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Abstract 

The gronring access to large amounts of structured observations allows for more opportunistic 

uses of this data. An example of this, is the prediction of an event's class rnembership 

based on a database of observations. When these predictions are supported by a high- 

level representation, we refer to these as knowledge based on-line classification tasks. Two 

common types of algorithms i?om machine learning research that may be applied to on-line 

classifkation tasks make use of either lazy instance-based (k-NN,R31) or eager model-based 

(C4.5,CN2) approaches. Neither approach, however, appears to provide a complete solution 

for these tasks. 

This thesis proposes a lazy model-based algorithrn, nanied D BPredictor, that is suited 

to knowledge based on-line classification tasks. The algorithm uses a greedy topdown 

search to locate a probabilistic IF-THEN rule that will classie the given event. Empirical 

investigation validates tiiis match. DBPredictor is shown to be as accurate as IB1 and C4.5 

against generd datasets. Its accuracy however, is more robust to irrelevant attributes than 

IB1, and more robust to underspecified events than C4.5. Finally, DBPredictor is shown to 

solve a si@cant number of classification requests before C4.5 c m  satis& its first request. 

These performance characteristics, dong with the algorithm's ability to avoid discretiza- 

tion of numerical attributes and its ability to be tightly-coupled with a relationai database, 

suggests that DBPredictor is an appropriate algorithm for knowledge based on-line classifi- 

cation tasks. 
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Chapter 1 

Introduction 

Classification is an essential activiQ of ail living organisms. As soon as we have sensed an 

experience, we need to quickly predict the class of tfiis particular event. Important classes 

include edible, poisonous, hot, cold, fiiend, and foe. Beyond our genetically enabled abilities, 

human beings can also l e m  further classifications skills by way of instruction or observation. 

Similarfy, computer prograns can be developed to class@ events based on instruction or 

observation. Expert Systems are examples of classifiers that have been instnicted about a 

particular domain. Machine Learning systems, on the other hand, are examples of classifiers 

that can induce predictions about a domain, based on a set of observations fiom this domain. 

This thesis investigates a specific task within the latter approach: knowledge based on-line 

classification tasks. Consider the following example: 

Example 1.1. A person is about to eat a wild mushroom but wants to confirm whether it is 

edible or poisonous. After a qui& search, the person finds a very large SQEbased relational 

database on the World Wide Web with mushroom records composed of observable features 

such as edibility, weight, size, shape, and spore colour. The person would like to predict the 

edibility of their particular mushroom based on this set of observations. Because the dataset 

may be quite large and of suspect quality, the person would like an automated classification 

that supports its prediction wit h an  understandable abstraction such as 

I F  Spores=purple AND Surface=warts AND Height E [3.3,45]cm 

THEN Edibility=poisonous (71%) OR Edibili@=edible (29%) 

(based on 33 matching records) 
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With this d e  the person has supporting evidence that their mushroom is edible, but 

that their is a strong chance that it is poisonous. Ci 

The example is a knowledge based on-line classification task because it requires the 

prediction of a single event7s class based on a database of stored observations and also 

required that the prediction be supported by a high-level rationale. For conciseness we 

will occasiondly drop the knowledge-based description and refer to these tâsks as on-line 

classification tasks. I t  is assumed that an understandable justscations however, remains 

an importaat requirement. 

With the continued growth in database uçage, on-line classification tasks wilI likely be- 

corne more common in the near future. Many domains already collect a si@cant amount of 

data to support their day-to-day activities. This growth in data collection is made possible, 

by the general increase in capacity (disk, memory) and speed of cornputers. Because this 

growth in the number of database and our ability to process their information is expected 

to continue into the near future, some of these databases will likely support classification 

tasks for their specific domains. Already in the last five years, large databases, now known 

as udata warehouses" are being used extensively for On-line Analytical Processing (OLAP)  

tasks [15]. OLAP tools not only helps an expert analyze large sets of records, but &O 

dows more sophisticated analysis by an expanded group of people. As more domains are 

captured within databases, and computational power increases, better tools may also allow 

on-line classification tasks to become more common place. 

This thesis proposes an algorithrn, named DBPredictor, that is targeted at  on-line clas- 

sification tasks. While signScant investigation has already been performed on general clas- 

sification, the two common approaches of eager model-based (C4.5 [58], CN2 [13]) and lazy 

instance-based (k-NN [l?], IB1 [6]) classification do not provide a complete solution for 

on-line c~assification tasks. DBPredictor c m  be saÏd to use, a lazy rnodel-based approach 

which allows it to quickly return an accurate prediction that is also supported by a simple 

IF-THEN d e .  Empirical investigations show t hat indeed, DBPredictor presents advantages 

over eager model-based algorithms in terms of speed and accuracy, as well as advantages 

over lazy instance-based algorithms in terms of accuracy and result understandability. 



CHAPTER 1. INTRODUCTION 

1.1 Motivations 

Several issues motivate continued research into classihcation and specifically into knowledge 

based on-line classification- Recently, for example, the field of data rnining, has &sen as 

a prac t id  way to automate classification. Significant value has already been achieved in 

public interest domains such as medical diagnosis [45] and star classification [24], and in 

private interest domains such as financial markets [7] and automobile repair [67]. The 

classification tasks listed above occur against relatively well known domains where data is 

collected for the specSc purpose of classScation. 

As confidence grows in classification algonthm~ and more domains have ready access to 

large amounts of information, future classification tasks will likely expand into less struc- 

tured applications. Two such set tings include opport unistic uses and dynamic domains. 

Opportunistic classifkation occurs against a dataset that was not collected specifically for 

the classification task at  hand [36]. In the mushroom example, edibility was of interest. To 

someone else, the class~cation of the mushroom7s habitat may have been of greater interest. 

As databases become more widely available, opportunistic classification requests may be- 

corne common place. A di£Eerent type of domain that may benefit fiom on-line classification, 

are those in which the underlying mode1 periodically changes. Dynarnic environments such 

as weat her systems, stock markets and natural disaster reLief occasionally require predic- 

tions based on very recent observations. In many ways, no weather system or stock market 

crash is like the next. 

Opportunistic classification and classification in dynamic domains may gauge a classifi- 

cation algorithrn's performance in slightly different ways than structured classification tasks. 

They will likely require that an understandable justification be presented. In this way, the 

person can involve their background knowledge in assessing the confidence they would place 

on a particular prediction. The accuracy of a l g o r i t h  that serve these tasks shodd also 

be robust to the presence of irrelevant attributes and to underspecified event descriptions. 

In the mushroom example, it is likely that a person may enter information of insignificant 

predictive value, ând rnay &O be unable to produce key information about the mushroom. 



1.2 Approach 

Several fields have part icipated in the investigation of classification: t his Uiclude the fields 

of Statistical Data Analysis (20, 341, Pattern Recognition [28, 371, Machine Learning [IO, 

62, 141 and more recently in Data Mining [27, 541. Each of these fields have made significant 

contributions to the topic. Some approaches have proved to be more accurate in particular 

domains, others have well understood theoretical foundations, while others attempt to be 

compatible with human reasoning. Because knowledge based on-line classification tasks re- 

quire database interaction and a generally understandable solution, this thesis draws rnainly 

fÏom the field of data mining and machine leaming. Within the field of data mining, we 

draw fi0111 research into prediction [27]. DBPredictor derives its name fkom this association. 

Within the field of machine learning, we draw fiom the research into supervised learning 

kom examples [19]. 

Two distinct and well developed approaches that may be applied to on-line classification 

tasks, include eager model-based and lazy instance- based classification algorithms [4, 591. 

Eager approaches l e m  (induce) a complete classification structure before any classifica- 

tion requests may be processed. Lazy approaches forgo the learning phase and return a 

result tailored to the classScation of the event at hand [5, 41. Model-based approaches 

represent their result in a language that is richer than the language used to describe the 

dataset. Instance-based approaches represent their result in the same language that is used 

to descrïbed the dataset [59]. 

Eager model-based approaches include decision tree and rule induction algorithms such 

as C4.5 [58] and CN2 [13]. These algorithms have two distinct phases. The k s t ,  eagerly 

induces a high-level structure (decision trees or d e s )  and the second, classifies any new event 

based on this structure. Lazy instance-based approaches, such as the k-nearest neighbour 

based IB1 [6] algorïthm, on the other hand, l a d y  postpones any work until an event that 

is to be classified is presented, then it quickly locates the instances that are most similar to 

the event and base its prediction on these instances. 

These two approaches, however, encounter some difficulty when applied to on-line clas- 

sification tasks. Eager model-based approaches expend a significant amount of time by 

returnùig a result that is unnecessarily general. In the mushroom example, the C4.5 and 

the CN2 algorithms would develop a structure that is capable of classieing any mush- 

room, not just the specific mushroom in question. The problem with lazy instance-based 



approaches is that they return a result in a low-level representation that is difficult to inter- 

pret, and their accuracy is also susceptible to the presence of irrelevant attributes. In the 

mushroom example, the IB1 algorithm would retuni a set of records (instances) of other 

mushrooms that are most similar to the mushroom in question- These instances, however, 

may be related to the mushroom at hand on very irreievant attributes and the person who 

sees the result, would not be able to easily determine whether this is the case. 

Instead of using an eager model-based approach or a lazy instance-based approach for 

on-line classification tasks, a lazy model-based approach may be more suitable. A lazy 

model-based classification algorithm will restrict its efforts to the classitication task at band 

to expeditiously achieve a prediction. Its prediction will also be supported with a high-Ievel 

representat ion. Two recent proposals t hat implicitly use a lazy model-based approach in- 

clude the LazyDT [29] and DBPredictor [46] algorithms. The main Merence between these 

two is LazyDT's use of a decision tree path representation and the DBPredictor's IF-THEN 

rule-based representation. Current implementations of these two algorithms however, are 

no t particularly suited to on-line classification because of t heir memory intensive definïtions, 

their requirement of discretized datasets, and their inaccuracy due to ovedit ting. 

1.3 Contributions 

This t hesis describes the lazy model-based DBPredictor algorithm in more de tail t han in 

[46], proposes some enhancements to better support on-line classification tasks, and empiri- 

c d y  validates its applicability to these tasks. The main contributions of this thesis are the 

following: 

1. Natural handling of numerical attributes that removes the requirernent for global 

discretizatioa. The impact of this approach on accuracy is also empirically validated. 

2. The addition of pruning and the empirical validation of its positive effect on accuracy 

and agains t ovedit t hg. 

3. The ability to directly interact with an SQLbased dataset. 



4. An empirical demonstration that the algorithm is more accurate than (24.5 in domains 

wit h underspecified event descriptions. 

5. An empirical demonstration that the algorithm is more accurate than Il31 in the 

presence of irrelevant attribut es. 

6. Identification of an appropriate heuristic function and the rejection of the parent-child 

approach to this function. 

7. An empirical demonstration that the algorithm performs sigdicantly faster than the 

C4.5 dgorithm- 

S. Support for concept hierarchies. 

1.4 Tbesis Outline 

The general problem of knowledge based on-line classification and the motivation for fur- 

ther research in this area have been presented. The remainder of this thesis describes in the 

detail a framework for these tasks, surveys several current algorithms, proposes a new algo- 

rithm and then empXrica11y validates the algorithm7s value. These topics are grouped into 

nine chapters. Chapter 2 presents the framework for knowledge based on-line classification. 

Chapter 3 describes the possible application of several current classification algorithms to 

on-line classification tasks. Chapter 4 describes in detail the proposed DBPredictor algo- 

rithm and also presents a complexity andysis. Chapter 5 presents a faster version of the 

algorithm t;hat requires sipificantly greater space resources. The purpose of this version 

was to facilitate the empirical study. Chapter 6 concludes the description of DBPredictor 

wit h an investigation of several heuristic functions. Chapter 7 presents the results of the em- 

piricd investigations into DBPredictor's accuracy characteristics, while Chapter 8 presents 

the results of the empirical study into the dgorithm's running time characteristics. Chap- 

ter 9 concludes the thesis with a siimmary of the contributions and with some suggested 

directions for future research. 



Chapter 2 

General Frarnework 

A knowledge based on-line ciassïfkation task is a request for a prediction of an event7s class 

that is based on a dataset fkom the same domain as the event, and that is supported by a 

high-ievel representation. This chapter presents a fiamework of these tasks to help determine 

whether an algorithm meets the requirements of such tasks. The framework also details how 

the performance of these algorithms will be measured- The chapter concludes with a review 

of several prediction task requirements that are closely related to on-line ~Iassificatioq but 

that are outside the scope of this hmework- Where possible, the terminology in this chapter 

was drawn fÏom previous studies of classification [12, 22, 42, 52, 581. 

Section 2.1 presents an exarnple that will help to tie in the discussions within this and 

other chapters in this thesis. Sections 2.2, 2.3, 2.4 describe the input, output and control 

requirements for these tasks. The focus will be on mandatory requirements, however some 

of the more common optional requirements are also presented. Section 2.5 describes the 

measures t hat will gauge the performance of algorithms at tempting on-line classification 

tasks. Findy, Section 2.6 describes three areas that related to, but outside the scope of, 

on-line classification: regression, batch classification and system guided classification. 

To facilitate the discussion within this thesis many of its examples will be related to the 

sample Animal Kingdom domain that is described below. In this reference example there 

exists a set of records about many different animals that someone had taken the trouble to 

compile. There may be many entries for any given type of a,nirnal, but it is assumed that 



there is only one entry for any specïfic instance of an animal. Based on this information 

another person may want to predict the value for a particular feature of an animal that 

was recently observed. A specifk prediction request will provide some information that is 

known about the animal in question and will indîcate which feature of this animal is to be 

predicted. Two sarnple requests are presented: 

1. A person recently observed a smali animal that ate berries and then flew away. The 

person recorded some information about this a.nima1: sudace covered in feathers, diet 

contained fiuit, and size was small. This person may now want to predict the animal's 

f d y  within the animal kingdom. A potential output to this request is that the most 

Likely type of mimal is a bird. 

2. Another person may bave instead encountered a large, heavy, four footed brown- 

coloured animal with antlers. Instead of the animal's family however, this person 

wants to predict the type of surface with which this animal is covered (eg- feathers). 

Possibly the person is fearful to get too close to this animal to directly determine this 

information. A potential response to this query is that based on the curent set of 

known animals, ail known large antlered animals are covered with hair. 

This sample domain will be developed more M y  as more concepts about on-line classi- 

fication are developed t hroughout t his chap ter. 

2.2 Input Requirements 

An on-line classifications task must provide three pieces of information before a classification 

algorithm c m  proceed with the request: < D, ë. The event vector ëcontains the information 

about the event whose class will be predicted. The class attribute Zdescribes the attribute 

whose value (class) is to be predicted. The dataset D contains the information about 

the domain of the event vector that can be used by a classification algorithm to base its 

prediction. 



2.2.1 Dataset ( D )  

Parameter D points to the dataset which contains records with information about the par- 

ticular domain in question. For our reference example the domain is the Animal Kingdom 

and the sample data set is located in Table 2.1. A dataset is assumed to be composed of 

n records and rn attributes. In Table 2.1, thirteen records are visible from a total of ten 

thousand records (n = 10,000). Each record represents a par t icda instance fiom the do- 

main and is described by m attribute-values. These values represent either an empirical or 

derived feature of each instance. In the sample dataset there are seven (rn = 7) attributes. 

Table 2.1: Dataset example of the Animal Kingdom domain (based on Hu, 1992 [35]). The 
row identifier column exists for reference purposes and the 4 symbol indicates that the rows 
are ordered on this coliimn. 

Tig er 
C heet ah 
Cayote 
Chihuahua 
Giraffe 
Zebra 
Fruit Bat 
.-. 
Ostrich 
Penguin 
Albatross 
Eagle 
Macaw 
Anaconda 

felidae 
felidae 
canidae 
canidae 
bovidae 
equidae 
chirop tera 
. * * 
ratites 
penguin 
tubenoses 
falcons 
parrot s 
eunectes 

hair 
hair 
hair 
hair 
hair 
hair 
hair 
.-• 

feat her 
feat her 
feat her 
feather 
feat her 
scale 

Name Family Surface Locomt n. Diet Weight (kg) 
Al A2 A3 A4 A5 A6 

walk meat 200 
walk 
wa.lk 
w a k  
walk 
walk 

fly 
.-. 
walk 
swim 
fly 
fly 
fly 
crawl 

meat 
meat 
meat 
G a S S  

gras 
fruit 
.*. 
? 
fish 
grain 
meat 
fruit 
meat 

The attribute of a dataset can have several characteristics associated with them. To assist 

with the discussion, the ith attribute of a dataset will be represented with Ai and the set of 

possible values for attribute Ai is referred to as Dmain(Ai) .  The Surface attribute in our 

example is A3 and its domain is Domain(A3) = ( h a i ~ ,  f eather, scale). Each attribute Ai 

may contain either s ymbolic or nurneric values. The Surface and Diet attributes (A3, A j) are 

examples of symbolic attributes, while the Weight attribute (As) is an example of a numeric 

at tribute. The distinction between symbolic and numeric attribut es is t hat only numeric 
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attributes have a total ordering of its values. A sample ordering for numeric attribute Ai is 

(viYi < v i , ~  < - < v ~ , ~ ) ,  where d = IDmain(Ai)l. A special type of symbolic attribute is 

the key aattribute, which uniquely identifies each record in the dataset. Neither the existence 

of a key attribute, nor the presence of a sorted dataset are required for on-line classification 

tasks. 

Both symbolic and numeric attributes may also have another ordering associated with 

them in the form of a concept hierarchy [33]. Figure 2.1 shows examples of concept hier- 

archies for both a symbolic and for a numeric attribute. The Ieaf nodes of the hierazchy 

contain a single value fiom the dataset while the root node, at the other extreme, contains 

every possible value of an attribute, referred to as A N Y .  The internal nodes within the tree 

contain a set of attribute-values and point to one other node that contaùis aU its members. 

Even if an explicit concept hierarchy does not exist for an attribute, an implicit one-tier 

default hierarchy always exists in the form of a root node that points directly to ail of the 

attribute's values- 

Figure 2.1: Graphical representation of concept hierazchies for the A5 (Diet) and Ail 
(Weight) attributes of the sample Animal Kingdom data set. Based on [35]. 

carni- herbi- 
vorous vor ous 

meat fish grain h i t  

The uttribute valves within a specific record may also have special characteristics associ- 

ated with them. Three of these characteristics will be described: missing values, inapplicable 

values and noisy values. When a particular attribute value is unknown, this missing infor- 

mation c m  be represented with a question mark (?). In the sample dataset, record 9995 

has a missing value for As. One reason that this may have occurred, is that this value 



became smudged since it was recorded in the field. When a particular attribute value is 

known not to apply to a particular record, then this is represented with the empty set (0) 
symbol. If there were a Iiair-Colour attribute, then the 0 symbol could be used for record 

10000 to represent that snakes do not have haïr. Datasets occasiondy do not Merentiate 

between missing and inapplicable values. Finally, noise refers to attribute values that have 

been incorrectly entered. 

2.2.2 Event Vector (è) 

The second input parameter for a classification query is an m dimensional event vector: 

This vector contains the information about the particular instance fkom the same domain as 

the dataset, whose class is to be predicted. For example, if a person had observed an animal 

whose surface was covered in feathers, whose diet appeared to be herbivorous, and whose 

weight was approximately 9kg. then this information would be entered with the following 

event vector: 

Figure 2.2: Sample event vector 

1 ? 1 ? 1 feather 1 ? 1 herbivorous 1 9kg.  1 

Not alI the values of the event vector need to be instantiated. As shown in this example, 

unknown values for a particular attribute are marked with question mark ? symbol. VVhen 

an ë is missing some values, the tasks is referred to as underspecified. Possible reasons for 

underspecified tasks, include that a particular value was too costly to retrieve or because 

time constraints did not ailow for the retrieval of the value. When required, the number 

of instantiated values for a given ë are referred to with the cardinality function lél. The 

sample event vector above has cardinaiity of 3. 

2.2.3 Class Attribute Description (3 

The &al input parameter for an on-line classification task is a two dimensional vector ë 

that describes the attribute of ë whose value is to be predicted. The Erst value within this 

vector references the class attribute, while the second value identifies the level in the 

hierarchy. To predict an animal's general diet, in our example, (herbivorous, omnivorous, 

carnivorous), then Zl = 5 and Z' = 2. As a general guideline, the selected class attribute 



and hierarchy level sbould contain a srnall number of distinct d u e s  relative to the number 

of records in the dataset (<< n). In this way, predictions will not have to be based on srnall 

sets of records. Based on this guidellne, a key attribute or a numeric attribute with no 

concept hierarchy, would be poor choices as class attributes. Occasionally, the shorthand 

A, will be used to represent the class attribute. 

2.3 Output Requirements 

The minimal output result required by an on-line classifkation task is the predicted class of 

the event. Often however, a high-level rationale for the result may also be required to help 

a person interpret the validity of the prediction. When this is the case the task is referred 

to as a knowledge based on-line classification task. 

2.3.1 Class Prediction Format 

A classification result may return the single most likely class or likely classes predicted for 

an event. If the Family attribute is to be predicted, the result may be a single most likely 

animal such as "Cheetah", or rnay instead predict the two most likely values "Tiger" OR 

"Cheetah". 

An important cornpanion to the predicted value is a probability measure. For our ex- 

ample above the result could be rewritten to ["Cheetah." 95%]. The use of probability 

measures along with multi-valued prediction can also help to order the results. The multi- 

vdued example above may now be updated to ["Cheetah" 75% O R  "Tiger" 20%]. Because 

these probabilities only estimate the tme probability of this particular value, some settings 

may require that a level of confidence be presented along with each prediction. Currently 

confidence is commonly expressed with the number of matching records. 

2.3.2 Class Prediction Justification 

The final requirement for output results is for a justification to be presented in a partic- 

ular type of representation language. Some of common representation for these functions 



are sets of instances [3, 661, rules [53, 651 and decision trees [9, 581. Each of these three 

representations is briefly reviewed. 

Instance-Based Representation 

The simplest representation for the justification of a prediction is a report of records (in- 

stances) [6, 59, 661. The event vector in figure 2.2 may for example retuni the record 9912 

(Le. Macaw) because of its similariS. to the event vector. An optional parameter for an 

instance-based representation request is the number of instances that are to be selected. If 

this value is k, then the k most similar instance fiom D will be returned. 

Rule Based Representation 

A higher-level representation of a prediction7s justifications than an instance-based result , is 

the probabilistic d e .  Commonly these d e s  are constrained to propositional logic and in the 

form of I F  antecedent THEN consequent [64, 671. The consequent of this rule represents 

the prediction either as a single value or a disjunction of values, as described above in 

Section 2.3.1. The antecedent of these classification d e s  is commonly â, conjunction of 

propositions (terms), where each proposition represents a condition on a single attribute- 

For symbolic attributes, each proposition c m  test against a disjunction of attribute-values 

and rnay include negation. Some examples include (Ai = vij), (Ai E {uij, . . . , vi,k)), 

and (Ai # via)- For numeric attributes, each proposition may contain either a one-sided 

(Ai 5 a i j )  or ~WO-sided (Ai E [aij, test, where ai j < a+. A sample proposition OR 

the Weight numeric attributes is, (As 5 8kg) for a one-sided test, and As E [Okg, 8kg] for a 

two-sided test. 

Decision Tree Representation 

The ha1 representation of a prediction's justification, that will be reviewed, is the decision 

(classification) tree data structure. A decision tree is a hierarchical, sequential classification 

stmcture that recursively partitions the instance space into mutuaIly disjoint regions [52]. 

Decision trees are represented with nodes that are connected by branches. Nodes rnay be 

either internal nodes or leaf nodes. Interna1 nodes contain a test that creates two or more 

branches to other nodes. Each internal node or leaf node must be referenced by only one 

other interna. node. One exception to  this rule is the root node which acts as the entry 



point into the structure. Finally, le& nodes contain the class predictions. If a Ieaf node 

presents a probability distribution for all classes instead of just the single best value to be 

predicted, then the tree is referred to as a class probability tree [9]. 

The types of tests allowed within each node are identicai to the propositions described 

above for the d e  based representation. Commonly a distinction is made for decision kees 

with tests that create only two branches or that test more than one attribute. When nodes 

have binary branching, the corresponding tree is referred to as a bina.ry tree. Trees whose 

nodes test against a singIe attribute are referred to as univariate trees; otherwise they are 

referred to as multivariate trees. 

To classi@ ë with a decision tree, the event vector is passed through the tree structure, 

starting with the root node and contiming until a leaf node is encountered. The class 

prediction within this leaf node is associated to the event. Occasionally, a test along this 

path cannot be performed because ë i s  underspecified. When tbis occurs, all the paths from 

the node in question must be taken. Once ali the relevant leaf nodes have been reached, a 

special function consolidates the predictions within t hese ieaf nodes into a single prediction. 

2.4 Control Requirements 

An on-Line classification task may place some optional constraints on how the classification 

algorithm may achieve its prediction. Three constraints wiU be reviewed: method of data 

access, Limits on resources such as disk and memory, and h a l l y  bits on the amount of 

time given for the task to complete. 

2.4.1 Data Access Constraints 

A comtra.int that may be posed on a classification algorithm is that it interact directly with 

a database management system. Historically, classification programs have been developed 

to interact with in-memoly datasets. The first step of these programs is to load a text file 

version of the dataset into memory. This approach limits the ability to support classifi- 

cations against the large databases that are being collected [39]. One way to overcome 

t h  limitation is to make the classification algorithm more database-aware by fetching each 



record fi-om the database as required- This loosely-coupled approach however, often encoun- 

ters poor performance due to the copying of records over a network into the application's 

address space [2]. A tightly-coupled approach, instead, pushes some of the processing di- 

rectly to the database management system (DBMS). This approach benefits in part fiom the 

extensive research into database query optimization. In the case of a database system with 

SQL support, the use of the GROUP BY operation can help to quickly Iocate sumar ies  [47]. 

Already, a SQL Interface Protocol (SIP) is proposed in [40] to assist data mining algorithms 

with the use of tbis operator. As more powerfd srimmarization operations, such as the 

CUBE proposal in [31], become available within database query languages, the requirement 

of direct interaction with a database management system will become more Likely, 

2.4.2 Space Constraints 

The possible constra.int on data manipulation showed that it can  be important to know the 

space resources available to a prediction program. Other requirements for space resources 

include temporary structures that may s t r e d n e  an algorithm's procedures- While the 

resource capacities continue to grow, so does the amount of information being stored within 

these systems. If a classifkation aigorithm has insufEcient space to operate, it would be 

desirable for a space efficient version of the algorithm to take over the classification task. 

2.4.3 Classification Interruption 

The final constraint on how an o n - h e  classification algorithm achieves its task, is due to 

support for algorithm interruption. In some situations it is desirable that an interrupted 

classification algorithm be able to produce a partial result- When a person has interrupted 

a classification task that has already expended a si,&cant amount of time the person may 

require that a sub-optimal prediction be returned, rather than no prediction at au. This 

requirement would be expected in dynamic eovironments where the value of the prediction 

rapidly dirninishes with time. In these situations, it is better to make use of an algorithm 

that will make incremental progress towards the classification of the given event. 
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2.5 Performance Measures 

Now that the input, output and control requirements of an on-line classification algorithm 

have been described, a set of measures is now presented that wiu rank the performance of 

these dgorithms. The main gauges of a knowledge based on-line class~cation algorith 's 

success, are its accuracy, speed (time), resource (space) consumption, and the understand- 

ability of the their operation and result [41]. 

2.5.1 Accuracy 

An on-line classification algorithm must be accurate. This gauge of success is commonly 

stated as the minimization of incorrect classifications, or error rate [68]. If on average, 

algorithm Ai misclassifies every tenth event based on dataset D y  then the algorithm is said 

to achieve an error rate of 10% on this dataset. If we find an algorithm Aq that achieves an 

error rate of 5% for this same dataset, then algorithm Ap is said to be more accurate than 

algorithm Al on dataset D. 
To empirically determine which algorithm is generally more accurate than another al- 

gorithm, it is comrnon practice to gather a substantial number of datasets with a variety 

of characteristics. While, no definitive Est of benchmark datasets bas been composed, a 

significant number of commonly tested datasets has developed over t h e  [51]. 

Aside from general accuracy, another common measure of accuracy focuses on the algo- 

rithm7s sensitivity to certain 5eal world" characteristics. The accuracy of algorithm A?, for 

example, may quickly degrade when many irrelevant attributes are present wit hin datasets. 

An understanding of this sensitivity can help with the assignment of a particular algorithm 

to a particular task. Aside from irrelevant attributes other LLreal world" characteristics t hat 

are known to impair the accuracy of classification algorit hms include: rnissing uttribu tes, 

underspeciifid euents, noise, missing values, and different proportions of numeric to symbolic 

attributes [9, 681. 

2.5.2 Running Time 

Even if a classification algorithm is very accurate, it may be unusable if it achieves its 

result too slowly. The parameters that cornmonly impact the ninning t h e  complexity of 

an on-line classifkation system are the number of records in the dataset (n), the number of 

attributes in the dataset (m), the number of instantiated attributes of the event vector (lq), 



the proportion of numeric to symbolic attributes, and the size of each attribute7s domain 

d. Some algorithm's rnay take less time for large n while others rnay be more appropriate 

for large m or 1 - To get an understanding for an algorit hm's time complexity a theoretical 

worst-case analysis is commonly reported. [Il ,  211. Less cornmon is the use of empirical 

test hg. 

2.5.3 Space Usage 

As aheady discussed, an algorithm's space complexity rnay be crucial to the appkability 

of the system in certain domalns. When a classification request occurs against a very 

large dataset then it rnay be crucial that an dgorithm have small space requirements. The 

parameters that commonly impact this measure are: the number of records n, and the 

number of attributes m. The rneasure of space compiexity commonly excludes the size of 

the dataset. This assumption helps in the selection of algorithms that act directly against 

DBMS resident datasets. If a copy of the dataset is created (such as in local memory) it is 

understood that the space complexity will bounded from below by R (nm). 

2.5.4 Understandability 

Aside £rom the three objective measures of accuracy, riinriing time and space usage, some on- 

line class~cation tasks will also measure the unders tandabili ty of an dgorit hm's prediction. 

Some settings rnay also be interested in the understandability of the algorithm itself [68]. 

Usually, this performance measure is important in settings were people have to integrate 

their extensive background knowledge to the problem- 

As could be expected, understandability of the predicted resdts and of the process used 

to achieve this result is mostly a subjective qualitative measure. However, some guidelines 

have been developed in both areas. For example an algorithm whose operation is transpârent 

and straightforward is preferable to a complicated black box algorithm. An understandable 

algorithm provides a person with some information with which to judge its suitability to the 

particular task at hand. This is also true of algorithms that presents a clear rationale for 

their prediction. Of the reviewed representations low order IF-THEN rules have been found 

to be generally understandable- Low order instance-based results, such as in case based 

reasoning, may instead allow the  person to work from concrete examples. Finally, within a 

specific representation language, there rnay be objective measures of simplicity, such as the 
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number of proposition within a rule, that can be measured and reported. 

2.6 Related Issues 

Several general requirements of prediction tasks, while closely related to knowledge based 

on-line classification, are not within the scope of this framework. Three of these requirements 

include: regression, bat ch cIassificat ion and system guided classification. 

2.6.1 Classification versus Regression 

As described in Section 2.5, a classification algorithm's accuracy is gauged by the percent- 

age of rnisclassified instances. This measure of accuracy is certainly appropriate when the 

prediction is on symbolic values. When the value to be predicted however, is Ecom a numeric 

attribute, accuracy may instead be rneasured by the average distance between the predicted 

value to the true value- Rather than minimizing the error rate, the goal now is to mininiize 

this distance [34]. This measure of accuracy has been well studied in the field of statistical 

data analysis under the name of regression [20]. The focus of the current framework will be 

liniited to classification because it provides a simpler measure of accuracy that still captures 

a siflcant number of prediction tasks. In the future, there may be interest in the study 

of on-line regression, 

2.6.2 On-Line versus Batch Classification 

Another separation of classification tasks can be drawn between tasks that require a predic- 

tion for a single event, or for a large number of events. Historically, classification research 

bas focused on the latter case. Because of the focus on the class prediction of many events, 

classification has therefore been generally divided into two phases. The learning phase de- 

velops a predictive mode1 fÎom a training set while the testirtg phase uses this mode1 to 

quickly predict the class for any given event [9, 58, 481. This approach will be referred 

to as batch class$cation. Zn batch classification tasks, the data set D and class attribute 

C are known weU in advance of the classification request for several eveat vectors- Rather 

than measuring the amount of time required to class3y a single event, batch classification 



tasks measure the amount of time required by the Iearning phase. Once this phase has 

constructed a classifier, the time required to class* an event based on this structure is 

assumed to be minimal. Therefore: while a batch-classification algorithm may be applied to 

on-line classScation tasks, its runaing time performance rnay not be appropriate for on-line 

classification tasks. An algorithm that is specifically targeted to on-line classification, has 

the advantage of not having to develop a classifier that will classify every event Bom the 

domain. 

2.6.3 Data Driven vs. System Guided Classification 

The h a l  separation of classi£ication tasks to be reviewed is between those tasks that require 

guidance about which values to instantiate within the event vector ë and those tasks, as 

described in the fmmework above, that can proceed without this guidance. This separation 

of tasks assumes that instantiating a l l  the d u e s  in the event vector is either not possible 

or not trivial. If all the values in the event vector are instantiated, then there is no need for 

guidance. There are situations where the cost and time of acquiring specXc data d u e s  have 

to be weighed for the classifkation task. In the Animal Kingdom example, it rnay be more 

time consuming (or costly) to determine the number of teet h that a large animal may have 

inside its mouth, than it is to determine the number of Limbs it possesses, or to esthate 

the ;Lnimals mouth shape. On the other hand, even though it is not trivial to get this 

information, the number of teeth may happen to be a very valuable piece of information to 

make an accurate prediction. The question now is who determines what values to instantiate. 

In data driven interaction the agent is assumed to be competent enough to make this 

determination [64]. In system guided (or active) classifcation, the algorithm has the ability 

to suggest which attribute would be the next best value to instantiate [32]. Decision 

trees structures are an example of a system guided classifier. The root node describes 

which at tributevalue would like produce the mos t predictive classification. The focus of 

the fiamework described in this chapter is for settings that require efficient data driven 

classification. The reason for this restriction is that investigations into system guided on- 

line classification may simply require the addition of a separate analysis engine. Therefore, 

research into a data driven approaches may still be of value to future investigations into 

interactive classification algorithms. 



2.7 Chapter Summary 

This chapter presented a hamework for knowledge based on-line classiiication. To facilitate 

the discussion a simple Animal Kingdom example was k s t  presented. The example was then 

used to present the input, output and interna1 control requirernents for these tasks. Four 

performance measures were t hen described: accuracy, t ime, space and unders tandability. 

Finally, the description of the fiamework concluded with a review of three areas that are 

closely related to on-line classification, but out of the scope of this thesis: regression, batch 

class~cation and system guided classification. 



Chapter 3 

Related Work 

Now that a framework has been proposed for knowledge based on-line classification tasks 

and dgorithms, this chap ter reviews several current classification algorit hms t hat may fit 

into this Erarnework. The survey focuses on machine learning research because of its focus on 

met hods t hat are compatible wit h human reasoning. Wit hin machine leaming, classification 

dgorithms cornmody make use of either a Iazy instance-based or an eager model-based 

approach. An alternate approach that may be more suitable to on-line classihcation tasks is 

the use of Iazy induction with dynamic relevance analysis. This s w e y  provides an overview 

of the three approaches. This includes some history of the research, key computation details, 

and summaries of their general performance results. 

The survey will be presented in the following order. Section 3.1 presents an ovemiew 

of the lazy instancebased approach to classification, with the IB1 algorithm [3] as the 

representative algorithm. Next, Section 3.2 presents the eager model-based approach to 

classification, with top-down induction of decision trees [57] as the representative technique. 

Finally, Section 3.3 presents the more recent approach of lazy induction with dynamic 

relewce testing. Within this section two techniques are presented: local induction of 

decision trees and l z y  model-based induction. The DBPredictor aigorithm presented in this 

thesis fa& into the latter category. This chapter, however, presents the LazyDT algorithm 

as the representative for lazy model-based induction. 



3.1 Instance-Based Learning 

One of the simplest methods to predict an event's class, is to recall the past observations 

that are most similar to this event and to base the prediction on most common class within 

this group This approach h a .  been extensively used by instance based learning (IBL) al- 

g o r i t m .  In this section the II31 [6] instancebased leaniing algorithm is highlighted. This 

algonthm may be used against datasets with numeric and symbolic attributes, and in the 

presence of missing at tribute-values. Generally IBL algorit hms are fast but t heir accuracy 

is susceptible to certain %al worldn characteristics such as the presence of irrelevant at- 

tributes. F indy ,  while it is easy for a person to understand how the algorithm operates, 

the low-level represent at ion of the predict ion's rat ionale can be difficult to interpret . 

Example 3.1. The following example will show how to predict whether animal ë can fiy 

via instance-based classiikation. Assume that ë is a three dimensional vector which de- 

scribes the animal's weight, volume and form of locomotion, ë = [weight = 0.7,volume = 
0.4, locomotion =?]. The fkst step of an instance-based classifier is to evaluate the similar- 

ity of ê and all (n) dataset records. Since al l  the predicting attributes in this example are 

nurneric, the similarity can be expressed in terms of the geometric distance between ë and 

the other records. The figure below presents the relative location of the seven most similar 

records to ë. 

Weight 

I 
£lies. 

.swims 
2 " 

0 
flies swims 

I .-~ Volume flies* 

Becauçe both the most similar record to ë and the larger proportion of the seven most 

similar instances have class '%yn, by the simi.larity assumption, an IBL algorithm would 

predict; that ë also aies, 

cl 

One of the eadiest applications of the simidarity assurnption to a classification algorithm 

is found in the k-nearest neighbour (k-NN) algorit hm proposed by Cover & Hart, 1967 (171. 



Since then, the field of machine learning has incorporated this technique within instance- 

based learning (IBL) algorithms. Samples of these algorithms include IB(1 thru 4) [3] and 

PEBLS [16]. O ther related approaches include memory-based learning [66] and case-based 

reasoning [44]. 

Given a S i m i l a r i t  y O function that outputs a numeric-valued similarity, an IBL algo- 

rithm will calculate the similarity between an event vector and every record (instance) in the 

dataset. Based on the similarity values assigned to each record, a Predictiono function 

WU return the prediction for the IBL algorithm. The similarity and prediction functions for 

the IBL algorithm [6] are presented below. This implementation was used in the empincal 

studies reported in Chapters 7 and 8. 

3.1.1 IB 1's Similarity Function 

The basis of IBlYs similarity function is the inverse of the Euclidean distance between two 

vectors. This function is shown in Equation 3.1 where the attribute diflerence function 

6(xi,yi) is set to (xi - The similarity between vectors 5 = [O, 11 and = [1,0], for 

fi - 0.71. AS the two vectors move closer example, would be 1/J(0 - 1)* + (1 - = 1 - 
to each other (and the distance between them approaches O) this similarity rneasure will 

retuni a larger numeric value. This function is undefined when the distance between the 

two vectors is equal to O, so the distance is not allowed to become any smaller than some 

smaU E. 

As defined, the current Similari ty  () function is appropriate for datasets that contain 

numeric attributes with Little or no variation in their ranges. Several updates to the attribute 

merence function 6()  are presented that will d o w  the IB1 algorithm t o  be applied against 

datasets with numeric attributes with large variations in their range and also when attributes 

are symbolic or contain missing values- 

Normalization of Numeric Values 

When a dataset's numeric attributes contain large range variations, the current attribute 

difXerence function 6() favours attribut es wit h smaller numerical ranges. To counteract 

this arbitrary bias, the ranges of numeric attributes are f is t  normalized. Commonly the 



normalized range is set to ( 0 J )  with F'unction 3.2. 

Example 3.2. This example presents the benefit of numerical attribute normalization. 

Assume that ë = [50,0.5], where the range of Al is [0,100] and the range of A2 is the 

much smaller [O, 11. Next , assume the existence of the following two records in the dataset, 

6 = [45,0.1] and F2 = [60,0.6]. Notice that ë is significantly different than fi on attribute 

A2 (Le. 0.5 vs. 0.1). The raw similarities are presented below: 

Simz'l arit y (ë, Fl) = 1 = 0.2 
,/(50-45)~+(0.5-0.1)~ 

Simil arit y (ë, F2) = 1 = 0.1 
d(50-60)~+(0.5-0.6)~ 

Based on these evaluations, ë appears 

However, when Al is normalized to the 

Similarity(ë, 6) = 

Simil ari t  y (ë, F2) = 

Based on these normalized calculations, 

asdesired. Cl 

Nonnumeric Attribut es 

to be more s i d a r  to r f  than to T2, (0.2 > 0.1). 

range (O, l), the similarities change to 

ë' is now significantly more similar to F2 than to fi, 

The b a l  ripdates to the attribute clifference function 6 0  are shown in Function 3.3. These 

changes to the huiction dlow for datasets that possess either symbolic attributes or missing 

attribute values. For symbolic attributes, a simple overlap metric is added to the function. 

When two symbolic values do not match, a difference of 1 is returned, and otherwise, a 

difference of O (identical) is returned. For missing values, the dinerence will be set to the 

maximal separation. When one value is not missing, Say for exmple it is equal to 0.2, then 

the other value is assumed to be 1.0 (for a ditference of .g2). 

max(xi - 0,1 - if Yi is missing 

max(yi - 0,1 - yi)2 if Xi is mksing 

if both values are missing 

(xi - yiI2 i is numeric 

symbolic 
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Open Questions 

Two open questions remain before this function meets all the requirements of the on-Line 

classification framework. 

First, it is unc1ea.r how to support attributes with concept hierarchies. One possible s e  

lution would be to assign a Merence quotient E [O, 11 to every attribute value and hierarchy 

node pair. This d u e  would represent a logical Merence between each possible combina- 

tion. For example a diet of "banana" should be presented as more similar to a general diet 

of Fhit than when compaxed to a diet of "tuna". 

6(A4 = banana, Aq E F ~ u i t s )  « 6(& = banana, 4 = tuna) (3.4) 

These quotient values may be d y n d c a l l y  determined, at some expense, with the value 

difference metric (VDM) proposed by in [66]. 

Second, it is unclear how to tightly-couple the updated similarity measure with an SQL- 

lïke database interface- No research was located that addresses this question and no solution 

is clearly apparent. For now, a loosely-coupled solution which copies every record into the 

application space, may be required. 

3.1.2 ml's Prediction Function 

Given the similarity function just described, an instance-based algorithm can calculate the 

similarity between the event vector ë a n d  all the records of the dataset. Once this has been 

accomplished a prediction function completes the classification task by basing the prediction 

on the records that have been found to be most similar. One possible prediction b c t i o n  

is to return the class of the 1-nearest neighbour, with ties in similarity being resolved ran- 

domly. IB17s prediction function however, bases its prediction on the k most similar records 

(k-nearest neighbour). The value for threshold k is commonly optimized for the domain in 

question. 

3.1.3 Performance Characteristics 

IBL algorithms perform very well dong the measure of running time, but their accuracy 

sufFers under some specific conditions. SpecXcally while accuracy can be very good for 



CHAPTER 3. RELATED WORK 

numeric datasets, it can also degrade for datasets with irrelevant and symbolic attributes. 

Finally3 while the met hod used by these algorithms is simple to understand, understanding 

the meaning of its instancebased prediction representation can prove to be diflicult against 

some datasets. 

Time and Space Complexity: The t h e  complexity of the L131 algorithm against 

an on-fine classification task is bounded by O(nm) ,  for datasets with n records and rn 

attributes. Two passes of the dataset are likely. The f is t  determines the ranges of the 

numeric attributes so that normalization can occur. The second pass then evaluates the 

similarity of the normalized records to the event vector. If the k most similar records 

are stored through this second pass, then no other pass is required. IR the worst-case, the 

calcdation of the Similarity () function requires m computations of the attribute ciifference 

h c t i o n  cf() per record. If we assume a fked cost of S() thea the total time complexity is 

bounded by O(nm). Finally, given that k records will be stored to base a prediction, the 

space complexity of this algorithm is bounded by O(km).  

Accuracy: The low time complexity of Il31 unfortunately cornes at  the expense of in- 

accuracy in the face of irrelevant attributes, noisy values and symbolic values. Extensions 

' - C U -  to IB1-like algorithrns, such as IB3, IB4 and PEBLS [3, 161, have been proposed to ci* 

vent these problems. Examples of these extensions include IB3's use of a probation period 

to locate reliable instances: B4's use of attn'bute weight settings to deemphasize irrelevant 

attributes and PEBLS use of the value distance metric (VDM) to make the attribute dif- 

ference function a() more informative for symbolic attributes. The significant increase in 

computational complexity of these updates however, make t hese updated algorithms more 

applicable to batch classification than to on-line classification tasks. 

Understandability: Instance-based dgorithms achieve a mixed response on the measure 

of understandabifity. The operation of these algorithms is easy to understand but their 

instance based prediction can be difiicult to interpret. A prediction for example, that is 

based on twenty five dataset records each of which is described by fifty attribute-values may 

be very difficult to interpret even by a domain expert. If on the other hand, a prediction 

is based on one to five records, each with ten values, an expert may be able to formulate 

a reasonable hypothesis about why these particular instances support this particdar ciass 



predict ion. 

3-1.4 Summary 

IBL dgorithms apply the similarity asslimption to classification tasks. Once an event vec- 

tor's similarity has been evaluated against all records in the dataset the k most relevant 

records (instances) are returned. This review presented the IB 1 algorithm. Its similarity 

fuaction supports datasets with numeric attributes (including those with wide differences 

in t heir ranges), symbolic attributes and missing at  tributc-values. While the B i  algori thm 

achieves a linear d n g  time bounded by O(nm), its accuracy is vulnerable to some spe- 

ci& types of domains. Several methods have been proposed to address this problem, but 

they significantly increase the dgorithm's riinning time complexi@ Findy, this approach 

has the further advantage of being simple to understand, however in datasets with large 

numbers of attributes, the instance-based representation (of k records) may not provide a 

clear justification about a particular class prediction. 

3.2 Top-Down Induction of Decision Trees 

Another highly developed method of classScation is the construction of decision trees by 

way of topdown induction [9; 581. Section 3.2 already reviewed the structure of decisions 

trees, this section will instead review how to create these structures with top-down induction. 

This will include a brief review of lieuristic measures. Finally, the general performance of 

these dgorithms will be compared and contrasted to  the performance of ins tance-based 

algorithms. Generdy, decision tree algontbms are slower than Il3 1-like instance based 

algorithms, but this extra time allows the approach to achieve more robust accuracy and 

produce a higher-level representation. 

Top-down induction of decision trees has been extensively researched in the fields of Sta- 

tistical Data Analysis and Machine Learning, and continues to be actively investigated [52]. 

One of the f i s t  algorithms to construct a decision tree was the Concept Learning System 

(CLS) by Hunt et al, 1966 [37]. The standard references on the topdown induction of 

decision trees (TDIDT) are Breiman et al's "Classification and Regression Trees" [9] and 
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Quidan's description of the C4.5 algorithm in "Programs for Machine Learning" [58]. The 

former reference is fiom a statistical data analysis perspective, while the latter presents a 

machine learning perspective to the problem. 

3.2.1 Tree Construction Process 

The process of building a decision tree from a data set D is known as tree induction. 

The major challenge t o  th% process is to locate an accurate tree from among the many 

possible trees. The use of brute force to £hd a tree that minimines some measure, such as 

accuracy, is an NP-complete problem [38]. A data set with just rn = 4 attributes each of 

which has d = 2 distinct values (Le. binary) can produce approximately 1.5 billion1 binary 

univariate trees. As in other areas of artificial intelligence, TDIDT algorithms work around 

this problem by investigating a much smder  space of trees and using a heuristic function to 

locate a "goodn solution. SpecScalIy, TDIDT dgorithms use a heuristic evaluation function 

to guide a greedy tree creation that starts at the root aode and proceeds towards the leaf 

nodes (Le. top-down)- While the algorithm could be extended to search dong several 

paths (beams) or with some limited lookahead, these extensions have not shown improved 

accuracy resdts [52]. 

A TDIDT algorithm creates decision trees by adding either intemal nodes or leaf nodes to 

the tree structure starting from the root node. To ensure that TDIDT algorithms terminate, 

internal nodes must continudy divide the dataset into smder  sets of records. This c m  

be accomplished with a constraint that tests be nontrivial and non-redundant [57]. A test 

such as Al 5 1.5, for example would not be allowed if a test for dl 5 2.0 has a.lready been 

placed higher up in the  tree. This divide and conquer process continues until a stopping 

criterion forces the creation of a leaf node. Two minimal rules are required. The k s t  d e  

forces the creation of leaf node when no more internal nodes may be added. The other rule 

creates a leaf node when no more records are available in D to support further branching. 

The prediction withùr a leaf node is based on the class distribution of the records in D that 

reach tlris node. If most records that reach a leaf node have a class of "Fly", but some 

records also have a class "Swim" , then this information wodd be refiected in the prediction 

found within the leaf node. 
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The process of tree construction just described is particularly suited to environments without 

missing attribute, noisy entries or irrelevant attributes. If this is not the case, such as with 

"real-worldn datasets the algorithm will often place a leaf node beyond the locatioa of 

the most accurate leaf node[56]. To counteract the effects of this overfitting, two pruning 

techniques have been found to be effective, The pre-pnrning technique expands the stopping 

criterion to stop tree growth earlier [57]. One such rule would be to avoid leaf nodes that 

match too few records [67]. The intuition of this d e  is that predictions based on too few 

records become unreliable. Empirical evidence however, has shown that pre-pruning is not 

as effective as the post-pnrning technique [9, 491. In reduced-emr post-pnining, the decision 

tree is generated with the normal stopping criterion but the tree is then tested againçt a 

portion of D that was set aside. Internal nodes of the tree are converted into leaf nodes, if 

an improvement in accuracy is noted on the records that were set aside. 

3.2.2 TDIDT Evaluation Functions 

The general search technique jus t described above requires the existence of heuris tics (eval- 

uation) functions to guide the generation of the decision trees. Because no backtracking is 

used by these (greedy) dgorithms, there is a strong incentive to choose a good heuristic. As 

with instance-based algorit hms, the evaluation function has been shown to si@cantly im- 

pact the accuracy of the resulting decision tree [50]. In the case of decision tree algorithms, 

evaluation functions at tempt to return tests that most resemble the underlying structure of 

the domain. Chapter 6 provides more details about evaluation functions that may be used 

by top-down induction- For now, two categories of evaluation functions are briefly reviewed, 

those based on information theory and those based on class distribution separation. 

Impuri ty  Measures 

The group of functions most commonly used to guide top-down induction, are based on 

information theory [65].  Their strategy is to  reduce the randomness or impurity over ail the 

nodes of the decision tree. Within this category the best known function is entropy function, 

Function 3.5, proposed by Quinlan2 [55]. The function assigns an impurity measure to each 

where O log, O = O 



class probability distribution vector. Because the base of log is set to 2 the result of this 

measure is expressed in terms of bits. 

Based on this measure of a node's impuriQ, the induction process attempts to select 

tests that minimizes the impurity of the resulting class distributions. 

Class Separation Measures 

An alternative to impurity based evaluation h c t i o n s  are functions that q u a n t e  the dis- 

tance between class probability distribution vectors. Less attention has been given to this 

class of evaluation function although several benefits over irnpurity based functions have 

been documented [26]. The greater the distance reported between two class probability 

distribution vectors by distance function 6(Z, B), the greater the likeiihood that the corre- 

sponding test matches the underlying structure of the domain. Two specific rneasures exist, 

one based on the angle between class probability vectors, O R T ( )  [25], and the other, based 

on the Euclidean distance between two class distribution vectors, DI() [67]. 

3.2.3 Performance Characteristics 

Because of the significant differences in the approaches used by TDIDT and IBL algorithms, 

it is not too surprishg that their performance characteristics are also significantly differ- 

ent. The main trade-off occurs between accuracy and time. T D D T  generally achieves 

more robust accuracy than IBL, but this improvement cornes at the expense of increased 

t h e  complexity. Findy, TDIDT algorithms also return more concise justifications of their 

predictions, but Lf3L algorithms are simpler to understand. 

Time and Space Complexity: The previous section on IBL algorithms showed that 

their time complexity is bounded by O(nm) and their space complexity by O (m), for tasks 

with n records and m attributes. The time complexity for top-down decision tree algorithms, 

on the other hand, is bounded by 0(nm2) when attributes are symbolic and 0(n2m2) when 

attributes are numeric [21]. The increase complexity for numeric domains is due to the 

sorting required to locate the appropriate split [58]. While t here have been several proposals 

to reduce the complexity of TDIDT dgorithms with respect to rn and n, these updates have 



resulted in a Ioss of accuracy [Il]. Finally, the space complexily of TDIDT algorithms is 

bounded by O(nm) [57]. 

Accuracy: The increased time and space cornplexity of decision tree algorithms is bal- 

anced by their increased accuracy. This improvement however is not universal. Domains 

that particularly benefit from the use of decision trees are those with with many irrelevant 

attributes and with noisy attribute-values [52]. 

Understandability: Finally, the understandability of decision tree based results also 

differ kom that of instance-based algorithms. TDIDT algorithms are not as simple to 

understand, as IBL algonthms, particularly when a cornplex evaluation function is used. 

The prediction result of TDDT algorithms however, c m  be easier to interpret than an 

instance based results. The path of the decision tree that is followed by an event to make 

the prediction, elucidates which attributes contributed in a significant way to the prediction. 

3.2.4 Summary 

Top down induction of decision trees (TDIDT) is a well understood approach to classifi- 

cation, The survey of this approach focused on the production of binary univariate trees. 

While locating the most predictive tree is an NP-coqlete problem, the use of a greedy 

divide and conquer strategy has been shom to be very effective at approximating the opti- 

mal tree. To guide this process several heuristic evaluation functions have been developed. 

-When compared to lazy instance-based algorit hms, decision tree algorit hms are generally 

slower but more accurate. The running time is significantly longer in numeric domains while 

the accuracy is superior in the presence of irrelevant, noisy and symbolic attributes. Finaily, 

the understmdabiliQ of TDIDT algorithms and their prediction result &O diEers from IBL 

algorithms. The tree path based result, allows for simpler interpretation of the reasons for 

the given predict ion, however , the algorit hm itself, part icularly when used in conj unc t ion 

with a cornplex evaluation functions, is not as simple to follow. 
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3.3 Lazy Algorithms with Dynamic Relevance Testing 

When choosing an algorithm for an on-line classification task, IBL dgorithms such as Il31 [3] 

and TDIDT algorithms such as C4.5 [58] provide performance results that are at the o p  

posite extremes of the time and accuracy dimensions. Two recently proposed techniques 

integrate characteristics of both IBL and TDIDT to achieve a middle ground of performance 

when applied to on-Luie classification. Local induction of decision trees [30] is a hybrid of 

IBL and TDIDT, that &st gather a substantial portion of similar instances, and then de- 

velops a decision tree based on this subset of records. Lazy model-based induction [29, 461, 

on the other hand, is an integrated combination of l a q  learning and model-based induction 

that develops ody  the portion of the mode1 required to classify the event vector. DBPre 

dictor, uses this latter technique. Like TBL dgorithms, both techniques focus their effort on 

the classification of a particular event vector. This characteristic is commonly associated 

with lazy Iearning algorithms [4). Both techniques however, also make use of the dynamic 

relevance analysis of top-down induction algorithms to determine which attributes are rel- 

eva& to the task at  hand. Dynamic relevance analysis further ensures that an algorithm 

focuses its effort on the classification task at  hand rather than tryïng to locate the globdy 

predictive attributes to facilitate the classification of all possible events. 

m e  both techniques a ~ e  reviewed, more coverage will be given to lazy top-down in- 

duction. The reason for this bias is due to the latter's generation of a knowledge-based 

justification to their predictions. Within the review of lazy model-based induction, greater 

emphasis is given to the LazyDT algorithm because the DBPredictor algorithm is described 

in si@cant detail in Chapters 4 t hru 6 .  

3.3.1 Lazy vs. Eager Algorithms 

Recall that TDIDT dgorithms such as C4.5 require a sipificant amount of effort to deveIop 

a complete classification tree before they can make a prediction. Similarly, IBL algorithms 

such as IB4, pedorm a signification amount of processing to counter the shortcornings of 

the IB1 algorithm. The two proposed techniques of local induction of decision trees and 

lazy top-down induction, on the other hand, perform lit tle global processing to achieve their 

classification result. They instead possess the lazy leaming characteristic of deferring all 

processing, until they receive classiiication requests [5]. 

Most of the computation expended by TDIDT algorithms is directed at the development 



of a complete classification model in the f o m  of a decision tree. In doing so, they are able 

to determine which attributes are relevant to the classification task, and with the use of 

pruning c m  &O avoid dependence on unreliable records. This style of classification is 

refenced to as eager learning because i t  eagerly develops a complete model in anticipation 

of a large batch of future classification requests (41. When applied to on-line classiiication 

tasks however, most of their computation occurs in portions of the decision tree that are 

unrelated to the classification task at hand. A purely Iazy algorithm such as IB1, on the 

other hand, carefully stays within the scope of each individual on-luie classification task it 

receives. 

Unfortunately, the accuracy of k nearest-neighbour based algorithml such as ml, is 
sensitive to irrelevant attributes and noisy records. To mitigate for these effects, several 

methods have been proposed to locate both the relevant attributes and unreliable records 

of a dataset, The current methods however, eagerly develop a global model of relevance and 

reliability that is appropriate for a l l  future classification requests. Ln the case of attribute 

selection (feature selection), current methods require processing in the order of 0(n'm2) 

before they can proceed to the classification task at hand [22]. A purely lazy algorithm 

for on-line classiikation should instead determine which attributes are relevant and which 

records are reliable, strictly to the prediction of the given event. 

3 .32  Local Induction of Decision Trees 

One way to construct a lazy algorithm that also perfonns dynamic relevance analysis is 

to create a hybrid algorithm that rnakes use of both instance-based learning and decision 

tree induction. Such an algorithm has been proposed in [30]. While the algorithm was 

originally targeted at  'Chteractive data mining" , its approach fits the fkarnework for on-line 

~Iassification, Local induction of decision trees has three key steps- First, it retrieves a 

substantial number of records that are simdar to the event vector, in O(nm) to 0(n2m) 

tirne. N a t ,  the dgonthm induces a mode1 (in this case a decision tree) from this set of 

records in 0(km2) to 0(k2m2) time, where k < n. Finally, the algorithm uses the induced 

model to c l a s se  the event vector. In a sense, the a lgor i th  makes use of ZBL to constrain 

its effort on the task at hand and makes use of TDIDT to perform dynamic relevance 



andysis. The accuracy of this algorithm appears to be promising. Initial experiments show 

the algorithm to be superior to decision tree algorithms. The running t h e  of the algorithm 

varies fkom a good O(nm + k2m2) to a poor 0(n2m + km2). 

Local Neighbourhood Selection 

One of the main challenges to local induction of decision trees is to dynamicdy determine 

the characteristics of the group of records from which the decision tree is to be based on- 

Each domain will likely require that a di.fTerent number of records be passed to the decision 

tree construction step. Two of the three proposed solutions are siimmarized. Finally because 

of its use of an IBL cornponent, it is noted that support for concept hierarchies and tightly- 

coupled RDBMSs interaction remain open questions. 

Two methods of dynamically determinhg the appropriate number and characteristics 

of the records passed to the decision tree step are considered. The "local induction voting7 

algorithm passes k sets of similar records to the decision tree step which then proceeds 

to produce k trees. The size of each set ranges korn 1 to k- To determine which class 

prediction to return, a round of voting occurs between all k trees. The "multilayer composite 

neighborhood" dgorithm, on the other hand, returns a single group of records. The group 

is identified by selecting records that are not oniy similar, but are similar in ways that also 

include other records. This process however requires a worst-case3 riirining time of O (n2m)- 

It is unclear whether this solution supports undiscretized numerical at tributes. 

Finally, because of its use of an instance based 1ea.rn.ing component, this lazy induction 

dgorithm shares the open issues of IBL a i g o r i t h ,  discussed in Section 3.1.1, with respect 

to support for concept hierarchies and tight ly-coupled RDBMS support. 

Performance 

Because this is a new algorithm, its performance is not yet f d y  understood. However, 

initia. empirical results show that the algorithm achieves superior accuracy when compared 

to decision tree algorithms. Also, the running time is reported to be "similar" to D L  
algorithms. Findy, with respect to understandability, it is unclear what representation is 

used to support the classification result. Local induction of decision trees wiU infierit the 

representation problems of IBL presented in Section 3.1.3. 

3 ~ h i s  c m  be lowered to O(mn logm-' n) compIexity for narrow (srnatl m) data sets 



Local induction of decision trees is a promising approach to on-line classification. With 

its combination of IBL and TDIDT algorithms, the algorithm can focus its effort to the 

classification task at hand while being able to dynamicdy determine attribute relevame. 

The curent obstacles to its use includes its worst-case running time complexity of 0(n2m). 

Also, this approach inherits some of the difficulties encountered with IBL algorithms. These 

include the la& of a knowledge based prediction justification and the inability to interface 

directly to an RDBMS. 

3.3.3 Lazy Model-Based Induction: LazyDT 

Another approach to a lazy algorithm that performs dynamic relemce analysis is to con- 

tinually specialize the portion of the predictive mode1 that applies to the event vector in 

question. Two algorithms that make use of lazy model-based induction are LazyDT and 

DBPredictor. The LazyDT algorithm proposed in Fkiedman et al, 1996 [29] continudy 

specializes the portion of a decision tree relevant to the classification of ë. The algorithm in 

a sense, dynamically creates the path of the decision tree that the event vector would have 

taken, had an entire decision tree been constructed. The DBPredictor algorithm proposed 

in Melli, 1996 [46], on the other hand, continually specializes a probabilistic IF-THEN r d e  

that classifies the event vector in question. The remainder of this section focuses on the 

LazyDT algorithm and some of its open areas. The DBPredictor algorithm is presented in 

the next chapter. 

Overview 

LazyDT, Lazy Decision Tree, is a classification algorithm that retunis a class prediction 

supported by a path of a binary univariate decision tree. While LazyDT is a clear descendant 

of TDIDT algorithms, it M e r s  fkom these in several ways. Its most novel contributions 

are its lazy path generation and its variation of the entropy evaluation function. Also of 

interest, are its required discretization of numerical attributes, its use of a very conservative 

specialization step size and its use of one-level lookahead to break ties. 
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Example 3.3. Given dataset D, Pdirnensional event vector ë = [ai,, a2 = 5, a3, ?] and 

class attribute description A, = the LazyDT algorithm proceeds through the following 

steps. Because LazyDT operates only on discrete symbols, i t  first discretizes all numerical 

attributes in D. The next step of the algorithm is to create the root node of the W t u d  

univariate b i n q  decision tree. Several alternative nodes (hypot heses) are generated and 

then evaluated against a heuristic function. The nodes generated by LazyDT include tests of 

the form (Ai # vi). Nodes are then tested with a variation of an entropy() based evaluation 

function. The test that is deemed most predictive is selected. Next, another round of 

hypothesis generation and evaluation is performed. This process continues until a stopping 

criterion is encountered. When this occurs, LazyDT concludes by returning the tree path 

just generated and also returns the class distribution of the records in D that also reach the 

leaf node of this path. Below is a sample result which shows a path of a tree (in brackets) 

and its leaf node (far right) . 

The result can be interpreted to mean that because ël in not equal to alz or a ly  and 

because ë2 is not in the range [2,4], LazyDT predicts a class of = cl for event vector ë- 

The range [2,4] for attribute A2 wodd have been generated within the discretization step. 

O 

Discretization 

In settings where datasets have numerical attributes, LazyDTYs first step is to discretize 

these. Once the dataset has been discretized, its tree path can contain tests of similar format, 

regardless of the type of attribute they refer to. Several effective discretization a l g o r i t h  

are available [23]. LazyDT happens to use the algorithm by Fayyad & Irani, 1993 [25]. This 

algorit hm discretizes each numerical attribute independently f?om each other. Wit h the use 

of the entropy function, the algorithm recursively places cuts within the attribute, based on 

their ability to minimize the entropy of the resulting subsets. T t  proceeds in this fashion until 

the minimum description length stopping crit erion is met [61]. Because discret ization sorts 

the values of each at tribute, the running time of t his algonthm is bounded by O (na x n log n) . 
It is unclear whether discretization can be efficiently performed directly against a relational 

database and without having to physically change the values of the attributes. Ln Section 
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4.8 we propose a rnethod that avoids the need for discretization. 

Hypot hesis Generation 

The constraints imposed by LazyDT on its hypothesis generator is that it develop nodes 

for a univariate binary decision tree [12] that applies to event ë. To achieve this, each node 

performs a tme or f&e test against only one attribute. Within this kamework, LazyDT 

chooses to generates tests in the form of Ai # where wj E D a a i n ( A i )  except for the 

value that the value being used by the event vector, g.  For example, if there are d = 10 

unique values in the three predicting attributes of Example 3.3, the algorithm will generate 

and test 27 (3 x 10 - 3 x 1) root node hypothesis. The final path must contain fewer than 

27 (m(d - 1)) nodes. Support for hypothesis generation against attributes with concept 

hierarchies has not been proposed. In Section 4.8, we propose a method that supports 

concept hierarchies. 

Lookahead 

Early investigations of LazyDT7s performance discovered that many ties occurred between 

the possible paths. This may be due to its conservative hypothesis generation. Rather than 

greedily selecting a random node from arnong the winners, LazyDT performs a one-step 

lookahead, on dl nodes that achieve an anormation gain value that is within 90% of the 

highest value. If some nodes still tie, a random selection is performed from these. No results 

are reported on the impact on accuracy of this enhancement. 

To determine which of the several possible paths to commit to, LazyDT makes use of 

the entropy measure. Unlike the approach used by TDIDT algorithms to calculate the 

information gain along both branches of a test, LazyDT's evaluation function measures 

the change in entropy only along the path that the event vector will follow. Because a 

cornparison of this approach has not been performed, Chapter 6 explicitly presents both 

types of evaluation function calculations in greater detail. We refer to standard test as 

sibling-sibling and LazyDT's as parent-child. Chapter 7 then reports ernpirical results which 

indicate that the parent-child variation of the evaluation function degrades, rat her than 

improves, a classifier's accuracy. 



Oversp ecializat ion 

LazyDT stops developing the path of the tree when either no more information can be 

inferred from the domain (Le. lack of dataset records or lack of information about ë') or when 

alI the records in the dataset that reach the current node are all  of the same class. As with 

TDIDT algorithms, this approach wïll Likely lead to trees that overfit datasets which contain 

real-world characteristics such as irrelevant attribute, noise values and missing attributes. 

Section 3.2.1 reviewed the common use of pruning to overcome this problem. LazyDT's lack 

of a method to mitigate against oveditting is noted in [29]. Ln Section 6.5 we propose a 

simple pruning method to mitigate against overfitting and in Chapter 7 we report that this 

approach remedies DBPredictor's vulnerability to overfitting. 

Performance 

Because LazyDT is a new dgorithm, its performance is not yet fully understood. Initiai 

empirical results however, show that the algorithm may be more accurate than decision tree 

algorithms. This accuracy is achieved at the expense of greater computational complexity 

than TDIDT algorithms. Finally, its path based result provides informative justification of 

the prediction. 

Accuracy: The initial research into LazyDT's accuracy shows that it may be more 

accurate than C4.5r5. When tested on 28 datasets, the algorithm achieved a lower error 

rate than C4.5r5 on 16 (57%) of these datasets. In Chapter 7, we show that thk accuracy 

will lïkely extend to domains with irrelevant attributes and underspecified event vectors. 

We also show the relative performance to the IB1 algorithm. 

Time and Space Complexity: The t h e  required by LazyDT to c lasse  an event 

vector in a domain that does not need discretization is stated to be bounded by O(nmd) ,  

where d is the largest number of unique values in any given attribute. This appears to 

be incorrect, however, no detailed analysis is available in [29] to formally test this claim. 

Briefly however, we saw in Example 3.3, that the path of the result may contain up to rnd 

nodes. Further, mcl - i hypot hesis will be generated and tested at node i, assurning that no 
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Iookahead is performed. Therefore, the maximum number of hypothesis that can be tested 

is < m2d2. When the time cornplexity of discretization is added the time complexity of 

LazyDT appears to be bounded by O(mn logn + nm2dL). The analysis of DBPredictor in 

the Sections 4-12 and 5.4 will help to substantiate this informal claim. Since decision tree 

algorithms that also perfonn an initial discretization step achieve a lunnuag time complexity 

of O(rnnlogn + nm2), LazyDT appears to require a longer ninning time than TDIDT 

algorit hms. Findy, no space complexity or timing comparisons are provided. Section 5 -4 

indicates that LazyDT's space complexity is Likely bounded by O(nrnd). 

Understandability LazyDT returns a classi£ication that is supported by a path through 

a mivariate binary decision tree. This result c m  d o w  a person to understand the rationale 

for the predic-tion, and make some informal decisions about the prediction's soundness. 

Because the interna1 nodes test for inequality, the path appears to be interpreted by negative 

information. For example, animal ë may be predicted to be mammal because it does not 

have feathers and was not born from an egg. It is uncleax whether a more positive statement, 

such as animal ëlikely being mammal because it drank milk as a child, rnay be more effective. 

Finally, no information is available on the length and make-up of the generated paths to 

determine how concise or unwieldy they may be. 

Summary 

Lazy topdown induction is a promising approach to knowledge base o n - h e  classification 

tasks. With its lazy version of model based specialization, this approach focuses its effort to 

the classification task at hand and dynamically performs at tribute relevance analysis. The 

LazyDT and DBPredictor algorithms rnake use of this approach. This review described 

some of the open questions of this approach that are investigated within this thesis. The 

model which the LazyDT algorithm specializes is a binary univariate decision tree. Lnitial 

empirical resdts support the claim that the algorithm achieves greater accuracy than the 

C4.5r5 decision tree algorithm. Due to its conservative hypothesis generation and one- 

level lookahead, the time cornplexity of the algorithm is greater than for decision trees. 

Future investigation will likely determine whether i ts conservative approach to hypo thesis 

generation, and its use of a lookahead step are key to the dgorithms increased accuracy. 

FinaUy, as with decision trees, the tree path result is generaUy informative. 



3.3.4 Summary of Lazy Induction with Dynamic Relevance Analysis 

Instance-based learning (IBL) and topdown induction of decision trees (TDIDT) algo- 

rit hms, result in dramatically different performance behaviours for on-line classiûcation 

tasks. TDIDT is generdy more accurate while IBL is faster. Two recent techniques reach 

a compromise to this performance dichotomy with the use of lazy induction and dynamic 

relevance analysis. Local decision trees and lazy model-based induction, both focus their 

energies to returning an answer strictly for the task at hand. This includes the effort ex- 

pended at relevance analysis. Local induction of decision trees achieves this compromise 

with a hybrid approach that first uses an IBL component, and then passes the results to 

a TDIDT component. Lazy model-based induction, on the other hand, only develops the 

portion of the mode1 that is appropriate for the task at hand. Of this latter technique, only 

the LazyDT algorithm is reviewed. The presentation of the DBPredictor algorithm is left 

for the next chapter. 

3.4 Chapter Summary 

This chapter reviewed several approaches that are applicable to knowledge based on-line 

classification tasks. Instance-based learning (IBL) algorithms were found to be very fast. 

However their accuracy performed poorly in the face of irrelevant attributes unless a sig- 

nScant amount of processing is added. Top-down induction of decision trees (TDIDT) on 

the other hand takes a sigdicant amount of t h e  but does achieve a more robust Ievel of 

accuracy than (IBL). Findy, two recent approaches were reviewed under the category of 

lazy induction with dynamic relevance analysis. A brief cornparison between lazy and eager 

algorithms was presented to assist with the presentation of local induction of decision trees 

and the lazy top-down induction technique used by LazyDT and DBPredictor. 



Chapter 4 

DBPredictor Algorit hm 

The next three chapters propose and andyze a lazy modei-based classification algorithm 

named DBPredictor, that is targeted at  knowledge based on-line dassification tasks. This 

chapter presents the core of the search technique used by the algorithm. The next chapter 

describes an alternate version of the algorithm's search technique that will return the same 

result, but achieves a faster riinning time at the expense of greater space requirements. The 

alternate version of the algorithm is referred to as the time efficient version and is labeled 

with a subscripted "T7' (DBPredictorT). The third chapter, describes several versions of 

the heuristic function, that may be used by either search technique. 

A high-level presentation of the DBPredictor algorithm has been previously described in 

Melli, 1996 [46]. The presentation within this chapter provides greater detail and analysis, 

and also introduces three enhancements: 

1. A dynamic numerical proposition specialization method that avoids the use of global 

discretization. 

2. Support for tightly-coupled integration with an SQL database. 

3. Support for attributes with concept hierarchies. 

This chapter presents DBPredictorYs space efficient search technique in the following 

order. Section 4.1 gives an overview of the dgorithm by way of example. Section 4.2 reviews 

the input parameter requirements, while Section 4.3 reviews the rule based representation 

of the prediction result. Next, Section 4.4 introduces the high-level cal1 to the DBPredictor 

algorit hm, while Sections 4.6-4.11 present the algorithm's suoporting procedures. To show 



the possibility of a tightly-coupled implementation to a database, Section 4.5 describes an 

SQEbased interface for DBPredictor. To conclude the chapter, Section 4.12 presents an 

analysis of the algorithm's ninning time and space complexity. 

4.1 Overview 

The DBPredictor algorithm produces a probabilistic IF-THEN rule that classifies a specific 

event. To achieve this result, the algontbm requires information about the event and a 

dataset of records fiom the same domain as the event The algorithm begins by generating a 

very general d e  that covers all the records in the dataset and then proceeds to incrementally 

specialize this d e  in ways that are expected to increase the d e ' s  predictive d u e .  To 

facilitate the presentation of DBPredictor7s detailed operation, a simple example is now 

presented that proceeds through the algorithm's main phases. 

Example 4.1. This simple example of the DBPredictor algorithm assumes the presence of 

symbolic attributes and the following classifkation request: 

Dataset D with n = 100 records and m = 4 symbolic attributes. 

Unlabeled event ë = [ai, a2, a3, ?] with 3 symbolic predicting values1 

0 Class attribute Ac = Aq with c=2 unique class values (cl, c2 ) 

0 Class attribute distribution [cl = 30, cz = 701 in dataset 13. 

DBPredictor first generates a very general seed mle (ro) based on the overall distribution 

of the class attribute. 

If applied to ë this rule predicts that the event will likely be of class A4 = cz with 70% 

(a) probability 

Because DBPredictor possesses some information about ë, the algorithm will generate 

several rules that are slightly more specialized than rule r o .  Assume that three d e s  are 

LThe fourth attribute is set to unknown because this is the attribute whose value is to be predicted. 



generated at this specialization step: 

Note that as required, a.Il three rules continue to apply to ë. The second rule (r2) can be 

interpreted to read that 20 (14f6) records in the iataset have A2 = a2. Of these 20 records, 

14 belong to class cl, and the remaining 6 belong to class c2. 

Next, each of these three d e s  is tested with a heuristic hinction to determine which 

specialization has the most predictive value. Assume that the second rule is selected. 

DBPredictor now generates another set of rules that are somewhat more specialized than 

r 2  while still applying to event ë. Assume the two following rules are generated: 

Unfortunately, these two rules are of no predictive value. Rule rd did not match any records 

in the dataset, and rule r g  has the same distribution as r2. Therefore, the search stops and 

DBPredictor retums rule. 

IF A2 = a:, 

THEN & = CI (70%) OR 4 = ~2 (30%) 

(support: 20 records) 

Rom this result, a person would likely predict class ci for the given event. O 

4.2 Input Parameters 

This section summarizes the input parameter framework already presented in the Section 

2.2 and highlights any requirements that cannot be met by DBPredictor. DBPredictor 

requires three input parameters (D, ë, Z). D represents the dataset that will be used to base 

the prediction, t represents the symbolic attribute of D whose value is to be predicted and ë 

contains the information about the specifk event vector that the classification is requested 

for. The main shor t fd  fiom the fkamework is in how missing values within dataset records 

are handled. 



4.2.1 Dataset D 

The first input parameter is a dataset D with n records and rn attributes. The algorithm 

meets a l  the requirements for datasets specified in the fiamework except for natural support 

of missing attribute values. Attributes may contain syrnbolic and numerical values, and rnay 

be also described by a concept hierarchy- 

Two methods exist within DBPredictor to handle missing values in a dataset. The 

algorithm may either treat these values as distinct fkom all other values or may set the 

missing value to be equal to the value of the event vector under consideration. As an 

example of the second approach, if the event vector's value for attribute Ai were set to 

vi7 then aU the records in the dataset with missing values on this attribute would have 

this valize logically set to v,-. The spêcific method used by the algorithm is determined 

with the use of an optional parameter. The default behaviour, however, is to treat missing 

values as distinct values. The main reason for this default behaviour is the doubling of 

tirne complexity required to test whether a record's value is missing or not regardless of the 

percentage of missing attributes in the dataset. 

4.2.2 Event Vector ë 

The second input parameter required by DBPredictor is an rn-dimensional event vector ë. 

This parameter contains the information about the event that is to be classified in the form 

of attribute-value pairs. The vector maps directly to the m attributes in dataset D. The 

sample event vector presented in Example 4.1 (ë = [ui, v2, v3,?]) can be reinterpreted to 

[Ai = VI, A2 = v2,A3 = ~ 3 ,  =?). 

4.2.3 Class Attribute Z 

The final input parameter is a two dimensional ë that represents the class attribute whose 

value is to be predicted. The first value of the vector is the identifier of the class attribute 

itself. If the value of the fourth attribute is to be predicted, then 6 = 4. The second 

dimension of the vector contains the level within the concept hierarchy for this attribute 

that is to be predicted. If for example, this value is set to 1 (Z2 = 1) the prediction would 

occur among the nodes at the first level down kom the root of the concept hierarchy. If no 

concept hierarchy exists on the class attribute this portion of the parameter is unused. 
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Output Format 

Given the three input parameters described above (D, é, 3, DBPredictor outputs its class 

prediction result as a probabilistic IF  antecedent THEN consequent classification d e .  The 

objective of this representation is to provide a practical and understandable mechanism to 

explicitly represent the prediction [64, 691. Since the d e ' s  consequent contains the rule's 

prediction, it will be described fkst, and will be immediately foIlowed with a description of 

the rule's antecedent. 

4.3.1 Rule Consequent 

DBPredictorYs class prediction is contained in the consequent of its classification rule result. 

h t e a d  of containing just the most likely class value prediction, the rule consequent contains 

the probabilistic distribution of the most likely classes. This is similar to the representation 

used by probabilistic decision trees [9]. The use of class probability distributions over single 

best class prediction will be of assistance when only weak predictions can be made about 

the potential two or three classes that are most likely to occur. The result f?om Example 

4.1 

r2 : antecedent + & E [ci = 14, c2 = 61 

predicts that most likely classification is Likely class ci but may occasiondy t u m  out to be 

C I ~ S  ~ 3 .  

4.3.2 Rule Antecedent 

The rationde for DBPredictorYs class prediction is contained within the antecedent of its 

classification rule result . The rule antecedent is structured in conjunctive normal form 

(CNF) with up to m - 1 ANDed propositions. Each proposition is a true or false rnembership 

test on a single attribute. Pi wiU refer to the proposition that performs a test on the ith 

attribute in the dataset, Ai- 
The form of the membership test for each proposition m i e s  on the type of attribute it 

references: symbolic, numeric or hierarchical. For symbolic attributes, the test will be an 

equality test against the single value from the attribute7s domain. For example a proposition 

against a " Colour" attribute could tahe the form of (Ami, = "redl1). Numeric attributes, 

on the other hand, are supported with the use of a membership test within a twesided 



numeric interval. The test that a value for the AwRght must be greater than or equal 

to -1.5 and less than or equal to 4.5 can be represented with (Aweight€[-1.5,4.5]). For 

hierarchically structured at tributes, the test is for membership for any node in the hierarchy, 

such as (A5 E Carnivorous) where Carnivorms = ("meatn, " f ish"). 

A special null proposition on attribute i that is always Tnie is represented with the 

notation Pi = (Ai = A N Y ) ,  where A N Y  represents the set of all unique values withïn 

attribute Ai. B s e d  on the nd i  proposition, the null rule is tme for every record and 

event vector from that domain. A sample antecedent with propositions against symbolic, 

numerical, hierarchical attributes and a null proposition is presented below: 

To conclude the discussion on rule antecedents it will be s h o m  that a given event vector 

will likely be covered by a large number of antecedents. 

Proposition 4.1, A fully instantiated rn dimensional event vector ë can be covered by at 

least 2(m-1) logicdy distinct ant ecedent S. 

Proof. First map each element 6 to proposition Pi that tests for equality to this value 

(Ai = 6) .  Because a fully instantiated m-dimensional event vector has rn - 1 predicting 

elements, the set of al1 these propositions, S, has a cardinality of m - 1 (]SI = m - 1). 

Next, we create the set of al1 subsets of S (its powerset). Each of these subsets maps to 

a logically distinct r d e  antecedent that covers ë. Because a power set has been proven to 

have a cardinality of 21'1 [8], the number of logically distinct antecedents that will cover an 

m-dimensional event vector ë is 2 2m-1, as desired. O 

Example 4.2. An event vector with three instantiated values ë= {v l , v~ , v3}  has at least 

eight rules that wiIl cover it ( 2 1 { ' ' ~ > ~ 2 * ~ 3 9 ? } I  = z3 = 8). I f  Pi t (ai = ai) these rules include: 

((017 { f i ) ,  { 5 ) 7  {f i ) ,  {pl A p 2 ) ,  {pl {4 ~ 5 ) 7  {Pl AP3))i ~ h e r e  {fl} re~resents 

the nul1 d e .  If the propositions are expanded beyond equality (=) tests, such as for numeric 

attributes, the number of antecedents that can cover a r d e  would be larger. O 



4.4 DBPredictor () Algorithm 

DBPredictor7s underlying search strategy is to perform a greedy top-down search through 

the space of candidate d e s .  Based on its input parameters, DBPredictor fkst retrieves a 

starting rule with the s e e d l u l e  () procedure. This rule is usually a very general rule that 

covers the event vector. Next, the t op-dounsearch() procedure is initiated with the seed 

rule- Finally, the rule r~turned by the search is reported. A pseudo-code version of this 

algorithm is presented in Algorithm 4.1. 

Input: training database D, event vector ë and class attribute description c'. 
Output: d e  whose antecedent covers ëand whose consequent predicts the value of Ac at 

the concept hierarchy level specified in Z2. 
Method: 
1: r e seedzule(D, < c') 
2: predictedr ¢= t op-dom-search(r, (Dl e', q)  
3: ret urn(predict e d r )  

The time and space complexity of DBPredictor is equident to the complexity of its two 

procedures, dong with the data they exchange. The seed-rule() procedure is described in 

Section 4.6 and the top-dowrrsearch() procedure is described in Section 4.7. 

4.5 PSIP() Procedure 

Before we proceed with the description of the seedrule( )  procedure, and any other proce- 

dure that requires information fiom the dataset, the PSIP( )  procedure is presented because 

it provides the interface to the dataset. The P S ï P ( )  procedure irnplements the "pure SE"' 
procedure of the SQL Interface Protocol (SIP) proposed in [NI]. In this way, we present 

how DBPredictor may be tightly-coupled to a dataset supported by a relational database. 

As discussed in Section 2.4.1, the tight-coupled approach has been recently shown to be sig- 

f icant ly  superior to a loosely-couple approach that manipulates each record individually 

[2]. Also, in the near future, this procedure may be updated to use the more efficient CUBE 

operator d e h e d  in [31]. 



Given d e  antecedent r a , ~ , , e ~ e n t ,  database D and class attribute description c', a c d  to 

procedure P S I P ( r a n r m d m t 7  Di returns the distribution of the values in attribute A,, for 

the records in D that are covered by rule antecedent rantecedat. In [40] this is achieved 

with the foilowing S QL statement: 

SELECT 4, f (*) F R O M  D 

WHERE GROUP BY 4 

For DBPredictor, this statement is transformed by the PSIP () procedure into the follow- 

h g  SQL statement: 

SELECT Ac: COUNT (*) FROM D 

WHERE Tantecedent GROUP BY Ac 
where A, represents the dataset column at the hierarchy level specified in E2. 

An exarnple of the transformation is provided in Exarnple 4.3. 

Exarnple 4.3. Assume that the P S I P ( )  procedure receives the following arguments: 

2. ID[ = n = 100 records 

3. Ac = Ag, with two class values (ci, c2).  

The rule antecedent in this example contains three propositions, each against a symbolic, 

numeric and hierarchical attributes. Null propositions are discarded. The method that each 

proposition is transformed is detailed below: 

1. For symbolic attributes a single membership test is required. In this example the 

following test would be performed (ui = al). 

2. For nuneric attributes two tests need to be performed to determine if the record's 

d u e  is within the range specified in the proposition. In this example the record is 

tested against (uq 5 a2,,) AND (v2 2 anmi, 



3. When an antecedent's proposition tests an intemal node of a concept hierarchy then 

the record's value is tested against the members within this node. In this example the 

following test would be performed ((q = aaa) OR (v3 = agb) OR (v3 = Q.)) . 

The resulting SQL statement for th& example is: 

SELECT 4, COU'm(*(.) 

FROM D 

A possible result of this SQL staternent is: Aq E [cl = 30, c2 = 701- This shows that 100 

records were covered by rantecedent, and of these, 30 of them had value ci in attribute Aq 

and the remaining 70, had value c2. 

17 

In the example above, each of the 100 records rnay have been tested agsinst the 3 propo- 

sitions in the rule's antecedent, for a maximum of 300 proposition tests. This statement is 

formalized below : 

Proposition 4.2. Given a d e  antecedent with i propositions and a dataset with n records, 

the P S I P ( )  procedure visits ail n records and performs 5 n x i proposition tests 

Proof. To determine whether a record is covered by the antecedent of rde  r', all of its i 

propositions need to be tested against the record. Because there are n records in the dataset, 

there will be at most n x i tests for any given call to the P S I P ( )  procedure, as deshed. O 
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The &st task of DBPredictor is to Iocate the seed rule that will be used to initiate the 

topdown search. A very general d e  is required. The  seeànd.e O procedure described in 

Procedure 4.2 simply retunis the nuil rule by calling the P S I P ( )  procedure to summarize 

the overall distribution of the dataset's class attribute. 

Procedure 4.2 sec-e O 
- 

ri tion tE Input: (D, ê, 3: dataset D, event vector é, and class attribute desc 'p 
Output: The nul1 rule for class attribute Z. 
Method: 
i: r + 0 (initialize the rule) 
2: r-,eq,,t e PSIP(@,  D, E) {retrieve the distribution of i?) 
3: return r 

Proposition 4.3. Given a dataset with n records and class attribute with c values, the 

worst-case time and space complexity for the s e e M e  O procedure just described are 

O (n) and O (c) respectively- 

Proof. Rom proposition Proposition 4.2, a l  n records in the dataset are visited, therefore 

the procedure's time complexity is bounded by O(n) .  Next, because the procedures requires 

a data structure to contains a value for each of the c unique class values, the space complexity 

is bounded by O(d). O 

Discussion: The ë parameter is not used in the acquisition of the ndl  rule. In the future, 

however, it is envisaged that information about the event vector may be used to improve 

the seed rule resdt. 



The b& of DBPredictor's effort occurs wit hin the t op-down-sear ch () procedure- The p r e  

ccdure can be said to perform a greedy topdown search through a constrained rule space. 

Procedure 4.3 presents a pseudo-code description of the procedure. The t op-doaesearch ( 

procedure makes use of four sub-procedures. First, the generateantecedents 0 procedure 

determines the set of candidate rules that are to be tested within each specialization step. 

It aehieves this by retuning a set of skeleton rules that have only their antecedent portion 

defined. This procedure is further described in Section 4.8. Next, for each of the rule skele- 

tons, their consequent is populated by get-consequent 0. This procedure interfaces with 

the database to determine which records are covered by a particular rule. The procedure 

is described further in Section 4.9. Next, each rule is evaluated by the FI) heuristic. This 

function is briefly reviewed in Section 4.10, but is more thoroughly presented in Chapter 6.  

Once all the rules have been generated and tested, the highest-valued rule is located wit h the 

bestlule () procedure2. This procedures is described further in 4.11. The recuision stops 

when no more d e s  can be generated, or when ail tested rules do not achieve a predictive 

improvement over the parent rule. 

Procedure 4.3 top-dounsearchi) pseudo-code 

Input: (r, P): r is the current rule and P contains the algorithm parameters (D, ë, 3. 
Output: A rule that carmot be specialized further 
Method: 

R + generateantecedent s Cr, P )  
for al1 rule r' E R do 

r&,,,, + get-consequent(rf, r, P) 
rLalue = W f 7  

end for 

return(top-downsearch(bestrl, P ) )  
else 
return(r) 

end if 

*Tics are randomly resolved 
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generate-ant ecedents 0 

One of the main steps in DBPredictorYs top-down search procedure is to generate the next 

set of rules to be investigated. Proposition 4.1 showed t hat nurnber of valid antecedents may 

very large- To constrain the search space, the generate-antecede~ts0 returns up to m - 1 
rules each thne that it is cded .  The procedure enforces tbis constraint by specializing each 

one of the m - 1 propositions in the parent d e .  The way that each proposition is specialized 

depends on the attribute type that it references: symbolic, numeric or hierarchical. 

Before describing the method used by the generat e-antecedent s O procedure to gen- 

erate its set of d e s ,  a re-cap is provided on the requirements that these rules must meet. 

First, ail rules must conform to the representation presented in Section 4.3. This includes, 

for example, the c0nstra.int that each proposition Pi refer only to attribute Ai. The sec- 

ond constraint on d e s  is that they must cover the given event vector. This is required 

so that the algorith's prediction continues to apply to the original request- Finally, a,ll 

rules must be more specialized than the current rule. This requirement ensures that the 

topdown search makes continuous progress. This also guarantees algorithm termiriation 

because rules will logically cover a smaller of dataset records upon each specialization- 

4.8.1 Proposition Specialization 

A high-level presentation of how each specialization occurs is initidy presented for each 

individuai attribute type. Particular attention is given to the specialization of numeric at- 

tributes. This is followed by a Procedure 4.4 which describes the steps taken by generateantecedents ( 

in pseudo-code. 

The general approach used in proposition specialization is to make use of a hierarchy 

on the attribute. When attributes do not have an explicit hierarchy defined over them, an 

implicit hierarchy is, in a sense, dynamicdy generated. With the presence of a hierarchy, 

a proposition's test can be specialized by simply testing againçt a more specSc node in the 

hierarchy. In this way a more specialized proposition is generated and only one new r d e  is 

proposed per proposition. 
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Wierarchical Attributes: The existence of an explicit concept hierarchy requires that 

the proposition on this attribute be updated to point to the next node down the hierarchy 

towards the value contained in the event vector, 6.  If a proposition is currently testing 

against Diet=herbiuores, it is simple to change the proposition to test against the more 

specsc Diet=fruits, if the diet of the animal in question is ëDiet = bananas. 

The 6rst specialization attempt on proposition Pi (Ai E {ANY)) will result in proposi- 

tion (Ai E (Ni i ) ) ,  where Nri represents the interna1 node in the concept hierarchy on the 

h s t  level of the hierarchy and in the direction of ë;.. Further specialization can continue up 

to and including the leaf node of the hierarchy. Given an attribute with an h-level hierarchy, 

a proposition on this attribute may be specialized up to h times. C& for specialization on 

a proposition that tests on a leaf node are forwmded to either the specialization of numeric 

or symbolic attributes. Commonly the leafs of hierarchies on symbolic attributes already 

refer to the record level data so no firther specialization would be possible- 

Symbolic Attributes: When symbolic attributes do not possess an explicit concept hi- 

erarchy a very simplistic implicit hierarchy is used instead. This implicit hierarchy is made 

up of a root that includes al1 possible values of this attribute ( A N Y )  and the leaf nodes 

include the d, individual symbolic values on this attribute. The fmt time a specialization is 

attempted on a proposition that refers to a symbolic attribute Ai, the proposition is simply 

updated from (Ai = ANY) to (Ai = e). A proposition on a symbolic attribute can there- 

fore be specialized o d y  one tirne. In Example 4.1, rule 7-2 was generated by specializing the 

proposition (A2 = ANY) in rule ra to (A2 = a2) .  After this no h t h e r  specialization could 

be perfomed on Pz. 

Numerical Attributes: Unfortunately, the method described above for symbolic at- 

tributes would result in too significant a specialization if applied to numerical attributes. 

If, for example, 32 = 6.5 and the range on attribute A:! is min = 0.5 and mas = 9.0, 

then generating the proposition (A2 = 6.5) would likely result in a rule that covers few, 

if any, database records- One approach around this problem is to discretize all nunierical 

attributes. PerforrmDg discretization directly against a relational database however, would 

be time consuming. It may also require that a copy of the database be created to avoid a 

negative impact on the other applications that also use the database. 

To circumvent this problern, propositions on numerical attributes are set to perform a 



two sided test (Ai E [c - b,g + 611, where 6 > O. The proposition in our example above may 

now be set to (Ap E [6-5 - 4 6 . 5  + 4). The question now is how to determine the appropriate 

5 for each proposition specialization request? DBPredictor achieves t his by making the new 

6' somewhat smaller than the 6 used by its parent's proposition. The proportion of this 

shrïnkage is d e h e d  with an internally set fraction named nurmat i o  (numerical partitioning 

rat io) ,  

A preprocessing s tep is required to d e t e d e  the 6 for the seed rule that covers ail the records 

in the dataset. After a simple scan through the dataset to locate the min, max range for 

each attribute, the 6 for each proposition in the seed rule is set to the Iarger of (max - G )  
and (G - min). In our example above, proposition P2 in r o  is set to (A:! E 16.5 - 6,6.5 + 61). 

If nurmat i0=1.5, then the e s t  specialization on this proposition would set 6' to & = 4. 

A defadi; value for the numratio internal parameter will be identified during the empirical 

investigations reported in Chapter 7. 

4.8.2 Computational Constraints 

Now that the method used by the generateantecedents 0 has b e n  described, some 

analysis of its computational constraiats is performed. Within this section the analysis is 

constrained to attributes with 1-level hierarchies, such as symbolic attributes. Later, in 

Section 4.12.3, the impact of at tributes wit h general h-level hierarchies is invest igated. 

Lemma 4.1. Given an event vector of symbolic values, the number of propositions in the 

parent d e  will increase by 1 d e r  each cal1 to the top-downsearch0 procedure. 

Proof. As defined, the generatemtecedent s () procedure specializes the parent d e  on 

only one proposition. By definition, only one successful specialization c m  occur on at- 

tributes with 1-level hierarchies. Therefore, each specialization step in symbolic domains 

must increase the number of propositions in the parent d e  by 1, as desired. Cl 



Procedure 4.4 generatemtecedents () pseudo-code 

Input: (r, ë, 3: r is the current rule, ë is the event vector and c' is the class attribute 
description. the rem;Lining parameters are 

Output: A set of rdes that are more specialized than r on or by only one proposition. 
Method: 

1: R * (0) 
2: for al1 attributes i that are instantiated in ë do 
3: Pi -+ nile r's curent proposition on attribute i 
4: rt.a += r.a - Pi {antecedent of d e  r' does not contain Pi) 
5:  P: * {0} {new proposition on attribute i) 
6: 

7: if Ai is "Kierarcliicaln and Pi does not test on a leaf node then 
8: N ¢= curent node in hierarchy tested by Pi 
9: 1.' ¢. descend Tom N down hierarchy towards 5 

10: Pi r (Ai E Nt)  
11: 

12: else if Ai is "Symbolic" and Pi tests against ANY then 
13: Pi * (Ai E {c))  
14: 

15: else if Ai is "Numerical" then 
16: min + min(Pi) {minimum value currently tested for in Pi} 
17: m a s  (. max(Pi)  {maximum value currently tested for in Pi) 

6 + (ma-min)/2 18: n m p a r t  
19: Pi' + (Ai E [t5-6,5 +dl) 
20: end if 
21: 

22: (update R one if a valid new rule was identified) 
23: if Pi' # { O )  then 
24: rr.a +- r'a A Pi 
25: R e  RUT' 
26: end if 
27: end for 
28: return R 



Example 4.4. Example 4.1 demonstrates the constra.int of Lemma 4.1. In the example, 

the top-domprocedure () procedure was called agaimt the [(A2 = a2() + &] parent 

rule. The generateantecedents()  procedure then proceeded to generate two candidate 

r& antecedents [(A2 = 0 2 )  A (Al = ai)], and [(A2 = as) A (.43 = as)]- Both candidate d e s  

have one more proposition than the parent rule. Regardless of which d e  is chosen, Lemma 

4.1 will hold. Cl 

CoroUary 4.1. Given an event vector of symbolic values, there are i - 1 propositions in 

the parent d e  during the ith c d  to top-dovnsearcho . 

Proof. By induction on i, if i = 1, the procedure is called with the null rule which indeed 

has O propositions. 

Assume that the result is true for arbitraxy i. We want to prove it for (i  + 1). Consider 

the d e  with k propositions fiom the ith call to the procedure. By the induction hypothesis, 

k = i - 1. By Lemma 4.1 each specialization step adds one proposition, so that the number 

of propositions at specialization step i + 1 is at  most k + 1. This is equal to (i + 1) - 1, as 

desired. 0 

Corollary 4.2. Given an m dimensional event vector of symbolic values, the number of 

calls to the top-down_search() procedure is 5 m. 

Proof. By Corollary 4.1 the parent rule at the if" specialization step has i - 1 propositions. 

At the mth specialization, the parent d e  has m - 1 propositions. By Lemrna 4.1 further 

specialization would require an addi tional predict ing at tribute. Therefore the specializat ion 

stops on the mth specialization, as desired. 0 

Example 4.5. Example 4.1 demonstrates the constraints of Corollary 4.1 and Corollaq 

4.2. In summary, the ith c d  to the top-downsearch () procedure occurred on a rule with 

i - 1 propositions. F'urthermore, the event vector with three (rn - 1 = 3) predicting symbolic 

attributes (ë = [ai, a?, a3, ?]) required four calls to the top-downsearch O procedure. The 

initial cal1 to the procedure was against the null d e  with O propositions. The three recursive 

calls (i = 2,3,4) occurred against the following parent rules: [(A2 = a2) +- 4, [(A2 = 

a2) A (At = ai) -i 41, and [(A2 = a?) /\ (Ai = ai) A (A3 = a l )  -t A4]. O 



The recent analysis focused on the computational behaviour of the top-dovesearch O 
procedure based on the knowledge of how the generateantecedents O procedure special- 

izes rules. The next step of andysis presents the number of d e s  that are likely to be 

generated by the generat eant ecedent s ( ) procedure at any given specialization step. 

Lemma 4.2. Given an m-dimensional event vector of symbolic values and a parent d e  that 

contains j  propositions, the generateztecedents () procedure will create 5 (m - 1) - j  

sibling rule antecedents. 

Proof. By induction on j, if j = O (null rule), the procedure generates a rule with one 

proposition for each of the rn - 1 predicting attributes, so the total number of rules is 

indeed_<(m-1) -O=m-1. 

Assume that the result is true for a parent d e  with arbitraq j propositions. We want 

to prove it for (j + 1). Consider the k possible sibling rules generated f?om a parent rule 

with j propositions. By the induction hypothesis, k 5 (m - 1) - j. By Lemma 4.1 when the 

number of propositions is increased by 1 (j + 1) there is one less proposition to specialize 

on. Therefore the number of siblings is k - 1. This is 5 ((m - 1) - j )  - 1 = (m - 1) - (j + l), 

as desired. O 

Example 4.6. ExampIe 4.1 demonstrates the constra.int of Lemma 4.2. In one particular 

instance &om the example, the second c d  of the generate-autecedents O procedure is 

called against the [(A2 = a2() + A] parent rule. Because there are three predicting 

attributes (m - 1 = 3) and because the parent rule has one proposition, two ((41)-1) rule 

antecedents were generated: [(A2 = a2) A (Al = al)], and [(A2 = a2) A (A3 = a3)] 

This section demonstrated some basic constraïnts on DBPredictor3s rule search for symbolic 

domains. This information will be used in Section 4.12 to analyze DBPredictor7s running 

time complexity. 



Once a set of d e  antecedents has been generated, the get-consequent O procedure is 

called to constnict each d e ' s  consequent. For a given d e ' s  antecedent (rantecedenl), the 

procedure returns a summary of the values for the class attribute (A,) for all the records in 

dataset D that are covered by this antecedent3. To show how this task c m  be achieved in 

a tightly-coupled way, the procedure, presented in Procedure 4.5, will simpIy make use of 

the PSIP()  procedure. R e c d  that P S I P ( )  achieves its task by testing every record in the 

dataset against every proposition in r'. 

Procedure 4.5 P S I P  based get-consequent O 
Input: (TI, r, D, E ): T' is the d e  under investigation, r is the parent d e ,  D is the dataset 

and ë is the class attribute description. 
Output: The consequent of rule r' based on the records that r' covers in dataset D. 
Method: 
1: ~knsepuent  + ~-S*P(r',teceaenty D7 ' ) 
2: return r' 

4.10 F() Heuristic Function 

Once a candidate d e  had been generated within a specialization step, its predictiveness 

may be estimated with the heuristic function, F(). Since Chapter 6 is dedicated to the 

investigation of possible heuristic hnct  ions for DBPredictor, for now we assume the existence 

of a function F( r J  ,s) that retums a numeric value for a rde under investigation (r') and 

its parent d e  (r). The ~ ( r ' ,  r) function is used by DBPredictor to estimate the predictive 

value of specializing kom parent rule r to sibluig rule r'. A rule ri is taken to be more 

predictive than d e  ri if P(T~,T) > ~ ( r i , r ) .  

3Note that the procedure also receives the mie's parent, r. This parameter however, is reserved for use 
by the time efficient version of the procedure described in Section 5.2. 
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4.11 b e s t l u l e  () Sub-Procedure 

Once all the candidate niles have been generated and tested within a specialization step, the 

bestn.de O procedure is cded to select the parent d e  for the next specialization step. 

The current version of the procedure greedily selects the rule that achieved the highest 

heuristic value greater than zero. When a tie occurs, a random selection fkom among the 

tied rules is perforrned. 

As described, this procedure requires minimal computation. In future versions, a more 

refined selection criteria may be performed from among the "top" candidate rules. In 

LazyDT [29], for example, a one-level lookahead is perforrned on al1 nodes that have attained 

heuristic values within 90% of highest ranked node. Because current research has not faund 

lookahead to be generally beneficial [52], the bes t lu le ( )  will continue to act greedily- 

4.12 Complexity Analysis 

Now that the description of the DBPredictor has been completed, this section analyzes its 

worst-case running time and space cornplexity- This analysis is based in large part on the 

computational constraints of the individual procedures already presented in previous lemmas 

and propositions. In silmmary, the algorithm is shown to have, in the presence of symbolic 

attributes, a running tirne complexity bounded by O (nm3) and a space complexity bounded 

by 0(m2), where n is the number of records and rn is the number of attributes. Finally, in 

the presence of numerical attributes or concept hieratchies, the running time complexity is 

shown to be linearly dependent on the depth h of the longest explicit or implicit hierarchy. 

4.12.1 Running Time Complexity 

As Algorithm 4.1 shows the time complexity of DBPredictor is composed of the the seedn.de O 
and top-downsearch0 procedures. Proposition 4.3 demonstrated, the seed-e() proce- 

dure is bounded by O(n)- For the top-douxisearch() procedure three Lemmas have been 

presented for symbolic domains. Corollary 4.2 dernonstrated that the number of recursive 

c d s  to the top-downsearch() procedure is bounded by m. Lemma 4.2 demonstrated that 

during each of these calls the number of rules generated, is bounded by (m - 1) - i, where i 

is the number of propositions in the parent rule. Finally, Proposition 4.2 demonstrated that 

the number of proposition tests is bounded by the n x i. Figure 4.1 presents a high-level 



synthesis of these results. 

Figure 4.1: Graphical representation of the 0(nm3h) running time complexity for the space 
efficient version of DBPredictor, where n is the number of records, m is the number of 
attributes, and h is the height of the longest concept hierarchy on these attributes. The 
tallest loop represents the 5 mh number of specialization steps of the top-dom~çeatch() 
procedure. The second loop represents the 5 rn number of d e s  generated by the 
generat eatecedent s (1 procedure at  each specialization step. The t hird loop represents 
how the get-consequents() procedure tests each of the up to n dataset records against the 
m propositions within each d e .  

Theorem 4.1. Given a fully instantiated in-dimensional event vector of symbolic attributes 

and a dataset with n records, the top-dovesearch() procedure wili test 5 nrn(rn+l)(m+2) 
6 

propositions. 

1. By Corollaq 4.2, the topdown-procedure (1 is recursively called up to m times. 

2. By Corollary 4.1, the ith c d  to the top-dom-procedure () is on a parent rule with 

i - 1 propositions. 

3. By Lemma 4.2, the generate-antecedents () procedure returns m - i sibling rules 

for a parent d e  with i - 1 propositions. 



4. By Proposition 4.2, each call to the getzonsequent() procedure, requires n x i  propo- 

sition tests for each rule with i propositions. 

This is summarked by: CEl (m - i )n i  

Example 4.7. Example 4.1 demonstrates the constraint of Theorem 4.1. In sumniary, the 

example involves four (m = 4) attributes, a dataset with n=100 records, and event vector -. 
e = [al, a2, as, ?]. Thus we would expect 100(4-1)(4)(4+L) = 1,000 proposition tests. In fact , 6 

six distinct rules with a cumulative total of 10 propositions were generated and tested. The 

table below summarize the number of proposition tests required to determine the cover of 

each rule: 

Propositions 

1 

SUM 1 10 

Tests 

l(100) 

l(100) 

l(100) 

2 (100) 

2(100) 

3(100) 

1,000 



CoroUary 4.3. In symbolic domains, DBPredictorys running t h e  complexïty is bounded 

by o ( ~ ~ ~ )  

Proof. By Theorem 4.1, DBPredictor tests up to n(m - l)rn(rn + 1)/6 propositions. Since 

n(m - l )m(m + 1)/6 5 mm3, for some constant c > 0, the worst case ninning t h e  

complexity of DBPredictor is bounded by 0(nm3), as desired. O 

Discussion 

Each of the 5 n(m - l)m(m + 1)/6 d e s  require that their predictive value be estimated 

by the F() heuristic function. Beyond some constant overhead, this calculation is bounded 

by the width of the class probability distribution vectors (c).  If there are two classes (e-g. 

tnie/false) the calculation of functions will require a set of calculations for each of the two 

classes. The complexity of calculating the evaluation function however, is commonly omitted 

in classifxation research and is therefore omitted from any further reporting here as well. 

Findy, in database envirunments it may be of interest to separate the number of 

database calls from the running time complexity. Informally, DBPredictor, rnakes a number 

of database calls bounded by 0(m2), and each of these calls involves a query of O(nm) 

complexity- 

4.12.2 Space complexity 

Assuming that the space taken up by the dataset is not included, DBPredictor's space 

complexity is briefly anaiyzed to be bounded by 0(m2). The main data structures created 

within each specialization step contain the information about the generated sibling d e s .  

Once the highest valued rule is discovered the other rules, including the parent rule, are 

discarded. By Corollary 4.1, we know that the step with the largest number of sibling rules 

is the fkst step, with rn - I rules. Assuming that each of these rules allocates spzce for 

each of the at most m possible propositions, the space complexity for this version of the 

algorit hm is bounded by O (rn2).  



4.12.3 Running Time Complexity with h-level Hierarchies 

The computational analysis to date has assumed the presence of only 1-level hierarchy 

attributes, such as symbolic attributes. When general h-level concept hierarchies are used 

the complexity increases linearly with the maximum depth h of the explicit or implicit 

hierarchies contained in the dataset. In the case of numerical attributes, h has been noted 

to be < i ~ g ~ - ~ ~ ~ ( N ) -  

Lemma 4.1 demonstrated that for attributes with 1-level hierclrchies, each specializa- 

tion step increased the rumber of propositions in the parent rde  by 1. When attributes 

have h-level hierarchies, h specialization steps are now required to increase the number of 

propositions in the parent rule by 1. Because of this, instead of n calls, it wiil now require 

nh c a s  to the top-dowruearch0 procedure, before aU the propositions in the parent d e  

can no longer be specialized- Therefore, the running time complexity of the algorithm is 

now bounded by 0(nm3h). Finally, since the number of d e s  that are generated within 

each specialization step is unchanged, the algorithru's space complexity remains bounded 

by 0(n2) in the presence of attributes with h-level hierarchies. 

4.13 Discussion 

The search algorichm described in this chapter contains t hree e&ancement s over previous 

proposais. One enhancement is the approach to numerical at tributes, implemented wit hin 

the generate-antecedents0 procedure. This technique 5ees the algorithm fiom the space 

and effort required to discretize a dataset with numerical attributes. The algorithm may 

now also be used directly against a relational database. Another possible advantage to this 

approach is that the cuts generated for numeric attributes are custornïzed to the event in 

hand. This may produce a more accurate result. The validation of this technique is left to 

experimental study of accuracy in Chap ter 7. 

The two other enhancements proposed in this chapter are the tightly-coupled SQL sup- 

port and concept hierarchy support. These two updates also help to expand the ability of 

the algorithm to operate against more domains. These two approaches proved d3Ecult to 

validate. First, few classification algorithm currently have tightly-coupled implementations. 



Second, few benchmark datasets cont ain attribut es wit h concept hierarchies. Findy, few 

classification algorit hms current Iy support concept hierarchies. 

4.14 Chapter Summary 

This chapter presented the core of the search algorithm used by the DBPredictor algo- 

rithm to locate a classification rule. M e r  a brief example of the algorithm's operation, 

the alg~rithm's input requirements and IF-THW rule based representation were reviewed. 

DBPredictor performs a greedy topdown search through the space of candidate rules. The 

algorithm k t  composes a high-level a seed rule and then calls the topdown search proce- 

dure. This procedure generates and tests several candidate d e s  and recursively calls itself 

on the greedily selected d e .  The heuristic f'nction F() determines the predictive value of 

each rule. This function, is described in more detail in Chapter 6. The algorithm's presenta- 

tiou concluded wit h a demonstration of the algorithm's O (nm3 h) running time complexity, 

and O (m2) space complexity, for tasks with n records, rn attributes and h-level hierarchy 

attributes. 



Chapter 5 

Time Efficient Search Algorit hm 

This chapter presents an alternate version of DBPredictor7s search technique t hat achieves 

a lower time complexity than the search technique proposed in Chapter 4, but it does this 

at  the expense of a higher space complexity. Because of this compromise this chapter is said 

to present the time efficient version of DBPredictor (DBPredi~tor~) ,  wMe the algorithm 

presented in the previous chapter is referred to as the space efficient version (DBPredictors). 

The search technique presented in this chapter is more in-line with the current data mining 

and machine learning algonthms t hat assume unfettered access to a memory-based datase t 

array. The time efficient version of the algorithm was developed for two reasons. It allowed 

for faster testing of DBPredictorYs accuracy, and it allowed for a fairer empirical running 

tirne cornparisons between DBPredictor and the C4.5 and Il3 1 a l g o r i t h .  

To achieve its lower running time complexity, DBPredictorT maintains a list of the 

records that are covered by each rule. The existence of this list however, minimizes the 

running time complexity in two ways. The number of records that are tested decrease after 

each specialization. Only one proposition test is required to determine whether a record is 

covered by a d e .  As will be shown in a latter section, this update increases the algorithm's 

space cornplexity f?om O (m2) to O (m2 + nm) , but lowers the running t ime complexity fÏom 

0 (nm3 h) to O (nm2 h) . 
For DBPredictorT to create, use and release the new list records, three procedures re- 

quire updates. They are presented within this chapter. Section 5.1 presents the updated 

seedrule 0 procedure. Section 5.2 presents the update get-consequent s O procedure. 

Section 5.3 presents the updated topzuïe () procedure. Al1 other procedures remain as 

stated in the previous chapter- Section 5.4 concludes the chapter with a brief cornplexity 
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analysis of the new search technique. 

5.1 Updated seedxule O Procedure 

The first procedure that requires modification to support the time efficient version of the 

DBPredictor algonthm is the seed-rufeo procedure. R e c d  that this procedure returns 

the consequent of the nuli rule by summarizing the overd  distribution of the dataset's class 

attribute. The updated procedure attaches the list of records that are covered by the rule- 

Because the n d  rule covers dl the records in the dataset, the list simply points to all the 

records in the dataset. Procedure 5.1 modifies a non-SP implementation of Procedure 4.2, 

with the addition of line item 5. 

Procedure 5.1 s e e M e r  O pseudo-code 

Input: (D, e', 4: training database D, event vector ë, and class attribute description c'. 
Output: The null d e  for class attribute A, (including d e  cover) 
Method: 
1: r e 0 {initialize the nile} 
2: for all recordi E D do 
3: class + recor&[A,] (set to the class value of this record) 
4: rcmsepuent [class] + r m s e t p r n t  [dass] + 1 
5:  + rWer U@ointer)recmdi {append the pointer to this record) 
6: end for 
7: return r 

The addition of line (5 .) should increases the procedure's effort by a constant factor 

and increase the space requirements by the number of records in the dataset. If the dataset 

were to contain n = 100 records, the nul1 rule will now also contain a list of 100 record 

pointers. The riinning time complexity of the procedure remains bounded by O(n)  while 

the space complexity increases £rom O(c) to O ( n  + c) , where c is the number of classes. 

5.2 Updated get -consequent 0 Procedure 

The second procedure that requires modification to support the time efficient search is the 

get-consequent 0 procedure. In fact, al1 the saved effort occurs within this procedure. 

Recall that a c d  to get-consequent(r', r, D; ë) creates the consequent for rule r' based on 

the records it covers fiom dataset D. The space efficient version of the procedure (Section 
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4.9) achieved this task by testing every record in the dataset against every proposition in 

the d e ' s  antecedent. Because a list is now kept of all the records that are covered by the 

parent rule r ,  the new procedure can exploit the fact that a sibling rule's cover is a subset 

of its pârents- The procedure can now be optimized in two ways. First, the procedure only 

needs to test against the records that are covered by the parent rule rather than against 

every record in the dataset. Second, since the parent and sibling rules differ on only one 

proposition, the procedure only needs to test against t his one proposition to determine if a 

record that is covered by the parent rule, is &O covered by the sibling rule. The updated 

algorithm of the procedure, labeled with a suffixed (get-consequentT() ), is described in 

Procedure 5.2. An example and arialysis of the procedure is also presented. 

The procedure is no longer presented in SQL format. This procedure may stiU be 

tightly-coupled with a relational database, however, this would require the ability to create 

temporaq tables to hold the list of records covered by each rule and wodd also require that 

the dataset have an attribute that uniquely identifies each records (Le. a key attribute). 

Procedure 5.2 net-conseauents~ O pseudecode 

Input: (r', r, D, Z ) : r' is the d e  under investigation, r is the parent rule , D is the dataset 
and ë is the class attribute description. 

Output: Rule r' with an updated consequent and cover. 
Method: 
1: Pi + rintecednil - 'rantecederrt {ide&% the changed proposition) 
2: for aU r e m &  E r-,, do 
3: {test the record against the changed proposition) 
4: if Pi is t rueforrewr& then 
5: {update the consequent based on the class of this record) 
6: dass -e recor&[AC] 
7: ~ ~ m s e q u n i t  [ ~ ~ s s I  * rionsequent [ c ~ ~ s s I  f 1 
8: 
9: {update this d e ' s  cover to point to this record) 
10: r,, -+ ré,, U (pointer)recordi 
11: end if 
12: end for 
13: return r' 

Example 5.1. Assume that the get,consequentT() procedure was called with the follow- 

h g  information: 



3. r-cover = 100 records 

4. n = 1000 records 

The procedure commences by isolating the proposition that has changed in the sibling 

rule and assigning it to Pi. In this example the changed proposition Pi is r' - r = P2 = 

(A2e[a2,,, a2,,]). With this information, the procedure tests each of the 100 records 

covered by the parent nile r. Assume the k s t  such record to be tested is recordi = 

D [r,,, [l]] = [vi ,712, vg, v4]. This record is tested against proposition P2. In this example 

the test would be [(va 5 asmor) AND (un 2 ~ ~ ~ ~ ~ ) ? b  If this test succeeds then the consequent 

and cover of the sibling rule is updated accordingly. The remaining 99 records in the cover 

of T will proceed through this process. 

A total of 100 x 1 proposition tests would be performed by this procedure. This value 

is siflcantly than the up to 3,000 (5 1000 x 3) proposition tests that would be performed 

by the space efficient version of the getsonsequents() procedure. O 

By Proposition 4.2, the former get-consequent() procedure performed up to m proposi- 

tion tests for each record in the parent rule's cover. The updated procedure performs only 

one proposition test for each record. Formally this may be expressed as: 

Proposition 5.1. Given a parent rule r with a cover of n' records, the get -consequentr () 

procedure performs n' proposition tests. 

Proof. There is only one loop in the procedure that cycles through each of the n' records 

in the cover of r. Because o d y  one proposition test is performed per record the procedures 

performs n' x 1 proposition tests, as desired. O 
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5.3 Updated b e s t r u l e  O Procedure 

The ha1  procedure that is updated to complete the definition of the time efficient version 

of the DBPredictor dgorithm, is the b e s t m e  O procedure. RecaU that this procedure 

greedily decides which of the candidate d e s  will become the next parent rule. During this 

procedure, an opportunity exists to fiee most of the space taken up by the List of d e  covers. 

Once the new parent rule has been selected, the space taken up by all the other d e s  may 

be keed. The following analysis describes the space complexity within each specialization 

step. 

Lemma 5.1. Given an m-dimensional symbolic event vector and dataset with n records, 

the top-dovesearchr () proccdure requires space for up to 5 n(m - i) record pointers on 

its ith c d .  

Proof. By Corollary 4.1, the parent rule of the ith cal1 to the top-dounsearchO procedure 

contains i - 1 propositions. By Lemma 4.2, when the parent rule contains i - 1 propositions 

the generat e-ant ecedent s () procedure creates 5 (rn - i) d e  antecedents. Therefore, on 

the ith c d  there will be (m -i) rule antecedents. Since each d e  rnay contain a cover of 5 n 
record pointers, the ith step requires space for 5 n(m - i)  record pointers, as desired. O 

5 -4 Complexity Analysis 

This section analyzes the running time and space complexity of the time efficient DBPre- 

dictor algorithm proposed above. This andysis is based in large part on the cornple-xîty 

analysis of the individual procedures already presented in previous lemmas and proposi- 

tions. In summary, the algorithm is shown to have a riinning time complexity of 0(nm2 h) 

and a space complexity of 0(nm+m2), for tasks with n records, m attributes and attributes 

with h-level hierarchies. Figure 5.1 presents a graphical representation of the algorit hm's 

running t h e  complexity. 
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Figure 5.1: Graphical representation of the 0(nm2h) ninning time complexity for the 
time escient version of DBPredictor, where n is the number of records, m is the num- 
ber of attributes, and h is the height of the longest concept hierarchy on these at- 
tributes. The tallest loop represents the 5 mh recursive c d s  to the top-downsearch0 
procedure. The second loop represents the 5 rn number of d e s  generated by the 
generat e m t  e cedent s ( procedure at each specialization step. The t hird loop represents 
how the updated get-consequents~0 procedure tests each of the up to n dataset records 
against the one changed proposition in the new d e .  

5.4.1 Running Time Complexity 

To discover the updated algorithm's running time complexity, a theorem is offered on the 

new number of proposition tests for the algorith.  Based on this result, the upper bound 

of the algorithm's running time complexity is presented. 

Theorem 5.1. Given a fully instantiated m-dimensional event vector of symbolic at  tributes 

and a dataset with n records the updated topdounsearchO procedure will test 5 nm2 

propositions. 

1. By CoroUary 4.2, the top-dom-procedure () is recursively called up to m times. 

2. By Corollary 4.1, the ith c d  to the topdoveprocedure() is on a parent r d e  with 

i - 1 propositions. 



3. By Lemma 4.2, the generatemtecedents  O procedure returns m - i sibling d e s  

for a parent rule with i - 1 propositions. 

4. By Proposition 5.1, each call to the updated get -consequentT() procedure requires 

n - i proposition tests for each rule with i propositions. 

This is summarized by: CEl (m - i) (n - i) 

2m2 - (m2 + rn) (2m + 1) - 3m 
+m(m + 1) 

6 

Because the positive portion of the result, n* is Less than nm2, the top-do-earch( 1 

seareh procedure will test 5 nm2 propositions, as desired. O 

Corollary 5.1. In symbolic domains, the running time complexity of DBPredictorT is 

bounded by 0(nm2) 

Proof. By Theorem 5.1, DBPredictor tests fewer than nm2 propositions. Since nm2 5 
mm2, for some constant c > 0, the worst case running time complexity of DBPredictorr is 

bounded by 0(nm2), as desirecl. O 
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As with the presentation in Section 4.12.3 of the running time complexity with h-level 

hierarchies for the DBPredictors algorithm, when attributes have h-level hierarchies, h 

specialization steps are now be required to increase the number of propositions in the parent 

rule by 1. Therefore, the running time complexiw of the algorithm is now bounded by 

O (nrn2 h) . 

5.4.2 Space Complexity 

The space complexity for this version of the algorithm is briefiy analyzed to be bounded by 

O(nm + m2). 

Theorem 5.2. Given an rn-dimensional symbolic event vector and dataset with n records, 

the largest number of record pointers required within a call to the top-down_seamzhO 

procedure is 5 n(m - 1). 

Proof. The smallest value for i is 1 (the call with the n d  d e ) .  By Lernma 5.1 the ith 

specialization step generates (m - 1) rules each of which may have covers of size 5 n. This 

would require storing 5 n(m - 1) record pointers, as desired. 

Due to Theorem 5.2, the space cornplexity of the time efficient version of the algorithm, is 

partially bounded by O(nm). Because each of the up to m rules at each specialization step 

continue to allocate space for the 5 m propositions, the upper bound on the space required 

by DBPredictorT changes £rom 0(m2) to O(nm + m2). 

5.5 Chapter Summary 

This chapter presented an alternate version to the search algorithm proposed in the previ- 

ous chapter. The version within this chapter, DBPredictorT, reduces the algorithm's t h e  



complexity by keeping the List of records that each rde  covers. This approach reduces the 

algorithms time complexity from 0(nm3 h) to 0(nm2 h) , but increases the space complexity 

fiom 0(m2)  to O(nm + m2). 



Chapter 6 

Heurist ic Funct ions 

DBPredictor performs a greedy topdown search through a constrained rule space, to locate 

a d e  that predicts the class of event ë- This chapter completes the algorithm's description 

by presenting the heuristic function, F () , that is used to navigate the d e  space. If function 

F() determines that rde  ri is a better candidate of specialization than d e  ri;., then it W U  

return numerical values, such that ~ ( r , ! ,  r) > F(r$ r ) ,  where r is the parent d e  to both T: 

and ri. 
Three enhancements to the heurist ic funct ion are presented in t his chap ter: 

The parent-child approach, implicitly proposed by LazyDT, is explicitly invest igated 

so that its utility may be empiricdy evaiuated in Chapter 7. 

A simple pruning mechanism is integrated to mitigate against overfitting, and therefore 

improve accuracy. 

Three different base measures are demonstrated to help locate an accurate version of 

the fimction- 

6.1 Information Available to F() 

Before proceeding with a detailed description of the several versions of F() that will be 

proposed in this chapter, the information that is available for a measure to make a heuristic 

selection is presented. Recall that two parameters are passed to F(rf, r ) :  the current rule 

r and its proposed specialization r'. Rom these two parameters, the proposed heuristic 

measures may make use of five derived pieces of information: 



1. 2: cpd.' vector for the consequent of rule r' 

2. r': cpd. vector for the consequent of rule r 

* 
3. r',: cpd. vector for the records covered by r but not covered by r'. 

4. p': proportion of the records covered by r that are &O covered by r'. 

5. p:: proportion of the records covered by r that are not covered by r'. 

The foUowing example presents the derivation of each of the five pieces of information 

for a specific c d  to F(). This example will also be used in the detailed descriptions of the 

different versions of F(). 

Example 6.1. This example is based on the c d  to F(rz,ro) in Example 4.1. Recall the 

contents of the two rules: 

From these two rules the class probability distribution uectors for each d e  consequent may 

be derived by dividing each class siimmary by the cover of each rule. 

A class probability distribution vector Z is constrained by 

where ai is the value of the ith element and c is the number of distinct classes in Ac. 

The third piece of information to be derived, is the class distribution of the records 

covered by parent rule r but which are not covered by d e  r'. These records represent the 

records covered by the complement rule ré whidi negates the proposition which ri speciahed 

on. The complement d e  for our example above is: 

'class probability distribution 



Figure 6.1: Graphical presentation of the information available to the difFerent versions of 
F(), to evduate the predictive value of specializing from rule ro to rule r 2 ,  in Example 4.1. 

The final items of interest are the proportions of records covered by the parent d e  that 

are covered by both sibling d e s :  r', TL. These proportions will be referred to as p: and p:,. 

For o u  example the following values would apply: 

Figure 6.1 summazizes the information available for F(r2, ra) . 

6.2 Sibling-Sibling versus Parent-Child 

The standard approach to heuristic function calculation in topdown induction is to deter- 

mine the difference between the class probability distribution vector of the two sibling rules: 

rf,r: [52, 571. In our example above this is the difference between r: and its complement 

vector 6,. This approach will be referred to as siblàng-sibling functions. A variation to this 

approach, informally presented for LazyDT, is to evaluate the difference between the parent 

d e  r and the sibling rule that applies to the event vector, r'. In the case of our example, 

this is represented by the clifference between r'j and r?. This approach will be referred to as 

parent-child functions. 

One possible intuition for the use of the parent-child variation, is that a large clifference 



Figure 6.2: Graphical presentation of the dinerences between class probability distribution 
vectors. The figure on the left represents the information for F(r2, ro) already presented in 
Figure 6.1. The figure to the right represents the information that would be generated for 
F(rl, r o )  Each dimension represents the proportion arnong the two class values. The line 
drawn diagondy belmeen (1,O) and (0,1) is a reminder that the components of each vector 
add up to 1 (100%). 

between siblings May still occur even though the parent and child vectors may be rat her sim- 

ilar. Figure 6.2 graphically presents this situation by comparing the calculation of ~ ( r * ,  ro) 

and F(ri, ro). Because the sibling-sibling differences for these two distributions are identi- 

cal, the c d  to F(rz, ro) will return a value equal to F(ri, ro), if F() measures sibling-sibling 

differences. However, if F() measures parent-child differences, F(r2, rO) will be greater than 

Fb-1, TOI. 

6.3 Sibling-Sibling F() 

The approach used by eager top-down induction algorithms to calculate F(), is to measure 

the dinerence between siblings. This approach has been extensively researched for t o p  

down induction of decision trees [57, 91. The sibling-sibling versions of F(), based on the 

entropy(), ORT() and DI() measures, are reviewed below along with sample results. 

6.3.1 Average Impurity entrop y() 

The entropy function i(), which is based on information theory, is commody used to base 

decisions on which path to follow [57, 651. 
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This function measures the impmity of a class probabiliw distribution vector. If the class 

probabilities are evenly distributed among the c class values, the vector is r e k e d  to as 

impure. If the distribution is skewed to a single cclass, and therefore makes a very clear 

prediction, the vector is referred to as pure. The entropy for the three class probability 

vectors in Example 6.1 are: 

i(r:) = i(r5) because their class probability distributions have the same proportions, and 

the order does not impact the measure. 

The sibling-sibling heuristic based on this mesure, evaluates the average purity (in- 

formation) gain for the sibling vectors, Ai(). The more the sibling vectors make clearer 

predictions than the parent rule, the higher the value it gives to a specialization step. This 

heuristic will be informally referred to as entropy(). For our example, the information gain 

is deterrnined by subtracting the average entropy of the sibling d e s  from the entropy of 

the parent rule: 

If no other tests achieves an information gain that is greater than or equal to this value of 

0.13 bits then this test will be selected. 

Another measure previously used as a heuristic to guide hypothesis construction is the 

angle between class probability distribution vectors [26]. Rather than determine the angle 

however, the ORT() Function 6.4, subéracts 1.0 from the cosine of the angle 0 between the 

two vectors. 

ORT(d, 6) = 1 - cos %(a, 6) (6-4) 



The reason that the cosine function is selected over the angle 0 between two vectors is likely 

because of the simple computation of this function based on the uiner (dot) produd2 à o ,8 
and each vector's Euclidean distance3 II 61). 

Also, by subtracting 1, the b o n d s  of this formula are [0,1], where 1 represents the greatest 

sepaxation (orthogonality) between two class distribution vectors and O the lest .  

For Example 6.1, O RT(6,  &) , results in: 

6.3.3 Normalized Geometric Distance DI,() 

An alternative to measuring the angle between two class probability distribut ion vectors, is 

to measure the geometric distance between them, DI(G, B). This measure is a component of 

the measure used by the InferRule decision tree algorithm [67]. The range for this function, 

however is demonstrated to be [O, fi]. For DBPredictor, the DI , ( )  function is proposed 

which normdizes the range to [O, 11, to behave similady to the ORTO class separation mea- 

sure. 

The F&w Distance Measure: DI() 

The Euciidean distance of two class probability distribution vectors G, @ is: 



For Example 6-1, a c d  to DI(F2, F2=), results in: 

This distance can be visuaUy validated against Figure 6 -2. 

The Range of DI()  

To compose the DIn()  function, the range for DI() is now investigated. 

Proposition 6.1. Given two class probability distribution vectors (G, @) the minimum 

value of DI(oI',@) is O 

Proof. The minimum distance occurs when the two vectors are identical- When the two 

vectors are identical their distance is O, as desired. CI 

Proposition 6.2. Given two class probability distribution vectors G, B, the maz(DI(G, f i)) = 

& 

Proof. First we show that for any c there is always be d,B such that DI(G, ,@ = fi. Then 

we show that that the measure can be no greater than fi. 

1. In a two (c=2) dimensional problem, a distance of & is achieved with 6 = [l, O] and 

a = [O, 11. If we extend this example into n dimensions so that each new dimension 

contains the value O the function will continue to be equal to fi Thus there is always 

an instance in which DI(& f i  = 4. 

2. The definition for D I ( )  (6.6) can be expanded to 6.7. We will show t hat that the two 

positive terms in the expansion (Cz=l CI: and x:.l #) must each be 5 1. Recall that 

by the constraints on class probability distribution vectors, ai 5 1 and thus a: 5 ûi- 
Further, CF=l ai = 1 and thus Cg,  ai2 5 1. 



Because the third term is the expansion can only subtract fiom the total, we assume 

that it is minirnized to O. Thus the expansion must be 5 5 &! 

To summarize, D I ( 6 ,  B) 5 fi and regardless of the number of dimensions (c)  there is 

always a combination in which DI(G, ,@ = fi. Thus rnaz(D I(6, B) ) = fi, as desired. Ci 

The Normalized Distance Measure: DI,() 

Given the range of [O, fi] for DI( ) ,  the DI,() distance function is composed by a simple 

transformation. 

This transformation will facilitate the interchange of D In () within an algorit hm t hat already 

makes use of the ORTO measure. For Example 6.1, a call to DIn(F2, F2J, results in: 

6.4 Parent-Child F() 

Eager topdown classifiers must test for sibling-sibling differences because they do not know 

which path a particular event will take. In lazy model-based induction, however, the use 

of the complement d e  ré to estirnate a specialization step7s predictive value appears to 

be artificial. It may instead be more vaüd to focus attention on the different between the 

consequents of the parent rule and the sibling d e  that applies to ë. In Example 6.1, this 

is the difFerence between Fo and F2. The use of this variation is implicitly proposed for the 

LazyDT classifier [29] with the use of the entropy() measure (see Section 6.4.1 below). To 

test the validity of this approach, this section explicitly presents the parent-child variation 



for the t hree base mesures already presented for the sibling-sibling definit ions of F() . These 

updated functions will be represented with a subscripted + symbol. In the next section the 

entrapy+(), O=() and DI+() are described. These two final variations have not been 

presented before but they are simply based respectively on the angle and distance between 

the class probability distributions of r and r f .  

6.4.1 entropy,. () Variation 

As proposed for L a y D T  [29], the parent-child variation of the entropy based b c t i o n  Ai+ (), 

subtracts the entropy i() of the parent r d e  from the entropy of the child d e .  Informally, 

this function will be referred to as entropy+() - 

ai+ (a, = - i(B) (6-9) 

Unfortunately, as documented in [29], this simplistic approach leads to problems. Our 

example highlights this problem because the entropy measures of both parent and child 

distributions are equal and cancel themsehes out. 

Ai+ (6, F2 1 = i(Fo) - i ( ~ ~ )  

= 0.88 - 0.88 = O 

To overcome this problem the distribution of ro is flattened (made impure) and the distri- 

bution of r 2  is updated accordingly. This normalization process is not described in detail in 

[BI. We assume the following process for parent 

Z+ + Vi[ai+] = 

p+ + fi@+] = 

rule a! and child rule P: 

l/c 
d 

When applied to Example 6.1, ro and r2 are updated to: 

Now rather than canceling itself out, entrqpy+() achieves a positive value 

A + ( +  r )  i ([0.5,0.5])  - i([O.84,O.l6]) 

N 1 - 0.63 = 0.37 



6.4.2 ORT+() Variation 

The parent-child variation of the ORT() based function, simply measures the angle between 

the class probability distribution of the parent rule and the child d e .  For parent and child 

class distributions à, 

ORT+(G,B) = 1 - C O S B ( ~ , ~ )  (6.10) 

For Example 6.1, a c d  to ORT+(ro, r2), resdts in: 

6.4.3 DI+() Variation 

The parent-child variation of the DI() based heuristic fullction, simply measures the ge* 

metric distance between the class probability distribution of the parent rule and the child 

d e .  For parent and child class distributions oi', a 

For Example 6.1, the Euclidean distance between r o  and 7-2 is 



To normalize the DI+ () function, the DInc () divides the result by 

A general characteristic to induction algorithms in real-world domains, is t heir at temp t 

to fit the noise in the dataset into their model rather than hding the true model. This 

phenornenon is often referred to as LLoverfitting" (or overspecialization) [18, 681. A common 

method to counteract ovel-fitting, is the addition of various penalty terrns to the heuristic 

function, sometimes referred to as "pruning" criteria. Because DBPredictor is found to be 

vulnerable to overfitting in Chapter 7, a simple pnining mechanism is proposed to initiate 

the investigation in this area. 

This section proposes two additional criteria for the heuristic function F() that may help 

to avoid basing prediction on unreliable d e s  and that will avoid searching uninteresthg 

terrain. This approach is simila to the use of pre-pruning (also known as stopsplitting rules) 

used in top-down induction of decision trees 152, 58, 671. SpecScally, further specialization 

will be restricted to rules that match a minimum number of instances in the dataset, and 

to rules that achieve a minimum heuristic function F() value. To achieve this? two internal 

parameters are integrated into F(): min-cover and mi~value .  The addition of these two 

tests will increase the running time compfexity by a constant. However, because these 

additions stop specialization from proceeding, some effort is saved on average. Informal 

investigation has shown that the increased running time due to the updates is generdy 

negated by the shortening of the search space. Values for these two interna1 parameters will 

be investigated in the empirical studies of Chapter 7. 

6.5.1 min-cover threshold 

The minimum rule cover theshold parameter (min-cover) describes the smallest number of 

records that a rule must cover. The intuition behind this update is to reject rules based on 

too few instances as sensitive to noise and therefore weliable. This parameter must have 



a value within the range of [1, ml. At a setting of 5, for example, each specialization step 

will determine whether the cover of the proposed rule r' is 3 5. If rule r' does not achieve 

this threshold its evaluation will be set to zero by F(). 

Ir:,,, 1 < minsov -i F (r', r )  = O 

6 -5.2 min-value threshold 

The minimum heuristic function value threshold parameter (min-value) describes the s m d -  

est heuristic function value that a rule must achieve. The intuition behind this update is 

to terminate a specialization path if it does not make significant progress. This parameter 

must have a value that is greater than or equal to O (no pruning) and less than or equal to 1 

(complete pruning). At a setting of 0.10, for example, each specialization step must attain 

a heuristic value > 0.10. If this is not the case, then the value assigned to the specialization 

is set 0. 

6.6 Chapter Summary 

T-his chapter presents the definition of the heuristic function F() that is used by DBPredictor 

to navigate the rule space. Three enhancements are proposed to the function. First, the 

parent-child cdculation method, implicitly used by LazyDT, is explicitly described. The 

focus on the clifference between parent and child class distribution vectors rnay prove to be 

more accurate. Second, a simple pruning mechanism is integrated into F(). In other top- 

d o m  induction algorithms, the use of pruning haç helped to mitigate against overâtting. 

Finally, three base measures are implemented for the function. With this level of option 

and variety, a more accurate measure may appear. Part of the scope in the next chapter, 

is an empirical assessment of which version of F() achieves good accuracy. Subgoals to this 

assessment are to determine whether the parent-child variation resdts in superior accuracy 

and whet her simple pruning mitigates against overfitt ing. 



Chapter 7 

Empirical Study of Accuracy 

This chapter presents the results of an empirical study into DBPredictor's accuracy. The 

main question addressed within the study was DBPredictorYs suitability for on-line classifi- 

cation tasks, with respect to accuracy. Because these tasks have a prevalence of irrelevant 

at tributes and underspecified events, DBPredictorYs relative performance wit hin these types 

of domains was of key importance. In summary, these tests show that while IBl's accu- 

racy degraded in the presence of irrelevant attributes and C4.5'~ accuracy degraded with 

underspecified events, DBPredictor tied for the top position under both tests. This result 

presents evidence that the algorit hm is particularly suited to on-iine classification tasks. 

A few other secondary questions are addressed within this study to better understand 

the response of DBPredictorys accuracy with respect to 

overspecializatioo 

e parent-child versus sibling-sibling calculation 

different base measures: entropy (), ORT(), DI,() 

O numericd attribute handbg 

The chapter is organized into three sections. Section 7.1 presents the methodology used 

within the study to validate statements of accuracy. Section 7.2 reports the studies used to 

locate an accurate version of DBPredictor. Within this section the role pruning, parent-child 

and different base rneasures in F() are investigated. Once a relatively accurate version of 



DBPredictor was identified, Section 7.3 reports DBPredictorYs relative performance, when 

compared to the Il31 and C4-5 algorithms. Within this section the role of overspecialization 

and numerical attribute handling are also invest igated. 

7.1 Met ho dology 

This section describes the methodology that was used to support the hypothesis that a par- 

ticuiar classification algorithm was more accurate t han another. While there is no standard 

empiricd method to accomplish this, some general guidelines are available. First a group of 

represent ative dat asets are gathered, next an error rate estimation met hod is select ed and 

finally a set of criteria are defined that must be passed before the hypothesis is confirrned or 

rejected [21, 41, 681. To follow these guidelines, Section 7.1.1 reports the group of represen- 

tative datasets. Section 7.1.2, report the error rate estimation method used. And, Section 

7.1.3 presents the criteria selected to test a hypothesis on accuracy. 

7.1.1 Datasets 

Twenty three real-world data sets were selected to perform this study's investigation into 

DBPredictorYs accuracy. A n  attempt was made to include datasets that have been widely 

used in other studies of misclassification rates [21, 29, 601. Furthemore, the datasets were 

required to contain a variety of sizes, data types, and application areas- Table 7.1 lists and 

sirmmarizes the characteristics of these datasets. The anneal dataset (AN), for example, 

is shown to contain n = 898 records and m = 39 attributes (9 of which are numerical). 

The class attribute for this dataset contains six unique classes and the most common class 

appears 76.2% of the tirne. Finally 64.8% of the dataset's values are rnissing. AU datasets 

were retrieved fkom the UCI repository [51] at: 

f t p  : //ics .uci - edu/pub/machine-Iearning-databases. 

7.1.2 Error Rate Estimation 

A classification algorithm's accuracy is commonly represented by the percent of incorrectly 

predicted event vectors (error rate). To ensure that good es tha t e s  of the true error rate are 
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Table 7.1: Characteristics of the datasets used in the empirical study of DBPredictor7s 
accuracy. The columns are: row number; common name; number of instances (n); number 
of predicting attributes (m - 1) and numerical attributes (num); number of classes and 
the percentage of the most common class; and percentage of missing values. Datasets with 
an * beside their common name were used to fine tune DBPredictor2s and II3 1's threshold 
paramet ers. 

Dataset 

anneal 
audiology 
breast-w 
chess 
credit-a 
credit-g 
diabet es 
echocardiogram* 
glas 
hayes-rot h* 
heart * 
heart-c 

horse-colic 1 HO 11 368 1 22/10 1 2/63.0 1 O 1 

1 

heart-h HH 94 13/7 2163.9 O 

abbrv. 
AN 
AD 
BW 
CH 
CA 
CG 
DI 
EC 
GL 
HR 
HT 
HC 

hepatitis HE 

iris* ( IR 

n 

898 
226 
699 
3196 
690 
1000 
768 
132 
214 
160 
270 
303 

150 
20000 
345 
8124 
2310 
47 
958 
493 

letter 
liver-disease 
mus hro om 
segment 
soybean-small 
tic-tac-toe* 
vote 

m - llnum 
3819 
69/0 
1019 
36/0 
1416 
2017 
818 
7/6 
1019 
410 
1317 
13/7 

Clss./Def% 1 Miss.% 

LT 
LD 
MU 
SE 
SO 
T O  
VO 

6176.2 
24125.3 
2165.5 
2152.2 
2155.5 
2/70.0 
2165.1 
3181.8 
7735.5 
3140.6 
2155.6 
5/54.1 

155 

4 4  
16/16 

616 
2210 
19/19 
3510 
910 
16/0 

64.9 
2.1 
O 
O 
O 
O 
O 

4.6 
O 
3 
O 
O 

19/6 2/79.4 5.7 

3/33.3 
2614.1 
2/58.0 
2/51.8 
7/14.3 
4/36.2 
2/65.3 
2/61.4 

O 
O 
O 
O 
O 
O 
O 
O 



reported, al1 error rate results in this study are based on the average of at least five runs of 

the stratfied 10-fold cross-validation (SCV-10) resampling technique. SCV-10 h a .  been used 

extensively in past empirical studies [9, 581. The averaging of several cross-validation nins 

has been recently proposed to overcome the large variance of resampling techniques [43, 681. 

This approach to estimation tends to achieve a low and conservative bias and variance [43]. 

SCV-10 requires that the exarnpIes be randody allocated to 10 mutudy exclusive 

partitions of approximately equal size, while maintaining approximately the same class 

distribution as in the original data set. With SCV-IO all the dataset records contribute to 

the estimate and almost all the cases (90%) are used to base each prediction. For example, 

a domain with 101 cases and a 60%/40% distribution of its binary (0,l) class label would 

result in nine partitions with 10 cases and one partition with 11 cases. Each partition would 

have approximately six cases with class label O and four cases with class label 1. Once 

the partitioning has cornpleted, ten tests are performed. Each partition will at one point 

be labeled the test set while the remaining nine partitions are grouped together into the 

training set. Within each of the ten tests, every record from the test set is transformed into 

an event vector ë and a prediction is made based on the examples stored in the training 

set. The ratio of misclassified cases is recorded for each of the ten tests. These ten ratios 

are averaged to give the cross-validated error rate. For this study at least five SCV-IO were 

performed on each dataset to achieve an average error rate estimate along with its standard 

deviation o. 

7.1.3 Hypothesis Testing Criteria 

Given a method to estimate an algorithm's average error rate, what is required to daim 

that one algorithm is more accurate than another? Just  as there is no standard list of 

datasets that must be tested there is currently no single comparative measure of accuracy- 

Commonly however, several individual measures are used in combination. Only when an 

algorithm succeeds on all the tests can this algorithm be declared more accurate [21]. 

For this study a classifkation algorithm Ai will be referred to as more accurate than 

classifier A2, if it meets the following criteria: 

Iower on: Ai achieves a lower error rate on more datasets than A2. 

avg: Ai achieves a lower average error rate than A2. 



Table 7.2: Example of one algorithm (Al) being more accurate than another (A2) - 

clear wins: AI achieves a lower error rate, with a 99.5% confidence level, on more 

datasets than A2 (based on a one-tailed t-test [34]). 

FO 
Al 
A2 

Subtract 

Table 7.2 reports a sample result were algorithm Al is more accurate than A2. Based 

on this report algorithm Al can be said to be more accurate then algorithm Ag. First, Al 

achieved a lower error rate on one more dataset than A2. Second, the average enor rate 

over all datasets is lower for Al (by 1.34%). Finally, based on a one-tailed &test1, algorithm 

Al was more accurate over As with a 99.5% confidence on two more datasets. If all three 

criteria had not been met, then no claim of accuracy superiority could be made. 

avg 
15.20% 

iower on 
3 

7.2 Variations on F() 

ciear wins 
2 

2 

1 

The focus of the first set of empirical investigations into DBPredictor7s accuracy, was to 

discover an accurate combination of heuristic function and threshold paramet er sett ings. 

This involved testing a large number of versions of F(). The results from tbis investigation 

presented an opportunity to aiso investigate the following questions: 

1. What is the Mpact of the parent-chdd cdculation approach on the dgorithm7s accu- 

racy? 

16.54% 

-1.34% 

2. What is the impact of pruning on the algorith's accuracy? 

3. Which heuristic function results in the highest accuracy? 

O 
2 

1 



The version of DBPredictor which achieved the highest accuracy is then used by the 

next phase of the study which tests the algorithm's relative performance- 

7.2.1 Datasets 

A small group of datasets were selected from Table 7.1 to discover an accurate version 

of DBPredictor. The use of smaller group of datasets dowed for the testing of a large 

number of heuris tic fùnctions and threshold parameter combinations. More importantly, 

this approach also lefi the optimization of DBPredictor blind to the majority of datasets. 

The five selected datasets were: echocardz'ogram, hay es-roth, hea7-t' horse-colic, and iris 

datasets. These datasets (marked in Table 7.1 with a * symbol beside their name) contain 

a s a m p h g  of attribute types and domains. For this initial study however the datasets 

needed to be s m d  enoirgh (N 400) to facilitate an intensive study of the different heuristic 

measures and threshold parameter settings. Approximately seven rdlïon predictions were 

performed to analyze the algorithm's response! Any increase to the number of datasets or 

their average size would have increased not ody the number of predictions, but also the tirne 

required by each prediction. I t  is difEcult to determine whether the five selected datasets 

are unbiased and representative. However, the significant differences of optimal parameters 

settings encountered within the study for each of the datasets, indicate that the set may 

have been appropriate. 

7.2.2 Threshold Setting Refinement 

DBPredictor contains three threshold parameters. In Chapter 4 the numerical partitioning 

ratio (num-part) was dehed  to handle numerical attributes. In Chapter 6 ,  the minimum 

rule cover (minxover), and minimum evaluation function value (mimneas) parameters were 

defined to implernent pruning support. For these thee  numeric parameters, a range of values 

were selected based on preliminary experirnents. The final criteria for a valid parameter 

set~ings combination was that none of its settings could could be a terminal value. For a 

setting of 1.50 to be recommended for n m p a r t ,  for example, values greater than 1.50 (e-g. 

2.00) and less thm 1.50 (e.g. 1.25) must have also been investigated. The following list 

describes the range of settings selected for the algorithm's three internal parameters: 

The numericd partitioning ratio parameter (numpart ) de termines how aggressively t O 

divide the region around a numerical value on each specialization step. This parameter 
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must be set with a value that is greater than 1.0. At a setting of 2.00, for example, 

each specialization step will divide the matching range around a value by h o .  After 

some preliminary experimentation, the settings selected for the numpart parameter 

were: 1.25, 1.50, 2.00, 4.00 and 6.00. 

The minimum rule cover threshold parameter (min-cover) is a pluning based stop- 

ping criteria used to mitigate from overspecialization. A setting for this parameter 

describes the smallest number of records that may be covered by a rule- This param- 

eter must have a value within the range of [O, n]. At a setting of 5, for example, each 

specialization step WU determine whether the cover of the proposed d e  is > 5. After 

some preliminary experimentation, the settings selected for the min-cover parameter 

were: 1, 2, 5, and 10. 

The minimum heuristic function value threshold parameter (minmas), is another 

priining stopping criterion used to mitigate against overspecialization. A set ting for 

this parameter describes the smallest heuristic h c t i o n  value allowed between spe- 

cialization steps. This parameter must have a value that is greater than or equal to O 

(no pruning) and less than or equal to 1 (cornpiete pruning). At a setting of 0.10, for 

example, each specializat ion step will det ermine whet her the class separat ion measure 

for the proposed new rule is 2 0.10. If this is not the case then this proposed special- 

ization is rejected. After some preliminary experimentation, the settings selected for 

therninaeas parameter were: 0.00, 0.01, 0.05, 0.10, 0.33, and 0.50. 

To determine which parameter settings achieved near optimal accuracy for each of the six 

heuristic funct ions, al1 paramet er combinations were tested against each of the five dat asets. 

The different settings proposed above rneant that 120 parameter combinations were possible 

(5 x 4 x 6). Table 7.3 shows the results of DBPredictor7s accuracy when the DI,() version of 

the algorithm was tested against the i7-i~ dataset. To attain the lowest error rate against this 

dataset, with this algorithm, the following parameter settings are required: numpart=6.00, 

min,cover=l and minmeas=0.33. After five 10-SCV studies, this parameter combination 

resulted in a 3.53% average error rate. 

Each of the five datasets required a different parameter setting combination to minirnize 

the error rate acbieved by each heuristic function. Table 7.4 shows the parameter combi- 

nations that achieved the lowest error rate for the DI,() based algorithm. The optimal 



TabIe 7.3: Average error rate on the iris dataset for DBPredictor based on the DIn()  
heuristic function. For conciseness only the top five and the bottom ranked combinations 
are presented. The fifth combination happens to perform no pruning (min_cover=l and 
mineas=0.00- 

Table 7.4: Interna1 patameter settings for the DI,() based DBPredictor that resdted in the 
lowest error rate for each of the five datasets. The bottom row reports the average error 
rate over the five datasets. 

1 2 1 haves-roth 
I Il 

1 0.20 2.00 

# 
1 

5 ( echocardiogram 1) 10 0.33 1.50 
Average 

combination for the heurt dataset, for example, is significantly different than the optimal 

Dataset 

iris 

combination already encountered for the iris dataset. In the case of the D In () heuristic func- 

m i ~ c o v e r  minlneas num_part 

1 0.33 6.00 

tion the average error rate with the optimal settings on each dataset was 13.61%. Sirnilar 

differences in optimal parameter setting combinat ions occurred wit h the ot her five heuristic 

Because of the large variety of optimal parameter combinations, a compromise was 

required to select a single combination that rninimizes this error rate. One way to determine 

which combination to chose, is to select the combination that was more accurate than d 

ot her combinat ions. However, because the parameter sett ings were set intentiondy close, 

no single combination was able to meet the required criteria. Between the top ranked 
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Table 7.5: Average error rate over the five selected datasets achieved by the Di,() function 
at particular cornbinations. For conciseness only the top five, the top unpruned and the 
l e s t  accurate combination are presented, 

# I I  min-cover I mlneas err. rate C / 

Internal parameter combinations that achieve the lowest average error rate for each of the 
six heuristic functions over the five datasets. 

combinations, for example, none achieved a lower average error rate over the five datasets 

with 99.5% confidence. 

The selection of an accurate combination was instead based on the combination that 

strictly minimized the average error rate over these five data sets. Table 7.5 shows that 

the values [minrov=5, min~eas=O.  10, num-part =1.50] achieve this for the D In () heuris tic 

function. Wit h t his parameter setting combination and t his heuristic function, the average 

error rate of 15.13% was srnader than aay other tested combination. 

After a similar exercise was performed on the remaining versions of the algorithm, the 

optimal parameter setting combinations were located for each of the six heuristic functions. 

Table 7.2.2 presents these results. While more optimal setting combinat ions likely exist, the 

generd region of these settings has likely been located. 

err. rate 4 
15.13% 
15.18% 
15.30% 
15.33% 
16.54% 
16.72% 

FO 

DIn ( > 
entYK40 
ORTo 
DL+ 0 
enw?%o 
ORT+o 

1 miecover  

I 5 
1 5 

5 
5 

1 5 
5 

minneas 1 nunpar t  

0.10 I 1-50 
0.01 1.50 
0.00 1.50 
0.05 
0.01 

2 .O0 
2-00 

0.00 2.00 



Observations 

Some initial observations can be made fiom the optimization results reported in Table 7.2.2 

with respect to the three questions relevant to this section. The most striking feature 

about the table is that all dgorithrns selected a value greater than 1 for a minimum cover. 

This points to the possibïlity that pmning does indeed improve accuracy. The next section, 

Section 7.2.3, will address this question further. A second observation is that the algorithms 

which used the parent-child heuristic function vaziation (marked with a +) achieved higher 

error rate than a,ll sibling-sibling versions. This observation will further analyzed in Section 

7.2.4. Finally the D In()  heuristic function achieves the lowest error rate (15.13%). Section 

7.2.5 will discuss whether this heuristic function does indeed generate the most accurate 

version of DBPredictor based on the five datasets. 

7.2.3 Pruning's Impact on Accuracy 

Because all six heuristic functions made use of prlining to achieve their lowest error rate, 

it appears promising that pruning does indeed generate a more accurate version of DBPre- 

dictor. To test this hypothesis, the algorithms with the optimal parameter settings were 

compared to the versions of the algorithm that did not make use of pruning. To turn off 

pruning the min_cover parameter was set to 1 and the mimneas parameter was set to 0.00. 

With these two parameters fked, the ody setting left to optimize was for the n u ~ p a r t  

parameter. Table 7.6 presents the result of this investigation. 

Table 7.6: num-part settings that achieve the lowest average error rate for each of the six 
heuristic functions when pruning is turned off (min-cmer = 1, minmeas  = 0.00). 

A cornparison with the optimized parameter combinations in Table 7.2.2 shows that no 

err. r a t 4  

17.49% 
17.79% 
18.23% 
18.97% 
19.87% 
20.33% 

num-part 

1.25 
1.25 
1.50 

F O  
e n t 7 - 0 ~ ~  0 
orno 
D L  O 
entropy+ (1 
ORT+() 
~ ~ n t ( >  

miacover 

1 
1 
1 

miuneas 

0.00 
0.00 
0.00 

1 
1 
1 

0.00 1 4.00 
0.00 1.50 
0.00 1 1.25 



Table 7.7: The pruned version of the O-() function, even though it achieved the lowest 
accuracy of the all the p m e d  versions, is more accurate on the 5 datasets than the unpnined 
version of the algorithm which achieved the highest accuracy (entropy() ) .  

w/out pnrning 2 17.49 
Subtract 1 -0.7 1 fl 

unpruned version of the algorithm achieved a lower error rate than any of the pruned ver- 

sions. Further analysis showed thal; a.U pruned version of the algorithm were more accurate 

than al1 the unpruned versions. Table 7.7 presents the results of the two versions that came 

closest to contradicting this. 

This evidence supports a c l a h  that pruning improves DBPredictorYs accuracy. Further 

evidence to this effect is presented in Section 7.3.5. Part of this section investigates the 

effect of p&g on ovefitting. 

Algorithm 

Observation: Another observation from Table 7.6 is that all parent-child variations led 

to a higher error rate than all of the sibling-sibling versions of F(). The question of which 

method to calculate F() is investigated in the next section. 

lower 
on 

avg err. 
rate (%) 

7.2.4 Sibling-Sibling versus Parent-Child 

clear 
wins 

Because the three functions based on the parent-chdd variation achieved a higher error rate 

than their sibling-sibling counterparts in both Table 7.6 and Table 7.7, it appears that the 

use of this approe.ch may be rejected. Indeed, after further analysis, all the algorithms 

(which made use of pruning) based on the sibling-sibling approach to the heuristic function 

calculation, were found to be more accurate than all parent-child based functions on the 5 

tested datasets. Table 7.8 presents the two versions that came dosest to contradicting this 

statement . 
Based on this consistent response, there is strong evidence that the sibling-sibling ap- 

proach achieves a lower error rate than the parent-child approach. 



Table 7.8: Cornparison of the algorithm with the least accurate sibling-sibling heuristic 
function and the most accurate parent-child variation of the heuristic functions. Pruning is 
turned on. 

Table 7.9: Summary of accuracy results against the 5 datasets for the D I ( )  and entropy()  
versions of DBPredictor. 

2 15-18 O 
Subtraction 1 1 -0.05 O 

7.2.5 Selection of Accurate F() 

cleaz 
wins 

Now that the pnining has been validated and the parent-ddd variation has been rejected, 

this section determines which measure to pass on to the remaining investigations. Unfortu- 

nately, based on the five datasets that were set aside, no version emerged as a clear winner. 

As can be recded £rom table 7.2.2, the DIn( )  based algorithm achieved the lowest average 

error rate. Upon further analysis, this version of the algorithm &O achieves a lower error 

rate on more datasets than both the entropy() and the ORT() based algorithms. However, 

no algorithm was able to achieve a 99.5% confidence win on any of the five datasets. Table 

7.9, compares the DIn()  based algorithm, to the next most accurate version: entropy (). 

Because the DI,() based algorithm met two of the three criteria and because no other 

algorithm achieve a lower error rate with 99.5% confidence, this version of the DBPredictor 

was passed to the remaining phases of the empirical study- 

avg err. 
rate (%) 

Algorithm 

Observation: One surprising discovery f?om t his investigation is the effectiveness of the 

D In() evaluation fuoction which has not been u ~ e d  extensively in previous examinations of 

classification algorithms. This function measures the Euclidean distance between two class 

lower 
on 



probability distribution vectors. One attraction to this measure is that because it is easily 

visualized, more people may be able to understand the functioning of the classifier. 

7.3 Relative Accuracy of DBPredictor 

The main task of the study reported in the previous section was to locate a relatively accurate 

version of DBPredictor. The main task for the study covered in this section is to detennine 

the suitability of this version of DBPredictor, for on-line classification tasks. Because of the 

prevalence of irrelevant attributes and irnderspecified events in on-Kne classification tasks, 

the question of suitability is investigated with the following questions: 

How does DBPredictor's accuracy compare to that of C4.5 and IB1 on general datasets? 

How does DBPredictor's accuracy compare to that of (24.5 and IBl when datasets are 

known to contain several irrelevant attributes? 

How does DBPredictor 's accuracy compare to that of C4.5 and IB 1 when event vectors 

are known to contain several missing attribute-values? 

Two secondary questions are also investigated in order to better understand DBPredic- 

tor's behaviour: 

Relative to C4.5 and Il3 1, does DBPredictor overspecialïze? 

Relative to C4.5 and IB1, is DBPredictorYs biased for or against datasets with numer- 

ical attributes? 

After a brief review of the benchmark algorithms in Section 7.3.1, the results for each 

of these five questions are presented in the same order as above. 

7.3.1 Benchmark Algorithrns 

Three benchmark algorithms were selected to  ident i@ DBPredict or's relative accuracy : the 

naive, C4.5 and Il3 1 classification algorit hms. 



Naive Classifier 

The sirnplest classification algorit hm used in the empirical study returned the most common 

class of the dataset. This classifier is sometimes referred to as the naiue classifier. The 

performance of this algorithm on the 23 datasets can be derived fkom the class distribution 

colrrmn in Table 7.1- For the echocardiogram dataset (EC), for example, there are 132 

records and three classes. It7s most common class however occupies 81.8% of its records 

(Le. 108 records). When ody this information is available, the best strategy of a naive 

classifkation algorithm is to always assign the most populous class. In the case of the 

echocardiogram dataset the naive classifier achieves an error rate of (100%-8 1.8%) 18.2%. 

The representative eager model-based classification algorithm used in the empirical study 

was the C4.5 program [58]. C4.5 is a state-of-t he-art classification algorit hm that constnicts 

decision trees that c m  then be used to classiSf new cases. For this study, release 8 was used, 

which improves C4.5'~ performance on datasets with continuous attributes [60]. 

The representat ive 1azy ins tance-based classification algorithm used in the ernpirical study 

was the Il31 aigorithm [6]. This algorithm is presented in Section 3.1. The algorithm 

contains one threshold parameter, k, which determines the size of the instance set to base 

each prediction on. To set thïs parameter, IBI was optimized on the same five datasets as 

DBPredictor. Based on this investigation, k was set to 20. 

7.3.2 General Cornparison of Accuracy 

The fist question addressed in this study was how DBPredictor7s general accuracy per- 

formance faired against the benchmark algorithms. The accuracy results for each of the 

algorithms on the 23 datasets are reported in Table 7.10. A qui& scan through this table 

does not show a clear winner. C4.5 achieves the Iowest average error rate, Il31 was most 

accurate on more datasets and DBPredictor tied for the average ordinal. Further analysis, 

showed that aside for the naive classifier, no algorithm was more accurate than another. 

While C4.5 achieved a lower average error rate than DBPredictor, C4.5 did not achieve a 

lower error rate than DBPredictor on more datasets (12 versus 10). Similarly, though in 



opposite order, while IB1 did achieve a lower error rate on more datasets than DBPredictor 

(12 versus IO), El1 did not achieve a Iower average error rate than DBPredictor. These 

results present evidence that DBPredictor has attained parity with C4.5 and IB1 in ter- 

of general accuracy. 

7.3.3 firelevant Attributes 

The next experiment investigated DBPredictor's relative accuracy with respect to the pres- 

ence of irrelevant attributes. To perform this test, ten attributes were added to each of the 

datasets. Each dataset's proportion of numerical to symbolic attributes was rnaintained. 

The values for each of these attributes were selected randomly. Two value distributions 

were tested: even and Gaussian. Because the Gaussian distribution produced slightly larger 

error rates, it was selected for this test, 

The results for this experiment are summarized in table 7.11. As expected, E l ' s  ac- 

curacy is relatively sensitive to irrelevant attributes. DBPredictor's response, on the other 

hand, is closely related to the accuracy of the more robust C4.5 algorithm. When formally 

compared, DBPredictor and C4.5 were found to be more accurate than Il31 when tested 

against the updated datasets. On the other hand, neither DBPredictor nor C4.5, were more 

accurate than each other on these same datasets. 

These results present evidence that DBPredictor's accuracy does not degenerate as  fast 

as lazy instance-based algorit hms in the presence of irrelevant attribut es. Also, DBPredictor 

remains equident in accuracy performance to eager model-based a l g o r i t b  in the presence 

of irrelevant attributes- 

7.3.4 Underspecified Event Vectors 

A l l  the previous tests have assumed that all the information about each event vector was 

known when making the prediction request. The next expriment that was performed, 

investigated DBPredictor's relative accuracy with respect to the presence of underspecified 

event vectors. To perfurm this test different proportions of the event vector were obscured 

fiom the classXcation request. The selection of attributes to bide occurred randomly for 



Table 7.10: Accuracy results on the 23 datasets for DBPredictor and the three benchmark 
a l g o r i t h .  For each dataset the placement ordinal [1-41, average error rate (%) and stan- 
dard deviation, is given for each algorithm 

DBP 

Table 7.11: Average error rate for DBPredictor, C4.5 and IB1 when O and 10 irrelevant 

22 
23 

attributes were added to each of the datasets. 

TO 
VO 

Average 

1 4 34.70 
1 4 38.60 

1 3.8 44.99 

2 10.3301.10 
1 4.6000.61 

2.0 16.9400.86 

3 14.4400-90 
2 4.8200.40 

1 1.7900.50 
3 8.0500.42 

2.1 16.6301.00 2.0 18.1600.67 



Table 7.12: Summary of error rate results when O%, 25%' 50% and 75% of an event vector's 
attributes were uninstantiated. 

each prediction. When the proportion was set to 50%' for example, halfof the event vector's 

1 Missing % 
0% 
25% 
50% 
75% 

attributes were randomly selected and their values were set to unknown. 

Three propnrtions of uninstantiated vectors were tested: 25%, 50% and 75%. The results 

of these tests are sirmmarized in table 7.12. A qui& scan through this table shows that 

C4.5'~ accuracy degrades more rapidly than DBPredictor7s or IB17s. Further analysis showed 

that C4.5 was indeed less accurate than DBPredictor and IB1 on all three proportions of 

DBP 
16.94 
19.87 
21.25 
28-34 

underspecified event vectors. A comparison between DBPredict or and IB 1 showed t hat 

neither algorithm was more accurate than the other for any of the tested proportions. 

These results present evidence that in settings were a significant proportion of an event 

vector's attributes will be irninstantiated, the DBPredictor algorithm will likely produce 

naive 1 
44.99 
44.99 
44.99 
44.99 

C4.5 
16.63 
21.65 
26.13 
35.45 

more accurate classXcations than the eager model-based C4.5 classification algorithm. 

Il31 
18.16 
21.16 
24.30 
28.49 

7.3.5 Overspecialization 

Another measure of interest for a classification algorithm is its tendency to overspecialize 

(ovefit). This effect is commonly tested by comparing the accuracy of the naive classifier 

against mot her classifier. This study determined the tendency of DBPredictor, C4.5 and 

IB 1 to overspecialize to determine DBPredictor's relative vulnerability at overspecializat ion. 

Also within this study the unpnuied DBPredictor was tested against the naive classifier to 

further understand the impact of pnining on DBPredictor's accuracy. 

The naive classifier is commonly used to determine another classification algorithm's 

tendency at overspecialization. The effect of a classification algorithm performing worse than 



CHAPTER 7. EMPIlt1lCA-L STUDY OF ACCUR4CY 103 

Table 7.13: Datasets in which DBPredictor, C4.5 and Il31 were not more accurate than 
the naive classifier with more than 99.5% confidence. The second coliimn A presents the 
clifference between the two error rates- 

1 DBP 11 C4.5 II IB1 1 

the naive classifier can be understood through a worst case example were the algorithm in 

question overfits each prediction such that it is always supported by only a single record [13]. 

Suppose that there is a 70%/30% division among a binary class attribute that is to be 

predicted by a set of random attributes (Le. 100% noise). Each rule will be correct 70% of 

the time on the training set and therefore be on par with the naive classXer. When applied 

to new data however, the rules that predicted the majority class will now only be accurate 

a further 70% of the time. Therefore, the algorithm will only be correct 70% x 70% = 49% 

of the time. 

A qui& scan through TabIe 7-10 shows that DBPredictor performeà worse than the naive 

classser on one dataset, C4.5 on three, and IB1 on none. Table 7.13 presents the datasets 

that each algorithm was unable to achieve a lower error rate than the naive classifier with 

a 99.5% confidence. 

Based on these results there is evidence that DBPredictor is prone to overspecialization. 

However, the algorithm is not sigdcantly more prone to overspecialization t han C4.5. 

Overspecialization Without Pruning 

To extend our understanding of the impact of pruning on DBPredictor's accuracy, a test was 

performed to determine if the lack of pruning had a significant impact on overspecialization- 

When the accuracy of the most accurate unpruned version of DBPredictor was compared 

to the naive classifier's performance on the 23 datasets, DBPredictor achieved a higher 

error rate on five datasets: her-diseuse, hepatitis, heurt-c, credit-g, and echocardiograrn. 

Based on this evidence pruning appears to sigdicantly lower DBPredictorYs vulnerability 

to overspecialization. 
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Table 7.14: Average percentage of numerical attributes in the datasets that each algo- 
rithm performed si@cantly more accurately on, when compared to one other algorithm. 
When compared to IB1, DBPredictor containeci on average 39% numerical attributes in the 
datasets that it performed more accurately on. m e n  compared to D l ' s  proportion (52%), 
the difEerence between the two A, is equal to = 75%. 

1 tested pair (1  DBP/C4.5 1 DBP/IBl 1 C4.5/IB1 1 

7.3.6 Numerical Domains 

The &al empirical study inves tigated whether DBPredictor's handling of numerical at- 

tributes biased its accuracy with respect to the proportion of numerical attributes in a 

dataset. For each pairing of DBPredictor, C4.5 and IB1, the datasets in which one al- 

gorithm performed significantly more accurately in2 than the other were identified. For 

example, DBPredictor performed significantly more accurateIy than Il31 on nine datasets, 

while Il31 performed significantly more accurately than DBPredictor on seven datasets. 

Next, the average proportion of numerical attributes on these two groups of datasets was 

evduated. For example, approximately 39% of the attributes for the nine datasets which 

DBPredictor performed si@cantly better on, were numerical. Because the average num- 

ber of numerical attribute arnong the 23 datasets is 48%, it is expected that an unbiased 

algorithm will &O achieve this proportion of numerical attribute among its more and less 

accurate datasets. Table 7.14 sirmmarizes the results of the three pairwise tests. 

When tested against each other, C4.5 and DBPredictor performed similarly. Both had a 

slight bias for numerical at tributes. When compared to IB 1 however, DBPredictor appears 

to be si&cantly biased against numerical datasets. However, because of C4.5'~ sigrdicant 

bias against numerical attributes relative to IB1, and because of the well known strength of 

k - N N  based algorithms in numerical domain's 1661, DBPredictor's approach to numericd 

attribut es appears to be sound. 

*based on a 95% confidence one-tailed t-test 

- II 

39%/52% 
75% 

proportions 
A 

20%/57% 
35% 

54%/55% 
98% 



7.4 Discussion 

The focus of this chapter was to determine DBPredictorYs suitability for on-line classifi- 

cation tasks with respect to accuracy. To test its suitabilik DBPredictor's accuracy was 

compared to the performance of C4.5 and IB1 against general datasets, datasets with irrel- 

e ~ s t  attributes and underspecified event vectors. These three tests achieved the folIowing 

results: 

When tested against general datasets no algorithm was more accurate than the other. 

When tested against databases with irrelevant attributes, DBPredictor and C4.5 were 

more accurate t han Il3 1. 

When tested ag-t event vectors with missing attribute-values DBPredictor and IB1 

were more accurate than C4.5 

Given this response, DBPredictor appears to be the most suitable choice for an on-line 

classScation task, with respect to accuracy. 

Because of DBPredictor's positive results, a few ot her questions were investigated to 

better understand its underlying behaviour. 

Pruning significantly reduces DBPredictorYs minerab* to overspecializes and also 

improves accuracy in general. 

Even with pnining, DBPredictor overspecia,lizes. However this response appears to be 

no worse t han C4.5'~ response. 

The use of pnining has been strongly MLidated, however, based on Dl's ability to avoid 

overspecialization, there appears to be room for improvement. A more formal investigation 

of pninulg may be helpfid. 

The parent-child calculation for the heuristic function significantly degrades DBPre- 

dictor's accuracy 

The evidence is quite strong that the parent-chüd approach should be rejected. 
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The DI, () heuristic function, resulted in the lowest average error rate, but it was not 

clearly superior t han the entropy() based funct ion. 

Because of entropy()  's popularity and D I  0's relative obscurity, t this result was unexpected. 

This finding may be useful for other topdown induction algorithms. Another possible 

advantage to the use of this function is the simplicity of its visualization, and therefore 

possibly greater acceptance. 

DBPredictor's handling of numerical attributes does not appear to significantly bias 

the algorithm's relative accuracy for or against datasets with numerical attributes. 

The enhanced approach to numerical attributes handhg  was defbed to make the use of 

DBPredictor more convenient. This positive result, however, supports further investigation 

into this method. 

7.5 Chapter Summary 

This chapter presented the results of an ernpirical study into DBPredictor's accuracy. The 

main focus of the investigation was to test DBPredictor 's suitability for on-line classification 

tasks wit h respect to accuracy. Several other secondary questions were investigated to de- 

velop a better understanding of DBPredictor's accuracy in general. The study followed the 

common approach of locating a group of representative datasets, selecting an error rate esti- 

mation method and defining a set of criteria to tests hypothesis on a n  algorithm's accuracy. 

The fkst set of tests attempted to discover an accurate combination of parameter settings 

and heuristic function for DBPredictor. In the process of locating this combination, a few 

other secondary questions into pruning, and the child-parent approach were investigated. 

Next, DBPredictor was compared to the C4.5 and Il31 classification algorithms. Finally, 

the impact of the study's results were discussed. 



Chapter 8 

Empirical Study of Running Time 

While a classification algorithm may be very accurate, the amount of time that it expends 

before it retunis its prediction, is another critical measure of the algorithm's success. This 

chapter presents the results of a brief empirical study of DBPredictor7s running time per- 

formance. The main question addressed wit hin this study was DBPredictor's suitability for 

on-line classification tasks, with respect to running time performance. In siimmary, based 

on the performance on one large dataset, IB1 solved tasks 4 to 8 times faster than DBPre- 

dictor, which in tuni solved tasks 50 to 100 times faster than C4.5. This resdt shows that 

a tradeoff is likely between t h e ,  and the ability to produce rule based results with robust 

accuracy. 

This chapter is organized into three sections. Section 8.1 presents the methodology 

used to vaLidate empirical statements of ruiming time. Section 8.2 reports the study used 

to achieve a general underst anding of DBPredictor 's real-world response to difTerent num- 

bers of attributes and records. Finally, Section 8.3 reports on an initial investigation into 

DBPredictor's relative performance relative to the C4.5 and IB1 classification algoriths- 

8.1 Methodology 

This section describes the met hodology used to test a classification algorit hm's empiri- 

c d  ninning time. Unfortunately, ernpirical d g  time performance evaluations are not 
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cornmody reported in the classification literature. To test an dgorithrn's running time 

performance, this study performed experiments against different proportions of records and 

attributes fiom the same domain. To achieve this, a dataset was located which remained 

sizeable, even when only a small portion of its records and attributes were present- For this 

study, the census-year dataset was used. This dataset is composed of m=199,523 records 

and m - 1=37 predicting attributes (13 of these being numerical). The class attribute of 

this dataset has c=2 classes of relatively equal proportion and some missing attribute-values. 

This dataset is located at the UCI repository [51]. 

Several decisions were also made about the testing environment. Because the C4.5 

and IB1 program are not irllplemented to cornmunicate with an RDBMS, all tests were 

performed in memory. Furthermore, since C4.5 rnakes use of significant space resources 

to achieve its classification, DBPredictor made use of its time efficient search technique- 

This technique was found to consume an equivalent amount of memory space to achieve its 

prediction. AU experiments in this section were performed on a dedicated computer with 

the following configuration: 133Mhz Pentium CPU, 64MB DRAM, and the Linux 2.0.31 

O/S. AU classification algorithms were also implernented with the same (GNU) ANSI-C 

compiler and op timization flags- 

8.2 S t  andalone Performance 

To investigate DBPredictor7s real-world response to different sizes of n and m, the census- 

year dataset was broken-up in both directions and the average time required for each clas- 

sification request was recorded. To test the response in the n dimension, four proportions 

of the dataset were tested: 100%, 75%, 50% and 25% of the records (ie. 199,523, 149,642, 

99,762 and 49,881 records). The records for the smaller datasets were randomly selected 

while keeping a similar distribution of the values in the class attribute. Similarly, to test 

the response in the m dimension, tests were performed by obscuring different numbers of 

attributes: 0, 4, 8, 12, 16, 20, 24, 28, 32, and 36. To calculate an average completion time 

per request, one hundred records were randomly selected kom the accompanying testset to 

the census-year dataset. The results of this study are located in Table 8.2. 
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Time performance resdts (in seconds) for DBPredictor against different proportions of the 
census-year dataset. The dataset has 37 predicting attributes and 200: 000 records- 

Imtantiated Records 
Attributes 25% 50% 1 75% 100% 
1 (2.7%) 
5 (13.5%) 0.74 1-73 
9 (24.3%) 1.24 2.74 5.44 8.97 

On average, when 100% of the records were present and when 100% of the event vector 

was hstantiated DBPredictor required 38 -22 seconds to report its prediction. When o d y  

half as many records were used the average time is cut to 20.74 seconds- GeneraUy the 

algorithm's time performance appears to grow linearly with the number of records in the 

dataset. In the m dimension, when o d y  half of the attributes were instantiated and all the 

records were present, the algorithm required approximately 18 seconds to report its result. 

Generally the algorithm's time performance appears to grow slightly faster than linearly 

with respect to the number of attributes. 

8.3 Relative Performance 

The h a 1  question investigated in the empirical study was the difference in time response 

between DBPredictor and the IB1 and C4.5 algorithms on different proportions of the 

census-year dataset. The performance difference between all three algorithm was significant. 

IB1 was 4 to 8 times faster than DBPredictor, which in turn was 50 to 100 times faster 

than C4.5. Because of this, the cornparisons below, report how many classification requests 

the faster algorithm could achieve before the slower algorithm had classified a single event. 



Table 8.1: Number of classiiication performed by DBPredictor before C4.5 retunis its f i s t  
classification. Different proportions of the census-year dataset were tested. 

As in Section 8.2, different settings of n and m were investigated- For n, four settings were 

investigated: 100%, 75%, 50% and 25%. For rn, four seftings were investigated: 100%, 

75.7% (28/37) 48.6% (18/37), and 24.3% (9/37). Because of the significant amount of time 

required by C4.5 to build its decision trees, only a single attribute combination was selected 

for the three settings in which attributes were obscured. Care was taken to ensure that the 

proportion of numeric and symbolic attributes remained the same (13/25). 

-l[nstantiated 
Attributes 

9 (24.3%) 
18 (48.6%) 
28 (75-7%) 
37 (100%) 

Cornparison with C4.5: Table 8.1 presents DBPredictor3s relative riinning time when 

compared to C4.5'~ performance. On average, when all of the records were present and 

when the event vectors were M y  instantiated, DBPredictor was able to complete 104 pre- 

dictions against the census-year dataset, before C4.5 completed a single prediction. When 

the number of records was halved (n x 100,000 records), DBPredictor was able to make 

approximately one half as many predictions (53). If, instead, the number of attributes was 

pruned by approximately one half (m=l8), DBPredictor continued to make an equal num- 

ber of predictions (103). These results suggest that DBPredictor soives on-line classification 

significantly faster than C4.5. hirthermore, this gap appears to grow Linearly as the number 

of records (n) grows, and rernain steady as the number of attributes (m) grows. 

Records 
100% 

72 
103 
109 
104 , 

25% 
46 
52 
48 
42 

50% 1 75% 
51 
68 
61 

/ 66 
86 
93 

53 1 85 



Table 8.2: Number of classification performed by Il31 before DBPredictor returns its first 
classification. DSerent proportions of the census- y ear dat aset were test ed. 

Comparison with B I :  Table 8.2 presents DBPredictor7s relative ninning time when 

compared to IBl's performance. On average, when all of the records were present and 

when the event vectors were fully instantiated, Il31 was able to complete approximateiy 

7.9 predictions against the census- year dataset, before DBPredictor completed a single 

prediction. When the nurnber of records was hdved (n N LOO, 000 records), IB1 was able to 

make a relatively similar number of predictions.. If, instead, the number of attributes was 

pruned by approximately one haIf (m=18), IBl made fewer predictions (6.8). These results 

indicate that IB 1 solves on-line classification faster than DBPredictor. This gap, appears 

to grow Linearly with the number of attributes (m), and remain steady with the number of 

records (n). 

Lns tantiated 
Attributes 

8.4 Chapter Summary and Discussion 

This chapter presented the results of a brief empiricd investigation into DBPredict or's t ime 

performance. The large census-year dataset was selected to facilitate this portion of the 

study. Again, the C4.5 and IB1 dgorithrns served as the benchmark algorithms. The 6rs t  

study showed that the time efficient version of the algorithm may, on average, grow linearly 

with then number of records and grow larger than linearly with the number of attributes. 

When compared to C4.5, DBPredictor showed a significant time performance gain. This gain 

grew approximately as a h e a r  function of the number of attributes in the dataset. When 

compared to IB1, however, DBPredictor attained a slower running time performance. This 

gap grew approximately, as a liner function of the number of attributes. 

These results indicate that, when compared to IB1, the benefits of DBPredictor's rule 

based result and robust accuracy cornes at the expense of increased riinning time. 

Records 

9 (24.3%) 1 
100% 25% 

5.9 4.0 
50% 

6.8 18 (48.6%) I f  4.3 

75% 
4.7 5.0 
5.3 6.1 



Chapter 9 

Conclusion 

In this thesis, we described a framework for knowledge based on-line classification tasks and 

proposed an algorithm, named DBPredictor, that is particularly suited to these tasks. This 

b a l  chapter summatizes the approach taken by the thesis, reviews the key contributions to 

the field of classification, and speculates on future reseafch directions. 

Section 9.1 presents the thesis s t i m m v  Next, Section 9.2 summarizes the key contri- 

butions of the thesis. In Section 9.3, we suggest some possible areas for future research. 

And finaUy, Section 9.4 presents some concliiding remarks. 

9.1 Thesis Summary 

Chapter 2 began the thesis by describing a fiamework for knowledge based on-line classifi- 

cation tasks. These tasks provide a database, event vector and class attribute and require a 

class prediction that should be justïfied with the use of a high-level representation. Optional 

constraints on how the algorithm achieves its task, includes the requirement of direct com- 

munication against a database. As in most classification tasks, the candidate algorithm will 

be measured by its accuracy, speed and resource requirements. The understandability of its 

prediction and its operation, while subjective, are also important to the task. Finally, some 

areas related to on-line classikation, but out of scope for this thesis, include regression, 

bat ch classification and system guided classification. 

Chapter 3 presented a survey of classification algonthms that may be used for on- 

line classification. Historicdy, Machine Learning classification algorit hms have made use 

of either a lazy instance-based approach, or an eager model-based approach. As specsc 
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instances of these approaches, we presented the k nearest-neighbour based IBI algorithm, 

and the use of top down induction of decision trees. The third approach presented made 

use of lazy classification with dynamic relevance analysis. This approach appears more in 

tune with the requirements of on-line classification. Several algorithms have been recently 

proposed that make use of this approach- The local induction of decision tree dgorithm, 

for example, combines the lazy instance-based approach and top-dom induction of decision 

trees into a hybrid approach. The other, more intensively surveyed approach made use of 

lazy model-based induction. This is the approach used by DBPredictor, however the LazyDT 

algorithm is reviewed instead, to highlight the clifferences in implementation betnreen the 

two algorithms. 

Chapter 4 described the greedy topdown heuristic search used by DBPredictor to locate 

a classification rule. The description included the natural support for numerical and concept 

hierarchy attributes, as well as the use of a tightly-coupled interface to an SQL database. 

The chapter concluded with an analysis of the algorithm's complexity. This proved that the 

algorithm's ninning time complexity is 0(nm3h) and its space complexity is 0(m2), where 

n is the number of records, rn is the number of attributes, and h is the maximum level of 

specialization levels for hierazchical or numerical attributes. 

Chapter 5 presented an alternate search technique for DBPredictor that is more in- 

line with the space assumptions of current machine learning algorithm implementations. 

While this approach achieves a lower running time complexity of 0(nm2h) than the search 

technique described in the previous chapter, its space complexity is increases to O (nm +m2). 

This version of the algorithm is therefore referred to as the time efficient version while the 

previous version is referred to as the space efficient version. 

Chapter 6 considered severd versions of the heuristic function used by DBPredictor to 

navigate its rule space. The first version category, considered three merent base mesures 

(entropy(), O R T ( ) ,  DI,()) and also two methods of calcdation (sibling-sibling and parent- 

child). A simple pruning technique was also proposed to determine DBPredictor's response 

to event a simple pruning mechanism. 

Chapter 7 reported the results of the empirical investigations into DBPredictor's ac- 

curacy. Initidy, the different versions of the heuristic function were tested to locate a 

generdy accurate version of DBPredictor. The second portion of the stüdy investigated 

DBPredictor's relative suitability for on-line classification tasks. DBPredictor was f o n d  to 

be âs accurate in generd as Dl and C4.5, but more accurate than IBI in the presence of 
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irrelevant attributes, and more accurate than C4.5 in the presence of underspecXed event 

vectors- 

Chapter 8 concluded the empirical study of DBPredictor7s performance with a brief 

investigation of the algorithm's red-world running t h e .  With the use of a large dataset, 

DBPredictor' raw and relative ruzining t h e  was tested against difFerent proportions of the 

dataset. When compared to C4.5, DBPredictor was able to satisSr a significant number 

of on-line classification requests before C4.5 codd class* a single event. DBPredictor, 

however was slower than IBl, dthough not by as significant a factor as the difference 

between DBPredictor and C4.5. 

9.2 Contributions 

The main contribution of this thesis is a lazy model-based algorithm, named DBPredictor, 

that is particularly suited to knowledge based on-line classification tasks, 

When compared to eager model-based approaches, such as C4.5, and lazy instance-based 

approaches, such as IB 1, DBPredictor achieves an alternate balance of accuracy and Nnning 

tirne. With respect to accuracy, DBPredictor is more robust to the presence of irrelevant 

at tributes and the underspecified event vect ors. Wit h respect t O ninning t ime, DBPredictor 

is shown to be more effective than C4.5, but less effective than ml. 
Contributions in this thesis towards lazy model-based classification in general include: 

0 Dynamic handling of numerical at tributes. This approach allows a lazy model-based 

classification algorithm to avoid the inconvenience and cost of global discretization- 

Ernpirical results show that the bias of this approach against numerical attributes is 

less severe than the bias of the C4.5r8 classifier. 

e the rejection of the parent-child calculation approach. 

support for tightly-coupled database connections and for concept hierarchies. 
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9.3 Future Research 

This section indulges in some speculation about future research directions for on-line classi- 

fication tasks and in particular, the use of lazy model-based induction for these tasks. Some 

suggestions aze in the form of refinements, others are more speculative. 

One possible area of further research is in a formalized approach to pruning. Now 

that the value of pruning has been explicitly shown with the min-cover, m i n e a s  

thresholds, a more formal approach may prove even more effective. One possibility 

that cornes to mind is the chi-square test for stochastic independence proposed in [57]. 

Another area of interest is to extend DBPredictorys representation language to support 

negation within propositions that refer to symbolic attributes. In this way, DBPre- 

dictor may achieve more accurate models. This extension to DBPredictor is Likely 

related to the approach used by the LazyDT algorithm. Tf. as for L q D T ,  this ex- 

tension results in a significant number of ties, then the use of Iimited lookahead may 

DBPredictor7s general accuracy in the presence of records with missing attribute- 

values needs to be investigated. While DBPredictor is likely sensitive to this situation, 

no lazy technique to this shortcorning is apparent. One possible technique around this 

problem may be to retreive the most similar records to the event vector (see next 

suggestion) and determine the missing at tribute-values just for t hese records. 

A more speculative extension to DBPredictor is to base the s e e d d e  O procedure on 

a Egh-level instance-based search. In this way, a significant amount of effort may be 

saved by quickly zooming in on the region of interest. The algorithm's accuracy may 

also benefit fiom the same effect encountered by the proposal for local induction of 

decision trees [30]. The chdenge to this investigation would likely be the generation 

of a simple rule that covers these "simiiar" records. 

Finally, a more ambitious direction is in the support of interactive clasçifkation. Cur- 
rently LazyDT and DBPredictor are applicable to data driven tasks in which a par- 

t i e  instantiated unlabeled event is presented. Some domains will likely benefit fiom 

an algorithm that can suggests which attributes to also instantiate for the event in 

question. 
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9.4 Concluding Remarks 

Classification is essential to aU life. Because more and more of our observations are being 

stored in databases, the d u e  of classification based on these structured repositories will &O 

increase. To tap into this opportunity, t his t hesis proposes an algorit hm named DBPredictor 

for the task of knowledge based on-line classification. Rather than eageriy developing a 

mode1 to support every conceivable classXcation request, the approach of this algorit hm 

is to wait for each classification request to appear and then use of a lazy model-based 

approach to return an accurate and understandable prediction. The preliminary empirical 

investigations presented in t his t hesis, indicates t hat DBPredictor is a strong candidate for 

knowledge based on-line c lass~cat  ion t asks. 
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