
Real Time Three-Dimensional Ro botics Simuiation.

Masters Thesis

Dan Lingman@
850658618

Department of Mathematics
Lakehead University

Nationai Library Biblioth&que nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
OttawaON KtAON4 OttawoON K1AON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Lïbrary of Canada to Biblothéque nationale du Canada de
reproduce, loan, districbute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic fonnats. la fome de microfiche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Acknowledgements

This project would not have been possibe without the guidance and encouragement of my

thesis supervisors - Dr. X. Li &id Dr. M. Meng. Th& a h go to Dr. W.S. Lu for acting

as ari extemal examiner and to Dr. L.D. Black for acting as an intemal examiner. Thanks

most of all to my wifè, May.

Abstract

This thesis is concerned with the design and implementation of a real-time robotics

simulator with three-dimensional pphics. The simuIator dows for intenial or exterd

control of a number of robotic manipulators with revolute or prismatic joints. These

manipulators may interact with each othex and othei objects in the simulated environment.

AU objects in the simdation will have physicd properties such as mass and fk@ty, and

can exert forces upon each other. An extemai prognun is pianned to d o w easy

construction of models Eom an assortment of pre-designed pieces.

This thesis descfl'bes four areas of the simulation m detaiL The fkt of these is the

modellhg scheme used to represent objects m the simulation. The second is the actual

simulation design. The third is a discussion on the use of extenial programs to control the

simulation. Last is a summary of the progmmmhg environment and how it reiates to the

simulation.

Table of Contents

hBoductios-----------------+----.-.-----* * * * * - - - * - * - - - - - . - - - - - - - * - - - - - - - - - - - - - - - - - . - - - - - - - - - - - 1
1.1 Thesis Organisation ~ ~ ~ - - ~ ~ t i . 3
R e k d work ---------------- .----*--*-- * * - * -+ - - . * -.----* *--*-*---.------a - - - - - . 5
Three-Dimensional Modelling and Motion - -. . . . +. . - -. -. ee - - - - - - - - - - - - - - -. - - - - - - - - - - - 7
3.1. Represntation of Objects-..-...m-tititititititititi.titititititi 8

9 3.2. TypesofMotioq ..*.-*--- * - -+** - - - * * * -.------------------------------------.------------
3-3- CMiskxl Detection-+.-. - - - - - - - - - - - - - - - - - - - - a--e----- - - - - - - - - - - - - a - - - - - - - - - - - - - - - - - - - m - 13
3 04. Khedcs . - .**-* . . 16

3 -4.1 D e t e m g Joint Positions --- - - -. - - - .- - - - - - - - - - - - - - - - - --- - - - -- -. . - - 16
3 -4.2. Path Generation- -. - - - --- 0 0 0 0 0 O O O O O 0 0 0 0 . O --. . O O O O . . O O O O O O O O O . 19

3.5. summary.-.** 21
SpecWg Robotic Manipulaton a d m e r .----------*---.-----+-.*-- 22
4.1 Main sbdator File For=@ - - - - - - - - - - - t s t s t s t s t s t s t s t s t s t s t s t s - - - - - - - .-- - - .- - ts.tsts. - tstststststststs 23
4.2. Creating the s~m.htor Data Files --------- ---. --- - - - ulaulaulaulaula u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a . - 26
4.3. s- --.----.----.-------------.----------------.----------------------------.---------.-. 28
Operation of the Robotics Sh&tor--- - - - - - - - --- - - --a- - uIauIauIauIauIa - - - . - - - --- - - - -- .- - - --- - - .- - 29
5-1- MainScreen~mmhu - 30
5 -2. using the Shuiator- - - --- - - - - - - - - - - - - - - - - - - -- - - -- - - - - - - - - - - - - - - - - - - -- - * -- .-- - - - - * - - -. - 33

5-2-1. Event Enm ---.-----------
- 0 O

34
r' 5-2-2. dmlera pos-nmg - - --. - - - - - - - - - - - - - - -. -- ---- - - - - -. ------ --- ..-- - --- - .-- 36

52-30 Running a Simhtioq - - - - - - - - - t i . t i t i t i t i * 37
5-2.4- Saving a SXInulation RW - - - - . - . - . - - - - - - - u l a u l a u l a u l a u l a . u l a u l a . u l a u l a u l a u l a . u l a u l a u l a u l a . u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a u l a 38
5-2-5- b ~ e g Fmmes in Hi& Reso1aioq - - - - - - - - - - - - -.- - - - - . -. - - 38
5-2.6- Generating a Seque= of Fmms - - - - .--- - --- --- - - - -- - - - - - 39

40 5.3. Real T h S~~tion---------ttt.ttttttttttt
42 5-4- o ~ ~ a t i o ~ --------.-----.--.------------------
44 5.5- s- ---.--------------------.-----.---

E x m d Cmlt-rol of the sïmdator ---------------------------------.-------.--..--.--.-..-- 45
6.1- Types of ExkrId mm01 pro gram^ - - . - . - - - g r a m s . g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s . g r a m s g r a m s g r a m s g r a m s g r a m s g r a m s 46
6.2. P r e - ~ r o m e d b m t i c s . --. -. -- - - - -. -. - - - - - - - -- - - -- titi - - - titi - - - titi - - 48
6.3 Imzractk Conml of the S b h t i o n - - - - - --- - - - - - --- - - ---- - - --- 49
6.4- Feedkxxk Blwd ~ontro!---------------.---------------. --------------.*----.---.-. 51
6.5- ST* -.*.-.*-.-..ummaryummaryummaryummaryummaryummaryummary * 53

1. Introduction

Testing a control algorithm or studying the dynamic propezties of a robotic system

requires either experimental implementation or computer simulation. Experimental

implementation is not always available, as m the use of robotics m space applications.

When experimental implementation is possible, it might be too expensive to allow ïts use.

Cornputer simulation with animation offers an alternative that &es the féel of a

physical experiment, with the bene& of low cost, easy reconfiguration, and a quick

turnaround time for development of new control algonthins.

This simulation is a discrete event simulation system. By this I mean one in which

a phenornenon of mterest changes vahie or state at discrete moments of tmie rather than

continuoudy with time. Dimete event simulation was chosen over continuous simulation

for this project for a number of reasons. The first is that animation is mherentïy a discrete

process. Animation is a sequence of still pictures, or h s , displayed at discrete

moments of the . Conimuous simulation codd be use& but discrete simulation maps hi a

natural way to the process of rendering and disphying -es of animation. The second

reason is the object-oriented nature of the simulation. Messages moving fiorn one object

to another are discrete events themselves, and fit nicely into a discrete event simulation.

An object-oriented approach was used in the design and inqlementation of this

simulation. Object-oriented means that data in the computer is represented as a collection

of objects that cornmunicate with each other by sendhg messages to one another

PUDD911. This approach was chosen over traditional structured progninnnmg for a

number of reasons. First, modehg the physical components as objects within the

shuIation allows for easy understanding of their reiationships. For example, a joint is a

physical object that can move manipulator components upon receiving a signal to do so.

In the simuLation, the Jomt object can accept a CO-d to change angle or position,

When this message arrives, it wiii move the appropriate structure to simulate the same

joint motion that wouid have taken place m the physical components.

The second reason cornes fkom the hardware we used- The simulation hardware

environment is a NeXT workstation. The NeXT was designed to work with objects. Its

operating system and development environment are airned at creatmg object-oriented

programs-

The simuiator that was constnicted can mode1 any manipuiator that can be viewed

as a collection of convex polyhedra a d either revolute or prismatic joints. It dows for

pre-pro-ed or mteractive control of all jomts within the simufation. The

manipulators can interact with each other and other objects m the environment.

Simulations of moderate complexity (mder 200 polyhedra) c m be nm with fiame rates of

approximateiy 10 -es per second on the NeXT Turbostation. Simulations of greater

complexity wilI sW1 run, but with a lower fkne rate on the NeXT TurboStation.

1.1. Thesis Organisation

Chapter 2 discusses the details of how the simulator models the physical objects

that are to be sSnuIated. The objects are made up of rigid collections of convex

potyhedra, C O M € ? C ~ ~ ~ by joints. These jomts can be either prismatic or revolute. Collision

detection is perforrned by process of etirnination ushg bounding spheres, then polyhedra

to polyhedra mtersecfion. Kinematics is discussed as a means of determi* jomt

positions and tool paths.

Chapter 3 covers the process of defÏning the models. The simdator is designed to

use simple ASCII formatted files for input. A possible translater &om AutoCAD is

discussed. The groundwork is laid for a custom design package for robotic system design

usmg off the shelf parts.

Chapter 4 is an introduction to the simulator and how it cm be used. Detded

instructions are given for each aspect of preparing for and executing a simulation nm. The

simulator allows for detaüed time triggered joint motion and dynamic camera controL It

a h can be used to generate a sequence of scene description snapshots. These snapshots

can be photorealistidy rendered using RenderMan to produce an animation of the

simulation run for later viewing.

Chapter 5 covers the use of externai pro- to control the simulator, or to

prepare command sequences for it to execute. The different types of control programs

@ r e - p r o ~ ~ ~ e d , interactive, and feedback based) are discussed and compared.

Chapter 6 gives an in-depth look at the interriai working of the smiuiator. There

are fourteen basic object types Uiat make up the simulation What each of these does, and

how they conmiunicate with each other using messages are discussed. The h e d event

processhg that makes this a discrete event sinnilation is detailed, along with the q e n c e

of events that occurs once the "Play" button has been pressed to start a simulation nia

Chapter 7 discusses the progr- enviromnent and why the NeXT was chosen

as a base for the simulator. Development tools such as Project Manager and Interface

BuiIder are givea A brief outline of the advantages of Objective-C over other languages

is presented, along with sarnple code. RenderMan is a powemil three dimensional

rendering tool, and its availability was the main reason for choosing the NeXT. NeXT

also has a good coliection of mter-application communication tools, which dow for easy

integration of externai control programs. FinalIy, the operatmg systern and hardware

specificatiom are g i v e ~

Chapter 8 is the conclusion of the entire project. The problems and resuhs of the

project are discussed. Future directions and possible enhancements are @en. One of

these, the Robot Construction Kit, would greatly enhance the usefidness of the simulation

by allowhg the user to simulate robotic systems that use readüy available components.

2. Related Works

There are mmy other robotics simulators availabie, both c o m m e r c ~ and publicly

accessible. This section gives a bief overview of some of these simulators. It is by no

means an exhaustive list.

Commercial Simulators

ADAMS: Mechanical Dynamics Inc. ADAMS is a general purpose dynamïcs

simulator for UMX. You can use this package to simulate any type of mechanism,

includïng but not Iimited to robotics systems. Given a mode1 of the system, ADAMS

builds a set of equations md solves t through the. It can handle static, quasi-static,

dynamic and kinematics simulations. It uses its own wmdowing system, and bas a strong

internice. It is djflicult to leam, and at times requires FORTRAN progninmimg to take

fùil advantage of the features. -

Workspace: Robotics Simulations Ltd. Workspace is an industriai robot simukitor

that runs on the IBM PC. It is designed to d o w for the off-line programming of many

ciiffirent industrial and educational robots. It has a iiibrary of standard robots and dows

for interactive design of new robots. While a simulation is ninning, the user is able to

view forces and torques generaîed as weil as a graphical view of the system king

sirnulated. Motion commands can be fàk1y complex, and the operating parameters of ail

mechanisms is fully specifiable.

EROS: P L , NASA. EROS (Erann's Robot Simulator) is designed to simulate

mobile robots on the Mitcmtosh. It uses a construction kit approach to building robots to

be simdated. The user buüds both the robot and the environment, and then programs the

robot to perform tasks m this environment. It was Hispired by a truck simulator by Hanks

and Firby, but is designed to operate at a lower Ievel than TruckWorid. This dows for a

more realistic simulation,

Simdereila: SimdereLIa is a multipart simuiator for UNIX. There is a display

module, a simulation module, and a control pro- The modules communicate ushg

UNM sockets, which d o w s a distri'buted simulation. The moduiar approach dows for

easy upgradmg and conversion. Ifa kinematics controIler is desired, that c m be used. A

neural net baseci controuer with feedback fiom the simulator codd be substituted and the

results compared. The program can also be used to sirnuhaneously send control si@ to

the simulateci robot and a real robot.

Other Simalators

M A G E NASA Johnson Space Center Automation Robotics and Simulation

Division (JSC ARBrSD). The Manipukitor Analysis Graphic Interactive Kinematic is the

primary tool used by M S D , Mission Operations Directorate and the Intemational Space

Station for manipulator task analysis. It dows the users to conduct kinematic anaiysis for

robotic operations, m both pre-programmed and user controiIed modes. It c m hande

multiple manipulators, multiple viewpohts. Simulated camenis can be mserted into the

simulation space and manipulated to give a redistic point of view to the simulation. The

Canadian Space Agency has chosen to use MAGIK as the base for their Operations

Kinematics Simuiator and to train astronauts for mobile servicing of space vehicles.

3. Three-Dimensional Modehg and Motion

A robotics systern is a controiled mteraction between moving objects. How the

objects are represented is an important làcet of the simulation. In this system, a

hierarchicai system is used to represent the objects king moved. Each object is broken

down in the extreme hto a collection of joints and convex polyhedra Bounding spheres

are used for both main items and each subitem to allow for rapid collision detection.

The motion of the objects in the simulation is time based. At regular intervals, the

system updates the position of each object. As a joint may be scheduled to move over a

long the perïod, the curent time is determhed, and motion proportional tu the elapsed

time is perfonned.

Each time an object is moved, it must be checked for collision with other objects.

The hierarchicai nature of the objects king moved d e s a series of bounding spheres a

naturai way to quickly elimmate most of the objects involved. Any that are stiU suspected

of collision are checked m detail

Programmhg motion on a joint by joint basis is tedious and diflicult at best.

Because of this, the system has been designed to interface with other prograrns. These

external programs c m either be used to generate a nle containmg pre-prognuiimed joint

motions, or to interactive@ control the simulation by feeding it joint motions on the fly. In

either case, the extemal program c m get feedback fiom the system to determine where

objects are at a &en the .

3.1. Representation of O bjeets

There are two kinds of objects refmed to m this project. The fÏrst of these is

progmmmhg objects which are discussed in section 6.1. The second is ab-t things

that are intended to represent physical objects. We discuss the second class of objects m

this section.

Objects in the simuiation are made up of an ordered coIIection of items and joints.

Each item is a rigid entity made up of subitems that are k e d in position relative to each

other. Items are comected to one another by joints.

Subitems are convex polyhedra. They are represented as a collection of vertices

and fâces. To save space each vertex is stored only once and each fixe is made up of an

ordered list of vertex indices. The vertices that make up a fàce are ordered in such a way

that the outside can easily be determined.

Each subitem maintains a central point and nomai vectors for each &ce. Both are

used for collision detection. A radius of a minimum bounding sphere, centred around the

centrai pomt is stored. Physical properties of the subobject, such as tende strength,

colour, and m a s are included. Since the subitem is a convex polyhedron, the central point

cm be chosen to be the centre of miss for the subitem to simplifL calculations. (If the

subitem were not a convex pdyhedron, the centre of mass might not be on the inside of

the subitern)

Subitems are defhed relative to the origin. When loaded Ïn, all vertices can be

rnultiplied by a transform matrix to define the initial position and orientation of the

subitem. Since this is oniy done at load time, the transform matrix does w t need to be

stored.

An item main* a linked List of subitems, The subitems are considered to be

rigidly positioned with respect to each other withm the item It also has an over al1

bomding sphere defïned by a central pomt and a radius. The central pomt is picked to

represent the centre of m. To speed calculations, the entire niass of the object is stored

here as well. A transformation matxix is stored for the entire object. This transformation

matmc is used whenever the object needs to be redrawn, and for collision detection. An

item also stores force vectors for each of the major axh of motion and rotation. These are

used to resohre collisions.

A joint is made up of an axis de- by two vertices, a position which is relative to

its original state, and pointers to d items that are attached to the joint. If the jomt is

prismatic, the axis defks the movement vector that the attached parts will slide dong. If

the joint is revolute, the iWs is the axis of rotation. One of the pointers is the base for the

jomt. It is considered to be a fixeci object when the joint rnoves. The remainder of the

pointers indicate which items and joints will have to be updated when the joint changes

position An example of this is a wrist joint in a person. The ann would be the base, since

moving the wrist does not d e c t the mm. The position of the hand, fingers, and knuckles

will be changed ifthe wrist joint m o v a

The entire simulation is made up of two arrays, one of joints, and the other of

items. Together, these define all the physical objects that can interact in this simulation.

3.2. Types of Motion

There are two main types of motion, revohite and prismatic. Each can be

described as a simple CO-ordÏnate W o m matrix.

Translation is pediomed MerentIy (as an addition of vectors) fiom rotation (as

multiplication of a vector and a ma&). If pomts are expressed as homogeneous

coordÏnates, both transformations can be treated as muhiphcations. For a point to be

converted to homogenou coordinates, a fourth coordinate is added. Instead of (X,Y,Z),

we now have (X,Y,Z,W). Two sets of homogeneous coordinates (XyY,Z,W) and

(X',Y',Z7,W) represent the same point if and only if one is a multiple of the other. Also,

at Ieast one of the coorninates must not be zero: (0,OY0,0) is not dowed Because we are

now usïng four coordinates to represent a point, we must use four by four matrices for the

transformations ~OLE901.

Prismatic motion is translational motion. It has no naturd equivalent. It can be

best descnbed as two members sliding over one another. There is a simple ma&

desdmg the motion:

where dx, dy and dz give the change in position.

Figure 3.2- 1 : Example of translational motion

Revolute motion is smiüar to jomt motion in nature. It is the revolution of a

rnember around a pivotal &. There are three main cases, each gettÏng more specinc, and

each requiring a more complicated matrix to express it.

1

I I I

Figure 3.2-2: Example of revolute motion

The fïrst of these is rotation around one of the three primary axis. For the X-axk

case, the resulfing ma& is:

where (is the angle of rotation. The d c e s are smiilar ifeither the Y-& or 2-

axis is the mis of rotation,

The second is rotation is around a vector that passes through the ongin. In this

case, the procedure has four steps. First, a matrix A is determineci that would bring the

non-origin point to one of the major axis. This matrix is made up of the product of the two

11

&ces needed to aiign the object with a . ais. (The fkt of these, Al, will move the

point hto one of the planes, and the second, A2, wiU move the point dong a plane to an

axis.) Once the rotational vector has k e n moved mto the line with an axk, the desired

rotationai mat* B, can be cornputed. The next step is to compute the matmc C needed

to move the rotational vector back hto position. This is done by ushg a procedure similar

to that for caiculating the A matrk The finai step is to multiply all three matrices, A, B,

and C together to fom a new mat& D. This matrix has the direct traosform values for

rotation by 0 degrees around the given vector.

The third case is for rotation around an arb'kmy axis. This k again a four step

procedure. The fht step is to calculate a ma& A that translates one end of the axk to

the origin. This is done ushg the procedure for prismatic jomt motion. Next is to

calcuiate the rotational matm< B around the translated axis. Smce the axis now passes

through the ongis we can calcuiate B using the above method. Thirdiy, we calculate a

matmr C that will reverse the translation of A using the prismatic rnethod. The last step is

to rnuttiply the three matrices together to give a remking transfomi ma& D, which will

correctiy rotate around an arbitrary axk WLE90J.

In this project, matrices are available fkom RenderMan for translation and rotation

around an origin crossmg axis &JPST90]. To smiplify the prognimming, these were used

as needed, and RenderMan routines for fàst matrix multiplication were used. These rnatrix

operations are aU heavily optmiised to take advantage of the DSP chip in the NeXT.

[NEXT921

3.3. Collision Detection

When a joint moves, a number of items will move. Each jomt has a Iist of items

that mut be moved when the joint changes position. These items must be checked against

all other items to dete-e if collision has taken place. Since the items that are movïng

can be considerd to be fixeci with respect to each other, there is no need to check to see

if a collision occurred between any two moving items. As an example, consider a person

moving one arm at the shoulder but keeping all the other joints in the ami in the same

position. The hand may coilide with the body, but it wül never coilide with any portion of

the ann that is moving.

Rapid collision detection is a major consideration In a simulation that may bave

dozens of items and hundreds of subitems, it is impractical to check each subitem against

each subitem. A better method has to be used ifperformance is not to drop to the level of

king useless.

The fÏrst level of checking is a bomding sphere intersection check between items.

This can be done quickiy, and ifthe spheres do not htersect, then an entire item (made up

of a number of subitems) can be elimmated as a possible collision victim. Figure 3 -3- 1

shows a planar example of this.

Figure 3.3- 1 Planar robot with bounding circles

Any items that are found to have bomding sphere overlap are then checked

M e r . Each subitem has t s own bounding sphere. These are checked ag& the other

items sphere to quickiy eliminate any subitems that could not possibly have coUided with

any of the other item's subitems. This results in two Lists, one for each item Ïnvolved, of

subitems with bounding spheres tbat overlap the other items boundhg sphere.

Tfiese two lists are then compared to each other. Botmding spheres for each pair

of subite= are checked for overiap. If this occurs, then the actual subitems must be

checked for colhion usÏng geornetric methods.

Smce each subitem is a convex polyhedron, if the objects have collided then at

least two of the faces are mtersecting. One of the objects is chosen, and each face is

compared with ail the fâces of the other object. An mtersection line is computed for the

two planes, and checked to see if this h e MIS wahm the polygons xnaking up the two

faces. If it does, then we have a collision, and the result bubbles back up through the

various levels. Ifnot, the comparisons continue.

Once a collision has been detected, something must be done about t. There are

two main categones of objects - those that are fiee to move, and those that are not. If the

object is an object that cannot be rnoved, the motion of the fim object is reversed, and the

attempted motion is placed back into the queue for a later attempt.

If the object can be moved, then it has the joint motion applied to it as weiL After

it is moved, it is checked for coilision with any other object. If this occurs, motion is

reversed for both the moved object, and the object movuig t. The motion that caused the

problem is then requeued for later.

It was origioally intended that forces acting on each object would be stored, and

periodically resolved. This proved to be to computationdy intensive for this simulation,

but is di under consideration for a M e enhancement of the program.

3.4. Kinematics

fiematics as applied to robotics is the m o d e m of a robotic manipulator using a

Cartesian co-ordinate system ïnstead of a joint positionhg system It is fkr easier to

d e s m i a task that a robot mw complete using Cartesian co-ordinates. Examples are

positions that a welding tool must be moved to, or a path that must be followed by a paint

sprayer. These are related but slightly different tasks.

3.4.1 Determining Joint Positions

Given that a tool must be moved to a specific co-ordinate (X,Y,Z), what positions

should the joints of the robot arm be at for this to occur? There may be a number of

solutions to this, but we wül focus on determinhg one of the solutions.

Figure 3.4.1-1 &es an example of a planar robot with two joints and two arm

segments. The t o o b C is to be located at Xc,Yc. The problem is to solve for Q1 and

Q, the joint angles. LI and L2 are the lengths of each a m segment, calculated fiom the

centre of the joints.

Figure 3 -4.1 - 1 Planar robot with joints highlighted

xC = ~ C O ~ (Q ~) + L , ~ ~ (Q ~ + Q ~)

Yi- = L, S ~ (Q ,) + 4 s ~ (Q , + Q,)

Squaring and adclhg the above equations &es us:

SoIving the matrix relation for coS(~~) and sin(^,) we get:

where D is:

Three dimensional cases, and cases with a large nurnber of joints rapidly get more

compficated, and are beyond the scope of this thesis.

3.4.2. Path Generation

For an application such as painting, a path must be defhed for the robot to track.

Control corxmxmds may occur at given points along this path. (These might tum the paint

spray on or on). There are two main methods of deteminhg the path that shodd be

followed. The path may be determined algorithmicaiiy or by usmg a teachmg device.

In an algoritbmic path dennition, a fûnction is deiined that gives the motion of the

arm. This hc t ion is usually defhed as a sequence of line segments and curves that are

connected together to define the overd path. This type of path is usually generated by a

cornputer to deai with the current situation.

A teaching device is a human manipulated object that is used to smnilate the task

that the robot is perforrning. In a painting situation, the operator would actually move a

spray gun to perform the task, aï~d the resulting motion and actions would be recorded for

playback by the robotic systern at a later tirne. This d o m an easy way for a complex task

to be modeiled. It also bas the advantage that although it may appear to be using a

Cartesian system, the actual joint CO-ordinates can be recorded as the task is performed.

In this way, the task bas k e n broken down into a nurnber of very srnaII joint motions

ailowing easy simulation.

If a tnie path was generated, it is relatively simple to build a sequence of joint

movements. At discrete time intervals, the position of the tool is determined. This is

translated into a set of joint positions, which are compared with the current positians. The

difference is calculated g h b g the desired motion for this thne interval. Figure 3.4.2-1

gives an illustration of a path in the plane, and how a robot a m is oriented at several

points along the path.

'.

Time 2
7-

Path

Figure 3 A.2- 1 - Planar robot following a path

Time 1

Ln this chapter, we discussed a variety of reasons for ushg collections of convex

polyhedra as a base for modelling objects. The fÏrst was that objects can be grouped

together m any way to give an approximation of any shape, convex or concave. This

dows us to simulate any rigid nranipuiator segment. From this, we can directiy get to an

arbitrarily given configuration of manipulators. The second was that collision detection is

much easier and fàster with convex objects. ûptimi,ced computational geometry

algorithm e& if t c m be guaranteed that all polyhedra are convex PREP851. The third

reason was that RenderMan is much fàster at rendering collections of convex polyhedra

than at rendering single complicated and possibly concave objects. RenderMan also gave

the advantage of hiding most of the messy details of how motion worked. Its primitives

for translation aiid rotation of objects before rendering meant that rnost of the tedious

math did not have to be coded in

A choice was made to have the simulator use joint positioning rather than t o o k e

position& The fkst reason was that this simuIator was to be completely g e n d . By

do- the positions of the joints to be the main factor, robots with an arbitrary amount

of cornplexity, or multiple arms could be modelied.

The simulation ailows the user to test models of arbitrary complexity. Sequences

of concurrent jomt motion cormnands can be @en, and the net resdts viewed. The

simulation can be paused at any t h e during a nin and new c o m d s c m be inserted to

try out Werent motions. This dows for mrucimum flexiibiiay and complete control over

the simulation,

4. Spec-g Robotic Manipulators and Other Objects

In this situation, the time taken to enter in a representation of the robot is a small

amount of the overall project time. This project d o w s for general simulation, rather than

restricting the user to a specific robotic system. Because of this, t is likely that a wide

range of robotics systems will be simulateci. The need for a quick way of definhg a

systern, and remhg it later is miportant. Most projects will proMly be completed wah

off the shelf components. Having a toolkit that can hold common components makes

designing a system much easier.

It was this need that led to the development of the Robot Construction Kit

(ILC-K) as a quick way of pluggïng together pre-defined components. Engineering

design software such as AutoCAD is in wide use. Because of this, a conversion utiiity

was devkd that will allow importation fkom this popular CAD program Conversion is

not automatic, but requkes a minimum of user intervention. AutoCAD's DXF format was

chosen to allow importation fiom a wide range of design tools, such as AutoCAD, 3D

Studio, and Microstation.

4.1. Main Simniator FiIe Formats

There are two maei Bes used in the simulation. These are the event me, and the

robot description me. Both of these are ASCII text files, and cm eady be edited.

The event nle is straightforward. It is merely a list of joint motions dong with the

time these motions are to take place. The format is as foilows:

Number-o f-Events
Event-Nmbber Joint-Number Action

Start-Mm Start-Sec Start-CentiSec

Finish - Min Finish - Sec Finish-CentiSec

The number of events is an integer, and it indicates how many entries there are in

this file. When it is read in, the program hows how many events to allocate room for,

and t is also used for a consistency check when end of file i . reached. The event number

is an integer, and is used to indicate the position of this event into the list. M e n the entire

event has been read in fiom disk, it is copied into the block with this number. The joint

numbet is an integer, and indicates which joint is king affectai by this event. Action is a

floatmg point, and gives the amount of change that the joint should take. This is in

degrees for revolute motion. Start and finish t h e s refer to the t h e the event is supposed

to begin and end. Motion will be scaled so that it completes on schedule. All time entries

are integers. Mm refers to minutes, sec to seconds, and centisec to 1 Oûths of a second.

There is currently a limit of 1000 event entries at any given tirne. This is hard coded into

the pro- but could be changed at a later date.

The syntactic form of the robot description file is somewhat more complicated, as

it has to deal with a three-level hierarchy (Item, Subitem and vertices), each of which may

have an arbitniry number of elements. It can be viewed as a multiway tree which has been

traversed m preorder format. Preorder t r a v d visits the root of a tree, then all chiidren

of the tree processbg each child completely before moving to the next child, Here is the

format for it:

Number of Items

Number of Joints

(Robot item #1)

Mobile

Red Green Bhe

][nitial T d o r m Matrac

Bound Radius

Bound X

Bound Y

Bound Z

(Robot subitem #1)

Number of pomts

Bound Radius

Bound X

Bound Y

Bound Z

(Point #1)

X Y Z

(Point #2 ...)

(1 Cres) or 0 (No))

(FIoats between 0.0 and 1 .O)

(4 x 4 matmc of iioats - this gives

the starting traosform for the

O bject.)

(Float - Radius of item bound sphere)

(Float - X Co-ordinate of bound sphere)

(Float - Y Co-ordinate of bound sphere)

(Float - Z Co-ordinate of bound sphere)

(Integer)

(Float - Radius of sub-item bound

sphere)

(Float - X Co-ordinate of bound sphere)

(Float - Y Co-ordinate of bound sphere)

(Float - Z Co-ordinate of bound sphere)

(Floats - CO-orcihates of point)

(Integer - number of faces of subitem)

(Integers - number of vertices in each

polygon)

(Polygon #1)

(Polygon #2...)

(Robot sub-item #2 ...)

(Robot item #2 ...)

(Jomt #1)

Joint-Type

E n d l X

End 1-Y

End 1-2

EndXX

End2-Y

End2-Z

Minimum

Maximum

Curent

Base Item

Number of Attached Items

Attached Items

(Integers - Iist of vertices that make up

this pobgon)

(integer - 1 = Revoltrte, 2 = Prismatic)

(Float - X Co-ordinate of end one of joint)

(Roat - Y Co-ordinate of end one ofjoht)

(Float - Z Co-orcihate of end one of joint)

(Float - X Co-ordinate of end two ofjoint)

(Float - Y Co-orninate of end two ofjoint)

(Float - Z Co-ordmate of end two ofjomt)

(Fioat - Minimum d u e of joint)

(Float - Maximum vahe of joint)

(If Min and Max both equal-1 .O, then

the joint can rotate fieeiy)

(Float - Current joint position)

(Integer - This is whaî the joint is

attached to)

(Integer - how many items have

to be moved ifthe joint position

changes)

(List of Tntegers - These are the actual

items that have to be moved when

the ioint wsition changes)

(Joint #2.. .)

43. Creating the Simuiator Data Files

The current system uses ASCII fles that allow the user to man* enter in CO-

ordinate f o m This is slow, and does not lead to easy re-use of items that have been

defïned. If a commerciaUy available robot arm is to be simulated, the user wili have to

estimate the cosrdhates that make up the arm, enter them in, and run the simulator to see

ifthis matches reaiity. This leads to errors, fhstration, and to the user ody ninnuig simple

simulations on the syste~n There are several approaches to this problem

While it is possiile to enter object definitions mandy, this soon becornes a very

tedious and error prone task. As well, modern CAD systems are commody used to

represent items. It woukl be convenient to be able to use these tools to d e h e a robotics

system. This led to the design of the AutoCAD conversion program A conversion Eom

AutoCAD was chosen because AutoCAD is popular and widely compatible with a large

number of other CAD tools [GESN93]. Because this program was left for fûture work, t

is discussed in chapter 9.

The Robotics Construction Kit (R.C.K) was planned to provide an mtegrated

solution for this problem. It would have a palette of popular robotics pieces that the user

codd combine together ushg a GUI to build the scene piece by piece. This gives hstmt

feedback, and solves any problems of inconsistent data. Pieces can be scaled, rotated, and

attached to one another. Scenes c m be saved, and then Ioaded in to act as a whole like

any 0 t h piece. This aiiows the dennition of complex objects that c m be re-used. Men

a scene is complete, a menu option would be used to save the scene in the main sirnukitor

file format.

A simple ASCII fiIe format was chosen over other ways of representing objects

and cornmand data. Smce no software was available to define the structures, a text editor

was the easiest way to generate mput files for testing.

Later, the idea of importing data fiom CAD programs arose, and it made sense to

remah with ASCII, since most programs can export their data to a text me. A translater

might need to be built, but it is hr easier to parse simple text files.

Not everyone has easy access to a CAD package, or wants to design their robots

completeiy nom scratch, so somethmg else was needed The Robot Construction Kit was

designed to have a Iiibrary of commerciauy available robotic sulxystems that could be

joined together. This would allow the user to test designs before purchases of expensive

equipment were made. The system wodd also be flexible enough to build user designed

subsystems for Iater reuse out of basic geometnc building blocks. Due to thne constraints,

the Robot Construction Kit has been lefi as future work.

5. The Robotics Simulator

The robotics simuiator dows the user to simulate the actions of a number of

robotic amis. The arms c m be cootroiled by a pre-determined set of jomt motions, or by

external program controL As the arxns rnove around, they can mteract with other objects

that have been placed into the simulation The viewpoht of the simulation can be changed

at any time during the simulation. A simulation run can be saved as a set of commands to

repeat the simulation later, or as a series of snapshots for playback like a movie.

Individual screen shots can also be taken fiom any viewing pomt.

5.1 Main Screen and Menus

The simulator is made up of a menu area, and a main screen.

The menu is a standard pulldown menu Its options are:

Load Scene: This ailows the user to load in a aene description.

Load Events: This loads in a saved list ofjoint motion commands.

Save Events: This saves the cment list of joint motion commands for Iater replay.

Display WireFrame: This changes the dispiay mode to WmFrarne. In this mode,

the simuiation runs at a much higher fiame rate, but the display quality is Iower. This is

best for initial testmg of simulation panuneters

Display Solid: This changes the display mode to solid modelling. This is slower

than WueFrame, but dows a more reaktic view of the scene. This is commody used

when the simufation is paused tom allow a detailed snapshot to be taken

Take Snapshot: This produces a RIB file for later display or printing via

RendeMan,

Start Capturing: This starts the simulation capturing a sequence of movie fiames.

Each time the display is redrawo, the clock is paused, and a second copy of the display is

durnped to a fle. This allows the user to capture the entire simulation run for playback

with an extenial program.

Stop Capturing: This stops the program fiom capturing display fiames.

Quit. This is used to quit the application.

The main screen is s h o w in figure 5.1-1.

Figure 5.1 - 1 Main display

The main screen is broken into a number of areas. These are:

The main display area. This is the large box in the upper lefi hand side where the

actual simulation is displayed. Both wire h m e and soiid modelling (shown above) are

supported.

The cameta positionhg area. This is in the upper nght hand corner of the main

screen. From there, the viewpoint and viewing direction may be adjusted. Zoomhg in or

out is possible ifeither the eye or view CO-ordinates are scaled.

The simdation control panel is just below the camera positionhg area The

buttons m here are smiilar m operation to those on a compact disc player.

The simulation dock is below the simulation control paneL As the simulation

progresses, it advances. This is used to d e t e d e when a joint cornmand shoutd be

prognumned to start.

At the bottom of the screen is the joint event entry area When the simulation is

k i n g run in a pre-programmed mode, the jomt motion commands can be edited using this

area.

!

5.2. Using the Simoiator

When the simuiation is starteci up, the nrst thing the user will do is to load in a

simulation file. When this is done, the mitial positions of the objects m the scene are

displayed. Events cm either be loaded fkom a nle, or entered in ushg the event entry

section of the screen.

Next is camera positioning. This can be adjusted to d o w the user to view the

portion of the scene that is of interest. This can also be changed during the simulation,

although pausing the simulation nrst is suggested to d o w for accurate viewing.

Once ail of this is compieted, the simulation is ready to run. There are three main

buttons that operate the smiulation. These are labelled Play, Pause, and Stop. The

buttons work iu a W o n that is familiar to anyone who has used a compact disc piayer.

The Play button starts the simuIation mming. Events are executed resuiting in

joint motion. An on-screen dock keeps pace with the events as they execute.

The Pause button hezes the action. It allows the user to reposition the camera,

produce a snapshot of the current scene, or enter additional events iuto the event list.

Pressing Play will start the motion again.

The Stop button stops the simulation, and resets everytbjng back to the initial

conditions. The scene is viewed as if it had just been Ioaded, and d events are restored in

the event kt. If events have been entered satisfàctorily, the user can save them to a file

for later playback At this point, the user can reload the scene or event k s , edit the event

list, re-run the simulation, or quit the application

5.2.1. Event Entry

Event entry is done in two ways. The nrst of these is through extemal program

control which will be discussed in a later section. The second, which is talked about here,

is by ushg the Event Prognurmimg Control PaneL Thiç takes up the bottom portion of

the main simulator screen (See Figure 52-14). The control panel ailows manual entry of

joint ievei COMIIEUI~~ &O an event List.

Figure 5.2.1 - 1 - Event entry area

An event List can be loaded fkom disk, or saved to disk by using the event

submenu. Selecting "Open2 will produce a file browser that will let the user select an

event file to be loaded. Selecting "Save ..." will allow the user to spec@ a directory and

file to save the current event list to.

There are nhe text entry areas and five buttons making up this control panel. The

text entry areas are broken into three main sections: Action, Start Time, and Fmish Tirne.

The Action area contains the Joint Number? Event Nurnkr, and Action. The Joint

Number holds an integer value, which refers to the absolute joint number king moved in

the simulation. Joint numbering starts at zero, and is highly dependent on the input data

files. The Event Number is not normally entered by the user. It is genmted automatically

by the addition of new events, or b - moving fonvard or backward in the e-g list. The

user can enter a value here, which will then dispiay the event records that match that event

nirmber. Action is a floating point number that is mterpreted based on the action to be

taken. If the joint m question is a revolute jomt, then t refers to the amount of rotation to

be applied to the joint in degrees. If the joint is a prismatic joint, then this @es the

distance of translation in standard units.

The Start Time and Finish T h e areas are almost identid Each hoIds three

integer values. These are minutes, seconds, and hundredths of a second. Start Time

refers to the beginnuig time for the event, and Finish Time to the ending time of the event.

Combmed with the amount of the Action variable, they determine the rate of motion for

this joint. Ifthis exceeds the parameters for the joint, a waming will appear, and the finish

tÏme will be scded to the minimum time for the motion to be completed-

The fÏrst of the buttons is labelled "Add". Lt checks the currently entered event

record for validity. Ifeverything is valid, it adds the record to the master event kt, then

moves to a blank record at the end of the list to wait for more input.

The second button is labeiled "Delete". This wiU delete the currentiy displayed

event record fkom the event list. Ail the event records that were d e r this one will have

their event numbers decreased by one. The next event record (or the previous one is this

had been the last) will be displayed on the screea

The third and fourth buttons are labelled "Ned" and Trev.". They will move to

the next or previous record m the event list after saving the curent event.

The last button is labelleci "Revert". It wiU overwrite any changes that have k e n

made to this event record wÏth the values that are cumently stored m the event record.

5.2.2. Camera Positioning

Camera positionhg is done using the Camera Position Control Panel smiated m

the top right hand corner of the main simulator screen (See Figure 5.2.2-1). This control

panel dows the user to mod* the location and viewpomt of the camera at any tÏme. It is

suggested that the simulation be paused before the camera is moved. This wiU dow the

user to select the best possible viewing position.

Figure 5.2.2- 1 - Camera posaion area

The Camera Position Control Panel consists of six text entry boxes and two

buttons. Any floating point number may ?x entered into the text entry areas. The first set

of these buttons is labelled "Eye", and gives the CO-ordÏnates of the actual vie-

position The second set is labeiled "View", and gives the direction of viewing. They

combme to give a camera direction vector. How large the image is depends ody on the

Eye position relative to the objects king viewed. The View position is ody used to give a

vieWmg vector.

The first button, labelleci "Change", copies the values nom the Eye and View

positions mto main memory, and updates the simulation viewing window. The second

button, labeUed "Revert", overwrites the te- entry areas with the vahies already stored. It

can be used in case of a data entry error.

Hitting the return key in any of the text entry areas moves the cursor to the ne-

area. When the Z position of the Eye has been entered the cursor wili move to the X

position of View. Ifreturn is pressed when the cursor is m the Z position of the View, Î t

has the same effect as if the Change button had been pushed. This allows rapid entry of

camera position values.

5.23 Running a Simulation

The simulation controol area is used to mu the actual simulation. There are three

buttons in this area; Play, Pause and Stop. These work m a similar fiishion to those on a

compact disc player. This mode1 was chosen due to its famüiarS. Figure 5.2.3-1 shows

the simulation control area.

Figure 5.2.3-1 - Simulation control area

Pressing the Play button will do one of two things. If the simulation has ken

paused, execution of the simulation will take off fiom where it had been paused. If this is

the fkst tirne the simulation has been run since king loaded in, or if the Stop button had

been used to baIt execution of the simulation then this wiU start a new simulation run. The

clock win be reset to zero. All objects in the simulation will retum to their initial

positions. Once thmgs have been reset, the jomt commands will start to execute.

Pressing the Pause button will k e z e the simulation. At this point, the dock will

hdt , and ail motion will stop. This is comrnody used to get a smgle fiame snapshot of the

simulation, add new events to the event üst, or to adjust the camera position. (Note that

the cament can be adjusted while the smiulation is running, but it is u s d y smipler to

d e t e m e the correct position when thmgs are not moving.)

Pressing the Stop button will also fÎeeze the simulation, but wiU also mdicate that

this nui is over. The scene does not reset m case the user wants to capture the current

display. Like presshg the stop button on a compact disc player, this will lose the current

position m the simulation, and the simukition mut be nui f b m the be-g agah

Saving a Simulation Run

The Save and Load Event menu item dow the user to keep a set of joint

commiuids for later playback. When the Save Events menu option is selected, the user is

prompted for a filename and directory using a standard NeXTStep Save dialog to save the

current event kt under. When Load Events is selected, the user is &en a fie browser to

select an event fle to be loaded. This will replace the current event List.

Individual h e s of the simulation cm be saved for later display. The b e s are

saved in RenderMan's RIB format. This allows the viewing angle to be manipulated using

an extemal program, or for the scene to be re-rendered at high resohrtion. This pennits

high quality printed output of individual scenes fiom any viewing position

The best thne to take a snapshot is when the simulation is paused. This allows the

user to position the camera to obSam the deskd viewpoht. When the camera is properly

positioned, the Take Snapshot menu option is selected. This will bring up a standard

NeXTStep save dialog that dows the user to chose a directory and filename to save this

screen shot in.

The RenderMan manual gives detailed instnictions on how to display a RIB file.

The utilay RlBViewer provides a simple mterface for displayhg a single RIB file.

5.2.6. Generating a Sequence of Frames

It is possible to save a complete simulation nin as a sequence of RIB mes that can

be rapidly displayed by an extemal program. Once you are satkfied with how a simulation

run looks, stop the simdation. Select Sequence of Frames fiom the miin menu. The file

browser wilI d o w you to choose a directory and a base filename for the RIB files to be

stored under. The next time that you press the Play button, as the simulation nuis, as each

h e is dispiayed, a copy will also be made to a new RIB file. When you press the Stop

button to end the run, a message will be displayed to c o b to you that the entire

simulation nui has been saved.

5.3. Real Time Simulation

This simulation is rumiiag m real time. By this 1 mean that one second of real

dock time corresponds to one second of simulated tirne. If the robot k i n g smiulated

would take thkty seconds to complete a . action, thnty seconds wül elapse before that

action has ikished, The alternative is a SmiuIator that either takes l e s time or more tirne

to run than the system that is king simulated. Extreme examples wouid be a simulation of

the soiar system, or the motion of electrons around an atom There are advantages and

disadvantages to having a simulator thst runs in real tirne. These are discussed below.

One cikadvantage of a real time simulator is thai it is impractical to simuMe long

tasks. A user wishing to view the ending sequence of a series of commands must wait for

the previous commands to nia This c m be pa- bypassed by saving the simulation

state at points dong the nin, and ushg the current state of the robot as a starting position.

Wfi a system that has a variable tirne control it is possible to fast forward through certain

sections of the cornmand sequence, and slow things down for detaiied examination at

other times.

The limitation of system complexity due to finite cornputer speed is the main

disadvantage. A system that can simulate 200 polygons at 10 h e s per second will be

reduced to a j e r b display when given 20,000 polygons. This simuiator attempts to nm as

fast as possible on whatever hardware it is given. It will adapt the discrete t h e steps to

adjust to the system load based on real eiapsed time. Given faster and mer cornputers to

nui on, each step will be shorter, and the display cycle wil l show an increasingly smoother

display. With a non-reaf time simulation, the time steps can be rigidly contmlled, and set

to whatever time d e is desired [BURG89].

The primary advantage of a real time simulation is that the user gets immediate

feedback, and interaction is possible. It is possible to link the simulation to a real robot,

and combine simulated and real position data and commands on the main display. The

5.4 Observations

The simulator software dows for a number of dflerent observations to be made.

The user can obtah mdMdual snapshots m t h , or a movie iike sequence of m e s for

later playback. The eftèct of different mmiphtor configurations and different control

sequences is Far easier to see than in a real robotics lab. Experimental conditions such as

space or undenvatex are possible, where in a real lab it may be either impossible, or

extremely expensive to run a real robot.

The ability to fieeze t h e allowr for detailed examination of how the simulation is

progresshg. Cornbmed with the ab- to edit control sequences that are currently

running, this &es the user a degree of control over the simulation that would be

impossible with a real robotics system Each pomt m tjme can be viewed koom any number

of viewing positions.

An mdividual snapshot gives a precise view of the sinidation at a given point in

time, but full understanding cornes with watching the simulation progress. By saving the

simulation run as a sequence of RIB files, t is possible to build a three dimemionai

"movie". Because the data is still stored m a three dimensional format, it is possible to

view the scene fiom different points. The playback of the simulation cm be repeated to

illustrate points about the motion of manipulators.

It is simple to adjust the manipulator configuration and control sequences. In a

real laboratory, equipment might not be available or mi@ be difEcult to reconfïgure. This

simulation ailows dBerent designs to be tested in an economical and efficient manner.

The experimenter can quickly determine if a sequence of c o ~ d s will perform the

desired task without fear of damaging the nianipulator or the objects king manipulateci.

If the commands do not execute as planned, it is simple to a d . them to achieve the

! desired results.

Having access to a zen, gravity laboratory is somethmg that is beyond the reach of

most robotics centres. Underwater conditions may be diflEcdt to achieve as weli m the

red world. Much of the robotics equipment that is currently available is not designed to

work in an undenvater environment, so the e E i s of water drag can not be seen in a lab.

The simulator allows "access" to both of these environments, with no added cost and no

concems about machine durabiiity under adverse conditions.

The layout and elements of the simulator screen and menus came about graduai&.

Interfâce Builder allowed the screen elements to be moved around, added, or removed as

the program grew. The original design had only the main display area and the simukitor

control panel with just a play and a stop button From the smiilanty to a Compact Disc

player, a pause button was added. Event entry was next to be added, and the format

changeci several times, until it arriveci at the current iayout. This format was chosen to

d o w precise control of ail joints in the simulation

The use of RenderMan as a modelling base led to experimentation to detemine lighting

conditions and an ideal camera position. Lights placed at each corner d o w for d o m

lighting of the simulation, but the camera position was difficult to decide o n Eventualty,

the camera position was left up- to the user via the camera control section This had the

added bene& of allowhg the user to pause the simulation, and reposition the camera to

d o w a better view of what is gohg on during the simulation nm.

A real-time simulation offers immediate feedback and allows mteractivity between

the user and the simulation. It gives a very intuitive feel for what is happening in the

system as variables change. A non-real-the system can be used to mode1 events with

timescales that are not u s e w modellable in real tirne. Systern speed is not a limitùag

factor for non-real-tHne simulations because they can spend any amount of time that is

needed to simulate the effect of one time step.

The simulator dows the user to make a number of usef'ul observations about the

manipulators and objects they are simulatsig. Conditions and equipment that are out of

reach of the user can be easily simulated, expanding the range of possible research.

6. Exterual Control of the Simaiator

The Sanuiator as it stands forces the user to decide on each joint movement, and

enter each one individuaiiy. For a complicated system of manipulators, or a complex set

of mvements, this is diflicult at best. Extenial control pro- d o w for easier control

of the simulation. They d o w advances in robot prognuimiing techniques, as well as

updated situations to be easily programmeci. There are a number of hi& quality robotic

programming languages avaüable. Examples would be the Cambridge Univemty Robot

Language (CURL), the University of Chicago's RAP System and Unimation's VAL 11 .

Using the abilifl of the smiulator to accept extemai control, we can utilise these

progmmmhg languages to make the smnilator a more usefid tooL

6.1. Types of External Control Pmgrams

There are two main classes of e x t d control programs. The first of these is

predetemhed controL In this case an external control program is used to build a

sequence of joint movements that will complete the task needed. This is then read in by

the simulation, and a run can be made. The second class is rd-time controL By real-the

we mean that the joint movements are king determined at the t h e that the simulation is

being nm. These co~nnands could be coming from direct user commiuids, an external

program, input fkom an extemal device, or a combination of any of these three. It allows

for two directional data flow, and a direct link must be made between the simulation and

the controller. This is usefid for han& on sirnuiaion, or feedback controlIed simulations.

Predetennined, or pre-programmed control is d y used for repetitive jobs, such

as assembly Iine work It &es the user a guarantee that each nui will have the same

results. The joint motion c& either be manuaily calculated or be d e t e d e d by a

kinematics program that will produce a command me. In eaher case, an external file is

created, then loaded into the simulator for a nin. Based on the results of this, the

command file may be modified to get slightly ciiffirent results.

Real-time pro- can be broken down into two main categories. These are user

controiled, and feedback controiled.

User control means that the user of the software has an interface that is allowing

h i . to decide where to position the arm using interactive controls wMe the simulation is

king run. The results of this could be stored to mate a command file, for later pre-

prognimmed operation. This mode is used comrnody to "teach" industrial robots how to

perforrn routine tasks, such as painting.

Feedback control is more complicated In this case, there is an actual robot that is

interacting with the program a s it m. The control program has a prognumned set of

goals, and is trying to simulate the- and control a real robot at the same the. With this

type of program, actual position data fiom the robot would be used to correct the

simulation representation whenever the simulation deviates fiom the real robot. This

w uld also be used to enhance user control of a simulation,

Pre-progrâmmed bernatics ailow for an aigonthmic breakdown of a task mto a

sequence ofjomt motions needed to cany out the task. This can result m an mput file that

cm be run automatically by the system, and then used for control of a real robotics system

at a later date.

A path is created for the toolface to foilow. This may be made up of a sequence of

straight or c w e d hes, and may have designated speeds for the toolface for certain

sections of the path.

The ne* step is a breakdown of the path mto a set of closely sampied points dong

the path. This &es a set of discrete t o o k e positions at designated time periods.

Each of these tooffice pbsitions is then used to determine a set of joint positions

that will allow that position to be reached. When choosing joint positions there can be

multiple solutions to the equations. Idedy, the best solution requires minimum joint

motion.

One of the probiems with this type of programming is that care needs to be taken

not to exceed jomt parameters. Kùiematics dows motions which are dynamically

impractical. In some cases, a rapid tüp of multiple joints might be the ody way to follow a

path. W e the simulator pennits this, if this happened in the real world we would run

into problems with acceleration W s and inertia.

6.3. Interactive Control of the Simulation

Interactive control is when the actions of the user have an immediate effect on the

simulation. This wuld be through entering a new destination pomt for the t o o k e , or by

having the simuiation track the users motion m some way.

This can be done m several ways. The fkst is through a teachmg system, which is

commonly used in mduscrial applications. Another way is to use a custom controuer such

as a SpacebaIl to move the t o o k e around. A control program is needed to detemine the

correct joint positions to foilow the toolface. A third way is to have a completely

software driven solution, with sliders representing the desired joint positions. The user

could move the sliders, and this would cause the simulation to update the positions of the

 am^ In all cases, the results c m be saved for later pre-programmed runs.

In all cases a program would be m place that wouid take the commands, either

ffom a teachmg unit, or fkom a control program, and convert them into a sequence of joint

motion commands. These would be ioserted into the event queue as if they had been

entered m manuaUy, and would a é c t the currently &g simulatioa Because of this,

once a sequence bas been recorded, it can be written out to a file for alter playback, or

mafluaily modified.

There are a few possible problems with interactive controL The f%st is that a tàir

bit of processor time must be used to deal with the user mput. A rapid sampiing rate is

needed, and this wiU tend to steal cycles fiorn the simulation. This can be dealt with by

having an external system act as a pre-processor for the user input. The second is that it

cm be prone to errors. Shce all user motion is being tracked, inadvertent motion, pauses

and so forth, will show up in the recorded sequence of joint motions. As wek there will

be a large amount of &ta, which wiII be depemlent on the rate of sampling. This will

result m a data set that will be difEcult to edÏt to remove mors. The user will have to

r e m the simulation, again attempting to duplicate a sequence of tasks.

6.4. Feedback Based Control

In a feedback based control system, a real robotics system is coupled with the

simulated systern. Data is transmitted fiom the actual robot to update the simulation.

Data fkom the simulation can be used to move the real robot, resultmg m a feedback loop

of comection and cornter correction.

This could be used to provide remote monitoring and control of a robotics system.

It can also be used to simulate the addition of a new piece of hardware to an existjng

system at a low cost. The entire system, both real and miapmary, can be entered into the

simulation. This wouid aüow the user to try out a new piece of robotics equipment to see

how compatie it would be with exkting system components. Detigns for add on pieces

can be formulated, and 5 w s can be found before CO* prototyping.

Joint positionhg can be obtained through a number of dGaent means, such as

optical tracking, or motor positioning. In any case, the set of jomts positions would be

passed to the simulation to allow t to update the on screen display.

A tramlator would be needed to convert between the joint positionhg values of

the simulation and whatever method is used by the robotics system. Hardware would be

needed to send control commands to the robotics system fiom the translater. Depending

on how complicated the contml and translation units are, t may be best to move them

onto an separate system from the simukitor, to avoid degradation of performance.

There will be synchronisation problems between the simulation and the actuai

robotics system There are lags in processing of cominands, and joint motion will not be

instantmeous. For example, when the simukition sends a command to the robotics system

to move to an angle of 30 degrees, th.% will take tirne. Whatever program is giving

feedback to the simulation must be M e n in such a way as to cornpensate for this hg. If

this is not done, feedback fiom the arm may cause the simulation to believe that a collision

has taken place, and it wili assume that the motion was not performed.

As the simulation progresses, periodic corrections to the simulation image of the

real system must be made. This wiu deal with round off errors, miprecision m position

readings, and the thne lag problem The srniplest way to do this is to pause the robot,

determine the tme positions of the joints, and have the simulator apply these joint

positiom fiom the startmg valws.

65. Sammary

The simulator's method of speciSrllig individual joints motions allows f ~ r precise

control of the robot m. It also makes it very easy to internice the simuiator to extemal

control programs. This dows a great deal of flexiiiiay m controllhg the simulation

dynamidy.

Real-time controllers, such as a program using a Spaceball to move the toolface

around, or a giraphic interfàce will use processor cycles that could be better used to give a

smoother simulation, For this reason, it wodd be more efficient to have the control

pro- nmning on a separate machine.

Off-he programs can be mterleaved with the sirnukitor via the pause and play

buttons on the main control panel This wodd allow the user to see the progression of the

off-line program, and correct t ifneeded as mors occur.

7. Simnlator Internals

The hulator can be seen as a collection of loosely coupled objects that get thmgs

by sen* messages to one another.

Message

Figure 7- 1 . Object relationships.

7.1. Objects in the Simuiation

There are a large number of objects m the simulation What each object does as

well as how it operates, will be discussed in this section

The objects descnkd are: Camera Position, Robot View, Menu, Application,

Initialisation, Simulation, Robot, Event Record, Event List, Event Queue, Robot Item,

Robot Sub-Item, Joint, and Clock.

The Robot, Robot Item, Robot Sub-Item, and Joint objects are contained in the

bubble hbelled Robot m figure 7-1. This dows for an implementation mdependent

ovemiew of the simulation It is possible to remove these items, and replace them with

others that would directly control a reai arm, and get real feed back fiom tbat arm. The

main simulation code is the same,

The Application Object is created when the program begins. It is given a delegate,

in this case the Initialisation object, whom it sen& an inït message to. There is no user-

defïned data stored in this O bject.

This is the standard way of initialishg applications under NeXTStep. It can also

be used to control what happens when the operating system decides that an application

should be passed a document to process. A . example is double clicking a document to

open it. In this case, the Application object wouid p a s parameters to its delegate to tell it

a document must be opened.

The Camera Position object dows the user to control the virtual camera that is

viewgig the simulation. It stores the current X, Y, and Z co-ordinates for where the

camera is located. It ako stores the location that is king Iooked at in X, Y, Z format.

This object is tightiy coupled with the section of the i n t h that controls it. It is

desigraed to grab the CO-ordinates that were entered hto the scfeen, and pass them along

to the RobtView object to be used when a screen update is performed.

The Event Record object holds information about a joint movement command- It

keeps tmck of the joint to be moved, the start and end times of the motion, and the

amount the joint is to be moved.

This object is essentiaUy a contanier, and has the usual methods for accessing t's

data elements. It also lets the user see if the event takes place before a given W. This is

used by the Event Queue object to check ifthis event is scheduled for execution yet.

The Event List is where event records are stored for processbg. It has controls

that allow the user to browse through it, deletmg or adding entries as needed. It can sort

itself on a request fiom the simulation, in which case t will be sorted by starting time of

the event records stored in it. It can aiso store or retrieve a set of events to disk.

The Event List can store one thousand event records in it. This is an arbitmry

limit, and could easily be changed to support a larger number of events, or a dynamically

chmghg list size.

When an Event Record is added to the Event List, it is checked for coosistency

against the currently loaded Robot. It will not d o w the user to enter in joint motion

comrnands for non-existent joints.

Once the user presses the Play button, a timer event periodically polls the Event

List for events that have a start point d e r the curent tirne. ALI events that are found that

meet this criteria are moved fiom the Event List onto the Event Queue.

The Event Queue is where event records that are king executed are stored. This

mcludes both the joint motion event records and a display event. It has the standard

methods for a queue - add an event record to queue and remove an event record nom

the queue.

As the simulation progresses, a ther event wilI send a signal to the Event Queue

object. The k t event on the queue is removed for processing. If it is a display event,

then the Robot object is sent a signal requestmg that the display be refkshed. The display

event is then placed back onto the end of the queue. This allows for periodic rehshing of

the display, while ensuring that all joint movement events are at least partially processed

during a time slice.

If the event that was removed nom the queue was a joint movement event, the

dock is consuhed to determine how much time has passed shce the last time t h joint

movement was processed. The amount ofjoint movement is scaled to match this time that

has passed, and the resulting partial joint movement is passed to the robot item to be

processed. If the end time for the joint rnovement event has not arrived yet, the s h h g

t h e is updated to the current the, and the joint movement event is requeued. This

ailows for processmg of joint motions as rapidly as possible, with the maximum refresh

rate possible.

The Initialisati.on Object is the delegate for the Application Object. It receives ody

one message, init, h m the Application Object. Its role is to send initialisation messages

to most of the other objects. The objects it initiaüses are: Camera Position, RobotView,

Simulation, Robot, Event List, Event Queue, and Clock.

An Mialisation Object is a common type of object ui most NeXTStep

applications. It provides a simple way to initialise the prograrn. When a data file for the

application is used to start the program, the Application object will p a s the relevant

information to the Lnitialisation O bject acting as its delegate. This dows the application to

open data mes automatically.

The Joint Object bandles ail of the motion connmmds for the simuktion. It

consists of two points definhg an axis of motion, maximum and minimum vahies, a

current position value, the base Robot Item, and a list of attached Robot Items. The base

robot item is the Robot item that will not move when the joint position changes.

When a command is received asking the joint object to change ifs position, the

iransformation matrix needed for the amount of change is calculated using RenderMan

routines. This is applied to ail of the Robot Items that are attached to this joint, and ail the

joint O bjects tbat are involved have their endpoints updated.

The joint object then asks each of the Robot Items that moved ifthey hit anything.

If a collision occurs, the joint attempts to apply the motion to the hit O bject. If this results

in a collision as weli, ail of the motion is reversed, and the joint informs the timer event

that the motion fàiled. This wÏU result in the event bemg re-queued in the hopes that other

pending motions will clear the obstruction.

The Robot Object contains dl the data stored in the simulation. It has pointers to

arrays of Joints and Robot Items, and the number of Joints and Robot Items. When events

are added to the event list, the Robot item is queried to determine if the joint in question

exists. It receives load messages fiom the Menu O bject to read a robot simufation fiom a

file.

Another major task that the Robot Object performs is to update the RenderMan

world çhape when requested. To do t h , it clears the current world shape, and asks each

Robot Item to add iîs current shape to the world shape. This request is propagated down

the hierarchy until the entire structure has been updated.

The Robot Object also acts as a broker for jomt motion cormnands. It receives

these from a simulation k r event, and passes them on to the appropriate Joint Object.

The Robot Item object represents a ngid conection of Robot Sub-Items. It

contains the number of sub-items, an array of pointers to the sub-items, a master

transformation matrk for placmg the subitems, a boundmg sphere radius, and a bounding

sphere centre pomt.

When a Robot Item moves, d that happens is that the master transformation

matrix is updated. The bounding sphere for the entire Robot Item is used to speed up

c o ~ o n detection, since the sub-items of the Robot Item behg checked for collision can

be rejected ifthey do not fiil II this bunrmdmg sphere.

The Robot Item also recces requests fiom the Robot Object to add its shape to

the world shape. It does this by se- the global t r a n s f o d o n to its master

transformation matrix, and then asking each of its sub-items to add their polyhedra to the

world shape.

The Robot Sub-Item object is used to mode1 a convex poiyhedron. This is the

Iowest level that is represented in the hierarchy. It is made up of the nurnber of pomts, an

array of points, the bomding sphere radiusy the bomding sphere centre point, and a

pomter to a block of memory containhg the physical properties of the Sub-Item. This

cmently oniy holds the colour of the block, but couid be used to hold mas, fi.agility etc.

When collision detection is king performed, the Robot SubItem will check its

bundmg sphere against other spheres, and if necessary, do a polyhedra mtersection check

a g a other Robot Sub-Items.

A Sub-Item wiU also receive requests to add their shape to the world shape. Shce

the proper transformations have already ken added, they c d a RenderMan routme to add

a convex polyhedron to the world shape. The data structure that the Sub-Item uses was

chosen to d o w direct use by RenderUan without translation.

The Robot View Object provides the main interface to RenderMan It can receive

messages fiom the Menu Object to toggle between wire fkme and solid modela , or

from the Camera Position Object to change the viewpoht. It also gets requests fiom a

timer event provided by the Simulation Object to update the display. When this happens,

it prepares RenderMan to display an image, and asks the Robot Object to d e h e the

RendeMan world shape. &ce this is completed, Robot View calls RendeMan to dispiay

this world shape.

The Menu Object handes the menu mterfkce for the program. Through this, the

display mode (WieFrame or Solid modelling) can be chosen, files loaded or saved, or the

application exited.

The Simulation Object receives messages fiom the main control panel (Play, Stop

and Pause). When it receives a Play message, it checks to see if the simulation is currently

niIining. If so, it ignores the message. If the simulation is stopped or paused, the

Simulation object launches three timer events.

The first of these periodidy sends a Display T h e message to the Clock Object.

This allows the ninning thne to be constantiy updated.

The second checks the event list for pending events, (which are sorted by start

tirne) and moves any events that are ready to be executed to the event queue.

The thkd poik the event queue for events that are runtüng. If it fin& a display

event, it sends a message to Robot View asking it to update the world shape. If a normal

jomt motion is found, it checks the dock to detemine the distance the joint shouid have

moved in that time, and then setlds a move joint command to that jomt. If there is any

remahhg tïme for tbat event, it is placed back onto the queue.

The Clock Object is responsible for rnaintaining the current tirne. It periodically

gets dispiay messages fkom the Simulation Object. When this happens, it calculates the

elapsed time, and passes this to tbree text fields for dispiay. It can aiso be pofled for the

current thne by the event List and the event queue. It can be paused or reset by requests

fiom the Simulation Object.

7.2. Events and Messages

Messages are a key part of object orienteci progmmhg. In this simulation,

messages are passed between the objects that relate to the real world. A message is an

request fiom one object to another object to perform some action, or to retum a vahie.

Messages in the simulation are used prïmady to move items and to check for collisions.

When a movement event is removed from the main event queue, a message is sent

to the joint invoived to update its location. The joint wül d e t e d e what transformation

will perform this motion, and pass that dong to aIl of the items that are attached to it.

Each item m turn will apply that transformation to update its interna1 location. This dows

them to be drawn wrrectiy.

In the red world, s e n h g a signal to a joint motor would result m the motor

rr?oving to a different position and anythmg that is attachai to that joint would move dong

with it. Collisions cm be dealt with sensors that detemine ifthe motor moved the correct

distance.

Extemal pro- can be w d to generate messages to, or receive messages Eorn

the objects in the simulation. This can be used to d o w a real robotic ann to be controiied

by the simukition, and to pass feedback to the simulation about collisions with items not in

its database. In these cases, movement mesiges wodd not only be sent to the simttlated

jomt, but to the real one as weL Care would have to be taken to make sure that the

resdution of both are the same. Messages corning back Eorn the real arm would be

identical to those generated by the items when they detected a collision.

There are a number of "real" events that are handled by the program. "Real"

events are standard cornputer events, such as mouse clicks, key presses, or timer

interrupts, as opposed to simulation events.

AU interhce events are handed automatically by Interface Builder. The mt&e

nms in a separate thread, so rapid response to user generated events is possible.

TÏmer events are scheduled whenever the "Play" button has been presseci. The

tbree tirner events are redy dock based mterrupts that are designed to c d a specifïed

fbnction d e r a cerfab mterval has occurred. This is done with standard signal handling

techniques, dong with NeXTStep support for timed intempts.

Once the "Play1' button has kgun, a number of thmgs take place. Three timer

events are launched. One of these updates the on-screen clock. The second moves events

nom the event list to the event queue when they are ready to be executed. The third

removes events fkom the event queue, determines the proportion of the event that should

execute, and sen& the amount of motion to a joint for execution. If the event that was

removed was a command to update the screen, a message is sent to the display asking it to

refiesh itself.

The on-screen clock is for display purposes ody. As the simulation nuis, this is

updated to give the user a feel for when things are happening.

The event list is periodicaily polled to see if any events on it are ready to begin

execution If th& start time has passed, they are copied into the event queue, which will

interleave them in a way aimed at giving a smooth animation.

The event queue is also king periodically poiled. Whichever event is at the head

of the queue is removed, and the tune that has elapsed since the start of the event is

calculated. The proportion of elapsed t h e to total t h e is used to determine which

fiaction of the motion should be carried out. The amount of motion is multiplied by this

hction, and passed on to the indicated joint for execution. If there is any remaining time

for the event, the start t h e is moved up to the current the , and the event is re-queued for

later execution.

This dows the simulation to adjust the motion of its jomts so that it appears to be

smooth. If there are a lot of events happening simultaneously, then each joint wül move a

M e r distance, and if there are few events, they will move a d e r distance. This &es

a net effèct as if the items in the simulation are moving at a h e d speed, with a variable

fiame rate. On a faster machiue, this provides for smoother animation On a slower

machme, or when solid modelling is use& each h e will take longer to prepare, so a

lower k e rate is needed,

An object-oriented approach was chosen for several reasons. Due to the nature of

Interfàce Builder, objects would already be present to construct the interhce. It made

sense to continue using objects for the rest of the simulation to give a consistent feel to the

program. Secondly, objects are a very mtuitive way to view a simulation. This can best

be seen m this program by the way that the Robot object asks each Jomt object to move to

the new angle, and a& each Robot Item object ifit bas hit anythmg.

The decision to use a polling system and a queue to h a d e the animation was an

easy one to d e . This gave a fi.irly consistent firame rate, and allowed for corredy

scaled motion as the complexity of the simulation iucreased, or the processor power is

mcreased.

8. Programming Environment

The programmhg environment for this project greatiy affecteci the way that it

evolved. Not having to worry about details of three dimensional rendering cut the

cornplexity of it d o m to a manageable size. The internice development tools

transparentiy take care of detaüs that are important to the program &se& but not to the

actual simulation. These tools, dong with the progr- hguage support and the

muiti-taskmg ability of U N E li(ERN841 combined to make this project a success.

8.1. Pmject Manager

Project Manager is basicaUy a hi&-powered make-utiüty combined with a file

manager to keep track of source code and aiuriliary files. It allows the user quick access

to ail files associated with the project. From the main window, there are a number of

options.

Run does a compile (ifneeded) of the current project and then launches it. This

places project builder into backgroimd.

Debug does a compile (if needed) of the current project, then opens a t e r d

window with gdb launched m t. This allows the user to nm a debugag session on the

project. Gdb for the NeXT ties into the editor to provide a special control panel for the

debugger which dows the user to perform many hctions at a button push.

Attributes d o w the user to define a number of project attri'butes. These include

the target type (such as application), icon, main intefice file, where the application should

be installe& and the inah language that the project is designed to use.

Files provides a browser that provides easy access to all files associated wiîh the

project. Selectmg one of these files allows it to be opened up by its creating package,

such as Interface Builder or EdÏt.

Build brings the project up to date, recompiling and re-linking as needed.

Internlce Builder is a powerful tool for generating user and object intedàces. The

user can define the type and location of intedke objects, connect them to each other (and

to non-ht&e objects), and define actions to be taken when objects are activated. It

mcludes a test mode where the interfixe can be tested without the underlying program

code bebg in place. User i n t e e s can be build by selecting mt-e items fkom a

customisable palette, and dragghg them into a window. There is a wide range of items

available, such as text mput boxes, buttons, and scrolling iists.

Once mterfàce objects have been placed, the users connects them to other objects

by control-dragging a iine nom one object to another. Depending on the type of objects

bvolved, the user can set up named relationships between objects, or define actions that

one object can take on another. For example, a button could be linked to a calculator

object, causing a method m the calculator object to be caiIed when the button is pushed.

Another example is linking the caiculator object to a text field object. This would give the

calculator object a reference to the text field O bject, ailowing it to ask the text field object

to change the value it is dispiaying.

In addition to the basic objects provided by the system, the object browser mode

dows the user to d e k e and iink objects other than interfàce objects. These items cm be

quickiy defined in temis of exkthg objects, as well as having additional outlets and

actions. Outlets d e h e relationships between this object and other objects, while actions

are methods that are &ble by other objects.

AU these objects are stored in what is called a nib file. When the ni file is loaded,

the objects are initialiseci, and any references to each other are resolved at that time.

There is usually at les t two nib files in use for each application - one for haodiing the

information and help messages, and one for the main start-up for the application.

Objective-C is an extension to the C progmmmhg language. It adds the ability to

define, create, and destroy objects. It also allows for messages to be sent to objects. 1t

does this in a straightforward way that is much s@la to read and understand than C++.

Objects in Objective C have two parts - the interface and the implementation. The

interfice is usually placed into a header file (file.h) and the implementation into a source

file (filem). This &ws the construction of hiharies of binary code, wMe dowing others

to use this library via the header files.

There is a new type, id, added by Objective-C. It is a pointer to an object. a

special case of the null pomter, d e d nü, is defked as (id) O.

Two special variables of type id are defined for each object. These are self ami

super. Self is used to refer to the actual object &se& and super is used to access any

methods in the parent object that may have b e n ovenwitten. When a method r e m , self

is a common choice for a r e t m value.

A new pre-processor directive is also added. lmport is used in place of include to

avoid problems with muitip1y-mcluded files. h p o a keeps track of what files have ken

included m the current ae , and will skip any that are already present.

The interface file has a number of parts. These are:

Class Definition - This is one liw definhg the class name and what object it is derived

fiom.

Lnstance Variable Deciarations - This is where the interna1 variables of the object are

defined. These are private to the object, and can oniy be accessed through the method of

the object.

Class Method Declarations - This defines the methods that can be used by the class &If.

Instance Method Declaratiom - This de- the methods that the object can use.

The implementation file has a number of parts. These are:

Class D e m o n - This is one line indicatmg which class this implementation is king

dehed for.

Class Method Code - This has the code executed by the Ciass Methods.

Instance Method Code - This has the code exemted by the Instance Methods.

Messages are sent to objects to get them to execute methods. In C* message

passing appears smiilar to a fknction call, making it difEcult to teil them apart. Objective-

C uses a SmalltaIk like protocol for passing messages to objects.

A message looks me: [receiver namel:variablel]; In this case t asks the object

called receiver to execute the method called namel, passing that method the parameter

variablel. There can be any number of name-variable pairs. There must be at least one

name, and each variable must be separated by a name followed by a colon, or just a colon

Messages can retum objects, normal variables, or nothing. They can be nested, which is

why it is preferred to r e m the variable self.

8.4. RenderMan

RenderMan is a three-dmieasional scene description program tbat is built by P k .

It comes bundled wïth the N e n , and is used by the simulation to provide rapid w i r e h e

or solid modem routines.

It is not reaily designed for an animation package - where RenderMan shines is as

a tool for building photo-realistic m e s . The support that it does provide is fast enough

for animation of fhiriy simple objects.

As a side benefït, RenderMan can be codgured to wnte its result to a RIB file

Enstead of rendering immediately. This ailows screen shots to be captured for later

vie- or for a simulation that is too complicated to nin in real time to be captured as a

sequence of images that can be played back hter.

RenderMan was chosen for a three dimensional display program for a number of

reasons. Primarily, it saved a lot of t h e that wouid have had to be spent desi-

coding and debugging three dimensional graphics routmes. The fact that it came bundled

with the development workstation was another big plus.

Choosing RenderMan caused some radical design changes in the main data

structures that are used by the simulation. RenderMan manuals were not available in the

prelimhary stages of the design. This Ied to a design that was bsed on a completely

different way of lookmg at objects. When RenderMan was introduced, the basic way of

holdÎng three dimensional objects, and of moving them had to change.

RenderMan hid most of the messy details of the mat* manipulation needed for

translation and rotation in three space. This ailowed more focus on the actuai simulation

design, and on how coilision detection and resolution wouid work.

8.5. Inter-Application Communications

The prognunmiog envimunent on the NeXT provides for easy inter-application

communications. Supplied objects (Listener and Speaker) d o w for communications

between program, even those running on different systems.

Listeners are objects that are calleci remotely. The qmtax for calling them is

identical to that for any other object in the systern The only difference is that the calling

object must be a Speaker.

A Speaker is an object that can make calls to remote objects. Combmed with the

ability of a Listener to receive these messages, inter-application communications are

readily available for use by any program.

Support is automatically inchided for both pro- nuining on the same machine,

and on networked systems. The prograrn does not need to worry about routing messages,

error correction, or retninsmission requests. This is handled automatically by the

operatmg system.

8.6. NeXTStep and the NeXT Hardware Specifications

This project was implemented under NeXTStep 3.0 on a monochrome Turbo

NeXTStation At this date NeXT has discontinueci its hardware line and has ported 3 s

NeXTStep environment to the Intel h e of processors.

Turbo NeXTStation

33 Mhz 68040,56001 DSP chip

16 Megabytes main memory

400 Megabyte bard drive

CD-ROM player

Monochrome MegaPMel Display (1 024x768)

NeXTStep 3.0 (Developers Edition)

NeXTStep is the operating system on the NeXT. It is a M y featured version of

UNE, ninning on top of a Mach microkernel. This provides it with mukithreading

capabilities. NeXTStep is an object oriented operating system, that cornes with a wide

variety of applications and toolkits. The main mode of operation is graphicd, through the

WorkSpace Manager (simila. to the Macintosh Finder). The graphic display used Display

Postscript as a rendering engine. A standard UNIX shell session is available inside of a

window under WorkSpace Manager.

Shce this is a version of UNIX, multitasking is M y supported, and NeXTStep has

strong support for mterapplication communications, even between applications ninning on

different machines. The Mach kernel provides support for mdtithreading within

processes. This is used by most programs transparent@ in that their user interfices are

ninning in one thread, and the remainder of the program is ninning under another. This

gives a quick response time to user actions, such as mouse clicks.

The NeXT turned out to be an excellent choice for the development of the

simdator. The system came with strong tools for developing a program with three

dimensional graphies.

Interfixe Builder and Objective-C, combmed with the Project Manager and

RenderMan made coding and testing easier than with any other toolset I have used before.

On a different platfonn, this project wouid have taken severai tmies longer to d e .

The syntax of Objective-C is much cleaner than C*. It is immediately obvious

what is a message, and what is a regular hction. Interface Builder helps in this

distinction as it allows the user to dehe how objects are related to each other. It also

d o w s for a seamless interface to be constructed with no programming needed The

internice can be tested rapidly, and things changed quickly and sHnpIy ifneeded.

The real star is RenderMan. It took care of a major amount of the work by

providing fàst rendering, both of wÏre firame and solids. Its support for matrix operations

took w e of most of the mathematical operations. RenderMan is also highly optmiised

for the NeXT, and takes fidl advantage of the DSP chip for matrix operations.

9. Conclusions and Future Work

A robotics simukitor was an obvious choice for my thesis project. 1 have h y s

been interested in robotics, although 1 never had the oppomuiity to b d d or use a "reai"

robotics system 1 have aiso been playmg with computer graphics on and off for several

years. When given a chance to combine the two of them my decision was aIready made.

ûrigmally, 1 Iewed this d y as an exercise m three dimensional graphics.

Buüdmg a graphics engine would take a fair amount of work, and if the enghe was

designed correctly, th2 robotics simulation would practicaUy take care of k l f . This was

before hding out that my platforni would be a NeXT, and corne complete with

RenderMan to handle the graphics part of things and Interface builder to handle the user

interfke details. Loo- back, 1 realise that concerns about how to iroplement a three

dimensional enghe have k e n wvered many times before. 1 should have focused on the

details of how the simuiator would work, and what the look and feel of the interfiice

should be.

There were some problems nght fiom the beginning. The first and most obvious

was the fkct that I was in a différent cÏty f?om rny thesis supervisors. Communication via

E - d and telephone was extremely usefid, but 1 think 1 would have k e n able to do a

better job under more direct supervision. While the tools on the NeXT are good, 1 ran

into ~ c u i t y m getting access to people that were actually using the NeXT for

psogramming work to ask questions. A lot of time was spent dig& through the manuals

to look up syntax of a ca& ody to discover that the documentation I needed was available

only in third party manuah. ûrdering these took time, and slowed things down.

Objective-C is a very powerful and intuitive extension to the C programming hguage. I

found it much easier to use than Ci+. It stül took t h e to become proficient at using it

and the other took such as Interfàce Builder and RenderMan.

1 think the hardest part of the program was the collision detection routines.

RenderMan does not have optmiised routines to determine if a collision between convex

polyhedra bas occurred. It would have made my life much easier if it did. My first

attempts at this just plain did not work, through an ermr m how 1 was using the

traosfonnation matrices. Later attempts worked, but were so slow as to be alrnost

useless. Eventuaily, 1 extended the format to include a hierarchy of bounding spheres, and

elimination of as many sections of the scene as possi'ble. This came about f?om reading

about raytracing techniques which use similar techniques to speed up ray-object

mtersection checks-

OveraU, 1 view the project as a success. 1 set out to develop a usefhl and powerfiil

general purpose simulator, while leaming more about robotics, computer graphies, and

simulation m general dong the way. The simulator that was developed, while not perfect,

is powerful enough for most users needs. It is extendiie, through either modifications to

the program itself, or tbrough the use of extemal control progmms. It c m be used to

simulate any robotics system without additional progpmmhg. It runs with a good &me

rate, which dows rd-time simulation. It is also general enough that it c m be used to

simulate any robotics system, which was a major g o d I learned a lot while building this

project, and 1 hope that it helps others to l e m more about robotics systems as weil. The

source and object code of the simulator have been made fieely available to enhance the

leaniing process.

Tests were performed on two robots. The fïrst of these was the simple robot seen

in the picture of the main simulator display (Figure 5.1-1). This is made up of five

polyhedra (the four that make up the maHi robot, plus one detached cube which is

obscured by the robot in this view) and three jomts. With this simple configuration, the

smiulator was able to redraw the screens in eitlier solid or w i r e h e mode with a l l joints

moving simuitaneously at twenty-fie h e s per second.

Creating a more complex robot by hand would have been both tedious and prone

to errors. The simulator does not d e out intersection of &items within items. To

simulate a complex robot, the subitems that made up the simple robot were duplicated a

number of times. Then, when a jomt moved, it moved many objects instead of one. The

resulting robot had forty polyhedra, and was able to produce solid mode animation at

meen fiames pet second. When the dispiay was changed to wirefiame mode, twenty-four

h s per second were displayed.

It should be noted that these animation rates were be& produced on a 33 MHz

68040 based computer. Real-tirne display of several hundred solid polyhedra at twenty-

fhe M e s per second should be possible ifthe program were ported to a modern system.

1 fed that these rates of animation are suflicient for use both m teaching and research

applications.

There are a number of cliffirent projects that would be nice to work on to extend

the usefidness of the simulator.

The nrst of these is to move the simulator fiom the 68040 NeXTStep platform to

an Intel based platform (DOSIWmdows or OS/2). NeXT has disconhued it's hardware

he, and the Intel based version of NeXTS tep is not widely avaiIab1e. Moving to an Intel

platform, under a widely available operating system would greatly increase the number of

potential users of the simubor. This wouId be a major undertaking, smce the RenderMan

component would need to be rewritten, and the mterfhce converted over fiom the use of

Interfàce Buüder to an equivalent for the PC. Objective-C could stilI be used, since this is

available fiom a number of vendors.

The second is to support printmg of the main display area directiy within the

application. On the NeXT, this would be a relative@ simple matter, since the display is

aiready using PostScript. On a PC based system, this would be a fair bit more involved,

but still w i t h a few weeks work.

Mdtiple cameni displays and ann molmted cameras are possible. Ideaily, the

command set would be expanded to d o w the user to switch between cameras during the

simulation in the same rnanner as selecting a joint motion

Better resolution of collisions is needed. The user should be able to specify

sensors on the anas (and other objects) that would hdicate when a collision has occmed.

This couid then be fed out to an externa1 controller for proper han-.

The Robot Construction Ka needs to be moved off of paper and into reality. Most

of the design work is completed for this project, and baving it availabIe would greatly

enhance the usefbhess of the smiulator.

The AutoCAD translator is completely designed. It wouid read in an AutoCAD

file and parse it to build a list of sub-item. It would display these sub-items. and prompt

the user to enter in an item nurnber to job these items together. This would give the user

the rnaxhum flexiiility in denning how objects relate to each other. It wodd &O be

possible to dehe a sub-item as a jomt, and the major axk of this sub-item would

detemine the axk of the jomt. The user wouid then enter in the item numbers that the

joint would connect to. This method wiU require a fitir bit of entry fkom the w r . It may

be possible to prognun an AutoCAD extension usmg Lisp that would ailow the definition

of valid scene files fiom directly withm AutoCAD.

References

BUDD91 Budd T. "An Introduction to Object-ûriented Programming", Addison-

Wesley, 1991.

BURG89 Burger P. and Gillies D. "Interactive Computer Graphics: Functional,

Procedural and Device-Level Methods", Addison- Wesley, 1 9 89

FOLE90 Foley J.D., van Dam A., Fiener S.& and Hughes J.F. "Cornputer

Graphics: PrincipIes and PracticeY', Addison-Wesley, 1990.

GESN93 Gesner R, Boersna T., Coleman K, Hill D., Tobey P. "Inside AutoCAD

Release 12 for Wmdows", New Riders, 1993.

KERN84 Kernighan B. W. and Pike R The UNIX Programmhg Environment",

Prentice-Ha& 1 984.

MEGA93 Megahed S.M. 'Trhciples of Robot Modelling and Simulation", John

Wiley & Sons, 1993.

NEXT92 NeXT Computers Inc. 'The On-line NeXT References", NeXT

Computers Inc., 1992.

PREP85 Preparata F.P. and Shamos MJ. "Cornputationai Geometry: An

Introduction", Springer-Verlag, 1985.

WST9C Upstill S. "The RendeMan Companiony', Addison-Wesley, 1990.

l MAGE EVALUATION
TEST TARGET (QA-3)

E ~i 11%
c

b
CYY

1.8 IlIllm

IMAGE, Inc
1653 East Main Street
Rochester. NY 1- USA
Phone: 71 W4î8~-O3OO
F a 71612885989

