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ABSTRACT 

Repair and replacement of cast iron water mains is a significant issue for many water 

utilities. Having the ability to predict the frequency of water main breaks gives utilities 

improved information for decision-making. In this study Artificial Neural Network 

(ANN) rnethodology was used to predict pipe break frequency, using histoncal pipe 

break data from a city subdivision. 

The application of this modeling methodology is ideal due to its ability to use readily 

available meteorological and operationai data. Due to the open-system nature of this 

study, extra care was taken to ensure use of reliable data. Having developed proven 

results, the developed ANN models could then be used to infer factors affecting pipe 

breaks, and to develop rnitigation techniques. 
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1.0 INTRODUCTION 

In many urban areas. the frequency of cast iron water main pipe breaks has increased 

with time. The unavoidable question of how to deal with aging water distribution 

infrastructure has developed into issues of total costs associated with repair of pipe 

breaks (and consequent interruptions in water delivery service), and replacement of 

deteriorated water mains. These pipe breaks are viewed with greater seriousness than in 

previous times by the water utilities, from both an economic and a customer relation's 

standpoint. As a result, many utilities have sought methods for predicting these events to 

ailow for proactive replacement of the deteriorated pipes, thus reducing the burden of 

emergency repairs. A secondary benefit of developing a rational model is to determine 

the prevailing nature of these failures, allowing for pipe break mitigative techniques 

where pipe replacement is not warranted. 

The City of Edmonton's water utility, Aqualta, has sponsored the investigation of the use 

of Artificial Neural Networks (ANN) modeling to assist in the prediction of cast iron pipe 

break trends for city subdivisions. The purpose of the ANN model is to identify areas 

that will have a higher cumulative probability of cast iron distribution pipe failures, 

which necessitates the replacement of these problem water mains. To easily facilitate the 

use of the ANN models by the water utility, the information used for input parameters 

must be readily accessible due to the need for large quantities of historical data. Because 

there is a lack of available algorithms which describe the pipe break process, the 

Artificial Neural Networks modeling methodology is recommended. 



1.1 Problem Statement 

The purpose of this study was to investigate the feasibility of developing an Artificial 

Neural Network model to be used as a generd screening tool. The expectation of this 

exercise was to c o n f m  the potential utility of using the ANN methodology for modeling 

cast iron water pipe failures, accurately predicting the number of pipe breaks within a 

defined area for the purpose of determining the area's pipe break density. This 

information would be used as a criterion for the Cast Iron Renewal Prograrn. This 

program advocates proactive replacement of the pipes in areas with the highest break 

frequency. The Calder subdivision within the City of Edmonton was chosen as the study 

area. For this study, the scope of the modeling was limited to 150 mm cast iron pipe. 

This was done Iargely due to availability of data. 

Development of ANN models using this type of methodology requires the use of 

historically collected data. This data must be meaningful and easily accessible to prove 

model credibility and permit implementation of the model. Therefore, effectiveness of 

these models hinges on obtaining appropnate data. Having accomplished this collection 

task, the finished models would intrinsicdly capture the cause-effect logic of the pipe 

failure mechanisms. This would allow inferences to be made of the predominating pipe 

failure modes. 



The study undertaken is of particular interest to cities in coid weather climates. Given 

that the majonty of pipe failures causes are related to cold weather, the study is particular 

to areas where winter seasons involve sub-zero temperatures. 

1.2 Water Main Replacement Overview 

Aqualta's Engineering Department (formerly the City of Edmonton Water Branch, Water 

Network Engineering Section) is responsible for the maintenance of the water 

distribution infrastructure. Its water main replacement program is appropriately named 

the Cast Iron Renewal Program. The program's operating philosophy is based on the 

concept that the area with the highest cast iron pipe break density represents the greatest 

threat to service disruption, and therefore is the greatest priority for water main 

replacement. Therefore, the cost effectiveness of a selected renewal project is directly 

proportional to its failure frequency (Le. replacement of high failure frequency mains will 

remove more potential failures frorn the system per dollar spent). 

Studies show that a high percentage of the failures in the cast iron system tend to occur in 

a relatively small percentage (by area) of the city's water distribution system. These high 

frequency areas are normally designated for renewal based on a predetennined "critical 

failure frequency", in an effort to remove what is deemed to be the worst pipes from the 

system. This "critical failure frequency" is defined as a point above which it is more 

econornical to replace the pipe, but below which it is more economicai to repair pipe. In 

the past several years this critical frequency has been set at 5.0 failures/km/year 



(O'Farreii, 1995), taken over a five year moving-average. The idea behind the process is 

to identiQ areas with consistently high historical break frequencies, and to replace these 

potentid problem areas pro-actively. Funds are therefore allocated to replace a certain 

percentage of these areas per year. 

The program has improved the service level by reducing the overall annual failure 

frequency from slightiy over 1 .O failures/km/year in the rnid- 198O's, to 0.8 

failures/km/year, ten years later-a 20 percent improvement. 

With the program progressing towards its goal of replacing al1 pipe break densities equal 

to or greater than the five-year, moving average break density, new methods of 

rnaintaining flexibility in decision-making are required. The ability to accurateiy predict 

actual pipe break occurrences based on existing data is therefore advantageous. 



3.0 BACKGROUND INFORMATION 

2.1 Pipe Failure Modes 

Statistics describing the performance of water mains are typically expressed in t e m s  of a 

frequency of breaks. Breaks are defined as events leading to the dismption of water main 

service per kilometer per year. 

Goulter and Kazerni presented two papers describing a study of the break frequency for 

Winnipeg, Manitoba [(Goulter and Kazerni, 1988) and (Goulter and Kazemi, 1 989)]. 

This study is considered to be typical of many cities in North Amenca and, therefore, 

will be used as a reference point. 

Studies in several Canadian and U.S. cities have shown that water main breaks can occur 

in various modes of failure. These failure types include: 

1. Circurnferential failures (also referred to as circular or transverse); 

2. Longitudinal split failures (includes diagonal); 

3. Pinhole failures due to corrosion; 

4. Pipe joint Ieaks (including fitting leaks) and; 

5. Clamp failures. 



These most common types of failures, circumferential and longitudinal split failures, are 

illustrated in Figure 1. 

Incr 
due 

Sease in normal 

expansion or 

Tensile or 
stress 

Hoop stress 

Figure 1. Circular and longitudinal split failure modes of water mains 

Adapted from (Rajani et al., 1996) 

Although modal failure statistics Vary per city, an average of 70 percent of water main 

failures are circumferential failures, with the remaining 30 percent being shared by the 

other types of failures (Rajani et al., 1996). 

Circumferential failures are caused by longitudinal tensile stresses or from flexural 

(bending) stress. Longitudinal split failures are the result of circumferential (hoop) 

stress. Corrosion c m  also be the direct or indirect cause of pipe failures. These types of 

failures may be the result of a %lowout" (whereby a surge pressure causes the corrosion- 

6 



thimed wall to fail), or may be caused by cornplete wall corrosion. Joint failures can be 

the result of pipe jacking (heaving) or mis-aligned connections (Milligan, 1995). Clamp 

failures occur when clamps (used to repair previous pipe failures) themselves fail. In 

some cases, a combination of the above failures c m  occur. Therefore, these failures are 

usually the result of physical characteristics and environmental factors interacting. 

2.2 Failure Mechanisms 

Theories explaining the failure mechanisms of cast iron water mains in cold climate 

regions have advanced over the past two decades. Pipe failure modes have been 

identified, and the mechanisms thought to cause such failures have been studied. The 

rnechanisms that predominate such discussions revolve around frost heave, soil-pipeline 

interaction, pipeline operating conditions and corrosion (both intemal and extemal of the 

pipe). 

The above mechanisms have been identified as likely causes for the different modes of 

failure of water mains. Circumferential pipe failures may be caused by excessive flexural 

or axial stresses (Habibian, 1994). Flexural stresses are thought to be the result of frost 

heave mechanisms (differential heave, beam-type loading). Axial stresses are caused by 

soil-pipeline fictional resistance opposing pipe shrinkage (brought on by sudden, 

extreme temperature drops). Longitudinal failures are thought to be caused by a high 

temperature gradient across the pipe wall, generating high hoop stresses (Habibian, 

1994). Corrosion failures are thought to contribute both directly or indirectly to the 



majority of al1 water main failures (Kettler and Goulter, 1985). and both interna1 and 

extemal pipe corrosion has been examined (Moms Jr., 1967). Pipe joint failures are also 

thought to be caused by frost heaving, or due to improper installation (Milligan, 1995). 

2.2.1 Frost Heave 

The frost heave mechanisrn has been a popular topic with regards to many types of 

structures. Aimost any underground structure requires the consideration of frost heave 

effects that may displace portions or the entire underground structure. Frost heave is 

defmed as the vertical expansion of soils caused by freezing of the soi1 and ice Iens 

formation. 

Differential heave causes sections of pipe to experience non-uniform displacements, and 

this differential results in forcehl flexural stresses (Figure 2). Uniform heaving may also 

prove to be a problem under certain circumstances where pipe joints are not subject to 

movement. Under this scenario, the pipe expenences stresses similar to a simple beam 

loading, in which case the pipe wilI experience bending stresses. Failure of pipe joints 

may be the result of the frost heave process (ie. pipe jacking) or due to illicit connections 

(Milligan, 1995). This may be a fbnction of the type of comection, and the type of fil1 

material used between joints. 



FROZEN (STABLE) 
Uplift resistance from frozen soil 

UNFROZEN (HEAMNG) 
Heave exerted by frozen soil 

Figure 2. Differential frost heave effects-on pipelines. 

Adapted from (Nixon, 1994) 

The principles of frost heave mechanics are well known in theory. Conditions for frost 

heave require the foilowing (Anderson et al.. 1984): 

1. The presence of a frost susceptible soil; 

2. The presence of a sufficient water source, whether it is capillary or a ground water 

source (for lens formation) and; 

3. A ground temperature below zero degrees Celsius. Some argue that it is the change 

in temperature that is more important (Bahmanyar and Edil, 1983); others have 

argued that it is the difference between the prevailing temperature from the average 

temperature (Bates et al., 1996). 

With al1 of the above factors present, there is the potential for darnage due to frost heave. 

The propensity for heave of a soil under freezing conditions is affected by properties 



such as grain size, rate of fieezing, the availabiiity of water, and by applied loads 

(Konrad, 1987). 

2.2.2 Soil-Pipeline Interaction 

Soil-pipeline interactions are dso a possible cause of pipe failures. The resistance of the 

soil-to-pipeline union is important because the shear strength of the interaction c m  affect 

the degree of mobility of the pipeline and hence its ability to displace. In cold 

temperatures, the bond between the soi1 and pipe indicates the amount of restraint the 

pipe is aIlowed to shrink axially. A high soil-pipeline interaction will not allow the pipe 

to contract, and consequently the axial stress in the pipe will increase. It is also possible 

that a strong bond between the iron pipe and soi1 WU cause excessive soil-pipe interface 

shear that may cause abrasion of the pipe coating. This abrasion may lead to premature 

corrosion of the pipe exterior (Yen et al., 198 1). 

2.2.3 Pipe-Wall Temperature Gradients 

For longitudinal failures, a suspected failure mechanism is the high temperature gradient 

occurring across the pipe wall. If the temperature difference of the transported water and 

suïrrvüuiiing soil is significant, this temperature gradient can lead to unusually high hoop 

stresses, subsequently leading to failure (possibly due to a water pressure surge) 

(Habibian, 1994). Longitudinal failures may also occur in combination with the 

weakening of the pipe wall due to corrosion, at the weakest portion of the main wall. 



Another possible cause of longitudinal failure is due to a crushing load. This usually 

occurs in the larger diarneter pipes (ODay, 1982). 

2.2.4 Corrosion 

Corrosion failure is directly or indirectly associated with the reduction in pipe wall 

thickness. These failures may occur as  the result of intemal or extemal corrosion. 

Possible types of intemal corrosion include: bacteriological (Lutey and Mason, 1994); 

chernical corrosion occumng as internai pitting (Morris Jr., 1967) and (Quraishi and Al- 

Amry, 1992); or galvanic action (Moms Jr., 1967), although this type is less common. 

Extemal corrosion rnay be caused by: galvanic action (Moms Jr., 1967); electrolytic 

oxidation due to low pH or stray currents (O'Day, 1982), or; bacterial, as sulfate 

reduction (Morris Jr., 1967). Potential sources of stray direct current in Edmonton may 

include electric railways (transit system and the Light Rail Transit system) and industrial 

equipment. The corrosion-weakened wall may fail by pin-hole failure, or rnay result 

from combination with one of the above mentioned failures ("blowout" or longitudinal 

faihres). 

2.2.5 Other 

There are other factors that must be considered as causes for pipe faihres. These causes 

are unpredictable circumstances that must be accounted for, or eliminated in the ANN 

models. Special phenornena such as spatial and temporal clustering of pipe breaks must 



also be investigated. Al1 of these factors should be examined for ANN models, such that 

the models will not confuse these types of events with frost heave, soil-pipeline 

interaction, pipe wali temperature gradient, and corrosion failure mechanisms. 

Discussion of the phenornena of spatial and temporal clustering of pipe failures must be 

studied. The potential of vehicle loading must dso be exarnined. Pipe age and distance 

fiom facilities may be considered, but some studies argue that pipe age is not a major 

determinant of water main break rates (ODay, 1982). Instantaneous pressure surges 

causing water hammer and sudden pressure changes are exarnples of unpredictable 

events (which may cause multiple failures). These above types of failures must be 

considered, and then either accounted for or elirninated before modeling c m  proceed. 

Having analyzed the type of failures and then surnmarizing the failure mechanisms, the 

Artificial Neural Network methodology must use reasonable mode1 input parameters, 

which will allow it to characterize the cause-and-effect relationship of pipe failure 

mechanisms. Potential input parameters, based on the failure mechanisms, are outlined 

in the following section, with justification for their significance. 

2.3 Parameters That Cause/Influence Breaks 

In this section a discussion of potential causal and influencing factors effecting pipe 

break failure mechanisms is presented. Literature cites only one exarnple where the 

Artificial Neurai Network methodology was used, for relating water distribution darnage 



to natural hazards. This paper attempted to relate cold temperature hazards (air 

temperrtture, snow precipitation, and degree-days) to histoncal pipe damage (Bates et al., 

1996). Unfortunately, neither was a discussion given as to the reason for including the 

specific factors, nor were quantitative results presented which demonstrated the accuracy 

of the model. The following parameters are presented with reasons supporting their 

inclusion. 

Pipe Diameter 

Review of pipe break literature indicates a strong correlation between the number of pipe 

breaks and the diameter of the pipe. A study of pipe breaks conducted in Winnipeg, 

Manitoba concluded that "the decreasing trend in pipe failure rate for cast iron pipe with 

increasing diarneter is directly attributable to the increasing wall thickness and joint 

reliability with increase in pipe diameter. Larger wall thickness gives the pipe better 

structural integrity and improved resistance to corrosion failures" (Kettler and Goulter, 

1985). Many other studies have also shown that a larger proportion of failures have 

occurred in the smaller diameter pipes [(Kitaura and Miyajima, 1996), (Bahmanyar and 

Edil, 1983) and (Rajani et ai., 1996)]. 

Literature suggests that the pipe size also affects the mode of failure (OtDay, 1982). 

Smaller diameter mains (150 to 200 mm) often experience bearn (flexural) failure 

because of poor bending conditions, however crushing failures (often longitudinal 

failures) are unlikely to occur due to the relative length-to-diameter ratio. Converseiy, 



larger mains (250 mm or greater) are likely to expenence cnishing failure, but are not 

likely to experience bearn failure (O'Day, 1982). 

Age of Pipe 

The significance of pipe age as a determinant of pipe breakage is debatable. Some 

experts believe in a natural progression of occurrences of pipe breaks with age [(Goulter 

et al., 1990) and (Bates et al., 1996)]. Others have indicated that "studies show that age 

is not the major determinant of water main break rates" (O'Day, 1982). 

Pipe Joint Type 

Joint type is an issue since the type of joint will influence the susceptibility of the pipe to 

specific failures. A large part of this may be owing to the amount of flexibility and 

lateral constraint the joint provides, as well as the pipe joint's actual strength and its 

ability to resist corrosion. For cast iron pipes in the previously mentioned Winnipeg 

study, joint failure is predominant with bolted and universal joints (Goulter and Kazemi, 

1989). Kitaura reported "joint separations for cast iron pipe occurred in the older lead 

and mechanical joints" (Kitaura and Miyajima, 1996). Moms Jr. speculates that certain 

types of bolted or welded joint connections are more susceptible to corrosion (Moms Jr., 

1967). 



Joint separations are leak failures where pipe joints become separated. The study of the 

failure of a 108-inch pipe demonstrated that "total pipe separations occurred because of 

large unrelieved thermal stresses and stress amplification cause by the eccentricity of the 

welded bell-and-spigot joints (Moncarz et al., 1987). A study by Milligan showed that 

"different filler materials will have diffenng abilities to accomrnodate a greater deviation 

off line before darnage occurs" (Milligan, 1995). 

Interna1 Pipe Water Temperature 

Sorne literature speculates that a high differential temperature between the intemal and 

extemal pipe wall c m  produce high temperature gradients. Under such conditions the 

inner and outer fibers will be subjected to different temperature drops, resulting in 

differential strains and circurnferential stresses. The increase in hoop stress increases the 

likelihood of longitudinal failures (Habibian, 1994). A CO-author of a study performed in 

Madison, Wisconsin did not agree that this mechanism was a problem for seasonally cold 

regions (Bahmanyar and Edil, 1983). 

Operating Pressures 

For circurnstances where water pipeline pressure surges result in blowout (longitudinal) 

failures, a parameter that depicts changes in operating pressure (and therefore changes in 

circumferential stresses) is necessary. Such events may occur as pressure surges (during 

pump shut down or other normal pump operations) or dunng unforeseen events 



(accidental valve closure, etc.). Such events may cause a water hamrner effect, which is 

a likely explanation for a limited number of pipe failures. 

Environmental factors exist which rnay intensiQ or conversely buffer the pressure 

experienced by the pipe. A study by Burrows and Qiu (1995) indicated that the presence 

of air pockets in pipelines can exacerbate surge peak. A typical example of this 

possibility is provided in Figure 3. Conversely, work by Rajani et. al. (1996) indicates 

that at lower ground temperatures, the elastic moduli of soils can increase significantly 

such that nozen soils will have a positive counteracting effect on the development of 

hoop stresses. 

Arrows show possible direction of air accumulation 

Figure 3. Effects of air pockets on operating pressures. 

Adapted from (Burrows and Qiu, 1995) 

v - - - A Hyhulic gradient line 
------ ---- -------------______-_- 

\ Fiow of m e r  

Air rkely to accumulate because of lessening Bridge Lessening of upgrade in direction of of hybulic gradient and neeper downgnde flow will cause accumulation of air 
in direction of flow 



Soi1 Type 

The significance of the type of soi1 cannot be overlooked, as it is one of the most 

important factors, having effects on almost al l  of the above mechanisms. Its effects on 

frost heave, strength of soil-pipeline interaction strength, and external corrosion can be 

important for many failure mechanisms. 

Frost susceptibility is defined as the rate at which frost penetrates the ground. It is 

generally regarded as one of the most important factors in characterizing frost heave 

action. Frost susceptibility is ranked greatest to least for soil types in the following order: 

silt, clay, sand, and then gravel. However, rnethods of further quantifying and thoroughly 

characterizing soils in terms of frost susceptibility are not consistent. Use of frost heave 

rate ( d d a y ) ,  total frost heave (mm), frost heave ratio (ratio of frost heave rate to total 

frost heave) and segregation potential (to depict frost susceptibility (Kujala, 1993)) have 

been suggested. However, these types of measures are ofien difficult to find, or do not 

translate accurately from laboratory to field values (Konrad and Nixon, 1994). Others 

disagree, indicating that "for a constant pressure (load on the soil) the rate of heaving is 

independent of the rate of fieezing.. . [which is] completely valid only for relatively 

permeable soil" (Pemer, 1972). Therefore characterization of frost~susceptibility, and 

hence frost heaving is difficult using field measurements. 

The type of soil the pipe is located in is also important for the aspect of differential 

heaving and thaw settlement. If a pipe is located at the interface of two different soil 



types, it has been shown that each soil wiIl experience an uneven amount of frost 

heaving, and therefore have an influence on the amount of strain experienced by the pipe 

(Nixon, 1994). In the same manner, thaw settlement will lead to differential stress 

distributions on the pipeline. 

Several studies have demonstrated that freeze-thaw cycles have effects on the mass 

transfer and physical properties of the soil [(Kurillco et al., 1989); (Kujala and Laurinen, 

1989); (Rajani, 1992), and; (Pawluk, 1988)l. Results have also shown that textural 

changes caused by freezing and thawing of clayey materials may alter the mass transfer 

characteristics by two or three orders of magnitude, and as a result, affecting frost heave 

rates. However, the influence of cyclic freezing and thawing on sands is not observed at 

d l  (KuriIko et al., 1989). 

Use of soil type to represent various soil properties is a difficult task due to the seasonal 

variance of several properties (deemed imporîant to frost action, soil-pipeline interaction, 

and corrosion). In addition, many of the soil parameters influencing frost heave and 

corrosion will not be available due to impracticalities in monitoring. Therefore, these 

parameters may have to be inferred from soil type. Important parameters which are 

assumed to be constant with soil type are: soi1 thermal conductivity (Konrad and 

Morgenstern, 1980); Poisson's ratio (Shen and Ladanyi, 199 1) and (Selig, 1988); and 

hydraulic conductivity (Anderson et al., 1984). 



Soil corrosivity is a soil characteristic that must be considered for external corrosion 

predictions. Physical characteristics (particle size, fnability, uniformity, organic content, 

coior) have reflected corrosivity, based on observations and testing. Color has also been 

linked to corrosivity. Soil uniformity is important because of the possible development 

of localized corrosion cells. Corrosion cells may be caused by a difference in potential 

between unlike soil types, with both soils being in contact with the pipe (Smith, 1968). If 

it c m  be assumed that for a particular soil classification the approximate uniformîty 

coefficient can be estimated, then the possibility of corrosion can be estimated. 

Overburden Pressure 

Overburden pressure is thought to be important due its ability to help characterize frost 

heaving and soil-pipeline resistance. It can be characterized by the depth of bury and soil 

density. To simpliQ assumptions, it will be assumed (for this study) that soil density is 

generdly characterized by soil type. 

With respect to frost heave action, overburden pressure is another important factor for ice 

lens formation (the others being: frost susceptible soil, freezing temperature and a source 

of water). Literahire indicates that the overburden pressure is important for the rate of 

heaving [(Anderson et al., 1984); (Nixon, 1994); (Hu and Selvadurai, 1995), and; (Roy et 

ai., 1992)l. 



Bury depth is an important factor for other reasons. From the perspective of soil-pipeline 

interaction, it has been demonstrated that the frictional soi1 resistance is affected by pipe 

diameter and bury depth (Rajani et al., 1995). Also, from the perspective of mode of 

failure, Iarger pipes are more susceptible than smaller pipes to crushing failure. This is 

due to bury depth, or the extemal loadings the pipe is subjected to (Le. roadways, large 

structures (O'Day, 1982)). 

Segregation Potential 

Konrad thoroughly investigated segregation potential for characterizing frost 

susceptibility [(Konrad and Morgenstern, 198 1); (Konrad, 1987); (Konrad, 1994), and; 

(Konrad and Nixon, 1994)l. This pararneter is determined using laboratory 

measurements and is a proportionality constant comprised of the rneasured hydraulic 

conductivity (as pore-water velocity) and temperature gradient (Konrad, 1994). The 

value obtained depends on the stress and thermal histories of the soi1 deposit. This 

pararneter may be especially useful as it combines two of the parameters that are 

important for frost susceptibility characterization, namely hydraulic conductivity (which 

also relates to water content) and temperature gradient (which relates to the freezing 

rate). 



Soil-Pipeline Reaction Modulus (kJ 

The axial soil-pipe reaction modulus, k,, is a parameter which describes the interactive 

resistive strength created by the soii and pipeline interface (ks is typically expressed as 

MPdm). Determination of this reaction modulus is done in one of  several ways, either 

from elastic properties or empincal relationships from sand and clay (Rajani et al., 1996). 

These relationships are illustrated in the following equations: 

Where: 

D is the extemal diameter of the pipe, mm 

Gs is the soi1 shear modulus, MPa @Und) 

v, is the soi1 Poisson's ratio 

Where: 

a is the adhesion coefficient 

su is the undrained shear strength of clays, MPa 

u, is the displacement required to develop ultimate axial resistance, mm 



O . ~ ( ~ H  )(1 + K ,  t a n  6 )  
k -  = 

Where: 

y, is the submerged unit weight of soii, kN/m3 

H is the burial depth of water mains from surface t 

K, is the coefficient of active resistance at rest 

e centre line of the pipe, m 

6 is the frictional angle between the pipe material and surrounding backf21 

This soil-pipe resistance parameter is not a widely accepted parameter since investigation 

using this parameter is relatively new. Much of the recent research carried out has been 

performed by Biggar and Sego (Rajani et al., 1996). While this measure is ided because 

it accurately measures soil-pipeline interaction, these values are not readily available. 

However, it is demonstrated that in general soil-pipe resistance increases with pipe 

roughness (Rajani et al., 1996). 

Soi1 Elastic Modulus Es 

Literature has shown that the soil elastic modulus is a representative stiffness property for 

soil-pipeline interaction [(Rajani et al., 1996) and (Selig, 1988)l. Therefore, the soil 

elastic modulus will give a measure of the strength of the soil-pipeline interactions. This 



is especially important if non-unifonn soils are present. This parameter also may have a 

counteracting effect to the development of hoop stresses during water pressure surges. 

Soil pH (and Soi1 Resistivity) 

In order to characterïze external corrosion, it is necessary to find parameters which 

indicate the corrosivity of the soil. Soil pH is a good general indicator of extemal 

corrosion since certain pH ranges allow for different corrosion mechanisrns to occur. It 

has also been found that resistivity is a function of pH [(Moms Jr., 1967); (Booth et al., 

1967), and; (Jarvis and Hedges, 1994)]. For that reason, only one of the two may be 

required for characterization. 

Literature indicates a very poor correlation between soil type and soil resistivity (Dom, 

1989). For this reason, soil resistivity cannot be incorporated into the soil type 

parameter. This being the case, soil type and either soil resistivity or soil pH rnay be 

considered as potential input parameters, but inclusion of both soil resistivity and soil pH 

are not necessary. 

Soil pH can be divided into three important ranges: O to 4,6.5 to 7.5 and 8.5 to 14 

(Moms Jr., 1967). At a pH of O to 4, the soi1 acts as an electrolyte. In the neutral range, 

pH is optimum for sulfate reduction. At a pH of 8.5 to 14, soils are generally high in 

dissolved solids, and thereby yield a low resistivity [(Moms Jr., 1967) and (Jarvis and 

Hedges, l994)]. 



Interpretation of soii resistivity field measurements is extremely important. Only when 

reading the resistivity in soii at the specific pipe depth can the interpretation (of corrosion 

potential) be made accurately (Smith, 1968). As a result, the ground water content and 

soil temperature must also be ascertained. With cast iron pipe, corrosion resistance is 

enhanced if there are dry penods during the year. This seems to permit hardening or 

toughening of the corrosion scale or products, which then become impervious and serve 

as a better insulator (Smith, 1968). Also demonstrated by Smith was that resistivity will 

Vary with the soil temperature. As the soil approaches freezing, resistivity will increase 

greatly, and thus a reliable reading may not be possible. If resistivity is to be measured, 

consideration must be given to a lack of consistent readings between field and laboratory 

measurernents. Therefore it is necessary to assign ranges of resistivity, rather than 

specific numbers (Smith, 1968). Cornmon ranges for soi1 resistivity are given in Table 1. 

Table 1. Common ranges of resistivity for soiIs. 

Adapted from (Dorn, 1989) 

CORROSION CLASS 

Severly Corrosive 

Very Corrosive 

Corrosive 

Moderately Corrosive 

Slightly Corrosive 

RE~%TIVITY (METRE-OHMS) 

O to 5 

5 to 10 

10 to 30 

30 to 100 

Above 100 



Soi1 Aeration (Redox Potential) 

This parameter is useful in characterizing the potential for bacterial corrosion. It is an 

established fact that sulfate-reducing bactena can live only under anaerobic conditions (a 

redox potential greater than100 mV indicates sufficient soil aeration so as not to support 

sulfate producers (Morris Jr., 1967). However, Jarvis and Hedges (1994) contradict the 

above, stating that values Iess than 400 to 430 mV indicates a suitable environment for 

sulfate-reducing bacteria. Overall, while there may not be a general agreement on the 

range for which sulfate corrosion is favorable, there is agreement that this measurement 

provides potential for characterizing bacterial corrosion potential. 

Soi1 Water Content 

Use of the soil water content parameter is important from several aspects. As mentioned 

earlier, the rate of frost heave is controlled by the availability of free water (McGaw, 

1972). It is also important for extemal corrosion. 

From the perspective of fiost heave, it has been stated that the availability of a water 

source is one of the necessary elements required for ice lens growth. In the absence of a 

nearby ground water table, focus then shifts to the availability of water present in the soi1 

itself, i.e., soil water content. In reality, the water content rnay be a possible surrogate 

measure for water table depth, as water may enter the soil above by capillary suction. 



Frorn the perspective of extimal corrosion, soil corrosion aggressiveness has been related 

to moisture content. Soils with a moisture content above 20 percent (wet basis) are 

thought to be particularly corrosive (Jarvis and Hedges, 1994). Another study cited a 

correlation between soil aggressiveness and an optimum water content at a minimum 

resistivity. Therefore, these results substantiate moisture content as a measure of soil 

aggressiveness (Booth et al., 1967). 

Anderson and Tice (1972) provided a study that demonstrated that water content may be 

related to soil temperature and specific surface area. In this study, an empirical equation 

was devised relating the unfrozen water content of partially frozen soils to the soil 

temperature and specific surface area Results comparing computed water contents and 

experimentaily obtained values showed good agreement, particularly for temperatures 

below -5 OC. Another study demonstrated how water content is also affected by the 

salinity of the soil (Jones, 1995). These observations again demonstrate the importance 

of soil type as a general indicative parameter. 

Cluster Indices 

As mentioned earlier, several studies have been performed that focus on the analysis of 

causes of cast iron water main failures. There has been particular focus on the temporal 

and spatial correlation of break events. The Winnipeg study performed by Goulter 

indicates that pipe failures often occur in clusters, located in relatively close proximity of 

other breaks {(Goulter et al., 1990); (Goulter and Kazemi, 1988), and; (Goulter and 



Kazerni, 1989)l. The same study shows that the likelihood of a break occurring 

decreases with time from the break of another pipe in the area [(Goulter and Kazemi, 

1988) and (Goulter and Kazemi, 1989)l. Further investigation of these phenornena is 

needed, to determine its significance. 

Air Temperature 

Air temperature is an important parameter since it charactenzes the change in chmate, 

and on a smaller scde, the change in seasons. It is integrai for charactenzing the 

potential for fiost heaving and soil-pipeline interaction stress generation. It also affects 

the measurement and stability of soil parameters. 

Deterministic models show there is a relationship between air and ground temperatures 

(see Figure 4). However, heat transfer from ground to air requires time due to the 

reduced thermal conductivity of the soil (compared to air). Since time is required for the 

ground temperature to equilibrate to the ground surface temperature (i.e. temperature at 

the ground-air interface), ground temperature c m  be considered a function of depth. In 

this manner, air temperature indirectly affects pipe failure rnechanisms in two ways: 

1. temperature-induced contraction, and; 

2. frost heave mechanics (O'Day, 1982). 



minimum ground 
temperatures 

Ground tcrnpuaturcs which 
would cxist  in m l y  spring (not 
to s d e )  

Avengt ground 
temperamrc incrases at 
1.8 T pcr 100 ft 

Active 
Laycr 

- 

Pcrmafiost 

Figure 4. Whiplash curve for ground-to-air heat transfer. 

Adapted from (Phukan, 1985) 

As illustrated in the above deterministic model, air temperature is not indicative of the 

ground temperature unless the ground temperature is considered as a fünction of time and 

depth of interest. In using the Artificial Neural Network modeling approach, presenting 

the model with time-series data may d o w  the model to characterize the air-to-ground 

temperature transition effects without using the actuai ground temperature (at pipe 

depth). This of course assumes that. the conductivity of different soils is accounted for. 



It is speculated that the daily drop in air temperature will be indicative of the rate of frost 

penetration [(McGaw, 1972); (Miller, 1972); (Anderson and Tice, 1972); (Penner, 1972); 

(Anderson et al., 1984); (Shen and Ladanyi, 1% 1); (Hu and Selvadurai, 1995); 

(Bahmanyar and Edil, 1983), and; (Roy et al., 1992)l. Some of these aforementioned 

authors have also reported that there is a correlation between a drop in air temperature 

and an increase in pipe breaks. One conflicting opinion, expressing that air temperature 

drops were not responsible for pipe breaks, was found (Habibian, 1994). 

Use of air temperature (or differences in air temperature) may dso be considered as a 

surrogate measure for freezing and thawing indices (Boyd, 1973). Use of these indices in 

prediction models, and use of air temperatures in time series may give a more realistic 

representation of climatic changes. 

Consideration of air temperature is also important for its effect on many soil properties. 

Constant monitoring of changes of soil water content, hydraulic conductivity, undrained 

strength, elastic rnodulus (Shen and Ladanyi, 199 l), resistivity, and depth of 

consolidation is not feasible. It is anticipated that use of the air temperature parameter in 

conjunction with precipitation and soil type will allow the ANN mode1 to account for 

these changes in parameters. 



Precipitation (snow and/or rain) 

Snow is indicative of the insulating effect on ground temperature, as the snow will allow 

for the entrapment of heat into the ground. Rain precipitation coupIed with the soil type 

rnay be indicative of moisture content or hydraulic conductivity if these parameters are 

not rneasured regularly. Some literature indicates that corrosion resistance is enhanced 

during dry penods of the year (Smith, 1968). Rain precipitation may also indicate an 

abundance of water supply [(Penner, 1972); (Anderson et al., 1984); and; (Roy et a(., 

1992)l. Therefore, inclusion of this parameter may be necessary to help characterize 

climatic changes as well as to infer adjustrnents to soil parameters. 

Rain precipitation may be a significant factor if water main breaks can be related to the 

swelling and consequently the instability of saturated clay soils during heavy rainfall 

events. This is based on the fact that many clay soils swell and shrink according to the 

soi1 moisture content to a high degree and exhibit a high plasticity and cohesion (Clark, 

197 1). 

Summary of Parameters 

Based on the literature reviewed, a conceptual list of causal and influencing pararneters is 

presented in Table 2. These are input parameters which should ideally be included in the 

ANN model. Andysis of data availability or reliability will determine the feasibility of 

their inclusion. 



Table 2. Summary of Influencing and Causal Factors. 

1 Pipe diameter 

1 Pipe joint age 

Intemal pipe water temperature 

1 Operating pressures 

Soil type 

1 Overburden pressure 

1 Segregation potential 

1 Reaction modulus 

Soil elastic modulus 

1 Soil aeration (redox potential) 

Soi1 water content 

1 Cluster indices 

POSSIBLE INFLUENCES ON PIPE B E A K S  

Pipe strength characteristic 
- - - - - - - - - 

Possible corrosion factor 

Strength and rigidity of connections 

pipe-wall temperature differential stresses 

Water hammer; high water pressures 

Frost action; Soil-pipeline interaction; Corrosion 

related 

Frost heave characterization; Soil-pipeline strength 

Frost susceptibility 
- - -  

Soil-pipeline resistance 

Soil-pipeline interaction 

Corrosion pararneter 

Corrosion potential 

Pipe break phenornena 
- - - - -- 

Frost action; Soil-pipeline interactions; Soil 

pararneter characterization 

Soils stability (especiaiiy clays); ground 

temperature insulating effects 



2.4 Artificial Neural Networks Overview 

With the influencing and causal factors now ouùined, it is demonstrated that there are 

wide arrays of factors that have potentially significant effects on each type of pipe 

failures. There are established relationships and interactions between many of these 

factors. It can also be mentioned that although many influencing factors are identified, 

there is uncertainty as to their roIes for causing cast iron pipe breaks. Expert knowledge 

as to causes of failures is reasonably advanced yet past attempts at modeling these 

failures have not yielded satisfactory conclusions. An alternative method of modeling, 

using Artificial Neural Networks is presented which has the potential to mode1 the pipe 

breaks. 

2.4.1 Background Information and Application 

The Artificiai Neural Network modeling technique, though not conceptualIy new, has 

only recently been explored in many fields of civil and environmental engineering 

because of its requirements for intensive computing capabilities. With the advancernents 

in computing technology, this modeling technique is gaining popularîty for its abilities to 

deal with problems having non-linear solutions, and particularly with its ability to 

forecast events. 

This modeling approach is generaily regarded as one of the best at extracting concepts 

from histoncal data. and has a strong ability to l e m ,  and thus has the ability to forecast 



future events within its study domain. Since the ANN modeling technique utilizes an 

organizational structure that has numerous interconnections, it does not rely upon 

deterministic mathematical equations. As a result, its structure is configured such that it 

can handle cornplex, non-linear problems. 

Appropriate application of Artificial Neural Networks requires that the following 

charactenstics of the problem application exist: 

1. The algorithm required to solve the problem is unknown or expensive to discover; 

2. Heuristics or rules required to solve the problem are unknown or difficult to establish 

and; 

3. The application is data intensive and a variety of data are available (Zhang, 1996). 

As previously rnentioned, earlier attempts at developing an analytical procedure using 

conventional methods for predicting water main failure have not proven successful. The 

possibility of modeling pipe break failures using ANN exists provided that adequate, 

easily accessible information can be collected. Ideally, a comprehensive mode1 will 

involve data inputs from the causal and influencing parameters described above. 



2.4.2 ANN Model Development Process 

This general process of developing an Artificial Neiird Network is composed of four 

interdependent stages: 

1. Source Data Analysis; 

2. S ystem Priming; 

3. System Fine-Tuning; and 

4. Modet Evduation. 

Source data analysis involves identifying and preparing the potential input parameters for 

use in the Artificial Neural Network models. Description of the considerations for this 

model study is to be detailed in Section 3.1. System prirning involves detennining which 

of the potential input parameters will be most appropriate for the problem study. The 

system fine-tuning involves adjusting the Artificial Neural Network model structures to 

optimize learning of the input data presented. The systern priming and system fine- 

tuning stages are often done concurrently and are described in Section 3.2. In the final 

stage, Model Evaluation, the models are evaluated both quaiitatively and quantitatively. 

These stages will be described in more detail in Section 3. For the ANN modeling 

portion, the program Neuroshell2, developed by Ward Systems Group, Incorporated was 

used (Ward Systems Group, 1993). 



2.4.3 ANN Mode1 Structure 

General Concept 

Artificial Neural Networks is one classification of Artificial Intelligence (m. It is a 

"black box" methodology that typically "learns" by cornparing an input pattern or 

sequences of input pattems, to the outputs. Relationships between model input and 

model output are formed using an error correction algorithm, which attempts to rninimize 

the error between model prediction and the actual events. Error corrections are 

distributed amongst the hidden neurons within the model. When presented with a wide 

range of appropriate input pattems and a suitable model structure, these models are able 

to intrinsically learn the underlying logic features and importance of these pattems. 

ANN technique is a form of artïficial intelligence that simulates what we think we know 

about how the brain works (Schrnuller, 1990). An Artificial Neural Network is 

composed of a set of simple processing units cailed "neurons" (as illustrated in Figure S) ,  

each capable of only a few computations such as sumrnaîion and threshold logic (Garrett 

et al., 1992). These neurons are arranged in layes, with the neurons from each layer 

being intercomected to one another. This configuration lends itself to self-organization 

and Ieaming. 



Y 

Hidden Layers 

Figure 5. Typical ANN backpropagation structure. 

Modified from (Sacluti et al., 1998) 

The Artificial Neural Network learning process involves the entry of significant input 

parameten into the model, with the output parameters known (for "supervised" leaming). 

Conversely, "unsupervised" leaniing is where the output parameter is unknown. Input 

data (often modified and/or placed in tirne series) enters each individual neuron with an 

initial weight value. Depending on the scaiing function (or activation function in 

subsequent layers), a new significance value is assigned to the output signal. These 

values are conveyed to other interconnected neurons in subsequent layers until an output 

parameter is determined. The actual leaming occurs when feedback iterations are 

performed, and the model begins to organize itself according to the data it is presented. 

Optimal and organized model development involves selecting appropriate input 

parametes and suitable ANN model features. These structures may be intemal or 

extemal to the neuron units. Those structures intemal to the neuron are the scaling and 



activation functions. The most significant model feature external to the neuron is the 

type of leaming architecture. 

Scaling and Activation Functions 

Data initially fed into the model must be scaled from their numeric range into a relative 

range for which the network can deal with more efficiently (Ward Systems Group, 1993). 

The model structure perfonning this is called the "scaling function". Scaling may be 

linear (Equation 6), but rnay also use the non-linear scaling functions logistic (Equation 

4) or tanh (Equation 5). These non-linear scaling functions will tend to group data at both 

the higher and lower lirnits of the original data range. Neuroshell2 sets the default 

scaling function to the linear function. 

Activation functions are structures in layers subsequent to the input layer (Le. hidden and 

output layers). They dictate how the individual neurons pass neuron output weight 

values from the sumrned neuron input weight values of the previous layer. The 

activation function maps the inputted sum into the output weight value, which is then 

passed onto the succeeding layer. 

NeuroShell 2 provides a number of activation functions that aUow for flexible application 

to problems. The more significant activation functions are: Iogistic (Figure 6) ,  linear 

(Figure 8), tanh (Figure 7), Gaussian (Figure 9), and Gaussian complement (Figure 10). 



The default setting for models is the logistic function. This function has been found to 

work best for most neural network applications (Ward Systems Group. 1993). however, 

there are always exceptions to this. 

The logistic function is mathematically descnbed as: 

This is graphically represented by: 

Figure 6. Logistic activation function. 

Adapted from (Ward Systerns Group, 1993) 



The hyperbolic tan function is: 

f(x) = tanh(x) 

and is illustrateci by: 

Figure 7. Tanh activation function. 

Adapted from (Ward Systems Group, 1993) 



The linear activation function is given by: 

and is graphically represented by: 

Figure 8. Linear activation function 

Adapted from (Ward Systems Group, 1993) 



The Gaussian activation function is mathematicaily described by: 

Gaussian = exp(- x2) 

Figure 9. Gaussian activation function 

Adapted from (Ward Systems Group, 1993) 



The Gaussian Complement activation function is described by: 

Gaussian complernent = 1 - exp(- x2) 

Figure 10. Gaussian complernent activation function 

Adapted from (Ward Systerns Group, 1993) 

Learning Architectures 

As stated earlier, the program used for mode1 development, Neuroshell2, includes 

several different types of Artificial Neural Network supervised leaming architectures. 

These architectures include the standard Backpropagation networks (Figure 1 l), but aiso 

includes Probabilistic Neural Networks (PNN) and Generd Regression Neural Networks 



(GRNN). Within each of these Iearning architectures, especially the Backpropagation 

networks, unique features of the network structure give way to distinct mode1 types such 

as Jump Connections networks (Figure 12), Recurrent networks (Figure I3), and Ward 

networks (Figure 14). This subset of backpropagation networks is designed to provide 

flexibility in design of the network, and vary the method of data presentation (Ward 

Systems Group, 1993). This flexibility rnay d o w  the network to capture specific 

features of the data set or problem study, not as easily captured with a standard 

connection backpropagation network. 

Figure 11. Standard connection network stmcture. 

Modfied from (Ward Systems Group, 1993) 



Figure 12. Jump connection network structures. 

ModiFIed €rom (Ward Systems Group, 1993) 

Figure 13. Recurrent network structures. 

Modifiecl from (Ward S ystems Group, 1993) 



Figure 14. Ward network structures. 

Modified frorn (Ward Systems Group, 1993) 

The Backpropagation architecture offers the greatest amount of flexibility in NeuroShell 

2 since there arc a number of network options. Standard Connection networks are the 

simplest fonn of ANN rnodel, with each layer of neurons connected to the adjacent layer. 

Jump Connection networks aUow for more involved linking, such that every layer is 

connected to each other layer, not solely to the adjacent layer. The Recurrent Networks 

have an additional input layer which stores the contents of the previous pattern that was 



trained, alIowing the network to see previous knowledge it had about previous inputs 

(Ward Systems Group, 1993). A final backpropagation type model offered in NeuroShell 

2 is the Ward Network, developed by the supplier of the program. This network ernploys 

the use of varying activation fûnctions, designed to identify different features of the data 

set. Thus, the output layer receives different 'tiews of the data" (Ward S ystems Group, 

1993). 

The Probabilistic Neural Networks and General Regression Neural Networks are both 

three layer network architectures in which the input patterns are presented to the input 

layer, and each individual input pattem is retained by one o r  more hidden layer neurons. 

The output from the individual pattern is either categorized according to a probability 

density function (for PNN) or presents a continuous value output (for GRNN) based upon 

a cornparison to al1 retained patterns. 

The initial layer of ali networks is comprised of the model's input parameters, with each 

input parameter assigned to an input neuron. These neurons are collectively called the 

input layer. The finai layer is descnbed as the output layer, and is composed of a single 

output (sometimes multiple outputs) that is (or are) being modeled. This is coilectively 

cailed the output layer. The layers in between are described as "hidden layers" because, 

while each neuron serves as a unit-process decision (each neuron makes a decision based 

on the input it receives from other neurons) these decisions are intrinsic to the model, and 

these neurons' outputs are not readily seen. The combination of the hidden neuron 



outputs and interconnections between neuron layers culminate in the decision-making 

process of the model. 

2.4.4 ANN Mode1 Learning Mechanics 

The ANN models employed for this study used an error backpropagation algorithm for 

leamuig. For this type of leaming, input patterns fed into the model produce an initial 

rnodel output. The resulting output is then compared to the actual outcome 

(corresponding to the input pattern) to determine the model's prediction error. This emor 

is then fed back into the hidden layer neuron interconnection weights. The error is batch 

corrected, and errors are distributed throughout the neuron connections. These modified 

weights attached to each incoming neuron signal, produce new output weights, which are 

govemed by the type of activation functions utilized. These new output values are then 

transrnitted to the neurons of the following interconnected layers, until a new output 

signal is derived at the output neuron. This error correction cycle continues until either 

the prediction reaches a minimum value (determined by a user-specified maximum 

iteration period) or the prediction error is below a user-specified error limit. Due to the 

complexity of the neuron interconnections, connection weights will continue to develop 

until a set of stable comection weights is found. 



2.4.5 ANN Data Set Presentation 

As stated earlier, ANN models l e m  by the presentation of input and actual output data 

pattems. When developing the model, it is important to realize that the purpose of 

presenting the model with various data patterns is to allow the model to intrinsically 

extract logic concepts from the data set. For this to occur, information presented must be 

representative of the full range of events, and a wide range of different pattems. The 

method by which the model is presented with the data is dso  important. 

Three data sets are used: training, testing and production sets. The training data set is the 

set of pattems from which input and output pattems are initially entered into the model to 

train the ANN model. The developing model cyclically compares itself against a test 

data set, from which the model calculates its progress (where the goal is to minimize the 

error between the actual output, and the output of the model). The development and 

cornparison cycle continues until there is a minimum specified error in prediction, or the 

rnodel is unable to progress further. The mode1 can then be tested against the production 

set for model venfication. The production data set is a set of data points, which the 

trained model has never seen before. This data set is used for quantitative rneasurement 

of model leaming ability and feature extraction capability. The pattem file contains al1 of 

the data pattern sets, including training, test and production sets. 



When assessing the feasibility of Aaificial Neural Network methodology for research 

into pipe breaks, the modeling process must involve demonstration of knowledge and a 

logical experïmental thought process. This section dernonstrates these abilities through 

the collection, evaluation and use of data, and logical use of Artificial Neural Networks. 

3.1 Data Collection 

The effectiveness of an ANN model depends on the availability and reliability of the 

input data. Finding data that represents or corresponds to the possible factors reviewed 

was important for representing the physical cause-effect relationships. The reliability of 

. the data is measured by the amount of "noise" inherent in the data. Noise are data 

pattems that contain inaccuracies and discrepancies, which does not allow the model to 

rnake proper associations between input and output patterns. Use of data with little 

apparent noise would result in a more accurate and precise model. As a result, precision 

in monitoring and collection of data was analyzed. 

Data collection involved evaluating all available data based on accessibility, relative ease 

of obtaining long-term relevant data, and the prospect of future availability of the same 

type of data for future models. This data must have characteristics that are significant for 

model convergence. If al l  the proposed model input parameters are used for the model, 

the run times for model training will be exceedingly long, and hence would be an 



inefficient use of time. Also, if insignificant (or inappropriate) data is not eliminated 

initially, the redundant input parameters will be treated as "noise" by the ANN model, 

and as such may decrease the likelihood of model convergence. 

3.1.1 Parameter Collection and Analysis 

Artificial Neural Network modeling requires not oniy representative data, but meaningful 

forms of the data. For this reason, manipulation of the raw data may be required to make 

input patterns more meaningful to the model. In cases where multiple failure 

mechanisms depend on a specific parameter, but for different physical representations, it 

becomes necessary to represent the sarne raw data in different forms to reflect the 

significance of these different representations. For this purpose, input patterns are 

changed to be more indicative of the underlying failure mechanism. A review of the 

plausible model input parameters and justification of their transformations are presented 

below. 

Because of the nature of pipe failures, literature indicates that to fully predict these 

occurrences, it is necessary to have a wide range of representative data parameters. Due 

to limitations in the collection of input data, it became necessary to restrict the scope of 

the output being predicted. As mentioned earlier, the most important factors include pipe 

charactenstics, pipeline operating characteristics, soils characteris tics, soils properties, 

environmental properties and cluster indices. 



Investigations into available raw data indicated that a large number of the suggested input 

parameters would not be available. Data for the various ideal input parameten that met 

the requirements (reliable and available in reasonable abundance) was difficult to collect. 

Source data relating to individual pipe characteristics was found in water main leak or 

break repair reports. This report is standard documentation to be included with any water 

main repair performed. The information contained on this report is detailed, since it 

includes: 

pipe break location (street, avenue and distance from property Iines); 

pipe depth at bury and apparent frost depth; 

report and repair dates; 

pipe material; 

size of pipe (pipe diameter); 

nature of break (Le., longitudinal, transverse, etc.); 

apparent cause of break; 

condition of pipe andor coating or wrapping and; 

site map of break. 

This data was obtained from hardcopy documents stored at the water yard, as this level 

of detail is not typicaiiy entered in cornputer spreadsheet form. 



Air temperature and precipitation (rain and snow) raw data was available from the closest 

weather monitoring stations. In this study, meteorological data from the municipal 

airport was used, since this is a city-central monitoring station, and Iocated fairiy close to 

t!ie study area. Operating pressures were available, although they were ody  average 

daily pressures, and pump shutoff and water hammer events were not typically logged. 

Water temperature values were available for the supplying reservoirs and water treatrnent 

plants. Soils characteristics (soil type, soil parameters, corrosion-related parameters) 

were not available in sufficient detail or with enough frequency in collection to be useful. 

The study was limited to modeling a city subdivision within the City of Edmonton's 

water distribution system (Figure 15). The selected area was the Calder subdivision 

(refer to map on Figure 16). This study area was a high-density break area for which data 

from 1972 to 1994 were collected and input into a cornputer spreadsheet. It was 

unknown why this particular area was expenencing a high break density when 

surrounding areas had sirnilar pipe infrastructure and soils charactenstics, yet were not 

experiencing similar break ac tivi ty. 



Figure 15. General Map of Edmonton Water Distribution System 
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Figure 16. Calder Sub-division Study Area 



Because information was either lacking or too general for application within the scope of 

this study, simplif-g assumptions had to be made. For example, it was assumed that 

the subdivision was a uniform soi1 type. Soi1 maps of the Edmonton area (Kath01 and 

McPherson, 1975) indicated that the Calder area was composed entirely of a Maimo Silty 

Clay Loarn. These maps also indicated that the majonty of the Edmonton area is 

composed of a silty clay loam. 

Output AnaIysis and Format 

Due to the unavailability of some potential raw input data (instantaneous operating 

pressures, many soils parameters), it was necessary to mode1 only those pipe failures for 

which causal and influentid factors could be easily obtained. The abundance of 

meteorological data, water temperature, and average operating pressures allowed for 

effective modeling of frost heave, soil-pipeline interaction, and pipe wdl differential 

stress failure mechanisms. Because many failures were not directly attributed to 

corrosion, but were intuitively contributing causes to the above failures, they were 

included in the modeling. Failures as a result of indeterminate causes (i.e. clamp 

failures) were excluded from modeling. Those failures caused by unpredictable pressure 

surges (such as water hamrner events) could not be excluded, since operational log data 

did not indicate when such events actuaily occurred. However, these events were 

typically infiequent. 



A water main pipe failure is defined as an event where the leaking water pipe requires 

repair. Analysis of the raw break data (water main repair forms) was performed in order 

to determine if individual faiiure modes were seasonal. Since break information was 

available from 1972 to 1994, analysis was performed on al1 break data. Results 

illustrated that transverse faiiures (Figure 17) and diagonal failures (Figure 18) appeared 

to be seasonal, as the highest frequency of breaks occurred in the colder seasonal months. 

Longitudinal failures (Figure 19), blowout failures (Figure 20), and clamp failures 

(Figure 21) do not seem to have a seasonat pattern. 
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Figure 17. Monthly transverse failures, 1972-1994. 
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Figure 18. Monthly diagonal failures, 19724994. 
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Figure 19. Monthly longitudinal failures, 1972-1994. 
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Figure 20. Monthly blowout failures, 1972-1994. 
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Figure 21. Monthly clamp failures, 1972-1994. 

The number of 150 mm diameter pipe breaks was decided upon as the output parameter 

of prirnary focus since this pipe size accounts for 3 14 of the 564 pipe breaks (55.7 



percent) on record for the penod of 1985 to mid- 199 1. Table 3 lists the breakdown of 

pipe breaks according to pipe diameter. The reason behind limiting the scope of the 

study to a single pipe diameter was aIso to eliminate possible confusion in pipe failure 

mechanisms, since literature has described different failures modes for different pipe 

sizes. 

Table 3. Pipe breaks sorted by diameter, 1985-1991. 
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Pipe Diameter l Of breaks 
1 Percentage of to td  

It must be kept in mind that the model being developed wili be able to predict the 

probability of pipe failures for a general area, but is not meant to predict the probability 
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Coilection and Analysis of Raw Input Data 

Following the detednat ion of the availability of data was the determination of the 

reliability of the data. AIso to follow was the transformation of the data into input forms 

that reflected the physicai causes and influences on the different failure modes. 

Investigation revealed that the best potential for input parameters w q  available for air 

and water raw data, average operating pressures, precipitation data and temporal 

clustering indices. Analysis of the raw data, data manipulation and their justifications are 

given below. 

Air Temperature 

Use of this data as a substitute parameter for ground temperature was warranted due to 

the virtual absence of ground temperature monitoring. Ground temperature is an 

excellent indicator of the physical processes affecting pipe breaks. Aside from the 

aforementioned hoop stress conditions it creates, it is also an important factor for 

modeling frost heave (Anderson et al., 1984) and soil-pipe interactions (Yen et al., 198 1). 

Thus, it was seen of parmount importance to characterize ground temperature data in 

order to characterize the different failure mechanisms. The most appropriate surrogate 

parameter was air temperature, given that this c m  be used to characterize ground 

temperatures in time series (to account for time lags in temperature reaching the lower 

ground depths). 



Air temperature was thoroughly analyzed through graphical methods in order to 

determine a time-senes correlation. Either 1-year or 2-year analyis periods were 

selected to maintain reasonable accuracy of the analysis. A graphical analysis of average 

daily temperatures (Figure 22) was performed. As expected, this analysis demonstrated 

that temperature had seasonal variations. A first and second difference was taken from 

the mean daily temperature (Figure 23 and Figure 24, respectively) in order to determine 

if a time Iag relationship was apparent. This was evident, and it was decided that the 

model input parameter for air temperature must incIude a time lag component. 

An analysis of the 7-day temperature change was also performed, and again, this analysis 

proved that a time Iag component was necessary (Figure 25). This judgement was 

reasonable, since ground temperature transition models (e.g. Figure 4. Whiplash curve 

for ground-to-air heat transfer.) support this conc1usion. Temperature transition models, 

such as this one, propose a slow thermodynamic transition of ground temperature from 

surface to increasing depth. Therefore, using a 7-day temperature lag was thought to be 

reasonable. 

To further determine which representations of the raw data are most indicative of the 

physical process, the information will be used in the Artificial Neural Network model. 

The results of the ANN model show which form of the parameter is most effective for 

model input. 
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Figure 22. Average daily temperatures, 1985. 
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Figure 23. First difference of average air temperatures, 1985-1986. 
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Figure 24. Second difference of average air temperatures, 1985-1986. 
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Figure 25. Seven-day air temperature difference, 1985. 



Several alternatives were examined to detennine which would best represent the different 

failure mechanisms acting on the pipelines. To imitate the major cold weather failure 

mechanisms (frost heave, soil-pipeline interaction. and water-ground temperature 

differential), multiple input parameters using air temperature were proposed. Due to the 

importance of cold weather, it was important that air temperature effects be accounted for 

in the model. As will be discussed in the model results and sensitivity analysis, the 

inclusion of multiple (modified) air temperature data as input parameters was justified in 

representing the different rnanners which air temperature affects pipe failure modes. 

Modeling frost heave mechanics involved presenting the Artificial Neural Network 

model with input patterns designed to mimic frost heave rate. The resulting formula, 

presented in Equation 9 was used to calculate the frost heave rate characterization 

parameter. A daily time frarne for measuring temperature changes was chosen to show 

how daily changes in air temperature translated to a frost penetration rate in the soil. 

This was calculated as follows: 

Frost Heave = ~ a x ( t , + ,  - ti ) -f;=i 

Where : 

t = air temperature (OC) 

Large consecutive negative differential temperature values indicated a faster rate of frost 

penetration. Fluctuating temperature differential values (altemating negative and positive 

values, or  s m d  negative values) indicated Little or no change in the frost heave rate. 
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Large, positive consecutive values may indicate some warming trends, possibly having a 

ground thawing effect the number of consecutive periods is extended. This may result in 

differential ground thawing dong the length of the pipe, resulting in more failures. A 

time lag was also inputted in order to facilitate memory by the ANN model for 

previously described extended penods. 

Modeling of soil-pipeline interaction involved showing how sudden, significant changes 

in temperature, either during winter clîmate or transitions between warm and cold 

weather penods, resulted in pipe failures. To aUow the ANN model to distinguish cold 

weather events and large temperature drops, two distinct measures were devised. The 

first parameter was a measure of the climate, warm or cold. The mode1 was presented 

with a 7-day moving average of mean daily temperatures. The calculation for this was 

based on an arithmetic mean formula presented in Equation 10: 

Seven Day Average Temperature 
i= 1 

The second measure was a seven day change in temperature. This parameter was the 

maximum seven day temperature difference for the week previous to the data reference 

point, as illustrated in Equation I 1. 

Maximum Seven Day Change = Max (ti, - ti ) i = 1 + 7 



The purpose of this parameter was to indicate a contraction of the pipe, causing an 

increase in tensile stress dong the length of the pipe. As descnbed in the soil-pipeline 

interaction section (as a failure mechanism), this type of action may result in pipe 

faiiures. 

Interna1 Pipe Water Temperature 

The possible sources of pipe water temperature were investigated. The initiai source 

investigated were the Rosslyn reservoirs' water temperatures, as this was the nearest 

water reservoir to the Calder area, and therefore was the most reflective of the water 

temperature within the water pipes. This data was analyzed for its reliability. Graphical 

analysis, as illustrated in Figure 26, revealed inconsistencies in trends, wfiich would 

present "noise" for the ANN model, thus reducing its accuracy. 



Figure 26. Graphical analysis of Rosslyn reservoir average water temperature, 
1985-1991. 

Refemng to Figure 26, the data appears to have a well-defined trend from 1985 until 

1988 after which, the trend changed, appearing more erratic. This was discussed with 

Mr. Ken Richardson, supervisor of Water Transmission at Aqualta, and it was decided 

that this data was not reliable. The reason was that the reservoir sensors did not detect 

water temperature during station shut downs (lasting for weeks), but instead measured 

the room temperature. Thus the sensors did not measure water temperature unless the 

water was running, As a result of these inaccuracies, a surrogate measure using the water 

treatment plant intake temperatures was investigated. It was concluded that the water 

treatment plant water temperatures from which the reservoir water originated could be 

used as surrogate data. It was felt that this data was reliable since detention time in the 



reservoir was not significantly long enough that the water treatment plant's temperatures 

would not be would representative of reservoir water temperature. The seven-day 

average water intake temperature is shown in Figure 27. 

time (weeks) 

Figure 27. Seven day average water temperature (Rossdale Water Treatment 

Plant) 19854991. 

Because the thermal conductivities of soil and water are different, meteorological 

fluctuations result in different rates of transition for water and ground temperatures. 

Drops in ambient air temperature folfowing periods of relatively constant temperature 

affect the thermal exchange rates from air to water and to soil in differing degrees. This 

results in a substantial temperature difference between the ground surrounding the pipe, 

and the water within the pipe. This difference creates a temperature gradient across the 

thickness of the pipe wall, resulting in differential strains and longitudinal stresses. This 

hoop stress condition increases the likelihood of longitudinal failures mabibian, 1994). 

67 



Thus intemal pipe water temperature, coupled with an indicator factor of ground 

temperature would help physicaily represent the occurrence of hoop stress conditions. 

In order to mode1 pipe waü temperature differential stress, an expression for magnitude 

and temperature differential was required. This was calculated by the following formula 

(Equation 12): 

Seven Day Average (Air - Waier) Temperatme Differential= 
i=1 

This input parameter would properly demonstrate instances where hoop stresses were 

probable to occur. 

It was thought that expressing a pipe wall temperature gradient exclusively might be 

incornplete because it did not reflect other stress conditions occumng concurrently. The 

presence of contributing stress conditions may be necessary for this type of failure. 

Because of this possibility, a magnitude indicator in the form of the 7-day average water 

temperature was added. It calculated in the same manner as the 7-day average air 

temperature. This expressed the overall temperature conditions. High pipe wall 

temperature differentid events occurring at sub-zero temperatures would be much more 

significant than those occurrences at warmer ternperatures, speculatively due to 

decreased pipe ductility with decreased temperature. 



Operating Pressures 

The main concem with operating pressure as a parameter is the effect of unexpected 

events such as pump shutdowns and other types of pressure-related problems. Water 

hammer effects resulting from pump shut downs and accidental valve closures c m  result 

in blowout fdures,  especially on pipe walis which have been weakened by corrosion 

effects or previously stressed pipe. Failures may also occur due to operating pressure, 

which are not within the design operating range for the pipe. 

Investigations into the availability of operating pressure data showed that only average 

daily pressures were recorded. For this reason, it was not reasonable for predicting 

failures occumng from water hammer effects, since these are instantaneous events, and 

seldom are accurate records kept. However, the benefit of using this parameter was not 

completely discounted. The average seven day operating pressure was included as a 

potential input parameter to determine if long-term operating pressures have an effect on 

the failures of the mains. 

Pressure information was gathered from reservoir data logs. The water pressure input 

parameter was simplified by assuming that the pressure from the reservoir servicing the 

subdivision would be an adequate indicator of the area's overail average pressure. 

Further manipulation of data would have required specific knowledge of the elevations 

of various points within the service area, and calculating a hydraulic grade line. This 

manipulation was thought to be unnecessary since the reservoir area was static, and 



therefore the same reference point was always used. In addition, due to the generality of 

the modeling (probability of pipe failures is only being predicted for the Calder 

subdivision as a whole unit, not for individual pipe breaks), this level of information was 

considered unnecessary. 

Rain Precipitation 

Rain precipitation is an important parameter when considered in relation to soi1 type. 

The Calder area is composed entirely of a silty cIay loam. Clayey soils will be affected 

to a larger extent than sandy soils when there are periods of low precipitation foliowed by 

penods of high precipitation. The inclusion of this parameter may be especially usehi1 

for prediction of failures dunng the warmer seasonal months, as opposed to the cold- 

weather input parameters. This was a distinct possibility after graphically analyzing the 

pipe breaks, since not al1 of the water main failures occurred during the colder months, 

shown in Figure 28. 
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Figure 28. Total monthly breaks, 1985-1991. 

Several time periods were correlated in initial models, to detemiine which time period 

would best mode1 the physical process. Results favored the inclusion of a 180-day 

moving average. This data was obtained in conjunction with the air temperature data. 

Cluster Indices 

Histoncal studies of water main failures in other cities show that pipe failures will often 

occur in clusters, as demonstrated by studies conducted in Winnipeg, Manitoba [(Goulter 

and Kazemi, 1988) and (Goulter and Kazemi, 1989)]. 

This phenornenon may be caused by a disturbance of soil surrounding a pipe break, due 

to the pipe failure (i.e. water seepage causing instability of the soil), or even the repair of 
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the pipe failure (excavation and replacement of soi1 causing disturbances to soii 

strengths). Regardless, the studies demonstrated that this type of phenomenon was 

significant. Due to the relative proximity of the failures @oh  in time and space), they 

might be mistaken for a multiple break event, when in actuality there would be multiple 

causes (Le. the primary failure cause, and then the resulting additionai failures from water 

seepage or other causes). 

Due to the large area selected for modeling, it was impossible to input a spatial cluster 

input parameter that would correspond to the initial break. This was due to spatial 

variability of pipe breaks over the entire area, and in this case the model output was a 

summed output. Therefore the model was not designed to determine the exact location of 

a pipe break, and a spatial cluster parameter was not a truly indicative input pararneter. 

For example, trying to spatially correlate two separate pipe fadures, several kilometres 

apart, (under the assumption that one failure is linked to the other) would be incorrect, 

causing noise and possibly decreasing model accuracy. 

- 

Although a spatial cluster pararneter was not thought to be useful. a temporal index 

parameter was created using a one-week lag of breaks within the study area. In this 

manner, it was thought that pipe breaks occurring in the time period immediately 

preceding the current period would be able to adequately represent this phenomenon. 

Therefore, the previous week's number of breaks was inputted to show temporal 

correlation. It was decided that due to the tirne frame selected (one week intervals), 



periods longer than two weeks (the present week interval and the week befcre) would not 

be physically meaningful for temporal correlation. 

Pipe Integrity 

The pipe integrity parameter was seen as an important indicator of the overall structural 

integrity of the water mains within the subdivision- This measure was calculated by 
- 

summing the total number of pipe breaks that occurred in a one year span previous to the 

input data point in time. It was thought that this input parameter would indirectly infer 

whether these pipes were affected by corrosion and would give an approximate measure 

of the potential degree of this corrosion. This was important since soi1 parameters 

indicative of corrosion were not available in sufficient detail or quantity to-be useful for 

mode1 development. The number of breaks of the same pipe diameter within the 

previous year was accepted as a correlated indicator of pipe integrity, as greater pipe 

integrity would be indicated by fewer breaks within the previous year. Conversely, more 

breaks would indicate a more weakened overall state of pipes within the study area, and 

thus higher pipe failure frequency. 

This parameter was a moving total value, and each input pattern included only the total 

number of breaks within the previous year. Analysis of the trends showed that the total 

number of breaks within the previous year fluctuated (shown in Figure 29), which 

seemed peculiar. It would be expected that the total number of breaks within the 

previous year would continualiy increase, to reflect the continually worsening degree of 



corrosion. However, several factors rnay explain why this was not seen. Variant weather 

patterns, Le., severe or mild winters rnay eflect yearly break rates. Effective mitigation 

techniques. e.g., cathodic protection, extensive pipe repairs, and pipe replacements may 

be another factor for variation. Also, random and/or exceptional events, those severe 

enough to cause additionai failures, may be indicative of an uncharacteristic year. 

Therefore, histoncal information is intrinsicdy embedded in this input parameter. 

time (weeks) 

Figure 29. Previous year total pipe breaks (moving total), 1985-1991. 

Omission of Potential Input Parameters 

From the above description, it becomes obvious that a number of causal or influencing 

factors (from literature, summarized in Table 2) have been transformed and/or replaced 

with surrogate input parameters. Others are omitted altogether. Those parameters 

selected as potential mode1 input parameters are summarized in Table 4. Lagged values 
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for each component (i.e., the parameter's value of the week directly previous) are 

indicated if they were considered potential input parameters. 

Table 4. Summary of Potential Input Parameters. 

Input Parameter Lag Component 

I Air temperature: maximum daily difference Yes 

I Air temperature: max absolute daily difference I Yes 

Air temperature: maximum 7-day change 

Air temperature: 7-day average 

Yes 

Air temperature: maximum absolute 7-day change 

Yes 

Yes 

7-day average water temperature Yes 

7-day average pressure 

7-day average air-water differential 

Yes 

Yes 

180-day total precipitation 

Factors identified in literature relating 

durability of the individual pipes were 

No 

Previous week lag 

Previous year lag 

to pipe Mure  mechanisms or indicative of the 

not included. This was because of the manner in 

NIA 

N/A 

which the study area was modeled. The individual pipe's overall physical characteristics, 

such as pipe diameter and type of pipe joint connections, were not included because of 

the difficulty in transforming these individual pipe characteristics into an overall 

charactenstic (certain areas were ins taIled years later, others had been replaced). 

area 

This 



was the pnmary reason for the scope of the study to be lirnited to one size of pipe. It was 

also seen as advantageous, as it is easier, and also more accurate to model a single output. 

Environmental parameters affecting the pipe, such as overburden pressure, soil type and 

properties, soil pH, and soil water content were omitted due to lack of monitoring of the 

data. Review of literature showed these parameters to be appropnate measures of 

corrosion and soil-pipeline interaction strengths. However, because the purpose of the 

model was to predict the likelihood of failures for an overall study area, and for 

prediction of cast iron water mains only, the above parameters were presumed adequate. 

Models were developed utilizing the above input parameters. 

3.1.2 Open-Domain Problems 

Modeling of the Calder area pipe failures had difficulties because it is an open-domain 

system. An open-domain is a system that is not controlled, and in which interferences 

such as altemate causes, c m  neither be identified nor quantified for their overall effect 

within the system. 

As a result of working with an open-domain system, model development using Artificial 

Neural Networks was the best methodology. Nonetheless, within an ANN-type model, 

modeling diKicuIties were anticipated. Exposure to a full range of data patterns in time 

senes was required for the ANN model to make appropriate input-to-output parameter 

associations and, therefore, accurate models. Conversely, a lack of appropriate data, 



including boundary conditions. is extremely unfavorable for developing accurate 

deterministic-type models. A deterministic mode1 typically requires a controlled, closed- 

domain system. This type of model will derive values based on maadtudes of measures, 

and often not in time senes. Therefore, ANN methodology has an advantage in open- 

domain studies since it does not necessarily require boundary conditions. 

To contend with the open domain nature of pipe breaks, a suitable time frame was 

investigated. To reasonably model the pipe break process, it was essential to ascertain 

this tirne frame for which the input parameters could correlate to the output parameter 

(pipe breaks). Initial trials with daily data were attempted, but it was found that some 

input parametes, primarily those temperature-related, could not adequately form an 

association with pipe breaks. This could be attnbuted to the time required for cold air 

temperature effects to propagate into the ground to pipe depth or water. A daily intervai 

also did not allow the ANN model to correlate an air temperature drop with a pipe break. 

Mode1 results using an arbitrarily set seven-day interval were reasonable, and greater 

accuracy in prediction was immediately encountered. Due to the association with the 

seven-day interval (equating to a weekly interval, as opposed to using a four-, five- or 

six-day interval) interpretation of the data in a physical time sense was also more easily 

comprehended. 

Weekly time intervals were implemented in the model by taking seven-day averages, 

seven-day totals, or maximum daily values within the one-week interval, depending on 



each parameter's function in the model. Where average values were required, daily input 

data points were calculated using the reference date, and the six days previous to this date 

for averaging purposes. For instance, averaged values from January 1" to January 7" 

would be included in the January 7h reference data point. Where seven-day totals were 

required, the same principal was used. For the same example, a total of the daily values 

from January 1'' to January 7" (inclusive) would be included in the January 7" data 

reference point. For maximum values, the maximum daily value within the seven days 

would be selected for modeling. 

3.1.3 Limitations 

As discussed previously, the plausibility of developing a successful model hinges on the 

quality of the data available. It was demonstrated in the literature review and source data 

analysis that the largest limiting factor for modeling ease and accuracy is the presence of 

appropriate and comprehensive data. 

. There was a discrepancy between ideal input parameters and the actual data available. 

This discrepancy serves to emphasize the point that in order to facilitate ease and 

accuracy in development of an Artificial Neural Network model, limitations to output 

and input parameters rnust be overcome. 



3.1.3.1 Limitations of Output Parameter 

A proposed mode1 output parameter employing an area break density output (number of 

pipe breaks/km of pipe/km2 of ground area) was investigated instead of a linear break 

density. This type of output was thought to be more valuable than a linear break density 

since it would have the ability to defuie and pinpoint a smdler area for use in 

Edmonton's water main replacement program. However, information of this type was 

not readily available, and obtaining the parameter in this form required meticulous 

manipulation of spreadsheet data and city maps. Much of the historicd data could not be 

found in spreadsheet form, although there is current work ongoing attempting to update 

city databases. Therefore, the linear break density was adopted. 

3.1.3.2 Limitations of Input Parameters 

The availability and reliabiiity of the raw source data created the need for extensive 

analysis and manipulation of the raw data in order to provide input data patterns 

representative of the M u r e  mechanisms. The arnount of anaiysis (and re-analysis 

required) hindered the timely development of the models. 

Because of the open-domain nature of the system, and its effect on the correlation 

between input and output patterns, unpredictable results could be expected. Deding with 

these problems involved making assumptions. Fair assumptions could be made, 

supported by theory (from literature) or by circumstances (small areas may be assumed to 



have sirnilar charactenstics). However, this will tend to lirnit the range of application 

unless the availability and reliability problems are mitigated. 

Soil type, an important factor for several failure mechanisms, was not used in the model 

because available soil maps were too general, and indicated the Calder area was 

composed entirely of a silty clay Ioam, as was a great majorïty of the Edmonton area. 

Finally, due to a lack of monitoring of most of the soi1 parameters mentioned, it is 

impossible to include any such information without taking samples from individual areas. 

This process would be time consuming and not economically feasible. For this reason. 

the developed model is limited to areas where uniform soil conditions can be assumed. 

3.2 Modeling MethodoIogy 

The four-step model development methodology for Artificial Neural Network was 

generdly followed. As mentioned earlier these four steps are: Source Data Analysis; 

System Pnrning; System Fine-Tuning, and; Model Evaluation. As will be demonstrated. 

the Source Data Analysis stage has already been defined and performed in the above 

section. System priming has already been partiaily completed, and was done 

concurrently with system fine-tuning. These middle stages involved employing 

systematic manipulations of data and ANN model structures to arrive at the best models. 

Model Evaluation is the stage where performance criteria are defined and best models 

chosen. 



In source data analysis, the fmt  objective of this exercise was to understand the problem 

being modeled and to estabiish the cause-effect and influencing factors as they pertained 

to the output. Having done this through careful research and review of available 

literature, it would be possible to obtain the necessary data. The second purpose of the 

source data analysis stage was to determine the reliability of the data, and to prepare the 

data for input into the ANN modeI. Given that the study domain modeled was an open 

systern, uncertainty of the inputs was unavoidable. Inaccuracies in measurernent of input 

parameters (instrumentation accuracy and tolerances may not always be good; many 

parameters are not measured with satisfactory frequency) resulted in "noise" during the 

training of the model, possibly affecting the model's forecasting capabilities. For this 

reason, it was extremely important to have input parameters that would accurately reflect 

the physical pipe failure mechanisms. 

As illustrated in the above section, there were a number of instances where the 

availability or reliability of the raw input data collected imposed limitations. Therefore 

inputting the most representative patterns and use of suitabie ANN rnodel structures 

would be paramount for accurate model development. This was achieved in the system 

priming and system fine-tuning steps. 

In the System Priming stage, the overall objective was to determine which of the 

potential model input parameters would produce the best predictive model. This 

involved inputting patterns which best described the cause-effect and influencing factors. 

Having done this, the next stage involved methodically determining which of these 



parameters should be included in the model. Again, for open-domain system studies, this 

process becomes more dificult because of the need for confidence in the relevance and 

reliability of the data- 

Due to the use of a number of transformed and surrogate input parameters, it was decided 

that the system prirning and system fine-tuning steps would be developed 

interchangeably with one another. This reasoning becarne evident during the model 

training stage. Early results did not indicate satisfactory prediction capabilities, despite 

use of sound methodologies. Therefore an iterative process was employed between the 

system pnrning and system fine-tuning stages. The methodologies applied will be further 

descnbed in the following section. Further model refinement and input pararneter 

inclusions or exclusions would be decided upon depending on the iterative modeling 

results. 

The System Fine-Tuning stage consisted of meeting three goals. The first, was to 

deterrnine the most appropnate way to present the data sets (training, test, and production 

sets) to the ANN model in order to allow the model to "learn" the data by appropnate 

associations, without having it "mernorize" the data. The second goal was to distribute 

events within the data sets such that the full range of occurrences would be captured by 

the model. These fxst two goals were extremely important to maintain the forecasting 

power of the model. The third goal of system fine-tuning was to develop the model type 

and model structures which would most easily and efficiently model the domain, while 

including features typical for the process. 



As previously mentioned, the model structure, the distribution of data sets and data 

points, and model input parameters were detemiined in conjunction with one another. 

Determining the best combination of these elements involved iterative trials, however use 

of andytical modeling methodologies allowed for the most efficient convergence. 

Details of the different methodologies employed are to be discussed in this section. 

3.2.1 Mode1 Progression 

For preliminary modeling, a wide range of model architectures were examined (Standard 

connections; Jump connections; Recurrent network and Ward networks). This was 

performed to determine if any particular network was more advantageous for the inputs 

chosen. The most important potential input parameters were inputted into each model 

type. The models were then evaluated by the R' statistic (a measure of the model's 

predictive error when compared to actual output data). This measure was applied to the 

cumulative ANN mode1 predictions. This method allowed for a fair, overall cornparison 

of the prediction errors. A secondary evaluation was by visual inspection of actual 

versus predicted results, to surmise whether pipe break trends were being matched. 

Based on these results, it was evident that the standard connection backpropagation 

networks were the most suitable network architectures. The standard networks, using 1 

or 2 hidden layers, provided the greatest potential for model development. The standard 

comection network was also desirable for preventing complication of the model 



development process and to ailow for further application of the model, since this model 

architecture type is quite simple in structure. 

Once the general model type was determined, the next task was to detemiine which 

model input parameters would be most relevant for mode1 accuracy, and in what 

proportions these data sets should be presented to the model. A portion of the data was 

selected for the training and testing sets, and the remainder was used in the production 

set. The predictive properties of the mode1 were then tested on the entire data set (the 

pattern file, consisting of the training, test and production sets). This pattern file was 

arranged in chronological order to maintain the time-series predictive properties of the 

model. 

To determine each input parameter's significance to the models, a number of methods 

were attempted, using the R' statistics of the production and pattern files. An addition- 

type method was used. This method involved gradually adding more input parameters, 

starting with five input parameters. A factorial design procedure including al1 parameters 

was dso  utilized in order to determine the appropnate input parameters. However, the 

significance of individual parameters was not readily evident through this type of 

anaiysis since parameter interactions were significant. A substitution-type procedure was 

then employed. This method involved removing a single parameter to determine the 

parameter's significance. This parameter was then replaced, and a different pararneter 

excluded. Results from each method were best using addition- and substitution-type 

models. 



Different configurations of the standard backpropagation networks were tried 

concurrently with the deteenat ion of the important input parameters. Due to the 

interdependence of the input parameters and the type of network model used, a large 

number of trials were attempted. In each case, the model structure was kept constant 

while the determination of the important input parameters proceeded. Once progress was 

made in determining relative importance of an input parameter (dependhg on the method 

of input parameter determination being performed) a change in the network configuration 

(Le., number of layers, number of neurons, ratio of neurons in adjacent layers, etc.) was 

performed. This process was iterated, until a large number of models with calculated 

cumulative R~ statistics (on the models' production sets and pattem files) were 

accumulated. From the above, ten overall potential models were selected. 

From the selected potential models, minor manipulation of the data set proportions and 

data points were performed. The purpose for doing this was to further optimize the 

potential models, and ensure the selected models were exposed to the full range of data 

patterns. These rnodel variations were compared using the R~ statistic applied to the 

models' pattern files and the two best models chosen for further manipulation. As a final 

step, the activation functions were also varïed. Lastly, final model evaluations were 

made. 

Mode1 evaluation is the selection of the developed rnodel that demonstrates the overall 

minimal error in prediction, while comectiy predicting the output trends based on the 



given information. A criterion for this selection was the best combination of R~ value 

and visual inspection (to match trends) indicated by slope cornparison of actual and 

predicted break values. Consideration of the models' predictive robustness (sensitivity to 

changes in pararneters-evaluation of model logic, and if the model appropriately 

accommodates changes)was also factored. The best models are described in Section 4.0. 

32.2 Data Set Manipulation 

When training the Artificial Neural Network model, it must be realized that accurate 

rnodels wiU only be achieved if the manner in which the data is presented is appropriate. 

Therefore, it is important that a representative arnount of the potential data is exposed to 

the model for training and testing of the model's progress. Without having this 

representative range of historical events to detect and verïfy, the mode1 will not be able to 

predict events too far outside of the learned cause-effect logic. 

Determination of the optimal amount of historical data required for models' training, 

testing and production sets was based on a trial-and-error method. For a given model 

(one with established predictive ability), the fraction of data to be inputted into each set 

was varied. Results from the R~ and trend predicting ability were analyzed to determine 

the effect of varying the data set proportions. Too iittie information in the training and 

testing sets indicated poor results in the production set. This may be likened to poor 

learning of the model. Too much information in the training and testing resulted in a 

comparable decrease in trend prediction and R' value when applied to the production set. 



This may be likened to the model memorizing only the information presented to the 

model, and then performing poody when attempting to apply itself to new data patterns 

with slight differences. 

Division of input data into training, testing and production sets was performed on a 

number of different selection criteria in order to detennine if any of these methods was 

more time efficient in tenns of training time. These included: 

1. Random selection; 

2. Frequent Interval selection; 

3. Yearly interval selection; 

4. Specific data point selection (based on sorted output results); 

5. Specific data point selection (based on soaed output and grouped input division); and 

6. Event selection/elimination (based on model results). 

Random selection refers to a semi-random division performed by the Neuroshell2 

program. This is considered semi-random since the program requires the input of a 

"seed" value, in order to divide the pattem file into the three data sets (test, training and 

production). Input of an identical seed value results in identical division of the same file. 

Frequent inten>al selection acts very similarly, except the modeler specifies the 

frequency of selection of a pattern into the three data sets. These selection cnteria are the 

most automatic with lictle adjustment or judgement fiom the modeler. 



The remainder of the selection criteria required use of judgement by the researcher. The 

yearly interval selection critena was based on the idea that the data must be presented to 

the mode1 in time senes, since the output was detexmined in time series. Specific data 

point selection, where individual data patterns, or small groups of data patterns (up to 

five patterns) were selected for hclusion into one of the three data sets. Selection of data 

patterns involved maximizing the exposure of the output and inputs in a l i  data ranges, 

based on mechanical sorting of the d u e s  of the output pararneters aione, or mechanicd 

sorting of the data patterns in the input and output pararneters at once. Event 

selectiodelimination employed the GRNN models to determine how an individuai data 

pattem effects the prediction accuracy. This is described below. 

3.2.3 Data Point Manipulation: Selection/Elirnination Protocol 

By training the models using this method of data set division, the rnethodology involved 

evaluating individual data patterns, or a small set of data patterns (five or less) in the 

pattem file. A decision was then made whether the individual data pattern should be 

included in the training, testing or production set. This decision-making process 

employed the following protocol: 

1. E22 mode1 improvement; 

2. False prediction of non-break events (phantom peaks) and; 

3. Prediction of break events 



The GRNN model was used because of the leaming architecture's ability to mernorize 

input patterns when presented with sparse data sets (Ward Systems Group, 1993). 

The reasoning for this decision-making protocol was to employ a supplementary teaching 

method to improve the models' exposure to specific events. It ailowed the ANN model 

to be exposed to an event and acquire the appropriate correlation to the output based on 

recognition of the specific input pattern. In essence, the model had to be tutored, as only 

part of the logic of the problem was being originally learned. Therefore, the above 

leaming method dowed  the model to becorne accustomed to learning particular data 

patterns. 

The following two figures demonstrate the effect of moving five data patterns from the 

pattern file into the training file. In this example, the mode1 was initially trained using 

only break events through a GRNN architecture (see results in Figure 30). 
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Figure 30. Event prediction before training with non-break data. 

Subsequently, five data patterns were selected from the pattern file, and distributed to the 

training and testing sets. The result of this manipulation on mode1 results is illustrated in 

Figure 3 1. 



Figure 31. Event prediction after A" data point addition 

From these results, it is demonstrated that there is a potential use of this data selection 

technique. While this technique requires judgement, and time to evaluate the results, it 

has useful applications for studies such as this, when studies are of open-domain systems 

and data is limited. 

3.2.4 Input Parameter Selection: Methods Tried, Results 

Three distinct methodologies were employed to determine the appropriateness of the 

potential input parameters for the pipe break study. Initially, a methodology was applied 

which involved gradually increasing the number of potential input parameters, and then 

deterrnining the effect on the ANN model. A factorial design procedure was also 

attempted, to take into consideration the significance of the interaction between the input 

parameters. Thirdly, substitution of individual input parameters was attempted, to 



determine the effect of the input's absence on the rnodel. Evaluation of the different 

parameters was based on the R~ statistic of the rnodel. 

3.2.4. I Inputs Addition 

Initial neural network models were configured by varying a srnall number of parameters 

that were thought to be the more important pararneters. The input phameten which were 

initially investigated were: 7-day average temperature; 7-day temperature change; 7-day 

average water temperature; (air-water) temperature differeutial; and total pipe breaks for 

one year previous. It was anticipated that significant changes in modeling accuracy could 

be observed in order to predict major trends. A second goal was to determine which 

form of the input parameter (specifically air temperature) was most appropriate for 

modeling accuracy. 

This method involved inputting initial rnodels with only the parameters that were thought 

to be most important, as per cited literature. By beginning with only the bare minimum 

number of input pararneters, and then gradually adding more potentially input 

pararneters, the models being developed would gradually increase in R' value. The 

addition of those input parameters that provided marginal or no improvernent were not 

significant to modeling the study and, therefore, were excluded 



3.2.4.2 Factonid Design 

Factorial design analysis of the potentid input parameters involved selecting a fixed 

network followed by varying the parameters that were likely to be redundant or having 

significant interaction effects. Evaluation of this method involved factorial analysis of 

the production and pattern file R~ values. The R~ of the production fde was used to 

determine the rnociel's leaming ability of the patterns, while the R~ for the pattern file 

was used in order to maintain time-senes prediction. 

Care was taken so that a srnall enough range for each input parameter was chosen. 

Because of the inherent non-linearity of the network configuration, the effects of varying 

a single factor was also non-linear. Therefore, if due care was not taken, it was possible 

that a change in the effect would not be noticed. Also, because of the non-linear 

behavior, it was necessary that either the number of input pararneters or type of input 

parameter could Vary depending on the type of model chosen (e.g. Recurrent Networks 

compared to Standard Networks). Due to this non-linear variability, an iteration process 

(checking fit of various model types against varying input pararneters) was required, 

creating the need to perfom several hundred mode1 nxns. 

This process involved removing and replacing a single potential input parameter, and 

then evaluating it's effects on the R~ statisticd value. A lower value of R~ indicated 



significance of the parameter. A higher R~ statistic indicated no significance or noise in 

the parameter. This process may be considered a trial-and-error type expenmentation. 



4.1 Evaluation Criteria 

Evaluation of the potential rnodels involved a combination of three factors: R~ mode1 fit 

statistics, trend prediction ability (slope matching) and simplicity (model architecture 

cornplexity, measured by the number of hidden layers, and total number of neurons). 

Reasons for this multiple critena were that the best model must have the ability to: 

1. Predict the events with accuracy (R' value); 

2. To have a strong trend prediction (the rate at which breaks would occur, at any 

particular time frame) and; 

3. To be simple enough to be used for further rnodeling purposes. 

Based on these criteria, the best models were chosen. Evaluation was based upon a 

combination of quantitative measures and good judgement, since only the first criterion is 

completely quantitative. Trend prediction is subjective, since dope changes are so rapid 

and frequent, and visuai slope matching (of actuai venus predicted trends) for particular 

time penods is most important. Simplicity of the model is also subjective, and depends 

on the expertise of the modeler. 



Calcuiation of the R~ value for the cumulative model was performed using the following 

formula (Equation 13): 

SSE R2 =1-- 
SS, 

W here: 

S S E  = C ( y - ~ ) ~  

Where: 

y a c t u a l  v a l u e  

y m e a n  v a l u e  o f  y 

This was caiculated using the applied pattern file since cumulative breaks is not actually 

calculated in the actual ANN model. Instead, EXCEL was used to sum up breaks in the 

time-series, and then used (according to the above equation) to calculate the R~ value. 

The lX2 statistic depicted in model results is applied to the entire data set (6 H year of 

data). This statistic indicates an overall accuracy of the model, such that the probability 

of events occumng is predicted well on a regular basis. 



4.1.2 Trends Prediction 

Trends prediction ability was based on matching the slope of the actual results and mode1 

prediction results. Overlapping or parallel iines indicated good forecasting ability since 

break rates were matched. Gaps between the two lines are not indicative of trend 

predictive ability since any errors in prediction are accumulated throughout the length of 

time the model is being evaluated. These gaps are indicated in the R' model fit statistic. 

4.1.3 Model Simplicity 

The importance of simplicity of the model cannot be underestimated. Maintenance of a 

simple model is paramount for reproducibility of results as well as implementation of the 

model. Without this simplicity, future models may become convoluted with unnecessary 

parameters and the importance of these parameters will not be understood. 

4.2 Best Models (CumuIative Results) 

Determination of the best model was based pnmarily on the models' cumulative IZ2 

values. This measure gives a good overall indication of the models' predictive 

capabilities by showing overall errors instead of focusing on single-event accuracy. Ten 

prospective models were selected based on the R~ criteria. These models were further 



evaluated on their trend-predictive ability, with consideration given to the simplicity of 

the models for future application. 

The two best prospective models are shown below. Model A demonstrated excellent 

predictive ability employing only 5 parameters. Graphical results are illustrated in Figure 

32, with mode1 properties surnrnarized in Table 5. Model B demonstrated even better 

trend-predictive accuracy with 13 parameters. This model's results are shown in Figure 

33 and summarized in Table 6.  
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Figure 32. Prospective mode1 A. 



Table 5. Prospective mode1 A: model specifics. 

time (weeks) 

R~ value 

0.920 

Figure 33. Prospective model B. 

Table 6. Prospective Model B: mode1 specifics. 

Activation Function 

1 

Linear [-1,1] (scaiing) 

Logistic (al1 other) 

Network Architecture 

Standard 

Backpropagation 

Configuration 

5-25-6-1 

R~ value 

0.986 

Network Architecture 

Standard 

Backpropagation 

Configuration 

13-39-1 

Activation Function 

Linear [-1,1] (scaling) 

Logistic (al1 others) 



The graphical determination of trend-prediction ability (as defined by the matching of 

trend slopes) is an important consideration for any model. It would be impossible to 

predict with much greater accuracy since there are limitations in the availability of 

important input parameters, and since the system is an open domain. Since the actual and 

model trends are cumulative, it should be noted that larger errors between the actual and 

model predictions are also cumulative, thus explaining areas of relatively large 

discrepancy. But because the slopes during these periods are close to identical, they do 

represent a very good event-to-event predictive ability. 

4.3 Event Prediction Models 

Results for prediction of single events were not as favorable as anticipated. This was due 

to the step function of the breaks. With real data outputs which are stepped integrals, the 

ability of the model to predict a whole-number using a continuous value output proved to 

be exceedingly difficult, no matter which method of event selection criteria was chosen. 

The models, when presented this information, would assign a continuous value 

probability to the output. Use of a threshold output model would have been 

advantageous, however models provided in the NeuroSkell2 program limited the output 

step to either O or 1, preventing the prediction of a multiple break, which is not the 

purpose of this study. However, one of the typical models shown in Figure 34 

demonstrates that the mode1 shows potential for future development. 
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Figure 34. Typical event prediction resuIts. 

The modelç' single-event prediction capabilities were not well forecasted, using the R' 

critena. Evaluation of these models using graphicd analysis proved that the models 

could reasonably predict the probability of a break event, however the severity of the 

event was not necessariiy matched. Given the purpose and level of research into this 

matter, initial results are reasonable. However, it is recornmended that more research be 

conducted and more inputs be investigated. 



5.0 DISCUSSION 

5.1 Sensitivity Analysis 

A sensitivity analysis was conducted on the chosen models to determine the robustness in 

the prediction of events that had not been previously presented to the model. The 

purpose of the sensitivity analysis was: to determine the model's actual leaming ability; 

to determine the complexity of the models' leaming pathways; and to confirm that the 

model extracted cause-effect logic underlying pipe failures, rather than pure 

memorization of the data. The following parameters were cumulatively tested for their 

robustness: 

7-day average temperature (Model A and 8); 

7-day average temperature, lagged 1 week (Model A and B); 

7 day water temperature (Model A and B); 

7-day average (air-water) temperature differential (Model B on1 y) ; 

7-day average (air-water) temperature differential, lagged 1 week (Model A and B); 

1-year previous histoncal break, moving total (Model A and B); 

1-week previous historicai break, moving total (Model B only); 

maximum 7-day temperature change (Model B only); 

maximum absolute 7-day temperature change (Model B only); 

maximum daily temperature change ; (Model B only) 

maximum daily temperature change, lagged 1 week (Model B only); 



maximum absolute daily temperature change (Mode1 B only); and 

maximum absolute temperature change, lagged 1 week (Model B only). 

Input pararneters were varied in isolation from other independent input variables so that 

their effects on the models' output pararneter could be identified for causality. Input 

pararneters related to other input parameters were varied concurrently (e-g. 7-day average 

temperature and 7-day average temperature lagged 1 week were varied simultaneously) 

to maintain consistency of logic. Similarly, parameters related to the variable of interest 

were also adjusted, since varying only one pararneter when it is related directly (or 

indirectly) to other variables would invariably "confuse" the model. For example, al1 

ternperature parameters (7-day average temperatures, 7-day maximum temperatures, etc.) 

were varied concurrently since they depend on the sarne raw air temperature data. Most 

of the input parameters were adjusted to 30 percent less than and 30 percent greater than 

the models' original inputted values. However, input parameters based on the nurnber of 

breaks (previous week and previous year moving totals) were subtracted from the totais. 

Results of the sensitivity analysis are presented from Figure 35 through Figure 43. 

Model A 

Sensitivity analysis of air temperature parameters (varying 7-day average ternperature 

and 7-day average temperature lagged one week) showed that a 30 percent increase in air 

temperature @oth positive and negative magnitudes) resulted in a predicted percent 

increase of 25 percent from the actual values. A 30 percent decrease in air temperature 



resulted in a decrease in cumulative pipe breaks of 19 percent, at the end of the 6 95 year 

period. Slope changes were more pronounced dunng winter events for the 30 percent 

increases in air temperatures, conversely they were Iess pronounced for the 30 percent 

decreases. 

The results from this anaiysis are logical. A percent increase in temperatures translates to 

increase in the magnitudes (i.e. the range of values is increased b y the corresponding 

percent). 1t also translates to an increase in daily and weekly differences. This serves to 

magnify changes in temperature. Changes in temperature are significant for soil-pipeline 

interactions and frost heave action, which supports the previously discussed theones. 

Therefore the mode1 tends to show a cause-effect relationship between temperature 

changes and pipe breaks. 
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Figure 35. Model A sensitivity analysis: 7-day average air temperature. 



Graphical analysis of the sensitivity of water temperatures for Model A (Figure 36) 

shows that a 30 percent decrease in water temperature results in a 44 percent increase in 

water main failures. This representation assumes that the air temperature range does not 

change during this manipulation. so that a smaller change in water temperature is not 

accompanied by a proportional change in air temperatures. This creates a differential 

temperature across the wall of the pipe (assuming air temperature gives a reasonable 

reflection of ground temperature). The resulting hoop stresses rnay result in longitudinal 

spiit and diagonal failures. 

Analysis also shows that a 30 percent increase in water temperatures results in only a 2 

percent increase in pipe failures. Possibly, the larger ranges in water temperatures 

correspond to the range of the air temperatures, creating a less significant pipe wall 

temperature differential. This assumption is logical since the same is assumed for the 30 

percent decrease in water temperature. As mentioned, the 30 percent decrease would 

result in a smaller range of water temperature fluctuation. These srnaller temperature 

changes (relative to the air temperature changes) again support the theory of a larger 

temperature differential. Another plausible reason for the reactions of this model to 

water ternperature variations, is that Model A places more importance on the 

determination of pipe breaks (A reminder is that the model contains only 5 parameters). 



Figure 36. Mode1 A sensitivity analysis: 7-day average water temperature. 

Output effects of a 30 percent increase in pipe wall temperature differentials followed 

logical interpretations (Figure 37). As expected, a 30 percent increase in temperatures 

resulted in larger cumulative pipe breaks (a 26 percent increase from the actual value). 

This may be due to the exaggerated maximum and minimum temperatures, or it rnay be 

due to exaggerated temperature changes. Such changes wodd logically accelerate pipe 

failure mechanisms such as frost heave (having increased the rate of freezing) and soil- 

pipe interactions (long heated periods followed by cooler temperatures could indicate 

precipitation events, and therefore periods of soi1 instability). Conversely, a 30 percent 

temperature decrease would undentate temperature ranges and changes, and thus indicate 

weaker pipe failure mechanics. 
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Figure 37. Mode1 A sensitivity analysis: Pipe-wall temperature differential. 

A lowered 1-year historical break total indicates that the ensuing break trend also 

decreases, as demonstrated by 16 percent &op in pipe fadures. This is possibly due to 

greater structural integnty of the pipe system, a possible contributing factor being pipe 

wall corrosion. Results frorn a greater 1-year historical break history show a much more 

significant Bse in the number of cumulative pipe breaks (49 percent increase). This 

mode1 forecast is logical, indicating that structural integrity of the piping is an extremely 

important factor in pipe breaks. 



Figure 38. Model A sensitivity analysis: Historical 1-year break frequency. 

Model B 

A sensitivity analysis was also performed for Model B. Temperature was again 

analyzed, but more air temperature inputs are included with this model (Figure 39). Like 

Model A, Model B indicates that larger fluctuations in air temperature ranges and 

magnitudes result in extremely significant percent increases in pipe breaks. In fact, a 70 

percent increase in pipe breaks is predicted by a 30 percent increase in air temperatures 

(over the 6 ?h years). Clearly, this model places great importance on the various air 

temperature parameters to indicate pipe failure mechanisms. Lowered ranges (30 percent 

decrease in air temperature range and magnitude) result in lesser cumulative pipe breaks 



(13 percent decrease). As in Model A, this qualitatively supports the idea that frost heave 

and soil-pipeline interactions are major factors in water main failures. 

Figure 39. Model B sensitivity analysis: Air temperature. 

Cornparison of sensitivity analysis for water temperature (Figure 36 and Figure 40) 

shows that Model B does not place as much importance on water temperature. A 9 

percent increase and 2 percent decrease are found for 30 percent increases and decreases, 

respectively, in water temperature. This does not agree qualitatively with the sensitivity 

analysis of Model A. It is apparent that Model B places less significance on the water 

temperature parameter. 



Figure 40. Mode1 B sensitivity analysis: 7-day water temperature. 

Results from the sensitivity andysis of pipe wall temperature differentials were 

extremely significant (see Figure 41). A 30 percent increase in the temperature 

differentid results in a remarkable 9 1 percent increase in pipe break totds. A 30 percent 

decrease results in a 6 percent increase in pipe failures. For this, the trend of the breaks 

(steep dopes) indicates rapid numbers of failures during rapid temperature changes. One 

can infer that pipe wall temperature gradients are an important cause of pipe faiiures. 



Figure 41. Mode1 B sensitivity analysis: Pipe-wall temperature differential. 

The previous week's pipe breaks (spatial cluster index) was formulated to try to rnimic 

the phenornena of multiple pipe breaks. As literature indicates, results show that 

increases in breaks for the week previous increased the likelihood of pipe breaks in the 

present period (refer to Figure 42). In the same reasoning, no breaks in the week 

previous decrease the chances of subsequent multiple pipe failures occumng due to the 

spatial clustering. It may be inferred that multiple pipe failures for this area would 

decrease if the previous week had rninimized pipe failures. 



Figure 42. Model B sensitivity analysis: Spatial cluster index. 

Findly, as in Model A, it was found that the previous year's total breaks was a good 

indication of the potential for future pipe failures occumng. A 7-break increase results in 

a 65 percent increase in pipe breaks. A 7-break decrease results in only a 6 percent 

decrease in water main failures. This large discrepancy can be explained in that pipe 

failures will occur inevitably, in large part due to temperature and corrosion effects. An 

uncharacteristically higher break total indicates that pipes are in a weakened state. Lower 

break totals indicate pipes are typically stronger, or perhaps it is indicative of work 

performed on the pipes (i.e., possible rnitigation by cathodic protection, pipe section 

repair or replacement). The historical break total gives an indirect indication of the 

pipe's integrity, possibly infemng corrosion influences. 



Figure 43. Mode1 B sensitivity analysis: Historieal 1-year break frequency. 

5.2 Apparent Influential and Causal Factors 

From the sensitivity analysis, there is evidence that the learned, intrinsic logic underlying 

the models developed with the ANN methodology is consistent. This is demonstrated by 

the relatively consistent trends predicted by the models, and by the sensitivity analyses' 

apparent support of the relationships between the input parameters and the pipe failure 

mechanisrns. Effects of fiost heave, soil-pipeline interaction and pipe wall temperature 

differentids are strongly related to the inputs presented. Inferences can be made from the 

1-year previous historical breaks, spatial cluster index, and possibly for water 

temperature parameters. 



Frost heave mechanisms are related to the rate of frost penetration. As no ground 

temperature data could be found, air temperature was used to charactenze this 

phenornenon. As discussed earlier, this is a relatively good approximation if the 

information is given in time-senes. By presenting the temperatures in time-order. the air 

temperature can indicate a rate of change, which the mode1 c m  then intrinsically relate to 

ground temperature. A larger change in temperature and larger, negative magnitudes 

indicates that fiost penetration rates will be higher. This Ieads to greater frost heaving, 

and therefore greater stresses applied to the pipe. Logically then, more pipe breaks 

should occur. Both models sensitivity analysis shows this (Figure 35 and Figure 39) to 

be the case. Conversely. smaller temperature changes and smaller temperature 

magnitudes have indicated less breaks. 

Soil-pipeline interactions are caused by sudden drops in temperature. This type of 

behavior is consistent with the sensitivity analyses perfomed. Magnifying the air 

temperatures by a factor of 1.3 causes differences in temperature to be 1.3 times greater 

as well. This also translates to increases in both negative and positive magnitudes, and 

also magnification of changes in temperature. With this reasoning in mind, these 

magn5cations should also result in more pipe failures. This h a .  been demonstrated. In 

contrast, taking 0.7 (70 percent) of the values results in lower temperature changes and 

relatively smaller magnitudes. This results in less pipe failures, which is also illustrated 

in both models' analyses. 



For these models, the pipe wail temperature gradients were depicted by the difference of 

the average air and average water temperatures. Air temperature is indicative of the 

ground temperature (which contacts the exterior of the pipe) and water temperature is 

indicative of the interior of the pipe. Differences in temperature result in higher hoop 

stresses exerted on the pipe. Increasing temperature differentials should increase 

stresses, resulting in more water main failures. Decreasing stresses should translate to 

lower stress levels, therefore, less failures. Both model A and model B sensitivity 

analyses (Figure 37 and Figure 42) reflect these effects on pipe break totals. 

The historical 1-year previous break frequency indicates the study area's p s t  year break 

history. It gives an indication of the stability of the system, therefore indicating the 

potential for future breaks. If less breaks occur in the previous year, this may be 

indicative of a sturdy pipe infrastructure, made durable by rnitigative actions (Le., pipe 

replacements, pipe repairs, or cathodic protection). More breaks may be indicative of 

increasing corrosion problems, or other activities that have caused pipe instability. 

Therefore, increasing the past year's break total indicates more instability. Results from 

both models indicate these trends are consistent (Figure 38 and Figure 43). 

Analyses of the spatial cluster index (1-week previous pipe break total) indicates a logic 

similar to that of the historical 1-year break frequency. Decreasing the number of breaks 

to zero breaks indicates lower breaks in the upcoming week. Increasing the number of 

breaks by three breaks shows an increase in break frequency in the upcoming week. This 

clustehg phenomenon was attributed to disturbances in the surrounding soils, causing 



further instability and settlement. This instability increases the Iikelihood of pipe 

failures. Although this relationship can only be inferred, it seems to be a plausible 

justification. 

Results from the sensitivity analysis of the water temperature parameter do not yield 

completely consistent results. While both models (Figure 36 and Figure 40) demonstrate 

that increased water temperatures (ranges and magnitudes) show negligible effects on 

pipe breaks, decreases in water temperatures show a significant increase in pipe breaks 

for Model A only. For Model B, ~ i g ~ c a n c e  of lowered water temperature ranges and 

magnitudes is also negligible. 

In order to rationalize the logic of the model, it must be accounted that water 

temperatures will always be positive values (since water freezes at O°C). Magnifying 

values by a factor of 1.3 depicts warmer water temperatures. Magnifying by a factor of 

0.7 resuits in a smaller temperature range, and cooler year-round water temperatures. 

Therefore, values magnified by a factor of 1.3 are interpreted as warmer temperatures 

year-round, which is less conducive to pipe breaks. Values magnified by a factor of 0.7 

translate to cooler water temperatures year-round, which is more conducive to pipe 

failures. Since Model A has only 5 parameters, compared to Model B's 13 pararneters, 

Model A must infer more information fiom less pararneters, which may be somewhat 

simplistic. The fact Model B has more than double the inputs of Model A also explains 

why the percent change of cumulative pipe breaks (for each comrnon input parameter) is 



different. However, qualitative analysis is in agreement, which is the primary concem 

for tbis modeling study. 

From the rnodels sensitivity analyses presented above, one can infer signifiant findings. 

The models analyses support the literature citing the nature of pipe break mechanics, and 

they generally adhere to the described failure mechanisms. Therefore, significance of the 

different input parameters is generally understood. 

5.3 Mode1 Capabilities, Limitations, and Uses 

Quantitative and qualitative analysis of the two models indicate evidence that the 

Artificid Neural Networks methodology is capable of predicting water main failures. 

The R~ statistics and trend predicting abilities of the models indicate the potential for 

developing accurate, forecast-capable models. The sensitivity analysis shows that 

intrinsic logic of the various failure mechanisms is credibly captured. Manipulation of 

the model input parameters also allows for inferences to the prevailing failure mechanism 

tendencies of the study area. Having done this, it is possible to irnplement the 

appropriate mitigative techniques. 

Due to assumptions made during source data anaiysis and data collection, these models 

are most applicable to specific situations that are directly related to the reliability and 

availability of raw source data. The assumption that the area was composed of a uniform 

soi1 type does not d o w  for this model to be applied to non-unifom soils, nor is it 



necessarily applicable to different soi1 types. Since modeling was restricted to the 150 

mm diameter cast iron pipe, modeling of Larger-size pipes, or different pipe materials 

(Le., asbestos cernent, PVC, etc.) may require extensive modification of input parameters 

because different failure rnechanisms will dominate. For the same reasons as the above 

assumptions, application to warmer climates may warrant use of different type of 

parameters (to reflect the dominance of failure mechanisms for warmer climates). 

Further to this, these models are lirnited by the open system nature of the study. The 

mode1 will not predict random events that cause pipe breaks such as water harnrner 

events and severe weather events. However, it may be possible to determine what 

percentage of al1 pipe breaks wilI be of a random nature, and use this information as a 

prediction tolerance. Further study is required to perform this. 

These models are dependent on the histo~cal information of the study area, and therefore 

is specific to the area studied. These models must be retrained for other subdivisions. 

The model results presented do favorably indicate the application of the model for the 

study of pipe breaks. However, the models themselves cannot be viewed as applicable 

tools to the entire City of Edmonton's cast iron water distribution system. 

The models developed illustrate the utility of using Artificial Neural Network 

methodology for predicting pipe breaks. While the model is lirnited in application for the 

above reasons, these models, dong wiîh newly developed ANN models, have vaiuable 

uses. Development of ANN pipe break models, for different subdivisions within 



Edmonton, wiU make it possible to prioritize areas for the Cast Iron Renewal Program. 

The mode1 itself may be useful as a monitoring tool, to evaluate the progress of past 

water main renewal efforts. As rnentioned earlier, manipulation of model input 

parameters would allow inferences as to pipe failure causes, and to allow for appropriate 

mitigation techniques. 

Potential use of the model for pipe break prediction must also include a methodology to 

forecast the input parameters, narnely air and water temperatures. The models use a full 

array of accessible information to accurately forecast probabilities of pipe breaks in time 

senes. Therefore, input parameters should aiso be able to indicate severe or abnormal 

conditions. This will permit for more accurate forecasts of pipe breaks. Once this c m  be 

accomplished, implementation of the model for practical purposes becomes possible. 



6.0 CONCLUSIONS AND RECOMR/XENDATIONS 

With respect to developing a prediction-capable pipe break model for a given city 

subdivision, the goal has been achieved. Utilizing readily available information, the 

Artificial Neural Network methodology has proven its feasibility in this regard. The 

forecasting ability of this mode1 has been demonstrated using the Calder subdivision as a 

mode1 study. Quantitative analysis using R~ statistics and visual examination of trends 

(slope matching) has permitted appropriate selection of models based on accuracy and 

trends matching capability. Qualitative analysis, in the form of sensitivity analysis, was 

performed to demonstrate the ANN models' zibibility to "learn" the intnnsic logic 

underlying pipe failure mechanisms. Through the carefùl model development 

methodology and evaluation, coupled with the sensitivity analysis, it is shown that 

concepts are being extracted from the input parameters, rather than the model purely 

"rnemonzing" the inputted data in order to predict the output. 

The ANN models also demonstrate their potential applicability as screening tools. The 

developed models were able to accurately predict the cumulative number of pipe failures 

for the six and a half year study time period. Application to other city subdivisions 

would offer comparative information for priority setting for the Cast Iron Renewal 

Program. 

Manipulation of input parameters in developed models permit its use for infemng which 

of the cast iron pipe M u r e  mechanics dominate. From the sensitivity analysis results, it 



is clear that frost heave, soil-pipeline interaction and pipe wall temperature gradients are 

responsible for a large portion of the 150 mm cast iron water main failures. Therefore, 

air temperature plays a very significant role in the model prediction. Other parameters 

show significance, but further investigation is required to make quantifiable conclusions. 

Since the developed models do not include a number of specifîc measures thought to be 

important to pipe failures, the rnodels developed in this exercise are not complete. While 

they do demonstrate the utility of using Artificial Neural Networks for predicting pipe 

breaks, further work for data collection and model development is required to ensure the 

model is flexible for hture applications. From the perspective of frost action, 

considerations may include further examination of the freezing index as potential rnodel 

input parameter. This index would provide a generalization of the severity of a winter 

event. Another possibility is to examine the effect of pipe-trench backfill material and 

ground surface (e.g., asphalt, clay cover, grave1 cover, or other). Both backfill materials 

and ground surface will change the thermal exchange of heat from ground to air, thus 

varying the effect of temperature transitions on pipe breaks. 

Having made the above conclusions, it is clear that more work is required to facilitate 

future use. However, the models presented have useful applications for the Calder area. 

Given that both Models A and B demonstrated exceptional accuracy in prediction, these 

models may be used to diagnose existing problems in the area. These ANN models are 

capable of predicting the frequency of pipe failures caused by frost heave, soil-pipeline 

interaction and pipe-wall temperature gradients. If there is an uncharacteristically-large 



discrepancy between the actual number of pipe breaks and the number of pipe breaks 

predicted by the ANN models, it is apparent that there are other failure mechanisms 

contributing to pipe breaks in the area. This may include corrosion problems or 

operating pressure-related problems (Le., water harnmer events or pumping problems). or 

circumstance requiring detailed investigations. In any case, the model will be a useful 

information tool for diagnosing this possibility. 

This model study illustrates the need for the following actions, to facilitate ease, and 

more comprehensive development of Artificial Neural Network models for water main 

failure prediction: 

1. Inclusion of more descriptive data; 

2. Collection technique improvernents of present data; 

3. Characterization of ternperature data and; 

4. Exploration of input parameter importance. and special phenornena. 

To further develop ANN models that are accurate and flexible, inclusion of more 

descriptive data is needed. Initial models required making assumptions that were scope- 

Lirniting since it required constant values. The av,ailability of detailed soils parameters, 

physical pipe charactenstics, and in-situ pipe conditions would be assets. Soils 

parameters and physical pipe characteristics would indicate more explicitly the 

characteristics of the cast iron pipe. In-situ pipe conditions, possibly collected from 

hydroscope measurements, may also be of value. Overall, the goal of inclusion of these 



parameters would be to widen the scope of application of the models, instead of limiting 

areas of application. 

Source data collection in this study demonstrated a need for more complete and accurate 

data. Much of the data used for this study was available oniy in hardcopy and it was 

difficult to obtain, or was of insufficient detail or quantity. As a large arnount of quality 

data is required for ANN application, it is recommended that more complete databases 

are kept, and this information is updated, to facilitate ease of collection of raw data. 

Due to the importance of air temperature to the ANN models developed, it is 

recomrnended that weather data be characterized such that typical years, above- and 

below-average temperatures and other special events be characterized, and therefore used 

for pipe break sensitivity analysis. Inclusion of a freezing index may be a possible 

avenue for charactenzing weather. The sensitivity analysis tool then potentially becomes 

more valuabte when pipe break rates between areas are similar. 

To accurately quantify the effect of certain input parameters for a given area, it will be 

necessary to develop the ANN models, using the above study as an initial starting base. 

As demonstrated in this study, the feasibility of Artificial Neural Networks methodology 

was proven, and is effective as a diagnosis tool. However, subsequent models with more 

descriptive parameters will enhance the understanding of the effects of individual causal 

or influencing input parameter on cast iron water main failures. 
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APPENDIX A. Sample Model Input Data, Model A. 



Date Temp.7d 
Average 

-2.2 
-8.E 
-9 .S 
-4.8 

-23 -4 
-23.C 
-6.2 
-3.E 
-4.7 
-3.1 
3.5 
1.3 
2.5 
3 -4 
7.e 
4.1 
4.7 

12.1 
11.2 
15.5 
14.4 
11 .1  
13.4 
13.7 
14.3 
16.7 
21 .O 
18.8 
17.9 
16.7 
21.C 
13.C 
15.2 
14.5 
13.2 
7.7 

12.2 
4.7 
5.6 
5.6 
4.1 
6.4 
3.9 
0.8 

-10.3 
-6.9 

-22.4 
-21.8 

-7.5 
-8.3 

1 week Iag 1 yr prev. 
-35.8 

Temp,n-7d 
1 week Iag 

wat temp,7d 
Average 



Date Temp.7d 
Average 

2.: 
-2 -: 
-7 .' 
-0. 
-3 .: 
-7. 
-6.' 

-Il.! 
-16.( 
- 17.' 

S.( 
-3.1 
o.: 
2.t 
5 . d  
6.t 

-1.1 
7.t 
6.1 
5 .L 

9.; 
10.2 
16.1 
21 .E 
15.5 
13.S 
17.4 
15.5 
15.E 
15s 
16.4 
16.C 
17.5 
17.5 
17.4 
14.5 
17.2 
11.1 
7.4 
8.3 
8.7 
7.5 
6.9 

10.9 
9.3 
0.1 

-7.7 
-13.6 
-10.3 
4.0 

Temp,n-7d 
1 week lag 

-8.: 
2.1 

-2.: 
-7: 
-0.: 
-3.: 
-7.' 
-6.: 

-1 l.! 
- 16.t 
- 17.: 

S.( 
-3 .t 
o.: 
2.2 
5 .L 

6.C 
-1.1 
7.t 
6.1 
5.4 
9.; 

10.2 
16.1 
21.8 
15s 
13.S 
17.4 
15.5 
15.8 
15.9 
16.4 
16.0 
17.5 
17.5 
17.4 
14.5 
17.2 
11.1 
7.4 
8.3 
8.7 
7.5 
6.9 

10.9 
9.3 
0.1 

-7.7 
-13.6 
-10.3 

wat temp,7d 
Average 

5.t 
5.t 
5 .: 
5.2 
52 
5.: 
5.2 
5.4 
5 -4 
5.4 
5.1 
4.F 
4.8 
4. E 
4.8 
5.1 
5.1 
5.1 
5.1 

10.4 
12.5 
125 
12.5 
14.0 
17.9 
17.9 
17.9 
17.9 
16.9 
16.9 
16.9 
16.9 
18.3 
19.3 
19.3 
19.3 
19.3 
12.2 
12.2 
12.2 
12.2 
7.8 
7.8 
7.8 
7.8 
0.5 
4.8 
4.8 
4.8 
4.8 

T7(a-w),n-7d 
1 week Iag 

-13.5 
-2.8 
-7.E 

-13.; 
-5.t 
-8 .? 

-12.t 
-12.; 
-17.2 
-22.C 
-23.1 
-0.1 
-8-f 
-4.1 
-2.c 
0.f 
1.5 

-6.2 
2.7 
1 .C 

-5 .C 
-3.3 
-2.3 
3.6 
7.7 

-2.0 
-4.0 
-0.5 
-2.4 
-1.1 
-1.0 
-0.5 
-0.9 
-0.7 
- 1.8 
- 1.9 
-4.8 
-2.1 
-1.1 
-4.8 
-3.9 
-3.5 
-0.3 
-0.9 
3.1 
1.5 

-6.4 
-12.5 
-18.4 
-15.1 

150,n- 1 yr 
1 yr prev. 

35 
4( 
3; 
3 E 
3t 
3; 
3 t 
3; 
32 
3 t 

- 35 
35 
4c 
4 1 
4 1 
4 1 
4 1 
4c 
4C 
3s 
3s 
3s 
39 
39 
39 
39 
39 
39 
39 
3 9 
39 
39 
39 
39 
38 
38 
38 
38 
37 
37 
37 
36 
36 
36 
35 
35 
34 
32 
31 
26 



Average 
-8.2 
-3.2 
-3.2 
-1.5 
-3.t 
-2.E 
-6.1 
-5.2 
4 . f  
-0.1 
-3.1 
-1.1 

-10.1 
-7.5 
-6.f 
-1.6 
-2.1 
6.4 
4.1 
6.8 
9 -4 

14.2 
14.4 
11.3 
9.2 

14.7 
15.7 
18.2 
17.5 
16.8 
16.8 
15.9 
14.7 
19.5 
18.5 
16.2 
11.9 
13.1 
13.9 
14.3 
14.7 
12.8 
13.0 
14.0 
6.5 
4.2 
4.5 
7.2 
2.9 
1.9 

Date 
1 week Iap 

-4A 
-8.2 
-3.l 
-3.1 
-15 
-3.2 
-2.1 
-6.1 
-5.; 
-4.t 
-0.1 
-3.1 
-1.1 

-10.: 
-7 .: 
-6.C 
-1.C 
-2.1 
6.5 
4.4 
6.8 
9.4 

14.2 
14.4 
11.3 
9.2 

14.7 
15.7 
18.2 
17.5 
16.8 
16.8 
15.9 
14.7 
195 
18.5 
16.2 
11.9 
13.1 
13.9 
14.3 
14.7 
12.8 
13.0 
14.0 
6.5 
4.2 
4.5 
7.2 
2.9 

wat temp.7d 
Average 

5.1 
5.1 
5.1 
5.1 
5.2 
5.3 
5.3 
5.3 
5.3 
5 -4 
5 -4 
5 -4 
5 -4 
5 -3 
5.3 
5.3 
5 -3 
3 -9 
3.9 
3.9 
3.9 
9.8 

14.3 
14.3 
14.3 
14.3 
18.1 
18.1 
18.1 
18.1 
18.7 
18.7 
18.7 
18.7 
17.7 
16.3 
16.3 
16.3 
16.3 
15.2 
15.2 
15.2 
15.2 
9.2 
6.8 
6.8 
6.8 
4.0 
4.0 
4.0 

TempJd 1 Temp.n-7d Tl(a-w),n=ld 1 150.n-lyr 
1 week lag 

-8.8 
1 yr  prev. 



Date Actud 
Breaks 

Mode1 1 Actuai 
Out~ut 1 Cumulative 

Mode1 
Cumulative 

1.01 
1.76 
2.07 
2.39 
3.36 
4.36 
7.36 
7-80 
8.48 
9.26 
9.66 

10.06 
10.46 
10.86 
1 1.26 
11.32 
11-72 
1 1-79 
1 1.85 
11-91 
1 1-98 
12.04 
12.10 
12.17 
12.23 
12.30 
12.36 
12-42 
12-49 
12.55 
12.61 
12.68 
12-74 
12.80 
12.87 
12.93 
13.00 
13 .O6 
13.46 
13.86 
14.22 
14.59 
14.95 
15.32 
19.59 
19.95 
22.58 
28.58 
34.36 
35.48 



Out ut + Actual 
Cumulative 

3i 
3 1 
3 1 
3! 
3! 
4( 
4( 
4: 
4: 
4: 
41 
41 
45 
5( 
5( 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
51 
51 
52 
52 
52 

Mode1 Date 
Cumulative 

35.9: 
36.7: 
37.0: 
37.45 
37.75 
38.01 
38.3; 
40.3; 
41.9( 
47.9t 
48.4( 
48.7: 
49.01 
49.9: 
50.6: 
51.1: 
5 1.4; 
5 1.8; 
52.2: 
53.14 
53.2 1 
53.21 
53.32 
53.4C 
53-48 
53.55 
53.61 
53.67 
53.74 
53.8C 
53.86 
53.93 
53.9ç 
54.05 
54.12 
54.1 8 
54.24 
54.3 1 
54.37 
54.43 
545a 
54.92 
55.87 
56.28 
56.63 
56.97 
57.26 
60.08 
6 1.69 
6 1-98 

Acnial 1 Mode1 



Breaks O ~ t p ; ; ~ ~  
Date Actual 

Cumulative 
5: 
5: 
5: 
52 
SC 
54 
54 
55 
55 
55 
55 
55 
5t 
56 
5t 
57 
57 
58 
59 
6C 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
6 1 
61 
6 1 
6 1 
6 1 
6 1 
6 1 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 

Actuai 1 Mode1 Model 
Cumulative 

62.95 
63 -25 
6358 
63.88 
64-17 
64.41 
64.7f 
65.05 
65 -35 
65.6f 
65.95 
66.25 
66.55 
66.84 
67.13 
67.13 
67.13 
67 -44 
67 -74 
68.04 
68.34 
68.40 
68 -47 
6853 
68.59 
68.66 
68.72 
68.78 
68.85 
68.9 1 
68.97 
69.04 
69-10 
69.16 
69.23 
69.29 
69.35 
69.42 
69.48 
6954 
69.61 
69.67 
69.73 
69.80 
69.80 
70.09 
70.39 
70.69 
70.98 
71.28 



APPENDIX B. Sample Model Input Data, Model B. 



Date Ternp,7d 
Average 

-2.3 
-8.8 
-9 -9 
-4.8 

-23 -4 
-23 .a 
-6.2 
-3.8 
-4.7 

-3.1 
3.5 
1.3 
2.5 
3 -4 
7.6 
4.1 
4.7 

12.1 
11.2 
15.5 
14.4 
11.1 

13.4 
13.7 
14.3 

16.7 
21.6 
18.8 
17.9 
16.7 
21.0 

13.0 
15.2 

145 
13.2 
7.7 

12.2 
4.7 

5.6 

5.6 
4.1 

6.4 

Temp,n-7d 
Average 

-26.3 
-2 -3 
-8.8 
-9.9 
-4.8 

-23.4 

-23 .O 
-6.2 
-3.8 
4.7 
-3.1 

3.5 
1.3 
2.5 

3 -4 
7.6 
4.1 
4.7 

12.1 
11.2 
15.5 
14.4 
11.1 
13.4 
13.7 
14.3 
16.7 
21.6 
18.8 
17.9 

16.7 
21 .O 
13.0 

15.2 
145 
13.2 

7.7 
12.2 
4.7 

5.6 
5.6 
4.1 

rnax abs(t7-tl) rnax dT,7d rnax dT,n-7d 
1 week lap 

-4.2 
-8.0 
-5.0 

-12.4 

-4.5 
-12.6 
-7.4 

-4.4 

-7.0 
-1 0.5 
-2.4 

-2.0 
-2.9 

-1.6 
-5 .O 
-7.1 

-3 -9 
-1.1 
-6.2 
-4.4 

-3.4 
-4.9 

-3.7 
-3 -2 
-4.5 

-4.9 
-3.7 
-2.2 
-5.0 
-5.4 

-2.9 
-3.8 

-6.9 
-0.7 
-6.1 
-2.5 
-4.8 
-1.8 

-6.7 
-5.5 
-6.1 
-2.8 



Date Temp,7d 
Average 

3 -9 
0.8 

-10.3 
-6.9 

-22.4 
-21.8 
-75 

-8.3 
2.8 

-2.2 
-7.7 
-0.1 
-3 -2 
-7.1 
-6.7 

-1 1.9 
- 16.6 

- 17.7 
5 .O 

-3.8 
0.7 
2.8 
5.4 

6.6 
-1.1 

7.8 
6.1 
5 -4 

9.2 

10.2 
16.1 
21.8 

15.9 

13.9 

17.4 
15.5 

15.8 

15.9 
16.4 

16.0 
17.5 
17.5 

Temp,n-7d 
Average 

6.4 
3.9 
0.8 

- 10.3 
-6.9 

-22.4 
-21.8 
-7.5 

-8.3 
2.8 

-2.2 
-7.7 

-0.1 
-3 -2 
-7.1 

-6.7 
-1 1.9 
-16.6 
-17.7 

5.0 
-3.8 

0.7 
2.8 
5.4 
6.6 

-1.1 
7.8 

6.1 
5.4 

9.2 
10.2 
16.1 
21.8 

15.9 

13.9 
17.4 

15.5 
15.8 
15.9 
16.4 

16.0 
175 

max(t7-t 1) rnax abs(t7-tl) a rnax dT,7d rnax dT,n-7d 
1 week lag 

-2.9 
-3.7 

-1.4 
-5.2 

- 10.7 
-6.3 

-2.7 

-5.3 
-9.4 

-3.8 
-5-7 
-2.9 

-2.8 
-4.8 
-3.8 
-6.7 

-5.6 
-8.4 

0.C 
-3.5 

- 10.C 

-2.C 
-6.7 

-2.5 

- 1 .C 
-9.2 

-2.7 

-5.C 
-4.9 
-1.5 
-5 -6 

-10.4 
-6.1 
-5.2 

-8.0 
-5.1 
-5.2 
-4.0 
-2.6 
-1.4 
-6.6 
-2.8 



Date Temp,7d 
Average 

17.4 
145 
17.2 
11.1 
7.4 

8.3 
8.7 
7.5 

6.9 
10.9 
9.3 
o. 1 

-7.7 
-13.6 
-10.3 
-4.0 

-8.2 
-3.8 
-3.8 

-1.9 
-3.8 
-2.8 
-6. i 
-5.2 

-4.0 
-0.1 

-3.1 
-1.1 

- 10.3 
-7.5 

-6.6 
-1 -6 
-2.1 
6.7 

4.7 
6.8 

9.4 
14.2 

14.4 
11.3 
9.2 

14.7 

Temp,n-7d 
Average 

17.5 
17.4 
14.5 
17.2 

11.1 
7 -4 

8.3 
8 -7 
7 -5 
6.9 

10.9 
9 -3 
o. 1 

-7 -7 
-13.6 
- 10.3 

-4.0 

-8.2 
-3.8 
-3 -8 
-1.9 
-3.8 
-2.8 
-6.1 
-5.2 
-4.6 

-0.1 
-3.1 
-1.1 

-10.3 

-7 -5 
-6.6 
- 1.6 
-2.1 

6.7 
4.7 

6.8 
9.4 

14.2 
14.4 
11.3 

9.2 

max abs(t7-t 1] max dT,n-7d 
1 week lag 

-4.0 
-3.1 
-6.7 
-3 -2 

-4.0 
-5 -2 
-0.3 
-5 -2 
-3 -7 
-9.3 
-2.7 
-2.9 
-6.8 

-10.5 
-7 .O 
-3.2 
-6.9 

-9.4 
-4.4 
-3.6 
-2.7 
-5.3 
-3.2 
-7.9 
-4.0 
-3.9 

-2.5 
-3.1 

-3.9 
-3.8 
-6.2 
-1.2 

-2.4 
-1 1.4 

-3.7 
-7.1 

-4.0 

-3.5 
-7.5 
-4.2 
-4.5 
-8.1 



Date max abs (dT: rnax abs dT,n-7d 
1 week lag 

6-? 

Il.£ 

13.1 

12.4 

5 .; 
121 

7 -4 

7 .C 
7 .( 

10.2 

6.4 

2.: 

3 2 
3 2 
7 -1 
7.1 
4.5 

2 s  

6.2 
4.4 

3 -4 

4.9 

3 -7 

6.C 

4.5 

4.9 

5.6 
2.2 

5.0 
5.4 

2.9 

3.8 

6.9 

3.2 

6.1 
2.5 

4.8 

2.0 

6.7 

5.7 

6.1 

8.7 

Wat temp,7d 
Average 

9.; 
9 .; 
9 .; 
9 .i 

9.£ 

9.5 
9.1 

9.5 
10.C 

10.1 
10.1 

10.1 

10.1 
10.1 

10.1 

10.1 

10.1 
15.1 

15.1 

15.1 

15.1 

15.8 

16.7 

16.7 

16.7 

16.7 

21.9 

21.9 

21.9 

21.9 

19.3 

18.3 

f 8.3 
18.3 

16.3 
11.2 

11.2 

11.2 

11.2 

6-0 

6.0 
6.0 

I7(air- wa t) 
Average 

- 12.0 

-18.5 

- 19.6 

- 14.5 

-33.2 

-32.9 
-16.1 

- 13.7 

-14.7 

-13.2 

-6.6 

-8.8 
-7.6 

-6.7 

-2.5 

-6.0 
-5.4 

-3 .O 
-3.9 

0.4 
-0-7 
-4.7 
-3 -3 

-3 .O 
-2.4 

0.0 

-0.3 
-3.1 
-4 .O 
-5.2 

1.7 

-5 -3 
-3.1 

-3.8 

-3.1 

-3 -5 

1 .O 

-6.5 

-5.6 
-0.4 

-1 -9 
0.4 

Tf(a-w),n-7c 
Average 

-35.8 

- 1 S.( 
-18.5 

-19.t 

-14.5 
-33.1 

-32.5 

-16.1 

-13.; 
-14.7 

-13.1 

-6.C 
-8.5 

-7 .t 
-6.7 

-2.5 
-6.C 

-5 -4 

-3 .C 
-3 .S 
0.4 

-0.7 

-4.7 

-3.3 

-3 .C 

-2.4 

o.a 
-0.3 
-3.1 

-4.C 

-5.2 

1.7 

-5.3 

-3.1 

-3.8 

-3.1 

-3.5 

1 .O 
-6.5 

-5.6 
-0.4 
-1.9 

150,n- 1 wk 
1 week Iag 

3 
1 

1 

1 

O 
1 

1 

3 

1 

O 
O 
O 

O 

O 
1 

O 
1 

1 

O 
O 
O 
O 
O 
O 

O 
O 

O 
O 
O 
O 

O 
O 
O 
1 

O 

O 
1 

O 
O 
1 
O 

O 1 



Date 
-- - -  

rnax abs (dT) rnax abs dT,n-7d 
1 week lap 

Wat temp,7d 
Average 

6.C 
5.5 
5.S 
5.s 
5.5 
5.8 
5.C 
5.C 
5.6 
5.C 
5 -5 
5 -5 
5.5 
5 -5 
5 -5 
5 -4 
5.4 

5.4 
5.1 
4.8 
4.8 

4.8 

4.8 
5.1 
5.1 
5. i 
5.1 

10.4 
12.5 

12.5 

12.5 
14.0 

17.9 
17.9 
17.9 
17.9 
16.9 

16.9 
16.9 
16.9 
18.3 
19.3 

=(air-wat: 
Average 

-2.1 

-5.2 
- 16.2 
- 12.8 
-28.3 
-27.6 
-13.1 
-13.9 

-2.8 
-7.8 

-13.2 
-5 -6 
-8.7 

- 12.6 
- 12.2 
- 17.3 
-22.0 
-23.1 
-0.1 
-8.6 
-4.1 
-2.0 

0.6 
1.5 

-6.2 
2.7 
1 .O 

-5 .O 
-3.3 

-2.3 
3.6 
7.7 

-2.0 
-4.0 
-0.5 
-2.4 
-1.1 
- 1 .O 
-0.5 
-0.9 
-0.7 
-1.8 

T7(a- w) ,n-7d 
Average 

0.4 
-2.1 
-5.2 

- 16.2 
- 12.8 
-28.3 
-27.6 
-13.1 
- 13.9 
-2.8 
-7.8 

- 13.2 
-5 -6 
-8.7 

-12.6 
- 12.2 
-17.3 

-22.0 
-23.1 
-0.1 

-8.6 
-4.1 
-2.0 

0.6 
1.5 

-6.2 
2.7 

1 .O 

-5.0 
-3 -3 
-2.3 

3.6 
7.7 

-2.0 
-4 .O 
-0.5 

-2.4 

-0.9 

150.n- 1 wk 

1 week lag 
O 
1 
O 
4 

1 
2 
6 
4 

2 
1 
2 

O 

1 
O 
1 
O 

2 
1 

4 

1 

O 
1 
1 

O 

1 

O 

O 

O 

O 
O 
O 
O 

O 
O 

O 
O 
O 

01 



Date max abs (dT) max abs dT,n-7d 
1 week Iag 

4.C 

4.C 

6.7 
3.4 

4.C 
5.2 
3.8 
5.2 
9.a 
9.3 
3 -9 
2.9 

10.4 
1 O S  
9.6 

10.2 

6.9 
9.4 
9.6 
4.3 
3.6 

5.3 
6.2 

7.9 
4.4 

3.9 
4.5 

3.1 

3 -9 
4.0 
9.9 
3.5 
6.8 

11.4 

5.5 
7.1 

4.0 

7.9 

7.5 

6.0 
6.7 
8.1 

Wat temp,7d 
Average 

192 

19.2 
19.3 
12.2 

12.2 
12.2 
12.2 
7.E 
7.8 

7.8 
7.8 
6.5 

4.8 
4.8 
4.8 
4.8 

5.1 
5.1 
5.1 
S. 1 

5.2 
5.3 
5.3 

5.3 

5.3 
5.4 
5.4 
5.4 

5.4 
5.3 

5.3 
5.3 
5.3 

3.9 
3.9 

3 -9 

3.9 
9.8 

14.3 
14.3 
14.3 
14.3 

=(air-wat: 
Average 

-1 .ç 

4.8 

-2.1 
-1.1 

-4.E 
-3.5 
-3 -5 
-0.3 
- 0 s  
3.1 
1.5 

-6.4 

- 12.5 
- 18.4 
-15.1 

-8.8 
- 13.3 

-8.9 
-8.9 
-7 .C 

-9.1 

-8.1 
-1 1.4 
-10.5 

- 10.a 
-5.5 
-8.5 

-6.5 
-15.7 
- 12.8 
-1 1.9 

-6.9 

-7.4 

2.8 
0.8 
2.9 

5.5 
4.3 

O. 1 
-3 -0 
-5.1 
0.4 

T7(a-w),n-7d 

Average 
-1.E 
-1.S 
-4.E 
-2.1 

-1.1 

4.8 

-3 .S 
-3 -5 
-0.3 
-0.S 

3.1 
1.5 

-6.4 
-12.5 
-18.4 
-15.1 

-8.8 
-13.3 
-8 .9 
-8.9 

-7 .C 
-9.1 
-8.1 

-1 1.4 

-10.5 

-10.0 
-5.5 
-8.5 
-6.5 

-15.7 

-12.8 
-1 1.9 

-6.9 
-7 -4 

2.8 
0.8 

2.9 
5.5 

4.3 
O. 1 

-3 .O 
-5.1 

150.11- 1 wk 

1 week lag 

C 

C 

C 
C 
C 
C 

C 

C 

C 
C 
C 
C 

C 

C 
1 

C 

C 
1 
C 
C 
C 
C 

1 
C 
1 

a 
a 
a 
a 
1 

O 
O 
1 

O 
1 

1 

1 
1 

O 

O 
O 

O 



Date 150,n-lyr 
1 yr prev. 

1: 
11 
1( 

1( 

1' 

II 

2' 
2: 

2: 

2: 
2: 

2: 

2 1 

21 

2 1 

2: 

2: 

2: 

2: 

2: 

2: 

22 

22 

22 

21 

22 

22 

22 

22 

22 

22 

21 

22 

22 

22 

23 

23 

23 

24 

24 

24 

23 

Actual 
Breaks 

1 
1 

1 
C 

1 
1 

? 
1 

C 
C 
C 

C 

O 
1 

O 
1 

1 

O 

O 

O 
O 
O 

O 

O 

O 
O 

O 

O 
O 

O 

O 

O 

1 

O 
O 

1 

O 

O 

1 

O 
O 

O 

Model 
Output 

5.5: 

1.0: 

1.0: 

0.a 
0.95 

0.91 

3.1t 

1.9( 
0.4 1 

0.N 
0 3  

0.3: 
0.7 1 

0.27 

0.24 
0.7f 

1 .oi 
0.M 
0.0: 

0.07 

0.M 

0.11 

0.01 

0.K 

0.K 

0.w 
0.m 

0.m 

0.m 

0.m 

0.00 
0.m 
0.08 

0.00 
0.06 

0.92 

0.96 

0.16 

0.9 1 

1 .O7 

1.31 

0.56 

Actual 
Cumulative 

I 

A 

L 

1 

I 
5 
5 
5 
5 
5 
5 

1( 

1 ( 
11 

l ï  

1 ï 

1 ï 
11 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

13 

13 

13 

14 

14 

14 

15 
15 

15 
15 

Model 
Cumulative 

5.5; 
6.55 

7.6f 
7.6t 

8.65 

9-62 

12.8C 
14.7 1 

15.12 

16.N 

16.% 

16.85 
17.6C 

17.87 

18.1 1 

18.87 

19.94 

19.94 

19.95 

20.03 

20.03 

20.14 

20.17 

20.17 

20.17 

20.17 

20.17 

20.17 

20.17 

20.17 

20.17 

20.17 

20.25 

20.25 

20.3 1 

21.22 

22.18 

22.34 

23.25 

24.32 

25.63 

26.19 



Date 1 S0,n- 1 yr 
I yr prev. 

24 
24 

21 
27 
25 

34 
3 8 

4C 
39 
4C 

37 
38 

3 6 
37 

3 6 
37 

35 
3 8 

39 
39 
40 

41 
41 

41 

41 
40 

40 

39 

39 
39 

39 

39 

39 

39 

39 
. 39 

39 

39 

39 
39 

39 
39 

Actuai 1 Mode1 
Breaks 1 Output 

I 

Actuai 

Cumulative 
1 ( 
f !  
2( 
21 
2: 
25 
3: 

31 

3 t 

3 1 
3 E 
35 
35 
4[ 

4( 
4; 

4: 

4; 

4E 

45 

45 

SC 
5C 
5 1 

5 1 

5 1 
5 1 

5 1 

5 1 

5 1 

5 1 

51 
51 

51 
51 
51 

51 
51 

51 
51 
51 
51 

Mode1 
Cumulative 

26.9' 
28 .@ 

30.1: 
30.1: 
3 1.6: 

34.8 1 
34.8 1 

34.8 1 

35.8 
37.9( 

37.9E 

38.8~ 

38.8L 
39.65 

39.6C 
4 1.6; 

42.68 

46.7C 
47.7C 

47.81 
48.77 

48.77 
49.41 

50.4 1 

50.4 1 

50.9 1 

5 1.0s 
51.13 

51.13 

51-16 

51.16 

51.84 
52. IC 
5 2 3  

53.09 

53.1 1 

53.13 

53.13 
53.13 

53.13 

53.13 
53.13 



Date 150,n-lyr 
1 yr prev. 

31 
3 I 
31 
38 
3'; 
3'; 
3; 
3C 
3 i 
3t 
3: 
35 
34 
31 
3 1 
2C 

22 
1 s 
17 
If 
15 
15 
15 
15 
15 
13 
12 
9 
8 
8 
7 
8 

7 
7 
8 
9 

1 O 
10 
10 
10 
10 
10 

A m a l  
Breaks 

C 

(1 

O 
O 
(3 

O 

O 

O 
O 

O 
O 

O 
O 
1 
O 
O 
1 
O 
O 
O 
O 
1 
O 
1 

O 

O 

O 
O 
1 
O 

O 
1 
O 
1 
1 
1 
1 
O 

O 
0; 

Mode1 
Output 

0.w 
0.m 
0.w 
0.04 
0.04 
0.05 
0.04 
O. 10 
0.w 
0.m 
o. 10 

0.00 
0.00 
0.95 
0.00 
0.09 
0.96 
0.45 
0.40 
0.04 
0.00 
0.27 
0.26 
0.73 
0.1 1 
o. 19 
0.05 
0.22 
1-10 
0.46 
0.03 
0.98 
0.28 
0.00 
0.84 
0.75 
1 .O0 
0.00 
0.0 1 
0.03 
o. 10 
0.02 

Actud 

Cumulative 
5 1 

51 

5 1 

5 1 

5 1 

51 

51 

51 
51 
51 
51 
51 
51 
52 
52 
52 
53 
53 
53 
53 
53 
54 
54 
55 
5s 
55 
55 
55 
56 
56 
56 
57 
57 
58 
59 
60 
6 1 
61 
61 
61 
61 
61 

Mode1 
Cumulative 

i 53.12 
53.11 
53.11 
53.16 
53.2C 
53 -25 
53 -25 
53.35 

53.35 
53-35 
53 S C  

53 S C  
53 SC 
54.45 
54.45 
54.54 
55.50 
55.95 
56.35 
56.39 
56.39 
56.66 
56.93 
57.66 
57 -77 

57.96 
58.0 1 

58.22 
59.32 
59.78 
59.82 
60.80 
61.08 
61 .O8 
61.92 
62.67 
63 -67 
63.67 
63.69 
63.7 1 
63.82 
63 -84 




