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Abstract 

Robust Credibility and Kalman Filtering 

Mike Tarn 

Credibility theory is an experience rating technique in insurance used to combine 

an estimate of the expected claims of a contract with the estimate of the expected 

claims of a portfolio of similar contracts. However, the credibility estimate rernains 

sensitive to large (outlying) claims. In this thesis, robustification of some classical 

credibility models are presented via robust Kalman filtering. Credibility theory has 

been shown to be a special case of the K h a n  filter (De Jong and Zehnwirth, 1983), 

thus existing research on the robustification of the K a h a n  filter, for example, Cipra 

and Romera (1991), can be applied to robustifying Kalman filter credibility models 

(Kremer, 1994). After describing in some detail the classical and robust models of 

credibility, we present an implementation of a robust Kalman filter credibility mode1 

and apply it to Hachemeister's dataset (Hachemeister, 1975). 
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Introduction 

Credibility theory is an experience rating technique in actuarial science. Experience 

rating is the process whereby the experience of an individual risk is used to calculate 

the premium rate for that individual. In Credibility theos. the premium for an 

individual risk is computed by combining the experience of the individual n-ith the 

experience of a larger collective. However; estimation of the credibility premium can 

be adversely dec ted  by larger than normal daims. In that case, robust methods can 

be used to provide a robust credibility premium. The ICaLman filter is also useful 

in credibility theory. Various credibility models have been shown be special cases of 

the Kalman filter. In applying the Kalman filter to credibility, we can also look to a 

robust Kalman filter to provide a robust credibility premium. 

In this thesis, 1 review the application of robust statistical methods and the 

Kalman filter to credibility theory. Using some results available in the credibility 

Literature, 1 also discuss an empirical robust Kalman filter credibility mode1 and some 

of the difficulties that can arise in the implementaiion. Findy,  some numerical results 

are presented. 

In chapter 1, a review of credibility theory is given. The limited fluctuation 

approach to credibility is discussed first. This is followed by a discussion of exact 

credibility- The greatest accuracy approach to credibility is presented next. This 

approach includes the models of Bühlmam, Bühlmann and Straub, and Hachemeister. 

Findy, some empirical estimators of the parameters of the credibility premium are 

shown. 



In chapter 2, the application of robust statistics to credibility is esamiued. A brief 

review of some results fiorn robust statistics which are useful in robust credibility is 

followed by an elaboration of the robust credibility rnodels of Künsch, Gisler and 

Reinhard, and Kremer. 

In chapter 3, the Kalman filter and its connection with credibility theory is pre- 

sented. Two methods of obtaining empirical credibility estimators in the Kalman 

£ilter fkamework are then given. Finally, a robust Kalman filter is considered and one 

of the empirical non-robust K a h a n  filter credibility models is adapted to provide an 

ernpirical robust Kalman filter credibility rnodel. 

In chapter 4, numerical results of the the various models and estimators discussed 

in the previous chapters are presented. In this chapter, an attempt is made to compare 

the performance of the various rnodels using a dataset of claim amounts both m i t h  

and without an outlier. 

In the conclusion, a summa.ry of the thesis is given as well as what further work 

may be done in the area of robust credibility and K h a n  filtering. 



Chapter 1 

Credibility Theory 

Credibility theory is an experience rating technique in actuarial science. It is used 

to determine the expected claims experience of an individual risk when those risks 

are not homogeneous, or the claims history of the individual risks are scarce, but the 

experience of the collective is extensive. Given that the individual risks are embedded 

in a heterogeneous collective, the objective of the various credibility formulas is to 

calculate the weight which should be assigned to the individual risk data to determine 

a credible mean of that risk. Here, we define risk to be either uncertainty arising from 

the possible occurrence of given events; or individuals or entities covered by financial 

security syst ems . 

In determining an insurance premium, we would like the premiums collected to 

cover the expected severity of future claims, and that each individual risk be assigned 

a premium cornmensurate with the risk that it contributes to the collective. If the 

second condition is not met, the preferred risks would be overcharged, while the sub- 

standard risks would be undercharged. A premium which is not experience-rated 

would tend to drive away "safe" risks and attract selection against the insurer. 

The following solution was suggested by Whitney (1918), 

Here, MT is the credibility adjusted mean. It is a weighted average of the overall 



mean rn, and Mj,  the mean for individual risk j. The credibility factor Z is a 

number between O and 1, which is assigned t o  the individual risk premium. When 

the individual data is prohse, Z is close to 1. 

Credibility theory is used extensively in setting rates for automobile insurance, 

but we can find credibility theory in other insurance applications. Credibility is often 

used in experience rating claims in group insurance or in determining the worker7s 

compensation premium for a particular employer. Use of credibility can also be found 

in loss reservuig. Loss reserves are funds set aside to pay the benefits of existing and 

future obligations. When claims are incurred but not yet reported to the insurer, 

credibility theory can be used to estimate this amount. 

Credibility theory can also be used in more general statistical problems such as 

predicting econornic factors. In the regression model by Hachemeister (1975), the 

effects of inflation in each US. state are modeled by a simple trend line. To better 

predict the effects of inflation, the state trend is consolidated with the country-wide 

trend to form the credibility adjusted trend line. We discuss the Hachemeister model 

in more detail in section 1.5. 

In this chapter, we review some credibility models. We first discuss the limited 

fluctuation approach of credibility which was introduced by Mowbray (1914). In 

the ensuing section, the relationship between credibility theory and the exponential 

family of distributions is developed. Afterwards, the following t hree sections review 

the greatest accuracy approach of credibility, in particular, the models of Bühlmann 

(1969), Bühhann and Straub (1970), and Hachemeister (1975). In the final section, 

some empiricd estimators are described. 

1.1 Limited Fluctuation Credibility 

Limited fluctuation credibility is used to provide the exposure that is required to 

assign fidl credibility to the individual data. We may Say, for example, that the 



estimator êj of B j  is given full credibility when, for some k > 0, the probability that 

dj iis within look% of Bj is at least 1 - E .  S ~ U S  for E > 0 ,  

This is analogous to determining the minimum sample size required to generate a 

100(1- E)% confidence interval of length k. If n is the number of observations asso- 

ciated with the parameter B j ,  and a Normal approximation is used, we can derive a 

value no, such that (1.1) holds for n > no. 

Example 1.1 Let a(.) represent the distribution function of a normal randorn varia- 

ble with rnean O and variance 1. If êj is a Binomial proportion estimator, we can show 

that full credibility can be $ven to êj if n 2 no = ~'(1 - 8j)/(k28j), where @(y) = 

1 - ~ / 2 .  Based on n observations, we have E[&] = Bj, and vaï[êj] = B j ( i  - Oj)/n. 

Then 

s^--e- 
By the Central Limit Theorem, J-- will be approximately distributed as a 

standard normal random variable if n is large. We have 

kBj -kOj 
[JOj(' - *j)ln] - [JBj(I. - 4)ln] = - 

hence, 



and 

no = g2(l  - Oj) 
k2Sj 

is the smallest number of observations needed for full credibility- 

When n 5 no, we can also find Z for partial credibility, that is, for O 5 Z < 1. 

Let 8; = (1 - 2) n + 2Bjt where m is the meaa of the collective data. The error of 

using 01 is 

The term 2(ej - 9,) describes the error due to the estimate of the individual mean. 

If we require this error to be bounded absolutely by kBj nith probability 1 - E? then 

we have 

Using the normal approximation and the result from Example 1.1: are can derive Z 
k0 j 

in the case of partial credibility. We have y = , SO 
ZJOj ( i  - û j ) / n  

Since Z cannot be greater than 1, we take Z = m i n ( 6 , l ) .  If Z < 1, there is partial 

credibility. 

1.2 Exact Credibility 

For a fked tirne period t ,  the yeariy claim amounts X, for r = 1, . . . , t, occur de- 

pending on an unobservable risk parameter O, which has the structure distribution 

function U(0) .  The daim amounts are not dependent on time, therefore aven 8 = O, 

the X, are conditionally independent and identicdy distributed. The conditional 



distribution of the claims experience random variables X,  gïven the risk parameter 

O = O ,  is described by the distribution function F(xl, . . . , xt le). 
To derive the individual risk premium p ( 8 )  = E[X le], based on the observations 

X ,  . . - , X ,  consider approximating p ( 8 )  by a function g(&, - . . , X t )  which mini- 

mizes the squared-error loss hc t ion .  That is, we wish to determine g such that 

given XI , .  . . , X t ,  

is mùiimized. We know that when R is of this form, it is rnininiized when 

which is the posterior Bayes estimator. The conditional expectation in (1.2) is called 

the exact credibility estimator. 

In practice, since we do not always know the distribution functions F(xl0) and 

U(O), we may wish to adopt a semi-parametric approach by considering only those 

functions g which are linear combinations of the observations. Thus, by minimizing 

a 
over all Q, . . . , Q, we find that ç = 

z 
= -  

s2 + ut  t 
, for r = 1,. . . , t, or equivalently 

where a = Var{E[XIO]) and s2 = E{Var[X[O]). Also, Q = (1 - Z ) p  with p = 

E{[P(@)] )- Hence, 

where f i ( @ j ) ,  is the optimal h e a r  credibility premium under the least-squares crite- 



Exact credibility refers to the situation where the exact credibility premium co- 

incides with the optimal linear credibility premium. Exact credibility appears in the 

ori,ginal mode1 of Bühlmann (1967), where only one contract is considered. 

The parameters p, s2, and a are called the structural parameters. According 

to Goovaerts and Hoogstad (l987), the parameters are called structural since t hese 

pararneters should estimated from the data. Since the structural parameters p, s2, 

and a would have to be known for U(ej) to be calculated, we cannot consider the 

linear credibility estimator a statistical estimator. Wë wiU. retuni to this point in 

section 1.6. 

Even when both F(xl0) and U(0)  are known, the resultant credibility formula 

may not be tractable. Bailey (1950) showed that if the conditional distribution is 

given by the Binomial distribution and the prior distribution is the Beta distribution, 

then exact credibility occurs. Bailey, in the same paper, also demonstrated esact 

credibility in the Poisson-Gamma case. For sirnilar results, see also Mayerson (1964). 

Jewell (1974) generalized the results of Bailey and Mayerson. He showed that, 

for the exponential family of funct ions and its conjugate priors, the exact credibility 

premium equals the linear credibility formula. We now prove this result. 

Proposition 1.1 (Jewell, 1974) Given F(x10) and its conjugate prior U ( 8 ) ,  the 

Bayesian credibility premium in the least-squares sense, based on these distributions, 

coincides with the linear credibility formula if F(sl0) is a function from the single- 

parameter exponential family. 

Proof Consider the single-parameter exponential family with naturd parametrization 

where p ( x )  and q(0) are arbitrary functions such that f (XI@) is a proper density. Let 

0 E 9 and x E R. Consider &O, the conjugate prior distribution 



To see that u(B) is the natural conjugate prior of f (xlO), note that 

Let 

then the posterior distribution of O given x is 

Let c(x)  = p(x) /k(x) ,  then 

Since the posterior density ~ ( B l x ) ,  with parameters to + 1 and xo +x: is also a member 

of the exponential family, it follows that u(B) is conjupate for f ( ~ 1 9 ) .  

The likelihood function of B is given by 

Let 

q(0) - ( t~+t )  e - e ( z ~ + C L  2.1 
v(0) = 

c(to + t ,  xo + CL1 x r )  > 

which is analogous to u(B) , so Jd u(9) d0 = 1. After simplifying the equation in (1.6), 

we can write the expectation as 



Next, we differentiate v ( 0 )  with respect to 0 ,  

But from equation (1.5), we have 

Thus, 

it follon-s that E[xIO] = p ( 0 )  = - q 1 ( @ ) / q ( @ ) .  So now we have 

If v ( 0 )  equals zero at both the upper and lower limits of 6, integrating both sides of 

t 

O = ( t o  + t )  i i ( Q ) v ( @ )  do - (xo + 2 Zr) 
19 

Hence, 

and t herefore, 



So for distributions in the exponential family and their conjugate priors, the exact 

credibility formula c m  be written as a linear combination of the prior mean and the 

individuai data. 

To show that to = 
E{Var[Xl@]) s2 

= -, note that, as in equation (1.7), 
V 4 4 e ) l  a 

and 

we have E [ X ~ [ B ]  = q"(B)/q(B). It then follows that 

If we assume that u(0)  equals zero at both endpoints of 29, we have 

Then, integrating both sides of (1.8) with respect to 8,  we obtain 



1.3 The Classical Mode1 of Bühlmann 

In this section, we discuss the classical credibility rnodel of Bühlmann (1969). In 

this model, an entire portfolio of contracts is now considered, and a linear credibility 

estimator is sought. Instead of a single risk parameter O, we now have risk parameters 

O j  for j = 1,2, . . . , k, where k is the number of contracts in the portfolio. The 

claim amount for the j th  contract at time r for r = 1,. . . , t is given by Xjr.  The 

assumptions of the model are: 

(BI) The contracts ( X j ,  O j )  for j = 1;. . . ; k are independent and identically 

distributed. 

(B2) For every contract j = 1, . . . k, and for a given 0j7 the claim amount 

random variables Xji, . . . : Xjt  are conditionally independent and identically 

distributed. 

The first assumption implies that claim amounts from one contract are independent 

of claim amounts from another contract. The second assumption asserts that within 

a contract, the claim amounts at time r = r' are independent of claim amounts 

occurring at times r # r'. For Oj  = 0, the  classical Bühlmann model coincides wïth 

the exact credibility model. 

When a semi-parametric approach is used to obtain the credibility estimator: we 

can relax assurnption (B2) to equality of the first two moments of the conditional 

distribution of Xjr  given Oj .  That is, for f = 1, . . . , k, 

(B2') EIXjrIOj] = p(Oj) and the covariance matrix of the claim amounts at 

time periods T = 1,2, . . . , t equals c2 (O j )  1, 

where o2 ( 0 j )  = Vaï[Xjr  lej] and I is the t x t identity matrix. 

Before we state the main results of this section, we d l  need to prove the folloa-ing 

covariance relationships. 



Lemma 1.1 For any i, j = 1 ,... ,k and r7rr = 1 ,... : t ,  let p = E [ ~ ( e j ) ] ,  a = 

Var[p(@j)], and s2 = E{Var[XjTIOj])- Then 

(ii) C0v[Xjfl , XjT] = a + s26+ , and 

(Üi) Cov[Xj+, Xi,] = O, for i # j. 

The function 6, is the Kronecker delta, which is defined such that, for any i and j, 

Proof The following proof can also be found in Goovaerts et al. (1990). We first prove 

(i). For any random variables X, Y, and O the covariance of X and Y can be n ~ i t t e n  

as 

Setting X = Xi,, Y =p(Oj),  and O = 8j, we have 

The conditional expected value of ~ ( 8 ~ )  given Oj is again p(Oj). If i = j ,  then by 

definition, the conditional expectation of XjT given O j is equal to p(ej )  - Conversely, if 

i # j, the conditional expectation of Xi, gïven @j is equal to p, and so Cov[p, p(Oj)] = 

O. Therefore, the first term on the right of (1-10) reduces to C O V [ ~ ( @ ~ ) ,  p(Oj)] = 

Vaï[/~(Bj)] bij. Given O j ,  the random variable p(Oj) is degenerate, so the second 

term on the ri& of (1.10) vanishes. We are then left with 

TO prove (ii), let X = Xjr, Y = Xj+, and O = O j in (1.9). Then 



The first term on the right side can be written as 

For a given Oj, the Xjr for r = l,. . . , t are conditionally independent, so for r # r', 

the conditional covariance of Xj6 and Xjr aven 8j equals zero. When r = r', 

Thus, 

Finally, to see that (iii) is true, let X = Xj+, Y = Xir, and O = Oj ,  to get 

By assumption (BI), the conditional covariance of XjrI and Xi,, given Oj, equals 

zero. The conditional expectation, given Oj, of Xj+ and Xi, equals ~ ( 0 , )  and p,  

respectively. Thus, the covariance of these two conditional expectations equal zero, 

again by (BI). It follows that the covariance of Xj+ and X* also equds zero. 0 

We now prove two theorems relating to the best linear approximation to the 

conditional expectation E[#) [XI, . . . ; Xt].  The first theorem gives the optimal 

inhornogeneous credibility estimator for the individual risk premium. 

Theorem 1.1 (Bühlmann, 1969) If the hmotheses (BI) and (B2') are satisfied, 

then the optimal inhomogeneous linear estimator fi(Oj) of P ( O ~ ) ,  in the least-squares 

sense is 



Proof The procedure here follows the presentation in Goovaerts et al. (1990). For a 

aven j, we wish to minimize 

over Q and all cj, for r = 1,. . . , t. Differentiating Rh with respect to Q and cjfl for 

each r' = 1,. . . , t and setting the results equal to zero, we get 

and 

Simplifying the equations, we obtain 

and for every r' = 1,2, . . . , t, 

Mdtiplying (1.12) by E[Xjrt] and subtracting it from (1.13)~ we obtain 

From (1.12) and (1.14), we obtain the following system of equations: 



for r' = 1: . . . , t. The system of equations is symmetric with respect to the cjr, so we 

can write cji = cjz = . = cjt = c. The -stem then reduces to 

c o + W = p ,  

s2c+ atc = a .  

We find that 

at 
nrith Z = as postulated in (1.3). It follows that 

s2 + at 

and so 

In the foregoing theorern, we c m  see that equation (1.13) garantees the unbi- 

asedness of the Linear estimator. In the ensuing theorem, where we investigate an 

homogeneous estimator, we will need to impose a condition which m211 provide us 

with the property of unbiasedness. To understand why unbiasedness is important in 

an insurance framework, consider the concept of unbiasedness as one of the principles 

of premium calculation, that the expected financial loss to the insurer is zero. Ad- 

herence to this rule ensures that the expected value of future claims be equal to the 

expected value of future premiurn payments. 

In practice, inhomogeneous premiurn rdes are more logical than homogeneous 

rules. This can be seen intuitively since no past claims should not imply that there is 

no risk of future claims. Under an inhomogeneous rule, even if Xjr  = O, a premium 

wodd still be assessed. However, if we do not want to consider linear affine functions 

of the p s t  observations, we have the following theorem for the homogeneous case. 



Theorem 1.2 (Bühlmann, 1969) If the hypotheses (BI) and (B2') are satisfied, 

then the optimal unbiased homogeneous linear estimator K(Oj) of p(B j ) ,  in the least- 

squares sense is 

Proof In the inhomogeneous case, q was the amount of collateral data to be used. 

In the homogeneous case, if we merely rninimized E[p(Oj)  - C:=, cjrXj,12, subject 

be cj, = for r = 1, .. . , t. The estimator for ~ ( 8 ~ )  would then be Xj7 n-hich t 

satisfies the unbiasedness constraint. However, this estimator does not incorporate 

any information from the collective. This can also be seen by noting that if there are 

no clairns for risk j, c:=, cjrXjr would equal zero, so no prernium would be charged 

for this risk. If we want to incorporate the collateral data into our estimator, we m u t  

re- formulat e the minimizing equation as: 
k t 

Since we require the unbiasedness of the linear estimator, we mwt  have 
k t 

Multiplying CL, Ci=, cjr - I by  the Lagrange multiplier A and ndsubtracting the 

result £rom X h  results in 

Differentiating ghA with respect to cjif+ for every i' and r', and setting the result 

equal to zero gïves us 



for if = l , . .  . , k and r' = 1 , .  . . , t .  Thus 

Since Cov[Xjil,.t7 P(@j) ]  = d i t j  m d  C0v[Xjirrt, Xjir] = a + sbrr~ for i' = i and zero for 

i' # i: we have 

Since the system of equations is symmetric with respect to the cji,, we write the cjir 

ut 
Let Z = then 

at + s2' 



Insertina this into (1.18), we get 

The asymptotic behaviour of Z and the structural parameters a and s h e  intu- 

itively appealing. As the number of time periods becomes arbitrarily large. Z nill 

approach one. As the individual data increases in size, the collective data ml1 no 

longer be required. However, in practice, it is difficdt to partition the collective into 

strictly homogeneous sub-classes. Even when t approaches infinity, Z may remain 

si,dficantly less than one. 

When a decreases to zero, Z will tend to zero. This can be seen by noting that 

a is the "between contracts" variance. When a = O ,  there is no variation between 

contracts and the entire portfolio is homogeneous. The best linear estirnate under 

the least-squares criterion then is the mean of the collective. If a approaches infinity, 

Z approaches one. The collateral data is so heterogeneous that the individual data 

should not be combined. 

When s2 approaches zero, Z wiU tend towards one. Since s2 is the "within con- 

tract" variance, if s2 = O, then the individual data is completely homogeneous and the 

collective data is not required. If s2 increases without bound, however, the individual 

data contains so much heterogeneity that it is not u s e N  in estimating the individual 

mean. 



1.4 The Bühlmann-Straub Model 

The Bühlmann-Straub (1970) model is a generdization of the classical Bühlmann 

model. In the Bühlmann-Straub model, natural weights are assigned to the data and 

are dowed to Vary with tirne. If a portfolio can be divided into sub-groups, ~ 6 t h  each 

contract in the j th sub-goup having the same risk parameter Qj, and if the nurnber 

of contracts in the jth sub-group is Wj, then the wj contracts in the j th sub-group c m  

be replaced by their average. Shen allowing the weights to Vary Mth time, we add 

the index r to wj to indicate the dependence on time. The natural weights are then 

written as wjr for j = 1,. . . , k and r = 1:. . . , t, and are considered as the number 

of contracts grouped into an average contract. We may also consider cases n-here the 

weights are given by other types of exposure such as premium volumes. The special 

case which coincides with the classical Bühlmann model is just the Biihlrnann-Straub 

model wit h constant weights. 

So now, each contract j = 1, . . . , k is made up of the average of a group of contracts 

-9th the weights wji) . . . , wjt varying nrith time. We would also like all contracts to 

have the same expectation of claim size as a function of the risk parameter Oj- The 

assumptions of the Bühlmann-Straub model are as follows: For j = 1,. . . , k and 

(BS2) The contracts (Xj, O j )  for j = 1, . . . , k are independent. The variables 

el, . . . , Ok are identically distributed. The observations Xjr have finite 

variance. 

As is evident in asswnption (BS2), the independence between the contracts still holds. 

In (BS l), since Cov[Xjr) Xj+ 1 Bj] = 0; for r ,  rf = 1, . . . , t and r # r', the indepen- 

dence within the contracts remains as well. The equality of the first moment of the 

observations is still true; however, due to the introduction of the weights a-hich vary 



with time, the variance of the observations are no longer homogeneous with respect 

t O t ime. 

l i e  int roduce the following notation for convenience: 

In the Bühlmann-Straub model, the individual estimator is Xjw and the estimator for 

the collective in the homopeneous case is Xzw. The credibility weights Zj; are such 

that 

where a = Var[/~(@j)] and s2 = E[u2 (ej)]- The credibility estimator for p(Oj) then 

is 

To prove the optirnality under the least-squares criterion of these credibility estima- 

tors, n e  need the following covariance relations: 

Lemma 1.2 The following covariance relations hold: 

(i) Cov[p(@j),Xir] = abij, 



(ü) Cov[XjY, XiT] = O for i # j y 

(iii) C0v[Xj+ , Xjr] = a + s26+ luijr, 

(iv) Cov[Xjr, Xjw] = Cov[Xjwj Xjw] = a f S2/wj3 

(v) C O V [ X ~ ~  y Xzw] = C O V [ X ~ ~ ~  , XZw] = a/Z, 

(vii) COV[X-, X-] = s2/w + a x:=, ( w ~ / w ) ~ .  

The proof of Lemma 1.2 is similar to that of Lemma 1.1. Using computations 

analogous to those in t.he proof of Lemma 1.1, and the notation specified in this 

section, Lemma 1.2 can be easily demonstrated. 

Equation (1.30) specifies the homogeneous credibility estimators in the Bühlmam- 

Straub model. If XZ, is replaced by = E[/L(@~)], we obtain the inhomogeneous 

credibility estimators. 

Theorem 1.3 If the Bühlmann-Straub assumptions (BS1) and (BS2) hold, then the 

optimal linearized inhomogeneous credibility estimator of ~ ( 8 ~ )  is 

where /L = E[/L(O~)] and Zj is a~ in (1.19). 

The derivation of (1.21) is similar to that of the inhomogerieous optimal credibil- 

ity estimators in Bühlmann's classical model. There, the solution was provided by 

To prove Theorem 1.3, we would use the çame technique. However, the number of 

claims associated with each claim amount random variable Xi,, is now no longer 

necessarily equal. Therefore, the term a CL, cjT is not equal to  atc, but is instead 



e q ~ a l  to awjcj. And the term co = (1 - Zj)  p, is not uniform across contracts as in 

the classical Bühlmann case. For complete details, refer to  Goovaerts et al. (1990). 

In the hornogeneous case, we have the following theorem. 

Theorem 1.4 The solution of the following minimization problem, 

for i = 1, . . . : k and for each j = 1: . . . , A7: subject to the constraint 

where Z j  is as in (1.19). 

The proof of Theorem 1.4 can also be found in Goovaerts et al. (1990). As in 

the classical Bühlmann case, it is necessary that the minimization be accomplished 

over all linear combinations of claim amounts of the portfolio for each contract. Then: 

with an application of the Lagrange multiplier method to the unbiasedness restriction 

as the constraint equation, the  result follows. 

1.5 The Hacherneister Regression Mode1 

The regession credibility model was originally proposed by Hachemeister (1975). 

Because the effects of inflation in claim fi,wes had become a major problem in rate- 

making, Hachemeister developed a model which could be used to evaluate the credibil- 

ity of state (or contract) trends against country (or portfolio) trends when estirnating 

the expected severity of claims. 

Viewing inflation as a factor which varies with time, Hachemeister proposed a 

simple linear 

bility model, 

regession model with time as the independent variable. In this credi- 

the net risk premiums are no longer time-independent, and inflation is 



modeled by a linear trend, which can be seen as an extension of the Bühlrnann-Straub 

model. 

The assumptions of the Hachemeister regression model are: 

(Hl) The risk parameters, Oi, . . . , Oj are independent and identicdy distrib- 

uted. The contracts j = 1, . . . , k are independent. 

(H2) E[& 1 Q j] = YjP(B j), for j = 1, . . . , k, where f l  is an unlmown regression - - 

vector of length n and Cov[&lOj] = a2(ej) w;'. 

The desig matrix Y j  has full column rank n and dimension t x n, where n is an 

arbitrary value denoting the number of factors being considered. The m a t r ~ ~  is chosen 

in advance and determines the type of trend that is modeled. For esample, if n-e nish 

to model a quadratic trend, then the design matrix for each contract would have the 

same form, 

In general, for each contract, 

where xjr = (yjri, 3/jr2, . . . ? yjm)- In the foregoing example, xj, = (1, r, r2) .  

The fixed weight matrix w;' has dimension t x t, and assumes the following form 

where the wjr for r = 1, . . . , t ,  are the average number of claims for Xjr- 



Since Hachemeister's model no longer requires tha t  the conditional espectation 

of the claims be the same for all time periods, we mite the the conditional expected 

value at time r as 

The mean values of the model at different points in time for a given contract are 

represented by the t x 1 vector 

p(Qj)  = - - : pt(ej)I1: - 

for j = 1:. . . ' k. The vector of regression coefficients is 

Example 1.2 If Yj = (1,. . . ,1)' and w;' = diag(l/wjl.. . . , l/uij,), Hachemeis- 

ter's model reduces to Bühlmann and Straub's model, since 

and 

for r = 1,. . . , t. 

We now derive the credibility adjusted regression coefficients for a contract. De- 

note by Xj, the vector of claim amount random variables (Xji. . . . : ,Yjt) for contract 

j. We will require the following definitions: 



Lemma 1.3 The following relations hold: 

(ii) COV [,O - (O ,), X;] = A Yi , 

(iii) COV[~(O~),X;.]  - = COV{E[&~@~]} = YjAYi,  

(iv) E{Cov[XjlOj]) = s2 WT' . 

Proof To prove (i), note that E[ /L(@~)]  = E[Xj] is obvious since p(Oj) = EIX,IOj]- - - 

We next prove (ii). Since 

COV[,~(@ A ,) xi] = COV [O(@ - 3 -) Y -  ,B (O j)']Y; 

= AY;. 

So prove (iii), we use the proof of (ii): 

Finally, to prove (iv), we have 

E{COV[&~O~]) = E [ u ~ ( @ ~ )  w;'] 

Suppose the claim severity random 

sum of the mean claim amounts of the 

vector Xj for contract j, c m  be written as the 

contract and some random error term, that is? 



where E[g j ]  = Q, and . 

Let @ j  = s2 w;'. As a measure of accuracy, we wish to minimize the sum of squares 

The weighted least-squares solution of S ( P )  is the individual estimator of ;7(0j): - - 

with the latter equation beinp a consequence of assumption (H2). 

Our optimal (credibility) estimator for O(@,) is to be restricted to estimators of - 
the form 

where y is an a r b i t r q  t x 1 vector and I' is an arbitrary t x t matrk. We seek to - 
minimize the expected squared error 

over all vectors y and matrices I' of appropriate dimensions. The first order derivatives - 
of X(y, r) set equal to zero are - 

and 



It follows that 

and 

E[P(ej) - Xf.1 = 7 E[Xr-] + I' E[XjX>]. - -3 (1.30) 

Multiplying (1.29) by E[.Xi] and subtracting the result from (1.30), we obtain 

COV[-(@ ,) x;] = r COV [Xj] (1.31) 

And from ( M g ) ,  we get 

The general form of our optimal linear estimator then is 

Wote that this general form does not depend on the assumptions (Hl) and (H2). 

Equation (1.34) will be useful in deriving the Kalman filter in chapter 3. l i e  now 

derive the credibility estimator of B(O j). - 

Theorem 1.5 (Hachemeister, 1975) The optimal linearized estimator of ,û(O ,) is - 
given by 

where 



Proof From Lemma 1.3, (1.31) becomes 

I ' ( . P j + Y j A Y ~ ) = A Y ~ .  

If we post-multiply both sides of (1.36) by ~7' Y j ,  we h d  that 

~ Y ~ ( I + A Y ~ @ ~ ' Y ~ ) = ~ Y ~ @ J ' Y ~ .  

Let Zj = A YJ $7' yj (1 + A Y; @y1 Y,)-', then 

rYj = Zj. 

Combining this with (1.36), we obtain 

r@j+ZjAY;=AYi.  

This immediately yields 

I ' = ( I - Z ~ ) A Y $ @ ; ~ -  

We have, from (1.37) and (1.38), that 

( I - z j ) ~ Y ~ @ ~ ' Y j = Z j t  

Inserting this into (1.38) and post-rnultiplying the result by Xj, w-e arrive at 

From ( M g ) ,  



The final form of our estimator for B(Oj) is  - 

wit h 

and where ,6. is the estimator based on individual experience. 
-3 

Since the design matrix is assumed to be nonrandom, the estirnator for p(Oj), for 

any Yj, is 

1.6 Empirical Credibility 

Our developrnent of the credibility estimator, thus f a ,  has been strictly t heoretical. 

For practical application, certain parameters of the credibility estimators in: for ex- 

ample, equations (1.11), (1.15), and (1.40), need to be estimated. In this section 

we introduce estimators of the collective mean 0 = E[p(Oj)] and the structural Pa- - - 

rameters A = Cov[Q(Oj)] and aj = E{Cov[Xjlej]) based on the collective data. 

Ti?len we recast the credibility estimator with the empirical estimators in place of the 

theoretical ones, we obtain an empirical credibility estimator. 

-4n estimator of the collective mean ,û is - 

which is due to De Vylder (1981). This estimator is the solution to the rninirnization 

pro blem 

min E 
F j 



where x:=l Fj = I and S is a non-negative definite weighting matrix. The constraint 

that the sum of the Fj be equal to 1 parantees the unbiasedness of the estimator 

since E[B .] = p. Furthermore, under the restriction that converges to 0 in quadratic 
-3 - - - 

mean, we obtain also that is consistent. Since - 

lim E[B - ,BI2 = O, 
k-00 - - 

Chebyshev7s inequality with E = X,/E[B - pl2 yields 

Thus ,d converges - 

\Vit h different 

weakly to 9 as k cc. - 

choices of the weighting matrices Fj, we are able to obtain other 

estimators of 0. For example, Hachemeister selected - the matrices 

~ ~ 7 '  Y,. 

For the parameters A = Cov[O(Bj)] - and aj = s2 W;'; De Vylder (1981) suggested 

1 Â.=- 
k - I  C j=i zj ($ -il' 

and g j  = g2 W-l, where 

The estimator &j is the average of the individual weighted sum of squared residuals, 

while Â. is the credibility-weighted average of the covariance matrices of the individual 
A 

regession estimators p . . 
-J 

Since the estirnators for the structural parameters contain parameters which have 

yet to be estimated, they are called pseudeestimators. In practice, the empirical 

estimators ,8 and Â require an iterative procedure to obtain a numerical result as we - 

would need to replace the Zj in (1.41) and (1.42) with 5, which depend on values yet 



to be cornputed. Note that in this case, /? and Â are no longer necessarily unbiased. - 
Nso, as A is non-negative definite and syrnmetric, (Â + Â r ) / 2  is uçed in pIace of 

Â at each iteratiori to yield a syrnmetric, but not necessarily non-negative definite, 

estimate. 



Chapter 2 

Robust Credibility Models 

In credibility, the need for robust stat.istica1 metùods arises due to larger than normal 

claims. In credibility, departure from assumptions are less of a concern than outlying 

claims. If excess claims occur, the variance of claims within a contract Rill increase, 

leading to a smaU or zero credibility factor even for contracts which did not incur an 

excess claim. For these contracts, the credibility preniium would mostly consist of 

the average over the entire portfolio. In the case of the contract which did incur a 

large claim, since the mean of the contract is very sensitive to outliers, the effect of 

a large claim would be to exaggerate the expected claim amount of the next period. 

This laxge individual prernium will offset the small credibility factor, leading to a 

credibility premium which is too high. 

Early treatments of robust methods in credibility theory can be found in Gisler 

(1980) and K 1 ~ ~ p a . n  (1985). In this chapter, we review some results in robust statis- 

tics and the robust credibility models of Künsch (1992), Gisler and Reinhard (1993), 

and Kremer (1991). 



2.1 Robust Statistics 

Robust st atist ics is an extension of classical paramet ric st at istics. In t heories of clas- 

sical parametric statistics, optimal procedures are derived under exact parametric 

models. In robust statistics, models are assumed to be only approximateiy valid. 

Thus, procedures are developed with the intention that they be optimal in a neigh- 

bourhood of strict parametric models. In this section, we review some results from 

robust statistics which we will use later on. Further coverage of robust statistics can 

be found in Huber (1981) and Hampel et al. (1984). 

Suppose we have some hc t iona l  T(Fe), where Fe is a family of probability dis- 

tributions of some parametric model. Let A, be the probability mesure which puts 

mass 1 a t  the point z. Let R be the sample space under consideration. If A, is in 

the domain of T, we define the influence function as the following: 

Definition 2.1 The influence function (IF) of T at F is given by 

IF (x; Tl F )  = lim 
T[(1- E)F + EA,] - T ( F )  

€10 E 

in those x E 0, where this limit exists. 

The infiuence function was introduced by Hampel (1968). In ( 2 4 ,  É is the per- 

centage of contamination in the population of F( - ) .  Thus, as the amount of contami- 

nation approaches zero, the influence function describes the effect of an infinitesimal 

contamination of the point x on the estimate, divided by the m a s  of contamination. 

The influence function is related to the Gâteaux derivative of T. The functional 

T is Gâteaux differentiable at F in the domain of Tl if there exists a real function 

h(x) such that for all G in the domain of T the following holds: 

When G = A,, we obtain the influence function IF(x; T,  F ) .  If G = F, then 



Thus, with h ( x )  = IF(x; T, F), the first-order von Mises espansion of T a t  F evaluated 

T(G) = T ( F )  + IF(z;  T, F) d(G - F ) ( x )  + remainder. / (2.4) 

The empirical distribution function for the random variables . . . , Xn is 

where n is the number of observations and ItAl is the indicator function of the set A. 

If the observations Xi are iid, then by the GLivenko-Cantelli theorem, sup, 1 F, (x) - 

F ( x )  1 + O with probability 1, so the empirical distribution function F, uill converge 

to  F 1%-ith probability 1. Let G = F, in (3.4): so that we obtain 

T(F,) = T ( F )  + 1 IF ( r :  T: F) d(F, - F ) ( r )  i rernainder. 

The remainder term will tend to zero as n -+ oo in most cases: hence 

n l 2  { [ ~ ( p n )  - T(F)I - J IF (x; S, F )  d ~ ,  (x) 

converges to zero in probability. 

Evaluating the integral for a sample Xi, i = 1, . . . , n, we obtain 
n 

Jn [T(Fn) - T ( F ) ]  ~-"' C IF(Xi ; T ,  F)- (3 - 6) 
i=l 

The expression on the right is the sum of n independent and identically distributed 

randorn variables. Therefore, by the Central Limit Theorem, the term on the right is 

asymptotically normal. This limiting result thus is obtained also for the left side of 

totically normal with mean zero and variance 

V(T, F )  = / IF(Z; T, F)? d ~ .  (2.7) 

VTe now define an 44-estimator. The maximum likelihood estirnator is defined as 

the value Tn = T, (XI, . . . , X, ) which maximizes nb, fr, (Xi), or equivalent ly, 

C [- log fT, (Xi)] = T:! 
i=l 



Huber (1964) generalized this to 

p(Xi, T) = min!, 

where p is an arbitrary bc t i on .  If p has a derivative $(x, 8) = (8/38)p(x, O ) ,  then 

n 

C @(xi, Tn) = 0 - (2.9) 
i= 1 

Definition 2.2 An A[-estimator, T,, is defined irnplicitly as the solution of either 

equation (2.8) or (2.9). 

To derive the influence function of an M-estimator, define T ( F )  by 

and insert Ft = (1 - E)F + EG for F. Then, differentiating with respect to E at E = O 

and solving for the influence function yields 

From (2.7), the aç~mptotic variance is 

2.2 Künsch's Mode1 

Künsch's model (Künsch, 1992) is a robustified version of Bühlmann's classical rnodel. 

Taking the same assurnptions as the Bühlmann homogeneous case (c.f. section 1.4), 

Künsch proposed to  replace Xj - ..Z in 



where is a robuçt estimator of the mean for contract j, and where S = CF=, T j .  

The robust estimator Tj is defuied as the implicit solution of 

with +(z) = mm[-cl, min(z - 1: cz)] , where O < cl 5 1 and C? > 0. 

Since E[q ]  = E[T], the robust credibility premium is unbiased. -2 scale esxirnator 

is used to talie into account the non-negativity of the claim amounts and also so 

that larger mean values K - ~ U  result in larger variances. The &function that n-e use 

here will resdt in an estimate of the claim amount at time r for contract j su& 

that the percentage amount by which the observed claim amount Xjr  exceeds the 

robust estimator T, lies in the intenml [-cl, c 2 ]  Thus, claims are truncated a t  both 

ends. According to Künsch, the choice of cl and c2 is not very crucial. He suggests 

cl = cz = 1 for small samples and cl = 1, c2 = 1.5 or 2 for moderate samples. 

We notice that if cl = 1 and ~2 = CO, then (2.13) reduces to the non-robust linear 

credibility premium. 

An algorithm to solve for Tj in (2.14) can be developed by considering tb(z).  We 

first define q ( z )  = $(r)  + 1. Since we can also mi t e  @(t) = max[l - ci! min(r, 1 f 

q)] - 1, we have 

$(z)  = max[i - cl, min(z, 1 fez)]. 

Then C:=, S ( X j r / q )  = CL, W(xjr/q)  - t = O, or CLl $ ( x j r / ~ )  = 1. Hence 

The convergence of the iterative a1gorit .h follows from Huber (198 1) section 8.6. 



The credibility factor is given by 

The denominator is equal to Var[?-1. Therefore, in order to obtain an empirical 

credibility factor based on robust statidics, we require the variance of Tj- An unbiased 

estimator of the denominator is 

We c m  estimate Cov[T,, Xj] using 

need an estimator for E{Cov[Tj: Xj] 1 Oj) .  The derivative of @[x/T(F)]  is given by 

The function @'[x/T(F)] ni11 be equal to 1 in the interval ( ( 1 - c l ) T ( F ) ,  ( l + c 2 ) T ( F ) ) ;  

so frorn (2.11), we have 

An estimator for the iduence function then is 

The linearization (2.6) then suggests that we use 

to estimate E{Cov [ T j ,  Xj] 1 @j}. Finally, 



2.3 Gisler and Reinhard's Mode1 

Gisler and Reinhard's treatment of robustness in credibility (Gisler and Reinhard, 

2993) resulted in a robustified version of Bühlmann and Straub's credibility model. 

The assumptions of the Bühlmann-Straub model are used again here (see section 1.5). 

Gisler and Reinhard proposed to partition the credibility estimation of the individual 

mean into two parts. The first part consists of the "ordinary part", ~ ~ ( 8 ~ ) ;  the 

second, the excess (outlying) part, pzs (O j) . The robust credibility prernium can t hen 

be expressed as 

The ordinary part of the individual premium is defined as 

where Tj is a robust statistic for contract j. The excess part is defined as 

Thus, ail risks in the portfolio are assumed to be equally- exposed to outlying events. 

We m i t e  as the ordinary part of the robust credibility premium 

where ,UT, = E[T,]. Generalizing Künsch's method in the previous section, the robust 

estimator Tj is implicitly defined as 

This +-function has a single truncation point which depends on the amount of 

- 1/2 exposure at time r for contract j. We use aujr since Var[Xjrl@j] = c ~ * ( @ ~ ) / ~ j , - .  

1 k t Two choices for c are c = Jmedimj,,(wjr) and c = fi m-here îIr = Cj,l Cr= ,  wjr. 



t k 
Xjr Xjr -1/2 

wjrmin (T - = C wjr min (T;, 1 + mjr 
r=l j=l 

Hence, 

= C 9 min (Xjr, cjrT,) 
. W; 

After we have computed 2;., define as the ordinary loss ratio T j ,  = min(Xjr: cjrT,)? 

then the excess 10s~ ratio is XSjr = X j r  - T,,. 

The credibility factor for this mode1 is 

where PT, ( O j )  = EISjlOj]. The asymptotic variance of Tj will be required in order 

to estimate Var& 1 O j] . The ernpirical influence h c t i o n  corresponding to Our zb- 

1% take Vaï[T,,lOj] wJrlV(T, Fe,), then 

Let 5% = x:=, 2; be the estimator for the expected variance of T j .  We can use s$ 
to estimate a=, the variance of PT, (Oj ) .  That is, 



k where cr = w-' Cj=i wj[l - (urj/jlw)]- Xote that âT may becorne negative since it is 

defined as a difference of two quantities. 

Define the robust collective rnean to be 

where 

The escess collecti~e mean then is 

is the empirical robust credibility prernium for contract j. 

2.4 Kremer's Robust Regression Mode1 

The treatment of large claims in the case of regression credibility by Kremer (1991) 

starts by taking the credibility adjusted estimator for ~ ( 0 , ) :  - 

b(ej) = Yj [(I - Zj) 0 + 5 .] - - - -3 

The weighted least-squares estimator for the individual claims P .  is then replaced by 
-3 

a more general estimator Bj, where B, is robust. Then 

At this point, only assumption (H2) of Hachemeister's regression mode1 is required. 

In order to determine the optimal matrices Zj, the risk 



is mùiimized with respect to Zj. Kremer proves that 

where A = Co~-[g(Bj), Bj], R = E{Cov[BjlOj]}, and N = E{B(Oj)[B(Oj) - 

fl(@j)lf}- - 

Turning now to the problem of deriving the robust estimator of the individual 

claim amounts Ej, the following sum of sqüared residuals is considered 

where O = E{Cov[X, - IOj]). Let +y' = Q>Qjy where Qj is a t x t matris. Shen, the 

n-eighted sum of squared residuals is giwn by 

To get a robust estimator, squared deviation is replaced with a general p ( - ) ,  for 

example, the one-sided Huber function: 

and the corresponding .Sr function: 

Then the optimization problem becomes 

If the derivative 1C>' of p exists, then Bj must satisk 

1 = min! . 



for r' = 1, . . . , n. Solving for Bj, the robust estimator of ~ ( 8 ~ )  is - 

In order to implement this robust regression credibüity model, sorne empirical 

estimators are required. Similar to the non-robust regression case, Kremer estimates 

where c:=, Fj = 1. Then from (2.32) and assumption (H2) of the Hacherneister 

model, let Q j  = s2 W;': where s2 and W j  are defined as in section 1.5. Xext, the 

m-eights Wj are factored into 

so that @y1 = (s-1 Pj)'(s-l Pj) .  Rewrite (2.35) as 

C p 1 C p E ' ( ~ j r  - XjrB, ) / s  1 = min! . 

Kremer assumes s = 1, and if the derivative @ of p exists, we have 

To estimate A = A + R + N, note that since A = Cov[B,] , it can be estimated 

One notes that N 4 O when B(Oj) is close to /3(Oj). Sherefore, the zero matrix is - 
taken as estimator for N. The expected covariance of Bj given Oj  is given by the 

matrix R. Then by (2.12), 



where the derivative ?C>' of ?C> 

Remark 2.1 The foregoing 

tions, (2.32) becomes 

is with respect t o  the Bj. Finally, A is estimated by 

A = A - i i .  

assumes a general aj- With Hachemeister's assump 

where Oj = s2 WT', but Mth Wj = diag(wji,.. . , wj t ) .  Then, (2.40) can be n ~ i t t e n  

more simply as 

Remark 2.2 Kremer notes that if B, is the weighted lest-squares estimator, R = 

(Yi V-' Y,)-' and 

which is the credibility factor under Hachemeister's rnodel. 

Remark 2.3 Equation (2.41) is the general case of (1.12). Therefore, we can take 

equation (2.41), with possibly a different choice of Fj, as an alternative estimator for 

A. In equation (1.42), we had Fj = Zj/(k - 1). 



Chapter 3 

The Kalman Filter Applied to 

Credibility 

In this chapter, we discuss the Kalman filter and its application to credibility theory. 

Connections between credibility theory and the Kalman filter were first investigated 

by Mehra (1975). De Jonp and Zehnwirth (1983) then formulated some famous 

credibility models as Kalman filters. 

We first derive the filter £rom results of section 1.5. we then embed the Bühlmann- 

Straub and Hacherneister models within the Kalman filter framework. l i e  also review 

two empirical implementations of the Kalman filter as applied to credibility models. 

Findy,  we describe a robust Kalman filter by Cipra and Romera (1991) and present 

Krerner's (1994) robust credibility mode1 based on a robust Kalman filter. 

3.1 The Discrete Kalman Filter 

The Kalman filter (Kalman, 1960) is a recursive technique n-hich is used to estimate 

the state of a linear dqnamic system from measurement data corrupted by noise. In 

what follows, we will consider only discrete systems, that is, we will assume that 

measurements are observed at equdy  spaced points in time. The continuous-time 



analog of the discrete Kalrnan filter is usually referred to as the Kalman-Bucy filter 

(Kalman and Bucy, 1961). IV& refer to filtering as the estimation of the state S, when 

the time of the desired estirnate coincides with the time of the last measurement. In 

other words, given the sequence of observations = {XI,. . . , X,}, we wish to 

estimate S, when t = T. In other cases, we may have either a smoothing problem 

(t < T )  or a prediction problem (t > T) .  

The Kalman filter is based on a state space model. We regard the state of a 

system as the least amount of information about the past that is needed to predict 

the description of the systern at a future point in time. In the following formulation, 

the state of the system is described by a linear difference equation. Thus, it is sufficient 

to know the current state of the process in order to predict the state at any other 

point in time. 

The unknown state of the system at  time t is denoted by &, and is referred to 

as the state vector. The measurements X, consist of linear combinations of the state 

variables corrupted by a sequence of uncorrelated random errors 3, which have mean 

E[%] = Q and covariance matrix E[z&] = Ut. In state space form, we mite the 

measurement equat ion and syst ern equation, respectively, as 

and 

The matrix Ht, athich is knom at time t ,  describes the linear combinations of 

the state variables which make up &. iié assume that the sequence of system 

errors 3, has mean vector E[g,] = Q and covariance matrix E[up;]  = Vt , n-here 5 

is independent of the observation errors %. Furthermore, from the independence 

assumption, E [ U + U ~ - ~ ]  = O for all natural S. Finally, it is assumed that the system 

matrix At and the covariance matrix of both the observation errors and the system 

errors are kno~m in advance. 



.4t time t, we have observations up to time t - 1. As above, denote the t past 

observations {&-, , X t  ,, . . . , &), by g-'. .&O, let gIt-, = E[& lxt-'] be the 

estirnator of S, at time t ,  given observations up to time t - 1. After observing &, 

we would like to update our estimate of &; thus, we seek gIt. 
We adopt here a linear Bayes approach to derive the Kalman Filter. Accordingly, 

let the class of estimators be restricted to affine functions of the form 

If Xt is an m x 1 vector, then - y and l? are of dimensions rn x 1 and k x m, respectively. 

FoIloaing De Jong and Zehnwirth (1983), we derive the discrete Kalman filter by 

finding the linear minimum variance estimator of &. Consider equation (3.3): given 

observations xt- ' ,  we have 

* 

St(t-1 = A&-lit-' r 

since E [ ~ ,  lx-'] = O. Given g-' , the covariance matrix of S, is 

Let us denote the above covariance matrix by Ptlt-l, then 

Interpreting the foregoing from a Bayesian perspective, we see that &,-, and 

Ptlt-l are the mean and covariance, re~pectively~ of the distribution of S, prior to 

observing X,. To determine the optimal lhear affine Bayes' d e  for &, we must 

rninimize the risk h c t i o n  



over ail vectors y and matrices X' of appropriate dimensions. Here, 7 + I?X, is the - - 
estimate of S, after incorporation of the measurement The contribution of the 

new measurement is r&. The solution to the minimization of (3.5) is gïven by (1.34). 

Based on measurements up to time t - 1, we End that 

Let 

nhere Kt is called the Kalman gain. The optimal inhomogeneous linear Bayes rule 

can be written as 

S t l t  = Sl t -1  + Kt [X, 

Thus we can see that the Kalrnan gain matrix 

- ~ t & ~ t - J .  (3.7) 

determines the amount by w-hich the 
A 

innovations X ,  - HtStIt-, contribute to the prior estimate in order to obtain the 

updated estimate. 

We now derive the covariance of S, after observing &. The error covariance of 

However, given t observations, E[&] = SI,, so 

PtIt = COV[& 

Furt hermore, 

t hat 

- &l- 



Upon taking covariances of both sides, we see that 

.. 
since E[(&lt-i - &)&] = O. By direct substitution of the Kalman gain matriv Kt 

from equation (3.6) into equation (3.5). and after some manipulation, we find that 

We now show how some credibility models can be implemented using the Kalman 

filter. 

Example 3.1 The credibility mode1 of Bühlmann and Straub can be shom-n to be a 

special case of the Kalman filter. Let the risk parameter of a h e d  contract be the 

random variable O. Then, from the assumptions of the Bühlrnann-Straub mode1 in 

Section 1.4, we have 

E[Xt10]=p(8 )  and v a r [ X t l @ ] = 0 2 ( @ ) / ~ t l  

t where all zut > O.  Let JC, = C,, wiXi/wt., ~ t .  = W i l  and p = E[P(@)] -  By 

Theorem 1.3. the optimal inhomogeneous linear estimator for p ( 0 )  is 

where Zt = awt./(awt. + s2) ,  a = Var[p(O)], and s' = E [ D ~ ( @ ) ] .  

In the measurement and system equations (3.1) and (3 .2 ) ,  let H, = 1 and At = 1. 

In addition, let U t  = s2/wt and Vt = O. To start the Kalman filter recursions. we 

use the initial values Solo = ,u a d  Polo = a. We note that the above variables are all 

scalars, so in the sequel, we drop the bold-face and underline notation. 

At time t ,  from equation (3.7), w-e have 



And since At = 1, we have 

we can apply (3.11) repeatedly for t, t - 1, ..., 1 to get 

It can also be shown that 

and 

From (3.14)' we find that 

fort > 1, thus (3.13) c m  be recast as 

We let Zt = awt-/(awt. + s2), then 

This form is equivalent to the Bühimann-Straub credibility formula in (3.10). 



Example 3.2 Hachemeister's model can also be shown to be a special case of the 

Kalman filter. Let the risk parameter for contract j be O. Then, from the assumptions 

of the Hachemeister model in Section 1.5, we have for contract j, 

where & is a 1 x n design matrix and zut > O. Let At = [ h  i l ,  V, = 0. and 

Ut = s2/wt. -41~0, let Et = & = [i O ] .  The filter is started with the initial 
.. 

conditions Solo = E[0(8)] - = B and Polo = Cov[-[B(O)] - = A. The Kalrnan recursions 

for the Hachemeister model then are 

and 

In this example we have 5, = (SoYt, So for the choice of the matrix At given 

in this example, the slope and intercept so,tlt-i in will change over time. 

With this At, the estimate at time t of St be glt = (30,t~t + &,tlt, S1,t l t) '-  The 

choice of H, ensures that the estirnate of X, be equal to the first element only of Slt 
for each t .  To interpret V t  and Ut, note that in taking Vt  = O, we are assuming that 

no system errors are present so that the evolution of the states is deterrninistic. On 

the other hand, the error in observing the true state of the system is given by 6.  

3.2 Empirical Credibility with the Kalman Filter 

In this section, we describe two implementations of the Kalman filter in credibility 

theory. We have seen that we c m  embed a credibility model within a Kalman filter 

framework. Kowever, the Kalman filter is composed of certain parameters which 



require estimation in practice. The parameters are Ptlt-l ,  the covariance of S, prior 
- 

to the t-th observation; Ptl t ,  the error covariance of &; U t ,  the covariance matrix of 

the random errors gr; and Vt ,  the covariance matrix of the random errors 3. Along 

with an estimate for the collective mean, we may then derive an empirical credibility 

estimate of ait. 
The first implementation we discuss is due to Ledolter, Klu,man, and Lee (1991). 

We consider first, an individual series of observations. For a single series Xjl, . . . , Xjr  

for r = 1,. . . : t and j = 1,. . . , k, which corresponds to realizations of the risk 

parameter O j : the following measurement mode1 is obseru-ed: 

where gj, is an n-dimensional column vector. For the starting values to begin the 
- Li) iterative Kalman process, Ledolter et al. suggest using a vector of zeros for LI, and 

a diagonal rnatrix a-ith large (but finite) diagonal elements for P::. This is sirnilar 

to using a non-informative prior in a Bayesian framework since for moderate values 

of t, the initial choice for $;A will be dominated by the data. 

In order to cornpute a value for P::-~, we require an estirnate of Vjt. The covari- 

ance matrix Vjt  is considered to be time-invariant; thus, Vjt  = V j -  Following the 

paper by Ledolter et al., we assume that ujt and uj, are both normally distributed. 

Thus we have ujt - N(0, Ujt ) and gjt - N ( 0 ,  Vj) . For carrying out the maximum 

likelihood estimation of V j ,  we assume further that Ujt = a: ( O j ) / w j t  and that the 

covariance rnatrix of $:-1 is proportional to of ( O j )  - Then the log-likelihood function 

0'1 where f j r  = Hjr Hi, + I/wjr. 

hhïirnization of l with respect to 0: fields the following maximum likelihood 



est imat e 

r=l 

We then replace o?(ej) by i?: (0 j )  to get the concentrated log-likelihood function 

r=l 

Since we have k risk classes from which k concentrated log-likelihood functions 

arise, we can pool the information to forrn a better estimate of V,. .4ccordingly3 

LedoIter et al. assume that the Vjos are identical across the k risk groups and that 

the k goups are independent of each other. Then the k concentrated log-likelihood 

functions are added and a common V which maximizes the collected concentrated 

log-likelihood is determined numericaliy. The maximum likelihood estimate of each 

O,'(@,) from a l l  risk classes then is an average of the 0:(8~), 

This method derives the individual estimators of - p(Oj)  by applying the I<alman 

filter to the k separate series of obsenrations. If we assume that V equals zero, we 

obtain the weighted l e s t  squares estimates used in Hachemeister's model. 
- G) Li > - 1  (j) 

From the k separate Kalman filters, we have E[Stlt ] = & and Cov[& - & ] = 

PZ. Frorn this, we introduce 

where gjt - N(0, a: PZ). The gj, are independent across the R risk classes. To get 

the credibility estirnators, Ledolter et al. introduce a second equation 

at tirne t. The random term is normal with mean vector zero and covariance 

rnatrix a: nt. 



Since 3:: has a normal distribution by (3.17), and since the rnean s,') is also 

c i  1 normal (by (3.18)), we obtain the Bayes shrinkage estimator of S, as 

where Z j  = nt (0, + P$))-'. To estimate B, and nt, we may use the rnethods 

described in Section 1.6, in particular, (1.41) and (1.42). In this case, an iterative 

approach will be required. 

The second implementation of the Kalman filter applied to credibility is from 

Kremer (1995). In this paper, the Kalman recursions for a single contract are written 

in the following form: 

and 

The recursions are initialized with Silo = B, and P llo = Al - If we have k risk classes, 

we estimate El with the simple regession estimator 

H' )' and X = (XII, X21,.. . Xkl)'- The 1 x n matr~x where H = ( ~ ~ 1 1 & 1 7 . - -  ,,, 

H .  is from (3.16). 
-3 1 

Kremer assumes that Al is proportional to the identity matrix, that is, Al = fi 1. 

Let Ujt = s:/wjt, where s: = E[cr:(Bj)]. Thus, if the variance of Xj t  is given by 

E[Xjt - Hjt $)12, T V ~  obtain that Ut = E{Var[XjtlOj]) equals 

From this, we get 



Let qj = ( X j l  - gjl and Q = (qi , 9 2 ,  . . . , qk)'. If we define M 

The linear regession estimator of C = (s:, f 1)' is then giwn by - 

With the initial values s:, &, and Al, suppose that a t  time t 2 1, we have the 
- W  - A estimators Ujtl A,, and pKl, arrived at by application of the Kalrnan filter 

equations (3.20), (3.21), and (3.22). We then proceed as follows. 
- (j) lié determine the value of &ilIr using equations (3.30) and (3.21). Afier the 

-Ci) values are available for each j = 1,. . . , k, we can compute an  estimate of the 

collective mean by 

with c:=, Fjt = 1. We rrfer to section 1.6 for a discussion on possible choices of the 

matrix Fjt. 

l i e  may now estimate Atti by 

where the Pjt are weighting matrices such that  x:=, gjt = 1. The choices for Pjl are 

similar to  those for Fjt . 



TO estirnate UjVtC1, we can use 

w-here s:,, is an estimator of $+,. Starting with S: from (3.23), we can determine 

iih, recursively through 

where 

With starting point h = fi 1 and equation (XX) ,  n-e estirnate Vt,1 mith 

Through repeated application of the equations (3.20), (3.31), and (3.22): at time 
- (3 Ci) t + 1, we can arrive at the empirical credibility estimator ,St+ilt of S, . 

Remark 3.1 In practice, one may have difficulties with the initial value Hl. From 

the definition of H, if the design matrices fIjl at  time 1 for each contract j are 

identical, the matrix H' H will be singdar. An alternative estimator for the initial 
- (A 

value Solo can be determined by taking a Bayesian approach where the initial estimate 

is obtained by relying on prior knowledge of contract j. In the absence of clear prior 

knowledge, one may wish to  use last year7s claims data or data £rom a similar contract. 

If data on the contract of interest already exists, another initial value may be the 

estimate, based on existing data,  one obtains by using a non-evolutionary credibility 

rnodel (e.g., Hachemeister's model). For example, if there are t observations on 

contract j ,  we may estimate, by Hachemeister 's model, the credibility estimator based 

on the fbst r 5 t observations. This credibility estimator m-ould then be used, via the 

Kalman filter, to get the credibility estimator at time t 2 r. 



Remark 3.2 In equations (3.24) and (3.25), the estimation is done using the u p  

dated estirnates of S().  However, these estimates represent the credibility adjusted 

estirnates of @). VVe note that in the classical credibility models, the individual 

estimators are normally used. However, the advantage of Kremer's estimators B , 
- b) 

and is that they share the same recursive structure as SI, . 

3.3 Robust Kalman Filtering in Credibility 

In Section 3 of this chapter, we showed how the Kalman filter could be applied to 

credibility theory. In particular, it was shown that both the Bühlmann-Straub and 

Hachemeister models were special cases of the Kalman filter. However, both these 

credibility rnodels are sensitive to large daims: therefore; in order to robustify these 

models, we will need a robust Kalman filter. The robust Kaiman filter that we next 

describe is due to Cipra and Romera (1991). In their paper, a robust Kalman filter 

is developed by using M-estimators. 

Following the notation of Section 2: if 

De fine 



where a+, q = 1, . . . , n and &, r = 1,. . . ; m are n dimensional rom- vectors. Then, 

wit h 

d -  2- 

R-e can reformulate (3.39) as 

It is clear that 

and 

Ln order to robustify the Kalman filter, w-e replace quadratic loss mlth a general 

fmction p. Then Ait is the value of .St which satisfies 

-4lternatively, if the derivative @ of p exists, 



In general, the normal equations indicated by (3.34) can not be solved esplicitl- 

However, an approximation is available. From (3.34),  we have 

n-here 

d~q(~qt - &tl t -1 )  ' h r b r t  - - ~ - t l t - l )  b s 
3iqt = and y ~ ~ t  = (3.31) 

P P ~  - %t&t-l grt - -rt-tlt-1 b s 

the normal equation (3.36) can be written as 

Solving for &,, we obtain the recursive formula for the robust Kalrnan filter 

The robust error covariance is given by 

Example 3.3 -4 robust Bühlmann-Straub mode1 can be defined by using our robust 

Kalman filter. For a contract j ,  let Ht = 1, Ut = s:/w,, A, = 1, and Vt = O,  where 

s: = E[0:(0)]. Assume that the errors d, do not produce any outliers, consequently, 

we take 



We also assume that $ J ~ ~  is independent of r ,  that ist 

Let 

Then for a general +(-) , we have from equation (3.36); 

ait ( n t  - ait St,J + h t l u ( g 1 t  - blt Stlt) = 0- 

Remit ing t his as 

p;il (St,t-, - &,t)  + Tt (s?/wt)-' [Xt - Stlt] = 0 ,  

we obtain 

A 

as the updated credibility estimate of St at time t. The variance of St - Stlt is $\-en 

by 

Example 3.4 For the Hachemeister case, let Ut = s:/wt, where as in the previous 

example, s: = E[a:(O)]. Let A, equal 1, an n x n identity matrix, and Vt = O. We 

further assume that Ht is now an n-dimensional row vector. -4s before, we assume 

that the errors b, do not produce any outliers and that e2, = @. Finally, r2, can nom* 

be replaced by yt 1. 

With m = 1, equation (3.36) becomes 



p;i:_i (S t l t - i  - Bit) + rt (s:Iwt)-l X: (Xt - & & )  = 0- 

Then, from equation (3.39), we have 

where 

The robust error covariance rnatrïx is given by equation (3.40): where 

3.4 An Empirical Robust Kalman Filter Credibil- 

ity Mode1 

In this section we present an implementation of a Hachemeister's regression model 

via robust Kalrnan filtering. For more general regression problems, one may u7a.nt to 

adapt Kremer's procedure from the second part of section 3.2. 

Consider the state space model (3.1) and (3.2). The observations of class j at 

time t are scalar, thus Xjt  = Xjt  is a scalar, H j t  = Hjt is a 1 x n vector, and gjt = ujt 

is a scalar. The state space model becomes 



The recunions are initialized for each risk class j, for j = 1,. . . , k. Thus, we have 
- di) 0') 

for the j-th risk, at  time t = 1, SI, = l3, and Pol, = Al. Further, we assume V, = 0, 

and At = [A :]. 
We attempt to employ a Bayesian approach to begin the Kalman recursions. 

Asçuming t observations are available, Rie use these points to determine our initial 

estimates. For o u  initial value of s: = E[c;(Oj)], m-e use the S* computed from 

Hachemeister 's model, in particular, £rom equation (1 -43). Our initial estimate of PtIt 

is the Â from (1.42). As before, B, represents the estimator for the collective mean, 

and Al denotes the covariance of the S f ) -  We estimate l3, by 6 from Hacherneister's 

model, for esample, equation (1.11). 

l i e  now can proceed t.o the nest recursion of the filter. However, we have not pt 

specified the robustieing functions. In equation (3.34): m-e take $y, to be 

For the robustieing function corresponding to outliers arising frorn the measurement 

errors, we use the one-sided Huber function. Letting $9, = where @H is from 

(2.34). Shen from (3.34), 

Let Lr,, = s:/wjt. Our robust Kalman filter then is 

and 



In order to cornpute si;) frorn (3.53), we need an estirnate of s:. l i e  can use (1.13) 

as a function of t, that is, 

where B. is the weighted least-squares estimate based on t observations. For additional 
-3 

robustness, one may prefer to use a robust estimate for .. This estimator will require 
-J 

that we begin the recursions at  time t = n + 1. 

The foIlon;ing describes a procedure for implementiog Kremer's method for finding 

the preceding estimators via the Kalrnan filter. 

1. Define At and Hj,. 

3. For t = 1, 2, . . . , do steps 4-6. 

4. For j = 1, 2, . . . , k, do steps i-iv. 

(jj) C o m p t e  = A~ q. 
- Ci> 

(iii) Compute SI, from (3.53). 

(iv) Compute PZ from (3.54). 

1 5. Compute & = =:=, Fjt ,$, where Fjt = 1. 

6. Compute 5: from (3.55). 

With s m d  modifications, this is the algorithm that a-as foIlowed to get the 

Kalman filter credibility estimates in the next chapter. In addition to the difficulties 

that were mentioned in the Remark 3.1, an additional problem may a i se  in con- 

nection with Hachemeister's model. If the estimator in equation (3.26) is used to 

estimate s2, we will encounter difficulties when S2 is taken to be zero since equation 



(3.53) requires division by s2. This problem can be avoided by using (3.55). How- 

ever, (3.55) is neither robust nor in recursive form. Clearly, further work is required 

in finding more adequate empiical estimators. 



Chapter 4 

Numerical Illustrations 

In this chapter? we present results ftom the credibility models preiiously discussed. 

The data that is analyzed is £rom Hachemeister (1973). There are five contracts and 

twelve periods for each contract. We first present the estimates based on the classical 

credibility models of Bühlrnann, Bühlmann and Straub, and Hachemeister. These 

estimates will be based on Hachemeister's original data set and on Hachemeister's 

data set nith the twelfth observation of contract five (Xj,12) replaced with an outlier. 

We then report estimates based on the corrupted data using the robust credibility 

models of Künsch, Gisler and Reinhard, and Kremer. Finally, the results using the 

robust Kalman filter are presented. 

4.1 Classical Credibility Estimates 

The estimates for the Bühlmann, Bühlmann and Straub, and Hachemeister rnodels 

are shonn in Tables 4.1, 4.2, and 4.3, respectively. These estimates are based on the 

data which is uncorrupted by outliers. 

The estimators for the structural parameters for the Bühlmann and Bühlrnann and 

Straub mode1 are taken from Goovaerts and Hoogstad (1987). For the Hachemeister 



model, we use the estimator 

for 0, and - 

for Â. AdditionalIy, we use the design rnatriv 

rather than 

In Table 

bility factor 

the one used in Goovaerts and Koogstad (1987). 

4.1, the credibility estimates of Bühlrnann's model are showm. The credi- 

is 2 = 0.95. The estimate of the collective mean is X = 1,671. Estimates 

of the structural parameters are â = 72,310 and S* = 46,040. The credibility factor is 

quite high using the Bühlmann model. This is due to the fact that the "within con- 

tracts" variance i2 is small compared to the "between contracts" variance 6. With 

less heterogeneity within a contract, more credibility is assigned to the individual 

data. 

-- - 

Table 4.1: Bühlmaan's Mode1 

Table 4.2 shows estimates of the Bühlmann and Straub model. The estimate 

of the collective rnean is Xz,  = 1,684. Estimates of the structural parameters are 

â = 89,639, and s2 = 139,120,026. The results here are sirnilar to the results in 



Table 4.1. However, the credibility factor for contract 4 is low compared to the other 

contracts. Since \ire now- take the nurnber of claims into account, we can see from 

table A 2  that the number of claims for each tirne period for contract 4 is quite lom 

compared with the rest of the portfolio. The relatively small amount of experience of 

contract 4 leads to a s m d e r  credibility factor. 

Table 4.2: Bühlmann and Straub's Mode1 

Table 4.3 gives the results frorn Hachemeister's model. Fiogre 4.1 shows the 

actual trend of contract 5 resulting from Hacherneister's model. The estimates of 

the collective regession parameters are - j = [ ' $ z 8 ] .  Estimates of the structural 

26527 1544 parameters are â = [ 1544 339 ] and i2 = 49,870,187. l e  can see from Fi,we 4.1 

that the credibility line for contract 5 is closer to the individual least-squares line than 

to the collective Line. Looking at the number of claims for contract 5 in Table -4.2: we 

note that the number of claims at each time period is quite extensive. Adding up the 

number of claims for each contract, we find that w5 = 36,110, which makes up 20.7% 

of the aggregate number of claims of the total portfolio. Therefore there seems to be 

adequate experience to assign hi& credibility to the individual data of contract 5. 



Table 4.3: Hachemeister's ,Mode1 

Clairri 
Xniount 

1450 ' I I I 1 l 

O 2 4 6 8 10 12 

Timc 

Fiowe 4.1: Hachemeister's Mode1 for Contract No. 5 

4.2 Robust Credibility Estimates 

In this section, we compare the estimates given by the classical models of Bühlmann, 

Bühlmann and Straub: Hachemeister tvith the robust credibility models of IGnsch, 

Gisler and Reinhard, and Kremer. Without outliers, the robust models give the 

same results as t heir non-robust counterparts. However, by introducing an out lier 

into Hachemeister's data set, we can see that the robust credibility models greatly 

mitigate the influence of a single outlying observation. 

The 1 s t  observation of the fikh contract (XjrI2) in the uncontaminated data set 

is 1,690. lié nish to  observe the effects on the credibility estimates when we replace 



that observation by X5,12 = 7,000. 

Table 4.4 list the results of Bühlmann's model. The credibility factor is Z = 0.55. 

The collective estimate is X = 1,760. The structural parameters are â = 54,813 

and S2 = 533,627. As expected, with an outlying claim in contract 5 ,  the expected 

variance of the claims has greatly increased. Accordingly, the credibility factor has 

decreased ~i~gnificantly. Each of the individual estimates have been "pulled" towards 

the collective mean. 

Table 4.4: Bühlmann's Mode1 with XjYl2 = 7,000 

Table 4.5 are the results of Künsch's model with truncation points ci = 1 and 

cz = 1.5. The credibility factor is Z = 0.67. The average of the robust estimates is 

S = 1,720. We also have 

and 

The credibility factor using Künsch's model is geater than in the non-robust 

Buhlmann case. Also, each of the credibility estimates have moved closer to their 

individual estimates indicating that robustiwng Bühlmann's model has helped in 

mitigating the effect of the large claim. However, in KÜn.sch7s model the sample 



mean of the portfolio is still used as the estimator for the collective mean. Since the 

sample mean is not robust, the large daim in contract 5 still has a substantial effect 

on the est irnates. 

Table 4.5: Künsch's Model with X5,1z = 7,000 

Results from Bühlmann and Straub's model are in Table 4.6. The estimate of the 

collective estimator is X,, = 1,959. Estimates of the structural parameters are given 

by â = 4,336 and S2 = 1,788,061,134. The large value of g2 has caused the credibility 

factor to be virtually zero for each contract. Only the large number of claims for 

contract 1 has allowed that credibility factor to rernain far frorn zero. However, the 

credibility factor of 0.20 for contract 1 is still a big decrease from 0.98 in the case 

with no large claims. Each credibility premium is now mainly the premium based on 

the entire portfolio. 

Values from Gisler and Xeinhard's model are in Table 4.6. The estimate of the 

excess mean is fi,, = 74. The estimate of the ordinary mean is Fr = 1,733. Estimates 

of the structural parameters are âT = 65,396 and 2% = 378,151,133. The credibility 

factors are now in a more reasonable range. The credibility factor for contract 1 

is now closer to the credibility factor in Bühlmann-Straub model without outliers. 

Contract 5, with its large number of clairns, also enjoys a high credibility factor. We 

can explain the low credibility factor for contract 4 by r e c a h g  that the exposure for 

this contract is relatively low. 



Table 4.6: Bühlmann and Straub's Model with X5,12 = 7,000 

- -  - - -- 

Table 4.7: Gisler and Reinhard's Model with XjVl2 = 7,000 

In Table 4.8, results from Hachmeister's model are shotm. The collective estirnate 

[ 147.917 -25,624 ] iç - ,8 = [li;;']. The estimates of the structural parameters are â = -25,624 6,109 

and S2 = 1,377,136,010. 

- -  - 

Table 4.8: Hachemeister's -Mode1 with X5,12 = 7:000 

Table 4.9 describes the results from Krerner:s robust regression credibility model. 

We show here the special case of Hacherneister's model. The cornputations were done 

assuming a one-sided Huber function. The dl-estimator Bj was computed by iterated 

re- weighted least-sq uares. 



The tuning constant c for the one-sided Huber function is usually taken to be 1-345, 

since for this value, the Al-estimator will be 95% efficient at the normal distribution. 

We retain this convention, however, we note that since we have not estimated the 

scale parameter in (2.41), we need to multiply 1.345 by an estimate of scale. For 

this, we use *, the expected variance of the robust means £rom the Künsch model. 

Finally, to  adjust the truncation point for claims volume, me use & JE:=, k:=, wjr- 

Our ad hoc procedure for calculating the truncation point c then is 

R-hich for our esample is c = 19,982. 

The collective estimate is 6 = [ '$iO] . The estimates of the structural parameters - 
25,488 1,879 are â = [ ,,,, 238 ] and i2 = 64,618,028- Figure 4.2 compares the Hacliemeister 

non-robust trend estimate with the robust estimates from ICremerk robust regression 

model. It  is clear that truncating the claims has a big effect on the estimate of the 

trend. The line provided by the Hachemeister model can be seen to be pulled towards 

the large claim. The line from Kremer's robust regression credibility model, fits the 

data quite weU. 

Table 4.9: Kremer's Robust Regression Mode1 n-ith X3.12 = 7,000 



Fiove 42: Kremer's Robust Regession Mode1 with X5,12 = 7,000 
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Kalman Filt er Est imat es 

We conchde Our examples with estimates from the non-robust and robust versions of 

the Kalman filter applied to the Hachemeister dataset with and without an outlier. 

The implementation of the filter is based on section 3.4. 

We begin with a non-robust version of the Kalman filter applied to the data which 

contains no outliers. We can then compare these estimates to the robust Kalman filter 

in the presence of a large claim. 

Table 4.10 shows the estimates of the non-robust K h a n  filter. The collective 

estimator is - 0 = ['$y]. The esdmate for s2 is 49,870J86. We omit the estimates 

for a and Zj as the computations of these matrices are embedded in the recursions 

and were not computed explicitly. Fiove 4.3 shows the results of the Kalman filter 

~aphically. The estimates of B(Oj)  gven by Table 4.10 are similar to the estimates O 

in Table 4.3. Looking at Figure 4.3, tire can see a similar relationship between the 

credibility Line and the collective line that we saw in FiOgure 4.1. 

Table 4.10: Kalman Filter (Hachemeister) Mode1 for Contract No. 5 

Finally, we compare the robust and non-robust Kalman filter as applied to the 

data n-ith X5,l2 = 7,000, an outlier. The collective estimator in the non-robust case 

is - ,B = ['ii5], and in the robust case, - f l  = ['$i7]. In both cases, s2 = 1:377;156~010. 

Fiogre 4.4 compares the regression lines from the two models. In the robust case, we 

use for the truncation point c = O. This is to recognize that a t  time t ,  Rie expect 

convergence to an estimate, and so the residual Xjt - ETj, &lt-i should be small. The 

graphs in Figure 4.4 are similar to FiOwe 4.2. In Figue 4.4, we see that truncating 
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Fiorne 4.3: Kalman Filter (Hachemeister) Model for Contract No. 5 

the claims have improved the fit greatly. It appears that a robust Italman filter c m  

be useful in reducing the difficulties in credibility estimation that are caused by large 

claims. 

Table 4.11: Robust Kalman Filter (Hachemeister) Model for Contract No. 5 with 

x j , ~ ~  = 1,000 



Time 

Robust Kalman Filter (Hachemeister) Mode1 for Contract Xo. 5 with 



Conclusion 

In this thesis, we have reviewed some of the developments in credibility theory leading 

up to the treatment of large claims using robust Kalman filtering rnethods. The 

Kalman filter is considered useful in credibility theory as it also provides a unified 

framework in which to apply credibility. In chapter 3- we stated why robustness 

in credibility should be pursued and we saw in chapter 4 that, indeed, large claims 

effects can be detrimental to credibility estimation. Robust methods which have 

already been applied to a variety of credibility models was reviewed in chapter 2. 

Thus, robustification of the Kalman filter allows for efficient processing of credibility 

estimates which are robust against large claims. 

Parameter estimation is also very important in credibility theory as the credibil- 

ity formulas cannot be applied until the structural parameters have been estimated. 

Parameter estimation was discussed in the classical, robust, and Kalman filter a g  

proaches to credibility. Some difficulties in estimating parameters a-hen applying the 

Kalman filter were noted. 

In conclusion, we point out some areas where further work may be done. We 

have seen that clear solutions to the estimation of the structural parameters and the 

choice of initiai values in the robust empirical Kalman filter credibility model have 

not yet been developed. Estimators have been proposed in the case of the non-robust 

Kalman credibility model; however, the question of empirical estimators based on 

data for the robust case has yet to be resolved. The choice of the initial estimate to 

start the recursive procedure is also an important question. Finally, we note that in 



both estimating the initial value and estimating the mode1 parameters, one should 

seek estimators which are robuçt. 



Appendix A 

Hachemeister's Dataset 

The following tables contain private passenger automobile data used by Hachernekt er 

in his 1975 article. The first table contains the c l a h  amounts while the second table 

contains the number of daims. Both tables are split by state m5th each column 

representing a state. The rows correspond to the time periods. For this data, each 

time period is equal to three months. 



Table A. 1: Claim amounts from private passenger bodily injury (Hacherneister , 1975) 



Table A.2: Number of claims from private passenger bodily injury (Hachemeister, 

19'75) 
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