
A Lazy Model-Based Approach to On-Line Classification

Gabor Me&

B.Sc., University of British Columbia, 1989

A THESIS SUBhflTTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the School

of

Computing Science

@ Gabor MeUi 1998

SIMON FRASER UMVERSITY
April 1998

Ai l rights reserved- This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library I * m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
OttawaON K1AON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seU reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fome de microfiche/fihq de

reproduction sur papier ou sur format
électronique.

The author retaùis ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts h m it Ni Ia thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

The gronring access to large amounts of structured observations allows for more opportunistic

uses of this data. An example of this, is the prediction of an event's class rnembership

based on a database of observations. When these predictions are supported by a high-

level representation, we refer to these as knowledge based on-line classification tasks. Two

common types of algorithms i?om machine learning research that may be applied to on-line

classifkation tasks make use of either lazy instance-based (k-NN,R31) or eager model-based

(C4.5,CN2) approaches. Neither approach, however, appears to provide a complete solution

for these tasks.

This thesis proposes a lazy model-based algorithrn, nanied D BPredictor, that is suited

to knowledge based on-line classification tasks. The algorithm uses a greedy topdown

search to locate a probabilistic IF-THEN rule that will classie the given event. Empirical

investigation validates tiiis match. DBPredictor is shown to be as accurate as IB1 and C4.5

against generd datasets. Its accuracy however, is more robust to irrelevant attributes than

IB1, and more robust to underspecified events than C4.5. Finally, DBPredictor is shown to

solve a si@cant number of classification requests before C4.5 c m satis& its first request.

These performance characteristics, dong with the algorithm's ability to avoid discretiza-

tion of numerical attributes and its ability to be tightly-coupled with a relationai database,

suggests that DBPredictor is an appropriate algorithm for knowledge based on-line classifi-

cation tasks.

Acknowledgment s

My thanks go to all the people whose efforts have dowed me to get to this point. 1 am

indebted to you, and to show my appreciation, I will try my best to carry forward your

spirit of giving.

Academically, 1 feel very privileged to have had Dr- Jiawei Han as my supervisor- His

support and patience saw me through to the end and 1 will never forget the day he proposed

"some topics" !

I am grateful for the support 1 received fkom the School of Computing Science, the

Centre for Systems Science, and the Office of the Dean of Graduate Studies- Kersti Jaager

and Dr. Stella Atkins, were particularly helpful with my last bureaucratic hurdles.

During this thesis 1 met and became partners with Maria Lantui. Her help and com-

panionship resulted in a better thesis and has lefi me with a better appreciation for life.

Similady, my thanks go to my grandmother, whom this thesis is dedicated to, and my

brother, Alexander Schmidt. The joy we have shared has given me the security to pursue

my ambitions. Finally, 1 will always be indebted to my mother, Heidemarie Schmidt, for al-

lowing me to create my own script, which includes the creation of this thesis, and providing

me with the opportunity to pursue it.

Dedicat ion

To my Orna, Marianne Schmidt

and my Opa, Artur Schmidt
.-.

Thank you for your love

and the precious memories of my youth

Contents

... Abstract iu

. Acknow1edgrnents iv
. Dedication v

. List of Tables xi
... List of Figures xm

1 Introduction . 1

. 1.1 Motivations 3
. 1-2 Approach 4

. 1.3 Contributions 5

. 1.4 ThesisOutline 6
P9 . 2 GeneralFramework r

. 2.1 Example 7

. 2.2 Input Requirements 8

2.2.1 Dataset (D) . 9

. 2.2.2 Event Vector (ë') I l

. 2.2.3 Class Attribute Description (4 11

. 2.3 Output Requirements 12

. 2.3.1 Class Prediction Format 12

. 2.3.2 Class Prediction Justification 12

. 2.4 Control Requirements 14

. 2.4.1 Data Access Constraints 14

. 2.4.2 SpaceConstraints 15

. 2.4.3 Ciassification Interruption 15

. 2.5 Performance Measures 16

. 2.5.1 Accuracy 16

. 2.5.2 RunningTime 16

. 2.5.3 Space Usage 17

. 2.5.4 Understandability 17

. 2.6 Related Issues 18

. 2.6.1 Classification versus Regression 18

. 2.6.2 On-Line versus Batch Classikation 18

. 2.6.3 Data Driven vs- System Guided Classification 19

. 2.7 Chapter Summary 20
. 3 Related Work 21

. 3.1 btance-BasedLearning 22
. 3.1.1 Bi's Similarity Function 23
. 3.1.2 ZBl'sPredictionFunction 25

. 3.1.3 Performance Characteristics 25
. 3.1.4 S u m m a r y 27

. 3.2 TopDown Induction of Decision Trees 27

. 3.2.1 Tree Construction Process 28

. 3.2.2 TDIDT Evaluation Functions 29

. 3.2.3 Performance Characteristics 30

. 3.2.4 Summary 31

. 3.3 Lazy Algorithms with Dynamic Relevance Testing 32
. 3.3.1 Lazy vs Eager Algorithms 32

. 3.3.2 Local Induction of Decision Tkees 33

. 3.3.3 Lazy Model-Based Induction: LazyDT 35

. 3.3.4 Summary 40

. 3.4 ChapterSummary 40
. 4 DBPredictor Algorithm 41

. 4.1 Overview 42
. 4.2 Input Parameters 43

. 4.2.1 Dataset D 44

. 4.2.2 Event Vector ë 44

. 4.2.3 Class Attribute i? 44

. 4.3 Output Format 45

vii

4.3.1 Rule Consequent 45

4.3.2 R d e Antecedent . 45

DBPredictor () Algorith m . . 47

. P S I P () Procedure 47

. seedru le () 50

. top-downsearch0 5 i

. generateantecedent s () 52

. 4.8.1 Proposition SpeciaLization 52

. 4.8.2 Cornputational Constraints 54

. 4.9 get-consequent () 58

. 4.10 F() Heuristic hinction 58

4-11 bes tru le O Sub-Procedure . 59

. 4.12 Comple+ Analysis 59

4.12.1 Running Time Complexity 59

. 4.12.2 Space Complexity 62

4.12.3 Riinning Time Complexity with h-level Hierarchies 63

. 4.13 Discussion 63

. 4.14 Chapter Siimmary 64

. Time Efficient Search Algorithm 65

. 5.1 Updated s e e m l e () Procedure 66

. 5.2 Updated get-consequent () Procedure 66

. 5.3 Updated b e s t d e () Procedure 69

. 5.4 Complexity Analysis 69

. 5.4.1 Running Time CompIexity 70

. 5.4.2 Space CompIexity 72

. 5.5 Chapter Summary 72

. Heuristic Functions 74

. 6.1 Information Available to F() 74

. 6.2 Sibling-Sibling versus Parent-Child 76

. 6.3 Sibling-Sibling F() 77

. 6.3.1 Average Impwity entropy() 77

6.3.2 Angle-based Measure 0RT() 78

. 6.3.3 Normalized Geometric Distance DI, () 79

. 6.4 Parent-ChildF() 81
. 6.4.1 entropy+() Vanation 82

. 6.4.2 ORT+()Variation 83
. 6.4.3 DI+() Variation 83

. 6.5 Pruning 84

. 6.5.1 min-cover threshold 84

. 6.5.2 min-value threshold 85

6.6 ChapterSummary . 85
. 7 Empincal Study of Accuracy 86

. 7.1 Methodology 87
. 7.1.1 Datasets 87

. 7.1.2 Error Rate Estimation 87

. 7.1.3 HypothesisTestingCriteria 89
. 7.2 Variations on F() 90
. 7.2.1 Datasets 91

. 7.2.2 Threshold Setting Rehement 91

. 7.2.3 Pnining's Impact on Accucacy 95

. 7.2 -4 Sibling-Sibling versus Parent-C hild 96
. 7.2.5 Selection of Accurate F() 97
. 7.3 Relative Accuracy of DBPredictor 98

. 7.3.1 Benchmark Algorithms 98

. 7.3 -2 General Cornparison of Accuracy 99
. 7.3.3 Irrelevant At tribut es 100

. 7.3.4 Underspecified Event Vectors 100
. 7.3.5 Overspecialization 102
. 7.3.6 Numerical Domains 104

. 7.4 Discussion 105
. 7.5 Chapter Summary 106

. 8 Empirical Study of Running Time 107
. 8.1 Methodology 107

. 8.2 Standalone f erformance 108
. 8.3 Relative Performance 109

. 8.4 Chapter Summary and Discussion 111

. Conclusion 112

. 9.1 Thesis Summary 112

. 9.2 Contributions 114

. 9.3 Future Research 115

. 9.4 Concluding Remarks 116
. Bibliography 117

List of Tables

. Sample dataset fkom the Animal Kingdom domain 9

Datasets used in the empirical study of accuracy 88

Example of one algorithm (Ai) being more accurate than another (A2) 90

Accuracy performance on the iris dataset for several parameter combinations

. of the DIn() based algorithm. 93

Parameter settings for the DI,() based algorithm that achieve the lowest

. error rate on the preselected datasets. 93

Average accuracy performance on the five datasets for several parameter corn-

. binations of the DI,() based algorithm. 94

n m p a r t settings that achieve the lowest average error rate for each of the

. six heuristic functions when pruning is turned off 95

The pruned version of the ORT+() function, even though it achieved the low-

est accuracy of the al1 the pruned versions, is more accurate on the 5 datasets

than the unpruned version of the algorithm which achieved the highest accu-

racy (entropy()). 96

Cornparison of the algorithm with the leaçt accurate sibling-sibling heuristic

function and the most accurate parent-child variation of the heuristic func-

tions. Pruning is turned on. 97

Siimmary of accuracy results against the 5 datasets for the D I () and entropgo

. versions of DBPredictor. 97

Accuracy results on the 23 datasets for DBPredictor and the three benchmark

dgorithms . .101
Average error rates in the presence of irrelevant attributes 101

7.12 Sumrnary of error rate results when O%, 25%, 50% and 75% of an event

vector's attribut es were uninstantiated. - - - 102

7.13 Datasets in which DBPredictor, C4.5 and Il31 were not more accurate then

the naive classiEer. + - - - - . - . . . - . 103

7.14 Summaxy of results to determine if an algorithm is biased for or against

datasets with numericd attributes - - 104

8.1 Number of classiiication performed against the census-year dataset by DBPre-

dictor before C4.5 returns its first classification- . - 110
8.2 Number of classification performed against the census-year dataset by Il31

before DBPredictor returns its f ~ s t classification. - 111

List of Figures

2.1 Concept hierarchyexample . 10
2.2 Sample event vector . 11

4.1 Graphical representation of the running time complexity for the space efficient

version of DBPredictor . 60

5.1 Graphical representation of the riinning time complexiiy for the time efficient

version of DBPredictor - 70

6.1 Example of the information available to the F() heuristic b c t i o n 76

6.2 Graphical representation of the class probability distribution vectors for two

sirnilar calls to the heuristic function. - . . . 77

Chapter 1

Introduction

Classification is an essential activiQ of ail living organisms. As soon as we have sensed an

experience, we need to quickly predict the class of tfiis particular event. Important classes

include edible, poisonous, hot, cold, fiiend, and foe. Beyond our genetically enabled abilities,

human beings can also l e m further classifications skills by way of instruction or observation.

Similarfy, computer prograns can be developed to class@ events based on instruction or

observation. Expert Systems are examples of classifiers that have been instnicted about a

particular domain. Machine Learning systems, on the other hand, are examples of classifiers

that can induce predictions about a domain, based on a set of observations fiom this domain.

This thesis investigates a specific task within the latter approach: knowledge based on-line

classification tasks. Consider the following example:

Example 1.1. A person is about to eat a wild mushroom but wants to confirm whether it is

edible or poisonous. After a qui& search, the person finds a very large SQEbased relational

database on the World Wide Web with mushroom records composed of observable features

such as edibility, weight, size, shape, and spore colour. The person would like to predict the

edibility of their particular mushroom based on this set of observations. Because the dataset

may be quite large and of suspect quality, the person would like an automated classification

that supports its prediction wit h an understandable abstraction such as

I F Spores=purple AND Surface=warts AND Height E [3.3,45]cm

THEN Edibility=poisonous (71%) OR Edibili@=edible (29%)

(based on 33 matching records)

CEEAPTER 1. INTRODUCTION 2

With this d e the person has supporting evidence that their mushroom is edible, but

that their is a strong chance that it is poisonous. Ci

The example is a knowledge based on-line classification task because it requires the

prediction of a single event7s class based on a database of stored observations and also

required that the prediction be supported by a high-level rationale. For conciseness we

will occasiondly drop the knowledge-based description and refer to these tâsks as on-line

classification tasks. I t is assumed that an understandable justscations however, remains

an importaat requirement.

With the continued growth in database uçage, on-line classification tasks wilI likely be-

corne more common in the near future. Many domains already collect a si@cant amount of

data to support their day-to-day activities. This growth in data collection is made possible,

by the general increase in capacity (disk, memory) and speed of cornputers. Because this

growth in the number of database and our ability to process their information is expected

to continue into the near future, some of these databases will likely support classification

tasks for their specific domains. Already in the last five years, large databases, now known

as udata warehouses" are being used extensively for On-line Analytical Processing (OLAP)

tasks [15]. OLAP tools not only helps an expert analyze large sets of records, but &O

dows more sophisticated analysis by an expanded group of people. As more domains are

captured within databases, and computational power increases, better tools may also allow

on-line classification tasks to become more common place.

This thesis proposes an algorithrn, named DBPredictor, that is targeted at on-line clas-

sification tasks. While signScant investigation has already been performed on general clas-

sification, the two common approaches of eager model-based (C4.5 [58], CN2 [13]) and lazy

instance-based (k-NN [l?], IB1 [6]) classification do not provide a complete solution for

on-line c~assification tasks. DBPredictor c m be saÏd to use, a lazy rnodel-based approach

which allows it to quickly return an accurate prediction that is also supported by a simple

IF-THEN d e . Empirical investigations show t hat indeed, DBPredictor presents advantages

over eager model-based algorithms in terms of speed and accuracy, as well as advantages

over lazy instance-based algorithms in terms of accuracy and result understandability.

CHAPTER 1. INTRODUCTION

1.1 Motivations

Several issues motivate continued research into classihcation and specifically into knowledge

based on-line classification- Recently, for example, the field of data rnining, has &sen as

a prac t id way to automate classification. Significant value has already been achieved in

public interest domains such as medical diagnosis [45] and star classification [24], and in

private interest domains such as financial markets [7] and automobile repair [67]. The

classification tasks listed above occur against relatively well known domains where data is

collected for the specSc purpose of classScation.

As confidence grows in classification algonthm~ and more domains have ready access to

large amounts of information, future classification tasks will likely expand into less struc-

tured applications. Two such set tings include opport unistic uses and dynamic domains.

Opportunistic classifkation occurs against a dataset that was not collected specifically for

the classification task at hand [36]. In the mushroom example, edibility was of interest. To

someone else, the class~cation of the mushroom7s habitat may have been of greater interest.

As databases become more widely available, opportunistic classification requests may be-

corne common place. A di£Eerent type of domain that may benefit fiom on-line classification,

are those in which the underlying mode1 periodically changes. Dynarnic environments such

as weat her systems, stock markets and natural disaster reLief occasionally require predic-

tions based on very recent observations. In many ways, no weather system or stock market

crash is like the next.

Opportunistic classification and classification in dynamic domains may gauge a classifi-

cation algorithrn's performance in slightly different ways than structured classification tasks.

They will likely require that an understandable justification be presented. In this way, the

person can involve their background knowledge in assessing the confidence they would place

on a particular prediction. The accuracy of a l g o r i t h that serve these tasks shodd also

be robust to the presence of irrelevant attributes and to underspecified event descriptions.

In the mushroom example, it is likely that a person may enter information of insignificant

predictive value, ând rnay &O be unable to produce key information about the mushroom.

1.2 Approach

Several fields have part icipated in the investigation of classification: t his Uiclude the fields

of Statistical Data Analysis (20, 341, Pattern Recognition [28, 371, Machine Learning [IO,

62, 141 and more recently in Data Mining [27, 541. Each of these fields have made significant

contributions to the topic. Some approaches have proved to be more accurate in particular

domains, others have well understood theoretical foundations, while others attempt to be

compatible with human reasoning. Because knowledge based on-line classification tasks re-

quire database interaction and a generally understandable solution, this thesis draws rnainly

fÏom the field of data mining and machine leaming. Within the field of data mining, we

draw fi0111 research into prediction [27]. DBPredictor derives its name fkom this association.

Within the field of machine learning, we draw fiom the research into supervised learning

kom examples [19].

Two distinct and well developed approaches that may be applied to on-line classification

tasks, include eager model-based and lazy instance- based classification algorithms [4, 591.

Eager approaches l e m (induce) a complete classification structure before any classifica-

tion requests may be processed. Lazy approaches forgo the learning phase and return a

result tailored to the classScation of the event at hand [5, 41. Model-based approaches

represent their result in a language that is richer than the language used to describe the

dataset. Instance-based approaches represent their result in the same language that is used

to descrïbed the dataset [59].

Eager model-based approaches include decision tree and rule induction algorithms such

as C4.5 [58] and CN2 [13]. These algorithms have two distinct phases. The k s t , eagerly

induces a high-level structure (decision trees or d e s) and the second, classifies any new event

based on this structure. Lazy instance-based approaches, such as the k-nearest neighbour

based IB1 [6] algorïthm, on the other hand, l a d y postpones any work until an event that

is to be classified is presented, then it quickly locates the instances that are most similar to

the event and base its prediction on these instances.

These two approaches, however, encounter some difficulty when applied to on-line clas-

sification tasks. Eager model-based approaches expend a significant amount of time by

returnùig a result that is unnecessarily general. In the mushroom example, the C4.5 and

the CN2 algorithms would develop a structure that is capable of classieing any mush-

room, not just the specific mushroom in question. The problem with lazy instance-based

approaches is that they return a result in a low-level representation that is difficult to inter-

pret, and their accuracy is also susceptible to the presence of irrelevant attributes. In the

mushroom example, the IB1 algorithm would retuni a set of records (instances) of other

mushrooms that are most similar to the mushroom in question- These instances, however,

may be related to the mushroom at hand on very irreievant attributes and the person who

sees the result, would not be able to easily determine whether this is the case.

Instead of using an eager model-based approach or a lazy instance-based approach for

on-line classification tasks, a lazy model-based approach may be more suitable. A lazy

model-based classification algorithm will restrict its efforts to the classitication task at band

to expeditiously achieve a prediction. Its prediction will also be supported with a high-Ievel

representat ion. Two recent proposals t hat implicitly use a lazy model-based approach in-

clude the LazyDT [29] and DBPredictor [46] algorithms. The main Merence between these

two is LazyDT's use of a decision tree path representation and the DBPredictor's IF-THEN

rule-based representation. Current implementations of these two algorithms however, are

no t particularly suited to on-line classification because of t heir memory intensive definïtions,

their requirement of discretized datasets, and their inaccuracy due to ovedit ting.

1.3 Contributions

This t hesis describes the lazy model-based DBPredictor algorithm in more de tail t han in

[46], proposes some enhancements to better support on-line classification tasks, and empiri-

c d y validates its applicability to these tasks. The main contributions of this thesis are the

following:

1. Natural handling of numerical attributes that removes the requirernent for global

discretizatioa. The impact of this approach on accuracy is also empirically validated.

2. The addition of pruning and the empirical validation of its positive effect on accuracy

and agains t ovedit t hg.

3. The ability to directly interact with an SQLbased dataset.

4. An empirical demonstration that the algorithm is more accurate than (24.5 in domains

wit h underspecified event descriptions.

5. An empirical demonstration that the algorithm is more accurate than Il31 in the

presence of irrelevant attribut es.

6. Identification of an appropriate heuristic function and the rejection of the parent-child

approach to this function.

7. An empirical demonstration that the algorithm performs sigdicantly faster than the

C4.5 dgorithm-

S. Support for concept hierarchies.

1.4 Tbesis Outline

The general problem of knowledge based on-line classification and the motivation for fur-

ther research in this area have been presented. The remainder of this thesis describes in the

detail a framework for these tasks, surveys several current algorithms, proposes a new algo-

rithm and then empXrica11y validates the algorithm7s value. These topics are grouped into

nine chapters. Chapter 2 presents the framework for knowledge based on-line classification.

Chapter 3 describes the possible application of several current classification algorithms to

on-line classification tasks. Chapter 4 describes in detail the proposed DBPredictor algo-

rithm and also presents a complexity andysis. Chapter 5 presents a faster version of the

algorithm t;hat requires sipificantly greater space resources. The purpose of this version

was to facilitate the empirical study. Chapter 6 concludes the description of DBPredictor

wit h an investigation of several heuristic functions. Chapter 7 presents the results of the em-

piricd investigations into DBPredictor's accuracy characteristics, while Chapter 8 presents

the results of the empirical study into the dgorithm's running time characteristics. Chap-

ter 9 concludes the thesis with a siimmary of the contributions and with some suggested

directions for future research.

Chapter 2

General Frarnework

A knowledge based on-line ciassïfkation task is a request for a prediction of an event7s class

that is based on a dataset fkom the same domain as the event, and that is supported by a

high-ievel representation. This chapter presents a fiamework of these tasks to help determine

whether an algorithm meets the requirements of such tasks. The framework also details how

the performance of these algorithms will be measured- The chapter concludes with a review

of several prediction task requirements that are closely related to on-line ~Iassificatioq but

that are outside the scope of this hmework- Where possible, the terminology in this chapter

was drawn fÏom previous studies of classification [12, 22, 42, 52, 581.

Section 2.1 presents an exarnple that will help to tie in the discussions within this and

other chapters in this thesis. Sections 2.2, 2.3, 2.4 describe the input, output and control

requirements for these tasks. The focus will be on mandatory requirements, however some

of the more common optional requirements are also presented. Section 2.5 describes the

measures t hat will gauge the performance of algorithms at tempting on-line classification

tasks. Findy, Section 2.6 describes three areas that related to, but outside the scope of,

on-line classification: regression, batch classification and system guided classification.

To facilitate the discussion within this thesis many of its examples will be related to the

sample Animal Kingdom domain that is described below. In this reference example there

exists a set of records about many different animals that someone had taken the trouble to

compile. There may be many entries for any given type of a,nirnal, but it is assumed that

there is only one entry for any specïfic instance of an animal. Based on this information

another person may want to predict the value for a particular feature of an animal that

was recently observed. A specifk prediction request will provide some information that is

known about the animal in question and will indîcate which feature of this animal is to be

predicted. Two sarnple requests are presented:

1. A person recently observed a smali animal that ate berries and then flew away. The

person recorded some information about this a.nima1: sudace covered in feathers, diet

contained fiuit, and size was small. This person may now want to predict the animal's

f d y within the animal kingdom. A potential output to this request is that the most

Likely type of mimal is a bird.

2. Another person may bave instead encountered a large, heavy, four footed brown-

coloured animal with antlers. Instead of the animal's family however, this person

wants to predict the type of surface with which this animal is covered (eg- feathers).

Possibly the person is fearful to get too close to this animal to directly determine this

information. A potential response to this query is that based on the curent set of

known animals, ail known large antlered animals are covered with hair.

This sample domain will be developed more M y as more concepts about on-line classi-

fication are developed t hroughout t his chap ter.

2.2 Input Requirements

An on-line classifications task must provide three pieces of information before a classification

algorithm c m proceed with the request: < D, ë. The event vector ëcontains the information

about the event whose class will be predicted. The class attribute Zdescribes the attribute

whose value (class) is to be predicted. The dataset D contains the information about

the domain of the event vector that can be used by a classification algorithm to base its

prediction.

2.2.1 Dataset (D)

Parameter D points to the dataset which contains records with information about the par-

ticular domain in question. For our reference example the domain is the Animal Kingdom

and the sample data set is located in Table 2.1. A dataset is assumed to be composed of

n records and rn attributes. In Table 2.1, thirteen records are visible from a total of ten

thousand records (n = 10,000). Each record represents a par t icda instance fiom the do-

main and is described by m attribute-values. These values represent either an empirical or

derived feature of each instance. In the sample dataset there are seven (rn = 7) attributes.

Table 2.1: Dataset example of the Animal Kingdom domain (based on Hu, 1992 [35]). The
row identifier column exists for reference purposes and the 4 symbol indicates that the rows
are ordered on this coliimn.

Tig er
C heet ah
Cayote
Chihuahua
Giraffe
Zebra
Fruit Bat
.-.
Ostrich
Penguin
Albatross
Eagle
Macaw
Anaconda

felidae
felidae
canidae
canidae
bovidae
equidae
chirop tera
. * *
ratites
penguin
tubenoses
falcons
parrot s
eunectes

hair
hair
hair
hair
hair
hair
hair
.-•

feat her
feat her
feat her
feather
feat her
scale

Name Family Surface Locomt n. Diet Weight (kg)
Al A2 A3 A4 A5 A6

walk meat 200
walk
wa.lk
w a k
walk
walk

fly
.-.
walk
swim
fly
fly
fly
crawl

meat
meat
meat
G a S S

gras
fruit
.*.
?
fish
grain
meat
fruit
meat

The attribute of a dataset can have several characteristics associated with them. To assist

with the discussion, the ith attribute of a dataset will be represented with Ai and the set of

possible values for attribute Ai is referred to as Dmain(Ai) . The Surface attribute in our

example is A3 and its domain is Domain(A3) = (h a i ~ , f eather, scale). Each attribute Ai

may contain either s ymbolic or nurneric values. The Surface and Diet attributes (A3, A j) are

examples of symbolic attributes, while the Weight attribute (As) is an example of a numeric

at tribute. The distinction between symbolic and numeric attribut es is t hat only numeric

C W T E R 2. GENERAL FRAMEWORK

attributes have a total ordering of its values. A sample ordering for numeric attribute Ai is

(viYi < v i , ~ < - < v ~ , ~) , where d = IDmain(Ai)l. A special type of symbolic attribute is

the key aattribute, which uniquely identifies each record in the dataset. Neither the existence

of a key attribute, nor the presence of a sorted dataset are required for on-line classification

tasks.

Both symbolic and numeric attributes may also have another ordering associated with

them in the form of a concept hierarchy [33]. Figure 2.1 shows examples of concept hier-

archies for both a symbolic and for a numeric attribute. The Ieaf nodes of the hierazchy

contain a single value fiom the dataset while the root node, at the other extreme, contains

every possible value of an attribute, referred to as A N Y . The internal nodes within the tree

contain a set of attribute-values and point to one other node that contaùis aU its members.

Even if an explicit concept hierarchy does not exist for an attribute, an implicit one-tier

default hierarchy always exists in the form of a root node that points directly to ail of the

attribute's values-

Figure 2.1: Graphical representation of concept hierazchies for the A5 (Diet) and Ail
(Weight) attributes of the sample Animal Kingdom data set. Based on [35].

carni- herbi-
vorous vor ous

meat fish grain h i t

The uttribute valves within a specific record may also have special characteristics associ-

ated with them. Three of these characteristics will be described: missing values, inapplicable

values and noisy values. When a particular attribute value is unknown, this missing infor-

mation c m be represented with a question mark (?). In the sample dataset, record 9995

has a missing value for As. One reason that this may have occurred, is that this value

became smudged since it was recorded in the field. When a particular attribute value is

known not to apply to a particular record, then this is represented with the empty set (0)
symbol. If there were a Iiair-Colour attribute, then the 0 symbol could be used for record

10000 to represent that snakes do not have haïr. Datasets occasiondy do not Merentiate

between missing and inapplicable values. Finally, noise refers to attribute values that have

been incorrectly entered.

2.2.2 Event Vector (è)

The second input parameter for a classification query is an m dimensional event vector:

This vector contains the information about the particular instance fkom the same domain as

the dataset, whose class is to be predicted. For example, if a person had observed an animal

whose surface was covered in feathers, whose diet appeared to be herbivorous, and whose

weight was approximately 9kg. then this information would be entered with the following

event vector:

Figure 2.2: Sample event vector

1 ? 1 ? 1 feather 1 ? 1 herbivorous 1 9kg. 1

Not alI the values of the event vector need to be instantiated. As shown in this example,

unknown values for a particular attribute are marked with question mark ? symbol. VVhen

an ë is missing some values, the tasks is referred to as underspecified. Possible reasons for

underspecified tasks, include that a particular value was too costly to retrieve or because

time constraints did not ailow for the retrieval of the value. When required, the number

of instantiated values for a given ë are referred to with the cardinality function lél. The

sample event vector above has cardinaiity of 3.

2.2.3 Class Attribute Description (3

The &al input parameter for an on-line classification task is a two dimensional vector ë

that describes the attribute of ë whose value is to be predicted. The Erst value within this

vector references the class attribute, while the second value identifies the level in the

hierarchy. To predict an animal's general diet, in our example, (herbivorous, omnivorous,

carnivorous), then Zl = 5 and Z' = 2. As a general guideline, the selected class attribute

and hierarchy level sbould contain a srnall number of distinct d u e s relative to the number

of records in the dataset (<< n). In this way, predictions will not have to be based on srnall

sets of records. Based on this guidellne, a key attribute or a numeric attribute with no

concept hierarchy, would be poor choices as class attributes. Occasionally, the shorthand

A, will be used to represent the class attribute.

2.3 Output Requirements

The minimal output result required by an on-line classifkation task is the predicted class of

the event. Often however, a high-level rationale for the result may also be required to help

a person interpret the validity of the prediction. When this is the case the task is referred

to as a knowledge based on-line classification task.

2.3.1 Class Prediction Format

A classification result may return the single most likely class or likely classes predicted for

an event. If the Family attribute is to be predicted, the result may be a single most likely

animal such as "Cheetah", or rnay instead predict the two most likely values "Tiger" OR

"Cheetah".

An important cornpanion to the predicted value is a probability measure. For our ex-

ample above the result could be rewritten to ["Cheetah." 95%]. The use of probability

measures along with multi-valued prediction can also help to order the results. The multi-

vdued example above may now be updated to ["Cheetah" 75% O R "Tiger" 20%]. Because

these probabilities only estimate the tme probability of this particular value, some settings

may require that a level of confidence be presented along with each prediction. Currently

confidence is commonly expressed with the number of matching records.

2.3.2 Class Prediction Justification

The final requirement for output results is for a justification to be presented in a partic-

ular type of representation language. Some of common representation for these functions

are sets of instances [3, 661, rules [53, 651 and decision trees [9, 581. Each of these three

representations is briefly reviewed.

Instance-Based Representation

The simplest representation for the justification of a prediction is a report of records (in-

stances) [6, 59, 661. The event vector in figure 2.2 may for example retuni the record 9912

(Le. Macaw) because of its similariS. to the event vector. An optional parameter for an

instance-based representation request is the number of instances that are to be selected. If

this value is k, then the k most similar instance fiom D will be returned.

Rule Based Representation

A higher-level representation of a prediction7s justifications than an instance-based result , is

the probabilistic d e . Commonly these d e s are constrained to propositional logic and in the

form of I F antecedent THEN consequent [64, 671. The consequent of this rule represents

the prediction either as a single value or a disjunction of values, as described above in

Section 2.3.1. The antecedent of these classification d e s is commonly â, conjunction of

propositions (terms), where each proposition represents a condition on a single attribute-

For symbolic attributes, each proposition c m test against a disjunction of attribute-values

and rnay include negation. Some examples include (Ai = vij), (Ai E {uij, . . . , vi,k)),

and (Ai # via)- For numeric attributes, each proposition may contain either a one-sided

(Ai 5 a i j) or ~WO-sided (Ai E [aij, test, where ai j < a+. A sample proposition OR

the Weight numeric attributes is, (As 5 8kg) for a one-sided test, and As E [Okg, 8kg] for a

two-sided test.

Decision Tree Representation

The ha1 representation of a prediction's justification, that will be reviewed, is the decision

(classification) tree data structure. A decision tree is a hierarchical, sequential classification

stmcture that recursively partitions the instance space into mutuaIly disjoint regions [52].

Decision trees are represented with nodes that are connected by branches. Nodes rnay be

either internal nodes or leaf nodes. Interna1 nodes contain a test that creates two or more

branches to other nodes. Each internal node or leaf node must be referenced by only one

other interna. node. One exception to this rule is the root node which acts as the entry

point into the structure. Finally, le& nodes contain the class predictions. If a Ieaf node

presents a probability distribution for all classes instead of just the single best value to be

predicted, then the tree is referred to as a class probability tree [9].

The types of tests allowed within each node are identicai to the propositions described

above for the d e based representation. Commonly a distinction is made for decision kees

with tests that create only two branches or that test more than one attribute. When nodes

have binary branching, the corresponding tree is referred to as a bina.ry tree. Trees whose

nodes test against a singIe attribute are referred to as univariate trees; otherwise they are

referred to as multivariate trees.

To classi@ ë with a decision tree, the event vector is passed through the tree structure,

starting with the root node and contiming until a leaf node is encountered. The class

prediction within this leaf node is associated to the event. Occasionally, a test along this

path cannot be performed because ë i s underspecified. When tbis occurs, all the paths from

the node in question must be taken. Once ali the relevant leaf nodes have been reached, a

special function consolidates the predictions within t hese ieaf nodes into a single prediction.

2.4 Control Requirements

An on-Line classification task may place some optional constraints on how the classification

algorithm may achieve its prediction. Three constraints wiU be reviewed: method of data

access, Limits on resources such as disk and memory, and h a l l y bits on the amount of

time given for the task to complete.

2.4.1 Data Access Constraints

A comtra.int that may be posed on a classification algorithm is that it interact directly with

a database management system. Historically, classification programs have been developed

to interact with in-memoly datasets. The first step of these programs is to load a text file

version of the dataset into memory. This approach limits the ability to support classifi-

cations against the large databases that are being collected [39]. One way to overcome

t h limitation is to make the classification algorithm more database-aware by fetching each

record fi-om the database as required- This loosely-coupled approach however, often encoun-

ters poor performance due to the copying of records over a network into the application's

address space [2]. A tightly-coupled approach, instead, pushes some of the processing di-

rectly to the database management system (DBMS). This approach benefits in part fiom the

extensive research into database query optimization. In the case of a database system with

SQL support, the use of the GROUP BY operation can help to quickly Iocate sumar ies [47].

Already, a SQL Interface Protocol (SIP) is proposed in [40] to assist data mining algorithms

with the use of tbis operator. As more powerfd srimmarization operations, such as the

CUBE proposal in [31], become available within database query languages, the requirement

of direct interaction with a database management system will become more Likely,

2.4.2 Space Constraints

The possible constra.int on data manipulation showed that it can be important to know the

space resources available to a prediction program. Other requirements for space resources

include temporary structures that may s t r e d n e an algorithm's procedures- While the

resource capacities continue to grow, so does the amount of information being stored within

these systems. If a classifkation aigorithm has insufEcient space to operate, it would be

desirable for a space efficient version of the algorithm to take over the classification task.

2.4.3 Classification Interruption

The final constraint on how an o n - h e classification algorithm achieves its task, is due to

support for algorithm interruption. In some situations it is desirable that an interrupted

classification algorithm be able to produce a partial result- When a person has interrupted

a classification task that has already expended a si,&cant amount of time the person may

require that a sub-optimal prediction be returned, rather than no prediction at au. This

requirement would be expected in dynamic eovironments where the value of the prediction

rapidly dirninishes with time. In these situations, it is better to make use of an algorithm

that will make incremental progress towards the classification of the given event.

CHkPTER 2. GENERAL FRAMEWORK

2.5 Performance Measures

Now that the input, output and control requirements of an on-line classification algorithm

have been described, a set of measures is now presented that wiu rank the performance of

these dgorithms. The main gauges of a knowledge based on-line class~cation algorith 's

success, are its accuracy, speed (time), resource (space) consumption, and the understand-

ability of the their operation and result [41].

2.5.1 Accuracy

An on-line classification algorithm must be accurate. This gauge of success is commonly

stated as the minimization of incorrect classifications, or error rate [68]. If on average,

algorithm Ai misclassifies every tenth event based on dataset D y then the algorithm is said

to achieve an error rate of 10% on this dataset. If we find an algorithm Aq that achieves an

error rate of 5% for this same dataset, then algorithm Ap is said to be more accurate than

algorithm Al on dataset D.
To empirically determine which algorithm is generally more accurate than another al-

gorithm, it is comrnon practice to gather a substantial number of datasets with a variety

of characteristics. While, no definitive Est of benchmark datasets bas been composed, a

significant number of commonly tested datasets has developed over t h e [51].

Aside from general accuracy, another common measure of accuracy focuses on the algo-

rithm7s sensitivity to certain 5eal world" characteristics. The accuracy of algorithm A?, for

example, may quickly degrade when many irrelevant attributes are present wit hin datasets.

An understanding of this sensitivity can help with the assignment of a particular algorithm

to a particular task. Aside from irrelevant attributes other LLreal world" characteristics t hat

are known to impair the accuracy of classification algorit hms include: rnissing uttribu tes,

underspeciifid euents, noise, missing values, and different proportions of numeric to symbolic

attributes [9, 681.

2.5.2 Running Time

Even if a classification algorithm is very accurate, it may be unusable if it achieves its

result too slowly. The parameters that cornmonly impact the ninning t h e complexity of

an on-line classifkation system are the number of records in the dataset (n), the number of

attributes in the dataset (m), the number of instantiated attributes of the event vector (lq),

the proportion of numeric to symbolic attributes, and the size of each attribute7s domain

d. Some algorithm's rnay take less time for large n while others rnay be more appropriate

for large m or 1 - To get an understanding for an algorit hm's time complexity a theoretical

worst-case analysis is commonly reported. [Il , 211. Less cornmon is the use of empirical

test hg.

2.5.3 Space Usage

As aheady discussed, an algorithm's space complexity rnay be crucial to the appkability

of the system in certain domalns. When a classification request occurs against a very

large dataset then it rnay be crucial that an dgorithm have small space requirements. The

parameters that commonly impact this measure are: the number of records n, and the

number of attributes m. The rneasure of space compiexity commonly excludes the size of

the dataset. This assumption helps in the selection of algorithms that act directly against

DBMS resident datasets. If a copy of the dataset is created (such as in local memory) it is

understood that the space complexity will bounded from below by R (nm).

2.5.4 Understandability

Aside £rom the three objective measures of accuracy, riinriing time and space usage, some on-

line class~cation tasks will also measure the unders tandabili ty of an dgorit hm's prediction.

Some settings rnay also be interested in the understandability of the algorithm itself [68].

Usually, this performance measure is important in settings were people have to integrate

their extensive background knowledge to the problem-

As could be expected, understandability of the predicted resdts and of the process used

to achieve this result is mostly a subjective qualitative measure. However, some guidelines

have been developed in both areas. For example an algorithm whose operation is transpârent

and straightforward is preferable to a complicated black box algorithm. An understandable

algorithm provides a person with some information with which to judge its suitability to the

particular task at hand. This is also true of algorithms that presents a clear rationale for

their prediction. Of the reviewed representations low order IF-THEN rules have been found

to be generally understandable- Low order instance-based results, such as in case based

reasoning, may instead allow the person to work from concrete examples. Finally, within a

specific representation language, there rnay be objective measures of simplicity, such as the

CHAPTER 2. GENERAL FBAMEWORX

number of proposition within a rule, that can be measured and reported.

2.6 Related Issues

Several general requirements of prediction tasks, while closely related to knowledge based

on-line classification, are not within the scope of this framework. Three of these requirements

include: regression, bat ch cIassificat ion and system guided classification.

2.6.1 Classification versus Regression

As described in Section 2.5, a classification algorithm's accuracy is gauged by the percent-

age of rnisclassified instances. This measure of accuracy is certainly appropriate when the

prediction is on symbolic values. When the value to be predicted however, is Ecom a numeric

attribute, accuracy may instead be rneasured by the average distance between the predicted

value to the true value- Rather than minimizing the error rate, the goal now is to mininiize

this distance [34]. This measure of accuracy has been well studied in the field of statistical

data analysis under the name of regression [20]. The focus of the current framework will be

liniited to classification because it provides a simpler measure of accuracy that still captures

a siflcant number of prediction tasks. In the future, there may be interest in the study

of on-line regression,

2.6.2 On-Line versus Batch Classification

Another separation of classification tasks can be drawn between tasks that require a predic-

tion for a single event, or for a large number of events. Historically, classification research

bas focused on the latter case. Because of the focus on the class prediction of many events,

classification has therefore been generally divided into two phases. The learning phase de-

velops a predictive mode1 fÎom a training set while the testirtg phase uses this mode1 to

quickly predict the class for any given event [9, 58, 481. This approach will be referred

to as batch class$cation. Zn batch classification tasks, the data set D and class attribute

C are known weU in advance of the classification request for several eveat vectors- Rather

than measuring the amount of time required to class3y a single event, batch classification

tasks measure the amount of time required by the Iearning phase. Once this phase has

constructed a classifier, the time required to class* an event based on this structure is

assumed to be minimal. Therefore: while a batch-classification algorithm may be applied to

on-line classScation tasks, its runaing time performance rnay not be appropriate for on-line

classification tasks. An algorithm that is specifically targeted to on-line classification, has

the advantage of not having to develop a classifier that will classify every event Bom the

domain.

2.6.3 Data Driven vs. System Guided Classification

The h a l separation of classi£ication tasks to be reviewed is between those tasks that require

guidance about which values to instantiate within the event vector ë and those tasks, as

described in the fmmework above, that can proceed without this guidance. This separation

of tasks assumes that instantiating a l l the d u e s in the event vector is either not possible

or not trivial. If all the values in the event vector are instantiated, then there is no need for

guidance. There are situations where the cost and time of acquiring specXc data d u e s have

to be weighed for the classifkation task. In the Animal Kingdom example, it rnay be more

time consuming (or costly) to determine the number of teet h that a large animal may have

inside its mouth, than it is to determine the number of Limbs it possesses, or to esthate

the ;Lnimals mouth shape. On the other hand, even though it is not trivial to get this

information, the number of teeth may happen to be a very valuable piece of information to

make an accurate prediction. The question now is who determines what values to instantiate.

In data driven interaction the agent is assumed to be competent enough to make this

determination [64]. In system guided (or active) classifcation, the algorithm has the ability

to suggest which attribute would be the next best value to instantiate [32]. Decision

trees structures are an example of a system guided classifier. The root node describes

which at tributevalue would like produce the mos t predictive classification. The focus of

the fiamework described in this chapter is for settings that require efficient data driven

classification. The reason for this restriction is that investigations into system guided on-

line classification may simply require the addition of a separate analysis engine. Therefore,

research into a data driven approaches may still be of value to future investigations into

interactive classification algorithms.

2.7 Chapter Summary

This chapter presented a hamework for knowledge based on-line classiiication. To facilitate

the discussion a simple Animal Kingdom example was k s t presented. The example was then

used to present the input, output and interna1 control requirernents for these tasks. Four

performance measures were t hen described: accuracy, t ime, space and unders tandability.

Finally, the description of the fiamework concluded with a review of three areas that are

closely related to on-line classification, but out of the scope of this thesis: regression, batch

class~cation and system guided classification.

Chapter 3

Related Work

Now that a framework has been proposed for knowledge based on-line classification tasks

and dgorithms, this chap ter reviews several current classification algorit hms t hat may fit

into this Erarnework. The survey focuses on machine learning research because of its focus on

met hods t hat are compatible wit h human reasoning. Wit hin machine leaming, classification

dgorithms cornmody make use of either a Iazy instance-based or an eager model-based

approach. An alternate approach that may be more suitable to on-line classihcation tasks is

the use of Iazy induction with dynamic relevance analysis. This s w e y provides an overview

of the three approaches. This includes some history of the research, key computation details,

and summaries of their general performance results.

The survey will be presented in the following order. Section 3.1 presents an ovemiew

of the lazy instancebased approach to classification, with the IB1 algorithm [3] as the

representative algorithm. Next, Section 3.2 presents the eager model-based approach to

classification, with top-down induction of decision trees [57] as the representative technique.

Finally, Section 3.3 presents the more recent approach of lazy induction with dynamic

relewce testing. Within this section two techniques are presented: local induction of

decision trees and l z y model-based induction. The DBPredictor aigorithm presented in this

thesis fa& into the latter category. This chapter, however, presents the LazyDT algorithm

as the representative for lazy model-based induction.

3.1 Instance-Based Learning

One of the simplest methods to predict an event's class, is to recall the past observations

that are most similar to this event and to base the prediction on most common class within

this group This approach h a . been extensively used by instance based learning (IBL) al-

g o r i t m . In this section the II31 [6] instancebased leaniing algorithm is highlighted. This

algonthm may be used against datasets with numeric and symbolic attributes, and in the

presence of missing at tribute-values. Generally IBL algorit hms are fast but t heir accuracy

is susceptible to certain %al worldn characteristics such as the presence of irrelevant at-

tributes. F indy , while it is easy for a person to understand how the algorithm operates,

the low-level represent at ion of the predict ion's rat ionale can be difficult to interpret .

Example 3.1. The following example will show how to predict whether animal ë can fiy

via instance-based classiikation. Assume that ë is a three dimensional vector which de-

scribes the animal's weight, volume and form of locomotion, ë = [weight = 0.7,volume =
0.4, locomotion =?]. The fkst step of an instance-based classifier is to evaluate the similar-

ity of ê and all (n) dataset records. Since al l the predicting attributes in this example are

nurneric, the similarity can be expressed in terms of the geometric distance between ë and

the other records. The figure below presents the relative location of the seven most similar

records to ë.

Weight

I
£lies.

.swims
2 "

0
flies swims

I .-~ Volume flies*

Becauçe both the most similar record to ë and the larger proportion of the seven most

similar instances have class '%yn, by the simi.larity assumption, an IBL algorithm would

predict; that ë also aies,

cl

One of the eadiest applications of the simidarity assurnption to a classification algorithm

is found in the k-nearest neighbour (k-NN) algorit hm proposed by Cover & Hart, 1967 (171.

Since then, the field of machine learning has incorporated this technique within instance-

based learning (IBL) algorithms. Samples of these algorithms include IB(1 thru 4) [3] and

PEBLS [16]. O ther related approaches include memory-based learning [66] and case-based

reasoning [44].

Given a S i m i l a r i t y O function that outputs a numeric-valued similarity, an IBL algo-

rithm will calculate the similarity between an event vector and every record (instance) in the

dataset. Based on the similarity values assigned to each record, a Predictiono function

WU return the prediction for the IBL algorithm. The similarity and prediction functions for

the IBL algorithm [6] are presented below. This implementation was used in the empincal

studies reported in Chapters 7 and 8.

3.1.1 IB 1's Similarity Function

The basis of IBlYs similarity function is the inverse of the Euclidean distance between two

vectors. This function is shown in Equation 3.1 where the attribute diflerence function

6(xi,yi) is set to (xi - The similarity between vectors 5 = [O, 11 and = [1,0], for

fi - 0.71. AS the two vectors move closer example, would be 1/J(0 - 1)* + (1 - = 1 -
to each other (and the distance between them approaches O) this similarity rneasure will

retuni a larger numeric value. This function is undefined when the distance between the

two vectors is equal to O, so the distance is not allowed to become any smaller than some

smaU E.

As defined, the current Similari ty () function is appropriate for datasets that contain

numeric attributes with Little or no variation in their ranges. Several updates to the attribute

merence function 6() are presented that will d o w the IB1 algorithm t o be applied against

datasets with numeric attributes with large variations in their range and also when attributes

are symbolic or contain missing values-

Normalization of Numeric Values

When a dataset's numeric attributes contain large range variations, the current attribute

difXerence function 6() favours attribut es wit h smaller numerical ranges. To counteract

this arbitrary bias, the ranges of numeric attributes are f is t normalized. Commonly the

normalized range is set to (0 J) with F'unction 3.2.

Example 3.2. This example presents the benefit of numerical attribute normalization.

Assume that ë = [50,0.5], where the range of Al is [0,100] and the range of A2 is the

much smaller [O, 11. Next , assume the existence of the following two records in the dataset,

6 = [45,0.1] and F2 = [60,0.6]. Notice that ë is significantly different than fi on attribute

A2 (Le. 0.5 vs. 0.1). The raw similarities are presented below:

Simz'l arit y (ë, Fl) = 1 = 0.2
,/(50-45)~+(0.5-0.1)~

Simil arit y (ë, F2) = 1 = 0.1
d(50-60)~+(0.5-0.6)~

Based on these evaluations, ë appears

However, when Al is normalized to the

Similarity(ë, 6) =

Simil ari t y (ë, F2) =

Based on these normalized calculations,

asdesired. Cl

Nonnumeric Attribut es

to be more s i d a r to r f than to T2, (0.2 > 0.1).

range (O, l), the similarities change to

ë' is now significantly more similar to F2 than to fi,

The b a l ripdates to the attribute clifference function 6 0 are shown in Function 3.3. These

changes to the huiction dlow for datasets that possess either symbolic attributes or missing

attribute values. For symbolic attributes, a simple overlap metric is added to the function.

When two symbolic values do not match, a difference of 1 is returned, and otherwise, a

difference of O (identical) is returned. For missing values, the dinerence will be set to the

maximal separation. When one value is not missing, Say for exmple it is equal to 0.2, then

the other value is assumed to be 1.0 (for a ditference of .g2).

max(xi - 0,1 - if Yi is missing

max(yi - 0,1 - yi)2 if Xi is mksing

if both values are missing

(xi - yiI2 i is numeric

symbolic

CHAPTER 3. RELATED WORK

Open Questions

Two open questions remain before this function meets all the requirements of the on-Line

classification framework.

First, it is unc1ea.r how to support attributes with concept hierarchies. One possible s e

lution would be to assign a Merence quotient E [O, 11 to every attribute value and hierarchy

node pair. This d u e would represent a logical Merence between each possible combina-

tion. For example a diet of "banana" should be presented as more similar to a general diet

of Fhit than when compaxed to a diet of "tuna".

6(A4 = banana, Aq E F ~ u i t s) « 6(& = banana, 4 = tuna) (3.4)

These quotient values may be d y n d c a l l y determined, at some expense, with the value

difference metric (VDM) proposed by in [66].

Second, it is unclear how to tightly-couple the updated similarity measure with an SQL-

lïke database interface- No research was located that addresses this question and no solution

is clearly apparent. For now, a loosely-coupled solution which copies every record into the

application space, may be required.

3.1.2 ml's Prediction Function

Given the similarity function just described, an instance-based algorithm can calculate the

similarity between the event vector ë a n d all the records of the dataset. Once this has been

accomplished a prediction function completes the classification task by basing the prediction

on the records that have been found to be most similar. One possible prediction b c t i o n

is to return the class of the 1-nearest neighbour, with ties in similarity being resolved ran-

domly. IB17s prediction function however, bases its prediction on the k most similar records

(k-nearest neighbour). The value for threshold k is commonly optimized for the domain in

question.

3.1.3 Performance Characteristics

IBL algorithms perform very well dong the measure of running time, but their accuracy

sufFers under some specific conditions. SpecXcally while accuracy can be very good for

CHAPTER 3. RELATED WORK

numeric datasets, it can also degrade for datasets with irrelevant and symbolic attributes.

Finally3 while the met hod used by these algorithms is simple to understand, understanding

the meaning of its instancebased prediction representation can prove to be diflicult against

some datasets.

Time and Space Complexity: The t h e complexity of the L131 algorithm against

an on-fine classification task is bounded by O(nm) , for datasets with n records and rn

attributes. Two passes of the dataset are likely. The f is t determines the ranges of the

numeric attributes so that normalization can occur. The second pass then evaluates the

similarity of the normalized records to the event vector. If the k most similar records

are stored through this second pass, then no other pass is required. IR the worst-case, the

calcdation of the Similarity () function requires m computations of the attribute ciifference

h c t i o n cf() per record. If we assume a fked cost of S() thea the total time complexity is

bounded by O(nm). Finally, given that k records will be stored to base a prediction, the

space complexity of this algorithm is bounded by O(km).

Accuracy: The low time complexity of Il31 unfortunately cornes at the expense of in-

accuracy in the face of irrelevant attributes, noisy values and symbolic values. Extensions

' - C U - to IB1-like algorithrns, such as IB3, IB4 and PEBLS [3, 161, have been proposed to ci*

vent these problems. Examples of these extensions include IB3's use of a probation period

to locate reliable instances: B4's use of attn'bute weight settings to deemphasize irrelevant

attributes and PEBLS use of the value distance metric (VDM) to make the attribute dif-

ference function a() more informative for symbolic attributes. The significant increase in

computational complexity of these updates however, make t hese updated algorithms more

applicable to batch classification than to on-line classification tasks.

Understandability: Instance-based dgorithms achieve a mixed response on the measure

of understandabifity. The operation of these algorithms is easy to understand but their

instance based prediction can be difiicult to interpret. A prediction for example, that is

based on twenty five dataset records each of which is described by fifty attribute-values may

be very difficult to interpret even by a domain expert. If on the other hand, a prediction

is based on one to five records, each with ten values, an expert may be able to formulate

a reasonable hypothesis about why these particular instances support this particdar ciass

predict ion.

3-1.4 Summary

IBL dgorithms apply the similarity asslimption to classification tasks. Once an event vec-

tor's similarity has been evaluated against all records in the dataset the k most relevant

records (instances) are returned. This review presented the IB 1 algorithm. Its similarity

fuaction supports datasets with numeric attributes (including those with wide differences

in t heir ranges), symbolic attributes and missing at tributc-values. While the B i algori thm

achieves a linear d n g time bounded by O(nm), its accuracy is vulnerable to some spe-

ci& types of domains. Several methods have been proposed to address this problem, but

they significantly increase the dgorithm's riinning time complexi@ Findy, this approach

has the further advantage of being simple to understand, however in datasets with large

numbers of attributes, the instance-based representation (of k records) may not provide a

clear justification about a particular class prediction.

3.2 Top-Down Induction of Decision Trees

Another highly developed method of classScation is the construction of decision trees by

way of topdown induction [9; 581. Section 3.2 already reviewed the structure of decisions

trees, this section will instead review how to create these structures with top-down induction.

This will include a brief review of lieuristic measures. Finally, the general performance of

these dgorithms will be compared and contrasted to the performance of ins tance-based

algorithms. Generdy, decision tree algontbms are slower than Il3 1-like instance based

algorithms, but this extra time allows the approach to achieve more robust accuracy and

produce a higher-level representation.

Top-down induction of decision trees has been extensively researched in the fields of Sta-

tistical Data Analysis and Machine Learning, and continues to be actively investigated [52].

One of the f i s t algorithms to construct a decision tree was the Concept Learning System

(CLS) by Hunt et al, 1966 [37]. The standard references on the topdown induction of

decision trees (TDIDT) are Breiman et al's "Classification and Regression Trees" [9] and

C W T E R 3. RELATE23 WORK

Quidan's description of the C4.5 algorithm in "Programs for Machine Learning" [58]. The

former reference is fiom a statistical data analysis perspective, while the latter presents a

machine learning perspective to the problem.

3.2.1 Tree Construction Process

The process of building a decision tree from a data set D is known as tree induction.

The major challenge t o th% process is to locate an accurate tree from among the many

possible trees. The use of brute force to £hd a tree that minimines some measure, such as

accuracy, is an NP-complete problem [38]. A data set with just rn = 4 attributes each of

which has d = 2 distinct values (Le. binary) can produce approximately 1.5 billion1 binary

univariate trees. As in other areas of artificial intelligence, TDIDT algorithms work around

this problem by investigating a much smder space of trees and using a heuristic function to

locate a "goodn solution. SpecScalIy, TDIDT dgorithms use a heuristic evaluation function

to guide a greedy tree creation that starts at the root aode and proceeds towards the leaf

nodes (Le. top-down)- While the algorithm could be extended to search dong several

paths (beams) or with some limited lookahead, these extensions have not shown improved

accuracy resdts [52].

A TDIDT algorithm creates decision trees by adding either intemal nodes or leaf nodes to

the tree structure starting from the root node. To ensure that TDIDT algorithms terminate,

internal nodes must continudy divide the dataset into smder sets of records. This c m

be accomplished with a constraint that tests be nontrivial and non-redundant [57]. A test

such as Al 5 1.5, for example would not be allowed if a test for dl 5 2.0 has a.lready been

placed higher up in the tree. This divide and conquer process continues until a stopping

criterion forces the creation of a leaf node. Two minimal rules are required. The k s t d e

forces the creation of leaf node when no more internal nodes may be added. The other rule

creates a leaf node when no more records are available in D to support further branching.

The prediction withùr a leaf node is based on the class distribution of the records in D that

reach tlris node. If most records that reach a leaf node have a class of "Fly", but some

records also have a class "Swim" , then this information wodd be refiected in the prediction

found within the leaf node.

CZZAPTER 3- RELATED WORK

The process of tree construction just described is particularly suited to environments without

missing attribute, noisy entries or irrelevant attributes. If this is not the case, such as with

"real-worldn datasets the algorithm will often place a leaf node beyond the locatioa of

the most accurate leaf node[56]. To counteract the effects of this overfitting, two pruning

techniques have been found to be effective, The pre-pnrning technique expands the stopping

criterion to stop tree growth earlier [57]. One such rule would be to avoid leaf nodes that

match too few records [67]. The intuition of this d e is that predictions based on too few

records become unreliable. Empirical evidence however, has shown that pre-pruning is not

as effective as the post-pnrning technique [9, 491. In reduced-emr post-pnining, the decision

tree is generated with the normal stopping criterion but the tree is then tested againçt a

portion of D that was set aside. Internal nodes of the tree are converted into leaf nodes, if

an improvement in accuracy is noted on the records that were set aside.

3.2.2 TDIDT Evaluation Functions

The general search technique jus t described above requires the existence of heuris tics (eval-

uation) functions to guide the generation of the decision trees. Because no backtracking is

used by these (greedy) dgorithms, there is a strong incentive to choose a good heuristic. As

with instance-based algorit hms, the evaluation function has been shown to si@cantly im-

pact the accuracy of the resulting decision tree [50]. In the case of decision tree algorithms,

evaluation functions at tempt to return tests that most resemble the underlying structure of

the domain. Chapter 6 provides more details about evaluation functions that may be used

by top-down induction- For now, two categories of evaluation functions are briefly reviewed,

those based on information theory and those based on class distribution separation.

Impuri ty Measures

The group of functions most commonly used to guide top-down induction, are based on

information theory [65]. Their strategy is to reduce the randomness or impurity over ail the

nodes of the decision tree. Within this category the best known function is entropy function,

Function 3.5, proposed by Quinlan2 [55]. The function assigns an impurity measure to each

where O log, O = O

class probability distribution vector. Because the base of log is set to 2 the result of this

measure is expressed in terms of bits.

Based on this measure of a node's impuriQ, the induction process attempts to select

tests that minimizes the impurity of the resulting class distributions.

Class Separation Measures

An alternative to impurity based evaluation h c t i o n s are functions that q u a n t e the dis-

tance between class probability distribution vectors. Less attention has been given to this

class of evaluation function although several benefits over irnpurity based functions have

been documented [26]. The greater the distance reported between two class probability

distribution vectors by distance function 6(Z, B), the greater the likeiihood that the corre-

sponding test matches the underlying structure of the domain. Two specific rneasures exist,

one based on the angle between class probability vectors, O R T () [25], and the other, based

on the Euclidean distance between two class distribution vectors, DI() [67].

3.2.3 Performance Characteristics

Because of the significant differences in the approaches used by TDIDT and IBL algorithms,

it is not too surprishg that their performance characteristics are also significantly differ-

ent. The main trade-off occurs between accuracy and time. T D D T generally achieves

more robust accuracy than IBL, but this improvement cornes at the expense of increased

t h e complexity. Findy, TDIDT algorithms also return more concise justifications of their

predictions, but Lf3L algorithms are simpler to understand.

Time and Space Complexity: The previous section on IBL algorithms showed that

their time complexity is bounded by O(nm) and their space complexity by O (m), for tasks

with n records and m attributes. The time complexity for top-down decision tree algorithms,

on the other hand, is bounded by 0(nm2) when attributes are symbolic and 0(n2m2) when

attributes are numeric [21]. The increase complexity for numeric domains is due to the

sorting required to locate the appropriate split [58]. While t here have been several proposals

to reduce the complexity of TDIDT dgorithms with respect to rn and n, these updates have

resulted in a Ioss of accuracy [Il]. Finally, the space complexily of TDIDT algorithms is

bounded by O(nm) [57].

Accuracy: The increased time and space cornplexity of decision tree algorithms is bal-

anced by their increased accuracy. This improvement however is not universal. Domains

that particularly benefit from the use of decision trees are those with with many irrelevant

attributes and with noisy attribute-values [52].

Understandability: Finally, the understandability of decision tree based results also

differ kom that of instance-based algorithms. TDIDT algorithms are not as simple to

understand, as IBL algonthms, particularly when a cornplex evaluation function is used.

The prediction result of TDDT algorithms however, c m be easier to interpret than an

instance based results. The path of the decision tree that is followed by an event to make

the prediction, elucidates which attributes contributed in a significant way to the prediction.

3.2.4 Summary

Top down induction of decision trees (TDIDT) is a well understood approach to classifi-

cation, The survey of this approach focused on the production of binary univariate trees.

While locating the most predictive tree is an NP-coqlete problem, the use of a greedy

divide and conquer strategy has been shom to be very effective at approximating the opti-

mal tree. To guide this process several heuristic evaluation functions have been developed.

-When compared to lazy instance-based algorit hms, decision tree algorit hms are generally

slower but more accurate. The running time is significantly longer in numeric domains while

the accuracy is superior in the presence of irrelevant, noisy and symbolic attributes. Finaily,

the understmdabiliQ of TDIDT algorithms and their prediction result &O diEers from IBL

algorithms. The tree path based result, allows for simpler interpretation of the reasons for

the given predict ion, however , the algorit hm itself, part icularly when used in conj unc t ion

with a cornplex evaluation functions, is not as simple to follow.

CEUPTER 3. RELATED WORK

3.3 Lazy Algorithms with Dynamic Relevance Testing

When choosing an algorithm for an on-line classification task, IBL dgorithms such as Il31 [3]

and TDIDT algorithms such as C4.5 [58] provide performance results that are at the o p

posite extremes of the time and accuracy dimensions. Two recently proposed techniques

integrate characteristics of both IBL and TDIDT to achieve a middle ground of performance

when applied to on-Luie classification. Local induction of decision trees [30] is a hybrid of

IBL and TDIDT, that &st gather a substantial portion of similar instances, and then de-

velops a decision tree based on this subset of records. Lazy model-based induction [29, 461,

on the other hand, is an integrated combination of l a q learning and model-based induction

that develops ody the portion of the mode1 required to classify the event vector. DBPre

dictor, uses this latter technique. Like TBL dgorithms, both techniques focus their effort on

the classification of a particular event vector. This characteristic is commonly associated

with lazy Iearning algorithms [4). Both techniques however, also make use of the dynamic

relevance analysis of top-down induction algorithms to determine which attributes are rel-

eva& to the task at hand. Dynamic relevance analysis further ensures that an algorithm

focuses its effort on the classification task at hand rather than tryïng to locate the globdy

predictive attributes to facilitate the classification of all possible events.

m e both techniques a ~ e reviewed, more coverage will be given to lazy top-down in-

duction. The reason for this bias is due to the latter's generation of a knowledge-based

justification to their predictions. Within the review of lazy model-based induction, greater

emphasis is given to the LazyDT algorithm because the DBPredictor algorithm is described

in si@cant detail in Chapters 4 t hru 6 .

3.3.1 Lazy vs. Eager Algorithms

Recall that TDIDT dgorithms such as C4.5 require a sipificant amount of effort to deveIop

a complete classification tree before they can make a prediction. Similarly, IBL algorithms

such as IB4, pedorm a signification amount of processing to counter the shortcornings of

the IB1 algorithm. The two proposed techniques of local induction of decision trees and

lazy top-down induction, on the other hand, perform lit tle global processing to achieve their

classification result. They instead possess the lazy leaming characteristic of deferring all

processing, until they receive classiiication requests [5].

Most of the computation expended by TDIDT algorithms is directed at the development

of a complete classification model in the f o m of a decision tree. In doing so, they are able

to determine which attributes are relevant to the classification task, and with the use of

pruning c m &O avoid dependence on unreliable records. This style of classification is

refenced to as eager learning because i t eagerly develops a complete model in anticipation

of a large batch of future classification requests (41. When applied to on-line classiiication

tasks however, most of their computation occurs in portions of the decision tree that are

unrelated to the classification task at hand. A purely Iazy algorithm such as IB1, on the

other hand, carefully stays within the scope of each individual on-luie classification task it

receives.

Unfortunately, the accuracy of k nearest-neighbour based algorithml such as ml, is
sensitive to irrelevant attributes and noisy records. To mitigate for these effects, several

methods have been proposed to locate both the relevant attributes and unreliable records

of a dataset, The current methods however, eagerly develop a global model of relevance and

reliability that is appropriate for a l l future classification requests. Ln the case of attribute

selection (feature selection), current methods require processing in the order of 0(n'm2)

before they can proceed to the classification task at hand [22]. A purely lazy algorithm

for on-line classiikation should instead determine which attributes are relevant and which

records are reliable, strictly to the prediction of the given event.

3 .32 Local Induction of Decision Trees

One way to construct a lazy algorithm that also perfonns dynamic relevance analysis is

to create a hybrid algorithm that rnakes use of both instance-based learning and decision

tree induction. Such an algorithm has been proposed in [30]. While the algorithm was

originally targeted at 'Chteractive data mining" , its approach fits the fkarnework for on-line

~Iassification, Local induction of decision trees has three key steps- First, it retrieves a

substantial number of records that are simdar to the event vector, in O(nm) to 0(n2m)

tirne. N a t , the dgonthm induces a mode1 (in this case a decision tree) from this set of

records in 0(km2) to 0(k2m2) time, where k < n. Finally, the algorithm uses the induced

model to c l a s se the event vector. In a sense, the a lgor i th makes use of ZBL to constrain

its effort on the task at hand and makes use of TDIDT to perform dynamic relevance

andysis. The accuracy of this algorithm appears to be promising. Initial experiments show

the algorithm to be superior to decision tree algorithms. The running t h e of the algorithm

varies fkom a good O(nm + k2m2) to a poor 0(n2m + km2).

Local Neighbourhood Selection

One of the main challenges to local induction of decision trees is to dynamicdy determine

the characteristics of the group of records from which the decision tree is to be based on-

Each domain will likely require that a di.fTerent number of records be passed to the decision

tree construction step. Two of the three proposed solutions are siimmarized. Finally because

of its use of an IBL cornponent, it is noted that support for concept hierarchies and tightly-

coupled RDBMSs interaction remain open questions.

Two methods of dynamically determinhg the appropriate number and characteristics

of the records passed to the decision tree step are considered. The "local induction voting7

algorithm passes k sets of similar records to the decision tree step which then proceeds

to produce k trees. The size of each set ranges korn 1 to k- To determine which class

prediction to return, a round of voting occurs between all k trees. The "multilayer composite

neighborhood" dgorithm, on the other hand, returns a single group of records. The group

is identified by selecting records that are not oniy similar, but are similar in ways that also

include other records. This process however requires a worst-case3 riirining time of O (n2m)-

It is unclear whether this solution supports undiscretized numerical at tributes.

Finally, because of its use of an instance based 1ea.rn.ing component, this lazy induction

dgorithm shares the open issues of IBL a i g o r i t h , discussed in Section 3.1.1, with respect

to support for concept hierarchies and tight ly-coupled RDBMS support.

Performance

Because this is a new algorithm, its performance is not yet f d y understood. However,

initia. empirical results show that the algorithm achieves superior accuracy when compared

to decision tree algorithms. Also, the running time is reported to be "similar" to D L
algorithms. Findy, with respect to understandability, it is unclear what representation is

used to support the classification result. Local induction of decision trees wiU infierit the

representation problems of IBL presented in Section 3.1.3.

3 ~ h i s c m be lowered to O(mn logm-' n) compIexity for narrow (srnatl m) data sets

Local induction of decision trees is a promising approach to on-line classification. With

its combination of IBL and TDIDT algorithms, the algorithm can focus its effort to the

classification task at hand while being able to dynamicdy determine attribute relevame.

The curent obstacles to its use includes its worst-case running time complexity of 0(n2m).

Also, this approach inherits some of the difficulties encountered with IBL algorithms. These

include the la& of a knowledge based prediction justification and the inability to interface

directly to an RDBMS.

3.3.3 Lazy Model-Based Induction: LazyDT

Another approach to a lazy algorithm that performs dynamic relemce analysis is to con-

tinually specialize the portion of the predictive mode1 that applies to the event vector in

question. Two algorithms that make use of lazy model-based induction are LazyDT and

DBPredictor. The LazyDT algorithm proposed in Fkiedman et al, 1996 [29] continudy

specializes the portion of a decision tree relevant to the classification of ë. The algorithm in

a sense, dynamically creates the path of the decision tree that the event vector would have

taken, had an entire decision tree been constructed. The DBPredictor algorithm proposed

in Melli, 1996 [46], on the other hand, continually specializes a probabilistic IF-THEN r d e

that classifies the event vector in question. The remainder of this section focuses on the

LazyDT algorithm and some of its open areas. The DBPredictor algorithm is presented in

the next chapter.

Overview

LazyDT, Lazy Decision Tree, is a classification algorithm that retunis a class prediction

supported by a path of a binary univariate decision tree. While LazyDT is a clear descendant

of TDIDT algorithms, it M e r s fkom these in several ways. Its most novel contributions

are its lazy path generation and its variation of the entropy evaluation function. Also of

interest, are its required discretization of numerical attributes, its use of a very conservative

specialization step size and its use of one-level lookahead to break ties.

CZfAPTER 3. RELATED WORK

Example 3.3. Given dataset D, Pdirnensional event vector ë = [ai,, a2 = 5, a3, ?] and

class attribute description A, = the LazyDT algorithm proceeds through the following

steps. Because LazyDT operates only on discrete symbols, i t first discretizes all numerical

attributes in D. The next step of the algorithm is to create the root node of the W t u d

univariate b i n q decision tree. Several alternative nodes (hypot heses) are generated and

then evaluated against a heuristic function. The nodes generated by LazyDT include tests of

the form (Ai # vi). Nodes are then tested with a variation of an entropy() based evaluation

function. The test that is deemed most predictive is selected. Next, another round of

hypothesis generation and evaluation is performed. This process continues until a stopping

criterion is encountered. When this occurs, LazyDT concludes by returning the tree path

just generated and also returns the class distribution of the records in D that also reach the

leaf node of this path. Below is a sample result which shows a path of a tree (in brackets)

and its leaf node (far right) .

The result can be interpreted to mean that because ël in not equal to alz or a ly and

because ë2 is not in the range [2,4], LazyDT predicts a class of = cl for event vector ë-

The range [2,4] for attribute A2 wodd have been generated within the discretization step.

O

Discretization

In settings where datasets have numerical attributes, LazyDTYs first step is to discretize

these. Once the dataset has been discretized, its tree path can contain tests of similar format,

regardless of the type of attribute they refer to. Several effective discretization a l g o r i t h

are available [23]. LazyDT happens to use the algorithm by Fayyad & Irani, 1993 [25]. This

algorit hm discretizes each numerical attribute independently f?om each other. Wit h the use

of the entropy function, the algorithm recursively places cuts within the attribute, based on

their ability to minimize the entropy of the resulting subsets. T t proceeds in this fashion until

the minimum description length stopping crit erion is met [61]. Because discret ization sorts

the values of each at tribute, the running time of t his algonthm is bounded by O (na x n log n) .
It is unclear whether discretization can be efficiently performed directly against a relational

database and without having to physically change the values of the attributes. Ln Section

CHAPTER 3. RELATED WORK

4.8 we propose a rnethod that avoids the need for discretization.

Hypot hesis Generation

The constraints imposed by LazyDT on its hypothesis generator is that it develop nodes

for a univariate binary decision tree [12] that applies to event ë. To achieve this, each node

performs a tme or f&e test against only one attribute. Within this kamework, LazyDT

chooses to generates tests in the form of Ai # where wj E D a a i n (A i) except for the

value that the value being used by the event vector, g. For example, if there are d = 10

unique values in the three predicting attributes of Example 3.3, the algorithm will generate

and test 27 (3 x 10 - 3 x 1) root node hypothesis. The final path must contain fewer than

27 (m(d - 1)) nodes. Support for hypothesis generation against attributes with concept

hierarchies has not been proposed. In Section 4.8, we propose a method that supports

concept hierarchies.

Lookahead

Early investigations of LazyDT7s performance discovered that many ties occurred between

the possible paths. This may be due to its conservative hypothesis generation. Rather than

greedily selecting a random node from arnong the winners, LazyDT performs a one-step

lookahead, on dl nodes that achieve an anormation gain value that is within 90% of the

highest value. If some nodes still tie, a random selection is performed from these. No results

are reported on the impact on accuracy of this enhancement.

To determine which of the several possible paths to commit to, LazyDT makes use of

the entropy measure. Unlike the approach used by TDIDT algorithms to calculate the

information gain along both branches of a test, LazyDT's evaluation function measures

the change in entropy only along the path that the event vector will follow. Because a

cornparison of this approach has not been performed, Chapter 6 explicitly presents both

types of evaluation function calculations in greater detail. We refer to standard test as

sibling-sibling and LazyDT's as parent-child. Chapter 7 then reports ernpirical results which

indicate that the parent-child variation of the evaluation function degrades, rat her than

improves, a classifier's accuracy.

Oversp ecializat ion

LazyDT stops developing the path of the tree when either no more information can be

inferred from the domain (Le. lack of dataset records or lack of information about ë') or when

alI the records in the dataset that reach the current node are all of the same class. As with

TDIDT algorithms, this approach wïll Likely lead to trees that overfit datasets which contain

real-world characteristics such as irrelevant attribute, noise values and missing attributes.

Section 3.2.1 reviewed the common use of pruning to overcome this problem. LazyDT's lack

of a method to mitigate against oveditting is noted in [29]. Ln Section 6.5 we propose a

simple pruning method to mitigate against overfitting and in Chapter 7 we report that this

approach remedies DBPredictor's vulnerability to overfitting.

Performance

Because LazyDT is a new dgorithm, its performance is not yet fully understood. Initiai

empirical results however, show that the algorithm may be more accurate than decision tree

algorithms. This accuracy is achieved at the expense of greater computational complexity

than TDIDT algorithms. Finally, its path based result provides informative justification of

the prediction.

Accuracy: The initial research into LazyDT's accuracy shows that it may be more

accurate than C4.5r5. When tested on 28 datasets, the algorithm achieved a lower error

rate than C4.5r5 on 16 (57%) of these datasets. In Chapter 7, we show that thk accuracy

will lïkely extend to domains with irrelevant attributes and underspecified event vectors.

We also show the relative performance to the IB1 algorithm.

Time and Space Complexity: The t h e required by LazyDT to c lasse an event

vector in a domain that does not need discretization is stated to be bounded by O(nmd) ,

where d is the largest number of unique values in any given attribute. This appears to

be incorrect, however, no detailed analysis is available in [29] to formally test this claim.

Briefly however, we saw in Example 3.3, that the path of the result may contain up to rnd

nodes. Further, mcl - i hypot hesis will be generated and tested at node i, assurning that no

CLFAPTER 3. RELATED WORK

Iookahead is performed. Therefore, the maximum number of hypothesis that can be tested

is < m2d2. When the time cornplexity of discretization is added the time complexity of

LazyDT appears to be bounded by O(mn logn + nm2dL). The analysis of DBPredictor in

the Sections 4-12 and 5.4 will help to substantiate this informal claim. Since decision tree

algorithms that also perfonn an initial discretization step achieve a lunnuag time complexity

of O(rnnlogn + nm2), LazyDT appears to require a longer ninning time than TDIDT

algorit hms. Findy, no space complexity or timing comparisons are provided. Section 5 -4

indicates that LazyDT's space complexity is Likely bounded by O(nrnd).

Understandability LazyDT returns a classi£ication that is supported by a path through

a mivariate binary decision tree. This result c m d o w a person to understand the rationale

for the predic-tion, and make some informal decisions about the prediction's soundness.

Because the interna1 nodes test for inequality, the path appears to be interpreted by negative

information. For example, animal ë may be predicted to be mammal because it does not

have feathers and was not born from an egg. It is uncleax whether a more positive statement,

such as animal ëlikely being mammal because it drank milk as a child, rnay be more effective.

Finally, no information is available on the length and make-up of the generated paths to

determine how concise or unwieldy they may be.

Summary

Lazy topdown induction is a promising approach to knowledge base o n - h e classification

tasks. With its lazy version of model based specialization, this approach focuses its effort to

the classification task at hand and dynamically performs at tribute relevance analysis. The

LazyDT and DBPredictor algorithms rnake use of this approach. This review described

some of the open questions of this approach that are investigated within this thesis. The

model which the LazyDT algorithm specializes is a binary univariate decision tree. Lnitial

empirical resdts support the claim that the algorithm achieves greater accuracy than the

C4.5r5 decision tree algorithm. Due to its conservative hypothesis generation and one-

level lookahead, the time cornplexity of the algorithm is greater than for decision trees.

Future investigation will likely determine whether i ts conservative approach to hypo thesis

generation, and its use of a lookahead step are key to the dgorithms increased accuracy.

FinaUy, as with decision trees, the tree path result is generaUy informative.

3.3.4 Summary of Lazy Induction with Dynamic Relevance Analysis

Instance-based learning (IBL) and topdown induction of decision trees (TDIDT) algo-

rit hms, result in dramatically different performance behaviours for on-line classiûcation

tasks. TDIDT is generdy more accurate while IBL is faster. Two recent techniques reach

a compromise to this performance dichotomy with the use of lazy induction and dynamic

relevance analysis. Local decision trees and lazy model-based induction, both focus their

energies to returning an answer strictly for the task at hand. This includes the effort ex-

pended at relevance analysis. Local induction of decision trees achieves this compromise

with a hybrid approach that first uses an IBL component, and then passes the results to

a TDIDT component. Lazy model-based induction, on the other hand, only develops the

portion of the mode1 that is appropriate for the task at hand. Of this latter technique, only

the LazyDT algorithm is reviewed. The presentation of the DBPredictor algorithm is left

for the next chapter.

3.4 Chapter Summary

This chapter reviewed several approaches that are applicable to knowledge based on-line

classification tasks. Instance-based learning (IBL) algorithms were found to be very fast.

However their accuracy performed poorly in the face of irrelevant attributes unless a sig-

nScant amount of processing is added. Top-down induction of decision trees (TDIDT) on

the other hand takes a sigdicant amount of t h e but does achieve a more robust Ievel of

accuracy than (IBL). Findy, two recent approaches were reviewed under the category of

lazy induction with dynamic relevance analysis. A brief cornparison between lazy and eager

algorithms was presented to assist with the presentation of local induction of decision trees

and the lazy top-down induction technique used by LazyDT and DBPredictor.

Chapter 4

DBPredictor Algorit hm

The next three chapters propose and andyze a lazy modei-based classification algorithm

named DBPredictor, that is targeted at knowledge based on-line dassification tasks. This

chapter presents the core of the search technique used by the algorithm. The next chapter

describes an alternate version of the algorithm's search technique that will return the same

result, but achieves a faster riinning time at the expense of greater space requirements. The

alternate version of the algorithm is referred to as the time efficient version and is labeled

with a subscripted "T7' (DBPredictorT). The third chapter, describes several versions of

the heuristic function, that may be used by either search technique.

A high-level presentation of the DBPredictor algorithm has been previously described in

Melli, 1996 [46]. The presentation within this chapter provides greater detail and analysis,

and also introduces three enhancements:

1. A dynamic numerical proposition specialization method that avoids the use of global

discretization.

2. Support for tightly-coupled integration with an SQL database.

3. Support for attributes with concept hierarchies.

This chapter presents DBPredictorYs space efficient search technique in the following

order. Section 4.1 gives an overview of the dgorithm by way of example. Section 4.2 reviews

the input parameter requirements, while Section 4.3 reviews the rule based representation

of the prediction result. Next, Section 4.4 introduces the high-level cal1 to the DBPredictor

algorit hm, while Sections 4.6-4.11 present the algorithm's suoporting procedures. To show

the possibility of a tightly-coupled implementation to a database, Section 4.5 describes an

SQEbased interface for DBPredictor. To conclude the chapter, Section 4.12 presents an

analysis of the algorithm's ninning time and space complexity.

4.1 Overview

The DBPredictor algorithm produces a probabilistic IF-THEN rule that classifies a specific

event. To achieve this result, the algontbm requires information about the event and a

dataset of records fiom the same domain as the event The algorithm begins by generating a

very general d e that covers all the records in the dataset and then proceeds to incrementally

specialize this d e in ways that are expected to increase the d e ' s predictive d u e . To

facilitate the presentation of DBPredictor7s detailed operation, a simple example is now

presented that proceeds through the algorithm's main phases.

Example 4.1. This simple example of the DBPredictor algorithm assumes the presence of

symbolic attributes and the following classifkation request:

Dataset D with n = 100 records and m = 4 symbolic attributes.

Unlabeled event ë = [ai, a2, a3, ?] with 3 symbolic predicting values1

0 Class attribute Ac = Aq with c=2 unique class values (cl, c2)

0 Class attribute distribution [cl = 30, cz = 701 in dataset 13.

DBPredictor first generates a very general seed mle (ro) based on the overall distribution

of the class attribute.

If applied to ë this rule predicts that the event will likely be of class A4 = cz with 70%

(a) probability

Because DBPredictor possesses some information about ë, the algorithm will generate

several rules that are slightly more specialized than rule r o . Assume that three d e s are

LThe fourth attribute is set to unknown because this is the attribute whose value is to be predicted.

generated at this specialization step:

Note that as required, a.Il three rules continue to apply to ë. The second rule (r2) can be

interpreted to read that 20 (14f6) records in the iataset have A2 = a2. Of these 20 records,

14 belong to class cl, and the remaining 6 belong to class c2.

Next, each of these three d e s is tested with a heuristic hinction to determine which

specialization has the most predictive value. Assume that the second rule is selected.

DBPredictor now generates another set of rules that are somewhat more specialized than

r 2 while still applying to event ë. Assume the two following rules are generated:

Unfortunately, these two rules are of no predictive value. Rule rd did not match any records

in the dataset, and rule r g has the same distribution as r2. Therefore, the search stops and

DBPredictor retums rule.

IF A2 = a:,

THEN & = CI (70%) OR 4 = ~2 (30%)

(support: 20 records)

Rom this result, a person would likely predict class ci for the given event. O

4.2 Input Parameters

This section summarizes the input parameter framework already presented in the Section

2.2 and highlights any requirements that cannot be met by DBPredictor. DBPredictor

requires three input parameters (D, ë, Z). D represents the dataset that will be used to base

the prediction, t represents the symbolic attribute of D whose value is to be predicted and ë

contains the information about the specifk event vector that the classification is requested

for. The main shor t fd fiom the fkamework is in how missing values within dataset records

are handled.

4.2.1 Dataset D

The first input parameter is a dataset D with n records and rn attributes. The algorithm

meets a l the requirements for datasets specified in the fiamework except for natural support

of missing attribute values. Attributes may contain syrnbolic and numerical values, and rnay

be also described by a concept hierarchy-

Two methods exist within DBPredictor to handle missing values in a dataset. The

algorithm may either treat these values as distinct fkom all other values or may set the

missing value to be equal to the value of the event vector under consideration. As an

example of the second approach, if the event vector's value for attribute Ai were set to

vi7 then aU the records in the dataset with missing values on this attribute would have

this valize logically set to v,-. The spêcific method used by the algorithm is determined

with the use of an optional parameter. The default behaviour, however, is to treat missing

values as distinct values. The main reason for this default behaviour is the doubling of

tirne complexity required to test whether a record's value is missing or not regardless of the

percentage of missing attributes in the dataset.

4.2.2 Event Vector ë

The second input parameter required by DBPredictor is an rn-dimensional event vector ë.

This parameter contains the information about the event that is to be classified in the form

of attribute-value pairs. The vector maps directly to the m attributes in dataset D. The

sample event vector presented in Example 4.1 (ë = [ui, v2, v3,?]) can be reinterpreted to

[Ai = VI, A2 = v2,A3 = ~ 3 , =?).

4.2.3 Class Attribute Z

The final input parameter is a two dimensional ë that represents the class attribute whose

value is to be predicted. The first value of the vector is the identifier of the class attribute

itself. If the value of the fourth attribute is to be predicted, then 6 = 4. The second

dimension of the vector contains the level within the concept hierarchy for this attribute

that is to be predicted. If for example, this value is set to 1 (Z2 = 1) the prediction would

occur among the nodes at the first level down kom the root of the concept hierarchy. If no

concept hierarchy exists on the class attribute this portion of the parameter is unused.

CIIAPTER 4. DBPREDICTOR ALGORITHM

Output Format

Given the three input parameters described above (D, é, 3, DBPredictor outputs its class

prediction result as a probabilistic IF antecedent THEN consequent classification d e . The

objective of this representation is to provide a practical and understandable mechanism to

explicitly represent the prediction [64, 691. Since the d e ' s consequent contains the rule's

prediction, it will be described fkst, and will be immediately foIlowed with a description of

the rule's antecedent.

4.3.1 Rule Consequent

DBPredictorYs class prediction is contained in the consequent of its classification rule result.

h t e a d of containing just the most likely class value prediction, the rule consequent contains

the probabilistic distribution of the most likely classes. This is similar to the representation

used by probabilistic decision trees [9]. The use of class probability distributions over single

best class prediction will be of assistance when only weak predictions can be made about

the potential two or three classes that are most likely to occur. The result f?om Example

4.1

r2 : antecedent + & E [ci = 14, c2 = 61

predicts that most likely classification is Likely class ci but may occasiondy t u m out to be

C I ~ S ~ 3 .

4.3.2 Rule Antecedent

The rationde for DBPredictorYs class prediction is contained within the antecedent of its

classification rule result . The rule antecedent is structured in conjunctive normal form

(CNF) with up to m - 1 ANDed propositions. Each proposition is a true or false rnembership

test on a single attribute. Pi wiU refer to the proposition that performs a test on the ith

attribute in the dataset, Ai-
The form of the membership test for each proposition m i e s on the type of attribute it

references: symbolic, numeric or hierarchical. For symbolic attributes, the test will be an

equality test against the single value from the attribute7s domain. For example a proposition

against a " Colour" attribute could tahe the form of (Ami, = "redl1). Numeric attributes,

on the other hand, are supported with the use of a membership test within a twesided

numeric interval. The test that a value for the AwRght must be greater than or equal

to -1.5 and less than or equal to 4.5 can be represented with (Aweight€[-1.5,4.5]). For

hierarchically structured at tributes, the test is for membership for any node in the hierarchy,

such as (A5 E Carnivorous) where Carnivorms = ("meatn, " f ish").

A special null proposition on attribute i that is always Tnie is represented with the

notation Pi = (Ai = A N Y) , where A N Y represents the set of all unique values withïn

attribute Ai. B s e d on the nd i proposition, the null rule is tme for every record and

event vector from that domain. A sample antecedent with propositions against symbolic,

numerical, hierarchical attributes and a null proposition is presented below:

To conclude the discussion on rule antecedents it will be s h o m that a given event vector

will likely be covered by a large number of antecedents.

Proposition 4.1, A fully instantiated rn dimensional event vector ë can be covered by at

least 2(m-1) logicdy distinct ant ecedent S.

Proof. First map each element 6 to proposition Pi that tests for equality to this value

(Ai = 6) . Because a fully instantiated m-dimensional event vector has rn - 1 predicting

elements, the set of al1 these propositions, S, has a cardinality of m - 1 (]SI = m - 1).

Next, we create the set of al1 subsets of S (its powerset). Each of these subsets maps to

a logically distinct r d e antecedent that covers ë. Because a power set has been proven to

have a cardinality of 21'1 [8], the number of logically distinct antecedents that will cover an

m-dimensional event vector ë is 2 2m-1, as desired. O

Example 4.2. An event vector with three instantiated values ë= {v l , v~ , v3} has at least

eight rules that wiIl cover it (2 1 { ' ' ~ > ~ 2 * ~ 3 9 ? } I = z3 = 8). I f Pi t (ai = ai) these rules include:

((017 { f i) , { 5) 7 {f i) , {pl A p 2) , {pl {4 ~ 5) 7 {Pl AP3))i ~ h e r e {fl} re~resents

the nul1 d e . If the propositions are expanded beyond equality (=) tests, such as for numeric

attributes, the number of antecedents that can cover a r d e would be larger. O

4.4 DBPredictor () Algorithm

DBPredictor7s underlying search strategy is to perform a greedy top-down search through

the space of candidate d e s . Based on its input parameters, DBPredictor fkst retrieves a

starting rule with the s e e d l u l e () procedure. This rule is usually a very general rule that

covers the event vector. Next, the t op-dounsearch() procedure is initiated with the seed

rule- Finally, the rule r~turned by the search is reported. A pseudo-code version of this

algorithm is presented in Algorithm 4.1.

Input: training database D, event vector ë and class attribute description c'.
Output: d e whose antecedent covers ëand whose consequent predicts the value of Ac at

the concept hierarchy level specified in Z2.
Method:
1: r e seedzule(D, < c')
2: predictedr ¢= t op-dom-search(r, (Dl e', q)
3: ret urn(predict e d r)

The time and space complexity of DBPredictor is equident to the complexity of its two

procedures, dong with the data they exchange. The seed-rule() procedure is described in

Section 4.6 and the top-dowrrsearch() procedure is described in Section 4.7.

4.5 PSIP() Procedure

Before we proceed with the description of the seedrule() procedure, and any other proce-

dure that requires information fiom the dataset, the PSIP() procedure is presented because

it provides the interface to the dataset. The P S ï P () procedure irnplements the "pure SE"'
procedure of the SQL Interface Protocol (SIP) proposed in [NI]. In this way, we present

how DBPredictor may be tightly-coupled to a dataset supported by a relational database.

As discussed in Section 2.4.1, the tight-coupled approach has been recently shown to be sig-

f icant ly superior to a loosely-couple approach that manipulates each record individually

[2]. Also, in the near future, this procedure may be updated to use the more efficient CUBE

operator d e h e d in [31].

Given d e antecedent r a , ~ , , e ~ e n t , database D and class attribute description c', a c d to

procedure P S I P (r a n r m d m t 7 Di returns the distribution of the values in attribute A,, for

the records in D that are covered by rule antecedent rantecedat. In [40] this is achieved

with the foilowing S QL statement:

SELECT 4, f (*) F R O M D

WHERE GROUP BY 4

For DBPredictor, this statement is transformed by the PSIP () procedure into the follow-

h g SQL statement:

SELECT Ac: COUNT (*) FROM D

WHERE Tantecedent GROUP BY Ac
where A, represents the dataset column at the hierarchy level specified in E2.

An exarnple of the transformation is provided in Exarnple 4.3.

Exarnple 4.3. Assume that the P S I P () procedure receives the following arguments:

2. ID[= n = 100 records

3. Ac = Ag, with two class values (ci, c2).

The rule antecedent in this example contains three propositions, each against a symbolic,

numeric and hierarchical attributes. Null propositions are discarded. The method that each

proposition is transformed is detailed below:

1. For symbolic attributes a single membership test is required. In this example the

following test would be performed (ui = al).

2. For nuneric attributes two tests need to be performed to determine if the record's

d u e is within the range specified in the proposition. In this example the record is

tested against (uq 5 a2,,) AND (v2 2 anmi,

3. When an antecedent's proposition tests an intemal node of a concept hierarchy then

the record's value is tested against the members within this node. In this example the

following test would be performed ((q = aaa) OR (v3 = agb) OR (v3 = Q.)) .

The resulting SQL statement for th& example is:

SELECT 4, COU'm(*(.)

FROM D

A possible result of this SQL staternent is: Aq E [cl = 30, c2 = 701- This shows that 100

records were covered by rantecedent, and of these, 30 of them had value ci in attribute Aq

and the remaining 70, had value c2.

17

In the example above, each of the 100 records rnay have been tested agsinst the 3 propo-

sitions in the rule's antecedent, for a maximum of 300 proposition tests. This statement is

formalized below :

Proposition 4.2. Given a d e antecedent with i propositions and a dataset with n records,

the P S I P () procedure visits ail n records and performs 5 n x i proposition tests

Proof. To determine whether a record is covered by the antecedent of rde r', all of its i

propositions need to be tested against the record. Because there are n records in the dataset,

there will be at most n x i tests for any given call to the P S I P () procedure, as deshed. O

CHAPTER 4. DBPREDICTOR ALGORITHM

The &st task of DBPredictor is to Iocate the seed rule that will be used to initiate the

topdown search. A very general d e is required. The seeànd.e O procedure described in

Procedure 4.2 simply retunis the nuil rule by calling the P S I P () procedure to summarize

the overall distribution of the dataset's class attribute.

Procedure 4.2 sec-e O
-

ri tion tE Input: (D, ê, 3: dataset D, event vector é, and class attribute desc 'p
Output: The nul1 rule for class attribute Z.
Method:
i: r + 0 (initialize the rule)
2: r-,eq,,t e PSIP(@, D, E) {retrieve the distribution of i?)
3: return r

Proposition 4.3. Given a dataset with n records and class attribute with c values, the

worst-case time and space complexity for the s e e M e O procedure just described are

O (n) and O (c) respectively-

Proof. Rom proposition Proposition 4.2, a l n records in the dataset are visited, therefore

the procedure's time complexity is bounded by O(n) . Next, because the procedures requires

a data structure to contains a value for each of the c unique class values, the space complexity

is bounded by O(d). O

Discussion: The ë parameter is not used in the acquisition of the ndl rule. In the future,

however, it is envisaged that information about the event vector may be used to improve

the seed rule resdt.

The b& of DBPredictor's effort occurs wit hin the t op-down-sear ch () procedure- The p r e

ccdure can be said to perform a greedy topdown search through a constrained rule space.

Procedure 4.3 presents a pseudo-code description of the procedure. The t op-doaesearch (

procedure makes use of four sub-procedures. First, the generateantecedents 0 procedure

determines the set of candidate rules that are to be tested within each specialization step.

It aehieves this by retuning a set of skeleton rules that have only their antecedent portion

defined. This procedure is further described in Section 4.8. Next, for each of the rule skele-

tons, their consequent is populated by get-consequent 0. This procedure interfaces with

the database to determine which records are covered by a particular rule. The procedure

is described further in Section 4.9. Next, each rule is evaluated by the FI) heuristic. This

function is briefly reviewed in Section 4.10, but is more thoroughly presented in Chapter 6.

Once all the rules have been generated and tested, the highest-valued rule is located wit h the

bestlule () procedure2. This procedures is described further in 4.11. The recuision stops

when no more d e s can be generated, or when ail tested rules do not achieve a predictive

improvement over the parent rule.

Procedure 4.3 top-dounsearchi) pseudo-code

Input: (r, P): r is the current rule and P contains the algorithm parameters (D, ë, 3.
Output: A rule that carmot be specialized further
Method:

R + generateantecedent s Cr, P)
for al1 rule r' E R do

r&,,,, + get-consequent(rf, r, P)
rLalue = W f 7

end for

return(top-downsearch(bestrl, P))
else
return(r)

end if

*Tics are randomly resolved

CEAPTER 4. DBPREDICTOR ALGOlUTBM

generate-ant ecedents 0

One of the main steps in DBPredictorYs top-down search procedure is to generate the next

set of rules to be investigated. Proposition 4.1 showed t hat nurnber of valid antecedents may

very large- To constrain the search space, the generate-antecede~ts0 returns up to m - 1
rules each thne that it is cded . The procedure enforces tbis constraint by specializing each

one of the m - 1 propositions in the parent d e . The way that each proposition is specialized

depends on the attribute type that it references: symbolic, numeric or hierarchical.

Before describing the method used by the generat e-antecedent s O procedure to gen-

erate its set of d e s , a re-cap is provided on the requirements that these rules must meet.

First, ail rules must conform to the representation presented in Section 4.3. This includes,

for example, the c0nstra.int that each proposition Pi refer only to attribute Ai. The sec-

ond constraint on d e s is that they must cover the given event vector. This is required

so that the algorith's prediction continues to apply to the original request- Finally, a,ll

rules must be more specialized than the current rule. This requirement ensures that the

topdown search makes continuous progress. This also guarantees algorithm termiriation

because rules will logically cover a smaller of dataset records upon each specialization-

4.8.1 Proposition Specialization

A high-level presentation of how each specialization occurs is initidy presented for each

individuai attribute type. Particular attention is given to the specialization of numeric at-

tributes. This is followed by a Procedure 4.4 which describes the steps taken by generateantecedents (

in pseudo-code.

The general approach used in proposition specialization is to make use of a hierarchy

on the attribute. When attributes do not have an explicit hierarchy defined over them, an

implicit hierarchy is, in a sense, dynamicdy generated. With the presence of a hierarchy,

a proposition's test can be specialized by simply testing againçt a more specSc node in the

hierarchy. In this way a more specialized proposition is generated and only one new r d e is

proposed per proposition.

CHAPTER 4. DBPREDICTOR ALGORITKM 53

Wierarchical Attributes: The existence of an explicit concept hierarchy requires that

the proposition on this attribute be updated to point to the next node down the hierarchy

towards the value contained in the event vector, 6. If a proposition is currently testing

against Diet=herbiuores, it is simple to change the proposition to test against the more

specsc Diet=fruits, if the diet of the animal in question is ëDiet = bananas.

The 6rst specialization attempt on proposition Pi (Ai E {ANY)) will result in proposi-

tion (Ai E (Ni i)) , where Nri represents the interna1 node in the concept hierarchy on the

h s t level of the hierarchy and in the direction of ë;.. Further specialization can continue up

to and including the leaf node of the hierarchy. Given an attribute with an h-level hierarchy,

a proposition on this attribute may be specialized up to h times. C& for specialization on

a proposition that tests on a leaf node are forwmded to either the specialization of numeric

or symbolic attributes. Commonly the leafs of hierarchies on symbolic attributes already

refer to the record level data so no firther specialization would be possible-

Symbolic Attributes: When symbolic attributes do not possess an explicit concept hi-

erarchy a very simplistic implicit hierarchy is used instead. This implicit hierarchy is made

up of a root that includes al1 possible values of this attribute (A N Y) and the leaf nodes

include the d, individual symbolic values on this attribute. The fmt time a specialization is

attempted on a proposition that refers to a symbolic attribute Ai, the proposition is simply

updated from (Ai = ANY) to (Ai = e). A proposition on a symbolic attribute can there-

fore be specialized o d y one tirne. In Example 4.1, rule 7-2 was generated by specializing the

proposition (A2 = ANY) in rule ra to (A2 = a2) . After this no h t h e r specialization could

be perfomed on Pz.

Numerical Attributes: Unfortunately, the method described above for symbolic at-

tributes would result in too significant a specialization if applied to numerical attributes.

If, for example, 32 = 6.5 and the range on attribute A:! is min = 0.5 and mas = 9.0,

then generating the proposition (A2 = 6.5) would likely result in a rule that covers few,

if any, database records- One approach around this problem is to discretize all nunierical

attributes. PerforrmDg discretization directly against a relational database however, would

be time consuming. It may also require that a copy of the database be created to avoid a

negative impact on the other applications that also use the database.

To circumvent this problern, propositions on numerical attributes are set to perform a

two sided test (Ai E [c - b,g + 611, where 6 > O. The proposition in our example above may

now be set to (Ap E [6-5 - 4 6 . 5 + 4). The question now is how to determine the appropriate

5 for each proposition specialization request? DBPredictor achieves t his by making the new

6' somewhat smaller than the 6 used by its parent's proposition. The proportion of this

shrïnkage is d e h e d with an internally set fraction named nurmat i o (numerical partitioning

rat io) ,

A preprocessing s tep is required to d e t e d e the 6 for the seed rule that covers ail the records

in the dataset. After a simple scan through the dataset to locate the min, max range for

each attribute, the 6 for each proposition in the seed rule is set to the Iarger of (max - G)
and (G - min). In our example above, proposition P2 in r o is set to (A:! E 16.5 - 6,6.5 + 61).

If nurmat i0=1.5, then the e s t specialization on this proposition would set 6' to & = 4.

A defadi; value for the numratio internal parameter will be identified during the empirical

investigations reported in Chapter 7.

4.8.2 Computational Constraints

Now that the method used by the generateantecedents 0 has b e n described, some

analysis of its computational constraiats is performed. Within this section the analysis is

constrained to attributes with 1-level hierarchies, such as symbolic attributes. Later, in

Section 4.12.3, the impact of at tributes wit h general h-level hierarchies is invest igated.

Lemma 4.1. Given an event vector of symbolic values, the number of propositions in the

parent d e will increase by 1 d e r each cal1 to the top-downsearch0 procedure.

Proof. As defined, the generatemtecedent s () procedure specializes the parent d e on

only one proposition. By definition, only one successful specialization c m occur on at-

tributes with 1-level hierarchies. Therefore, each specialization step in symbolic domains

must increase the number of propositions in the parent d e by 1, as desired. Cl

Procedure 4.4 generatemtecedents () pseudo-code

Input: (r, ë, 3: r is the current rule, ë is the event vector and c' is the class attribute
description. the rem;Lining parameters are

Output: A set of rdes that are more specialized than r on or by only one proposition.
Method:

1: R * (0)
2: for al1 attributes i that are instantiated in ë do
3: Pi -+ nile r's curent proposition on attribute i
4: rt.a += r.a - Pi {antecedent of d e r' does not contain Pi)
5: P: * {0} {new proposition on attribute i)
6:

7: if Ai is "Kierarcliicaln and Pi does not test on a leaf node then
8: N ¢= curent node in hierarchy tested by Pi
9: 1.' ¢. descend Tom N down hierarchy towards 5

10: Pi r (Ai E Nt)
11:

12: else if Ai is "Symbolic" and Pi tests against ANY then
13: Pi * (Ai E {c))
14:

15: else if Ai is "Numerical" then
16: min + min(Pi) {minimum value currently tested for in Pi}
17: m a s (. max(Pi) {maximum value currently tested for in Pi)

6 + (ma-min)/2 18: n m p a r t
19: Pi' + (Ai E [t5-6,5 +dl)
20: end if
21:

22: (update R one if a valid new rule was identified)
23: if Pi' # { O) then
24: rr.a +- r'a A Pi
25: R e RUT'
26: end if
27: end for
28: return R

Example 4.4. Example 4.1 demonstrates the constra.int of Lemma 4.1. In the example,

the top-domprocedure () procedure was called agaimt the [(A2 = a2() + &] parent

rule. The generateantecedents() procedure then proceeded to generate two candidate

r& antecedents [(A2 = 0 2) A (Al = ai)], and [(A2 = as) A (.43 = as)]- Both candidate d e s

have one more proposition than the parent rule. Regardless of which d e is chosen, Lemma

4.1 will hold. Cl

CoroUary 4.1. Given an event vector of symbolic values, there are i - 1 propositions in

the parent d e during the ith c d to top-dovnsearcho .

Proof. By induction on i, if i = 1, the procedure is called with the null rule which indeed

has O propositions.

Assume that the result is true for arbitraxy i. We want to prove it for (i + 1). Consider

the d e with k propositions fiom the ith call to the procedure. By the induction hypothesis,

k = i - 1. By Lemma 4.1 each specialization step adds one proposition, so that the number

of propositions at specialization step i + 1 is at most k + 1. This is equal to (i + 1) - 1, as

desired. 0

Corollary 4.2. Given an m dimensional event vector of symbolic values, the number of

calls to the top-down_search() procedure is 5 m.

Proof. By Corollary 4.1 the parent rule at the if" specialization step has i - 1 propositions.

At the mth specialization, the parent d e has m - 1 propositions. By Lemrna 4.1 further

specialization would require an addi tional predict ing at tribute. Therefore the specializat ion

stops on the mth specialization, as desired. 0

Example 4.5. Example 4.1 demonstrates the constraints of Corollary 4.1 and Corollaq

4.2. In summary, the ith c d to the top-downsearch () procedure occurred on a rule with

i - 1 propositions. F'urthermore, the event vector with three (rn - 1 = 3) predicting symbolic

attributes (ë = [ai, a?, a3, ?]) required four calls to the top-downsearch O procedure. The

initial cal1 to the procedure was against the null d e with O propositions. The three recursive

calls (i = 2,3,4) occurred against the following parent rules: [(A2 = a2) +- 4, [(A2 =

a2) A (At = ai) -i 41, and [(A2 = a?) /\ (Ai = ai) A (A3 = a l) -t A4]. O

The recent analysis focused on the computational behaviour of the top-dovesearch O
procedure based on the knowledge of how the generateantecedents O procedure special-

izes rules. The next step of andysis presents the number of d e s that are likely to be

generated by the generat eant ecedent s () procedure at any given specialization step.

Lemma 4.2. Given an m-dimensional event vector of symbolic values and a parent d e that

contains j propositions, the generateztecedents () procedure will create 5 (m - 1) - j

sibling rule antecedents.

Proof. By induction on j, if j = O (null rule), the procedure generates a rule with one

proposition for each of the rn - 1 predicting attributes, so the total number of rules is

indeed_<(m-1) -O=m-1.

Assume that the result is true for a parent d e with arbitraq j propositions. We want

to prove it for (j + 1). Consider the k possible sibling rules generated f?om a parent rule

with j propositions. By the induction hypothesis, k 5 (m - 1) - j. By Lemma 4.1 when the

number of propositions is increased by 1 (j + 1) there is one less proposition to specialize

on. Therefore the number of siblings is k - 1. This is 5 ((m - 1) - j) - 1 = (m - 1) - (j + l),

as desired. O

Example 4.6. ExampIe 4.1 demonstrates the constra.int of Lemma 4.2. In one particular

instance &om the example, the second c d of the generate-autecedents O procedure is

called against the [(A2 = a2() + A] parent rule. Because there are three predicting

attributes (m - 1 = 3) and because the parent rule has one proposition, two ((41)-1) rule

antecedents were generated: [(A2 = a2) A (Al = al)], and [(A2 = a2) A (A3 = a3)]

This section demonstrated some basic constraïnts on DBPredictor3s rule search for symbolic

domains. This information will be used in Section 4.12 to analyze DBPredictor7s running

time complexity.

Once a set of d e antecedents has been generated, the get-consequent O procedure is

called to constnict each d e ' s consequent. For a given d e ' s antecedent (rantecedenl), the

procedure returns a summary of the values for the class attribute (A,) for all the records in

dataset D that are covered by this antecedent3. To show how this task c m be achieved in

a tightly-coupled way, the procedure, presented in Procedure 4.5, will simpIy make use of

the PSIP() procedure. R e c d that P S I P () achieves its task by testing every record in the

dataset against every proposition in r'.

Procedure 4.5 P S I P based get-consequent O
Input: (TI, r, D, E): T' is the d e under investigation, r is the parent d e , D is the dataset

and ë is the class attribute description.
Output: The consequent of rule r' based on the records that r' covers in dataset D.
Method:
1: ~knsepuent + ~-S*P(r',teceaenty D7 ')
2: return r'

4.10 F() Heuristic Function

Once a candidate d e had been generated within a specialization step, its predictiveness

may be estimated with the heuristic function, F(). Since Chapter 6 is dedicated to the

investigation of possible heuristic hnct ions for DBPredictor, for now we assume the existence

of a function F(r J ,s) that retums a numeric value for a rde under investigation (r') and

its parent d e (r). The ~ (r ' , r) function is used by DBPredictor to estimate the predictive

value of specializing kom parent rule r to sibluig rule r'. A rule ri is taken to be more

predictive than d e ri if P(T~,T) > ~ (r i , r) .

3Note that the procedure also receives the mie's parent, r. This parameter however, is reserved for use
by the time efficient version of the procedure described in Section 5.2.

C m T E R 4. DBPREDICTOR ALGORITKM

4.11 b e s t l u l e () Sub-Procedure

Once all the candidate niles have been generated and tested within a specialization step, the

bestn.de O procedure is cded to select the parent d e for the next specialization step.

The current version of the procedure greedily selects the rule that achieved the highest

heuristic value greater than zero. When a tie occurs, a random selection fkom among the

tied rules is perforrned.

As described, this procedure requires minimal computation. In future versions, a more

refined selection criteria may be performed from among the "top" candidate rules. In

LazyDT [29], for example, a one-level lookahead is perforrned on al1 nodes that have attained

heuristic values within 90% of highest ranked node. Because current research has not faund

lookahead to be generally beneficial [52], the bes t lu le () will continue to act greedily-

4.12 Complexity Analysis

Now that the description of the DBPredictor has been completed, this section analyzes its

worst-case running time and space cornplexity- This analysis is based in large part on the

computational constraints of the individual procedures already presented in previous lemmas

and propositions. In silmmary, the algorithm is shown to have, in the presence of symbolic

attributes, a running tirne complexity bounded by O (nm3) and a space complexity bounded

by 0(m2), where n is the number of records and rn is the number of attributes. Finally, in

the presence of numerical attributes or concept hieratchies, the running time complexity is

shown to be linearly dependent on the depth h of the longest explicit or implicit hierarchy.

4.12.1 Running Time Complexity

As Algorithm 4.1 shows the time complexity of DBPredictor is composed of the the seedn.de O
and top-downsearch0 procedures. Proposition 4.3 demonstrated, the seed-e() proce-

dure is bounded by O(n)- For the top-douxisearch() procedure three Lemmas have been

presented for symbolic domains. Corollary 4.2 dernonstrated that the number of recursive

c d s to the top-downsearch() procedure is bounded by m. Lemma 4.2 demonstrated that

during each of these calls the number of rules generated, is bounded by (m - 1) - i, where i

is the number of propositions in the parent rule. Finally, Proposition 4.2 demonstrated that

the number of proposition tests is bounded by the n x i. Figure 4.1 presents a high-level

synthesis of these results.

Figure 4.1: Graphical representation of the 0(nm3h) running time complexity for the space
efficient version of DBPredictor, where n is the number of records, m is the number of
attributes, and h is the height of the longest concept hierarchy on these attributes. The
tallest loop represents the 5 mh number of specialization steps of the top-dom~çeatch()
procedure. The second loop represents the 5 rn number of d e s generated by the
generat eatecedent s (1 procedure at each specialization step. The t hird loop represents
how the get-consequents() procedure tests each of the up to n dataset records against the
m propositions within each d e .

Theorem 4.1. Given a fully instantiated in-dimensional event vector of symbolic attributes

and a dataset with n records, the top-dovesearch() procedure wili test 5 nrn(rn+l)(m+2)
6

propositions.

1. By Corollaq 4.2, the topdown-procedure (1 is recursively called up to m times.

2. By Corollary 4.1, the ith c d to the top-dom-procedure () is on a parent rule with

i - 1 propositions.

3. By Lemma 4.2, the generate-antecedents () procedure returns m - i sibling rules

for a parent d e with i - 1 propositions.

4. By Proposition 4.2, each call to the getzonsequent() procedure, requires n x i propo-

sition tests for each rule with i propositions.

This is summarked by: CEl (m - i)n i

Example 4.7. Example 4.1 demonstrates the constraint of Theorem 4.1. In sumniary, the

example involves four (m = 4) attributes, a dataset with n=100 records, and event vector -.
e = [al, a2, as, ?]. Thus we would expect 100(4-1)(4)(4+L) = 1,000 proposition tests. In fact , 6

six distinct rules with a cumulative total of 10 propositions were generated and tested. The

table below summarize the number of proposition tests required to determine the cover of

each rule:

Propositions

1

SUM 1 10

Tests

l(100)

l(100)

l(100)

2 (100)

2(100)

3(100)

1,000

CoroUary 4.3. In symbolic domains, DBPredictorys running t h e complexïty is bounded

by o (~ ~ ~)

Proof. By Theorem 4.1, DBPredictor tests up to n(m - l)rn(rn + 1)/6 propositions. Since

n(m - l)m(m + 1)/6 5 mm3, for some constant c > 0, the worst case ninning t h e

complexity of DBPredictor is bounded by 0(nm3), as desired. O

Discussion

Each of the 5 n(m - l)m(m + 1)/6 d e s require that their predictive value be estimated

by the F() heuristic function. Beyond some constant overhead, this calculation is bounded

by the width of the class probability distribution vectors (c). If there are two classes (e-g.

tnie/false) the calculation of functions will require a set of calculations for each of the two

classes. The complexity of calculating the evaluation function however, is commonly omitted

in classifxation research and is therefore omitted from any further reporting here as well.

Findy, in database envirunments it may be of interest to separate the number of

database calls from the running time complexity. Informally, DBPredictor, rnakes a number

of database calls bounded by 0(m2), and each of these calls involves a query of O(nm)

complexity-

4.12.2 Space complexity

Assuming that the space taken up by the dataset is not included, DBPredictor's space

complexity is briefly anaiyzed to be bounded by 0(m2). The main data structures created

within each specialization step contain the information about the generated sibling d e s .

Once the highest valued rule is discovered the other rules, including the parent rule, are

discarded. By Corollary 4.1, we know that the step with the largest number of sibling rules

is the fkst step, with rn - I rules. Assuming that each of these rules allocates spzce for

each of the at most m possible propositions, the space complexity for this version of the

algorit hm is bounded by O (rn2).

4.12.3 Running Time Complexity with h-level Hierarchies

The computational analysis to date has assumed the presence of only 1-level hierarchy

attributes, such as symbolic attributes. When general h-level concept hierarchies are used

the complexity increases linearly with the maximum depth h of the explicit or implicit

hierarchies contained in the dataset. In the case of numerical attributes, h has been noted

to be < i ~ g ~ - ~ ~ ~ (N) -

Lemma 4.1 demonstrated that for attributes with 1-level hierclrchies, each specializa-

tion step increased the rumber of propositions in the parent rde by 1. When attributes

have h-level hierarchies, h specialization steps are now required to increase the number of

propositions in the parent rule by 1. Because of this, instead of n calls, it wiil now require

nh c a s to the top-dowruearch0 procedure, before aU the propositions in the parent d e

can no longer be specialized- Therefore, the running time complexity of the algorithm is

now bounded by 0(nm3h). Finally, since the number of d e s that are generated within

each specialization step is unchanged, the algorithru's space complexity remains bounded

by 0(n2) in the presence of attributes with h-level hierarchies.

4.13 Discussion

The search algorichm described in this chapter contains t hree e&ancement s over previous

proposais. One enhancement is the approach to numerical at tributes, implemented wit hin

the generate-antecedents0 procedure. This technique 5ees the algorithm fiom the space

and effort required to discretize a dataset with numerical attributes. The algorithm may

now also be used directly against a relational database. Another possible advantage to this

approach is that the cuts generated for numeric attributes are custornïzed to the event in

hand. This may produce a more accurate result. The validation of this technique is left to

experimental study of accuracy in Chap ter 7.

The two other enhancements proposed in this chapter are the tightly-coupled SQL sup-

port and concept hierarchy support. These two updates also help to expand the ability of

the algorithm to operate against more domains. These two approaches proved d3Ecult to

validate. First, few classification algorithm currently have tightly-coupled implementations.

Second, few benchmark datasets cont ain attribut es wit h concept hierarchies. Findy, few

classification algorit hms current Iy support concept hierarchies.

4.14 Chapter Summary

This chapter presented the core of the search algorithm used by the DBPredictor algo-

rithm to locate a classification rule. M e r a brief example of the algorithm's operation,

the alg~rithm's input requirements and IF-THW rule based representation were reviewed.

DBPredictor performs a greedy topdown search through the space of candidate rules. The

algorithm k t composes a high-level a seed rule and then calls the topdown search proce-

dure. This procedure generates and tests several candidate d e s and recursively calls itself

on the greedily selected d e . The heuristic f'nction F() determines the predictive value of

each rule. This function, is described in more detail in Chapter 6. The algorithm's presenta-

tiou concluded wit h a demonstration of the algorithm's O (nm3 h) running time complexity,

and O (m2) space complexity, for tasks with n records, rn attributes and h-level hierarchy

attributes.

Chapter 5

Time Efficient Search Algorit hm

This chapter presents an alternate version of DBPredictor7s search technique t hat achieves

a lower time complexity than the search technique proposed in Chapter 4, but it does this

at the expense of a higher space complexity. Because of this compromise this chapter is said

to present the time efficient version of DBPredictor (DBPredi~tor~) , wMe the algorithm

presented in the previous chapter is referred to as the space efficient version (DBPredictors).

The search technique presented in this chapter is more in-line with the current data mining

and machine learning algonthms t hat assume unfettered access to a memory-based datase t

array. The time efficient version of the algorithm was developed for two reasons. It allowed

for faster testing of DBPredictorYs accuracy, and it allowed for a fairer empirical running

tirne cornparisons between DBPredictor and the C4.5 and Il3 1 a l g o r i t h .

To achieve its lower running time complexity, DBPredictorT maintains a list of the

records that are covered by each rule. The existence of this list however, minimizes the

running time complexity in two ways. The number of records that are tested decrease after

each specialization. Only one proposition test is required to determine whether a record is

covered by a d e . As will be shown in a latter section, this update increases the algorithm's

space cornplexity f?om O (m2) to O (m2 + nm) , but lowers the running t ime complexity fÏom

0 (nm3 h) to O (nm2 h) .
For DBPredictorT to create, use and release the new list records, three procedures re-

quire updates. They are presented within this chapter. Section 5.1 presents the updated

seedrule 0 procedure. Section 5.2 presents the update get-consequent s O procedure.

Section 5.3 presents the updated topzuïe () procedure. Al1 other procedures remain as

stated in the previous chapter- Section 5.4 concludes the chapter with a brief cornplexity

ALGORITHM

analysis of the new search technique.

5.1 Updated seedxule O Procedure

The first procedure that requires modification to support the time efficient version of the

DBPredictor algonthm is the seed-rufeo procedure. R e c d that this procedure returns

the consequent of the nuli rule by summarizing the overd distribution of the dataset's class

attribute. The updated procedure attaches the list of records that are covered by the rule-

Because the n d rule covers dl the records in the dataset, the list simply points to all the

records in the dataset. Procedure 5.1 modifies a non-SP implementation of Procedure 4.2,

with the addition of line item 5.

Procedure 5.1 s e e M e r O pseudo-code

Input: (D, e', 4: training database D, event vector ë, and class attribute description c'.
Output: The null d e for class attribute A, (including d e cover)
Method:
1: r e 0 {initialize the nile}
2: for all recordi E D do
3: class + recor&[A,] (set to the class value of this record)
4: rcmsepuent [class] + r m s e t p r n t [dass] + 1
5: + rWer U@ointer)recmdi {append the pointer to this record)
6: end for
7: return r

The addition of line (5 .) should increases the procedure's effort by a constant factor

and increase the space requirements by the number of records in the dataset. If the dataset

were to contain n = 100 records, the nul1 rule will now also contain a list of 100 record

pointers. The riinning time complexity of the procedure remains bounded by O(n) while

the space complexity increases £rom O(c) to O (n + c) , where c is the number of classes.

5.2 Updated get -consequent 0 Procedure

The second procedure that requires modification to support the time efficient search is the

get-consequent 0 procedure. In fact, al1 the saved effort occurs within this procedure.

Recall that a c d to get-consequent(r', r, D; ë) creates the consequent for rule r' based on

the records it covers fiom dataset D. The space efficient version of the procedure (Section

CEtAPTER 5. TLME EFFICmNT SEARCH ALGORITHM 67

4.9) achieved this task by testing every record in the dataset against every proposition in

the d e ' s antecedent. Because a list is now kept of all the records that are covered by the

parent rule r , the new procedure can exploit the fact that a sibling rule's cover is a subset

of its pârents- The procedure can now be optimized in two ways. First, the procedure only

needs to test against the records that are covered by the parent rule rather than against

every record in the dataset. Second, since the parent and sibling rules differ on only one

proposition, the procedure only needs to test against t his one proposition to determine if a

record that is covered by the parent rule, is &O covered by the sibling rule. The updated

algorithm of the procedure, labeled with a suffixed (get-consequentT()), is described in

Procedure 5.2. An example and arialysis of the procedure is also presented.

The procedure is no longer presented in SQL format. This procedure may stiU be

tightly-coupled with a relational database, however, this would require the ability to create

temporaq tables to hold the list of records covered by each rule and wodd also require that

the dataset have an attribute that uniquely identifies each records (Le. a key attribute).

Procedure 5.2 net-conseauents~ O pseudecode

Input: (r', r, D, Z) : r' is the d e under investigation, r is the parent rule , D is the dataset
and ë is the class attribute description.

Output: Rule r' with an updated consequent and cover.
Method:
1: Pi + rintecednil - 'rantecederrt {ide&% the changed proposition)
2: for aU r e m & E r-,, do
3: {test the record against the changed proposition)
4: if Pi is t rueforrewr& then
5: {update the consequent based on the class of this record)
6: dass -e recor&[AC]
7: ~ ~ m s e q u n i t [~ ~ s s I * rionsequent [c ~ ~ s s I f 1
8:
9: {update this d e ' s cover to point to this record)
10: r,, -+ ré,, U (pointer)recordi
11: end if
12: end for
13: return r'

Example 5.1. Assume that the get,consequentT() procedure was called with the follow-

h g information:

3. r-cover = 100 records

4. n = 1000 records

The procedure commences by isolating the proposition that has changed in the sibling

rule and assigning it to Pi. In this example the changed proposition Pi is r' - r = P2 =

(A2e[a2,,, a2,,]). With this information, the procedure tests each of the 100 records

covered by the parent nile r. Assume the k s t such record to be tested is recordi =

D [r,,, [l]] = [vi ,712, vg, v4]. This record is tested against proposition P2. In this example

the test would be [(va 5 asmor) AND (un 2 ~ ~ ~ ~ ~) ? b If this test succeeds then the consequent

and cover of the sibling rule is updated accordingly. The remaining 99 records in the cover

of T will proceed through this process.

A total of 100 x 1 proposition tests would be performed by this procedure. This value

is siflcantly than the up to 3,000 (5 1000 x 3) proposition tests that would be performed

by the space efficient version of the getsonsequents() procedure. O

By Proposition 4.2, the former get-consequent() procedure performed up to m proposi-

tion tests for each record in the parent rule's cover. The updated procedure performs only

one proposition test for each record. Formally this may be expressed as:

Proposition 5.1. Given a parent rule r with a cover of n' records, the get -consequentr ()

procedure performs n' proposition tests.

Proof. There is only one loop in the procedure that cycles through each of the n' records

in the cover of r. Because o d y one proposition test is performed per record the procedures

performs n' x 1 proposition tests, as desired. O

CNAPTER 5- TLME EFFICIENT SE:ARCH ALGORITHM

5.3 Updated b e s t r u l e O Procedure

The ha1 procedure that is updated to complete the definition of the time efficient version

of the DBPredictor dgorithm, is the b e s t m e O procedure. RecaU that this procedure

greedily decides which of the candidate d e s will become the next parent rule. During this

procedure, an opportunity exists to fiee most of the space taken up by the List of d e covers.

Once the new parent rule has been selected, the space taken up by all the other d e s may

be keed. The following analysis describes the space complexity within each specialization

step.

Lemma 5.1. Given an m-dimensional symbolic event vector and dataset with n records,

the top-dovesearchr () proccdure requires space for up to 5 n(m - i) record pointers on

its ith c d .

Proof. By Corollary 4.1, the parent rule of the ith cal1 to the top-dounsearchO procedure

contains i - 1 propositions. By Lemma 4.2, when the parent rule contains i - 1 propositions

the generat e-ant ecedent s () procedure creates 5 (rn - i) d e antecedents. Therefore, on

the ith c d there will be (m -i) rule antecedents. Since each d e rnay contain a cover of 5 n
record pointers, the ith step requires space for 5 n(m - i) record pointers, as desired. O

5 -4 Complexity Analysis

This section analyzes the running time and space complexity of the time efficient DBPre-

dictor algorithm proposed above. This andysis is based in large part on the cornple-xîty

analysis of the individual procedures already presented in previous lemmas and proposi-

tions. In summary, the algorithm is shown to have a riinning time complexity of 0(nm2 h)

and a space complexity of 0(nm+m2), for tasks with n records, m attributes and attributes

with h-level hierarchies. Figure 5.1 presents a graphical representation of the algorit hm's

running t h e complexity.

CHAPTER 5. TLME EFFICIENT SEARCH ALGORITHM

Figure 5.1: Graphical representation of the 0(nm2h) ninning time complexity for the
time escient version of DBPredictor, where n is the number of records, m is the num-
ber of attributes, and h is the height of the longest concept hierarchy on these at-
tributes. The tallest loop represents the 5 mh recursive c d s to the top-downsearch0
procedure. The second loop represents the 5 rn number of d e s generated by the
generat e m t e cedent s (procedure at each specialization step. The t hird loop represents
how the updated get-consequents~0 procedure tests each of the up to n dataset records
against the one changed proposition in the new d e .

5.4.1 Running Time Complexity

To discover the updated algorithm's running time complexity, a theorem is offered on the

new number of proposition tests for the algorith. Based on this result, the upper bound

of the algorithm's running time complexity is presented.

Theorem 5.1. Given a fully instantiated m-dimensional event vector of symbolic at tributes

and a dataset with n records the updated topdounsearchO procedure will test 5 nm2

propositions.

1. By CoroUary 4.2, the top-dom-procedure () is recursively called up to m times.

2. By Corollary 4.1, the ith c d to the topdoveprocedure() is on a parent r d e with

i - 1 propositions.

3. By Lemma 4.2, the generatemtecedents O procedure returns m - i sibling d e s

for a parent rule with i - 1 propositions.

4. By Proposition 5.1, each call to the updated get -consequentT() procedure requires

n - i proposition tests for each rule with i propositions.

This is summarized by: CEl (m - i) (n - i)

2m2 - (m2 + rn) (2m + 1) - 3m
+m(m + 1)

6

Because the positive portion of the result, n* is Less than nm2, the top-do-earch(1

seareh procedure will test 5 nm2 propositions, as desired. O

Corollary 5.1. In symbolic domains, the running time complexity of DBPredictorT is

bounded by 0(nm2)

Proof. By Theorem 5.1, DBPredictor tests fewer than nm2 propositions. Since nm2 5
mm2, for some constant c > 0, the worst case running time complexity of DBPredictorr is

bounded by 0(nm2), as desirecl. O

CHAPTER 5. T m EFFIC2ENT SEARCH ALGORITHM 72

As with the presentation in Section 4.12.3 of the running time complexity with h-level

hierarchies for the DBPredictors algorithm, when attributes have h-level hierarchies, h

specialization steps are now be required to increase the number of propositions in the parent

rule by 1. Therefore, the running time complexiw of the algorithm is now bounded by

O (nrn2 h) .

5.4.2 Space Complexity

The space complexity for this version of the algorithm is briefiy analyzed to be bounded by

O(nm + m2).

Theorem 5.2. Given an rn-dimensional symbolic event vector and dataset with n records,

the largest number of record pointers required within a call to the top-down_seamzhO

procedure is 5 n(m - 1).

Proof. The smallest value for i is 1 (the call with the n d d e) . By Lernma 5.1 the ith

specialization step generates (m - 1) rules each of which may have covers of size 5 n. This

would require storing 5 n(m - 1) record pointers, as desired.

Due to Theorem 5.2, the space cornplexity of the time efficient version of the algorithm, is

partially bounded by O(nm). Because each of the up to m rules at each specialization step

continue to allocate space for the 5 m propositions, the upper bound on the space required

by DBPredictorT changes £rom 0(m2) to O(nm + m2).

5.5 Chapter Summary

This chapter presented an alternate version to the search algorithm proposed in the previ-

ous chapter. The version within this chapter, DBPredictorT, reduces the algorithm's t h e

complexity by keeping the List of records that each rde covers. This approach reduces the

algorithms time complexity from 0(nm3 h) to 0(nm2 h) , but increases the space complexity

fiom 0(m2) to O(nm + m2).

Chapter 6

Heurist ic Funct ions

DBPredictor performs a greedy topdown search through a constrained rule space, to locate

a d e that predicts the class of event ë- This chapter completes the algorithm's description

by presenting the heuristic function, F () , that is used to navigate the d e space. If function

F() determines that rde ri is a better candidate of specialization than d e ri;., then it W U

return numerical values, such that ~ (r , ! , r) > F(r$ r) , where r is the parent d e to both T:

and ri.
Three enhancements to the heurist ic funct ion are presented in t his chap ter:

The parent-child approach, implicitly proposed by LazyDT, is explicitly invest igated

so that its utility may be empiricdy evaiuated in Chapter 7.

A simple pruning mechanism is integrated to mitigate against overfitting, and therefore

improve accuracy.

Three different base measures are demonstrated to help locate an accurate version of

the fimction-

6.1 Information Available to F()

Before proceeding with a detailed description of the several versions of F() that will be

proposed in this chapter, the information that is available for a measure to make a heuristic

selection is presented. Recall that two parameters are passed to F(rf, r) : the current rule

r and its proposed specialization r'. Rom these two parameters, the proposed heuristic

measures may make use of five derived pieces of information:

1. 2: cpd.' vector for the consequent of rule r'

2. r': cpd. vector for the consequent of rule r

*
3. r',: cpd. vector for the records covered by r but not covered by r'.

4. p': proportion of the records covered by r that are &O covered by r'.

5. p:: proportion of the records covered by r that are not covered by r'.

The foUowing example presents the derivation of each of the five pieces of information

for a specific c d to F(). This example will also be used in the detailed descriptions of the

different versions of F().

Example 6.1. This example is based on the c d to F(rz,ro) in Example 4.1. Recall the

contents of the two rules:

From these two rules the class probability distribution uectors for each d e consequent may

be derived by dividing each class siimmary by the cover of each rule.

A class probability distribution vector Z is constrained by

where ai is the value of the ith element and c is the number of distinct classes in Ac.

The third piece of information to be derived, is the class distribution of the records

covered by parent rule r but which are not covered by d e r'. These records represent the

records covered by the complement rule ré whidi negates the proposition which ri speciahed

on. The complement d e for our example above is:

'class probability distribution

Figure 6.1: Graphical presentation of the information available to the difFerent versions of
F(), to evduate the predictive value of specializing from rule ro to rule r 2 , in Example 4.1.

The final items of interest are the proportions of records covered by the parent d e that

are covered by both sibling d e s : r', TL. These proportions will be referred to as p: and p:,.

For o u example the following values would apply:

Figure 6.1 summazizes the information available for F(r2, ra) .

6.2 Sibling-Sibling versus Parent-Child

The standard approach to heuristic function calculation in topdown induction is to deter-

mine the difference between the class probability distribution vector of the two sibling rules:

rf,r: [52, 571. In our example above this is the difference between r: and its complement

vector 6,. This approach will be referred to as siblàng-sibling functions. A variation to this

approach, informally presented for LazyDT, is to evaluate the difference between the parent

d e r and the sibling rule that applies to the event vector, r'. In the case of our example,

this is represented by the clifference between r'j and r?. This approach will be referred to as

parent-child functions.

One possible intuition for the use of the parent-child variation, is that a large clifference

Figure 6.2: Graphical presentation of the dinerences between class probability distribution
vectors. The figure on the left represents the information for F(r2, ro) already presented in
Figure 6.1. The figure to the right represents the information that would be generated for
F(rl, r o) Each dimension represents the proportion arnong the two class values. The line
drawn diagondy belmeen (1,O) and (0,1) is a reminder that the components of each vector
add up to 1 (100%).

between siblings May still occur even though the parent and child vectors may be rat her sim-

ilar. Figure 6.2 graphically presents this situation by comparing the calculation of ~ (r * , ro)

and F(ri, ro). Because the sibling-sibling differences for these two distributions are identi-

cal, the c d to F(rz, ro) will return a value equal to F(ri, ro), if F() measures sibling-sibling

differences. However, if F() measures parent-child differences, F(r2, rO) will be greater than

Fb-1, TOI.

6.3 Sibling-Sibling F()

The approach used by eager top-down induction algorithms to calculate F(), is to measure

the dinerence between siblings. This approach has been extensively researched for t o p

down induction of decision trees [57, 91. The sibling-sibling versions of F(), based on the

entropy(), ORT() and DI() measures, are reviewed below along with sample results.

6.3.1 Average Impurity entrop y()

The entropy function i(), which is based on information theory, is commody used to base

decisions on which path to follow [57, 651.

CHAPTER 6. ITEXIWSTIC FUNCTIONS 78

This function measures the impmity of a class probabiliw distribution vector. If the class

probabilities are evenly distributed among the c class values, the vector is r e k e d to as

impure. If the distribution is skewed to a single cclass, and therefore makes a very clear

prediction, the vector is referred to as pure. The entropy for the three class probability

vectors in Example 6.1 are:

i(r:) = i(r5) because their class probability distributions have the same proportions, and

the order does not impact the measure.

The sibling-sibling heuristic based on this mesure, evaluates the average purity (in-

formation) gain for the sibling vectors, Ai(). The more the sibling vectors make clearer

predictions than the parent rule, the higher the value it gives to a specialization step. This

heuristic will be informally referred to as entropy(). For our example, the information gain

is deterrnined by subtracting the average entropy of the sibling d e s from the entropy of

the parent rule:

If no other tests achieves an information gain that is greater than or equal to this value of

0.13 bits then this test will be selected.

Another measure previously used as a heuristic to guide hypothesis construction is the

angle between class probability distribution vectors [26]. Rather than determine the angle

however, the ORT() Function 6.4, subéracts 1.0 from the cosine of the angle 0 between the

two vectors.

ORT(d, 6) = 1 - cos %(a, 6) (6-4)

The reason that the cosine function is selected over the angle 0 between two vectors is likely

because of the simple computation of this function based on the uiner (dot) produd2 à o ,8
and each vector's Euclidean distance3 II 61).

Also, by subtracting 1, the b o n d s of this formula are [0,1], where 1 represents the greatest

sepaxation (orthogonality) between two class distribution vectors and O the lest .

For Example 6.1, O RT(6, &) , results in:

6.3.3 Normalized Geometric Distance DI,()

An alternative to measuring the angle between two class probability distribut ion vectors, is

to measure the geometric distance between them, DI(G, B). This measure is a component of

the measure used by the InferRule decision tree algorithm [67]. The range for this function,

however is demonstrated to be [O, fi]. For DBPredictor, the DI , () function is proposed

which normdizes the range to [O, 11, to behave similady to the ORTO class separation mea-

sure.

The F&w Distance Measure: DI()

The Euciidean distance of two class probability distribution vectors G, @ is:

For Example 6-1, a c d to DI(F2, F2=), results in:

This distance can be visuaUy validated against Figure 6 -2.

The Range of DI()

To compose the DIn() function, the range for DI() is now investigated.

Proposition 6.1. Given two class probability distribution vectors (G, @) the minimum

value of DI(oI',@) is O

Proof. The minimum distance occurs when the two vectors are identical- When the two

vectors are identical their distance is O, as desired. CI

Proposition 6.2. Given two class probability distribution vectors G, B, the maz(DI(G, f i)) =

&

Proof. First we show that for any c there is always be d,B such that DI(G, ,@ = fi. Then

we show that that the measure can be no greater than fi.

1. In a two (c=2) dimensional problem, a distance of & is achieved with 6 = [l, O] and

a = [O, 11. If we extend this example into n dimensions so that each new dimension

contains the value O the function will continue to be equal to fi Thus there is always

an instance in which DI(& f i = 4.

2. The definition for D I () (6.6) can be expanded to 6.7. We will show t hat that the two

positive terms in the expansion (Cz=l CI: and x:.l #) must each be 5 1. Recall that

by the constraints on class probability distribution vectors, ai 5 1 and thus a: 5 ûi-
Further, CF=l ai = 1 and thus Cg, ai2 5 1.

Because the third term is the expansion can only subtract fiom the total, we assume

that it is minirnized to O. Thus the expansion must be 5 5 &!

To summarize, D I (6 , B) 5 fi and regardless of the number of dimensions (c) there is

always a combination in which DI(G, ,@ = fi. Thus rnaz(D I(6, B)) = fi, as desired. Ci

The Normalized Distance Measure: DI,()

Given the range of [O, fi] for DI() , the DI,() distance function is composed by a simple

transformation.

This transformation will facilitate the interchange of D In () within an algorit hm t hat already

makes use of the ORTO measure. For Example 6.1, a call to DIn(F2, F2J, results in:

6.4 Parent-Child F()

Eager topdown classifiers must test for sibling-sibling differences because they do not know

which path a particular event will take. In lazy model-based induction, however, the use

of the complement d e ré to estirnate a specialization step7s predictive value appears to

be artificial. It may instead be more vaüd to focus attention on the different between the

consequents of the parent rule and the sibling d e that applies to ë. In Example 6.1, this

is the difFerence between Fo and F2. The use of this variation is implicitly proposed for the

LazyDT classifier [29] with the use of the entropy() measure (see Section 6.4.1 below). To

test the validity of this approach, this section explicitly presents the parent-child variation

for the t hree base mesures already presented for the sibling-sibling definit ions of F() . These

updated functions will be represented with a subscripted + symbol. In the next section the

entrapy+(), O=() and DI+() are described. These two final variations have not been

presented before but they are simply based respectively on the angle and distance between

the class probability distributions of r and r f .

6.4.1 entropy,. () Variation

As proposed for L a y D T [29], the parent-child variation of the entropy based b c t i o n Ai+ (),

subtracts the entropy i() of the parent r d e from the entropy of the child d e . Informally,

this function will be referred to as entropy+() -

ai+ (a, = - i(B) (6-9)

Unfortunately, as documented in [29], this simplistic approach leads to problems. Our

example highlights this problem because the entropy measures of both parent and child

distributions are equal and cancel themsehes out.

Ai+ (6, F2 1 = i(Fo) - i (~ ~)

= 0.88 - 0.88 = O

To overcome this problem the distribution of ro is flattened (made impure) and the distri-

bution of r 2 is updated accordingly. This normalization process is not described in detail in

[BI. We assume the following process for parent

Z+ + Vi[ai+] =

p+ + fi@+] =

rule a! and child rule P:

l/c
d

When applied to Example 6.1, ro and r2 are updated to:

Now rather than canceling itself out, entrqpy+() achieves a positive value

A + (+ r) i ([0.5,0.5]) - i([O.84,O.l6])

N 1 - 0.63 = 0.37

6.4.2 ORT+() Variation

The parent-child variation of the ORT() based function, simply measures the angle between

the class probability distribution of the parent rule and the child d e . For parent and child

class distributions à,

ORT+(G,B) = 1 - C O S B (~ , ~) (6.10)

For Example 6.1, a c d to ORT+(ro, r2), resdts in:

6.4.3 DI+() Variation

The parent-child variation of the DI() based heuristic fullction, simply measures the ge*

metric distance between the class probability distribution of the parent rule and the child

d e . For parent and child class distributions oi', a

For Example 6.1, the Euclidean distance between r o and 7-2 is

To normalize the DI+ () function, the DInc () divides the result by

A general characteristic to induction algorithms in real-world domains, is t heir at temp t

to fit the noise in the dataset into their model rather than hding the true model. This

phenornenon is often referred to as LLoverfitting" (or overspecialization) [18, 681. A common

method to counteract ovel-fitting, is the addition of various penalty terrns to the heuristic

function, sometimes referred to as "pruning" criteria. Because DBPredictor is found to be

vulnerable to overfitting in Chapter 7, a simple pnining mechanism is proposed to initiate

the investigation in this area.

This section proposes two additional criteria for the heuristic function F() that may help

to avoid basing prediction on unreliable d e s and that will avoid searching uninteresthg

terrain. This approach is simila to the use of pre-pruning (also known as stopsplitting rules)

used in top-down induction of decision trees 152, 58, 671. SpecScally, further specialization

will be restricted to rules that match a minimum number of instances in the dataset, and

to rules that achieve a minimum heuristic function F() value. To achieve this? two internal

parameters are integrated into F(): min-cover and mi~value . The addition of these two

tests will increase the running time compfexity by a constant. However, because these

additions stop specialization from proceeding, some effort is saved on average. Informal

investigation has shown that the increased running time due to the updates is generdy

negated by the shortening of the search space. Values for these two interna1 parameters will

be investigated in the empirical studies of Chapter 7.

6.5.1 min-cover threshold

The minimum rule cover theshold parameter (min-cover) describes the smallest number of

records that a rule must cover. The intuition behind this update is to reject rules based on

too few instances as sensitive to noise and therefore weliable. This parameter must have

a value within the range of [1, ml. At a setting of 5, for example, each specialization step

will determine whether the cover of the proposed rule r' is 3 5. If rule r' does not achieve

this threshold its evaluation will be set to zero by F().

Ir:,,, 1 < minsov -i F (r', r) = O

6 -5.2 min-value threshold

The minimum heuristic function value threshold parameter (min-value) describes the s m d -

est heuristic function value that a rule must achieve. The intuition behind this update is

to terminate a specialization path if it does not make significant progress. This parameter

must have a value that is greater than or equal to O (no pruning) and less than or equal to 1

(complete pruning). At a setting of 0.10, for example, each specialization step must attain

a heuristic value > 0.10. If this is not the case, then the value assigned to the specialization

is set 0.

6.6 Chapter Summary

T-his chapter presents the definition of the heuristic function F() that is used by DBPredictor

to navigate the rule space. Three enhancements are proposed to the function. First, the

parent-child cdculation method, implicitly used by LazyDT, is explicitly described. The

focus on the clifference between parent and child class distribution vectors rnay prove to be

more accurate. Second, a simple pruning mechanism is integrated into F(). In other top-

d o m induction algorithms, the use of pruning haç helped to mitigate against overâtting.

Finally, three base measures are implemented for the function. With this level of option

and variety, a more accurate measure may appear. Part of the scope in the next chapter,

is an empirical assessment of which version of F() achieves good accuracy. Subgoals to this

assessment are to determine whether the parent-child variation resdts in superior accuracy

and whet her simple pruning mitigates against overfitt ing.

Chapter 7

Empirical Study of Accuracy

This chapter presents the results of an empirical study into DBPredictor's accuracy. The

main question addressed within the study was DBPredictorYs suitability for on-line classifi-

cation tasks, with respect to accuracy. Because these tasks have a prevalence of irrelevant

at tributes and underspecified events, DBPredictorYs relative performance wit hin these types

of domains was of key importance. In summary, these tests show that while IBl's accu-

racy degraded in the presence of irrelevant attributes and C4.5'~ accuracy degraded with

underspecified events, DBPredictor tied for the top position under both tests. This result

presents evidence that the algorit hm is particularly suited to on-iine classification tasks.

A few other secondary questions are addressed within this study to better understand

the response of DBPredictorys accuracy with respect to

overspecializatioo

e parent-child versus sibling-sibling calculation

different base measures: entropy (), ORT(), DI,()

O numericd attribute handbg

The chapter is organized into three sections. Section 7.1 presents the methodology used

within the study to validate statements of accuracy. Section 7.2 reports the studies used to

locate an accurate version of DBPredictor. Within this section the role pruning, parent-child

and different base rneasures in F() are investigated. Once a relatively accurate version of

DBPredictor was identified, Section 7.3 reports DBPredictorYs relative performance, when

compared to the Il31 and C4-5 algorithms. Within this section the role of overspecialization

and numerical attribute handling are also invest igated.

7.1 Met ho dology

This section describes the methodology that was used to support the hypothesis that a par-

ticuiar classification algorithm was more accurate t han another. While there is no standard

empiricd method to accomplish this, some general guidelines are available. First a group of

represent ative dat asets are gathered, next an error rate estimation met hod is select ed and

finally a set of criteria are defined that must be passed before the hypothesis is confirrned or

rejected [21, 41, 681. To follow these guidelines, Section 7.1.1 reports the group of represen-

tative datasets. Section 7.1.2, report the error rate estimation method used. And, Section

7.1.3 presents the criteria selected to test a hypothesis on accuracy.

7.1.1 Datasets

Twenty three real-world data sets were selected to perform this study's investigation into

DBPredictorYs accuracy. A n attempt was made to include datasets that have been widely

used in other studies of misclassification rates [21, 29, 601. Furthemore, the datasets were

required to contain a variety of sizes, data types, and application areas- Table 7.1 lists and

sirmmarizes the characteristics of these datasets. The anneal dataset (AN), for example,

is shown to contain n = 898 records and m = 39 attributes (9 of which are numerical).

The class attribute for this dataset contains six unique classes and the most common class

appears 76.2% of the tirne. Finally 64.8% of the dataset's values are rnissing. AU datasets

were retrieved fkom the UCI repository [51] at:

f t p : //ics .uci - edu/pub/machine-Iearning-databases.

7.1.2 Error Rate Estimation

A classification algorithm's accuracy is commonly represented by the percent of incorrectly

predicted event vectors (error rate). To ensure that good es tha t e s of the true error rate are

CKAPTER 7. EMPLRICAL STI/DY OF ACCURACY

Table 7.1: Characteristics of the datasets used in the empirical study of DBPredictor7s
accuracy. The columns are: row number; common name; number of instances (n); number
of predicting attributes (m - 1) and numerical attributes (num); number of classes and
the percentage of the most common class; and percentage of missing values. Datasets with
an * beside their common name were used to fine tune DBPredictor2s and II3 1's threshold
paramet ers.

Dataset

anneal
audiology
breast-w
chess
credit-a
credit-g
diabet es
echocardiogram*
glas
hayes-rot h*
heart *
heart-c

horse-colic 1 HO 11 368 1 22/10 1 2/63.0 1 O 1

1

heart-h HH 94 13/7 2163.9 O

abbrv.
AN
AD
BW
CH
CA
CG
DI
EC
GL
HR
HT
HC

hepatitis HE

iris* (IR

n

898
226
699
3196
690
1000
768
132
214
160
270
303

150
20000
345
8124
2310
47
958
493

letter
liver-disease
mus hro om
segment
soybean-small
tic-tac-toe*
vote

m - llnum
3819
69/0
1019
36/0
1416
2017
818
7/6
1019
410
1317
13/7

Clss./Def% 1 Miss.%

LT
LD
MU
SE
SO
T O
VO

6176.2
24125.3
2165.5
2152.2
2155.5
2/70.0
2165.1
3181.8
7735.5
3140.6
2155.6
5/54.1

155

4 4
16/16

616
2210
19/19
3510
910
16/0

64.9
2.1
O
O
O
O
O

4.6
O
3
O
O

19/6 2/79.4 5.7

3/33.3
2614.1
2/58.0
2/51.8
7/14.3
4/36.2
2/65.3
2/61.4

O
O
O
O
O
O
O
O

reported, al1 error rate results in this study are based on the average of at least five runs of

the stratfied 10-fold cross-validation (SCV-10) resampling technique. SCV-10 h a . been used

extensively in past empirical studies [9, 581. The averaging of several cross-validation nins

has been recently proposed to overcome the large variance of resampling techniques [43, 681.

This approach to estimation tends to achieve a low and conservative bias and variance [43].

SCV-10 requires that the exarnpIes be randody allocated to 10 mutudy exclusive

partitions of approximately equal size, while maintaining approximately the same class

distribution as in the original data set. With SCV-IO all the dataset records contribute to

the estimate and almost all the cases (90%) are used to base each prediction. For example,

a domain with 101 cases and a 60%/40% distribution of its binary (0,l) class label would

result in nine partitions with 10 cases and one partition with 11 cases. Each partition would

have approximately six cases with class label O and four cases with class label 1. Once

the partitioning has cornpleted, ten tests are performed. Each partition will at one point

be labeled the test set while the remaining nine partitions are grouped together into the

training set. Within each of the ten tests, every record from the test set is transformed into

an event vector ë and a prediction is made based on the examples stored in the training

set. The ratio of misclassified cases is recorded for each of the ten tests. These ten ratios

are averaged to give the cross-validated error rate. For this study at least five SCV-IO were

performed on each dataset to achieve an average error rate estimate along with its standard

deviation o.

7.1.3 Hypothesis Testing Criteria

Given a method to estimate an algorithm's average error rate, what is required to daim

that one algorithm is more accurate than another? Just as there is no standard list of

datasets that must be tested there is currently no single comparative measure of accuracy-

Commonly however, several individual measures are used in combination. Only when an

algorithm succeeds on all the tests can this algorithm be declared more accurate [21].

For this study a classifkation algorithm Ai will be referred to as more accurate than

classifier A2, if it meets the following criteria:

Iower on: Ai achieves a lower error rate on more datasets than A2.

avg: Ai achieves a lower average error rate than A2.

Table 7.2: Example of one algorithm (Al) being more accurate than another (A2) -

clear wins: AI achieves a lower error rate, with a 99.5% confidence level, on more

datasets than A2 (based on a one-tailed t-test [34]).

FO
Al
A2

Subtract

Table 7.2 reports a sample result were algorithm Al is more accurate than A2. Based

on this report algorithm Al can be said to be more accurate then algorithm Ag. First, Al

achieved a lower error rate on one more dataset than A2. Second, the average enor rate

over all datasets is lower for Al (by 1.34%). Finally, based on a one-tailed &test1, algorithm

Al was more accurate over As with a 99.5% confidence on two more datasets. If all three

criteria had not been met, then no claim of accuracy superiority could be made.

avg
15.20%

iower on
3

7.2 Variations on F()

ciear wins
2

2

1

The focus of the first set of empirical investigations into DBPredictor7s accuracy, was to

discover an accurate combination of heuristic function and threshold paramet er sett ings.

This involved testing a large number of versions of F(). The results from tbis investigation

presented an opportunity to aiso investigate the following questions:

1. What is the Mpact of the parent-chdd cdculation approach on the dgorithm7s accu-

racy?

16.54%

-1.34%

2. What is the impact of pruning on the algorith's accuracy?

3. Which heuristic function results in the highest accuracy?

O
2

1

The version of DBPredictor which achieved the highest accuracy is then used by the

next phase of the study which tests the algorithm's relative performance-

7.2.1 Datasets

A small group of datasets were selected from Table 7.1 to discover an accurate version

of DBPredictor. The use of smaller group of datasets dowed for the testing of a large

number of heuris tic fùnctions and threshold parameter combinations. More importantly,

this approach also lefi the optimization of DBPredictor blind to the majority of datasets.

The five selected datasets were: echocardz'ogram, hay es-roth, hea7-t' horse-colic, and iris

datasets. These datasets (marked in Table 7.1 with a * symbol beside their name) contain

a s a m p h g of attribute types and domains. For this initial study however the datasets

needed to be s m d enoirgh (N 400) to facilitate an intensive study of the different heuristic

measures and threshold parameter settings. Approximately seven rdlïon predictions were

performed to analyze the algorithm's response! Any increase to the number of datasets or

their average size would have increased not ody the number of predictions, but also the tirne

required by each prediction. I t is difEcult to determine whether the five selected datasets

are unbiased and representative. However, the significant differences of optimal parameters

settings encountered within the study for each of the datasets, indicate that the set may

have been appropriate.

7.2.2 Threshold Setting Refinement

DBPredictor contains three threshold parameters. In Chapter 4 the numerical partitioning

ratio (num-part) was dehed to handle numerical attributes. In Chapter 6 , the minimum

rule cover (minxover), and minimum evaluation function value (mimneas) parameters were

defined to implernent pruning support. For these thee numeric parameters, a range of values

were selected based on preliminary experirnents. The final criteria for a valid parameter

set~ings combination was that none of its settings could could be a terminal value. For a

setting of 1.50 to be recommended for n m p a r t , for example, values greater than 1.50 (e-g.

2.00) and less thm 1.50 (e.g. 1.25) must have also been investigated. The following list

describes the range of settings selected for the algorithm's three internal parameters:

The numericd partitioning ratio parameter (numpart) de termines how aggressively t O

divide the region around a numerical value on each specialization step. This parameter

CHAPTER 7- EMPnUCAL STUDY OF ACCURACY 92

must be set with a value that is greater than 1.0. At a setting of 2.00, for example,

each specialization step will divide the matching range around a value by h o . After

some preliminary experimentation, the settings selected for the numpart parameter

were: 1.25, 1.50, 2.00, 4.00 and 6.00.

The minimum rule cover threshold parameter (min-cover) is a pluning based stop-

ping criteria used to mitigate from overspecialization. A setting for this parameter

describes the smallest number of records that may be covered by a rule- This param-

eter must have a value within the range of [O, n]. At a setting of 5, for example, each

specialization step WU determine whether the cover of the proposed d e is > 5. After

some preliminary experimentation, the settings selected for the min-cover parameter

were: 1, 2, 5, and 10.

The minimum heuristic function value threshold parameter (minmas), is another

priining stopping criterion used to mitigate against overspecialization. A set ting for

this parameter describes the smallest heuristic h c t i o n value allowed between spe-

cialization steps. This parameter must have a value that is greater than or equal to O

(no pruning) and less than or equal to 1 (cornpiete pruning). At a setting of 0.10, for

example, each specializat ion step will det ermine whet her the class separat ion measure

for the proposed new rule is 2 0.10. If this is not the case then this proposed special-

ization is rejected. After some preliminary experimentation, the settings selected for

therninaeas parameter were: 0.00, 0.01, 0.05, 0.10, 0.33, and 0.50.

To determine which parameter settings achieved near optimal accuracy for each of the six

heuristic funct ions, al1 paramet er combinations were tested against each of the five dat asets.

The different settings proposed above rneant that 120 parameter combinations were possible

(5 x 4 x 6). Table 7.3 shows the results of DBPredictor7s accuracy when the DI,() version of

the algorithm was tested against the i7-i~ dataset. To attain the lowest error rate against this

dataset, with this algorithm, the following parameter settings are required: numpart=6.00,

min,cover=l and minmeas=0.33. After five 10-SCV studies, this parameter combination

resulted in a 3.53% average error rate.

Each of the five datasets required a different parameter setting combination to minirnize

the error rate acbieved by each heuristic function. Table 7.4 shows the parameter combi-

nations that achieved the lowest error rate for the DI,() based algorithm. The optimal

TabIe 7.3: Average error rate on the iris dataset for DBPredictor based on the DIn()
heuristic function. For conciseness only the top five and the bottom ranked combinations
are presented. The fifth combination happens to perform no pruning (min_cover=l and
mineas=0.00-

Table 7.4: Interna1 patameter settings for the DI,() based DBPredictor that resdted in the
lowest error rate for each of the five datasets. The bottom row reports the average error
rate over the five datasets.

1 2 1 haves-roth
I Il

1 0.20 2.00

1

5 (echocardiogram 1) 10 0.33 1.50
Average

combination for the heurt dataset, for example, is significantly different than the optimal

Dataset

iris

combination already encountered for the iris dataset. In the case of the D In () heuristic func-

m i ~ c o v e r minlneas num_part

1 0.33 6.00

tion the average error rate with the optimal settings on each dataset was 13.61%. Sirnilar

differences in optimal parameter setting combinat ions occurred wit h the ot her five heuristic

Because of the large variety of optimal parameter combinations, a compromise was

required to select a single combination that rninimizes this error rate. One way to determine

which combination to chose, is to select the combination that was more accurate than d

ot her combinat ions. However, because the parameter sett ings were set intentiondy close,

no single combination was able to meet the required criteria. Between the top ranked

CHAPTER 7. EMPLFUCAL STUlDY OF ACCURACY 94

Table 7.5: Average error rate over the five selected datasets achieved by the Di,() function
at particular cornbinations. For conciseness only the top five, the top unpruned and the
l e s t accurate combination are presented,

I I min-cover I mlneas err. rate C /

Internal parameter combinations that achieve the lowest average error rate for each of the
six heuristic functions over the five datasets.

combinations, for example, none achieved a lower average error rate over the five datasets

with 99.5% confidence.

The selection of an accurate combination was instead based on the combination that

strictly minimized the average error rate over these five data sets. Table 7.5 shows that

the values [minrov=5, min~eas=O. 10, num-part =1.50] achieve this for the D In () heuris tic

function. Wit h t his parameter setting combination and t his heuristic function, the average

error rate of 15.13% was srnader than aay other tested combination.

After a similar exercise was performed on the remaining versions of the algorithm, the

optimal parameter setting combinations were located for each of the six heuristic functions.

Table 7.2.2 presents these results. While more optimal setting combinat ions likely exist, the

generd region of these settings has likely been located.

err. rate 4
15.13%
15.18%
15.30%
15.33%
16.54%
16.72%

FO

DIn (>
entYK40
ORTo
DL+ 0
enw?%o
ORT+o

1 miecover

I 5
1 5

5
5

1 5
5

minneas 1 nunpar t

0.10 I 1-50
0.01 1.50
0.00 1.50
0.05
0.01

2 .O0
2-00

0.00 2.00

Observations

Some initial observations can be made fiom the optimization results reported in Table 7.2.2

with respect to the three questions relevant to this section. The most striking feature

about the table is that all dgorithrns selected a value greater than 1 for a minimum cover.

This points to the possibïlity that pmning does indeed improve accuracy. The next section,

Section 7.2.3, will address this question further. A second observation is that the algorithms

which used the parent-child heuristic function vaziation (marked with a +) achieved higher

error rate than a,ll sibling-sibling versions. This observation will further analyzed in Section

7.2.4. Finally the D In() heuristic function achieves the lowest error rate (15.13%). Section

7.2.5 will discuss whether this heuristic function does indeed generate the most accurate

version of DBPredictor based on the five datasets.

7.2.3 Pruning's Impact on Accuracy

Because all six heuristic functions made use of prlining to achieve their lowest error rate,

it appears promising that pruning does indeed generate a more accurate version of DBPre-

dictor. To test this hypothesis, the algorithms with the optimal parameter settings were

compared to the versions of the algorithm that did not make use of pruning. To turn off

pruning the min_cover parameter was set to 1 and the mimneas parameter was set to 0.00.

With these two parameters fked, the ody setting left to optimize was for the n u ~ p a r t

parameter. Table 7.6 presents the result of this investigation.

Table 7.6: num-part settings that achieve the lowest average error rate for each of the six
heuristic functions when pruning is turned off (min-cmer = 1, minmeas = 0.00).

A cornparison with the optimized parameter combinations in Table 7.2.2 shows that no

err. r a t 4

17.49%
17.79%
18.23%
18.97%
19.87%
20.33%

num-part

1.25
1.25
1.50

F O
e n t 7 - 0 ~ ~ 0
orno
D L O
entropy+ (1
ORT+()
~ ~ n t (>

miacover

1
1
1

miuneas

0.00
0.00
0.00

1
1
1

0.00 1 4.00
0.00 1.50
0.00 1 1.25

Table 7.7: The pruned version of the O-() function, even though it achieved the lowest
accuracy of the all the p m e d versions, is more accurate on the 5 datasets than the unpnined
version of the algorithm which achieved the highest accuracy (entropy()) .

w/out pnrning 2 17.49
Subtract 1 -0.7 1 fl

unpruned version of the algorithm achieved a lower error rate than any of the pruned ver-

sions. Further analysis showed thal; a.U pruned version of the algorithm were more accurate

than al1 the unpruned versions. Table 7.7 presents the results of the two versions that came

closest to contradicting this.

This evidence supports a c l a h that pruning improves DBPredictorYs accuracy. Further

evidence to this effect is presented in Section 7.3.5. Part of this section investigates the

effect of p&g on ovefitting.

Algorithm

Observation: Another observation from Table 7.6 is that all parent-child variations led

to a higher error rate than all of the sibling-sibling versions of F(). The question of which

method to calculate F() is investigated in the next section.

lower
on

avg err.
rate (%)

7.2.4 Sibling-Sibling versus Parent-Child

clear
wins

Because the three functions based on the parent-chdd variation achieved a higher error rate

than their sibling-sibling counterparts in both Table 7.6 and Table 7.7, it appears that the

use of this approe.ch may be rejected. Indeed, after further analysis, all the algorithms

(which made use of pruning) based on the sibling-sibling approach to the heuristic function

calculation, were found to be more accurate than all parent-child based functions on the 5

tested datasets. Table 7.8 presents the two versions that came dosest to contradicting this

statement .
Based on this consistent response, there is strong evidence that the sibling-sibling ap-

proach achieves a lower error rate than the parent-child approach.

Table 7.8: Cornparison of the algorithm with the least accurate sibling-sibling heuristic
function and the most accurate parent-child variation of the heuristic functions. Pruning is
turned on.

Table 7.9: Summary of accuracy results against the 5 datasets for the D I () and entropy()
versions of DBPredictor.

2 15-18 O
Subtraction 1 1 -0.05 O

7.2.5 Selection of Accurate F()

cleaz
wins

Now that the pnining has been validated and the parent-ddd variation has been rejected,

this section determines which measure to pass on to the remaining investigations. Unfortu-

nately, based on the five datasets that were set aside, no version emerged as a clear winner.

As can be recded £rom table 7.2.2, the DIn() based algorithm achieved the lowest average

error rate. Upon further analysis, this version of the algorithm &O achieves a lower error

rate on more datasets than both the entropy() and the ORT() based algorithms. However,

no algorithm was able to achieve a 99.5% confidence win on any of the five datasets. Table

7.9, compares the DIn() based algorithm, to the next most accurate version: entropy ().

Because the DI,() based algorithm met two of the three criteria and because no other

algorithm achieve a lower error rate with 99.5% confidence, this version of the DBPredictor

was passed to the remaining phases of the empirical study-

avg err.
rate (%)

Algorithm

Observation: One surprising discovery f?om t his investigation is the effectiveness of the

D In() evaluation fuoction which has not been u ~ e d extensively in previous examinations of

classification algorithms. This function measures the Euclidean distance between two class

lower
on

probability distribution vectors. One attraction to this measure is that because it is easily

visualized, more people may be able to understand the functioning of the classifier.

7.3 Relative Accuracy of DBPredictor

The main task of the study reported in the previous section was to locate a relatively accurate

version of DBPredictor. The main task for the study covered in this section is to detennine

the suitability of this version of DBPredictor, for on-line classification tasks. Because of the

prevalence of irrelevant attributes and irnderspecified events in on-Kne classification tasks,

the question of suitability is investigated with the following questions:

How does DBPredictor's accuracy compare to that of C4.5 and IB1 on general datasets?

How does DBPredictor's accuracy compare to that of (24.5 and IBl when datasets are

known to contain several irrelevant attributes?

How does DBPredictor 's accuracy compare to that of C4.5 and IB 1 when event vectors

are known to contain several missing attribute-values?

Two secondary questions are also investigated in order to better understand DBPredic-

tor's behaviour:

Relative to C4.5 and Il3 1, does DBPredictor overspecialïze?

Relative to C4.5 and IB1, is DBPredictorYs biased for or against datasets with numer-

ical attributes?

After a brief review of the benchmark algorithms in Section 7.3.1, the results for each

of these five questions are presented in the same order as above.

7.3.1 Benchmark Algorithrns

Three benchmark algorithms were selected to ident i@ DBPredict or's relative accuracy : the

naive, C4.5 and Il3 1 classification algorit hms.

Naive Classifier

The sirnplest classification algorit hm used in the empirical study returned the most common

class of the dataset. This classifier is sometimes referred to as the naiue classifier. The

performance of this algorithm on the 23 datasets can be derived fkom the class distribution

colrrmn in Table 7.1- For the echocardiogram dataset (EC), for example, there are 132

records and three classes. It7s most common class however occupies 81.8% of its records

(Le. 108 records). When ody this information is available, the best strategy of a naive

classifkation algorithm is to always assign the most populous class. In the case of the

echocardiogram dataset the naive classifier achieves an error rate of (100%-8 1.8%) 18.2%.

The representative eager model-based classification algorithm used in the empirical study

was the C4.5 program [58]. C4.5 is a state-of-t he-art classification algorit hm that constnicts

decision trees that c m then be used to classiSf new cases. For this study, release 8 was used,

which improves C4.5'~ performance on datasets with continuous attributes [60].

The representat ive 1azy ins tance-based classification algorithm used in the ernpirical study

was the Il31 aigorithm [6]. This algorithm is presented in Section 3.1. The algorithm

contains one threshold parameter, k, which determines the size of the instance set to base

each prediction on. To set thïs parameter, IBI was optimized on the same five datasets as

DBPredictor. Based on this investigation, k was set to 20.

7.3.2 General Cornparison of Accuracy

The fist question addressed in this study was how DBPredictor7s general accuracy per-

formance faired against the benchmark algorithms. The accuracy results for each of the

algorithms on the 23 datasets are reported in Table 7.10. A qui& scan through this table

does not show a clear winner. C4.5 achieves the Iowest average error rate, Il31 was most

accurate on more datasets and DBPredictor tied for the average ordinal. Further analysis,

showed that aside for the naive classifier, no algorithm was more accurate than another.

While C4.5 achieved a lower average error rate than DBPredictor, C4.5 did not achieve a

lower error rate than DBPredictor on more datasets (12 versus 10). Similarly, though in

opposite order, while IB1 did achieve a lower error rate on more datasets than DBPredictor

(12 versus IO), El1 did not achieve a Iower average error rate than DBPredictor. These

results present evidence that DBPredictor has attained parity with C4.5 and IB1 in ter-

of general accuracy.

7.3.3 firelevant Attributes

The next experiment investigated DBPredictor's relative accuracy with respect to the pres-

ence of irrelevant attributes. To perform this test, ten attributes were added to each of the

datasets. Each dataset's proportion of numerical to symbolic attributes was rnaintained.

The values for each of these attributes were selected randomly. Two value distributions

were tested: even and Gaussian. Because the Gaussian distribution produced slightly larger

error rates, it was selected for this test,

The results for this experiment are summarized in table 7.11. As expected, E l ' s ac-

curacy is relatively sensitive to irrelevant attributes. DBPredictor's response, on the other

hand, is closely related to the accuracy of the more robust C4.5 algorithm. When formally

compared, DBPredictor and C4.5 were found to be more accurate than Il31 when tested

against the updated datasets. On the other hand, neither DBPredictor nor C4.5, were more

accurate than each other on these same datasets.

These results present evidence that DBPredictor's accuracy does not degenerate as fast

as lazy instance-based algorit hms in the presence of irrelevant attribut es. Also, DBPredictor

remains equident in accuracy performance to eager model-based a l g o r i t b in the presence

of irrelevant attributes-

7.3.4 Underspecified Event Vectors

A l l the previous tests have assumed that all the information about each event vector was

known when making the prediction request. The next expriment that was performed,

investigated DBPredictor's relative accuracy with respect to the presence of underspecified

event vectors. To perfurm this test different proportions of the event vector were obscured

fiom the classXcation request. The selection of attributes to bide occurred randomly for

Table 7.10: Accuracy results on the 23 datasets for DBPredictor and the three benchmark
a l g o r i t h . For each dataset the placement ordinal [1-41, average error rate (%) and stan-
dard deviation, is given for each algorithm

DBP

Table 7.11: Average error rate for DBPredictor, C4.5 and IB1 when O and 10 irrelevant

22
23

attributes were added to each of the datasets.

TO
VO

Average

1 4 34.70
1 4 38.60

1 3.8 44.99

2 10.3301.10
1 4.6000.61

2.0 16.9400.86

3 14.4400-90
2 4.8200.40

1 1.7900.50
3 8.0500.42

2.1 16.6301.00 2.0 18.1600.67

Table 7.12: Summary of error rate results when O%, 25%' 50% and 75% of an event vector's
attributes were uninstantiated.

each prediction. When the proportion was set to 50%' for example, halfof the event vector's

1 Missing %
0%
25%
50%
75%

attributes were randomly selected and their values were set to unknown.

Three propnrtions of uninstantiated vectors were tested: 25%, 50% and 75%. The results

of these tests are sirmmarized in table 7.12. A qui& scan through this table shows that

C4.5'~ accuracy degrades more rapidly than DBPredictor7s or IB17s. Further analysis showed

that C4.5 was indeed less accurate than DBPredictor and IB1 on all three proportions of

DBP
16.94
19.87
21.25
28-34

underspecified event vectors. A comparison between DBPredict or and IB 1 showed t hat

neither algorithm was more accurate than the other for any of the tested proportions.

These results present evidence that in settings were a significant proportion of an event

vector's attributes will be irninstantiated, the DBPredictor algorithm will likely produce

naive 1
44.99
44.99
44.99
44.99

C4.5
16.63
21.65
26.13
35.45

more accurate classXcations than the eager model-based C4.5 classification algorithm.

Il31
18.16
21.16
24.30
28.49

7.3.5 Overspecialization

Another measure of interest for a classification algorithm is its tendency to overspecialize

(ovefit). This effect is commonly tested by comparing the accuracy of the naive classifier

against mot her classifier. This study determined the tendency of DBPredictor, C4.5 and

IB 1 to overspecialize to determine DBPredictor's relative vulnerability at overspecializat ion.

Also within this study the unpnuied DBPredictor was tested against the naive classifier to

further understand the impact of pnining on DBPredictor's accuracy.

The naive classifier is commonly used to determine another classification algorithm's

tendency at overspecialization. The effect of a classification algorithm performing worse than

CHAPTER 7. EMPIlt1lCA-L STUDY OF ACCUR4CY 103

Table 7.13: Datasets in which DBPredictor, C4.5 and Il31 were not more accurate than
the naive classifier with more than 99.5% confidence. The second coliimn A presents the
clifference between the two error rates-

1 DBP 11 C4.5 II IB1 1

the naive classifier can be understood through a worst case example were the algorithm in

question overfits each prediction such that it is always supported by only a single record [13].

Suppose that there is a 70%/30% division among a binary class attribute that is to be

predicted by a set of random attributes (Le. 100% noise). Each rule will be correct 70% of

the time on the training set and therefore be on par with the naive classXer. When applied

to new data however, the rules that predicted the majority class will now only be accurate

a further 70% of the time. Therefore, the algorithm will only be correct 70% x 70% = 49%

of the time.

A qui& scan through TabIe 7-10 shows that DBPredictor performeà worse than the naive

classser on one dataset, C4.5 on three, and IB1 on none. Table 7.13 presents the datasets

that each algorithm was unable to achieve a lower error rate than the naive classifier with

a 99.5% confidence.

Based on these results there is evidence that DBPredictor is prone to overspecialization.

However, the algorithm is not sigdcantly more prone to overspecialization t han C4.5.

Overspecialization Without Pruning

To extend our understanding of the impact of pruning on DBPredictor's accuracy, a test was

performed to determine if the lack of pruning had a significant impact on overspecialization-

When the accuracy of the most accurate unpruned version of DBPredictor was compared

to the naive classifier's performance on the 23 datasets, DBPredictor achieved a higher

error rate on five datasets: her-diseuse, hepatitis, heurt-c, credit-g, and echocardiograrn.

Based on this evidence pruning appears to sigdicantly lower DBPredictorYs vulnerability

to overspecialization.

CHAPTER K EMPIEUCAL STUDY OF ACCURACY

Table 7.14: Average percentage of numerical attributes in the datasets that each algo-
rithm performed si@cantly more accurately on, when compared to one other algorithm.
When compared to IB1, DBPredictor containeci on average 39% numerical attributes in the
datasets that it performed more accurately on. m e n compared to D l ' s proportion (52%),
the difEerence between the two A, is equal to = 75%.

1 tested pair (1 DBP/C4.5 1 DBP/IBl 1 C4.5/IB1 1

7.3.6 Numerical Domains

The &al empirical study inves tigated whether DBPredictor's handling of numerical at-

tributes biased its accuracy with respect to the proportion of numerical attributes in a

dataset. For each pairing of DBPredictor, C4.5 and IB1, the datasets in which one al-

gorithm performed significantly more accurately in2 than the other were identified. For

example, DBPredictor performed significantly more accurateIy than Il31 on nine datasets,

while Il31 performed significantly more accurately than DBPredictor on seven datasets.

Next, the average proportion of numerical attributes on these two groups of datasets was

evduated. For example, approximately 39% of the attributes for the nine datasets which

DBPredictor performed si@cantly better on, were numerical. Because the average num-

ber of numerical attribute arnong the 23 datasets is 48%, it is expected that an unbiased

algorithm will &O achieve this proportion of numerical attribute among its more and less

accurate datasets. Table 7.14 sirmmarizes the results of the three pairwise tests.

When tested against each other, C4.5 and DBPredictor performed similarly. Both had a

slight bias for numerical at tributes. When compared to IB 1 however, DBPredictor appears

to be si&cantly biased against numerical datasets. However, because of C4.5'~ sigrdicant

bias against numerical attributes relative to IB1, and because of the well known strength of

k - N N based algorithms in numerical domain's 1661, DBPredictor's approach to numericd

attribut es appears to be sound.

*based on a 95% confidence one-tailed t-test

- II

39%/52%
75%

proportions
A

20%/57%
35%

54%/55%
98%

7.4 Discussion

The focus of this chapter was to determine DBPredictorYs suitability for on-line classifi-

cation tasks with respect to accuracy. To test its suitabilik DBPredictor's accuracy was

compared to the performance of C4.5 and IB1 against general datasets, datasets with irrel-

e ~ s t attributes and underspecified event vectors. These three tests achieved the folIowing

results:

When tested against general datasets no algorithm was more accurate than the other.

When tested against databases with irrelevant attributes, DBPredictor and C4.5 were

more accurate t han Il3 1.

When tested ag-t event vectors with missing attribute-values DBPredictor and IB1

were more accurate than C4.5

Given this response, DBPredictor appears to be the most suitable choice for an on-line

classScation task, with respect to accuracy.

Because of DBPredictor's positive results, a few ot her questions were investigated to

better understand its underlying behaviour.

Pruning significantly reduces DBPredictorYs minerab* to overspecializes and also

improves accuracy in general.

Even with pnining, DBPredictor overspecia,lizes. However this response appears to be

no worse t han C4.5'~ response.

The use of pnining has been strongly MLidated, however, based on Dl's ability to avoid

overspecialization, there appears to be room for improvement. A more formal investigation

of pninulg may be helpfid.

The parent-child calculation for the heuristic function significantly degrades DBPre-

dictor's accuracy

The evidence is quite strong that the parent-chüd approach should be rejected.

CKAPTER 7- EMPlR2CA-L STUDY OF ACCURACY

The DI, () heuristic function, resulted in the lowest average error rate, but it was not

clearly superior t han the entropy() based funct ion.

Because of entropy() 's popularity and D I 0's relative obscurity, t this result was unexpected.

This finding may be useful for other topdown induction algorithms. Another possible

advantage to the use of this function is the simplicity of its visualization, and therefore

possibly greater acceptance.

DBPredictor's handling of numerical attributes does not appear to significantly bias

the algorithm's relative accuracy for or against datasets with numerical attributes.

The enhanced approach to numerical attributes handhg was defbed to make the use of

DBPredictor more convenient. This positive result, however, supports further investigation

into this method.

7.5 Chapter Summary

This chapter presented the results of an ernpirical study into DBPredictor's accuracy. The

main focus of the investigation was to test DBPredictor 's suitability for on-line classification

tasks wit h respect to accuracy. Several other secondary questions were investigated to de-

velop a better understanding of DBPredictor's accuracy in general. The study followed the

common approach of locating a group of representative datasets, selecting an error rate esti-

mation method and defining a set of criteria to tests hypothesis on a n algorithm's accuracy.

The fkst set of tests attempted to discover an accurate combination of parameter settings

and heuristic function for DBPredictor. In the process of locating this combination, a few

other secondary questions into pruning, and the child-parent approach were investigated.

Next, DBPredictor was compared to the C4.5 and Il31 classification algorithms. Finally,

the impact of the study's results were discussed.

Chapter 8

Empirical Study of Running Time

While a classification algorithm may be very accurate, the amount of time that it expends

before it retunis its prediction, is another critical measure of the algorithm's success. This

chapter presents the results of a brief empirical study of DBPredictor7s running time per-

formance. The main question addressed wit hin this study was DBPredictor's suitability for

on-line classification tasks, with respect to running time performance. In siimmary, based

on the performance on one large dataset, IB1 solved tasks 4 to 8 times faster than DBPre-

dictor, which in tuni solved tasks 50 to 100 times faster than C4.5. This resdt shows that

a tradeoff is likely between t h e , and the ability to produce rule based results with robust

accuracy.

This chapter is organized into three sections. Section 8.1 presents the methodology

used to vaLidate empirical statements of ruiming time. Section 8.2 reports the study used

to achieve a general underst anding of DBPredictor 's real-world response to difTerent num-

bers of attributes and records. Finally, Section 8.3 reports on an initial investigation into

DBPredictor's relative performance relative to the C4.5 and IB1 classification algoriths-

8.1 Methodology

This section describes the met hodology used to test a classification algorit hm's empiri-

c d ninning time. Unfortunately, ernpirical d g time performance evaluations are not

C H U T E R 8- EMPR?.lCAI; STUDY OF RUNIVITVG T m

cornmody reported in the classification literature. To test an dgorithrn's running time

performance, this study performed experiments against different proportions of records and

attributes fiom the same domain. To achieve this, a dataset was located which remained

sizeable, even when only a small portion of its records and attributes were present- For this

study, the census-year dataset was used. This dataset is composed of m=199,523 records

and m - 1=37 predicting attributes (13 of these being numerical). The class attribute of

this dataset has c=2 classes of relatively equal proportion and some missing attribute-values.

This dataset is located at the UCI repository [51].

Several decisions were also made about the testing environment. Because the C4.5

and IB1 program are not irllplemented to cornmunicate with an RDBMS, all tests were

performed in memory. Furthermore, since C4.5 rnakes use of significant space resources

to achieve its classification, DBPredictor made use of its time efficient search technique-

This technique was found to consume an equivalent amount of memory space to achieve its

prediction. AU experiments in this section were performed on a dedicated computer with

the following configuration: 133Mhz Pentium CPU, 64MB DRAM, and the Linux 2.0.31

O/S. AU classification algorithms were also implernented with the same (GNU) ANSI-C

compiler and op timization flags-

8.2 S t andalone Performance

To investigate DBPredictor7s real-world response to different sizes of n and m, the census-

year dataset was broken-up in both directions and the average time required for each clas-

sification request was recorded. To test the response in the n dimension, four proportions

of the dataset were tested: 100%, 75%, 50% and 25% of the records (ie. 199,523, 149,642,

99,762 and 49,881 records). The records for the smaller datasets were randomly selected

while keeping a similar distribution of the values in the class attribute. Similarly, to test

the response in the m dimension, tests were performed by obscuring different numbers of

attributes: 0, 4, 8, 12, 16, 20, 24, 28, 32, and 36. To calculate an average completion time

per request, one hundred records were randomly selected kom the accompanying testset to

the census-year dataset. The results of this study are located in Table 8.2.

CHAPTER 8. EMPIRTC-U STUDY OF RUNNTNG TXME 109

Time performance resdts (in seconds) for DBPredictor against different proportions of the
census-year dataset. The dataset has 37 predicting attributes and 200: 000 records-

Imtantiated Records
Attributes 25% 50% 1 75% 100%
1 (2.7%)
5 (13.5%) 0.74 1-73
9 (24.3%) 1.24 2.74 5.44 8.97

On average, when 100% of the records were present and when 100% of the event vector

was hstantiated DBPredictor required 38 -22 seconds to report its prediction. When o d y

half as many records were used the average time is cut to 20.74 seconds- GeneraUy the

algorithm's time performance appears to grow linearly with the number of records in the

dataset. In the m dimension, when o d y half of the attributes were instantiated and all the

records were present, the algorithm required approximately 18 seconds to report its result.

Generally the algorithm's time performance appears to grow slightly faster than linearly

with respect to the number of attributes.

8.3 Relative Performance

The h a 1 question investigated in the empirical study was the difference in time response

between DBPredictor and the IB1 and C4.5 algorithms on different proportions of the

census-year dataset. The performance difference between all three algorithm was significant.

IB1 was 4 to 8 times faster than DBPredictor, which in turn was 50 to 100 times faster

than C4.5. Because of this, the cornparisons below, report how many classification requests

the faster algorithm could achieve before the slower algorithm had classified a single event.

Table 8.1: Number of classiiication performed by DBPredictor before C4.5 retunis its f i s t
classification. Different proportions of the census-year dataset were tested.

As in Section 8.2, different settings of n and m were investigated- For n, four settings were

investigated: 100%, 75%, 50% and 25%. For rn, four seftings were investigated: 100%,

75.7% (28/37) 48.6% (18/37), and 24.3% (9/37). Because of the significant amount of time

required by C4.5 to build its decision trees, only a single attribute combination was selected

for the three settings in which attributes were obscured. Care was taken to ensure that the

proportion of numeric and symbolic attributes remained the same (13/25).

-l[nstantiated
Attributes

9 (24.3%)
18 (48.6%)
28 (75-7%)
37 (100%)

Cornparison with C4.5: Table 8.1 presents DBPredictor3s relative riinning time when

compared to C4.5'~ performance. On average, when all of the records were present and

when the event vectors were M y instantiated, DBPredictor was able to complete 104 pre-

dictions against the census-year dataset, before C4.5 completed a single prediction. When

the number of records was halved (n x 100,000 records), DBPredictor was able to make

approximately one half as many predictions (53). If, instead, the number of attributes was

pruned by approximately one half (m=l8), DBPredictor continued to make an equal num-

ber of predictions (103). These results suggest that DBPredictor soives on-line classification

significantly faster than C4.5. hirthermore, this gap appears to grow Linearly as the number

of records (n) grows, and rernain steady as the number of attributes (m) grows.

Records
100%

72
103
109
104 ,

25%
46
52
48
42

50% 1 75%
51
68
61

/ 66
86
93

53 1 85

Table 8.2: Number of classification performed by Il31 before DBPredictor returns its first
classification. DSerent proportions of the census- y ear dat aset were test ed.

Comparison with B I : Table 8.2 presents DBPredictor7s relative ninning time when

compared to IBl's performance. On average, when all of the records were present and

when the event vectors were fully instantiated, Il31 was able to complete approximateiy

7.9 predictions against the census- year dataset, before DBPredictor completed a single

prediction. When the nurnber of records was hdved (n N LOO, 000 records), IB1 was able to

make a relatively similar number of predictions.. If, instead, the number of attributes was

pruned by approximately one haIf (m=18), IBl made fewer predictions (6.8). These results

indicate that IB 1 solves on-line classification faster than DBPredictor. This gap, appears

to grow Linearly with the number of attributes (m), and remain steady with the number of

records (n).

Lns tantiated
Attributes

8.4 Chapter Summary and Discussion

This chapter presented the results of a brief empiricd investigation into DBPredict or's t ime

performance. The large census-year dataset was selected to facilitate this portion of the

study. Again, the C4.5 and IB1 dgorithrns served as the benchmark algorithms. The 6rs t

study showed that the time efficient version of the algorithm may, on average, grow linearly

with then number of records and grow larger than linearly with the number of attributes.

When compared to C4.5, DBPredictor showed a significant time performance gain. This gain

grew approximately as a h e a r function of the number of attributes in the dataset. When

compared to IB1, however, DBPredictor attained a slower running time performance. This

gap grew approximately, as a liner function of the number of attributes.

These results indicate that, when compared to IB1, the benefits of DBPredictor's rule

based result and robust accuracy cornes at the expense of increased riinning time.

Records

9 (24.3%) 1
100% 25%

5.9 4.0
50%

6.8 18 (48.6%) I f 4.3

75%
4.7 5.0
5.3 6.1

Chapter 9

Conclusion

In this thesis, we described a framework for knowledge based on-line classification tasks and

proposed an algorithm, named DBPredictor, that is particularly suited to these tasks. This

b a l chapter summatizes the approach taken by the thesis, reviews the key contributions to

the field of classification, and speculates on future reseafch directions.

Section 9.1 presents the thesis s t i m m v Next, Section 9.2 summarizes the key contri-

butions of the thesis. In Section 9.3, we suggest some possible areas for future research.

And finaUy, Section 9.4 presents some concliiding remarks.

9.1 Thesis Summary

Chapter 2 began the thesis by describing a fiamework for knowledge based on-line classifi-

cation tasks. These tasks provide a database, event vector and class attribute and require a

class prediction that should be justïfied with the use of a high-level representation. Optional

constraints on how the algorithm achieves its task, includes the requirement of direct com-

munication against a database. As in most classification tasks, the candidate algorithm will

be measured by its accuracy, speed and resource requirements. The understandability of its

prediction and its operation, while subjective, are also important to the task. Finally, some

areas related to on-line classikation, but out of scope for this thesis, include regression,

bat ch classification and system guided classification.

Chapter 3 presented a survey of classification algonthms that may be used for on-

line classification. Historicdy, Machine Learning classification algorit hms have made use

of either a lazy instance-based approach, or an eager model-based approach. As specsc

CHAPTER 9. CONCLUSION

instances of these approaches, we presented the k nearest-neighbour based IBI algorithm,

and the use of top down induction of decision trees. The third approach presented made

use of lazy classification with dynamic relevance analysis. This approach appears more in

tune with the requirements of on-line classification. Several algorithms have been recently

proposed that make use of this approach- The local induction of decision tree dgorithm,

for example, combines the lazy instance-based approach and top-dom induction of decision

trees into a hybrid approach. The other, more intensively surveyed approach made use of

lazy model-based induction. This is the approach used by DBPredictor, however the LazyDT

algorithm is reviewed instead, to highlight the clifferences in implementation betnreen the

two algorithms.

Chapter 4 described the greedy topdown heuristic search used by DBPredictor to locate

a classification rule. The description included the natural support for numerical and concept

hierarchy attributes, as well as the use of a tightly-coupled interface to an SQL database.

The chapter concluded with an analysis of the algorithm's complexity. This proved that the

algorithm's ninning time complexity is 0(nm3h) and its space complexity is 0(m2), where

n is the number of records, rn is the number of attributes, and h is the maximum level of

specialization levels for hierazchical or numerical attributes.

Chapter 5 presented an alternate search technique for DBPredictor that is more in-

line with the space assumptions of current machine learning algorithm implementations.

While this approach achieves a lower running time complexity of 0(nm2h) than the search

technique described in the previous chapter, its space complexity is increases to O (nm +m2).

This version of the algorithm is therefore referred to as the time efficient version while the

previous version is referred to as the space efficient version.

Chapter 6 considered severd versions of the heuristic function used by DBPredictor to

navigate its rule space. The first version category, considered three merent base mesures

(entropy(), O R T () , DI,()) and also two methods of calcdation (sibling-sibling and parent-

child). A simple pruning technique was also proposed to determine DBPredictor's response

to event a simple pruning mechanism.

Chapter 7 reported the results of the empirical investigations into DBPredictor's ac-

curacy. Initidy, the different versions of the heuristic function were tested to locate a

generdy accurate version of DBPredictor. The second portion of the stüdy investigated

DBPredictor's relative suitability for on-line classification tasks. DBPredictor was f o n d to

be âs accurate in generd as Dl and C4.5, but more accurate than IBI in the presence of

CNAPTER 9. CONCLUSION

irrelevant attributes, and more accurate than C4.5 in the presence of underspecXed event

vectors-

Chapter 8 concluded the empirical study of DBPredictor7s performance with a brief

investigation of the algorithm's red-world running t h e . With the use of a large dataset,

DBPredictor' raw and relative ruzining t h e was tested against difFerent proportions of the

dataset. When compared to C4.5, DBPredictor was able to satisSr a significant number

of on-line classification requests before C4.5 codd class* a single event. DBPredictor,

however was slower than IBl, dthough not by as significant a factor as the difference

between DBPredictor and C4.5.

9.2 Contributions

The main contribution of this thesis is a lazy model-based algorithm, named DBPredictor,

that is particularly suited to knowledge based on-line classification tasks,

When compared to eager model-based approaches, such as C4.5, and lazy instance-based

approaches, such as IB 1, DBPredictor achieves an alternate balance of accuracy and Nnning

tirne. With respect to accuracy, DBPredictor is more robust to the presence of irrelevant

at tributes and the underspecified event vect ors. Wit h respect t O ninning t ime, DBPredictor

is shown to be more effective than C4.5, but less effective than ml.
Contributions in this thesis towards lazy model-based classification in general include:

0 Dynamic handling of numerical at tributes. This approach allows a lazy model-based

classification algorithm to avoid the inconvenience and cost of global discretization-

Ernpirical results show that the bias of this approach against numerical attributes is

less severe than the bias of the C4.5r8 classifier.

e the rejection of the parent-child calculation approach.

support for tightly-coupled database connections and for concept hierarchies.

CKAPTER 9. CONCLUSION

9.3 Future Research

This section indulges in some speculation about future research directions for on-line classi-

fication tasks and in particular, the use of lazy model-based induction for these tasks. Some

suggestions aze in the form of refinements, others are more speculative.

One possible area of further research is in a formalized approach to pruning. Now

that the value of pruning has been explicitly shown with the min-cover, m i n e a s

thresholds, a more formal approach may prove even more effective. One possibility

that cornes to mind is the chi-square test for stochastic independence proposed in [57].

Another area of interest is to extend DBPredictorys representation language to support

negation within propositions that refer to symbolic attributes. In this way, DBPre-

dictor may achieve more accurate models. This extension to DBPredictor is Likely

related to the approach used by the LazyDT algorithm. Tf. as for L q D T , this ex-

tension results in a significant number of ties, then the use of Iimited lookahead may

DBPredictor7s general accuracy in the presence of records with missing attribute-

values needs to be investigated. While DBPredictor is likely sensitive to this situation,

no lazy technique to this shortcorning is apparent. One possible technique around this

problem may be to retreive the most similar records to the event vector (see next

suggestion) and determine the missing at tribute-values just for t hese records.

A more speculative extension to DBPredictor is to base the s e e d d e O procedure on

a Egh-level instance-based search. In this way, a significant amount of effort may be

saved by quickly zooming in on the region of interest. The algorithm's accuracy may

also benefit fiom the same effect encountered by the proposal for local induction of

decision trees [30]. The chdenge to this investigation would likely be the generation

of a simple rule that covers these "simiiar" records.

Finally, a more ambitious direction is in the support of interactive clasçifkation. Cur-
rently LazyDT and DBPredictor are applicable to data driven tasks in which a par-

t i e instantiated unlabeled event is presented. Some domains will likely benefit fiom

an algorithm that can suggests which attributes to also instantiate for the event in

question.

CHAPTER 9. CONCLUSION

9.4 Concluding Remarks

Classification is essential to aU life. Because more and more of our observations are being

stored in databases, the d u e of classification based on these structured repositories will &O

increase. To tap into this opportunity, t his t hesis proposes an algorit hm named DBPredictor

for the task of knowledge based on-line classification. Rather than eageriy developing a

mode1 to support every conceivable classXcation request, the approach of this algorit hm

is to wait for each classification request to appear and then use of a lazy model-based

approach to return an accurate and understandable prediction. The preliminary empirical

investigations presented in t his t hesis, indicates t hat DBPredictor is a strong candidate for

knowledge based on-line c lass~cat ion t asks.

Bibliography

[l] A M . Thirteenth National Conference on Arti$cial Intelligence. AAAI Press, 1996.

[2] R. Agrawal and J. C. Shafer. Paralle1 mining of association d e s : Design, implemen-

tation, and experience. IEEE *ans. Knowledge and Data Engineering, 8:962-969,

1996-

[3] D. W. Aha. A Study of Instance-Based Algon'thms for Superuised Learning Tasks. PhD

thesis, University of California, Irvine, 1990.

[1] D. W. Aha, editor. Lazy Learning. Kluwer Academic, May 1997.

(51 D. W. Aha. Lazy learning editorial remarks. [4], pages 1-3.

[6] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning dgorithms. Machine

Learning, 6(1):37-66, 1991.

[7] C. Apte and S. J. Hong. Predicting equity returns fkom securities data with minimal

rule generation.

[8] M. A. Arbib, A. J. Kfoury, and R. N. Moll. A basis for theoretical computer science.

Texts and monographs in cornputer science. Springer-Verlag, 1981.

[9] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression nees.

Wadsworth, 1984.

[IO] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine leaniing.

In Michalski et al., editor, Machine Leaming: An Artificial Intelligence Approach, Vol.

1, pages 3-24. Morgan Kaufhann, 1983.

[Il] J. Catlet t . Megainduction: Machine Leaming on Very Large Databases. P hD t hesis,

University of Sydney, June 1991.

[12] J. Cheng, U. M. Fayyad, K. B. Irani, and 2. Qian. Improved decision trees: a generalized

version of id3. In PTOC- Fifth Int. C o n + Machine Learning, pages 100-107, San Mateo,

California, 1988.

[13] P. Clark and R Boswell. Rule induction with CN2: Some recent improvements. In

Machine Learning - Proceedings of the Fifth European Conference (EWSL-91), pages

151-163. Springer-Verlag, 199 1-

[14] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-283,

1989.

[15] E. F Codd, S- B. Codd, and C. T. Salley. Providing OLAP (on-line andytical pro-

cessing) to user-analysts: An IT mandate. Tn E. F. Codd & Associates available at

http://~ww.arborsoft.com/OLAP. html, 1993.

[16] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with

symbolic features. Machine Learning, 10:57-78, 1993.

[17] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Wunsaction

on Information Theory, 13:21-27, 1967.

[iôj T. Dietterich. Overfitting and undercornputing in machine learnuig. ACM Computzng

Surueys, 27(3) :326-327, September 1995.

[19] T. G. Dietterich and R. S. Michalski. A comparative review of selected methods for

learning fkom examples. In Michalski et al., editor, Machine Learning: An Artificial

Intelligence Approach, Vol. 1, pages 41-82. Morgan Kaufinann, 1983.

[20] A. J. Dobson. An Introduction to Genemlized Linear Models. Chapman & Hall, 1990.

[2 11 P. Domiogos. Un;fving instance-based and rule-based induction. Machine Learning,

24(2):141-168, August 1996.

[22] P. Domingos. Context-sensitive feature selection for lazy leamers. IR Aha [4], pages

227-253.

[23] J. Dougherty, R. Kohavi, and M. Sahami. Supenrised and unsupervised discretization

of continous features. In A. Prieditis aad S. Russel, editors, Machine Learning: Pro-

ceedhgs of the Twelfth International Conference, pages 194-202. Morgan Kauhann.

[24] U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis and cataloging of

sky sweys . In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthunisa~y, ed-

itors, Advances in Knowledge Discovery and Data Mining, pages 471-493. AAAI/MIT

Press, 1996-

[25] U. M. Fayyad and K. B. Irani. On the handling of continuous-value attributes in

decision tree generation. Machine Learning? pages 87-102.

[26] U. M. Fayyad and K. B. Irani. The attribute selection problem in decision tree gener-

ation. In Proceedings of the Tenth National Conference of Artijkial Intelligence, pages

104-110. AAAI Press, 1992.

[27] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in

Knowledge Discovery and Data Mining. AAAI/I\YLIT f ress, 1996.

[28] E. Fix and Jr. J. L. Hodges. Discriminatory analysis, nonparametric discrimination,

conçistency properties. Technical Report 4, United States Air Force, School of Aviation

Medicine, Randolph Field, TX, 195 1 -

[29] J. H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. [l], pages 717-724.

[30] T. FWton, S. Kasif, S. Salzberg, and D. Waltz. Local induction of decision trees:

Towards interactive data mining. In Simoudis et al. [63], pages 14-19.

[31] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and 8. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,

cross-tab and sub-totals. Data Mning and Knowledge Discovery, 1:29-54, 1997.

[32] R. Greiner, A. J. Grme, and D. Roth. Learning active classifiers. In Lorenza Saitta,

editor, Proc. of 13th Int. Conf- Machine Learning (ICML '96), pages 207-2 15. Morgan

Kaufrnann, 1996.

[33] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-

oriented approach. In Proc- 18th Int. Conf- Very Large Data Bases, pages 547-559,

Vancouver, Canada, August 1992.

[34] R. V. Hogg and J. Ledolter. Engineering Statistics. Macmillan Publishing Company,

1987.

[35] X. Hu. Conceptual clustering and concept hierarchies in knowledge discovery. Master's

thesis, Simon Raser University, School of Computing Science, Decernber 1992.

[36] P. J. Huber. Rom large to huge: A statistician's reactions to KDD & DM. IR The

Third International Conference on Knowledge Diswuery & Data Mining, pages 304-

308, 1997.

[37] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in Induction. Academic Press,

1966.

[38] L- H y d and R. L. Rivest. Construction optimal binary decision trees is NP-complete.

Information Processing Letters, 5(1):15-17, 1976.

[39] T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Com-

munications of ACM, 39:58-64, 1996-

[40] G. H. John and B. Lent. SIPping fkom the data fiehose. In Proceedings, Third Inter-

national Conference on Knowledge Discovery and Data Mining, pages 199-202. AAAI

Press, 1997.

[41] D. Kibler and P. Langley. Machine Learning as an Experimental Science, chapter 1,

pages 3843. In [62], 1990.

[42] W. Klosgen and J. Zytkow. Knowledge discovery in database terminology. In U.M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uth~rusamy~ editors, Advances in

Knowledge Discovery and Data Mining, pages 573-592. AAAI/MIT Press, 1996.

[43] R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs. PhD

thesis, Stanford University, September 1995.

[44] J- Kolodner. Case- based reasoning. Morgan Kaufinann, San Mateo, CA, 1993.

[45] C.J. Matheus, G. Piatetsky-Shapiro, and D. McNeil. Selecting and reporting what is

interesting: The KEFIR application to healthcare data. In U.M. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy, editors, Aduances in Knowledge Discovery and

Data Mining, pages 495-516. AAAI/MIT Press, 1996.

[46] G. Melli. Ad hoc attribute-value prediction. [Il, page 1396.

[47] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan

Kaufmann, 1993.

[45] R. S. Michalski, 3. G. Carboneu, and T. M. Mitchell. Machine Learning, A n Artijkial

Intelligence Approach, Vol. 1. Morgan Kaufmann, 1983.

[49] J. Mingers. An empirical comparison of pruning methods for decision-tree induction.

Machine Learning, 4:227-243, 1989.

[50] J. Mingers. An empincal comparison of selection rneasures for decision-tree induction.

Machine Learning, 3:319-342, 1989.

[51] P. M. Murphy and D. W. Aha UCI repository of machine learning databases. Irvine,

CA: University of California, Department of Information and Computer Science, 1995.

[52] S K. Murthy. On Growing Better Decision n e e s from Data. PhD thesis, John Hopkins

University, 19 95.

[53] A. Newell and H. Simon. Human Problern Soluing. Prentice-Hall, 1972.

[54] G. Piatetsky-Shapiro and W. J. Frawley- Knovledge Discouery in Databases.

AAAI/MIT Press, 1991.

[55] J. R. Quidan. Leamhg efficient classification procedures and their application to chess

end-games. Zn Michalsici et al., editor, Machine Learning: An Artificiai Intelligence

Approach, Vol. 1, pages 463-482. Morgan Kaufmann, 1983.

[56] J. R. Quinlan. The eEect of noise on concept learning. In Michalski et al., editor,

Machine Leaming: An Artificial Intelligence Approach, Vol. 2, pages 149-166. Morgan

Kaufmênn, 1986.

[57] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[58] J. R. Quinlan. Cd- 5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[59] J. R. Quinlan. Cornbining instance-based and mo del-based learning. In Proceedings of

the Tenth Internaltional Conference on Machine Learning, pages 236-243, 1993.

[60] J. R. Quidan. hp roved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research, 4:77-90, Mar& 1996.

[61] J. Rissanen. A universal prior for integers and estimation by minimum description

length. Annuls of Statistics, 5(3):416431, 1983.

[62] J. W. ShavLik and T.G. Dietterich. Readings in Machine Learning. Morgan Kauhann ,

1990.

[63] Evangelos Simoudis, Jiawei Han, and Usama Fayyad, editors. The Second In terna tional

Conference on Knowledge Discovery and Data Mining. AAAI Press, August 1996.

[64] P. Smyth and R.M. Goodman. Rule induction using information theory. In

G- Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discouery in Databases,

pages 159-176. AAAI/MIT Press, 1991.

[65] P. Smyth and R.M. Goodman. An information theoretic approch to d e induction.

IEEE Trans. Knowledge and Data Engineering, 4:301-316, 1992.

[66] C. S t d and D. Waltz. Toward rnemory-based reasoning. Communications of the

ACM, 29:1213-1228, 1986.

[67] R. Ut hurusamy, U- M. Fayyad, and S. Spamgler. Learning useful rules fiom inconclusive

data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discouery in

Databases, pages 141-157. AAAI/MIT Press.

[68] S. M. Weiss and C. A. Kulikowski. Compvter Systems that Learn: Classification and

Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Sys-

tems. Morgan K a h a n , 1991.

[69] P. H. Winston. krtificial Intelligence. Addison Wesley, 1992.

l MAGE EVALUATION
TEST TARGET (QA-3)

APPLIED I W G E . lnc - = 1653 East Main Street - -. - - Rochester. NY 14609 USA -- -- - - Phone: 71 6/482-û3Uû -- -- - - Fa: 71 61288-5989

g 1993. Applied Image. Inc-. All Rights Reserved

