Definition 3.4: Given two h c t i o n s  f and g: the distance between them, with respect to the 

Dennition 3.5: Let us define the space of images as F = {f : f2 - R) 
func tion. 

Theorem 3.1: < F, pSup > is a complete metric space. 

We are now equipped with all of the necessary tools to discuss image processing with rifs 

and pifs. Since most images which one would want to cornpress are probably colour images, 

we nrill provide a brief discussion of image models for colour images. 

3.2: Colour Images 

The visible light spectrum is composed of a continuous range of hequencies, each de- 

scribing a colour. However, the sensitivïty of the human visuai system is Iimited. A colour 
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perceived by a h~~rnan  observer can be approlrimated b -  superposing red. green and blue 

values. One sho~dd not t hink t hat the red, green and blue systern is the only way of recre- 

ating the colour spectrum. for human observers, there are other systems as well. siich as 

MQ; YLW, HSL and the C'/Di(I<) system. 

A brute force approach to fractal compression of colour images would be to work ~ 5 t h  

three versions of the same image: the green: red and blue versions. One could then encode 

each separately, creating three pifs codes for the same image. To recreate the image. one 

would decode each separately and subsequently superpose thern, thus recreating the colour 

image. Fi,we 3.2 shows the Born chart depicting this brute Force approach. 

Obviously, this method is extremely inefficient and completely unpractical. 4 much 

better approach would be to consider the high correlations between the fkactal codes for the 

same block in each version of the image and the high correlation between colour planes. For 
instance, the correlation between the blue and red plane is approximately 0 -78, between the 

red and green it is approxïmately 0.89 and between the green and blue it is approximately 

0.94. Exploiting these correlations results in a much more eEcient encoding of the image 

svith very little degradation in quality. 

Such correlations between colour planes are not restrïcted to the red, green: blue system 

but also exïst in the (L,I,Q) and (Y,U,V) systems. As such, one can work Nith the system 
of his choice, without a si,@ficant effect to the compression ratio and image fidelity. 

To convert an image kom the (R,G,B) system to the (L,I,Q), one h d s  the red. green 

and blue components of each pixel, then convert each (R,G,B) triplet to its corresponding 

(Y,I,Q) triplet. This can be done with the following transformation; 

We can now use the same method of encoding the image with this system as ~ 5 t h  the 

(R,G,B) system. 

By eqloiting such correlations, the compression ratio is 2 to  2.7 times more efficient 

for colour images than the corresponding grey-scale image. The rest of this dissertation, for 

simplicity, nill only deal with grey-scale images. 
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Figures 3.2: The flow chart of the brute force approach for colour images. 
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3.3: IFS Representation of Images 

In hactal image coding, one tries to exploit self-similarïty between parts of the image 

and the image as a svwhole. If we can fhd a contractive aEne mapping f (x) = AX + y which 
converges to the desired image when iterated, then we could store the image: much more 

efficiently than storing the value of each pkel in the image. For example. consider Barnsley's 

fern, to store it in memory, using the value of each pixel, requires 65 536 bytes- However, 

to store the representation of its corresponding a 5 e  rnapping, W: only requires 96 bytes 

. 'ïo recreate the image, we iterate w on any initial Mage, where each iteration has a 

closer resernblance to the final image. Therefore, such a representation would be extremely 

efficient wïth regards to memory, and hence image transmition. 

Once we hzve TV it is rather easy to recreate the image, however for real images h d i n g  
w is difficult and cornputationaly long. Also, real images are not usuatly self similar to 

the ivhole image, but rather, different parts of the image are similar to other parts. Using 

rnappings Erom one part of the image to another creates a much better quality than using 

mappings of the whole image to different parts of the image. Such methods are used when 

encoding images with r i f s  and pifs: which is the subject of the nest Section. 

3.4: Image Enco ding wit h rifs and pifs 

Divide the imagee: r"-Y into non-overlapping squares called Range blocks. st u:=,& = 1'. 

Shen divide 12 into squares, called Domain bloch,  Di, possibly overlapping, that are twice the 

size of the range blocks. For clanty, see Figures 3.3 and 3.4. 

4 transformations x 6 numbers/transformation x 32 bitslnumber x 1 byte18 bits 

= 96 bytes 



------- y*. 
Figure 3.3: The range blocks of an arbitrary image. 

Figure 3.4: A few of the possible domain blocks of the s a m e  arbituary image- 

In both methods, rifs and pifs, ive will use contractive rnappings f?om domain blocks, Di 

to range blocks Rj. However, the way in which each chooses wkch Di will map to a given 

Rj is different. 

To encode grey-scale images we wïll use mappings of the form; 

Wlere the coordinates x and y, in Equation 3.2, represents a pixel, and z represents its 

grey-scale value. The coefficient si controls the luminance and the coefficient oi controls 

the luminance offset. One can think of them as the contrast and the brightness controls? 

In Chapter 2: al1 of our proofs were based on the Hawdorf metrie, however, we could also 

have used the Root h a n  Square E m r  metric, m, defhed in Equation 3.1. The reason we used 
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the Hamdorf metric and no t the m, is to simplifq- t.he proofs. However? in practice one shodd 

use the m s  metric since it is computationally easier to calculate. 

At this point pifs and n/s diverge; so we will consider each system separately. 

3.4.1: Encoding Images with Recurrent Iterated Function Systems 

d e h e  w as a niapping £corn H to H such that; 

Notice that the domain blocks D~ are simpIy the union of range blocks, &. Consider & 
as the graph of the grey-scale function over a, then a point in H is of the form (Al, A*, ..., An). 

The proof of the following theorem is lengthy and is omitted. 

In Chapter 2 Section 2.3, we defined the mapping ÇV which can now be mitten as; 

It is important to notice that our dehïtion of p;,, is only sensitive along the -mis7 the 

grey-scale component, and not the 2 and y-&, the spatial components. Sherefore, if W is 

eventually contractive, then the spatial components may actually e.xpand e thout  effecting 

the convergence of the system. 

3.4.2: Encoding Images with Partitioned Iterated Function Systems 

For the mappings defined in Equation (3.2) and the space H = (RI x 1, ..., x 1), we can 

define w as; 

W =u;=,w,, st wi :  SR^ - s3 
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Notice that CF;, can be contractive even if w; is only contractive for the Z--. 

1 1 1  r r ,  

Dennition 3.6: [41, pg 50 If zu : !R3 - @ is a map with (x , y  z,) = w(xl y7 ZL) and (x .y . z2) = 

ZL'(X, g, 4, then w is called z contractiue if 3s E (O, 1) st 

where x' and gr are independent of q or z2 Vx, g, zl: 3 - 

Theorem 3.3: Let wi for i = 1..n be z contractive rnappings from !IP to !P. Then the collection 

of these rnappings u:=,wi (which we M U  c d  W); is contractive in F nrith the supremum 

rnetric. 

ProoE [4] pg 51 Let s = rnax{si : 1 4 i 5 n), where si are the z contractive components of zu, 

then 
psup(~v(f ), W g ) )  = ~ ~ p { l W f  )(x, Y) - WW, Y)[ : (2, Y) E 12} 

(x, y )  E Di, i = 1, -.-, n) 

Note: By the Contractive Mapping Fixed Point Theorem, we are assured that w has a 

unique fixed point in F ,  even if the z-contractive maps are expanding along the x and y a'cis. 

The challenge of using pifs, for fractal image compression, is h d i n g  a pifs representation 

of an arbitrary digital image such that when iterated, the image produced appears to be 

the same to the human observer. We Rrill discuss various methods of hinding such pils in 

the following chapters. 

3.5: Conclusion 

In this Chapter we discussed the different practical image models for fracta1 image 

compression and showed how to calculate the difference between two images using each 

model. We also discussed how to represent colour images efficiently for our models. We 
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concluded nrith a discussion of image representations using ifs. ri/s and pijs For grey-scale 

images, and showed some of the andysis which causes such systerns to work. 
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CHAPTER 4 

Improved Partitionhg and Searchirig Methods 

So h r  we have used a brute force approach to Fractal image compression, which divides an 

image into fked size non-overlapping range blocks and overlapping domain blocks that are 

tnice the size of the range blocks. Then; each range block is compared to each possible 

transformation of each domain block, storing the transformations once found. As its narne 

implies, this method is not very efficient. There are many ways in which we could improve 

the brute force algorithm with respect to compression ratio; Edelity and speed. 

The compression ratio is mostly dependant on the number of transformations needed 

to store the image, by increasing the size of the range blocks used we reduce the number 

of transformations needed, thus irnproving the compression ratio. However, there are many 

ways of reducing the number of transformations, some of mhich may result in a loss of 

fidelity. The next Section describes methods of varying the size and/or sfiape OF the blocks 

to be used. By varying the size; we are able to cover larger parts of an image using only a 

single range block and thus increasing the compression ratio, or we can cover areas of hi& 
detail with smaller range blocks! thus increasing the fidelity. 

Another way in which we can improve the brute force approach is by reducing the 

processing time needed to encode an image. We can reduce encoding times in various ways, 

such as increasing the strength of the processor, or even better, by limiting the total number 

of comparisons to be performed, in an intelligent way of course. Algorïthms applyîng this 

method are discussed in Section 4.2. 

4.1: Block Shapes 

In this Section we will present dBerent methods of varying the size and/or shape of the 

blocks to be used, and discuss the effects of doing so. 
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4.1.1: Variable Sized Square Blocks using Quadtrees 

Quadtree partitioning is a rather simple method of di~lding an image into variable sized 

blocks so as to satisfy an error limit. When using the brute force algorithm, we simply find 

the domain block which resembies a particular range block the most. However, this does 

not set an upper Lmit  on the difference between the two blocks, and thus it is possible that 

the best domain-range block pairing is a poor one. If there are a si,gn&cant nurnber of such 

matchings, or if the blocks in question are in a particularly high detail area, then it is Likely 

that the decoded image will be of poor quaLïty. 

The Quadtree algorithm sets an upper limit for the difference between the domain- 

range mmatchings, thus improving the quality of the decoded image. It does so by dividing 

the original image into overlapping domain blocks of various sizes. For example, a n  image 
of size 256 x 256 could have domain blocks whose sides are of length 8,12,16,24,32, and 64. 

Shen it recursively divides the original image into non-overlapping range blocks until they 

are of a specified size, 32 x 32 for example. For each range block, it searches the domain pool 

For the domain block which resembles it the most (minimizing the rms difference). If the 

rms difference is smaller or equal to the maximum error; then save the transformation and 

delete the range block fkom the range pool. If no domain block is found, divide the range 

block into four equal subsquares, which are the new range blocks, and search the domain 

pool again, deleting the range block if a match is found. Repeat until the pool of range 

blocks is ernpty or the size of the range blocks is less tiian a specified lower limit. 

This method is called the Quadtree algorithm since it can be represented by a tree who's 

root is the original image and each node bas, potentially: four subnodes which correspond 

to the range blocks of the image. For a better understanding? see Figures 4.la/b/c/d, such 

that Fi,we 4.la shows an example of the quadtree partitioning of an image, Fiome 4.lb 

shows its corresponding quadtree, Fi,gure 4 .k  shows the partitioning of the Lema image 

and Fi,we 4.ld is the decode image of a dog using the quadtree algorithm. 
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Figure 4.la: An example of the quadtree partitioning of an image. 

Figure 4.lb: The quadtree corresponding to the partitioning in Figure 4.la. 
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Figure 4.1~: A representation of the Lenna image, partitioned using the quatre aigorithm. 

< Figure 4.ld: The decoded image 

algorithm. 

~f a dog, which was encoded with the quadtree partitioning 

Notice that in order to compare the domain and range blockst we must reduce the 
number of pixels in the larger domain block. Lf we are comparing the dornain blocks rvhich 
are t e c e  the size of the range blocks, then the number of pivels in the domain blocks must 

be decreased to one quarter or the original amount. There are hvo obvious ways of doing so: 
the preferred way is to take the average pixel values as the new pixel wlue, wliich is known 

as sub-sarnpling: the other is to choose a representative pixel as the riew pixel value. It is 
also important to note that usirig the transformations described in Equation 3.2 of Chapter 

3, we are multiplying each pisel wlue by scaiing factor Thus if /si[ > 1 for the mapping 
wi, then it is possible that CC; = Uizüi may not be eventually contractive, and therefore ive 
are not guaranteed convergence of the decoded image. As such, the values for mhich IsiI > 1, 

must be truncated to some fixed s,,,. 
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To decode the image. begïn by taking an arbitrary image; divide the image into the b a l  

quadtree partitioning we had so as to determine the position of the range blocks. For each 

range block, the domain block that maps to it is spatially reduced by a factor of t ~ o  using 

sub-sampling. Each pixel value is then mdtiplied by the scaling factor si, and oi is added to 

it before it is placed in its proper place in the range block, which depends OF the orientation 

of the transformation. The whole image is iterated in this w -  until the difference betiveen 

two subsequent iterations is srnaller than a gïven threshold value. 

For a more profound discussion of this rnethod, the reader is suggested to read [4]: in 

which Fisher diseuses, among other things, the effects of varying s,,, and the domain pool. 

4.1.2: Rectangular Block Shapes Using HV-Partitionhg 

Although the quadtree algorithm is much better than the brute force algorithm, it does 

not take advantage of natural structures in the image. A better method. which also has 

variable sized blocks; is the Horizontal- Vertical partitioning rnethod: or simply the H V  partitioning 

rnethod. Similarly to the Quadtree algorithm, an image is recursively partitioned, however, 

the partitions are not necessarily and usually not square shaped. This increases the power 

of the algorithm since the positions of the partitions are not !îxed and thus can be esploited 

to take advantage of self-similar structures. This method also has the advantage of using 

larger range sizes than the Quadtree method, since the Quadtree method always partitions a 

range bblock into four range blocks which are one fourth of its size, where as the HV-method 
alloivs you to partition a range block into two rectangles. 

Example 4.1: Consider the image in Fi,we 4.2a. VVe can then divide the rectangle & into 

the h o  rectangles RI and R2, shom in Fi,gure 42b, such that R~ contains the diamond and 

R2 contains the diagonal line. We can then divide RI vertically into b o  rectangles Rt and 

&. Dividing each of R3 and & into two rectangles creates the partitioning shown in Fi,g.re 
4.2~-  Therefore, each of the smaller rectangles in R~ can be mapped Grom R2 by a simple 
transformation. 
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Figure 42a: The original image- 

Figure 4.2b: The first partitioning of the image. 

Figure 4.3~: The next two partitions of the image. 

Ideally we would like to partition a block along the distinct horizontal and vertical lines 

of that block and along distinctive edges: nrit hoiit creating extremely narrow rectan,dar 

range blocks. To do so: imagine an image created of pixel values such that 1 5 i 5 iv 
and 1 5 j 5 M.  A distinct horizonta1 edge in the image Nill correspond to a signifkant 

difference in pixel values hem one row to another. We wodd  Like to prtition the image 

along the most sigdicant horizontal or vertical edge present. Therefore, we can begin by 

calculating the average difference between rows of pixels. Notice the clifFerence between 

rows i and i + 1 is (xj +i,j -xi +i+Irj)  / M t  repeat that calcdation for each pair of subsequent 

rows. In order to find the most distinctive horizontal line, it suffices to take the maximum 

difference calculated, however, we would like to avoid extremely narrow rectangles. As such 

the linear biased h c t i o n  min(i, N -  i -i) is introduced by mdtiplying it with the differences 

calculated. Performing similar calculations along the vertical columns of the image yields 



Without loss of geenerality, assume Ihll 2 [h,l ~p and that loti 2 lvql v*. We now partition the 
image horizontally along rom Z if lhli 1 Ivrl, ot-herMse partition the image vertically dong 

column k. 

Civen a range block, the domain pool through which we d l  search for a match Nill 

consist of al1 rectangles who's sides are larger by a factor of 2 or 3' where each side c m  

have a a e r e n t  factor. In order to compare the domain and range blocks, the pixels in the 

domain blocks are averaged in groups of 2 x 2, despite the ratio of range to domain side. 

Similady to the Quadtree approach, we perform a certain number of partitions before we 

begin to search for domain-range block matchings and continuously partition the particular 

range block until a predetermined threshold difference value is satisfied or the range block 

is smaller than a predetermined size- 

Recall that once an image has been encoded, it can be decoded at any size. Y. Fisher 
and S. Menlove took advantage of this in a decoding algorithm which they describe in [4]. 

The algorithm considers an N x image as an element of The method of calculating 

the fked point, the final image, is by decoding the image at kth7 ith, ith and finally $ of 

the final image size, in that order. By doing so, you perform much l e s  calculation than you 

normally wodd at the beginning of the decoding process, and once you decode the image 

at  the h a 1  size you only need to perform two iterates before achieving the final image. 

It is interesting to note that one could modify the H-V partitioning method so as to 

include partitions dong lines of 0, 45, 90 and 135 degrees. This would increase the strength 

of the method since one would not be confined to s t ~ c t l y  vertical or horizontal Lines. 

4.1.3: Region based Coding with a Heuristic Search 

So far we have been confined to square and rectaneda shaped range blocks, however 

there is another method, called FAC-P, which uses irregular shaped range regions, and was 

developed by Laster Thomas and Fanin Deravi [15]. This method begins by dividing an image 

into the standard, square, range and domain blocks. An arbitrary range block, called the 

seed, is chosen from the range block pool and its corresponding domain block match is 

found. This sole range block is now referred to as the range region, and the domain block 

as the domain region. The algorithm then recursive-ely tries to extend the range region both 
horizontally and vertically by verifying if the extended region has the same parameters as 
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the original seed transformation and that the range block being absorbed into the region 

is within a gïven threshold value of the mean squared error distance. Each time a block is 

absorbed into a range region it is deleted from the range pool, the algorithm continues until 

the range pool is empty. For a better understanding see Figures 4.3a and 4.3b: such chat 

Fi,gure 4.3a shows the seed and domain block rnatchïng along n?th a possible estension. and 

Figure 4.3b shows a range region and its corresponding domain region. 

Figure 4.3a: The seed (solid line) and a possible extension (dashed Line) . 

Figure 4.3b: A range region and its corresponding domain region. 

One may notice that the region developed about a given seed, depends a lot upon the 

seed chosen. It may be that the domain region cannot be extended in the corresponding 

direction because it is at the edge of the image: or the range block being rejected would 

be accepted if the domain region was shifted. Thomas and Deravi knew this, and as such 

modified there algorithm, calling it FAC-AP. The FAC-AP algorithm is identical to the 
FAC-P algorithm with the exception that when a range bblock is rejected, before considering 

another range block, the domain region is shiFted horizontally or vertically, by one block, 
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in the opposite direction of the rejected range block. The aigorithm then checks the new 

transformation for each block already in the range region. in order to ensure that the change 

is acceptable for each one as well as the range block being considered as an extension to the 

region. 

Thomas and Deravi also knew that a block along the edge oE region S: may have been 

accepted by an adjacent region T if it was stiU available mhen T was being created. It may 

also have created a better encoding if such a block had belonged to region T.  They hrther 

improved the algorithrn, to take such cases into consideration, and called the rnodified 

algorit hm the FAC-ACP method. It basically allows for competition between adjacent 
rcgïons for any range block that can be encoded with a smaller error by one region and that 

does not breakup the original region to which it belonged, see Fi,wes 4.4a and 4.4b. 

Already enca ded 

The image block 
being competed for 

New region beuig i \ Do not ovmmite this block 

Figure 4-4a and 4-4b: Which show two regions competing ta include a range block and a block 

which should not be considered as a candidate to belong ta anot her range region, respectively- 

Compared to the standard brute Force algorithrn, when using the Lenna image, they 

achîeved almost the same PSNR, a difference of -3 dB, but attained a compression ratio of 

41:1, compared to 19:l for the brute force image. 
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4.1.4: Other Partitionhg Methods 

There are many different ways in which one can partition a n  image into domain and 

range blocks. A n  interesting method not mentioneci so far is one which uses trian,dar 

shaped blocks oE variable sizes. In trian,dar partitioning, one divides the original image 

diagonally into two triangles. We then recursively subdivide each triangle into four triangles 

by connecting the midpoint of the sides of the triangle. This method is potentially stronger 

than the previously mentioned methods since the triangles can have any orientation and it 

can be adjusted so that triangles have self-similar properties. Fiame. 4.5 shows a partitioning 

of the Lenna image using triangular partitioning. 

Figure 4.5: A representation of the Lenna image, partitioned using the triangdar partitioning 

method. 

Despite the shape of the blocks one may use, the main differences between blocks wi11 

be along the edges, since local self-si mi la rit^ at different scales is unlikely to be perfect. 

Fisher proposed that the only method of solving this problem, without postprocessing is to 

use an algorithm which is sensitive to the edges. He went on to describe the algorithm as 

follows. 

1: Vectorïze all edges of an image, forming chains of points. 

2: Encode the edge chains using a 2-dimensional bacta1 method, which nill map one 

arc to another. Create domain and range blocks with the two arcs, respectively. 

3: Calculate the optimal grey-level scaling and offset for each block. 
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4: Since al1 parts of the image containing an edge will be partitioned, those parts of the 

image remaining can be partitioned using any of the methods previously discussed. 

4.2: Improved Searching Methods 

In the previously mentioned methods, except the region based method, the dornain pool 

consisted of al1 possible domain blocks of a particular shape. It is the exhaustive search 

of al1 possible domain blocks that takes the largest portion of time to fractally encode an 

image- Luckily there are many ways one could speed up this process. for instance, one could 

simply look for the first occurrence of a domain block chat is nrithin a gïven tlxeshold error 

vaiue, or one could search through the dornain pool in an intelligent manner: which is the 

topic of the next Subsections. 

4.2.1: Lean Domairi Pools 

In [14] Dietmar Satipe published the results of a quadtree partitioning algorithm which 

Iimited its search OF domain bbcks only to those nrith a high variance. By noticing that 

most domain blocks used, in the quadtree algorithm described above, were those with a 

high level of variance, he proceeded to limit the domain blocks that could be piaced in 

the domain pool to those with a high level of variance. As such, only a small portion of 

blocks would not have an optimal domain-range matching, but the processing time would 

be  si,pnificantly decreased. Fiove 4.6a shows the variance plotted against the number of 

domains and Figure 4.6b shows the 8 x 8 domain blocks used, in black, in the Lema image. 



Figure 4.6a: The graph of the number of domain blocks vs variance, for a quadtree partitionhg 

of Lenna 

Figure 4.6b: The actual domain blocks used (in biack) for the encoding of the Lenna image. 

Let a denote the portion of domain blocks which are kept in the pool, therefore as 

a decreases so will the processing tirne. This is to be expected since there Nil1 be fewer 

domain blocks to search through in order to find a domain-range block matching. However, 

since we are using a quadtree approach, the fidelity will actually increase, since some of the 

large range blocks that could previously be matched must now be subdivided into smaller 

sub-squares. By increasing the number of range blocks, one increases the quality of the 
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decoded image. but decreases the compression ratio, even though it is only slightly in this 

case. 

In order to increase the compression ratio back to that of the brute force approach, 

Saupe Çound a more efficient nray of s t o ~ g  the domain indexes. LE one considers a 512 x 512 

pixel image wîth domain blocks of size 8 x 8, then there are 4096 = 2" domain blocks in 

total. Storinp the index value of so many blocks requires 12 bits per block. Since only a 

fraction of the total number of blocks are used, say 1000, we can use a more efficient index 

storing systern, namely the white bhck skTpping method, tubs. Think of the 1000 domain blocks 

as a bitmap, then the wbs method, described in [U], describes a way of encoding a bitmap 

as follows: If the whole bitmap is white, mark it as O and stop, otherwise, mark it as 1 and 

partition it in a quadtree manner. Repeat this for each subblock of the bitmap in a counter 

clochvïse direction until you have reached a single value which is either encoded as a O for 

white: or 1 for non-white. For a better understanding see Figure 4.7. 
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4.2.2: Points in an Abstract Space with the FFIC Algorithm 

Let us consider a block of pixels as a point which cûn be mapped to an absitract space, 

such that any tivo points which are close in the space are perceptually simiiiar to the human 

observer. In doing so: one could End the optimal domain-range block matching very quickly, 

simpLy by consideLing those dornain blocks which are close to the range block in the space. 

John Kominek [IO]: developed an algorithm he called the F F X  algorithm, which uses this 

idea. The FFIC algorithm beegins by partitioning an image in the same way as the brute 

force approach, ie: non-overlapping range blocks whose union covers the entire image, and 

overlapping domain blocks tTvice the size of the range blocks, such that their union covers 

the entire image. In order to map the blocks into the same space, the domain blocks m u t  

be subsampled to the size of the range blocks. \Vë can now consider each n x R block as an 

nWmmensiona1 vector. 

Since we compare each possible a 5 e  transformation of a domain block for each range 

block, we must take tfiis into account when converting our blocks to points. This can be 

done by normalizing each block so that its pixels have a fked mean and variance. 

1 
var = -C(zI n - T ) ~  = 

Where z: are the normalized pixel values. Thus, when all of the blocks are mapped to the 
space, any two blocks whkh are close together wïll be perceptually simiIar to the human 

observer, through some &ne transformation. 

The FFIC algorithm uses r-trees to map the blocks to the space and limit the domain 

blocks to be compared, for any particular range block. An r-tree is a data-structure capable 

of efficiently indexing a multi-dimensional space, for a better understanding see [7]. For the 

FFIC algorïthm, the r-tree basically groups the domain blocks into nested sets of rectangles. 

Shen, for any given range block, the algorithm finds the rectangle in which it belongs and 

compares the range block to those dornain blocks which are in the same rectangle. See the 
esample in Fiopre 4.8 for a better understanding. 

The distance metric used to compare domain and range blocks is a question of choice, 

but the absolute error and the root mean square metrics are satisfactory. 
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Figure 4.8: An example of an r-tree grouping of domain biocks- 

Komenik tested his algorithm on a 486DX2-66 wîth 16MB RAM and concluded, among 

other things, that a branching factor of 16 is satisfactory. So as to have a Fair evaluation of 

his rnethod, he compared the compression speed, fidelity and compression ratios achiewble 
to that of the leading kactal image compression program at the time, 1995. As Fiove 4-9a 

shows, for the bird image (Fimgne 4.9b), the FFIC algonthm encodes much more quickly*? 

about 30 times faster, than the ïIC9' program. Figure 4.10 is a graph of the rms error vs 

the compression ratio of the same bird image for the FFIC, IIC3 and LBF2 algorîthms. 

Although the fidelity of the FFIC algorîthm is not always better than the IIC3, it does 

perform well and is faster than the LBF algorithm. 

IIC3 is the acronym for Iterated Sgstems Incurporated Images hcorporated III program, 

which \vas run on the setting " best". 
LBF stands for h ~ h t  brute force, which is the same as the brute force algorithrn, 

except that the domain biocks do not overlap. 
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Fractal Compression of Bird 

Figures 4.9a and 4.9b: Time needed to encode the  bird image using the FFIC and IIC3 

methods, and the o r i g i d  bird image- 

Fractal Compression of Bird 

Figure 4.10: The graph of the R M S  error vs Compression ratio for the LBF, FFIC and IIC3 

algorithms. 

Figure 4.11 gives a visual cornparison between the FFIC, IIC3 and LBF algorithms. 

Although the FFIC algorithm has a small rms error, it tends to blur contours and becomes 
blocky at a compression ratio of 30:l. 



Figure 4.11: Visual cornparison of the FFIC, IIC3 and LBF algorithms. 

Top Left: LBF 20:1, rms 4.06 

Top Centre: IIC3 20:1, rrns 6.21 

Top Right: FFIC 20:1, rrns 4.63 

Bottom Lefi: LBF 30:1, rms 5.40 

Eottorn Centre: IIC3 30:1, r m s  7.05 

Bottom Right: FFIC 30:1, rrns 6.12 

4.3: Conclusion 

In this Chapter we introduced various methods of irnproving the compression ratio, 

image fidelity and encoding time, compared to the brute force method. We discussed the 

different effects obtained by varying the block shapes and have presented some non-trivial 

rnethods of efficiently searching for a satisfiable domain-range block pairing. 



CHAPTER 5 

Fracta1 Compression of Video Sequerices 

As most people know: video sequences gïve the appearance of continuous smooth motion 

by displaying a sequence of still images, honm as h-ames, at a certain rate. With this in 

mind, there are a few obvious ways in which h-actal image compression can be extended to 

fractal video compression. For instance, one could encode each frame individually, or one 

could encode a subset of the total hames together by considering three dimensional domain 

and range blocks, such that time is the third dimension. Each has its potential advantages 

and each is applied very differently than the other, and as with fractal still image encoding 

methods, each can be done differently. In this Chapter we will discuss different methods that 

have been developed using three dimensional blocks and encoding each kame independently. 

5.1: Inter/htraframe Fkact al Video Encoding 

There are methods which fractally encode the first frame, then Fvill approximate the 

subsequent hames using domain regions £rom the current barne, intrahame: and/or previous 

kames, interfiame. By doing so, they can improve the image quality andior compression 

ratio. The following subsections describe methods &ch use t hese techniques. 

5.1.1: Simple Motion Compensation 

A very simple motion compensation hactal video algorithm would be to partition each 

bame in the same way, regardless of the image. Fractally encode the first hame using 

any method which does not change the domain or range block shapes. This can be the 

brute force algorithm, or a simple improvement to it using an improved searching method. 

Compare Erames xi and xi-l and let T denote the set of range blocks which are si,@icantly 

. --  Page 49 - . a  



different, ie: geater than a given error threshold. Such a cornparison can be very quick. for 

instance one may simpiy find tlie clifference in gre-scale v-due for each pisel. The range 

blocks who's difference in pixel values is greater than the threshold can then be placed in T. 

In order to encode Frame xi, we do not have to encode al1 of it, but rather only those range 

blocks which belong to T. Doing so wïll greatly increase the compression ratio while effecting 

the quality of the decoded image wry Little. Notice that we can still control the decoded 

images quality by adjusting the error threshold for the di8èrence in grey-scale values of 

consecutive hames. 

There are a few options with regards to the domain pool to be considered for the 

encoding process. We could include those domain blocks of the curent £rame and/or those 

of the preevious kame or hames. Obviously, a larger domain pool wïll result in better qualit- 

decodings, but svill also slow down the encoding time. 

Since the partitioning is independent of the image and the domain and range blocks are 

of a fked size, this method is not practical. It is however, the basic idea of much better 

algorithrns which improve its compression ratio, encoding time and resulting image quality 

and, as such, d o w  for practical approaches to h-actal video compression. 

5.1.2: Low Rate Video Coding 

Bernd Hürtgen and Peter ~ u t t ~ e n [ 8 1  developed a practical fkactal video compression algo- 

rithm nrhich is based on the method described in Section 5.1.1. In the5 research, they 

concentrated on low-rate video coding with applications in mobile video telephony? telecon- 

ferencing and narrow band ISDN distnbuted audio-visual services Erom 4.8 to 64 Kb/s. 

Their method uses the difference in ge-scale  values d, between the curent frame x, and 

the previously decoded frame xk-,, in order to determine n-hich regions must be considered 

in the next encoding. Since the value of 6 = Zn -x:-, shows those areas which have changed 

in grey-level value, we can divide the frame into two regions. The fmt region is referred 

to as the background and consists of the union of regions for which the decoded image 

(which they refer to as the prediction) is satisfactory. The other is called the foreground 

and consists of those areas where tlie prediction is unsatisfactory. VVe can then concentrate 

solely on encoding and transmition of the foreground image. 
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The domain pool nrhich Hürtgea and Büttgen use consists only of those blocks in the 
curent £&me; both background and foregrouud. It is important not to use only those 

domain blocks lrom the foreground since the Çoreground ma- be very small at times, thus 

resdting in a poorer quality decoding. Using blocks From both the foreground and back- 

ground also increases the flexibility of the encoding scheme regardless of the size of the 

foreground. 

The partitioning method they employ is different From those that have been discussed 

in this dissertation, but is based on the simple quadtree appioach nrith variable block sizes 

of 4 x 4, 8 x 8 and 16 x 16. The partitioning is performed pnor to and independently of the 

encoding of the image. Doing so increases the processing speed since only those blocks chosen 

by- the se,aentation must be considered, and forces one to incorporate a priori howledge 

into the segmentation algorithm. The way in which they incorporate this knowledge is 

by employing a gain/cost criterion, which is basically the trade off between the cost of 

encoding a certain block and the gain in the reduced visual error of doing so. The aim 

of the segmentation is to &ci the foreground image which maximizes the total gain/cost 

relation. It is important to notice that the cost of encoding a block is the same for all 

biocks, therefore, the only criterion that must be considered is the gain. 

Pnor knowledge is incorporated in the method by estimating the reconstruction error, 

or decoding error, for each block. Hürtgen and Büttgen showed that this reconstruction 
error is highly correlated nith the block size, and thus estimate it by only considenng the 

block size. They go on to suggest that considering the grey-Ievel distribution as well as the 

block size would yield improvements. 

For a better understanding of the segmentation procedure, let us denote an N, by 1~~ 

pixel image bby an N-dimensional point x = (xl, 2 2 ,  ---, x,V)= = E 8 such that i 5 i < N = 

N, N, and xi represents the grey-levels of the image. 

Let bG)(x) = (z~,)~, st xjk E P and jk E NU): be the jth block within image s, where 

~ ( j )  denotes the set of al1 indices of elements belongïng to the jCh blo& and 1 5 k 5 11.1 = 

k&. - filbv /~b, N = Aiz . Ny is the nurnber of elements within the block. 

Let P(Z)  denote the power (level of error) of an image, and let ~(b(j)(x)) denote the power 



of the jth block nrithin the image 3. Therefore using the euclidean norm we can wïte 

Recall that we only want to encode those blocks that belong to T, ie: those which are in 

the foreground. Notice that the total number of blocks NB which can be encoded is limited 

by the rnavimum data rate and the se,mentation overhead- 

Begin by calculating the power pd(bG)(dn)) for each block bu)(&) which is in the fore- 

gound. Shen calculate the reconstruction error P~(~~)(X,)), using the following Equation. 

where ibf is the block size and pl  and p2 are d e t e r a d  so as to maxirnize the reconstruction 

quality. Through experimental results Hürtgen and Büttgen found that pl and pz only 

needed to be adjusted once. 

The coding improvement is nom calculated for each block by using the Equation 

If p,(b(j)(x,)) 2 pd(b(j)(d,)), ie: the error introduced by encoding a block is greater than the 

prediction error, then the block is not taken into consideration for encoding. If ~,(bb) (2,)) c 
~ d ( b ( j ) ( & ) ) ,  then encoding the block will yield an improwment and is therefore a valid 

candidate Çor encoding. However, since we are limited in the number of blocks we can 

encode, we must then sort the blocks in descending order of improvement h ~ ( j ) ,  and only 

encode the Ç s t  & blocks. This process is theo repeated iteratively. 

Note: Since ive are using a quadtree structure of block partitioning, we are limited in the 

choice of blocks Ive can take. Figure 5.la shows the quadtree segmentation while Fi,we 

5. l b  shows the corresponding Çactal encoded foreground regions. 
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Figure 5.la: The quadtree segmentation of the foreground region. 

Figure 5. lb: The fkactal encoded foreground region. 

Hürtgen and Büttgen claim that wïth a 64 Kb/s ISDN B-charnel, a frame rate of 25 Hz 
and only encoding every third Erame (the skipped kames are interpolated at  the receiver) 

we ody have 7680 bits of data for each frame. Using the quadtree se,mentation requires 

approximately 1000 bits of overhead, tnus leaving approximately 6700 bits of data with 
wliich we can encode the foreground image. They tested their method on the Miss Arnerica 

test sequence and obtained a quality of 34-35 dB, showing that their method can encode 

typical videophone sequences, with reasonable quality, at the practical data rate of 64 Kb/s. 
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5.2: Three Dimensional Iterated Function S ystems 

Perhaps the most obvious extension of fractal image compression to fractal video com- 
pression. is to add an e-utra dimension representing time. Wë can then encode the video 

sequence as a 3D object which is bounded in two dimensions (spacial dimensions x and y) 

and unbounded, practically, in the third temporal dimension z. Sotice thai we can take z to 

be any finite positive number, if z = 1 then it  is considered to be a still image, othenvise it 

can be considered a video sequence. The mathematical analysis showing why such methods 

work is extremely similar to the analysis shown in Chapter 2 and as such, is not discussed 

any Eurther. 

5.2.1: 3D fiactal Block Coding of Video Sequences 

1l.1.S. Lazur and LT- ~ r u t o n [ l l ]  have developed an algorithm which nill use 3D pifs to 

encode video sequences. They consider ten Erame sequences at a time and encode them 

using three dimensional range and domain blocks. The range blocks are of size B x B x T, 

where B represents the spacial length of the kame and T the temporal length of the sequence. 

The domain blocks are taken to be of size M~ - B x 1bf2 - B x - T ,  where Mi is a scaler for 

i = l ,2 ,3 .  

Each range and domain block is chosen Gom an R-Frame and D-Frame respectively, 

which consist of consecutive non-overlapping groups of input frames. Each R-Frame is 

associated to a D-Frame such that the R-Frame is physically inside the D-Frame, but both 

end at the same temporal location. Notice that a D-Frarne can start pnor to its associated 

R-Frame and is limited in spacial size by the size of the hames and limited in temporal size 

by the number of frames from the b s t  Frame to the current. The temporal limitation on 

the D-Frames mal- be too large and as such we must limit it in temporal length by j - hi3 - T 

fiames such that j E H\{o). 

The indexing of the fiames within the R-Frames and D-Frames begins at the most 

recent kame and increases as we move backwards. W5 also denote the R-Frarne and D- 
Frame beginning at tirne t by R-Frame(t) and D-Frame(t) respectively. See Fi,gure 5.2 for a 

better understanding. 
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Figure 5.2: An example of an R-Frame, D-Rame, range block and domain block- 

Since the motion on most video signals changes smoothly, which is especially true for 

teieconferencing, each Erame will be similar to the last. Thus, we do not have to consider a11 

of the possible pixel s h a n g  operations, of which there are obviously many more than in 2D 
lractal encodings. Lazar and Bruton limited the number of isometries by only considering 

transformations which tvere the result of Erst perforrning intra-hame transformations, then 

inter-frame transformations. Doing so greatly reduces the number of possible isometries 

and bnngs them into the practical realm. We can now describe all possible isometries by 

S(I) = Sinter (1) + SintTa([). The intra-frarne isometries are the same as in the 2D case but the 
inter-frame isometries are limited to two kïnds, the frames which remain unaltered and the 

kames who's order is reversed. 
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Since the search For a reasonable domain-range block matchïng is what basically deter- 

mines the speed of the encoding, of which there are too many possible combinations in our 

case, Lazar and Bniton employ an efficient searching rnethod. They restricted their search 

to those donain blocks which are phyçically near the given range block and denote the 

matchhg lmction by N ( I )  . Sherefore if the address of the range block is (Nl, &, N3), then 

o d y  those domàin blocks whose addresses are given by (NI +kL -LI! 4 2  f k2 - L2, 1V3 +k3 - L 3 )  are 

considered. such that Where -K, 5 ki 5 Ki, i = i ,2,3,  (f i ,  K2: K3) are fked for all R-Frarnes 

and (LI, L2, L3) are the search step sizes. Notice that in order to address a domain block we 

need only give (kLl ks, k3)- 

In order to improve the decoded image quality of the Erames, they use a three dimen- 

sional ecluivalent to the quadtree splitting method as well as a temporal splittinp method. 

Range blocks can either be split spatially by four or temporally by two depending on the 

distribution of errors in the onginal range block and the overall encoding error. When the 

encoding error for a given block is p a t e r  than a Exed threshold, the block is split in one 

of the two ways. If the errors are distnbuted evenly throughout the fiames of the range 

block, then the block is split spat idy into four equally sized blocks who's depth remains 

unchange. If the errors are not evenly distributed throughout the hames, then the block is 

spiit temporally in half, where the spacial size remains the same but the temporal size is 

haK of the original block. For a better understanding see Figure 5.3. 

The method in which the frame encoding errors are determined is by computing the 

distance between each frame fiom the encoded block rl and t.he original kames from the 

block ri. If the normalized difference between the maximum and minimum of these distances 

d(r:, ri) is greater than a given threshold, then the error distribution is said to be uneven, 

otherwise it is said to be evenly distributed. 

Once the encoding is done, we can decode each R-Frame in a similar iterative manner as 

that used for 22D encodings. Notice however that we need all of the hames corresponding to 

the appropriate D-Frame so as to decode a @en R-Frame. If there is data outside of the R- 
Frame which is contained in the D-Frame, then such data dl also be required for decoding 

the respective R-Frame, but it rvïll not be iterated. The range blocks who's corresponding 

domain block is completely contained in such an area, outside of the R-Block, can be decode 

in a single iteration. 
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Figure 5.3: Flowchart of the aigorithm used to determine how to split a given range block. 

Since adjacent frames of a video sequence are usualty similar, it is better to begin with 

the previous frame as an initial frame for the current hame and then iterate, ie: The final 

iterstion for R-Frame(t - k - T) is the same as the &st for R-Frame(t). 
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Using experirnental results on the standard salesman and Miss Arnerica vide0 sequences, 

Lazar and Bruton show that their method results in a compression ratio of40:Z to 77:1, with 

an acceptable image quality for teleconferancing. The? admit however, that the decoded 

vide0 sequence has a jerkiness effect on those areas of rapid rnovement. Because of the high 

computational costs and approximately fixed cost of decoding, their algorithm would be 

bet ter applied to those applications which need onlj- be encoded once, but decoded many 

time. An example of this is multi-media. 

5.2.2: Improved Searching and Classification Met hods for Fractal Volume 
Compression 

Cochran, Kart and Flynn [3] have also researched fractal image compression of video 

sequences using 3D blocks, and have developed a better method than the one discussed 

in the previous Section. Their method uses a combination of classiscation by principal 

component analysis, a down-sampled nearest neighbour seardi and macro blockç. 

Table 5.1: The five block categories. 

I 

A? - A ,  E 

true 
true 
true 

f alse 
f aise 

They use the principal component analysis of volumetric blocks to classify the blocks 
into one of five classes, shade, midrange, rnixed edgeo double edge and simple edge. Doing 

so greatly reduces the searching time for an adecluate domain-range block pairing. This 

method beOins by calculating the value V ( X )  of a scalar volumetric dataset of the point 

3: E @, ie: a 3D domain or range block. The total mass M of the block is then defined as 

C,,, V ( X )  and the centroid c  E P as + CI,, x - v ( x ) .  The rnatrix S = C,,, v(x)(x - c)(x - c ) ~  is 

then found, along with its associated eigewalues 5 xz f A3 and eigenvectors ü1,û2 and û3. 

It  is important to notice that S is a sjmmetric 3 x 3 positive semidefinite matrix? as such, 

its eigenvalues Xi, i = 1,2,3 will be non-negative real numbers. We then go on to normalîze 

the eigenvalues as A; = ,\l/,\~, X; = A ~ / x ~  and = i and find a threshold value E c: 1. Doing 

SO 
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class 
midrange 

mked edge 
double edge 
single edge 
mixed edge 

r ~3 - A ~  5 E 1 Y\3 - diI 5 E 

true 
true 
f alse 
trzte 

f alse 

t rue 
f alse 
Ialse 
f alse 
f alse 



Ml1 allow us to place each block into one of the five categories according to their normalized 

eigenvalues using Table 5.1 - 

Classif~ng the blocks in such a way obviously decreases the total number of compar- 

isons perforrned and consecpently reduces the search time considerably- Nthough when 

considering rnixed edge bblcks one must consider all 48 possible isometries. Cochran et/aZ 

developed a method of reducing the number of isometries considered For single edge and 
double edge range blocks by considering vectors associated with them. For simple edge 

blocks, the vector zül is found such that it is normal to the plane that fits the rnost dense 

region of the block, where as for double edge blocks, the vector 7& is taken as being parallel 

to each significant edge in the block. Thus, when we are considering an isometry 1,: we can 

h d  the eigenvector affected by this isometry and denote it as r , (c~)?  süch that, 

WL if R ïs a simple edge r a n g e  block 
GR = 

w 2  if R is a double edge r a n g e  block 

22rl if D is a simple edge r a n g e  block 
G D  = 

122 if D is a double edge range block 

We only continue to consider an isometry if &(GD) and û~ are approxïmatel- parallel, or 

perpendicular, ie: 1 5 ~  - r;(ûD)l 5 1. 

In their test results the authors showed that using this classification scheme o d y  re- 

duces the image quality by a fenr tenths of a decibel, while decreasing the encoding time 

significant ly. 

To hirther decrease the encoding time, Cochran et/aZ also apply a nearest neighbour 
searching method. Doing so increases the search space and thus increases the fidelity of 

the decoded image, however, since we are dealing with 3D blocks, the dimensionality of 

the search space increases drastically. In order to keep things at a manageable size, the 

authors suggest d o m  sampling the blocks fbst, which will reduce the dimension of the 

kd-tree used. Although doing so does decrease the dimension to a manageable size, we are 

no longer guaranteed an optimal match but only an adequate match. We then need only 

search through the n nearest neighbours of a range block to find the optimal match from 

those, or ure can take the h s t  acceptable match. 

Using such a nearest neighbour search is essential to reducing the encoding time from 
hours to minutes. The authors did not test the effects of such a search on image fidelity 



(because of the huge computational cost), but they claim it to be negligible. The algorithm 

can be further enhanced with the use of macroblocks or localized searching. 

Using localized searching, one can search only a smalI number of spatiall y close blocks. 

Using the identitÿ transformation and a brute force approach. ure can divide the blocks into 

two groups. The first and second goups consist of those blocks for which the comparïson 

was acceptable, and those that were not, respectively. We c m  then perform a second search 

through the second group, considering all possible transformations. For this search to be 

manageable, we can employ one of the irnproved searching methods previously discussed. 

To use macroblocks, one must divide the whole v o l ~ e t r i c  data into large blocks and 

work with the blocks indi~idually. Finding the kd-tree for each block increases the com- 

pression tirne: but also increases the compression ratio. Experimental results conducted by 

the authors show that the loss in Mage fidelity, because of the limited domain pool, is only 

a few tenths of a decibel. Figure 5.4 shows the fidelity, for different compression ratios, of 

the above algorithm. 

5.3: Conclusion 

In this Chapter Ive have shonm how easily hactal image compression can be extended 

to fractal video compression. Both motion compensation and three dimensional iterated 

function systems have advantages over the other and over other encoding techniques, but 

both remain to be M y  developed. Because of the short decoding times but lengthy encoding 

times, fractal video compression techniques, like bacta1 still image techniques, are better 
suited for multi-media applications. Even though fractal video compression is only in its 

early stage of development, it surpasses Vector Quantization rnethods and is Mthin one 

decibel PSNR of the Domain Cosine Transform techniques. 
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Figure 5.4: One fiame of a video sequence 

center), 25:l (upper right), 30:l (lower left), 

of a n  IlvIRL. Original (upper lefi), 20:l (upper 

43:l (Iowes center), 729:l (Iower right) , 
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