
SPECIFICATION AND VALIDATION OF Q.2931 ATM
SIGNALING PROTOCOL USING ESTELLE

by
Dan'usz Tasak

School of Computer Science
McGill University, Montred

September 1997

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE RECJUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright @ 1997 by Dariusz Tas&

National Library 1+1 of-&
Bibliothèque nationale
du Canada

uisitioris and "9- Acquisitions et
Bib iographic SeMces setvices bibliographiques

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive pexmettant à la
National Lkmy of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distri'bute or sell reproduire, prêter, dîstriiuer ou
copies of this thesis in microfonn, vendre des copies de cette thèse sous
paper or electronic formats. la fornie de micdche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propri6té du
copyright in this thesis. Neither the &oit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or othecwjse de celleci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autondon.

Abstract

ATM, which stands for Asynchronous Transfer Mode, is a networking technoiogy
widely considered to be the most promising and efficient method of transporting
information through future telecommunication networks. An important part of its
definition is a signaling mechanism, which is used to set up and release ATM connec-
tions. ITU-T defined a signahg protocol Q.2931, which is designated as an official
standard for cal1 control in both public and p r i ~ t e versions of the ATM User Network
Interface (UNI).

The main goal of this thesis is to specify formdly the signaling protocol in Estelle
- one of the Forma1 Description Techniques (FDT). A specification written in an
FDT offen great advantages as compared to an informal one. It is unambiguous; it
may be used for protocol simulation and validation; and it rnay also serve as a basis
for an actual implementation.

In this study, we design and create a formal specification of the Q.2931 ATM
signaling protocol. To demonstrate its signaling functionalities, we develop a simu-
lation model representing the working environment of the protocol. We propose a

validation methodology, which we use to show the conformance of our description to
the requirements of the official protocol definition. Findy, we present observations
and conclusions gathered as results of our experiments.

Résumé

Dans le domaine des télécommunications, on mise beaucoup sur l'efficacité des tech-
nologies appelées Mode de Transfert Asynchrone (MTA) pour les réseaux de demain.
Le mécanisme de signalisation utilisé pour établir et terminer les connexions MTA en
est un élément important. L'organisme international ITU-T a défini le protocole de
signalisation Q.2931 qui sert de norme officielle pour le controle des appels tant pour
les versions publiques que privées des interfaces réseau utilisateur MTA.

L'objectif principal de ma thèse est de définir formellement le protocole de sig-
nalisation avec Estelle - l'une des Techniques de Description Formelle (TDF). Une
spécification formelle présente de multiples avantages par rapport à une autre non-
formelle. La première est sans ambiguité; elle peut être utilisée à des fins de simulation
et de contrôle de la validité; elle peut aussi servir de base à une implémentation.

Dans cette étude, nous concevons et créons une spécification Formelle du protocole
de signalisation Q.2931. Dans le but de démontrer les fonctionalités de signalisation,
nous dévelopons un modèle simulant L'environnement d'opération d u protocol. Nous
proposons une méthodologie de validation que nous utilisons afin de démontrer la
conformité de notre description avec les exigences de la définition officielle du pro-

tocole. Enfin, nous présentons nos observations et conclusion amalgamées avec les
résultats de nos expériences.

To my Parents
and Monika

Moim Rodzicorn

orar Monice

Acknowledgment s

Many people in many ways contributed to the creation of this thesis. Now, it is time
to thank them all.

1 would like t o express rny g a t i tude to Professor J. W. Atwood who supervised and
guided me in this project. Ideas, experience, and support he provided made my work
possible. From the fust literature research to the final correction of this document,
his availability for discussion and immediate answers to my questions never failed to
amaze me. 1 want to thank him for being there, whenever 1 needed him.

1 also thank my second supervisor Professor Gerald Ratzer. His suggestions and
comments helped me to shape my thesis into its current form.

I would iike to thank ail my friends and colleagues in t h e Schoal of Compiiter
Science. Particularly, enlightening discussions with Dionis Hristov helped me to un-
derstand many issues. Marcia, Souad, Taha, Ioannis, Mark, Bora, Stefan, Max - to
name just a few - created a great atmosphere during my two years at McGill.

1 also want to thank my friends on both sides of the Ocean. Natalia and Jacek from
Montréal made me - a complete stranger at that time - feel here like home. Slawek,
Darek, Waldemar, Marcin, ha, Ela, and all friends in the kayak club "Bystnen from
Krak6w proved that 7 000 kilometers does not have to be far For friends. Gavin from
Alberta showed me "the other side" of Canada.

Finally, I want to express my deep gratitude to Ham and Eugenia Jütting for
their financial support. A feLlowship they established made my visit to Canada and
studies at McGill possible. I also thank Profeçsor Atwood for the support through
his research gant.

Contents

Abstract

Résumé

Acknowledgments

1 Introduction 1

. 1.1 Motivation 1

. 1.2 Thesis Contributions 3

. 1.3 Thesis Layout 5

2 ATM Overview 7

. 2.2 Introduction 7

. 2.2 Basic Concepts 8

. 2.2.1, Information Transfer 8

. 2.2.2 Virtud Connections 9

. 2.2.3 Protocol Reference Model 10

. 2.3 Organization of ATM Networks 12

. 2.3.1 Classification 12

. 2.3.2 User-Network Interface (UNI) 13

. 2.3.3 Network Node uiterface (NNI) 14

3 Signalhg 16

. 3.1 Introduction 16

. 3.2 Signahg AAL (SAAL) 17

. 3.3 Higher Layer UNI Signaling 18

3.3.1 Standards . 1s

. 3.3.2 Messages 19

. 3.3.3 Connection Establishment and Release 20

. 3.3.4 Status Procedures 23

. 3.3.5 Error Handling 23

. 3.3.6 Restart Procedures 24

4 Estelle FDT 26

. 4.1 Introduction 26

. 4.2 Main Features of Estelle 27

. 4.2.1 Specification Structure 27

. 3.3.2 Communication 28

. 42.3 Simulation Process 29

. 4.3 EsteHe Development Toolset (EDT) 30

vi

5 Simulation Mode1 32

. 5.1 High Level Design 32

. 5.1.1 User Modules 34

. 5.1.2 Network Module 35

. 5.1.3 Signzling Entities 36

. 5.2 APIandNNIInterfaceDefinitions 37

. 5.2.1 APIInterface 37

. 5.2.2 NNI Channel and Routing Simulation 39

. 5.3 Signaling Entity Modules Description 41

. 5.4 Cal1 Control Unit Description 45

. 5.5 Implementation Issues 47

. 5.5.1 Resolu tion of Deficiencies in Specification 47

. 5.5.2 Message S tnicture 49

. 5.5.3 Message Check 51

. 5.5.4 Timers 54

. 5.5.5 Cal1 Reference Allocation 56

6 Testing and Validation 58

. 6.1 Introduction 58

. 6.2 Methodology 60

. 6.3 C d Control Unit Testing 61

. 6.3.1 Set-up 61

. 6.3.2 Results 64

. 6.4 Signaling Entity Testing 70

. 6.4.1 Set-up 70

6.4.2 Results . 71

. 6.5 Complete Mode1 Testing 73

. 6.5.1 Set-up 73

. 6.5.2 Results 75

. 6.6 Observations and Conchsions 76

7 Related Work 81

. 7.1 Research on ATM Signaling Protocols S1

. 7.2 EstelIe Specifications 84

8 Conclusions and F'uture Work 86

. 8.1 Conclusions 86

. 8.2 Future Work 88

Bibliogaphy

A E.164 Addressing Format

B List of Acronyrns

List of Figures

1.1 Iterative protocol developrnent t hrough subsequent refinements of for-
. m d description

2.1 Switching of Virtual Paths and Connections

. 2.2 ATM protocol reference mode1

. 2.3 Organization of ATM networks

3.1 Signaling AAL .

3.2 Connection establishment and release in 4.2931.

. . . 4.1 Hierarchy of modules in Estelle presented in two equivalent ways

. 5.1 General structure of simulation mode1

5.2 One interface from the simulation model placed in the ATM protocol
. stack

. 5.3 Signaling entity modules

. 5.4 General message structure

5.5 Message checking and error handling for CONNCTACK

. 5.6 Implernentation of example timer T303

6.1 Test environments for C d Control unit on the user (a) and the network
(b) side .

6.2 Sequence of messages for the incoming cal1 on the network side 64

6.3 Incoming cd from Figure 6.2 as seen on the network side 65

6.4 Test environment for complete mode1 74

6.5 lrnrnediate reuse of the cal1 reference d u e 77

6.6 Unexpected CONNCTACK in error-free message exchange 78

6.7 VPI/VCI values rejection by G'serSignEnt 79

A . 1 E.164 ATM address format . 94

Chapter 1

Introduction

1.1 Motivation

During the last two decades, business, public and persona1 expectations towards
the telecommunication industry became very demanding. Today's market requires
increasingly sophisticated, bandwidth-intensive services, which often render exist-

ing telephone networks inapplicable. The traditional approach to telephony, circuit
switching, was deveioped ini tialiy for voice transmission, but failed to deli ver sat is-
factory results after the first computer networks started to exploit exist ing telephone
resources. On the other hand, packet switching, used by cornputers, could not be eas-

ily applied for speech, due to the fundamental differences in t r a d e r characteristics.
Data transmission requires wiable bandwidth and is extremely error-sensitive, but
can tolerate delays and does not need any special timing synchronization between a

sender and a receiver. Voice transmission needs relatively s m d and fixed bandwidth
and can accept high rate of erron (quality of sound does not need to b e perfect), but
is very sensitive ta delays. The advent of video technology and subsequent need for
transport of video streams brought additional postdates: variable and large band-
widths, continuous, error-free transmission, and minimal delays [l].

Asynchronous
above problerns.

Transfer Mode, ATM, is believed to address successfully aU of the
It int egrat es various services, sat ides diverse requirernent s, and

homogeneously transports different kinds of traffic on the same lines. Over the years
of its development, it hm emerged as a leader technology on the market and gained
wide recognition in the world of telecommunications.

One may expect that the technology, which aims to satisfy such a broad range of
demands, is inherent ly cornplex. Indeed, despite qui te simple principles, ATM is con-
sidered by some experts to be probably the most ambitious and cornplex undertaking

in the history of networking [2]. From the start, it was designed as a global, worldwide
solution to be a basis for future broadband telecommunication. A s such, ATM must
be developed and defined globally to accommodate different needs of d l interested
parties: governments, providers, vendors, software producers, and customen. Con-
tinuous standardization and a strict, meticulous process of defining al1 vital aspects

of ATM dows avoiding rnany compatibility and heterogeneity problems, typical for
early eras of networking. In future, when ATM will spao organizations, telephone

installations, countries, and continents, there will be no place for proprietary, stan-
dalone solutions and time consuming conversions between incompatible protocols or
incongruous interfaces (31.

One of many areas of simultaaeous research activities concentrates on the creation
of a uniform and universal cal1 control mechanism for dl ATM users. Such a protocol,
known as higher Iayer signaling, access signaling, or Iayer 3 signaling is necessary

for establishment and termination of data transport connections across -4TM. Even
though the work is Fa from over, the first standard of ATM signaling, Q.2931 [4], has
been already defined. It derives some basic principles from its narrowband predecessor
Q.931 (Digital Subscriber Signaling System No.2)[5] used in the Integ~ated Semice

Digital Network, ISDN.

Unfortunately, official standard of Q.2931 protocol is defined exclusively in a tra-
ditional fonn, that is, narrative text describing messages and procedures to be irnple-
mented. The problem with naturd language specifications is that they may contain

hard-to-spot errors, ambiguities, and inconsistencies. In case of complex protocols, it
rnay be also very difficult to analyze the protocol and visualize its behaviour directly
from the text of the definition.

To depict protocol operations in a more precise and coherent way, one can create
a scxalled formal specijktion in one of the Formal Description Techniques, FDT.

FDTs are particda kinds of programming languages developed primady for describ-
ing parallel, distributed systems and protocols. They are used t o produce an accu-
rate and complete description of system behaviour, while actud realization of this
behaviour does not need to be specified (Le., it is not necessary to solve implementa-

tion specific problems). By forcing the designer to follow a strict planning discipline,
FDTs can give a better quality, well structured definition with clear separation of dig
ferent abstraction levels. Moreover, a complete hi&-level formal description rnay be
used as a starting point for development of real implementations. Since this form of
the description is understood by the computer, automatic software tools can be used

to assist in the process. FDTs make it possible to move from higher to lower levels of
abstraction and gradually refine the initial model. In cape of such application, sub-
sequent formal descriptions are increasingly detailed; they embrace more and more
implementation specific decisions up to the point where al1 aspects are accounted for

and the implementation is ready [6].

Another motivation for using FDT is simplified validation of the description at

each stage of the development. In particular, automatic tools may derive test cases
and sequences to verify conformance of the formally defined system to the require-
ments of the original protocol specification. The designer of a formol definition has
also the flexibility of building arbitrary environments to be used as testbeds for simu-

lations and protocol behaviour andysis. Figure 1.1 depicts the idea of such systematic

evolution.

1.2 Thesis contributions

The major goal of this work is to specify formdy the ATM higher layer signaling pro-

tocol, Q.2931, using the Estelle FDT. We design a formal couterpart of the definition
presented in [4, 71 and create a simulation model for the protocol. For communica-
tion between the user and signaling ATM fwictions, we define and realize a simple
Application Programmer Interface, APL Even though our model is meant to be a
high level description of protocol behaviour, it is "implementat ion conscious" , i .e.,

planned with possible future evolvement into a real implementation in mind. Finite

c o n f o ~ e
check

c-nnance
check

high Lcvel of abstraction

Figure 1.1: Iterat ive protocol development t hrough subsequent refinements of formol
description.

state machines, which represent protocol operation for a single call, are clearly sep-
arated from the general purpose and resource management functionalities (commoa
to al1 connections), hence, our model is expected to accommodate potential changes
in official standards.

The second major part of our work concentrates o n validation of both Our sim-
ulation model and the protocol definition itself. We plan the testhg approach and
met hodology to support the claim that Est elle specificat ion t d y represents the in-
formal definition of Q.2931. We derive test sequences, cases, and scenarios intended
to examine functionalities of ATM signaling. We build test environments (also in
Estelle) for integral elements of our protocol model - either each separately or all

together. Findy, we conduct experiments and simulations to remove errors from
t h e specification, gather evidence of correct protocol operation, and corroborate ita
conformance to the requirements of standards.

1.3 Thesis Layout

The remainder of this document is organized as follows:

Chapter 2 is intended for the reader with no background in ATM networks. It
introduces basic ATM principles, explains some concepts, and defines the ter-
minology used throughout the document. We want to stress that due to a

vast range of important issues in ATM, it is not our goal to provide a com-
plete overview of the technology. We summarize only t hese aspects which are
absolutely necessary for understanding the following chapten. For addi t ional
information, the reader may refer to [I, 3, 8, 9, 10, 111.

Chapter 3 gives the reader an insight into ATM signaling mechanisms. We review
some fundamental notions of c d control in general, and move to explaining
particulax features of the Q.2931 protocol. Al1 its aspects are categorized and
briefly explained.

Chapter 4 introduces Estelle. It summarizes Estelle principles and highlights these
elements that are vital for ilhstrating the feat ures of our specification.

Chapter 5 concentrates on the simulation mode1 created in this work. Presentation
is organized in a topdown manner. First, we overview the high level design and

explain our approach. Second, we define functions of two additional interfaces
that we created to supplement the protocol and facilitate its validation. Third,
we describe, in detail, elements t hat constitute the core of our project: signaling
entities of Q .293l. Finally, we present implementat ion solutions for selected
problems in the specification.

Chapter 6 brings the results of protocol validation. We outline general methodol-
ogy, identify three major steps of the testing process, and accordingly schedule
the verification of Q.2931 functions. For each of these steps, testing environ-
ment, set-up, and selected experimentd outcome are presented. At the end of
the chapter, we summarize the results obtained and share some observations
gathered during this part of the project.

Chapter 7 puts our efforts in a "broader picture" of some related work.

Chapter 8 concludes this thesis and points out possible directions for further inves-
tigat ions.

Chapter 2

ATM Overview

Introduction

The ATM concept evolved from research on fast packet switching in early 1980s and
was standardized for the Çs t time in 1988 by ITU-T (brmer CCITT) as the target
switching and multiplexing technology for Broadband integrated Semice Digital Net-
works (B-ISDN). The main reason for this designation is that ATM is able to carry al1
forrns of information (images, computer data, voice, a d video) in an integrated way.

Since different kinds of traffic are treated in the same manner and conveyed transpar-
ently through the network, ATM can support not only existing and emerging services,
but also the ones yet to corne. It provides dynarnic bandwidth allocation, thus rnax-
imizing resource utilization and lowering complexity of buffer management. Findy,
by using short packets, reducing node processing tirne, and simplifjhg switching al-
gorithms, ATM supports very high transmission speeds, which are essential for most
of today's applications and services. Even though it is not completely free from dis-
advantages, such as the possibility of packet loss or variable delays, ATM'S features
make it a feasible and widely deployed technology in wide area, metropolitan, and
local networking.

Although it was introduced almost ten years ago, the technology should still be

regarded as an on-going project rather than pret-a-porter product. There is a sub-
stantial amount of research effort carried simultaneously by different groups, stan-
dard organizations, and industrial companies. The standard bodies invoived in the
defmit ion of ATM and B-ISDN are: ITU-T (International Telecommunication Union)
Study Group 13, ANSI (AmeRcan National Standards Institute) TlSl Technical Sub-
cornmittee, and ETSI (European Telecommunications Standards institute) NA5 Corn-
mittee. Another important group is the ATM Forum, an international consortium of

hardware producers, their customers and service providers. The ATM Forum is not
an officiai standards organization; nevert heless, it produces i ts own speci ficat ions,

often to address issues not yet included in standards. Clearly, with so many par-
ticipants and still evolving concepts, proposed solutions are not always completely
coherent, even though there is a lot of effort to bring them together and achieve their
full interoperability.

2.2 Basic Concepts

2.2.1 Information Tramfer

The word as~nchronow in ATM does not refer to the physical transmission (which
may be, in fact, synchronous; for example in SONET/SDH based standards), but
rather to the way the bandwidth is divided and distributed among connections. Unlike
in some earlier solutions (e.g., time division multipiexing TD M) , where the assignment
of channels to their correspondent time slot in the frame is h e d , in ATM the user can
take any available, ernpty dot, label it with the identifiers unique for its connection,
and fill it with data. In other words, the network does not enforce or quantify in any
way the speed of generation of the data by the user; theoreticdy, it can accept every
bitstream as it cornes.

ATM operates strictly in a connection-oriented mode. Before the user can send
anything, the network must establish a connection and docate necessary resources.

Since one of the requirements of B-ISDN is the support of connectionless services, they
must be emulated by higher layers of the ATM protocol stack. Both user and control

information is transported in srnall, 53 byte packets called celis. Each cell consists of

5 bytes of header and 48 bytes of payload (information field). The main purpose of
the ce11 header is to identify the celis belonging to the same connection, by means of
Virtud Path and Virtual Channel Identifiers. Additionally, the header also includes
fields necessary to: distinguish user-data ceils from control cells, assign priorit ies
in case some cells must be discarded, perform error control on the header (payload
contents is not protected), and, in some cases, introduce flow control. Because there
is no ce11 storage or retransmission in ATM networks, al1 cells in a given connection
maintain their order and cannot be missequenced.

2.2.2 Virt ual Connections

ATM has two types of transport connections: Virtual Paths and Virtual Channels,
labeled by their respective identifiers: VPI/VCI values. Those values do not have
any global meaning; instead, they are translated at each step of routing through the
network. A basic elernent of an ATM connection is called a VC link. Each VC link
connects two consecutive points in the network, where the VCI value is translated.
A set of sequential VC links with end points and connecting points constitutes a

Virtual Channel. A set of Virtual Channels traveling together through the network
constitutes a Virtual Path.

Each connection rnay be unambiguously identified only by both VPI and VCI
values, Le., a given VCI value has a meaning only within its VPI. Because identifiers
are translated during routing, which in ATM is rather c d e d switching, there is no
need for complex dgorithms to select globdy unique labels. Each routing node
(switeh) picks a Iocdy unassigned pair of values, and, throughout the whole life of

a connection, it translates VPI/VCI labels in d incoming ceUs into the new values
(see Figure 2.1). After a connection is released, labels rnay be reused and translation
information is removed from the switch's rnemory.

Each connection in ATM has Quality of Semice (QoS) associated with it. It is
a set of parameters specifying cell delays, delay d a t i o n , and cell loss rate for a

given connection. Required QoS may be explicitly requested by the user or irnplicitly

Figure 2.1: Switching of Virtual Paths and Connections.

associated with certain types of connection request. The network is responsible for
rnaintaining the negotiated QoS throughout the duration of the connection.

2.2.3 Protocol Reference Mode1

The ATM reference model is shown in Figure 2.2. It consists of three main parts:

a User plane: transfer of user information,

Con trol plane: connection control procedures (mainly signaling procedures),

Management plane: network supervision.

The user plane consists of layers, as in the ISO OS1 model, but their number is
Limited to 4. We wiU present them briefly in a togdown direction:

Higher layer of user plane provides support for user services, grouped by ITU-T
into four classes: connection-oriented constant bit rate (Class A), connection-
oriented Mnable bit rate with (Class B) or without (Class C) timing require-
ment, and connectionless variable bit rate services (class D).

Figure 2.2: ATM protocol reference model.

The ATM Adaptation Layer (AAL) is a service specific layer, whose main pur-

pose is to prepase user data, received from the higher layers, for the transport by
the service independent ATM layer. Of course, it also conveys the data retrieved

from the network in the opposite direction. AAL consists of two sublayers: CS
(convergence subla yer) and SAR (segmentation and reassembly). CS performs

various actions, depending on the requirements of a given class of service. For
exarnple, its functions may include error detection and recovery. SAR is re-
sponsible for converting the data from the miable length packets used by CS
into ATM cells (outgoing data) and from celis back into CS packets (incoming

data).

ATM layer is mainly responsible for end-teend transport of cells. Cells being sent

are furnished with headers (produced by ATM layer), while cells being received
are stripped from their headers and processed according to the headers' con-
tents. VPI/VCI values are translated here. This layer is completely service

independent, that is, data in information field of cells has no meaning whatso-
ever; it is simply carried.

P hysical layer is responsible for tmnsmit ting the information across the p hysical
medium. Since ATM network rnay be implernented over various media (optical

fibers, twisted pair), the physical Iayer will be digerent in each case.

It is important to note, that there is no direct and simple correspondence of ATM
layers to the seven layers of ISO OS1 model. A rigid structure of the ATM protocol
stack allows layers to be independent from each other, thus achieving rnodularity and
portabili ty (e.g., in case of implementation over different physical media).

The control plane also consists of four layers. Since, as we aiready mentioned,
the contents of payload does not matter for ATM layer (and below), both ATM and

physical layen are able to carry control information in the same rnanner as user
data and, therefore, they may be shared with the user plane. The control and user
celis need to be distinguished no sooner than in higher layers, where the control cells
are processed by signaling protocols. Two highest layers of the control plane stack:

signaling AAL and higher layer signaling will be described in more detail in the next
chapter.

The management plane performs monitoring and supervision of al1 ATM network
operations. It is responsible for failure detection and recovery, collecting and re-
porting statistics of resource utilization (e.g., for the purpose of billing the users),
configuration and maintenance of network elements, determining access privileges,

and other security related issues. As shown in Figure 2.2, management plane covers
the whole structure of ATM reference model, so its role will be different at each layer
and wiil directly depend on the functionality of the layer.

2.3 Organization of ATM Networks

2.3.1 Classification

ATM network elements can be divided into two general groups:

user terminals : al1 kind of user equipment that is attached to a network (e.g.,
cornputers, IP routers, phone exchanges, phones, fax),

switching nodes : elements, whose primary purpose is to relay the information be-
tween nodes and convey it fiom one user terminal to another. Furthemore,

switches may be classified as: private ATM equipment (owned by private orga-
nizations) and public switches (owned by service providen and carriers), which
are part of the public B-[SDN infrastructure.

Figure 2.3 presents one possible layout of an ATM network organization. As we
can see, network elements are interconnected using two different types of interfaces:
User-Network Interface (UNI) and Netzuork-Node Interface (NNI).

2.3.2 User-Network Znt erface (UNI)

The UNI is used to interconnect any kind of user terminal with any kind of ATM
switch. Additionally, it is dso used between private ATM networks and public
switches.

Depending on the ownership of a switch, two distinct forms of ATM UNI are
defined:

public UNI, where the user terminal or private switch is connected to a public
service provider network,

0 private UNI, where the user terminal is comected to a corporate ATM switch,
i.e., the organization responsible for the user terminal is also responsible for the
switch.

The main difference is the physical configuration of the connection. In most of the
cases, private UNI interfaces will be used in places where the ATM switch is located
nearby (the same roorn, floor, building) as the terminais. This configuration does
not require any sophisticated, long range physical layer technology. On the other
hand, public UNI must meet much higher requirements - terrninals may be many

kilometers away from the switch. In this situation, it is understood that even though
both UNIS share most of the ATM layer stack, they rnay use completely different
physical media.

This t hesis is ent irely devoted to issues concerning the User-Network Interface.
In al1 remaining chapters, whenever we use term "UNI", we will mean both private
and public foms, unless explici t ly specified ot herwise. Whenever we use term "ATM
user" we will mean: 'anything comected to the network through UNI". It may be
either a terminal, or a private ATM switch.

2.3.3 Network Node Interface (NNI)

The NNI, also known an the Inter Swüching System Interface (ISSI), is used to in-
terconnect switches within a particular ATM network. As with the UNI, the NNI
rnay be classified, based on the ownership of the switches, as private or public NNI.
The ATM user never communicates directly with the NNI, it perceives the network
as being one carrier entity. Since the NNI is beyond the scope of this thesis, the

interested reader should refer to relevant literature 11, 12, 91.

Figure 2.3: Orgaaization of ATM networks.

15

Chapter 3

Signaling

3.1 Introduction

Signaling in ATM is defined as a set of messages, states and procedures, which d o w

the user to request from the network that the connection with the specified char-
acteristics (e.g., Quality of Service) be created, maintained, and, finaily, tom down

after the information transfer is completed. These functions are performed in the two
highest layers of the conLrol plane: Signaling AAL and highar layer signaiing, also
known as access signaling. Moreover, there are two different versions of higher layer
signaling: one for the UNI (ITU-T standard Q.2931[4]), and the second for the NNI
(ITU-T stondard BISUfllZ]). This document deals mainly with higher layer UNI
signaling (Q .293 1), nevertheless, for clarity of the description, we will briefly present
the Signaling AAL as well. It is important to stress that this chapter has only in-
troductory character and coven the most basic issues. SignaLing protocols me too
complex to be reviewed thoroughly here; their specifications are hundreds of pages
long.

Signaling peers in ATM are communicating by exchanging messages on a single,
static, out-of-band signaling virtual channel. This channe1 cannot normally be used
for any other purpose. Messages are carried through the ATM layer in the form
of control ceils, in the same way a s user data cells. One of the responsibilities of

the Signaling AAL layer is to retrieve control cells from the network, reconstruct
the original signaling message, and carry it to the higher layer signaling entity for
interpretation. Connections established as a result of signaling procedures are called
switched virtual connections, to distinguish them from the semi-permanent virtual
connections, which are handled by the network management plane.

In the remainder of this document, we will use terms "connection" and "call"
exchangeably, as synonymous to uswitched virtual connection" '.

3.2 Signaling AAL (SAAL)

The SAAL structure is presented in Figure 3.1.

Cornmon Part
AAL Fundons

Figure 3.1: Signaling AAL.

The upper layer of this structure, Service Specific Coordination Function (SSCF)
[13], is exactly what its name implies: it simply coordinates transport of data from

'Even though it is not precise according to ITU-T terminoiogy, it foiiows the conventions used
in ATM Forum specification.

higher layer signaling to the SSCOP protocol below. SSCF does not add any informa-
tion to the cmied messages - it only maps services of SSCOP to the requirements
of t h e higher layer.

Service Specific Connection-On'ented Protocol (SSCOP) [14] is the most important
part of SAAL. It provides reliable data tramfer between the signaling entities in the
UNI (or the NNI), which communicate with SSCOP through their respective SSCFs.
SSCOP supports message sequence integrity, error handling (detection, reporting
to the management layer, and recovery by retransmission), flow control, connection
control, as well as both assured and unassured (unacknowledged) modes of transport.
In case of assured connection, which is used by the Q.2931 specification, signaling

messages up to 4KB long are protected from los , reordering and corruption.

3.3 Higher Layer UNI Signaling

3.3.1 Standards

Higher layer signaling in the UNI (access signaling) is specified in two versions: an

officiai ITU-T standard Q.2931 [4] and the ATM Forum UNI specification 171. Even
t hough the latter is based on Q.2931 and design& to be compatible, some differences
exist and the scopes of both documents are not the sarne. Some of the features

supported by one document do not appear in the other and vice versa. For example,
procedures for establishing point-to-muhi point connections axe already defined by
the ATM Forum and not yet by the ITU-T; on the other hand, ATM Forum does
not support metasignaling, which is specified in Q.2931. Additiondy, some of the

messages and c d states defined by ITU-T are not used by the ATM Forum *.

When defining the area of our interest in this work, we decided to choose the

common part of the two documents: point-to-point connection control with error
handling, status enquiry and restart procedures. They will be described in the fol-
lowing sections. in cases where disaepancies between the two specifications exist, we

'The detaiied list of dzerences is in [?j.

are using the ATM Forum UNI Signaling 3.1 as a guideline for implementation. The
terms: uspecification", "Q.2931", and "UNI Signaling 3.1" from now on refer to the
cornmon part of specifications and are therefore synonymous.

3.3.2 Messages

Signaling messages are exchanged on a pennanently estabiished virtual channel con-
nection, identified by VPI=O, VCI=5. They are sent to SAAL using an assured mode

SAAL connection.

The specification defines ten variable Length messages, which may be grouped into

four classes:

0 call setup messages: SETUP, CALL PROCEEDING, CONNECT, and CON-
NECT ACKNOWLEDGE,

r call tear-down messages: RELEASE and RELEASE COMPLETE,

0 call or interface status reporting messages: STATUS ENQUIRY and STATUS,

a c d or interface restart messages: RESTART and REÇTART ACKNOWL
EDGE.

Every message consists of the following parts (information elements):

1. protocol discriminator, always coded as: Q.2931 user-network call control
messages,

2. call reference identifies c d on the local interface, to which this message refen,

3. message type identifies type of the message,

4. message length indicates total length of the remainder of the message (in
octets),

5. variable length information elements carry information pertinent to the
call and specific to each message type. Some of these elements are mandatory
and some optional.

The information carried in the messages may be of a global (end-to-end) impor-
tance, e.g., ATM tr&c descriptor, or it rnay have only local (interface) significance,
e.g., call reference identifier, VPI/VCI values. Most of the messages are always asso-
ciated with the particdar c d ; however, restart and status messages may refer to the
whole interface. In such a case, their cal1 reference element is coded as Global Cal1
Re ference value.

3.3.3 Connection Establishment and Release

In order to understand signahg in UNI, one must reatize that on any given interface
there must be two signaling entities: one to represent the user and the other one to
represent the network. Figure 3.2 depicts a simple exarnple of successful connection
establishment aad release.

Establishment is initiated when a Q.2931 entity on the user side transfers a SETUP
message across the interface to the entity on the network side and enters Cal1 Initiated
state (Ul). The SETUP message must contain al1 the information necessary for the
network to process the call (e.g., c d e d user address, ATM trafEc descriptor, QoS,

etc.) Upon the reception of SETUP, the network side of c a h g interface enters C d
Initiated State (NI) and verifies that the resources for a cal1 with required charac-
teristics are available. One of the responsibilities of the network side, at this point,
is to select unique VPI/VCI d u e s for connection identification on this interface. If
the Q.2931 entity is able to accept a new c d , it forwards information through the

network to the cded user. Additionaily, it c m optiondy notify the calling user
about the progress by sending CALL PROCEEDING message (in such case, both
sides enter Outgoing Call Proceeding state, N3 and U3 respectively).

After the ATM network delivers the establishment request information to the
c d e d interface (which is the responsibility of NNI signaling), the Q.2931 entity on
the network side of this interface enters Cal1 Present state (N6) and genetates a

Figure 3.2: Connection establishment and release in Q.2931.

SETUP message across the UNI. It must include in SETUP the VPI/VCI values

3Actually, for the purpose of identifying the vireual path, the speciilcation uses Virtual Path
Connection Identifier (VPCI) rather than VPI. Since VPI and VPCI are numericaiiy equivalent,
we wifl continue to use more common t e m VPI/VCI in this document, except in cases where we
directly cite fiom M.

selected for call identification on this interface. If the user wishes and is able to accept
the call, it enters Cal1 Present state (U6), and takes steps to accommodate a new con-
nection. During this process, it has an option to notify the network side with CALL
PROCEEDING message, which would result in entering Incoming Call Proceeding
state (U9 and N9 respectively) on both sides of the UNI. When the user is ready, it
sends a CONNECT message and enters Comect Request U 8 state. Upon reception
of CONNECT, the network side responds with CONNECT ACKNOWLEDGE and
transfers its notification through the network to the c a l h g interface. Both sides of
the called interface are in Active state (N10, UlO), which means that the connection
at t his end-point is considered established and ready for the transmission.

After the ATM network delivers the response from the called to the calling inter-
face, the 6.2931 entity on network side sends CONNECT to the user side and enters
Active (N10) state. The calling user responds with CONNECT ACKNOWLEDGE,
also enters Active state and from now on it perceives the connection to be ready for
transmission,

It is important to stress that the actual data transmission takes place in a different
plane of the protocol stack (user plane, not control plane) and, therefore, it does not
involve signahg in any way.

Connection clearing is initiated when the user of my involved interface (not nec-
essarily the one that established the call) sends a RELEASE message and enters
Release Request state (U11). The message must contain a cause information ele-
ment, which explains the reason for clearing. The network side also enters Release
Request state (Nll) , then responds with RELEASE COMPLETE, forwards informa-
tion about termination to the remote interface, and h d y enters Null (NO). Upon
receipt of RELEASE COMPLETE, the terminating user considers the connection to
be cleared; no acknowledgment from the other interface is required.

After the network side of the remote interface is notified about ciearing, it enters
Release Indication state (N12) and sends RELEASE to the user side. Upon acknowl-
edgement by the user with RELEASE COMPLETE, the connection at this end-point
ceases to exist and its resources are freed for reuse.

3.3.4 Status Procedures

Status procedures and messages provide signaling entities with additional means to
exchange information about the m e n t state of a connection. Status procedures rnay
be used in some error conditions to determine the situation on the interface before

recovery actions are taken. For this purpose, two messages are defined: STATUS
ENQUIRY, used for soliciting the cal1 state in the peer, and STATUS, used for re-
porting the local call state to the peer. As a matter of fact, Q.2931 does not specify

situations in which STATUS ENQUIRY should be sent. It does, however, define that
in response to this message, the receiving entity should retum STATUS with the

current call state. Additionally, there are a number of situations in error handling
procedures, when a STATUS message is sent unasked, to inform the peer about faulty
but non-fatal conditions. Neither receiving nor sending of any of these messages can
change the c d state. Apart from reporting c d states, STATUS message with Global
Cal1 Reference rnay be used to report the state of the whole interface, e.g., during the

res tart procedures.

-4s the reader rnight have noticed, our example of connection establishment and clear-

ing presents just one, very simple sequence of events. In reality, setting up the call
rnay be far more complicated. In each step of c d processing, entities execute rnany
actions (e.g., allocation of resources, andysis of parameters required by the user,
checking for presence and validity of mandatory elements), which rnay not be suc-
cessful. Entities often have a limited time to respond to messages; there are timers
operating on both sides of the interface and they can sometirnes expire. Messages
transported across the UNI rnay get lost or arrive compted. Finaiiy, the cailed user
rnay be too busy, or simply rnay not wish to accept the connection.

To resolve ail such problems, 4.2931 defines a set of actions, which should be

taken in various error conditions. We wilI only present their brief summary here; as a
matter of fact, error treatment constitutes a substantial part of the specification and
i ts description takes more space t han, for example, c d establishment.

The first and sometimes very ciifficuit task of error handling procedures is to
recognize and correctly interpret a faulty situation. The next step depends highly on
this interpretation. In general, we c m distinguish two kinds of error conditions:

Fatal errors. They cannot be tolerated and require immediate termination of a con-

nection. Some examples in this group are: first expiry of non-restartable timer,
final expiry of restartable timer, reception of STATUS indicating incompatible
state a t peer or reception of a message that refen to a non-existing cali, while
the message type indicates t hat the c d should be in progress. A speciai kind of

fatal error exists when the entity is not able to clear the connection in a normal

fashion - restart procedures must be then invoked.

Non-fatal errors. They do not require clearing and permit trying solving the prob-
lem. Two main forms of behaviour here are: discarding the message (upon the
reception of badly corrupted, unrecognized or non-standard message) or send-
ing the STATUS message (upon the reception of unexpected, out-of-sequence

message, message referring to non-existing cdl, and message with mandatory
elernents missing or invaüd). In the second case, STATUS must contain the
cause element, which explains the problem. Sometimes, the entity may decide
to process the enoneous message, if it is possible to retrieve al1 necessary in-
formation. It may also happen, that an attempt to recover from an initially

non-fatal situation leads to more severe problems and the connection is cleared

anyway*

More detailed information about error handling and checking may be found in Chapter
6, where we present simulation results.

3.3.6 Restart Procedures

Restart procedures define special kinds of actions, which are invoked u s u d y as a

last resort. They are used to return a virtud channel or all virtual channels on a

given interface to the Nuil state. In general, Q.2931 recommends initiation of restart
after any kind of local failure or certain maintenance actions. On the other hand,

the documentation clearly specifies only one case when those procedures should be
invoked: upon the failure of regular c d clearing (final expiry of the timer associated
with C d Request state). One must understand that restart is always executed locdly
on a given interface. It is not possible for UNI signaling to restart virtual channels
on the remote interface.

An entity willing to return virtual charinel(s) to the Null state, sends a RESTART
message to the other side of the interface and starts a timer. Unlike other signaling
messages, RESTART does not use cd1 reference of its connection, instead, it is sent
with Global Cal1 Reference value. It also contains information about virtual chan-
nel(s) to be restarted. Upon reception of RESTART, the peer entity initiates releasing
of the call(s) resources and starts its own timer. If the tirner expires before calls are

brought to Null, restart fails: connection is considered to be out of order and the
maintenance entity should be informed. Q.2931 cannot use the call(s) or associated
resources until some sort of repairs are made. If c d s manage to enter Null before
the timer expiry, the entity generates a RESTART ACKNOWLEDGE message (also

wi t h Global C d Reference) and considers rest art a success.

When RESTART ACKNOWLEDGE is received by the initiating side of the in-
terface, it can release resources of its connection(s). If the initiating side does not
receive this acknowledgment before the first expiry of its timer, it is allowed to repeat
an attempt and resend RESTART. If the timer expires for the last tirne, the c d is
considered out of order. More information about restart can be found in Chapter 6.

Chapter 4

Estelle FDT

4.1 Introduction

The Estelle language 115) is one of ISO standardked Fonnal Description Techniques

(FDTs). It is mainly used, as d l FDTs, to specify in a Formal way the behaviour and
structure of finite state machines, which represent distributed and parallel systems.

One of its particular applications is networking protocols and services. A reason for
creating Formal descriptions is that the traditional form of the protocol definition (Le.,
natural language text with state tables, gaphs, etc.) usuaiiy contains arnbiguities
and different kind of deficiencies. Not only does the formal description technique
enforce a methodological, carefui and complete approach to protocol specification,
but it also d o w s using tools to simulate the behaviour of the protocol and verify its
conformity to the original requirements. Additiondy, even though the unambiguous

forma1 specification should not be mistaken with the actual implernentation, Estelle is
so close to natural prograrnming languages that it d o w s the anticipation and solution
of many implementation issues (usudy not covered by standards).

Technicdy, the Estelle FDT is based on the syntax of the Pascal language and
enhanced by a set of extensions to mode1 finite state machines that are ninning in
pardel and can communicate.

In t his chapter, we will present a brief overview of Estelle principles. For exhaus-
tive information, the reader should refer to [15, 16, 171.

4.2 Main Features of Estelle

4.2.1 Specification Structure

An Estelle specification of a protocol (or any other distributed systern) is built of
elements called module instances (briefly: modules). Al1 entities, uni ts, tasks or even

the specification itself are defined as modules and every kind of activity must take

place within one of those modules.

An Estelle module rnay contain:

1. Other modules. Estelle allows nesting, i.e., each module may have its children,

2. Data structures and Pascal functions/procedures to handle thern. They are

internal and private parts of the module; however, some data rnay be shared
(but ody with a parent),

3. Interaction points: extemal and internal. They are the communication ports
for exchanging information with other modules (siblings, parents, and children) ,

4. Transitions. This part describes the finite state machine associated with the
module and represents its internal behaviour.

Each system described in Estelle has a hierarchical structure, which rnay be pre-
sented as in Figure 4.1. The root of the tree, or the main enclosing box is always a

module of the specification itself.

Modules in Esteile may be attributed in one of four ways: systemprocess, sys-
temactivity, process or activity. Attributes divide the system into subtrees of modules
cailed subsystems. A subsystem consists of a module attributed systemprocess or sys-
temactivity (root) and all its descendants (children, grandchildren, etc.) . Assignment

Figure 4.1: Hierarchy of modules in Estelle presented in two equivalent ways.

of the attributes strongly influences the behaviour of the whole system, and, in most

cases, it is specific to the described protocol or service.

Apart from the tree-like hierarchy resulting from the parent/child relationship,

modules may also be structured fiom the communication point of view. It will de-
fine information flow in the system, Le., it wiil decide which modules can exchange

messages. Only interaction points of modules may be linked and they can be either
attached (if they are exteniai points of the parent and the child) or connected (if both

are external points of siblings, both are internal points of the sarne module, or one is
an internal point of the parent and the other is an external point of the child). An
example of communication structure is our mode1 of the Q.2931 specification, shown
in Chapter 5. Al1 interaction points there are connected.

4.2.2 Communication

Estelle modules communicate most commonly by exchange of messages (called in-

teractions). Messages are canied using channels: an abstract medium, which Links
interaction points. For each direction separately, a channel defines the set of messages

that it is able to transmit. AU messages received in the destination interaction point
are inserted to an unbounded FIFO queue, where they wait for processing by transi-
tions. It is the programmer's responsibility to ensure that the module can retrieve all
types of interactions that may arrive at any given interaction point. If the message

at the head of the queue is not processed, it will s t d the interaction point. Only
end-to-end communication is possible, which rneans that if more than two points are
involved in the link, intermediate points can neither intercept nor send a message (if
sent, i t will be lost). Transmission is non-blocking, Le., it is always possible to send

an interaction. Data structures carried by messages are declared as their parameters.

Another communication means in Estelle is sharing of variables, but this method
is very limited. Shared wiables must be explicitly declared as exported by their

module and they will be visible only to the parent. In case of simultaneous access to
the variable by both parent and child, the parent's action has priority.

4.2.3 Simulation Process

As already explained, attributing splits the main system into subsystems. Each sub-
system executes its own computation steps in its own computation tirne, which means

that the behaviour of modules from different subsystems is completely asynchronous.
In one computation step, each module in a subsystem chooses one of its transitions,
which is ready for execution (firing). Then the subsystem executes in parallel these
selected transitions and moves to the next computation step.

A transition is like a procedure, which can be adivated when its firing condition

is met. A transition consists of two parts: clause-group (which defines the situation
in which the transition can be fned, Le., firing condition) and transition-block (set of
instructions to be executed).

Clause-group may contain any nurnber of the following clauses:

from sl, ..., SN: ready-to-fire if the module is in one of sl,.., sNstates,

when ip.msg: ready-tmfire if msg is the next interaction to be retrieved from inter-
action point i p ,

provided ezp: ready-to-fire if Boolean expression exp is true,

priority n: ready-to-fire if there is no other ready transition with a larger value of
priority parameter n,

delay (tl, t2): ready-to-fie if it stays ready for at least t l tirne and at most t2 tirne.

Transitions are atomic; they cannot be intempted and take no time to execute.
After a single computation step is completed, firing conditions of al1 transitions within
the module are reevaluated and new set of ready-tefire transitions is selected.

4.3 Estelle Development Toolset (EDT)

EDT is a set of tools provided to allow and facilitate the development of implementa-
tions for systems specified in Estelle. The most important tools, from the perspective
of our work, are: Estelle Compiler (Ec) and Estelle Simulator/Debugger (Edb).

Ec analyses an Estelle specification to check for any static errors and produces the
corresponding source code in C language. Since Estelle is strongly typed Language,
many kinds of errors may be discovered during this compilation phase.

Edb is an interactive simulator, which ailows the user to execute the specification
and discover aJ the run-time and semantic errors. It is a powerful tool; not only does
it enable the user to observe and trace the behaviour of the system, but also it allows
to control and influence the execution.

Distributed systems are inherently hard to trace. Cornplexity and parallelism of

their components make it difficult t o present and visuahze the course of action; an
excess of trace data may prevent the user fiom locating the errors. Edb solves the
problem by giving the user freedom to customize his scope of interests - both in
terrns of observed events and control of execution.

Simulation of an Estelle specification is completely interactive. The user can start ,
advance, break, finish and restart the simulation. He can choose a granularity of the
execution by setting the number of transitions to be fired in one tum: from 1 (control
is returned to the user after each transition) to infinity (execution advances on its
own). He may use macrcxommands and Edb scripthg language to design his own
simulation scenarios. He can also put some timing constraints on the execution,

which do not exist in the Estelle language, Le., he can define both execution time of

transactions in a module and system management time (between transactions).

Nondeterminism of Estelle description is achieved by random selection of exe-
cutable systems, modules, and transitions to be fired in each step of the simulation.
However, the user has an option to take manual control of the selection process and,
therefore, to enforce the future sequence of events.

Edb allows displaying and storing in tracefiles various kinds of information about

the on-going simulation. It defines, for this purpose, a large set of functions, which
dlow obtaining an insight concerning mmy aspects of the cunent execution status.
Among other things, it is possible to: identi& the Iast module where a transition was

fired, identify the transition itself, display its input or output interactions (if any),
see the contents of queues, check the state of a module and even the values of its

interna1 variables.

Perhaps the most powerful tool of Edb is the so-called observer. It is a user-defined
sequence of commands to be executed after each computation step. An observer has
the form of a simple script and is capable of using most Edb features, including al1
predefined functions described above. The user rnay set observen to define events,

messages, modules, and variables to be traced. Observers can also be used to break
the simulation after occurrence of an event (either expecked or undesired), which may
be particularly interesting for the user. This feature is very helpful in tracing rarely
occurring errors.

For further details about the tools, we refer the reader to the EDT documentation

[la, 191.

Chapter 5

Simulation Mode1

5.1 High Level Design

A general stmcture of a simulation mode\, created as a result of this work, is depicted
in Figure 5.1. The Q.2931 protocol is represented by a pair of signaling entities:
UserSignEnt to control the user side and NetSignEnt to control the network side of

the UNI.

Figure 5.1 shows two sibling instances of the protocol: on interface A and B
respectively. By using names A and B, rather than terms "cded" and "calling", we

want to stress that those instances are functionally identical (they share the same
definition of Estelle modules) and they are equdy able to process both incoming and
outgoing c d s . Any of them can play either the role of the initiating or the rernote
interface '.

AU the remaining modules are not parts of the 4.2931 specification, but they
reconstruct an environment in which the protocol is working and ailow verification
of its behaviour. User modules simulate the activity of users and Neturoik represents
NNI signaling protocols (e.g., BISUP).

'Or both, in case of sirndtaneous cab simulation; see Chapter 6.

Figure 5.1: General structure of simulation model.

Modules in Figure 5.1 axe intercomected by three types of channels: APIchannel,
UNIchannei, and NNIchannel. Only UNIchannel is interesting from the perspective
of UNI signaling. It is an abstract, bi-directional medium, which transports aJl ten
signaling messages defined by Q.2931 between peer entities. APIchannel, which allows
the user to access signaling, and NNIchannel, which simulates the bridge between UNI
and NNI, were designed by us for use with this rnodel and they do not represent any
fact ual standards.

For better understanding of how our specification corresponds to ATM reality, in
Figure 5.2 we projected one of the interfaces from Figure 5.1 onto the ATM prote
col stack. Dark shaded elernents are 4.2931 modules, and light shaded ones (User,
BISUP) form the simulation environment. UNIchannel, even though it represents

UNI

Figure 5.2: One interface from the simulation model placed in the ATM protocol
stack.

peer-to-peer communication and directly connects signaling ent ities, is drawn t hrough
ali the layers of ATM reference protocol model. Lt is intended to point out that the
information generated by a Q.2931 entity in the form of a signaling message is, in re-
ality, subsequently broken down by lower layer~ into layer-specific units (e.g., cells in
ATM layer), transported over physicd media as a bi tstream, reassembled accordingly
on the other side of the interface, and submitted as a signaling message to the peer.

In the remahder of this chapter, we will present the details of all our design
concepts and element S.

5.1.1 User Modules

A set of identical user modules represents all kinds of clients (protocols, applications,
systems, etc.,) t hat axe using UNI signaling to manipulate t heir ATM connections.

At any time during the simulation, the user may request the establishment of a

connection, up to the total limit of simultaneous c d s allowed on the interface. The
user is responsible for providing a l l the information necessary for processing such a

request. After being notified about the acceptance, the user may keep the connection
active for as long as desired, and then the request for termination will be sent. In
our test cases, we were running the scenarios in which either just one user or both of
them were granted permission to terminate the connection.

After the signaling ent ity on the user side of the interface sends an indication t hat
the remote user wishes to set up a new c d , the local user has a choice to accept
or reject this incorning connection. It is implemented by simultaneous activation
of "accepting" and "rejecting" transitions, and the decision is left to the Estelle
sirnulator. Depending on the choice, acknowledgment or request for termioation is
sent in response. Again, in different scenarios, one or both users could reject or accept
the call.

Addi tionally, a user can receive information about the failed rest art procedure,
which results in a channel being out of order. The user respects the consequences,
i.e., does not place requests for the broken channel, but has no means to repair it.

Since there is no officialiy standardized communication between the user and
Q.2931. the documentation does not specify any protection from the faulty behaviour
of the user '. Therefore, our user modules are implemented to behave in a friendly
way: they do not try to cause any protocol malfunction by generating out-of-sequence
messages or by not responding.

Messages exchanged between the user and the Q.2931 protocol are defined in
Section 5.2.1.

5.1.2 Network Module

The Network module is the simplest of all elements in our model, even though it
simulates very complex activity. It represents the NNI signaling protocol together

?It wodd be the responsibility of the Application Progmmming interface (API) defuition.

with switching and inter-network routing mechanisms. This part of ATM protocols
is normally responsible for the difficult task of finding the route through the network,
setting the signaling connections between the switches (within the networks and be-
tween them - see Figure 2.3), and delivering information to the remote interface.

In our simulation, the Network module merely carries messages between the
Q.2931 entities. The module is equipped with an anay of interaction points. Each of

the interaction points is associated with the corresponding network interface. Their
number is controlled by constant MAXPARTIES, and, in this specification, it is cur-
rently set to 2 (point-to-point connection). Network module is able to relay messages

of the NNIchannel - described in Section 5.2.2 - between any of the two points,
depending on the addressing information provided by the network sides of interfaces.
Wi t h the current specification supporting only point-to-point connections, the fea-
tures of this module are uot f d y exploited. However, they were designed wit h future
point-to-multipoint c d support in mind.

5.1.3 Signaling Ent it ies

A pair of Q.2931 entities, UserSignEnt and NetSignEnt, implement the behaviour of

the entire ATM Forum UNI signaling 3.1, in a scope discussed in Chapter 3. A formal
specification of t hese entities constitutes the main goal of this work. The rationale be-
hind splitting the functionality of a protocol into separate modules is that, depending
on t heir location on a physical interface, t hey have slightly different responsibilities

and require different mechanisms to communicate with their neighbors: user modules
and network module. Additionally, in a real implementation, NetSignEnt would be
a part of a switch and UserSignEnt would reside in the user's equipment; therefore,
they could be supplied by two different sofkwaze vendors.

The signahg entities support multiple simdtaneous c d s in both directions: out-
going and incoming. The detailed design of the modules is presented in Section 5.3.

5.2 API and NNI Interface Definitions

5.2.1 API Interface

As we already mentioned, the 8.2931 specification does not define what interface
should be used between the user and the protocol. It is left as an implementation
dependent issue, to be defined by the ATM users according to their needs. Commercial
vendors of signaling software packages offer their ovm versions of such Application
Programming In terfaces, eit her geoeral or designed For particular customers (e.g.,

telecommunication companies).

In order to test the behaviour of our specification, we need such an interface as

well. In our case, however, it is not necessary to solve any practical problems that
are typical for real applications. We only need a communication scheme that would
allow the translation of basic intentions regarding the connect ion (establishment,
acceptance, rejection and termination) into the actions understood by bot h involved

parties: the protocol and the user.

Our design of APIchannel is based on the following messages:

1. messages sent by the user to the Q.2931 protocol:

callREQUEST - initiation of c d establishment signaling procedures. It

carries two parameters: ID, which identifies the connection, and data,

which contains c d characteristics required by the user: QoS, ATM traffic
descriptor, etc. ID has ody a locd meaning for the user and should not be
mistaken with the call reference value. Data does not need to be coded as

"Q.2931 user-network cal1 control", but it uses the same data structure and
the call characteristics must be in a Form of valid information elements 3.

Additionally, the message length element in data must be correct to assure
proper processing by the protocol;

3~nformation elements will be copied directly to Q.2931 messages, so if they are not coded prop
erly, signaiing error handling WU reject them.

callTerminRQST - initiation of call termination. It may be generated for
an active connection, which means that the data transfer is over, or as a

response to an incoming call indication, which means that the user wishes
to reject the call. In either case, apart from the call ID, the user shall
include data parameter with the cause information elernent indicating the
reason for termination;

callStatusRQST - initiation of status enquiry procedures from the user side.
In fact, the user's behaviour is not influenced by the result of status enquiry

procedures, but the message dlows testing of this part of the protocol. This
message carries c d ID ody;

2. messages received by the user from the Q.2931 protocol:

callINDICATION - indication that the rernote user requested the establish-
ment of a new connection. This message includes call ID and data, which
contains a complete SETUP message received from the network. In the

current implementation this information is not used, but in some future
work the user may analyze it to make a decision whether to accept the

call ;

callTerminIND - indication that the connection has been cleared. This mes-

sage may be received as a response to cdlTerminRQST (as an acknowl-
edgment) or may arrive unasked (when the protocol or the remote user
cleared t h e d l) . A p u t from ID, it includes also data parameter with the
cause information elernent provided by the protocol;

callOUTofORD - indication that the call identified by ID is out of order
and shall not be used;

callStatusIND - indication of the result of status enquiry procedure. It

includes ID and data, which contains a complete STATUS message;

3. message sent and received by both the user and the protocol:

callACK - admowledgment of the connection. If sent fiom the user to the
protocol, this message indicates that the user accepts the c d . If sent in the
opposite direction, it acknowledges that the c d establishment (outgoing

or incoming) has been completed and the call is in active state. It contains
ID and data.

In the case of an outgoing cail, user initiates the connection by seoding callRE
QUEST. After the Q.2931 completes its establishment procedures and is ready to
award the call, it generates a callACK message to the user. At this point, the con-
nection is dready in the Active state. If the c d cannot be established (procedure
failed or the remote user rejected it), callTerminIND is retumed by the protocol.

In the case of an incoming d l , the user is notified by callINDICATION. It may
respond with either ca.llACK or callTerminRQST. If the user sends callACK, the
8.2931 completes connection establishment and dso responds with cdlACK. If the
user sends callTerminRQST, the protocol clears the connection and responds with
callTerminIND.

When the user wants to clear an already existing connection, it generates call-
TerminRQST. The protocol starts release procedures and, after t hey are completed,
responds with cdTerminIND.

When Q .293l ini tiates clearing, it sends callTerminIND. The user shall consider
connection released right away and there is no need for an acknowledgrnent.

5.2.2 NM Channel and Routing Simulation

NNlchannel, which is meant to simulate the information transfer between UNI and
NNI signaling entities, consists of only three messages:

a NetSETUP, used to notify the called interface about the connection,

0 NetCONNCT, used to inform the calling interface that the c d has been
accepted,

NetRLEASE, used to inform the calling interface that the c d has been re-
jected, or to notify any of the interfaces about c d clearing.

Al1 t hree messages carry two parameters: data and NNITag.

Data contains information necessary for further connection processing, and it is

always a copy of corresponding signsling message (SETUP, CONNCT or RLEASE).

NNITag is an additional parameter, which dlows the Network module to find
the destination of the message. It is necessary, together with certain bookkeeping
mechanism, because - except for SETUP - signaling messages do not contain an
address of the called interface. Moreover, the call reference value, which identifies call
on the interface, has only local meaning. Without the additional information carried

by NNITag, only SETUP message would find its way to the destination, however,
it would be impossible to convey a response. Even if there is no problem with the

identification of the destination interface 4, received response (e.g., NetCONNCT)

must still be assigned to the particular connection, but it contains only the remote

user's call reference, which has no meaning to the receiver.

In our implementation, this problem is solved by including the NNITag with the
following elements:

srcAddr, an ATM address of the sending interface,

srcCallReh call refereoce value used locally by the sender,

dstAddr, an ATM address of the destination interface,

dstCallRef, c d reference value used locally by the destination.

When the signaling entity on the network side of the interface sends NetSETUP,
it fills three of four fields of NNITag: s~cAddr (its own address), dstAddr (retrieved
from mandatory calling party number information element), and srcCallRef (local).
It is, obviously, not able to fül dstCallRef since this value has not yet been assigned
(the remote interface does not even know about the c d yet). The receiving interface
copies all this information into the entry in the so-cded Correspondence Amay and
appends its own call reference value allocated for the new c d .

4Since in pointtepoint signaLing there only two interfaces, for each
means simply "the ot her one",

Correspondence Array

of them "the destination"

is used during the rernainder of the c d as a translation table between cal1 references
on the two interfaces; NNItags of sent messages are filled with this data. Initiating
interface bas a Correspondence Array as well, and it creates its own entry upon the
reception of complete NNITag in the first response to NetSETUP 5. In reality, similar
translation mechanism would be executed by NNI signaling, at each step of switching.

ATM addresses used in our specification are coded according to ISO E.164 Inte-
ga t ed Services Digital Network standard and are meaningful for the Network module.
As a matter of fact, the Network module does not analyze the whole address, but only
one octet of End System Identifier which corresponds to identification of interfaces
within the domain 6 ,

Each interface has a number which is encoded in the 14th byte of an ATM ad-
dress, and this number is used by the Network module for relaying messages between
appropriate interaction points. Since one octet of the address is used, the number
of interfaces which can be connected to the Network module is currently limited to

256 '. In reality, these issues would be adàressed by routing algorithms.

5.3 Signaling Entity Modules Description

The structure of bot h signaling entities: Wse~SignEnt and .VetSignf?nt is presented
in Figure 5.3. Since their overd design is almost the same, we wiil refer to a single
SignEnt in the description and, where necessary, we will point out the difierences.

SignEnt contains a set of its children modules called Cal1 Control Units or, briefly,
CC units. Each of the identical CC units takes care of one single cdl, from the time
it was requested until it is released. Finite state machines for comection processing
are implernented in t heae units.

As seen in Figure 5.3, SignEnt modules cornmunicate using only one UNIchan-
ne1 which spans their extemal interaction points: UNI-USignIP and U NINSignIP.

' ~ c t u a l l ~ , it is not necessary in case of only two interfaces. However, if there are more than two,
such information will be required due to the la& of cailing party aumber in RLEASE message.

6More about E.164 can be found in Appendix A.
 h hi ch seems to be enough for any simulation purposes. If not, it may be easily increaseà to

accommodate up to 6 octets long identifiers-

Figure 5.3: Signaling entity modules.

It corresponds to a single signaling virtual connection used by the Q.2931 protocol
(VCI=O, VPI=5). Messages exchanged on the UNIcbannel have almost the same
names as defined in the specification, except that they may be shortened: STA-
TUSENQ, RESTARTACK, or slightly modified: CONNCT, RLEASE '. SignEnt

= ~ e need to modify them, because both mleaae and connect are reserved keywords in Estelie.
From now on, we di use these modified names in the remainder of the document.

module contains dso an array of internal interaction points, used for communication
with its CC units.

The main functions performed by SignEnt module are:

1. managing al1 CC units: dynamic creation of units upon the reception of call
requests and t heir destruction after t hey are done wit h call processing,

2. administration and allocation of cesources for new calls: assigning avaiiable call
ceference values, selecting VPI/VCI d u e s for a cal1 (NetSignEnt only), book-

keeping of connection status (used, empty, restarted, out of order) and main-
taining Correspondence Array for the purpose of routing (NetSignEnt only),

3. dispatching messages from the external interaction point to their respective CC
units, as weil as conveying messages from the units outside,

4. verifying the structure and contents of al1 messages received through the

UNIchannel,

5. conducting most of erroc recovery procedures associated with format and mes-

sage contents errors,

6. handling al1 restart procedures.

The foilowing are short explmations for for the above functions:

Function 1, 2: The first step taken by UserSignEnt after the reception of callRE
QUEST from the user is an allocation of the c d reference value, to be used by al1
messages relating to this new connection g. UserSignEnt inserts this value in a dot of
its internal administration database R e f A m y, marks the c d as "used" and initializes

a new CC unit. Links between external interaction points of CC unit and internal
points of SignEnt are created and callREQUEST is passed to the unit for processing.
After CC generates SETUP, UserSignEnt conveys it to NetSignEnt. On the other

side of the interface, NetSignEnt also needs to docate the resources. It does not

involve c d reference (since c d already received this value from UserSignEnt) but it

'Sec Section 5.5.5 for further deta&.

includes docation of empty slot in RefArray and VPI/VCI values for the connection.
If it is successful, NetSignEnt initializes CC unit, Links appropriate interaction points
and passes SETUP to the unit for processing. A message generated by CC is sent to
UserSignEnt. If this is CALLPROCEEDING or CONNCT, it contains mandatory
VPI/VCI values, so that UserSignEnt may insert them into its internd database.

In case of incorning call, the procedure is a little bit different. Since here NetSig-
nEnt is the side which initiates the establishment, it must allocate both call reference

and VPI/VCI Io. Therefore, SETUP received by UserSignEnt contains full informa-
tion about the connection and no later updates in RefArray are necessary.

When the connection is terminated and CC unit is no longer needed, SignEnt

destroys the unit and removes from its databases al1 the information about the call.

Function 9: Throughout the whole course of connection processing, SignEnt mod-

ules pick messages generated by CC units and simply relay them from interna1 interac-
tion points to the external point (UNI-USignIP or UNINSignIP respectively). In the
ot her direction, SignEnt picks a message from its external interaction point, retrieves
the c d 1 reference information element, locates in RefArray the CC unit associated
with this call reference and passes the message.

Function 4, 5: Al1 Q.2931 messages that cross the UNIchannel are subject to the
detailed examination described in Section 5.5.3. Messages are tested by the SignEnt

module right ofter they are received. If t hey fail the verification, SignEnt triggen
error recovery. Most of the error handling procedures, excep t for unexpected message
detection, are located in this module.

Function 6: Restart messages, used to retuni cal1 or caUs to Nul1 state, are never
fonivarded to CC units and are entirely processed by SignEnt. This moduie is respon-
sible for running restart timers, updating information about the states associated
with Global C d Reference (N d , Restart Request , and Restart), blocking forbidden
simultaneous rest arts, resenàing RESTART upon timer expiry, responding wit h ac-

knowledgments, etc. If restart is successf'ul, SignEnt destroys CC unit (s) of involved
call(s) and it is the only case when it makes this decision on its own, without wôiting

loThe specification requires that VPI/VCI are aiways assigned by the network. User side may
only reject proposed values, but cannot suggest anything on its own.

for permission from the unit. If restart failed, SignEnt marks call as out of o d e r

in RefArray and it shodd notify the maintenance entity. Since we decided, for sake
of clarity, not to include maintenance module in our mode1 IL, we substituted this
notification with callOUTofORD message sent to the user by UserSignEnt . Rest art

being local, it does not involve the remote interface, so NetSignEnt does not send

anything in this situation.

5.4 Cal1 Control Unit Description

CC unit module is a formal description of a finite state machine for call control

procedures defined in ATM UNI signaling documentation. It represents a single ATM
connection on a given side of the interface. Units from network and user sides of UNI
realize the sarne functionality, but they do not share the same Estelle definition.

A module communicates through its two extemal interaction points: UserIP and
NetIP. How those points are linked by channels depends on where the module is
located (see Figure 5.3). Each CC unit has three exported variables that are shared
with SignEnt:

a CCAk identifier of the unit in SignEnt; it is also used as a positiori of the
corresponding entry in RefArray,

a CCState: m e n t state of the unit; even though interna1 call state does not

concern SignEnt in general, it is necessary in some error recovery actions (e.g.,
upon reception of a message with missing elements, SignEnt must respond with
STATUS which contains cd state),

Done: Boolean value used to inform SignEnt that c d control is completed and
the unit may be destroyed.

The main functions of Cal1 Control Unit are:

IlIf included, this module wodd not do anything anyway, since repairs to be done are not specified.

1. implernenting cd1 establishment aad release procedures,

2. implementing status procedures,

3. error recovery associated with incorrect behaviour of connection: unexpected
messages and non-responding calls,

4. initiating restart upon a failure of release procedures.

Function 1: When the CC unit is notified about a new call, it creates a SETUP
message with al1 the information provided in cdREQUEST or NetSETUP. Con-
nection specific data necessary for composing the message (e.g., cd1 reference value,
VPI/VCI values) are passed by SignEnt during initidization as a parameter called
context. In fact, context is simply a copy of a corresponding entry h m RefArray.

After SETUP is sent and call establishment initiated, the CC unit processes iocom-
ing messages, generates its responses and changes states in a manner explained in
Section 3.3.3. Since messages received by this module successfully passed the test in
SignEnt, the unit assumes they are free of emrs. As well, al1 the messages produced

here have vdid form and contents.

Function t Upon reception of cailStatusRQST, CC unit on the user side of the
interface generates STATUSENQ message, without changing its state. Since the
specification does not define any kind of -remote status enquiry" (soliciting the status
of the remote interface), there is no way for the network side to send such a message.
Nevertheless, when STATUSENQ is received, both sides are obliged to reply with

STATUS. This response does not change the call state. When the STATUS message
is received, the CC unit analyses its content. If cause element indicates that it is
a response to status enquiry, the user is notified by callStatusIND. If cause element
indicates that this STATUS was sent by error recovery procedures, unit initiates cal1
clearing.

Additiondy, if cause element does not report any problem, but c d state element

indicates that the c d state on the other side is N d , the CC unit also goes to N d
immediately and sets its Done variable to tme, in order to let SignEnt destroy the
unit.

Function 3 CC unit module provides a set of traps: transitions intended to
intercept a l l unexpected (out-of-sequence) messages. A trap is activated if a message
is received that should never arrive in a given state. Traps do not change a cal1 state,
but they generate a STATUS message with the cause element coded as "message

incompatible with the cal1 state".

Call Control Unit is responsible for ninning the timers associated with the cal1

(except restart timers), resending the messages upon the timer expiry (if allowed),
and terminat ing non-responding connections.

CC module is also able to detect lack of mandatory cause element in
RLEASE. Such messages are processed normally as if they were correct, but
RLEASE-COMPLETE sent in response contains the cause element coded as "manda-

to y element missing ". This is the only situation when handling of the message con-

tents error is done by Cal1 Control Unit; normally, such procedures are located in

SignEnt modules.

Function 4: In cases when cal1 clearing fa&, i.e., the timer associated with release
procedures expires For the last time, CC unit module generates RESTART. I t does
not carry on restart procedures, however. They are conducted by SignEnt .

5.5 Implementation Issues

5.5.1 Resolution of Deficiencies in Specification

One of the main advantages of formal specification is that it requires the designer

to define the protocol in an unambiguous way, without deficiencies and uncertainties
typical for the traditional forms of description. Even though, in our opinion, Q.2931
is a carefully and quite coherently defmed protocol, we needed to resolve some of the
issues not (or not ciearly enough) addressed by the documentation. Examples of such
problems and their solutions are given below. Sections and pages cited here refer to

the ATM Fonun UNI Specification version 3.1 [i'].

Deficiency: It is defined that "... when both sides of the interface initiate simul-
taneous restart requests, they shall be handled independently. In the case when the
same virtuai channel(s) are specified, they s h d not be considered free for reuse until
al1 the relevant restart procedures are completed." (Section 5.5.5, page 251)

When there are parallel incoming and outgoing restarts for the same channel, one
of the independent procedures might be successfd and the other not. What should be
done by successfully completed incoming rest art in case when failed outgoing res t art
finished first and aheady marked the channel ôs out of order? Should this decision
be changed? Should RESTARTACK be sent?

Solution: We decided, that the intention of out of order link marking is to
require an external intervention of maintenance entity and that Q.2931 cannot in
any way impact this process. Therefore, a channel once considered broken cannot be
reused even if the incorning restart procedure succeeded in bringing it to Null. No
acknowledgment is sent (we do not want the other side to consider this channel to be
restarted).

Deficiency: It is not specified what should be done after the arrivd of RESTART
specifying a channel that is marked as out of order.

Solution: For the same reasons as above, we decided not to send an acknowledg-
ment. After several failed attempts of restarting the channel, the other side will have
no choice but to mark this channe1 as out of order, too.

Deficiency: After the reception of RESTART specifying that "all channels con-
trolled by the layer 3 entity" s h d be restarted, should acknowledgment be sent if
some of the channels were previously out of order and, t herefore, were not rest arted
with al1 others?

Solution: We chose not to consider broken channels as included in restart request
(since it is beyond t h e means of the protocol). RESTARTACK will be sent if al1
working channels at the time of arrivd were successfdly restarted, even if it does not
mean that a l l channels controlled by SignEnt are operational.

Deficiency: It is defined, that when the destination interface is notified about
the c d establishment ... [SETUP message to the called user] is sent by the network

only if resources for the cd1 are available; otherwise, the c d is cleared toward the
calling user" (Section 5.5.2.1, page 246). Cause for this clearing is not specified.

Solution: We chose to use cause $1147: "Resources unavailable, unspecified."

Deficiency: It is specified, that the timer T322 (associated with sending STA-
TUSENQ message) shall be stopped upon the reception of ony clearing message
(page 259). It is not clear, what should be done if the clearing message is not re-

ceived, but sent by the same entity which generated STATUSENQ. We may have
such a situation if there is another timer running simultaneously on this side (e.g.,

T310 associated with Outgoing Cal1 Proceeding state) and this timer expires first.

Solution: We decided to stop the T322 timer in any case of clearing: either
outgoing or incoming. Otherwise, we would have second RLEASE sent after T322
expires, while t h e cal1 is already in Release Request state.

Deficiency: It is specified, that both RESTART and RESTARTACK messages
shall be used with Global Cal1 Reference values. The specification does not define
any error handling actions, if one of these messages is received indicating different
cal1 reference.

Solution: If the message is otherwise correct and contains al1 necessary informa-
tion, ive decided to ignore the c d reference d u e and processs the message as if it
arrived with Global Cal1 Reference.

5.5.2 Message Structure

The general message structure is the same for al1 messages used in our implementation
and is presented in Figure 5.4. It has been designed to reflect very closely the layout
of the original signaling messages.

The basic elements of the message are octets, which are grouped together to con-
tain information elements specified by the Q.2931 coding standards. Each signaling
message has four mandatory, fixed length elements: Protocol discriminator, Cali ref-
erence (CallRefL is length and CallRefV..CallRefV3 contain value), Message type and

Figure 5.4: General message structure.

Message length (in octets). When an element occupies more than one octet, the first
octet in the group is the most significant, e.g., CdlReN, MsgType, and the last octet

is the least significant, e.g., CdRefV3, MsgLength2. It is important to note, that
the octets used for these four fixed elements are not included in the value of message

lengt h.

The remaining part of the message is an array of so calied VLIEs: miable length
information element records. They are used to encode ail remaining information
carried by the message. Each VLIE record consists of:

1. IdtE (mandatory, 1 octet) - Identifier of Information Element,

2. CompInstrIE (mandatory, 1 octet) - Compatibility Instmction Information
Element. It contains Coding Standard Field and LE Instruction Field. In this

implementation, both are coded to al1 Os, which has a meaning: VTU- T stan-
dardized coding standard with IE instruction jield not significant (regular error
handling applies), "

3. LengthIE, LengthIE2 (mandatory, 2 octets) - length of the information ele-

ment. As it is with message length, element length also do uot include octets
used by the header. IdIE, CornpInstrIE, and IE length itself,

4. Contents (optional, variable length) - an array of octets. I t contains the re-
mainder of this information eiement. Its range starts From 5, in order to preserve
numbering of octets (headeî takes 4) and a compatibility with the documenta-
t ion.

Constant MaxIELength, which controls the size of the Contents array, is set to 34
and constant MaxNrIEs, which controls the size of the VLIE array, is set to 18, in
order to accommodate the largest possible signaling message.

The same data structure is also used For communication o n APIchannel and
NNIchannel, but, in these cases, contents of the fint 3 fixed elements in the mes-
sage does not matter. The message Length element is still important for correct
detection of the end.

5.5.3 Messagecheck

Message checking (and consequent error recovery, if necessary) is a very important
part of the SignEnt module. It is perfomed every tirne the signahg message arrives
through UNIchannel, and it is broken into two phases:

Testing - chedùng for presence and validity of al1 mandatory elements. Number
of messages and variety of elements in different parameter configurations make
it a tedious and fairly complex task, executed by large function msgcheck,

Reacting - Le., following one of possible patterns of processing, depending on the

result of the testing phase. This part is implemented by two transitions: one
for correct and the other one for incorrect messages.

An outline of the Estelle solution for this mechanism is presented in Figure 5.5.

trans
when UNI,USignlP.CONNCTACK

providal rnsgCheck(data. CON N CTACKtype, RefArray)=OK { - SUCCESS -}
name MessageProccuing:
begin
cRefi=getCallRefAll(data);
cRet=a lterCRFlag(cRd);
position:=findCal t Ref(cRcf, RefAriay);
output UlntUNl[pasition].CONNCTACK(data);

end;
provided otherwise {- FAILURE -)

name ErrorHandling:
begin
testResult:=msgCheck(data, CONNCTACKtype, RefArray);
cRef:=getCallRefAII(data); { gel info about the call}
cRefi=alterCRFlag(cRcf);
if testResult= Discard thcn

begin
(ignore message - do not do anything)

end
else if testResult=lncorrcctU~GIoba~R then

begin
(...) { send STATUS message utzth Global CR state}

end
else if testRcsult=NonExistingCall then

begin
(.. .) { serid Relruae Complete - cal1 rej rwl ~cognüecl as relaling to a call)

end
else if testResult=MandatorylEMiuing then

begin
(.. .) { send statw urith cause #96 - mandatory element is missing}

end
else if testResult=Manda tory lEBad then

begin
(...) {send status with cause #IO0 - invalid injormation element content}

end
end;

Figure 5.5: Message checking and error handling for CONNCTACK.

The first transition (marked SUCCESS) defines actions to be taken, when the mes-
sage passed the test successfiilly, i.e., msgChedc retumed OK. Most of the messages

will be simply sent to their respective C d Coatrol unit modules '*.
The second transition (marked FAILURE) is fired if msgCheck returns anything

other than OK. First the transition must invoke msgCheck once again to repeat the

testing, since it is not possible to use assignments within the conditional expressions

in Estelle. When the exact diagnosis of a problem is known, appropriate actions are

taken.

Careful analysis of error handling procedures in Q.2931 shows that al1 erron re-

lated to the message contents may be grouped into five distinct classes, each associated

with its own pattern of processing. They correspond to the following test results:

6 DEscark for al1 types of severe erron, which do not allow reading of some or

al1 parts of the message header; also for some cd1 reference errors in SETUP or

RLEASE-COMPLETE,

0 NonExistingCall: for cal1 reference values indicating connections which do no t

have their Cal1 Control units while the type of message requires CC 13,

0 Incorrect UseG~obalCR: for Global Cal1 Reference values found in messages which
are not allowed to use thern,

1Clündato rylEZIisziulg: for messages wi thout one or more variable lengt h infor-
mation elements, which are considered mandatory for this message type,

a MandatoryIEBad: for messages with one or more variable length information

elements, which are considered mandatory and have invalid contents.

Actions assigned to these cases depend on the message type - Figure 5.5. shows

their examples for CONNCTACK message.

I2~epending on the type of message, some variations to this schcrne may happen (e-g., additional
check for Global Cal1 Reference, if message is aüowed to use it).

'3Examples of messages which do not require the presence of CC on their arriva1 are: SETUP and
STATUS with Global Cal1 Reference.

When describing the Estelle language, we mentioned an important type of transitions
with so called defay clauses (Section 4.2.3). These transitions introduce a notion of
time into Estelle and allow us to implement timers.

The signaling specification defines timers in different states of call processing to
limit the maximum response tirne of the other side of the interface or, in some cases,
the response tirne of t h e remote interface. SignEnt and CC unit modules must be
able to start the timer, detect its expiry, restart it and finally stop it at any given
moment. Certain actions must be performed upon each timer expiry; moreover, t hey
can be different every time the tirner expires.

As the reader may recall, al1 transitions in Estelle are atomic and take no time to
execute. It should be clear then, that there is no possibility to implement the timer
in the f o m of a single transition; instead, we must define the whole set. We are

also constrained by the fact that we cannot define separate timer states (e.g., stop,
running, restart), since module states in Our implementation are reserved for call
states. Additionally, we would like to have one universal timing mechanism, which
could be easily copied in many different situations and states without any major
changes.

An outline of the solution which satisfies a.ll the above conditions is presented
in Figure 5.6. Timer T303 is used as an example here, but al1 other ones in Our
specification are based on the same concept.

Among the 4 transitions involved in timer T303 operations, only those named
RUNl and RUN2 are purely designed for timing. Transitions START and STOP,
which turn the timer on or off, have also other duties, for example: processing and
sending the messages.

Initially, the value of T303tryLimit is 2 and T 3 0 3 ~ n is O, therefore RUNl and
RUN2 are disabled (their firing conditions are fdse). When the transition START is
executed, T303run changes to 1 and RUNl becornes enabied. Since it is a delayed
transition, it may fire only when it stays enabled for T303timeout period of time. If
during that time STOP does not f ie and T303m is still 1, the action d e k e d for

from UO to U 1 { START tu- the timer on upon sending of SETUP)
when UstrlP.callREQU EST

name START:
begin

{ c m t e SETUP message and copy ail global info fron what user sent)
createMsgQ293l(stpdata, SETUPtype. contcxt.callRef);
copyGloballEs(stpdata, data);
output NetlP.SETUP(stpdata);

{start TJOJ timer)
T303run:=l;

end;

from U1 to same { R UN1 - timing for the first lime)
providtd (T303run > O) and (T303run < T303tryLimit)

delay(T303timeout)
namc RUNl:
begin
output NetlP.SFfUP(stpdata); {resend SETUP alter ezpiry)
T303run:=T303run+l; {increment the contml variable of the timer)

end;

from U 1 to UO { RUN2 - timing for the last time)
provided (T303run=T303tryLimit)

delay(T303timeout)
namc RUN2:
begin
Donc:=True;
T303run:=O;

end;

{destmy this module - internai clean'ng)
{stop the timer)

from U l to U3 { STOP turns the timer ofl)
when NetlP.CALLPROCEEDING

name STOP:
begin
T303run:=O;
T3iOrun:=l;

{ stop the timer T309)
{ start the timer TSIO)

end;

Figure 5.6: Implementation of example timer T303.

RUNl is executed (here: SETUP is resent) and the value of T303run is increased by
1. Since it is now 2, RUNl is disabled and RUN2 becomes enabled. Transition RUNZ
controls the last nui of T303. Again, if it succeeds to stay enabled for T303timeout, it

executes actions defined for the final timer expiry (here: call clearing) and, eventually,
turns itself off, i.e., T303mn is set to O. At kny time, if an event defined for transition

STOP satisfies its firing condition (here: arrivai of CALLPROCEEDING), STOP
fires and turns the timer off.

5.5.5 Call Reference Allocation

Call reference is mandatory for each message, and it consists of call reference value
and jlag.

Value is coded on 23 bits, which corresponds to the decimal range 0..8385607.
However, neither end of this range cm be used for cal1 identification, since they are
both reserved by ATM Forum: O (binary aii Os) is used for Global Call Reference and
8388607 (called "dummy", binary al1 1s) is reserved for future purposes.

In our implementation, each subsequent docation produces a unique value in a
valid range, which is always larger t h m the one allocated recently. The last constraint

follows a suggestion in the documentation, that implementations should not reuse the
call references right away after they are released 14. Ailocation is cyclic, Le., after
reaching the upper lirnit (8388606), it starts again from 1.

As we have already explained, a c d reference value may be assigned by either

side of the interface: always the one which initiates the cail. It poses a problem, that
the same value rnay be allocated simultaneously by user and network sides to two
different cails, hence, it rnight fail to unambiguously identify the connection on the

interface. UNI signaling resolves this issue by using the call reference Jag.

Ffag is located in 24th, the most significant bit of the cail reference element. Its
purpose is to identify the side of the interface, that docated the c d reference value.
Flag is always set to O by the originating side and always set to 1 by the destination.
Even if the same value is assigned by two sides, on each of the sides it wiil have a

different flag and it rnay be properly distinguished.

14Even though it is fomulated as a mere "suggestion", non-cornplying may result in senous
rnalfunctions in the protocol (see the next chapter).

In our implementation, we simply negate the flag bit every time it crosses the

UNIchannel, before it is used to find a corresponding CC unit in RefArray database.
In this way, all entries in RefArray with Bag=O describe c d s originated here, and ail
entries with flag=l describe c d s initiated on t h e other side. Since the flag is stored

together with call reference value (as one integer), the signaling entity does not even
need to consider the origins of the call in order to correctly dispatch its messages 15.

''Note, thot whatever the value of a flag on a given interface is, after being sent back and forth
(hence negated twice) , it wiU be eventually the same as in the beginning.

Chapter 6

Test ing and Validation

6.1 Introduction

As the final step in the development process, we needed to design some mechanisms
for validation of our simulation model. Such mechanisms provide a means for sys-

tematic testing of the formal specification, fixing erron, and convincing us that our
model behaves as w e intended. In general, we may highlight two major goals of the
validation:

1. It must show that the formal protocol specification conforrns to the informal
definition, that is, the behaviour of the proposed solution is identical to the
requirements defined in the standard. This part concentrates on the implemen-
tation; it verifies accuracy of designer's own ideas, algorithms, procedures and
data representation,

2. It must show that the protocol itself conforms to the intentions of its creators
and achieves its goals, e.g., the protocol can set up and tear down the comect ion,
recover from all kinds of faulty conditions and ensure continuous service for the
user (no deadlocks, correct resource management, etc.). This part concentrates
on both the implementation and the specification; it verifies that the protocol
can actually deal with real-life situations.

We described validation as the h a 1 step of formal protocol specification because
major testing efforts are taken after the code is written. It does not mean, how-
ever, that the vaiidation begins at this point. in fact, it starts at a very early stage,
together with the first outlines of the design. In order to be able to test the speci-
fication efficiently and thoroughly, we needed to think of its testing at each step of
the development. Marty issues had to be resolved not only to have the most effi-

cient code, but also the one which could be easily tested. As a matter of fact, in
some particular cases, the validation met hodology was the most important factor; for
example, APIchannel was designed to test the protocol rather than to provide any
real life functionality. Validating such a "testing conscious" implementation gives us
a very important advantage in cornparison with testing of a commercially available
signaling package: without an additional code instrumentation we are able to observe
al1 intemal actions of the protocol. I t facilitates the validation process - which is

complicated enough - and reduces the number of testing cases and messages. For
exarnple: instead of invoking status enquiry procedures to check the cd1 state after
each message, we can simply examine the interna1 CC module state; instead of wait-
ing for timesuts to see if the timer is on, we can check the firing conditions of the
timer transitions.

After we coded the protocol in Estelle, we compiled it using the Estelle Compiler,
Ec. Since Estelle is based on very strict Pascal syntax and its own extensions push this
formalism even further l , Ec is able to discover many problems that are normally not

detected in case of other prograrnming languages. Not only did it ailow us to remove
many syntax errors, but also forced us to review some of the semantic problems and
design faults that became apparent during the compilation.

After the above errors were corrected, we moved to the most difficult and tedious
task of the protocol validation process. We conducted a series of simulations executed

in different environments and for different parts of the protocol. The main purpose
was to find a l l semantic and run-time errors, and to collect convincing evidence of
correct protocol operat ion. We built several test ing environments, prepared ap pro pri-
ate test cases, and ran them using the Estelle Debugger/Sirnulator, Edb. Depending
on the testing scenarios and verified functionalities, simulations could be executed

'Far example, Estelle requires that aii Pascal fundions must be pure, Le., they do not have any
side effects.

manuaily (stepby-step control, with thorough analysis of each fired transition), or
they couid be fully automatic (non-interactive experiments, running several hours
and controlled entirely by Edb or custom defined scripts). Edb observers were used
to trace the protocol activity and report al1 results.

The remainder of this chapter gives the details of our testing methodology, simu-
lat ion environments and obtained results.

6.2 Methodology

The literature provides us with the broad spectrum of validation methods: from
exhaustive, complete approaches, which verify ail possible cases, to more traditional
testing, which takes into account only some carefully selected subset of important
(from the user's point of view) scenarios [20]. The discussion of advantages and
disadvantages of particular methods is far beyond the scope of our work. For the
purpose of this document, it is oniy important to note that, overall, it is difficult to
find the best vdidation method for a real, cornplex communication protocol. Each
approach has a certain cost associated with it, both in terms of effort and time
necessary to obtain the results. Exhaustive testing is trustworthy, but is just too
expensive. Less formal, cheaper tests do not prove correctness. For a fairly complex
protocol such as Q.293 1, combinations of states, messages, and carried parameters
may cause "state explosionn, which means that the set of possible cases and testing
scenarios grows beyond a manageable size. Obviously, some trade-offs are necessary:
the vdidation process has to be carefdy designed to minimize the cost, but it must
also cover all areas of protocol operation and provide enough evidence of correct
behaviour.

We drafted our approach based on the ideas used for validation of the XTP p r e
toc01 specification in [21, 22, 231.

We have broken the validation into two major steps:

Unit testing. Each distinct element of the signaiing protocol (i.e., C d Control Unit
on both sides of the interface, UserSignEnt and NetSignEnt), is extracted from

the origind model, placed into its own simulation environment and validated
separately. This d o w s us to make sure that a l l these elements exhibit expected
behaviour both in ideal conditions and in the presence of errors. By splitting
this step into separate testing of C d Control and SignEnt modules, we can
concentrate at any given moment only on functions that are realized within the
particular module. It introduces a natural order of testing scenarios and greatly
simplifies locating of errors. Since both sides of the interface comrnunicate using
different interfaces, we need separate testing environments for each side.

Interoperability testing. Validated and corrected basic elernents of the protocol
are put together into one model and tested in regard to their cooperation and
mutud communication. It is necessary to check that individually correct ac-
tions of all parts const i tute an equally good entirety, and t hat t hey do not lead
the whole simulation into faults (such as deadlocks or contradictory activities
of signaling entities). Also, only at this point, can some globally meaningful or
implementation dependent issues can be tested, together with the definition of
the protocol itself (e.g., usefuhess of error recovery procedures). Simulations
are conducted wit h many simultaneous calls, both in an ideal, "friendlyn en-
vironment, where messages are conveyed without any problems, as well as a

"hostilen one - messages can be delayed, corrupted, and lost .

Before we can move to the first phase of validation, it is necessary to decornpose
the formd specification into the set of separate, basic functions; assign them to their
respective Estelle modules (in which t hese functions are implernented) ; and schedule
them to the appropriate testing steps. Table 6.1 presents the validation schedule for
a.ü major functions described in Sections 5.3 and 5.4.

6.3 Call Control Unit Testing

Two environments used for C d Control unit testing are depicted in Figure 6.1.

Tested function Location

1 Format and contents of generated messages 1 Cal1 -

Message sequence for CA est ablis hment / release
Timers associated with establishment/release
Response to unexpected messages

1 Corndete establishment frelease procedures 1

Cont rol
- -

Status enquiry procedures
Spontaneous (unrequested) STATUS handling
Cal1 reference and connect ion identifier select ion
Dynamic allocation/release of CC units
Message dispatching
Message check and error recovery
Res t art ~rocedures

Managing simultaneous calls
Resource allocation (continued)
Error recovery (cont inued)
Deadlocks and other abnormalities

Unit

Signaling

Entity

Complete

Model

Table 6.1: Verification schedule.

Other Side Test module is a generic module, which always plays the role of the
opposite, currently not tested, side of the interface. It can accept and generate any

message standardized by the Q.2931 specification. It does not contain any algorithrn,
however, so it cannot process received messages (they are discarded) or send anything
out on its own initiative (all sent messages must be manuaily requested by the user).
User Test and Network Test have similar tasks, but they simdate User and Network
modules and use the rnesshges dehed for their respective interfaces: APIchamel and
NNIchannel.

We are able to force each of these Test modules to send any type of message
we want and observe the reaction of the CaU Control Unit. The simulation is exe-

cuted step-by-step and the outcome is constantly examined. Every time when one of
the Test modules (User, Network, Other Side) should respond, we have a choice of
providing either a desired or an unexpected message.

user Test L=J

Figure 6.1: Test environments for Call Control unit on the user (a) and the network
(b) side.

Technicdly, generation of messages by the Test modules is based on conditional
transitions with initially false firing conditions. When we wish to send any message,

we use one of the debugging features of Edb: an ability to modify interna1 module
variables. We can access a Boolean variable controlling the condition of the appro-
priate transition, chonge it to true, and force this transition to fie. The last action

executed by the transition is always returning its control variable to Mse, so that
t here are no further messages sent, unless we request them again. Messages used in
this phase have correct form and contents, since message check is not tested in CC
unit 2.

Because of the large number of possible test cases, they will not be presented
here. Instead, in Figures 6.2 and 6.3 we have shown some example scenarios of

message exchange in fault-free situations. Some test cases For erroneous conditions,

*Except for the Iack of cause eIement in RLEASE.

63

such as out-of-sequence messages, may also be easily derived from these figures by

replacing correct responses with al1 possible unexpected ones. Please note, however,
that unexpected SETUP is a special case, which is always processed in SignEnt, so
it must be tested there as well.

Figure 6.2: Sequence of messages for the incorning cal1 on the network side.

6.3.2 Results

Connection establishment on the user side. It has been verified, that

for outgoing call:

messages generated by the module have proper format and contents,

SETUP sent after the reception of callREQUEST contains ad the information

supplied by the user. In particular, it does not contain connection identification
(VP IIVCI), even if it was mistakenly sent by the user,

Figure 6.3: Incoming c d from Figure 6.2 as seen on the network side.

a if the other side does not respond to SETUP with CALL-PROCEEDING or

CONNCT (expiry of timer T303), SETUP is resent and if there is still no
answer, the cal1 is eventudy internally cleared,

r if the ot her side responds with CALL PROCEEDING but it does not send CON-
XCT before timer T310 expires, clearing procedures with cause #102 ''recovery
on timer expiry" are invoked,

e upon reception of CONNCT, modde enters Active state, returns CON-
NCTACK and notifies the user (by cdACK).

for incoming call:

r upon the reception of SETUP with acceptable parameters (e-g., correct

VPI/VCI dues), the user is notified with callINDICATION. Then the module
may choose to send CALLJROCEEDING or not,

r after receiving callACK from the user, CC unit generates CONNCT and enters
Active state.

Connection establishment on the network side. It has been verified, that

for outgoing call:

upon the reception of SETUP, CC unit checks that VPI/VCI are available and

sends NetSETUP with the contents supplied by the user. Then the module
randomly chooses to send or not to send CALLPROCEEDING to the cali-
ing user. If CALL-PROCEEDING is sent, it contaios mandatory connection
identification element wit h VPI/VCI values assigned to the call,

a after NetCONNCT is received, the module generates CONNCT message and
enters Active state. If the module chose not to send CALLPROCEEDING

before, CONNCT contains connection identification elernent,

0 if CONNCTACK message is received in Active state, it is ignored.

for incoming call:

0 upon the reception of NetSETUP, CC unit checks that VPI/VCI are available
and generates SETUP with al1 globaily meaningful information retrieved from

NetSETUP. Information elements that have local meaning and were included

in NetSETUP (e.g., connection identification on the remote interface) are not
transferred. Additionally, connection identification element wit h Local VP I/VCI
values is also appended,

a if the other side does not respond with CALLSROCEEDING or CONNCT
before the final expiry of respective timers, c d clearing procedures are initiated,

upon reception of CONNCT, the module generates CONNCTACK and Net-
CONNCT.

Connection clearing on the user side. It has been verified, that

l o r outgoing clearing:

RLEASE is sent and timer T308 started; the message contains the cause element
supplied by the user,

0 upon reception of RLEASE-COMPLETE, ad timen are stopped, callTer-
minIND is sent to t h e user, and the Done wiab l e is set to true. I t does not

matter if RLEASE-COMPLETE contains a cause element,

0 if RLEASE-COMPLETE is not received before expiry of 7'308, RLEASE is
resent and timer restarted. Upon final expiry of T308, RESTART is sent,

for in coming cleuring:

O upon reception of RLEASE, the unit responds with RLEASE-COMPLETE,
sends calITenninIND to the user and sets Done to true. If RLEASE contains

cause element, it is copied into RLEASE-COMPLETE, otherwise cause #96
"mandatory element missing" is used.

Connection clearing on the network side. It has been verified, that the be-

haviour of this module during clearing procedures corresponds to the behaviour of
the CC unit on the user side with the following modifications:

for outgoing clean'ng:

O procedure is initiated upon reception of NetRLEASE message, instead of call-
TeminRQST,

upon reception of RLEASE-COMPLETE, the module is returned to Null, but
no confirmation is sent to the remote user (i.e., there is no equident of call-
TerminIND on the network side of interface).

for incoming clearing:

0 instead of cdTerminIND message, NetRLEASE is used to *domu the remote
interface about termination.

Error handling on the user side. It has been verifi ed that:

r timers used for both outgoing (T303, T310) and incoming (T313) c d , as well
as clearing timer T308 and status enquiry timer T322 are properly started,
stopped and restarted according to guidelines in specification,

r actions upon the expiry of al1 above timers are correct,

clearing procedures invoked as a result of errors are perforrned in the same way

as user init iated cal1 clearing, with the exception t hat the cause element contains
the d u e corresponding to the error that caused clearing (instead of the value

supplied by the user),

a in case of incoming cd, an attempt to assign incorrect VPI/VCI values gen-

erates RLEASE-COMPLETE with cause #35 "requested VPCI/VCI values
unavailablen,

a when unexpected RLEASE-COMPLETE is received, the unit is returned to
Nul1 state and cal1TerminIND is sent to the user,

a when unexpected RLEASE is received, the unit is returned to Null state, Call-
TenninIND is sent to the user and RLEASE-COMPLETE is retunied,

when any other unexpected message is received, the module generates STATUS
message with the curent state of the c d and cause value #IO1 "message not
compatible with c d staten,

a when STATUS is received indicating Null state, while the module is any other
state, the module is returned to NuU and the callTednIND is sent,

when STATUS is received indicating a state other than Nuil, but with one of
the inappropriate cause values (96, 97, 99, 100, 101), outgoing cal1 clearing is
initiated,

when STATUS is received with contents that qualifies for clearing of the c d ,
but the c d is already being cleared, no action is taken and the release process
cont hues.

Error handling on the network side. It has been verified, that the behaviour of
the unit in error conditions is very similar to the behaviour of the unit on the user
side, excep t for the following:

a T322 and T313 timers axe not used,

a in addition to regular actions after the final expiry of timen T303 and T310,
NetRLEASE with cause #18 "no user respondingn is sent,

if incoming call is initiated when it is not possible to accommodate a new
connection, NetRLEASE is returned with cause #41 "temporary failure" ,

a instead of callTerminIND in error conditions, NetRLEASE is generated wit h
the cause provided by the user aide or #Il1 Uprotocol error, unspecified", if
nothing is supplied,

upon reception of CALLPROCEEDING or CONNCT which contains connec-
tion identification element indicating different values from the ones included in

SETUP, outgoing cal1 clearing is triggered with cause #36 "VPCI/VCI assign-
ment failure" and NetRLEASE with cause #41 "temporary failuren is gener-
ated.

Status enquiry on the user side. It has been verified that:

a when STATUSENQ is received in any state, STATUS message is sent with
the current state of the unit and cause #30 "response to status enquiryn. No
change in the call state occurs,

a STATUS with contents that does not trigger error recovery (described above)
is disregaded,

a upon reception of cdStatusRQST, STATUS-ENQ is generated and timer T322
started. Until this enquiry is completed with STATUS received from the other

side, al1 subsequent callStatusRQST messages fiom the user are ignored (only
one outstanding enquisy in a given moment exïsts),

O wheu STATUS is received as a response to STATUSENQ, it is processed in the
same way as the one that arrived spontaneously, with the exception that it is

addit ionally Forwarded to the user as callS tat usIND.

Status enquiry on the network side. It has been verified that status procedures

here are the same as on the user side with the exception that there is no equivalent
of callStateRQST and callStateIND messages from the network. As a consequence,
sending of STATUSENQ by the module does not take place and timer T322 is not
used. Actions following reception of STATUSENQ and STATUS messages sent by
the other side are identical to those described above.

6.4 Signaling Entity Testing

The testbed used in this phase is basically the same as in Figure 6.1. Module CC unit
has been replaced with respective SignEnt module and Other Side Test module has
been slightly rnodified. Instead of generating only correct messages, Other Side rnust
be able to produce al1 kinds of faults in message Formats and contents. Messages

may be sent wi t h incorrect protocol discriminator, cal1 reference values, message
types, missing or invalid information elements, etc. Most of it is achieved by simple
manual intervention in the message contents during the simulation, because source
code changes would require lengthy recompilations. Again, the simulation is s t e p
by-step and completely under our control. Apart from checking the new functions
assigned to this step in Table 6.1, we also need to repeat sorne of the test cases for CC
unit. This t h e , however, we do not verify the responses of CalI Control, but rather
the correctness of SignEnt transitions responsible for dispatching the messages.

Since functions perforrned by signaling entities on both network and user sides of
the interface are alniost the same and their testing is very similar, the results will be
discussed together.

6.4.2 Results

Call control unit administration, resource and message management. It
has been verified t hat :

a Cal1 reference values selected by the entity are unique, in d i d range and gen-
erated in a progressive rnanner,

VPI/VCI selection assigns values that are in valid range and unique on a given
interface,

O upon reception of correct SETUP, a local contezt (set of parameters) for the
connection is created, Call Control unit is dynarnically allocated and duly ini-
tialized. Throughout the whole life of connection, al1 newly obtained informa-
tion (e.g. connection identification) is properly updated in interna1 structures.
When the cal1 is cleared, its local context is destroyed, resources returned for
reuse and the CC unit is released,

incoming messages are correctly dispatched to their respective CC units, out-
going messages are conveyed to the external interaction point and sent outside,

on the network side, the additional "routingn database (Correspondence Array)
is properly created, updated with new data, and h d y disposed of upon clearing
of the network connection.

Error conditions. It has been verified that the msgCheck function returns appro-

priate evaluation of the message state, which results in the following actions of the
signaling entity:

a if the message should be discarded, no action is taken on the message and no
state change occurs, as if it never atrived,

if any message, except SETUP, RLEASE-COMPLETE, STATUSENQ and
STATUS, relates to a non-existing c d , RLEASE-COMPLETE is retunied with
cause #81 "invalid cd reference value",

0 if any message, except RESTART, RESTARTACK and STATUS, uses Global
Cd1 Reference, STATUS is returned with cause #81 'invalid cd1 reference
valuen,

O if any message, except SETUP, does not have an element which is mandatory
for this message, STATUS is returned with cause #96 'mandatory element
missing". In case of SETUP, RLEASE-COMPLETE is returned,

O if any message, except SETUP, contains a mandatory element with invalid con-
tents, STATUS is returned with cause #100 "invalid information element con-
tents". In cose of SETUP, RLEASE-COMPLETE is returned,

O on the user side, if CALLPROCEEDING or CONNCT (when it is the fint
response to SETUP) arrives without or with invalid VPI/VCI, it is treated as

a message with mandatory element rnissing or invalid, respectively,

a optional information elements are simply transported and not checked either for
presence or for validity. Since they are not mandatory, connection may proceed

even if t hey are corrupted or missing.

Restart procedures. I t has been verified that:

0 RESTART and RESTARTACK generated by the entity have proper format
and contents,

0 upon the initiation of outgoing restart (expiry of timer T308), tirner T316 is

started and no other outgoing restart is perrnitted. If another C d Control unit
generates RESTART while T316 is ninning, this message is not processed until
the ongoing restart is completed,

a the first expiry of T316 resends RESTART; when it is expired for the last time,
comection is considered to be unusable. Cail control unit is not destroyed,
virtud channel is not released and associated resources (e.g., c d reference value,
VPI/VCI dues) are left in the local c d context and marked as uOutOfOrder".
On the user side, cdOutOfOrder is additionally generated for the user,

0 when RESTARTACK arrives before T316 expires and the channel indicated
in the message corresponds to the one being restarted, c d control unit and
d l resources are released (local context is wiped). Additionally, on the user
side, call termination is reported to the user, while on the network side of the
interface the remote connection is cleared (i.e., Net RLEASE is sent),

0 when RESTARTACK arrives and T316 is ninning, but the channel indicated in
the message is different from the one being restarted, the message is discarded;
when RESTARTACK anives and 7'316 is not running, STATUS with cause
#IO1 'message not compatible with cal1 state" is sent,

a when incorning restort is ini tiated upon recept ion of correct RESTART message,
timerT317 is started and simulation of internd "clearing" is launched,

0 if interna1 clearing finishes before T317 expires, Cal1 Control unit and al1 re-
sources are released. Additionally, ei ther user is notified of termination (user
side) or remote connection is cleared (network side),

0 if T317 expires, the connection is considered unusable. On the the user side,
callOutOfOrder is sent,

a if RESTART arrives when T317 is already running, STATUS is generated with
cause #101 'message not compatible with call staten,

0 incoming and outgoing restart procedures are canied in parallel and are inde-
pendent. if the same channel is being restarted simultaneously, the final result
depends on the procedure that terminates first - the second one has no way

to o v e d e a decision aiready taken (success or failure).

6.5 Complete Mode1 Testing

The testing environment used in this step is based on the original simulation mode1
from Chapter 5. It is presented in Figure 6.4. The oniy modifications axe two addi-
tiond instances of the module SAAL Test, which simulate the SAAL layer on both

interfaces.

Figure 6.4: Test environment for complete model.

SAAL Test modules are necessary to introduce a "hostile" environment. They
intercept messages sent between protocol entities, delay these messages for a ran-

domly chosen penod of time, and, finaily, forward them to the destination. Since the
capacities of SAAL Test moduies axe Limited, it is possible that an miving message
cannot be stored and must be dropped. As well, messages do not have to be sent in
the order they were received (there is no FIFO queue there), so that missequencing
of messages belonging to the same comection can occur 3. Addit iondy, we also use

31t may look like an overkill, since SAAL normally guarantees delivety and sequencing. Please
note, however, that the protocol must also deai with situations where the other signaling entity is
fauity. By introducing aii kinds of hazards between the entities, we avoid the necessity of explicitly
simulating incorrect behaviour on the other side.

Edb observers to remove messages from interaction points and corrupt them in trans-
port, thus directly triggering recovery procedures for otherwise difficult-to-provoke
situations.

Simulations are automatic; they are partially controlled by scripts, but most ly
by a non-deterministic selection of execution paths. User modules on both interfaces
randomly generate multiple requests for outgoing connections, accept or reject the in-
corning calls, and terminate the ones in progress. Characteristic of the user behaviour
is basically defined by the algorithm coded in the module, but may be also tuned by
setting some global variables (e.g., each user may not be allowed to terminate, ini-
tiate, or reject the d l) . Experiments are conducted in both "friendlyn (no external

disruptions) and "hostilen environments (wit h SA AL Test modules and destructive
observers). The level of "hostilities" can also be adjusted by changing transmission
delays, maaipulating the capacities of interna1 SAAL modules storage and defining
appropriate observers.

6.5.2 Results

This final step of testing turned out to be the most difficult to plan and summarize.
During Cal1 Control and SignEnt validation, the test scenarios are directly derived
from the functions performed by the modules. In the testing o l a complete model,
we do not r e d y know what kind of problems we are looking for - our goal is to
find all abnormalities which rnight lead to any kind of incorrect behaviour. First,

we need to identik faulty situations (and it is not trivial in case of four signaling

entities working in pardel), then we have to trace back the sequence of events that
caused this error to occur, understand its reasons, and, hally, h d a solution. It is

always possible, that in the process of fixing one particular problem, we intedered
with previously tested elements of specification, so that the whole testing must be
relaunched. Additiondy, however long and exhaustive the simulations may be, they
are still merely based on a statistical assumption that sooner or later the erron will

be revealed. Obviously, there is no guarantee thôt ail problems can be found; random
simulation may never exploit some scenarios.

It is not possible to directly present the exact results of this phase of the validation.

The reader should realize that each of the simulations produced hundreds of kilobytes
of trace files, which kept track of al1 events in the system. We had to analyze these
files stepby-step, visudize the protocol operation and decide whether it complies
wit h the requirements of the documentation. It was definitely the most tedious and
tiresorne stage of the entire project. As a result of these experiments, we introduced
many changes to t h e original draft of Estelle specification. Particularly, error recovery
rnechanisms in SignEnt modules were drnost completely redesigned to receive their
final shape as described in Section 5.5.3.

Our implementation of the protocol has been shown to be able to establish, sustain
and tear down multiple point-to-point connections. It can correctly recognize and

recover frorn erroneous situations. Error handling procedures are sensitive enough;
even if they are unnecessarily triggered in correct situations ", they do not cause

any malfunction. Simultaneous connections do not interfere, Le., states or messages
belonging to one cd1 have no influence on another. Allocation of resources is correct:
entities do not assign more than they have, all values which have to be unique do

not appear more than once, released resources are reused. The protocol does not

deadlock or stall.

Additionally, these simulations contributed to even deeper understaading of some
subtleties of Q.2931, clarified the intentions of the protocol designers and revealed
interesting situations that may happen in reality. Some of theni are briefly described
in the next section.

6.6 Observations and Conclusions

Like most specifications, Q.2931 defines actions to be implemented, but it does not
bother to explain or justifi thei. purposes. Sometimes, it is difficult to understaad
some of the solutions only on the ba i s of their definition. Randorn simulations of the
protocol may be of great help here, since they tend to wander into sequences of events
that are not easily anticipated. We will present some selected issues discovered during

*It is not an error, but may happen if two entities at the same t h e try to do something with the
connection (e.g., release it). See the next section for detds.

simulations, give additional explanations, and back them with specific examples. It
will allow us to understand an importance of certain design solutions, which otherwise
might not get enough attention, even though they can have a large impact on the
correct protocol operation.

W h y should the cal1 reference value not be reused immediately?

According to the specification: "... it is suggested that implementors avoid imme-
diate reuse of the cal1 reference values after they are released." As a matter of fact, it

should not be just a suggestion, since disregarding t his rule may lead to serious prob-
lems on the interface. Figure 6.5 presents an example of scenario which illustrates
the danger.

USER SIDE W O R K SIDE

x in Release
Wcation (N12) state

Figure 6.5: Immediate reuse of the c d reference value.

Let us assume, that both sides simultaneously decide to clear the connection
identified by the c d reference x. After RLEASE messages for x are sent, UserSig-
nEnt enters Release Request state (U11) and NetSignEnt enters Release Indication
state (N12). They both await for RLEASE-COMPLETE, but instead they receive
RLEASE messages, so error recovery procedures are triggered. According to the def-
inition, both sides must return RLEASE-COMPLETE, enter N d state and release

all resources. If the "suggestionn from the documentation were not followed, the call
reference value could be reused for any other connection now.

In our example, the user side assigns x to a new outgoing call and in-
cludes it in SETUP sent to the other side. On the network side, reception of

RLEASE-COMPLETE does not cause any problems, since RLEASE-COMPLETE
referring to an unknown call (z is already released) is simply discarded. Upon
arriva1 of SETUP, new c d establishment is started. Unfortunately, reception of
RLEASE-COMPLETE on the user side has disastrous consequences. It is treated as

a response to SETUP and the newly initiated c d is terminated without any reason.

How can we have unexpected messages in a fault-free environment?

Examples of unexpected reception of RLEASE and RLEASE-COMPLETE mes-
sages, even though everything works correctly, are presented above. It happens due
to the simdtaneous actions of both signaling entities rather than real errors. Another
example, this time for CONNCTACK is shown in Figure 6.6.

USER SIDE NETWORK SlDE

call in Active statc

call in Release
Iadication ('12) state

ERROR!

Figure 6.6: Unexpected CONNCTACK in error-free message exchange.

After Net SignEnt transfers CONNCT message across the interface, it enters an

Active state irnmediatek without waiting for sxknowiedgment fiom UserSignEnt.
This adcnowledgment will be sent anyway, but should be discarded by the network.

It is possible though, that before UserSignEnt responds with CONNCTACK, the
network side already starts clearing: it sends RLEASE and enten N12. Arrival of
CONNCTACK in this situation is treated as an error condition and STATUS with
cause #IO1 Umessage not compatible with cail state" is generated. Fortunately, this
message does not escalate the confusion; although usually it signais a fatal error,
when received in Release Request, Indication or N d state, i t is only discarded.

Why should the user ever reject the VPI/VCI values ailocated by the
network?

The specification states that the user can reject the connection identification
(VPI/VCI) assigned by the network by sending RLEASE-COMPLETE with cause
#35 UVPCI/VCI not available". On the other hand, allocation of these values is
entirely and always the responsibility of NetSigEnt. Therefore, it might not be clear,
why UserSignEnt has a right to question the asignment received frorn the network.
Figure 6.7 describes a situation, in which it is justified.

USER SIDE NETWORK SIDE

tail ciauhg inib'ntrii

CO* IILEASE- -
dreodyfareuse

cau-b
stiii in pmgma

witb O
(46) &@

(a 6) axe re€ciVtb f o r a n c w d
whk old vaiw

b calltenlhad

Figure 6.7: VPI/VCI values rejection by UserSignEnt.

Let us assume, that there is a connection with VPYVCI values (a, b). UserSig-
nEnt wishes to clear the c d and sends RLEASE. (a, b) wiiI not be released on the
user side until al1 clearing procedures are finished. Mer NetSignEnt receives the
clearing message, it releases all resources and responds with RLEASE-COMPLETE.

At this point, (a, b) rnay be reused by NetSignEnt, since the cal1 is already termi-
nated and there are no other constraints (as in case of call reference). Hence, when
another establishment is initiated, NetSignEnt assigns (a, b) to the new connection
and includes them in SETUP (could be also CALLPROCEEDING or CONNCT).
Please note, that even though the sequence is preserved and SETUP arrives later
than RLEASE-COMPLETE, it belongs to another c d . Different cals are controlled
by separate finite state machines, which are neither synchronized nor correlated in
any way. It is possible, that SETUP will start to be processed when the processing
of RLEASE-COMPLETE is not finished and resources of the old call are still not
free. In such a situation (a, b) received in SETUP cannot be accepted for the new
connection and RLEASE-COMPLETE with #35 'VPCI/VCI not available" will be
returned.

In conclusion of the verification process, we believe that our forma1 specification
truthfuily represents the Q.2931 protocol in al1 these aspects, which were intended
for implernentation in this work. We do not c l a h it may be formally proven, since
validation through simulation cannot guarantee the correctness, but we trust that
both our approach to testing and our obtained results are credible. Nonetheless,
there are certainly other ways to validate the protocol and other scenarios to ex-
plore. In particular, restart procedures, which do not follow the regular pattern of

message processing in Cal1 Control units, may be potentially error-prone. Since they
can be launched in unforeseen and undefmed circumstances, it is extremely difficult
to construct any exhaustive met hodology for testing this kind of behaviour. Unques-

tionably, more work can be done in this field, but the development of complete and
univend validation suites for all aspects of ATM signaling was not meant to be a

part of this project.

Chapter 7

Related Work

7.1 Research on ATM Signaling Protocols

Due to the cornmon recognition of ATM as a technology of the future, it is impossible
to even list universi ties, research centers, government al institutions, commercial ven-
dors and telecommunication cornpanies working in d areas of ATM networking '. In

a brief surnmary below, we will only mention some of the publicly accessible projects,
the most recent and the most correlated with the topic of tLis document.

In Concordia University, Montréal, Morteza Ghodrat, under the supervision of
Professor J.W. Atwood, formally specified and validated in Estelle the major part of
the ATM lower layer signaling: Service Specific Connection Oriented Protocol(1995).
This project [25] provided direct motivation for our own work and was the first step
in an on-going effort to create a complete ATM UNI signaling mechanism in Estelle.

In the University of Ottawa, students supervised by Professor Luigi Logrippo
specified part of the ATM UNI signaling using another Fonnal Description Technique
- LOTOS (1995) [26]. Both SSCOP and 4.2931 are taken into account. Due to the
mathematical and strict nature of this particular description technique, the LOTOS

'ATM Forum alone, since it foundatioa in 1991, grew Born 4 to more than 750 mernber organi-
zations worldwide [24].

specification concentrates more on a theoretical analysis and forrnal correctness of the
protocol, as opposed to the implernentation-oriented solut ions typical for Estelle.

Simultaneously with o u research, in the Université de Montréal, students under
the supervision of Professor Gregor v. Bochman are working on yet another ATM
signaling project - this time in Specification and Description Language, SDL. Their
efforts include formal specification of 4.2931 point-to-point connection control, as well
as the development of test suites for automatic validation of the protocol. Results of
this project are expected to be amilable in 1997.

Harri Hansen from Helsinki University of Technology deais in 1271 with signaling

issues in case of a wireless access to the ATM network (1996). He proposes a set of

mobility specific functions to be implemented over convent ional ATM switches, in or-
der to create a Wireless ATM (WATM) environment and integrate it with stationary
public ATM networks. Even though most of the work concentrates on solving purely

mobility-related problems, connection management functions identify also signaling

protocols and handover mechanisms necessary for integration with fixed telecornmu-
nicat ion networks. From the point of view of both mobile terminal (MBT) and wired
ATM switch, call control is based on the Q.2931 specification. To support mobility
of terminais, an additional signaling protocol, called W-EXT (Wireless Extension),

is used between the MBT and the switch. W-EXT is transparent for the Q.2931
connection and is used for locating the terminal. security call authentication, and
handover. The author suggests that the W-EXT signahg connection is established
"on demandn, i.e., in situations where Q.2931 generates SETUP and initiates its own

procedures. Unfortunately, he does not elaborate in more detail on any practical
ways of doing it, in particular, on the issue of possible time-outs. Timers in Q.2931
are designed for very reliabie physical media and do not leave too rnuch time for any
extra activity. For example, the h s t response to SETUP is expected in just 4 sec-
onds. Apart from usud signaling delays (resource allocation, waiting for a response

Fiom the user, etc.), in WATM this period must additionally include paging the MBT,
security fûnctions (checking the databases), access to the medium, and two way radio
communication (possible fadts and retransmissions). Since increasing time-out val-
ues is not a solution (being comected to the public or private UNI, WATM must work
with standaxd settings), a successful connection establishment seems to be ciifficuit
to achieve.

An interesting case of education-oriented work on 8.2931 cm be found on the
Internet. David Hudek created demonstration package for UNI 3.1 signding [28],
written entirely in Java. It is not a working implementation or specification of the
protocol, but it may serve as a usefd educational tool for understanding of signaling
principles. After c d establishment or release is interactively requested, the Java
applet visualizes stepby-step the processing of cal1 control procedures. Apart from a

simple animation representing information flow in the network, the tool records and
displays an exact sequence and contents of al1 exchanged messages.

As we already mentioned before, various softwme and hardware vendors offer
t heir own signaling packages. These solutions may be eit her direct implementations
of officia1 specification or independently defined protocols, which preserve partial or
full compatibility wi t h standards. The first category is represented, for example, by
CELL-UNI 3.1&3.0 [29] package from Cellware; the second group includes Simple
Protocol for ATM Network Signaling, SPANS [3O] designed for Fore switches. Obvi-
ously, only general information and documentation for these products can be accessed;
their implementation details and the code are not freely distributed.

Even though Q.2931 is an international standard, it is not the only existing ATM
signaling protocol. Grenville Amitage in University of Melbourne proposes gNET
[31] - signding protocol for ATM local area networks (1994). This work was initiated
when international standards did not exist and it was specifically designed to support

multimedia terminais. gNET provides basic service for connection establishment and
termination, but with the set of additional constraints resulting from its intended
applications. Virtual connections can only be unidirectional, they are able to perform
point-temultipoint unidirectional multicasting, and they are adrnitted with a limited
set of trdfic parameters. The protocol defines its own addressing mechanism (both for
interfaces and AAL users) and also supports %hared medium" links, where different
nodes are connected to the common bus and have access to each other's cells- A
distinctive feature of this solution is that signaling messages are restricted to only one
cell. This simplifies greatly the management of connections over a shared medium,
but, at the same tirne, limits to a minimum a variety of services provided by the
protocol.

Another example of a signahng protocol is the Generic Universal Line Protocol,

GULP, presented by See-Mong Tan in (321. The protocol is used to control communi-
cation between active objects in an object-oriented Architecture for Cal1 Processing,
Archos, developed in University of Illinois at Urbana Champlain. GULP is a sim-
ple signaling and supervision protocol, which realizes uprocess-per-call" (also known

as "thread-per-connection") model of ATM c d processing. Apart from setting up
and tearing down connections, i t is also used to synchronize cornmunicating ob jects.

See-Mong Tan is also a ceauthor (with Roy Campbell) of a project on x-ATM: A
Portable ATM Protocol Toolkit [33]. It is an environment for experiments in imple-
mentation of ATM protocols, located in various layers of protocol reference model:
AAL, signaling, IP over ATM, etc. One of the rnost important features of the toolkit
is its signaling suite. It is based on a generic SIG protocol, which represents the finite
state machine for processing abstract signaling messages. Upon reception of initiating
message, SIG creates a separate and autonomous thread for a new connection, and
from now on, a11 the rernaining messages are processed by this thread 2. Interest-
ing property of this protocol is that its behaviour may be easily "translated" into
any other linear signaling protocol (like Q.2931, SPANS, or GULP). In the author's
own words: "In object- oriented terminolog, the superclass SIG implements abstract

signalling while subclasses such as SPANS and Q.2931 specialize SIG for their own
particular protocols." The finite state machine implemented in SIG is independent
and invariable in al1 cases, only messages must be translated from an abstract format
used by SIG into the factual signaling formats itsed by a given protocol.

7.2 Estelle Specifications

The Estelle FDT is used all around the world for formal specification of protocols,

services, and systems. One Estelle software toolkit, EDT (18, 191 alone is officially
Licensed to more than 30 universities and research centers in 11 countries. Tt was also
used in some industrial applications.

The French Institut National des Télécommunications, INT (where EDT is being
developed) is one OF the rnost active promoters of Esteue. Researchers fiom INT are

2Please note similarity to out own solution with SignEnt and C d Control Unit.

particularly involved in work on the Xpress Tansfer Protocol, XTP [34]. XTP is
a high performance protocol designed for modern distributed, real-tirne, and multi-
media systems. It defines functionalities within transport and, partially, net work ISO
OS1 layers (e.g., support of routing). Subsequent versions of XTP were specified
and validated using Estelle. Validation methods designed For specification of XTP
version 4.0 [21,22,23] were a basis for drafting our own testing techniques for Q.2931.
Xpress Transport Protocol is also under extensive study in the High Speed Protocols
Laboratory in Concordia University, Montréal (often in collaboration with INT) [35,
361.

La Trobe University in Melbourne, Australia, carries research on formal descrip-
tion of ISO standardized ROSE protocol [37] and applying Numerical Petri Net a p
proach for verificat ion of Estelie specifications [38]. Introduction of analysis facili t ies
offered by high-level Pet ri Nets into Estelle definit ions is also studied in the Technical
University of Ilmenau, Germany [39].

The University of Delaware, Newark and the U.S. A m y cooperate in using Estelle
for designing, test ing and performance evaluation of military communication prote
cols [40, 411. They also created formal description for ISO defined Virtual Terminal
Protocol 1421 and Network Time Protocol [43]. Additionally, University of Delaware
hosts an f t p site [44] with publicly accessible complete Estelle specifications. Apart
Erom many pro tocols mentioned above, interes ted reader may h d t h e , aniong ot her
definitions, Distributedm Queue Dual Bus (DQDB) standard for Metropolitan Area
Network (ISO 802.6) [45] and ITU-T Recommendation Q.921 [46].

Chapter 8

Conclusions and Future Work

ITU-T Recommendation Q.2931 and ATM Forum specification UNI 3.1 define the

signaling protocol to be used in ATM networks for both private and public versions of

the User Network Interface. The protocol provides a uniform means for establishment
and release of swi t ched virt ual connections.

8.1 Conclusions

In this thesis, we designed and created a forma1 specification of the Q.3931 protocol
in the Estelle FDT. Since the protocol operation on the user and the network sides of
the interface is not symmetric, 4.2931 is represented formdly by two corresponding
signaling entities: UserSignEnt and NetSignEnt. In order to demonstrate and validate

signaling functionalities, we developed a simulation model, which corresponds to the

working environment of the protocol. Apart from the signaling entities, it includes
modules acting as ATM usen and NNI signaling protocol of ATM networks. For
the purpose of this model, we also needed to fill existing specification gaps with our

own solutions for the Application P r o g r d n g Interface, API, and the interworking
procedures between UNI and NNI protocols.

During the experimental phase of the project, we ran numerous simulations to

verify that our Estelle description can be considered a forma1 counterpart of the orig-
inal specification. We followed a carefdly designed, systematic, bottom-up validation
path. In the first place, we tested the behaviour of the basic module representing
a single h i t e state machine. Then, we concentrated on validation of the signaling

entities on both sides of the interface independently. Findy, in a series of extensive
simulations, we tested interoperability of all elements of the model. For each step,
we developed a separate testing environment. This methodology allowed us to locate
and remove many errors, which resulted in redesigning and rewriting some parts of
the specification. As a consequence of the validation process, we believe that the final

version of our forma. description corresponds to the definition of Q.2931 protocol in
al1 the aspects that we decided to handle in this work.

We also conclude that Q.2931 itself is an example of a well and carefully defined
protocol. In a11 cases covered by our simulations, even with very 'hostilen behaviour
of the environment, the protocol tunied out to be successful. However, in this context,

i t does not necessarily mean that requested connection is actually established. From

the signaling point of view, success may also mean that if the call caonot be placed,
the protocol gacefully recovers and terminates the establishment procedure. The

crucial point for protocol definition is to make sure that, within a reasonoble period
of tirne, al1 involved parties perceive the call status in the same way (established or

released). Q.2931 has shown to possess this feature.

Unfortunately, the ability to deal with numerous unexpected situations cornes at

a price of complex message verification and fault recovery. Error handling proce-

dures contain many exceptions fiom general d e s and provisions for treating partic-
ular events. In real implementations, it translates into time-consurning, processor-
intensive dgorithms, and it may incline a programmer to consider simpüSing, or even

discarding, certain - seerningly unnecessary - procedures. In this thesis, however,
we discovered and presented selected examples of situations that justify the solutions
proposed in the definition.

8.2 Future Work

We would like to suggest several possible directions for continuing this project. We
do not intend to explore al1 opport unities, but rather wish to indicate the areas that
we find particularly interesting. .

The specification may be extended to include functionalities not handled in this
thesis, such as point-to-multipoint connection procedures (defined by ATM Forum in

[?]) or metasignaling (defined by ITU-T in [4]).

The officia1 definition is not a final product yet; it is stili in the deveiopment phase,

so there will be a constant need for updating our forma1 specification to accommodate
new elements and changes. For example, the ATM Forum ha. already announced
ATM UNI 4.0, and ITU-T is working on their version of multi-party connections.

It would be interesting to combine our Q .293l definition with the already existing

specification of Signaling AAL protocol, SSCOP [25]. After the rnissing joint, Service

Specific Coordination Function, is defined, we could simulate a complete ATM UNI
signaling stack.

Validation methods used in this work are based on simulations, and, as we ex-

plained, they do not guarantee correctness. We believe that it would be very useful
to design and conduct more fomal verification procedures. One opportunities in this
area is to look at some work on applying Petri Nets to Estelle specifications [38, 391,
which we mentioned in Section 7.2.

There are many implementation specific or undefined issues in the documenta-
tion, and they should be subjects of further studies. For example, it is not known
which states s h d be considered incompatible by status procedures, and what kind
of recovery actions s h d be taken. As weil, in some cases, protocol creators leave
developers an option to either design their own error handling procedures or use the

default connection clearing. These and other akin problems rnay be addressed in
subsequent refmements of our description, so that, eventudy, an implementation of
the protocol can be built. We think that it wodd be also worthwhile to port such an
implement ation onto the real network environment.

Bibliography

[l] Chen, T.M., Liu, S.S., "ATM switching systems", Artech House, 1995.

(21 Alles, A., "ATM Internetworkingn, Cisco Systems Inc. Publication, 1995.

[3] Wajda, K., 'Sieci szerokopasmowen (Broadband Networks - in Polish),

Wydawnictwo FPT, Krakow, 1994.

[4] ITU-T Recommendation Q.2931 "B-ISDN User-Network Interface layer 3 specifi-

cation for basic cd/bearer control" , 1994.

[5] ITU-T Recommendatioa Q.931 "Digital Subscriber Sigaalling System No. 1 (DSS
1) - ISDN User-Network Interface layer 3 specification for basic cal1 control",
1993.

(61 ISO Document DTR 10167 "Guidelines for the Application of Estelle, LOTOS,
and SDLn, 1990.

[7] ATM Forum, "ATM User-Network Interface Specification, version 3.1" , 1994.

[a] Zahir Ebrahim, "A brief tutorid on ATMn,
ht tp://dailas. ucd.ie/3idowney/atmintro. htm1

[9] Le Boudec, J.Y., "Welcome to the LRC Tutorial Pagesn,

ht tp://lrcwww.epiP. ùz/PSfiles/-t utorid.4tml

[l O] Reddivalam, S., 'ATM Modulen,
h t tp://cne.gmu.edu/-sreddiva/atmmod u 1 e . M

[1 l] Xylan Corporation, "The switching bookn,
ht tp://www.xyIa~1.com/sb/start.btd

[12] ITU-T Recommendations Q ,2761 UBISUP-Functional descriptionn, Q.2762
"BISUP-General functions of messages and signais", Q.2763 "BISUP-Formats
and codes", Q.2764 "BISUP-Basic cd1 procedures", 1993.

[13] ITU-T Recommeodation Q.2130 "B-ISDN Signalling ATM Adaptation Layer -
Service Specific Coordination Function for support of signalling at the User-to-
Network interface (SSCF at UNI)", 1993.

[14] ITU-T Recommendation Q.2110 "B-ISDN ATM Adaptation Layer Service Spe-
cific Connection Oriented Protocol (SSCOP)" , 1993.

[15] "Estelle: A Formal Descript ion Technique based on Extended S tate Transition
Modeln , International Standard ISO 9074: 1989 (E) (1 989-07-15).

[16] Budkowski, S., Dembinski, P., "An introduction to Estelle: A specification lm-
guage for distributed systems", Cornputer Networks and ISDN Systems Journal,
~01.14, No.1, 1988.

[17] ISO 9074: 1989/Amendement 1, Annex D, "Estelle Tutorial" , 1989.

[IS] Estelle Development Toolset (EDT). version 4.0. "General information and
Esteile-to-C compiler (Ec)" , User Reference Manual, INT Evry, France, 1996.

[19] Estelle Development Toolset (EDT), version 4.0, "EsteUe Simulator/Debugger
(Edb) and Universal Test Drivers Generator (Utdg)", User Reference Manual,
INT Evry, France, 1996.

[20] Holzmann, G. J., "Design and validation of computer protocolsn , Prentice-Hall,
1992.

[21] Alkhechi, B., Benalycherif, M.L., Budkowski, S., Dembinski, P., Gardie, M.,
Lallet, E., Mouche1 La Fosse, J.P., Octavian, C., Souissi, Y., "Fornial specification,
validation, and performance eduat ion of the Xpress Transfer Protocol (XTP)",
Researciz report No. 931 004, Institut National des Télécommunications, Évry,

France, 1993.

[22] Catrina, O., Lallet, E., uCoutributions to the specification and validation of

the Xpress Transfer Protocol" , Research report No. 931 005, Institut National des
Télécommunications, Évry, France, 1993.

1231 Catrina, O., UProtocols for telecommunication networks: Development of com-
plex communication protocols using Estelle FDTn, Extendecf abstract of the Ph.D.
Thesis, Politehnica University Bucharest, 1996.

[24] ATM Forum, 6t tp://www.atmforum.com/ , ftp.atmforum.com/pu b

[25] Ghodrat, M., "Specification and verification of the Service Specific Connection
Oriented Protocol", M.Sc. Thesis, Concordia University, Montreal, 1995.

[26] Bihan-Faou, P., Mahamad, E., "Rewriting (part of) the ATM specification in
LOTOS", LOTOS Research Group report, University of Ottawa, Canada, 1995.

[27] Hansen, H., "Connection management functions of a private wireless ATM net-
work" , M A . Thesis, Helsinki University of Technology, 1996.

[28] Hudek, D., "Demo of (Java powered) UNI 3.1 Signaling Packagen,
http://www. ultranet.com/'dhudek/junidemol .&ml

[29] Cellware Broadband, 'CELLEXPRESS introductionn,
h t tp://www. cell ware. de/soft ware/qmI. h tml

[30] Fore, "SPANS Protocol Specification Version 2.0n, Fore Systems Inc. Publication,
1993.

1311 Armitage, G.J., "gNET: An ATM LAN signalling protocol*, Technicd Report,
University of Melbourne, 1994.

1321 Tan, S.M., "An architecture for c d processing", MaSc. Thesis, University of

Illinois at Urbana Champaign, 1993.

[33] Tan, S.M., Campbell, R.H., "2-ATM: A Portable ATM Protocol Toolkitn,
http://choices.cs. uiuc.edu/latex.docs/suite/suite.html

[34] XTP Forum, "Xpress Transport Protocol Specification, Revision 4.0n, 1995.

[35] Cheung, J., "An Estelle Specification and Partial Validation of the Xpress Tram-

fer Protocol" , M.Sc. Thesis, Concordia University, 1990.

[36] Soumas, N., "An XTP Router in the Internet Addressing Domainn, M.%. Project
Report, McGill Univenity, 1994.

[31] Jirachiefpattana, A., Lai, R.,"Verification Resdts for the ISO ROSE Protocol
Speci fied in Es tellen. In: Prot oc01 Specifica tion, Testing and Verification, XIV,
eds. S.T. Vuong and S.T. Chanson, Chapman & Hall, IFIP, 1995.

[38] Jirachiefpat tana, A., Lai, R., "Verifying Estelle Speci ficat ions: Numerical Petri

Nets Approachn . In: Proceedings of the 1993 ln ternational Conference on Network
Protocols, IEEE Computer Society Press, 1993.

[39] Nuetzel, J. , "Analysis and Verification of High-Level-Nets in Combination with
Formal Estelle Specification", Petri Nets applied to Protocols, Workshop of the
16th In ternational Con ference on Application a n d Theory of Petri Nets, Torino,

Italy, 1995.

[40] Amer, P., Burch, G., Sethi, A., Zhu, D., Dzik, T., Menell, R., McMahon, M.,
"Estelle specification of MILSTD 188-220A data link layern , in: Proceedings of
MILCOM '96, McLean, VA, 1996.

[41] Amer, P., Sethi, A., Fecko, M., Uyar, M., UFormal design and testing of army

cornmunication protocols based on Estellen, In: Proceedings of 1s t AR L/ATIRP
Conference, Coilege Park, 1997.

[42] Amer, P., Çeçeli, F., Juanole, G., "Fornial Specification of ISO Virtual Terminal
in Estellen, In: Proc. lEEE INFOCOM'88, IEEE, New Orleans, 1988.

[43] MilIs, D., "Network Time Protocol (Version 2) Specification and Implementa-
tion", Techical Report, University of Delaware, 1989.

[44] Univer si t y of Delaware, Rp. udel.edu/p u b/grope/es tede-specs/

[45] ISO/IEC Standard DIS 8802-6, "Information technology - Telecommunications
and information exchange between systems - Local and metropolitan area net-

works - Specific requirernents - Part 6: Distributed Queue Dual Bus (DQDB)
access method and physical layer specifications (Formerly DAM 1)".

(461 ITU-T Recommendation Q.921 bis 'Abstract test suite for LAPD conformance
testingn, 1993.

Good starting points for ATM research on the Internet:

[47] Batsell, S., "ORNL Network Research Navigator - ATM Page",
http://www.epm.ornl.gov/'batse~/atm.h t d

[48] Robel, A., Dent, C., "The ceIl relay retreatn , h ttp://cell-relay indiana. edu/cell-

relay/

[49] Koes ter, D., UAsynchronous Transfer Mode (ATM) Technology Web Knowledge-
base",

h t t p : / / w w w . n p a c . s y r . e d u / u s e r s / d p k / A T M ~
technologyhtml

Appendix A

E. 164 Addressing Format

An ATM address uniquely identifies the ATM endsystem in the network(s). The
ATM Forum specification uses three different formats of the address: E.164 num-
6ering defined by ITU-T Recommendation E.164, Data Country Code (DCC), and
Internalional Code Designutor (ICD). The specification recommends the support of

al1 three formats for private networks and either E.164 o r al1 three formats for pub-
lic ATM. In our simulation model, only E.164 is currently supported. The general
structure of the E.164 ATM format is presented in Figure A.1.

A I I H H 1 I I I - I I I I I
F E.164 HO-DSP ES1 E
1 L
L I I I I I I I I I I I

Figure A.1: E.164 ATM address format.

An ATM address is always 20 octets. It consists of two main parts: Initial Domain
Part (IDP) and Domain Specifc Part (DSP).

The first octet of IDP is Authorïty and Fomat Identifier, AFI. It identifies the
administrative authority that docated the number and the format of the remaining

part. For E.164 numbering the value of AFI is coded to 45. The next 8 octets,
initial Domain Idedification (IDI) , specify the ISDN telephone numbers in their
international form. They can be up to 15 digits long and they are coded in Binary
Coded Decimal, BCD, syntax (Le., one digit takes one semi-octet, two digits form one

octet). If the telephone number is less than 15 digits long, it is paddcd with leading
0000 semi octet to obtain the maximum length. The address is ended with the 1111
semi octet after the last digit to obtain an integral number of octets (note that 15
digits takes only 7.5 octets and the ID1 is 8 octets).

Domain Specific Part, DSP, consists of High Order DSP (HO-DSP), End System
Identifier (ESI), and Selector. HO-DSP is used by the authority identified in IDP
to divide the domain into separate subdomains. It defines the hierarchical structure
of the authority's networking resources. ES1 identifies an end system within the
subdomain created by HO-DSP. It takes 6 octets and must be unique within the
particular value of the IDP+HO-DSP. The last octet, Selector, is not used by ATM
routing but may be used by endsystems.

In our implernentation of the specification, ATM addresses are produced by the
procedure produceEl64Addr(phLikeNr, HoDsp , IntNumber , VAR atmAddr) .

phLikeNr ("phone-like number") is a string of 15 digits forming the telephone
number l . HoDsp is a string of 8 digits, and it identifies the domain within phLikeNr
number. Both phLikeNr and HoDsp are inserted accordingly into the ATM address,
but they are actually not used by the Network module for routing; so their values do
not have any meaning for the m e n t implementation.

For the purpose of identifying the interface in our simulation model, we use Int-
Number value, which is encoded in the first octet of ES1 (i.e., 14th octet of the
whole address). Currently, o d y this octet is used by Network module For routing, so
the number of interfaces participating in the simulation is limited to 256. Remaining
five octets of ES1 and Selector are coded to aU Os.

The resulting 20 octets of the complete ATM address axe inserted into the at-

rnAddr output parameter.

lph.Lüre~r supplieci to the procedure must have exactly 15 digits - in case of shorter numbers,
the programmer is responsible for providing leadhg Os.

Appendix B

List

A
AAL
AFI
ANS1
API

ATM

B
BCD
B-ISD N
BISUP

C
CC
CP-AAL
CS

of Acronyms

ATM Adaptation Layer
Authority and Format Identifier

American National Standards Institute
Application Prograrnming Interface
Asynchronous Transfer Mode

Binary Coded Decimal
Broadband htegrated Service Digital Network

Broadband [SDN User Part

Cal1 Control
Common Part AAL
Convergence Sublaver

D
DCC Data Country Code
DSP Domain Specific Part

E
ES1 End System Identifier
ETSI European Telecommunications Standards Instit ute

F
FDT Forma1 Description Technique

FIFO First-In-First-Out

H
HO-DSP High Order DSP

1
ICD
ID1
IDP
IE
IP
ISDN
ISSI
ITU-T

International Code Designator
Initial Domain Identification
Initial Domain Part

Informat ion Element
Interaction Point
Integrated Service Digital Network
Inter Switching System Interface
Internat ional Telecornmunicat ion Union

N
NNI Net work Node Interface (also known as Net wor k Network Interface)

Q
&os Quality of Service

S
SAAL SignalingATMAdaptationLayer
S AR Segmentation And Reassembly
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Network
SSCF Service Specific Coordination Function
SSCOP Service Specific Connection Oriented Protocol

T
TDM Time Division Multiplexing

v
VCI Virtual Connection Identifier
VLIE Vaxiable Length Information Elernent
VPCI Virtual Path Connection Identifier (equivalent to VPI)
VPI Virtual Path Identifier

TEST TARêET (QA-3)

APPLIED IMAGE. lnc
fi 1653 East Main Street -

-& Rochester* NY 14609 USA
-0 -- - - Phone: 716î482-0300 --= - - FW 71 WZ8MWQ

