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ABSTRACT

Harry Nicos lordanou: Continuous Versus Discrete Sliding Mode Control as Applied
to a Pneumatic Positioning System. Ph.D.Thesis,Queen’s University at Kingston, Aprii 1998.

Presented in this thesis is the development of a practical set of design guidelines
to improve the performance of pneumatic positioning systems by appropriate sizing of
the valve and the cylinder, and by careful choice of the tuning parameters for Continuous
Sliding Mode (CSLM) and Discrete Sliding Mode (DSLM) controllers. CSLM and
DSLM were selected because of their robustness in the presence of nonlinearities such as
those found in a pneumatic positioning system.

Pneumatic systems exhibit parameter variations along the length of the stroke due
to air compressibility. The size ratio (area to stroke) of the cylinder was found to dictate
the limitations on the sampling time for adequate performance with a linear controller. A
technique to identify the ultimate gain is presented, in order to illustrate how system
stability varies with piston position and cylinder size ratio. Finally, the effect of the
cylinder size ratio, valve port area and valve configuration on system performance with a
linear Proportional-Velocity-Acceleration (PVA) controller is documented.

The first nonlinear controller investigated was CSLM. Techniques for the design
of the sliding surface, the selection of the boundary layer thickness and sliding gain, as
well as the effect of the equivalent gain, were investigated and a comprehensive design
procedure was developed. With CSLM, the sliding surface design can be linked to
familiar time domain performance parameters, but its performance is limited to relatively
small sampling times. The robustness of CSLM in the context of its ability to maintain
specified overshoot and settling time was tested by changing the payload mass.

The second nonlinear controller investigated was DSLM which is intended for
discrete implementation and consequently takes explicit account of the sampling time.
Techniques for the design of the controller are presented that are based on a compilation
of existing methods, but with new features added for sliding surface design and controller
tuning. The main contributions are: 1) the design approach for the sliding surface, where
a link to time domain performance is established, and 2) the switching elements of DSLM
which are selected by means of a classical linear controls approach. Finally, an original
set of comprehensive design guidelines for DSLM are documented.

Following a set of experimental tests to validate the system model, a series of additional
robustness tests were performed in simulation. These tests were designed to further
verify the performance of the linear PVA and the nonlinear CSLM and DSLM controllers
in the presence of model errors such as incorrect bore size and incorrect stroke length. In
conclusion, DSLM was found to be the more robust of the three controllers for large
sampling times. On the other hand, CSLM was competitive with DSLM for small
sampling times.
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NOMENCLATURE

aj = coefficients of 2™ order transfer function with j=0,1,2
A = continuous time system matrix
A,,A, = areas for chambers a and b
Ag = symmetric cylinder chamber area
Ayy = instantaneous valve opening area
Ay Aye = valve supply and exhaust port areas
Ay = maximum valve opening area
A = augmented closed loop system dynamics
b = control uncertainty
bj = arbitrary constants determined from initial conditions
b(x) = nonlinear state gain matrix
B = continuous time gain matrix

c,,¢5,¢y = sliding surface coefficients
C,,C, =sliding vectors

c = sliding surface matrix

C4 = companion matrix of A

Cg  =discharge coefficient

Cm = flow coefficient

Cp = constant-pressure specific heat
Cy = constant-volume specific heat
Co = companion matrix of @

C = canonical sliding surface matrix
de = cylinder size ratio

d = disturbance bound

D = disturbance vector

Dy  =cylinder diameter

E = total internal energy of the control volume
f(x) = nonlinear state system matrix
fi = switching elements
fv = viscous friction coefficient
/n = nonlinear state system matrix
f = estimated dynamics

F = constant external force

Fog¢ = static coulomb force

Feq =dynamic coulomb force

Fe = estimation error

Feq = discrete equivalent gain matrix
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F r = overall friction force

Fgyw = discrete sliding gain matrix

g(x) = nonlinear gain matrix

G = matrix of desired eigenvalue sector

h = sampling time

hin = total energy per unit mass of fluid into the control volume

hour = total energy per unit mass of fluid out of the control volume
hp = system opening ratio

I = identity matrix

k, = flow gain

k, = flow-pressure coefficient

ki = varying sliding gain slope factor
k; ,k; = switching feedback gains

K = pole placement gain matrix

Kg = acceleration gain

Keq = continuous equivalent control gain matrix
K;j = matrix of switching feedback gains
Kp = proportional gain

Ks = sliding gain

K", K!= upper and lower sliding gain limits
Ksj = varying sliding gain (inside boundary layer)
Kgw = continuous sliding gain matrix

K, = ultimate gain

Ky = velocity gain

L = cylinder stroke length

L = function used by Furuta and Pan (1995)

LgLg = Lie Derivatives
Lg L, =sliding and convergence condition functions

m = air mass

M,  =effective load inertia or mass

Mp = maximum overshoot

n = number of states, or system order
N = valve opening coefficient

N = null space

p = rectangular coordinate

P = pressure
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P, = pressure ratio

Py = supply pressure

Py = upstream pressure
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P, =norm of discrete state

q = rectangular coordinate

Q = weighting matrix

Op = heat flow to the control volume
r = polar coordinate, vector length
r(k) = transformed variables

m = modal transformation

p = steady state pressure ratio

R = weighting matrix

Ry = gas constant

n = range space

s = sliding function

S = sliding surface

Sup. Sdw = directional (up and down) sensitivities

t = time

1 = total settling time

[ = reaching time

tg = sliding settling time

T = transformation matrix

Tq Tp =temperatures for chambers a and b
T4  =desired eigenvector matrix

Ty = supply temperature

Ty = upstream temperature

Ty = eigenvector (modal) matrix

u = control signal

Um U, ug, uy, uy = coefficients for steady state analysis
ugg  =equivalent action

ugy = sliding action

U = valve underlap

4, ~ =estimated equivalent action

vy, V,.. = eigenvectors
4 = cylinder volume
V(x) = Lyapunov’s function
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Vn = Vandermonde matrix

Yp = projector vector

wj = internal switching states

W, = controllability matrix (original)

Wi = strictly positive state weight for

Ww. = controllability matrix (transformed)

x = state variable(s)

X, = tracking error in state variable(s)

X, = transformed state as in Zodhy (19935)

X = perturbation in state variable(s)

X = canonical form state variable(s)

y = position of cylinder piston

Yo = nominal operating point

Yy = valve spool displacement

y(1) = external states

z = z-transform

Zr = stability variable as in Furuta (1990)
2z = transformed state as in Woodham and Zinober (1993)
Greek Symbols

a = real, non-zero root of 3™ order system
a,,a, ..= coefficients of characteristic equation
Ji) = gain margin
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&k), & = boundary layer for DSLM
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ApAs. .. A, = eigenvalues for system of order n
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Yy = switching weight for state j

®p = natural frequency

Aj = uncertainty on variable j

A = eigenvalue matrix

@, I = discrete time matrices

D = closed loop dynamics for canonical system
@y = work done by the fluid system
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Subscripts
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CHAPTER 1
INTRODUCTION

1.1 Background

Pneumatics retain a dominant role in many automated, materials-handling tasks due to their
ability to provide a low-cost, safe and compact positioning system that is well suited for
light to medium-duty applications. Furthermore, they are fast acting, clean and require little
maintenance. They are widely used in industry to perform simple pick-and-place fixed-
setpoint tasks. However, pneumatic systems have not been widely used for servo-
applications (variable setpoint) because of their poor dynamic response as compared to
electric or hydraulic systems. Air compressibility can cause spongy operation and delays in
signal transmission, affecting both response time and positioning accuracy. Friction in
pneumatic systems is generally much higher than in hydraulic systems since oil in hydraulic
systems is both the working fluid and the lubricant. In general, static friction in a pneumatic
cylinder combined with valve hysteresis create undesirable setpoint offsets which can cause
high control chatter and erratic system behaviour. Furthermore, the dynamic stability of
pneumatic systems is known to be dependent on stroke position. It has been observed that
pneumatic systems are less stable when operating about the mid-stroke position compared

with the end-stroke position (Burrows, 1972).

A typical pneumatic system uses an air compressor to pressurise air to a desired level. An
air filter traps air impurities and a pressure regulator maintains the air pressure to a
constant level. A control valve allows flow of air into one chamber of a cylinder, while air
is allowed to exit from the other chamber to atmosphere. The most critical of the
components of a pneumatic system are the valve and the cylinder. Over the years, many
improvements have been made on pneumatic component design. For instance, rodless
cylinders have been introduced as an alternative to conventional rodded cylinders. One

arrangement for a rodless cylinder is to have the in-cylinder piston connected to the load



carrying carriage through a direct physical coupling. A seal across the track prevents air
leakage. The lack of a rod means that a rodless cylinder requires half the space of a rodded
cylinder and more importantly from a dynamic standpoint, has a symmetric piston area.
This is in contrast to a rodded cylinder which, of course has unequal piston areas and
consequently a nonlinear force characteristic. However, rodless cylinders can exhibit high
friction due to the requirement for stiff sealing. Another rodless cylinder arrangement is
one that magnetically couples the carriage to the in-cylinder piston. However, magnetic
coupling can also exhibit high friction due to the requirement for a minimal air leak
between piston, seal and carriage. To counter the effect of friction in rodded cylinders, low
friction seals and bearing materials, along with innovative seal designs, have been

introduced.

Given that the “heart” of a pneumatic positioning system is the control valve, it is
worthwhile to note that there are three major configurations for proportional actuation:

. Digital stepping, where multiple conventional ON/OFF solenoid valves, a digital
multiplexer and a switched-output programmable controller is used. The control signal is
received by the multiplexer, which in turn activates the appropriate number of solenoid
valves whose combined flow output equals that required.

. Pulse-Width-Modulation, where the actuator is initially powered in the normal
manner through an ON/OFF valve, but as the actuator nears its final position, the valve is
pulsed rapidly ON/OFF, feathering the actuator into position.

. Proportional servovalves, which resemble their hydraulic counterparts. A spool
moves within the valve body and provides a flow of air in proportion to the control signal.
New valve designs incorporate a servomotor to move the spool via an eccentric. This
approach is not possible with most hydraulic valves due to higher flow forces and spool
masses. Hydraulic valves tend to use proportional solenoids to move the spool. The use of

a servomotor enables higher valve bandwidths.



It is generally acknowledged that proportional servovalves offer the best opportunity for
high performance. However, the cost differential is on the order of a factor of ten ($/00 for
an ON/OFF solenoid valve versus $7000 for a proportional servovalve). Servovalves have
improved in terms of both their linearity and bandwidth. Proportional pneumatic
servovalves were not even commercially available /0 years ago. Furthermore, it is only in

recent years that more than one size of valve has become available.

With advancements in pneumatic component design, positioning accuracies in the order of
*0.025 mm (0.001 in) are readily achievable. The overall improvement in the performance
of pneumatic systems opens a wider range of possible applications. Apart from the
traditional industrial uses, one can now see pneumatic systems being used in:

. Vehicle gearshifis: The transmission servo includes a number of
components such as pneumatic cylinders, solenoid valves, sensors and on-
board computer. The computer monitors instantaneous values such as road
speed, engine speed and the selected gear, and controls the gear level and
clutch in accordance to the selected program and any changes in the
parameters (Wright, 1996).

. Walking Robots: Walking robots are designed to perform the work of
human workers in hazardous areas (such as nuclear disposal sites) and are
equipped with legs for greater mobility on uneven terrain and active
cushioning. Walking robots with six legs are now available: linear
pneumatic actuators lift the legs, swivel pneumatic actuators perform the
fine tuning movements required for walking by adjusting vertical and
transverse positions. An on-board computer serves as the system’s
controller (FESTO, 1995).



1.2 Objectives
The work documented in this thesis, which is motivated by an increasing interest towards

the use of high-performance pneumatic systems, has two main features:

1.2.1 Examination of Pneumatic Positioner Design

The examination is conducted by means of simulation and experiment. Simulation will be
used to examine the performance of the pneumatic system in terms of system design issues
such as the size of the valve, the stroke and the bore of the cylinder. For example, a design
issue that will be considered is the square root ratio of the cylinder chamber area to the
cylinder stroke. It will be shown that the smaller the ratio is, the harder it is to provide

smooth setpoint tracking.

Another aspect of the hardware design is the size of the valve. Selecting a valve that is too
small for a certain application (undersizing) means that maximum actuator speed may not
be accomplished which would result in longer settling times. Selecting a valve too large
(oversizing) does improve speed of response but may result in poor sensitivity which in turn

could cause higher steady state errors.

1.2.2 Examination of Nonlinear System Controller Design

A pneumatic system is inherently a nonlinear system. Sliding Mode Control (SLM) has
been promoted as a particularly robust controller as applied to nonlinear systems. In the
context of this thesis, the meaning of “robust” refers to the ability of a model-based
controller to maintain system performance in the presence of bounded errors in the
modelled parameters. This thesis sets out to investigate the robustness of SLM controllers
in both the continuous (CSLM) and discrete (DSLM) implementations. To put the
performance of the SLM controllers into perspective, a comparison will be made to a well

designed linear Proportional-Velocity-Acceleration (PVA) controller.



The objective is to determine which one of the three controllers (PVA, CSLM, DSLM)
provides the "best" control in terms of speed of action, elimination of steady state errors and
robustness. A good actuator speed is considered to be / m/s. Steady state errors in the
order of + 0.2 mm are judged acceptable. The robustness of the controllers will be
examined in terms of deliberate model errors. These model errors include an incorrect mass
payload and an incorrect cylinder, either in terms of using a cylinder with a double bore, or
with a double stroke. Doubling the stroke or the bore of cylinder without suitable
compensation in the controller gains normally degrades the system’s response. The

question is: how much does the performance of each controller degrade ?

To optimize the design of SLM, a number of tests will be performed to investigate the effect
of controller design parameters such as the sampling interval, boundary layer thickness,

sliding gain and state weights.

1.2.3 Overall Objective

The overall objective of the research is to improve the performance of pneumatic
positioning systems through an appropriate selection of the tuning parameters of CSLM and
DSLM. This can be done by careful selection of the pneumatic system components and by
customising the controller to the system needs and requirements. By examining the effects
of the sliding gain, state weights, etc. a set of gain selection guidelines can be generated for
CSLM and DSLM. Furthermore, a simple design for the sliding surface of DSLM which
links time-domain performance parameters to the coefficients of the sliding surface needs to
be generated. With a comprehensive understanding of pneumatic system behavior and with
a good set of gain selection guidelines, pneumatic positioning systems will be better located

to challenge electric and/or hydraulic systems.



1.3 Thesis Outline

Chapter 2 presents a literature review on pneumatic systems. Modelling considerations for
valves and cylinders, which compose the core of pneumatic system design are presented.
Both linear and nonlinear models of a pneumatic system are developed. Fundamental
dynamic behavior such as the effect of system nonlinearities on the ultimate gain for a

proportional only controller are presented.

Chapters 3 and 4 include a literature review on CSLM and DSLM, respectively.
Furthermore, various modifications suggested by researchers over the years are addressed
and new modifications that improve the performance of the controllers are presented. The
gradual improvement in the performance of the controllers is demonstrated by a set of

simulation results.

Chapter 5 presents the model validation procedure for the experimental setup. The model
parameters are determined from a set of open and closed loop tests. To further evaluate the
robustness of the controllers, a set of tests are conducted to examine the effect of doubling
the cylinder bore, and doubling the cylinder stroke, without correcting the design of the
controller. The degradation in the performance of the pneumatic system under these tests is

an indication of the robustness of the controller.

Chapter 6 summarises the experimental and simulation results presented in earlier chapters.
It also provides a set of guidelines for customising and tuning SLM controllers to
pneumatic systems. Some guidelines for pneumatic system design are also listed. Finally,

recommendations for future work are given.



CHAPTER 2
PNEUMATIC SYSTEMS

This chapter describes pneumatic positioning systems, from the dynamic modelling of
the individual components to the analysis of steady state conditions. Some important
aspects that will be stressed include: linear versus nonlinear models, modelling static
and dynamic friction, subsonic versus choked flow, steady versus variable pressures and

volumes.

2.1 Introduction to Pneumatic Systems

Pneumatic systems utilize the energy of compressed air. Such systems have been
applied traditionally to non-industrial applications such as dental drills and surgical
instruments as well as to many industrial applications that do not involve a control
system such as chipping, reaming, drilling, forming and stamping operations. With
advancements in microcomputer and servovalve technology, pneumatic systems are
now being considered for industrial applications that do involve a control system, such

as for free positioning of a workpiece.

Fig. 2.1 shows a typical pneumatic setup for position control with a directional valve
controlling the flow of air from a regulated supply to a rodded cylinder. Fig. 2.1a shows
the different components of the valve and the cylinder together with the key
nomenclature to be used in this chapter. The control signal to the valve determines the
position of the spool, which allows air to flow into either cylinder chamber “a” or “b".
The illustrated valve has 5 ports and allows 3 ways of motion. Thus, it is referred to as
a S-port 3-way, directional valve. Depending on the location of the valve spool, the

piston could be extending or retracting (Fig. 2.1b and 2.1c respectively).

When the spool is centered and there is an overlap (area of spool peg greater than the
valve port), then there is no air flow to either end of the cylinder and its position is

“frozen”. This type of valve is called a closed-center valve. If there is an underlap
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Figure 2.1a: 3-way, 5-port valve and asymmetric cylinder

Figure 2.1b: Extending Figure 2.1c: Retracting

Figure 2.1:  3-way, 5-port valve and asymmetric cylinder

(area of spool peg smaller than the valve port), then both chambers exhaust to the
atmosphere if the spool is centered. This is called an open-center valve. Finally, if the
spool is centered while the supply port is greater than the spool peg and the exhaust
ports are blocked, then both chambers are charged. This type of valve is called the
pressure-center valve. These three configurations are shown in Fig. 2.2. The choice of
which configuration to use depends on the process requirement when the system is at
rest and the valve is centered (Lansky and Schrader, 1986).

The open-center valve allows free positioning of the cylinder (ports open to

atmosphere), the pressure-center valve holds the cylinder in place by maintaining the



pressure at both ends (ports to supply pressure), and the closed-center valve also holds
the cylinder, but at whatever pressure was present at the time when the valve was
centered (closed port). The 5-port 3-way valve shown in Fig. 2.1 is an open-center
valve. As will be shown later in this chapter, the center configuration greatly affects the

dynamic behaviour of the pneumatic system.

bl |
(a) open center

IL\ M //JJ _\iv M

(b) pressure center

[y IL 4 cxhz!ust cxh'aust
r\\v TIT v// T supply

(c) closed center

Figure 2.2:  3-way valve configurations

Typically, since the driving medium is pressurised air, a compressor is used to charge a
receiver tank with the required air pressure. A relief valve, a pressure operated valve
which bypasses compressor air delivery to the atmosphere, is included to limit pressure
to a predetermined maximum value. Further downstream, an air filter is introduced
which traps air impurities from contaminating the valve and cylinder. The next
downstream component is a pressure regulator which further controls the pressure of the
stored potential energy and prevents fluctuations caused by the compressor. A filtered

and regulated air supply is then ready to enter the directional pneumatic valves.



2.1.1 Modelling Valves

Proportional servovalves are directional valves that may be variably positioned to
provide control of both the amount and the direction of fluid flow. A great deal of
research has been done on the modelling of servovalves for pneumatic systems (Pu and
Weston, 1990, Moore et al, 1992, Ye et al, 1992, Uebing et al, 1997). The basic
approach is to consider the valve as a variable orifice restriction. The mass flow rate

across a variable orifice can be given as (McCloy and Martin, 1980):

P
— 2.1
JT. &0

where Cg is called the discharge coefficient and it depends on the geometry of the

’;’ = Cdcm Avv

orifice. It is introduced as a correction factor to take into account the jet contraction and
is usually determined experimentally. Values for the discharge coefficient can range
from 0.6/ to 0.95 depending on the type of valve opening. Typical values for C, are
reported as (Andersen, 1967):

®*  nozzles 0.95

®  squared-edged orifices 0.82

®  sharp-edged orifices 0.61to 0.84

®  poppets: conical 0.72t0 0.87
spherical 0.75t0 0.88

The valve that was modelled in simulation and used in experiment is the HR-Textron
valve. The valve was chosen despite its high cost ($/700) because it has a machined
metallic spool with internal position feedback which makes the valve a rugged system
which does not require an air filter, or need special setup. Other valves, such as the
FESTO valves, although cheaper ($700) have a plastic spool and are more susceptible to
air impurities. Therefore, they require air filtration to the order of a gm. Furthermore,
all components such as fittings, exhaust mufflers and tubing need to be ultrasonically

cleaned for the FESTO valves, and no teflon tape for fittings is permitted.

The HR-Textron valve can be considered to have a a sharp-edged orifice, therefore the

value taken for the discharge coefficient was 0.72. A4,y is the instantaneous valve
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opening area and is variable in the case of servovalves, as it can be controlled by the
adjusting the position of the spool. Py is the upstream pressure, T, is the upstream
absolute temperature and C,y, is the flow coefficient. The value of the flow coefficient
depends on whether the flow through the valve orifice is subsonic or choked. At this

point, the pressure ratio needs to be introduced:

p=" A 22)

where Py represents the static pressure at the vena contracta, or the throat of the
downstream flow. The pressure at the throat is very difficult to measure but can be
assumed equal to the downstream static pressure provided that the downstream chamber

is considerably larger than the orifice area (McCloy and Martin, 1980). This modifies

Eq.2.2to:
P = % 2.3)

Fig. 2.3 shows the variation of Cp,; with the pressure ratio. It can be seen that if the
pressure ratio is greater than a critical value (Py=0.528), the flow is subsonic. If this is

the case, then the flow coefficient is:

c, = ?27_-1—{(1',)% ~(r)” } | 24)
u(y=1)

where Ry, is the gas constant (0.287 kJ/kgK) and y is the ratio of the specific heats, R

(1.4 for air). For values of the pressure ratio less than the critical, the flow can be

assumed to be choked and the flow coefficient has:

Py
2 2y
Cu = (r + 1] R.(r+1) (2.5)

In the case where the working fluid is air and the flow is choked, Cp, is 0.0405.

Given the physical setup illustrated in Fig. 2.1b and using Eq. 2.1, the mass flow rates
into chamber a and out of chamber b are:

P

- e 2.6
m, C'I"C'"“Awﬁ ( )

11



and,
my = =CuyCos A,y TP;_— 2.7)
h
In other words, chamber a is charging, while chamber b is discharging, or exhausting.

Note that Cjpg and Cpyp are functions of P, = % and P, = % respectively.

From the energy standpoint, one can say that the rate of energy being stored inside the
control volume (as seen in Fig. 2.1a) is equal to the energy inflow minus the energy

outflow.

Flow coefficient Versus Pressure Ratio

Flow Coefficient, Cm

1 Presure Ratio, Pr

Figure 2.3:  Flow coefficient versus Pressure Ratio

This gives:

(2.8)

Z‘m,,,h,,,—Zm,,.,ho,,,+{ e —

where Oy, is the heat flow to the control volume, @y, is the work done by the system,

hin and hgy; are the total energies per unit mass of fluid, in and our of the control

12



volume. Finally, E is the total internal energy stored in the control volume. The rate of

heat flow to the control volume has:

: dv, dQ, d(C,pV.,T,)
C aT— o h= viZa” aua
pme o= b dt * dt dt

(2.9)

where p = %.,T for air behaving as an ideal gas. The constant pressure specific heat

R . .
can be setas C, = 7 R It is then assumed that there is no heat to or from the

y=1

control volume, that is adiabatic conditions with dQp=0.

In later chapters, the performance of the controllers under investigation will be
evaluated in a series of robustness tests. These tests include: increasing or decreasing
the payload by a factor of 3 and increasing the volume of the cylinder by up to a factor
of 4. The linear gains of these controllers are based on a linearised model of the
pneumatic positioner. As will be shown later in this chapter, the dynamic performance
of pneumatic actuators (natural frequency and damping) is heavily dependent on the
location of the setpoint and on the direction of motion (in the case of asymmetric
cylinders). Since there are so many other dynamic effects that dominate the
performance of pneumatic actuators, then a further assumption can be made for the

energy balance of Eq. 2.9: that the temperature variation in the chambers is negligible,

i.e. Tg=8Tp=0 (Uebing et al, 1997). The mass flows in and out of the chambers can

then be shown as:
- 1 dv, V,6dP,
Ma = R“TG(P" dt Ty dt) 2-10)
: 1 ( av, Vv, dP,,)
= - —_ 2.11
g R,T, g ¥ y dt @10

Pu et al (1995) have shown charging and discharging flow equations for a pneumatic
servomechanism that are identical to Eq. 2.10 and Eq. 2.11. McCloy and Martin (1980)
show charging and discharging flow equations only for a symmetric actuator, therefore
P,=Pp. A further assumption is that T4 and Tp are equal to the supply pressure 7.

Steady state analysis that will be presented later in the chapter will demonstate how a

13



scaling factor between steady state chamber pressures and the supply pressure can be

determined.

2.1.2 Modelling Actuators
Connected to the servovalve is the pneumatic cylinder, of which the piston moves back

and forth according to the forces acting on it. A force balance on the piston yields:

2

P‘,A,,—P,,A,,=M,(:,t—_:v+F+F, (2.12)
where M, is the effective inertial load or mass, F is a constant external force such as
gravity (this could be zero if the cylinder is horizontal) and F; ’f which is the friction
force. Typical friction versus speed plots are shown in Fig. 2.4. The static coulomb
friction force is the friction that opposes motion when the cylinder is at rest and is
denoted as Fz. Once motion is initiated, the static coulomb friction force is replaced

by the dynamic friction force. One formulation of the dynamic friction force is:
dy dy
F,=F, Sgn(dr)+f' dr (2.13)

where Fpq is the directional dynamic coulomb friction force and f;, is the viscous
friction coefficient. Typically, piston and rod seals tend to have a greater breakaway
(static) friction than running (dynamic) friction - a condition known as stiction. The
presence of stiction can cause undesirable position tracking performance when the load
approaches the setpoint and the controller decreases flow to decelerate the load in
preparation for stopping. When the speed drops to a certain point, stiction inhibits
further motion which stops the load short of the setpoint. The controller compensates
by increasing pressure in the charging chamber and as a result the load most likely
jumps ahead of the setpoint. This effect is not as dramatic when it comes to hydraulic
systems since the working fluid is also the lubricant, which decreases both friction

coefficients. Stiction still occurs, but Fog = Feg.

14
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The pneumatic system model is therefore described by Eq. 2.6, 2.7, 2.10, 2.11, 2.12 and
2.13. It is a nonlinear model as govermmed by: air compressibility effects,
choked/subsonic flow conditions and, presence of static friction. A summary of
assumptions used in the derivation of the pneumatic system model equations is given
below:
®  Airbehaves as an ideal gas
e  No external forces on cylinder (horizontal loading), which implies that F shown
in Eq. 2.12 is zero.
¢  Adiabatic conditions, i.e. no heat flow from, or to the control volume
®  Pressure at vena contracta is same as downstream pressure
e  Valve spool dynamics (with internal feedback) have a bandwidth of 200 Hz and
are much faster than the dynamics of the rest of the pneumatic system, which
has a bandwidth in the order of 10 Hz. Therefore, the valve spool dynamics can
be neglected. This implies that the valve opening, 4,y can be set directly

proportional to the control input to the valve, u; hence Ayy=u.
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2.2 Linearisation of Pneumatic Model
The derivation of the pneumatic model in the previous section highlighted the presence
of nonlinearities. An additional set of assumptions can be made to enable model

linearisation;

e Supply pressure P and temperature T are constant.

®  The piston moves around the center position of the cylinder (linearisation point)

and only over small distances.

®  Cylinder pressures vary only by a small amount from their steady state values.

Starting with Eq. 2.6 and 2.7, and assuming small variations in pressures and position

offsets from the center position, one can write:
sm, =k,bé4, +k,,oP, 2.14)

sm, = k,,04,, + k,,0P, 2.15)
Further simplifications are possible since k,,=k,,=k, and k,,=-k,,=k,. In addition, since
most valves are symmetric, 4,, = 4,, = 4,,. Thus the linearised valve model can be

written as (McCloy and Martin, 1980):
Sma = k,6A,, + k,0P, (2.16)
&ms = k,b4,, - k,6P, @2.17)

where k, = (a%w yand &, = ("%)-

Combining Eq. 2.16 and 2.17 with Eq. 2.10 and 2.11, and denoting initial conditions

with the subscript i, one can write:

: 1 d(sv,) V,d(éP, )J
= ol L 10 2.18
a. R,T,(P’ ar Ty di (2.18)

: 1 d(sv,) v, d(aP,)J
= - , 43 2.19
oms = -2 [P' ar Ty di 219
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Assuming a symmetric actuator is in use, i.e. Ag=Ap=A;, the chamber control volumes

V4 and Vp can be given as:
V, =V, + Ay (2.20)
V,=V, - A48y 2.21)
with y measured from the center position of the cylinder and V; as the initial volume in
each of the cylinder chambers, equal to A, L >+ Voin» Where L is the cylinder length and

V.in is the volume of air at each end of the cylinder, as Fig. 2.5 shows.

Y.,

&
. . In
Ag
Vmin' '
. : )
! D N v'A,A. :
i v, ' : V.,
' % S UL O P ST AL

S —— C—

Figure 2.5: I-\I;f-rainal Operating Position and Pr"essuré;

Subtracting Eq. 2.19 from 2.18 and using V - Vp = 245 & from Eq. 2.20 and 2.21, one

has:

) ) R 7 .
Imu+dmy = [ZP:A: y+ -y‘—(P,,- P.u,)) (2.22)

1
R,T,
Since a horizontal (F=0 in the absence of other external forces to the system) and
symmetric actuator (45=Ap=A;) is used, Eq. 2.12 can be simplified to:

A, (8P, -8P,)= M, y+SF, (2.23)
Combining Eq. 2.16, 2.17, 2.22 and substituting into Eq. 2.23 yields:

I AT
#:m_.c“'ﬂzd[_z*‘l‘s;"‘:ll/’w*‘l.’F/+ZJFI (2.29)
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where j,;f‘,‘,,ﬁ »and F s are the perturbation variables for position, valve opening,

friction and rate of change of friction. The coefficients 4; and y; are given as:

- M![/I _- MeklRuI;
ﬂl_z}'RA,J’ ;12_ 21)“4:2 ’

M=l

and,

_RTk RTk, -V,
1= Tpa BT opal BT RAT
Note that the linearised pneumatic system model given as Eq. 2.24 is 3" d order with

respect to position.

The coefficients &, and &, first appeared in Eq. 2.16 and 2.17. The first coefficient, &, is
directly proportional to the flow-gain coefficient as suggested by Burrows (1972) . The
second coefficient is called the flow-pressure coefficient and it has been shown by
Burrows and Webb (1969) that the effect of the k, term is negligible, which greatly
simplifies the coefficients of Eq. 2.24 to:

My, _ _
#I_zyﬂA’Z’ M-o’ Hs 1

and,
Z:- EA; ’ Zz— ’ ZJ—er’A"Z'
Dividing all elements of Eq. 2.24 by x, modifies the linearised pneumatic model to:

4,7 R, T A, !l =
MVy 2y k, M.V, A,,-—MF, (2.25)

[

y+2y
For further simplification of the above model, one assumes that the static friction can be

set to zero (F=0) which makes F s equal to f RIS Eq. 2.13 implies. With

these simplifications the model shown as Eq. 2.24 can be further simplified to:

PAS RT 4, ~
y+-;f!—y+27—MV y=2yk,——— MV, A (2.26)
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The instantaneous valve opening Ay, can be assumed to be proportional to a normalised

control input signal, u so that Ayy = Ay u, where Ay, is the full valve opening area. The

flow coefficient £, can then found to be equal to C,C,, 7‘/,— . If the initial pressure in the

chamber, P; is considered to be at steady state, then there exists a relationship between
the chamber pressure and the supply pressure Pg. For now though, consider that
Pj=r,Pg, where r, is called the steady state pressure ratio. An expression for the steady
state pressure ratio will be provided in Section 2.3 of this chapter. With ,, r, and 4,,,

substituted into Eq. 2.26, the linearised pneumatic model becomes:

S A PA’ . R,,,/T,A,.P,
Yoyt 2y Wy=2}'C4CmAV————M vy U (2.27)
4 e i e’ i'p

Note that the above equation has P; = P; = Pp at initial conditions for a symmetric

cylinder and is also the nominal operating pressure. With y as the nominal operating

point, the following is true:
P P P P P
2o (8) (8) et e
Vl Va ,+ Vb i A:(%+y)+me * Ax(%_y)+Vmirr (228)
which modifies Eq. 2.27 to the following:
L Lo rAlP ! N ! -
4 M! 4 Me A:(%+y)+me A:(%—y)+anir: 4
RyC,CuANT R, ! . ! ] 229
= U .
Merp AJ(% + y) + len Ax(% - y) + Vmin

Once a linearisation point is chosen (eg. y=0), the coefficients of Eq. 2.29 assume
constant values. The resulting linearised model can then be used to generate the linear

gains for the PVA controller and the equivalent gains for the SLM Controllers.

A PC-MATLAB program was written to simulate the process for which selected parts
are listed in Appendix B. The model used was nonlinear to account for nonlinear valve
dynamics (choked versus subsonic flow, hysteresis) and nonlinear friction. In the linear

model, chamber volumes are considered constant as well as the chamber pressures. In

20



simulation, the pressures in the cylinders can be found by differentiating the ideal gas

law with respect to time. The ideal gas law is given as:

_mR.T,
I

In reality, only parameters P, m and V are time-variant. Differentiating Eq. 2.30 with

P (2.30)

respect to time (for chamber a), and assuming negligible temperature variations:

. RTm., mRTV. RT.m. PV.
P, === viooc oy Ty 231

a

d a

The pressures in chambers a and b , can be found sequentially by using Euler’s 1¥ order
approach for numerical implementation of the difference equation. The resulting

difference equation for any pressure, is given as:

P, =P +Ph 2.32)

where £ is the “A™ time step.

The simulation sampling time used was set to /Oms, to match the sampling time
available to the experimental setup by the microcomputer in use. This sampling time
was adequate considering that the smallest settling time for the smallest mass (2.2 kg) in

open loop was 250 ms. Numerical stability issues are addressed in Uebing et al (1997).
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2.2.1 Stability Issue

One recognises that the linearised model of the pneumatic system can be written as:

;+ a, ;H- a, y =ayu (2.33)
where the coefficients a, a, and a, are defined according to Eq. 2.29. The open loop
transfer function for the pneumatic model can be found to be:

_Y(s) _ 9
U(s) s’+a,s’+ays

G(s)

(2.34)

If a proportional-only controller with unity feedback is implemented to the pneumatic
model of Eq. 2.34, a closed loop transfer function can be obtained as:

Y(s) _ a,K,

T(s)= =
) Y. (s) s +a,s’ +as+ak,

(2.35)

where K is the proportional gain. Using the Routh-Hurwitz's stability criterion, one

can find the following stability requirement:

K
a-22250 (2.36)
a,
which provides the upper limit for K :
fo4,r,

K <
? MechmAvRu‘JFx

(2.37)
Uebing et al (1997) report a similar upper limit for Kp. Surgenor and Vaughan (1996)
reported the above upper limit for Kp with the absence of r, which relates the steady
state chamber pressures to the supply pressure. Further discussion on the derivation of

the steady state pressure ratio, , will be given in Section 2.3.

A larger value for Kp indicates higher stability margins. One can then say that the
stability of the system increases if the viscous friction coefficient and the cylinder areas
increase, when the effective mass is reduced or the area of the opening decreases, i.e. a
smaller valve is used. Note also that Eq. 2.37 indicates that the ultimate Kp, is
independent of the position of the piston along the cylinder. This is in disagreement

with results presented in Pu and Weston (1990) where such a dependency is reported.
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The ratio “/, which results from Eq. 2.36 eliminates any possibility for ¥; to appear,
which is the element that causes a position dependency. It should be noted though that
the overall dynamic behaviour of pneumatic systems does depend on the position of the
cylinder piston, as originally shown by Burrows (1969). Therefore, a numerical
stability issue will arise due to the link between the natural frequency of the system and

the sampling interval.

Looking at the denominator of the open loop transfer function given in Eq. 2.34, it can

be realised that the pneumatic linear model consists of a second order system and an
integrator. Linked to the second order system, parameters such as natural frequency, o,

and damping ratio, £ can be identified:

yA’P ! !
= — 2.38
w" J Mc [A:(%+y)+ymln +A.|(%—y)+ymm] ( )

and

‘= f, (2.39)

] 1
24,y P M +
'Jr : ’[A;(%"'y)*-ymln AJ(%-y)+thn:|

The above two equations give rise to the following issues:

¢  The relationship between cylinder size ratio and natural frequency.

¢  The relationship between operating position and natural frequency.

¢  The relationship between operating position and damping.
Both aspects (operating position and cylinder size ratio) will influence sampling interval
stability. To proceed with further analysis, the size ratio of a symmetric cylinder needs
to be defined:

d =2 (2.40)
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2.2.2 Natural Frequency and Cylinder Size Ratio

In order to determine the relationship between the natural frequency and the size ratio, a
further simplification was performed. If the operating point is assumed to be at the
center of the cylinder, i.e. y = 0 in Eq. 2.38, then the minimum chamber volume V,y;,
can be assumed to be negligible compared to the chamber volumes ¥V, and V. This

assumption simplifies Eq. 2.38 to:

=24 |25 .41
w, =2d, I, 41)

Table 2.1 shows the ultimate gains predicted by the model (as given in Eq. 2.37) for a
series of cylinders with size ratios ranging from /.2 to 6./. Size ratios of /.2 and 6./
roughly correspond to stroke / cylinder diameter ratios of 1.0 and /0.0 respectively.
These stroke / cylinder diameter ratios correspond to typical low and upper bounds of

commercially available pneumatic cylinders.

The “benchmark” cylinder has a stroke of /20 mm and a diameter of 25 mm. It can be
seen as the bold entry in the middle of the table. The remaining cylinders have an
overall chamber volume equal to the volume of the benchmark cylinder. The stroke, or
length of the cylinders was changed by intervals of /0 mm from an initial stroke of 40
mm to a final stroke of 200 mm, while simultaneously adjusting the chamber area so that
the overall volume is kept the same (which allows for the use of the same valve). The

size ratio, de can be seen as the last column entry.

Upon inspection of Table 2.1, one can see a discrepancy between predicted values for
the ultimate gain, K, and the one obtained by nonlinear simulation with a proportional
only controller (that is the value of K, that generated marginal stability in the system’s
response). It can be seen though that there exists an approximate ratio of 2 between the
linear and the nonlinear ultimate gains. This can be explained if one realises that the
linear model makes the assumption that only choked flow occurs throughout the

duration of the test, i.e. Cj = 0.0405, whereas in nonlinear simulation, Cp; can assume
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Table 2.1: Ultimate Gain for cylinders of different Size Ratios

Length, Area, Diameter, K., K., Size ratio,

(LYymm (A) mm?2 (D) mm  nonlinear linear model (d.)

simulation  prediction  sqri(4/L)

. 40 147260 433 27.0 14.4 6.1
S0 1178.08 387 22.0 1.4 4.9

60 98173 354 17.5 9.4 4.0

70 84149 327 162 79 3.5

80 73630 306 14.0 6.8 3.0

90 65449 289 115 6.0 2.7

100  589.04 274 9.5 53 2.4
10 53549 26.] 8.9 4.7 2.2
% 120 49087 250 8.0 4.3 2.0
' 130 45301 240 7.4 3.9 1.9
140 42074  23.1 6.9 3.5 1.7

150 39260 224 6.4 3.3 1.6

160  368.15 217 5.8 3.0 1S

170 34649  21.0 52 2.8 1.4

180 32724 204 49 2.6 13

190 31002 199 4.6 2.4 1.3

200 29452 194 43 2.2 12

both choked and subsonic values, for which an average would be about half of the
choked value, i.e. 0.0202. Therefore, the ultimate gain obtained by nonlinear simulation

would be approximately double the value of the gain predicted by the linear model.

Fig. 2.6, 2.7 and 2.8 show the simulated response of the pneumatic cylinders with size
ratios of 6./, 2.0 and /.2, respectively for a setpoint scenario where the piston is
sequentially moved between center- and quarter-length positions. When comparing the
responses shown in Fig. 2.6 and 2.7, one can see that the natural frequency of the

cylinder that has a stroke of 40 mm and a diameter of 43.3 mm (i.e. de = 6.1) is indeed
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about 3 times greater than the frequency reached by a cylinder that has a stroke of /20
mm and a diameter of 25.0 mm (i.e. dp = 2.0). Similarly, if the responses shown in Fig.
2.7 and 2.8 are compared, then it can be seen that the natural frequency of the cylinder
that has a stroke of /20 mm and a diameter of 25.0 mm (i.e. de = 2.0) is indeed about
1.6 times greater than the frequency achieved by a cylinder that has a stroke of 200 mm

and a diameter of /9.4 mm (i.e. dg = 1.2).

Size1: Kp=27.00, A=1472.54, Lc=40.00, ChV=58901.41
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Figure 2.6:  Marginal Response with Ultimate Gain for Cylinder of d.=6.1
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Figure 2.7:  Marginal Response with Ultimate Gain for Cylinder of d.=2.0
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In the case of the system shown in Fig. 2.6, the frequency is about /5 Hz. Thus, for
adequate control when applied to a cylinder with this size ratio, one would require a /50
Hz sampling interval for control purposes. This corresponds to a sampling time of 6.67
ms. Therefore, the larger the size ratio of the cylinder at hand, the faster the

microprocessor used for control has to be.

2.2.3 Natural Frequency and Operating Position
If the linearisation point is moved from the center of the cylinder, to the quarter-length
position (i.e. at y=# L/4), then the natural frequency of the pneumatic system, according

to Eq. 2.38 (at center) changes from Eq. 2.41 to:

P
w, =23d, VM—' (2.42)

¢

Fig. 2.9a shows how the natural frequency changes along the length of a cylinder. For
a symmetric or rodless actuator where the cylinder chambers have the same area, there
is a symmetry about the center of the cylinder. It can be shown that at the center of a

rodless cylinder, the natural frequency has its lowest value. The normalised frequency,

P is shown on the y-axis. At the center (y=0) the ratio is /.00. At quarter length,
n ly=0

the ratio becomes /.15 (Eq. 2.42 / Eq. 2.41) and at the stroke ends the frequency ratio

reaches a value of 2.5.

2.2.4 System Damping and Operating Position
Looking at Eq. 2.39, one can see that there is also a relationship between the operating
position and the damping of the pneumatic system. If Vj,;, is neglected in Eq. 2.39,

then, if the operating point is at the center of the cylinder, the damping can be given as:

Ve

If one assumes that the operating point is halfway between the center and the end of the

cylinder, i.e. at y=# L/4, then:
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= (‘/3/8) W (2.44)

Assuming that for a particular pneumatic system the damping coefficient at the center of

the cylinder is 0.50, then at the quarter lengths, the damping drops to 0.42. Fig. 2.9b

shows how the damping coefficient ratio changes along the length of the cylinder. Fora

symmetric actuator, there is again symmetry about the center of the cylinder, where it

has its maximum. The ratio of damping coefﬁcients,iI is shown on the vertical
y=l

axis. At the center, i.e. y=0 the ratio is /.00. At the quarter length, the ratio becomes

0.86 and at the stroke ends the ratio of damping coefficients becomes 0.40.

2.2.5 Asymmetric Cylinder

The above analysis was performed for a symmetric cylinder (4; = Ap). If an
asymmetric cylinder is used instead, a nonlinear model simulation predicts the behavior
seen in Fig. 2.10. The simulated asymmetric cylinder has a stroke of /20 mm (similar to
the cylinder used earlier), a bore diameter of 25 mm and a rod (piston) diameter of /0
mm. The presence of the rod decreases the area of chamber b, roughly from 490 mm? to
410 mm2. Fig. 2.10 shows the response of this asymmetric cylinder when subjected to
proportional-only control with a gain of 6.5. It can be seen that when the piston is in
extension, marginal stability is reached. When the piston is in retraction, the response is
still damped. It becomes marginally stable only when the gain is increased to 8.0. An
ultimate gain of 8.0 was also the gain determined for the symmetric cylinder with /20

mm stroke and 25 mm bore diameter, shown in Fig. 2.7.

It can then be said that in an asymmetric cylinder the direction of motion also affects
the natural frequency and the damping of the system. Therefore, asymmetry affects the
dynamic response of the system, as well as its ultimate gain. Eq. 2.37 can still be used
to predict the ultimate gain for a linear model by setting A¢ equal to the smaller of the
chamber areas. This is so because a smaller chamber area decreases the ultimate gain in

extension.
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2.3  Steady State Considerations

An important consideration in the performance of pneumatic systems is the ratio of the
chamber pressures Py and Pp to the supply pressure Ps at steady state. Note that P; as
used earlier was in fact equal to the steady state operating pressure. For closed center

valves and if the entry port flow is subsonic, P, can be given as (Pu and Weston, 1990).

y—1
PS=pPr =P 2

a sp s 4
1+ l+-‘§
N

where P.” denotes a nominal steady state pressure. The ratio of the steady state pressure

(2.45)

to the supply pressure corresponds to r,, as was first seen in Eq. 2.27.

Note that subsonic flow is the usual condition for the entry port, whereas for the case of

the exit port, the flow is normally choked. N, the valve opening coefficient can be given

as:
N=h C, (246)
where #p, is defined as the system opening ratio, given by:
h, = u, u u,u,u, (247)

a a Am U+ |4
4 T Coa = ‘_y and U denotes

whete Up =", W = —F7—, =-, w= " U=
4 T T A, Uy,

the valve spool underlap. C is given by:

— 2 (y+l) r’lp-l
C, \/r- 5 (2.48)

Note that for air, where yis 1.4, Cf is equal to 3.864.
Usually uy and uyy are equal to unity and ideally uq is equal to /.00. For a small

underlap in U and with y, as the displacement of the valve spool from the center

position, ie. y, >>U, then uy becomes 1.0. This simplifies Eq. 2.46 to N = u;,Ck.
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For equal cylinder areas (u;,=/), the steady state pressures are equal ( P”=P"),

whereas for unequal cylinder areas (1,,=/) P,"= P A,/A, with P." given by Eq. 2.45.

To illustrate the effect of some of the parameters of the system, a set of simulation
results will be presented (Fig. 2.11 to 2.14). In all cases the initial pressures are /00 kPa
and the cylinder is repeatedly moved from its end position (y = -350 mm) to its center
position (y = 0 mm) and vice versa. Each figure gives the cylinder position, the control
signal, the absolute cylinder pressures and the differential pressure. The controller used
was a typical Proportional-Velocity-Acceleration (PVA). The structure of a traditional
PVA controller has:

-x)~-K,x-K, % (2.49)

set

u=K,(x
with x as the controlled state (position) and xs¢; as the position setpoint. Kp, Ky and
Kq are the proportional, velocity and acceleration gains respectively. For application
to pneumatic systems, it is generally acknowledged that both velocity and
acceleration are essential to ensure adequate performance (Burrows, 1972). An

alternative linear controller for pneumatic systems is the proportional-differential

pressure controller (PAP) which can be used for symmetric actuators (4bou-Fayssal,

1997) but was not used due to asymmetry problems.

23.1 Symmetric Actuator
[f the actuator is symmetric (up, = /) then N=3.864 and according to Eq. 2.12 the ratio

of P/P, is equal to 0.805; Fig. 2.11 illustrates this case. Both Pz and Pp start at
their initial pressure of /00 kPa and gradually build up to their steady state values. It

can be seen that the steady state pressure P.“does reach 3523 kPa or 80.5% of the

supply pressure Pg (650 kPa) and P,” is equal to P,*.

Note that as the pressures P; and Pp increase, the quality of the response improves

(less overshoot on position). As the pressures increase, the air becomes more
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compressed and since its density rises, it starts to behave more as an incompressible

(linear) fluid.

2.3.2 Asymmetric Actuator

Actuators are more commonly asymmetric due to the presence of the cylinder rod that
creates non-equal cylinder areas, most commonly with ratios of Ap:A4 as /:2 and /3.
For these, the extending pressure ratios ( P / Ps) are equal to 49.9% and 29./%
respectively. The extension of the piston requires that the driving (extending) pressure
be applied to the cylinder chamber with the larger area, while for retracting, the opposite
is done. The decrease of the pressure ratio in the extension of the piston is a

disadvantage.

Fig. 2.12 and 2.13 show the effect of the center configuration being either open
(exhaust) or closed (blocked) with an asymmetric cylinder (4 /44=0.84). According

to Eq. 2.45, the pressure ratio P,*/ Py is equal to 0.74. In Fig. 2.12, the steady state
cylinder pressures remain at their initial values (/00 kPa), whereas in Fig. 2.13, the
pressures built up to the values dictated by Eq. 2.45 for unequal cylinder areas (hp
=1.167) and with N=4.509 (P = 483kPa and P, = 575 kPa). It can be seen that in
Fig. 2.13 that the responses are smoother than the ones shown in Fig. 2.12 due to the
higher operating pressures. Thus, a closed center valve will produce better responses.
Another observation is that in Fig. 2.12, steady state error appears in the position
response. This cannot be eliminated by simply increasing the proportional gain. It is an
effect that results from an open center valve configuration combined with an
asymmetric cylinder. Since the cylinder is asymmetric, then at steady state a differential
pressure in the cylinders is required to equalise the resulting forces. This is not possible,
since the valve is open center and both chambers exhaust to atmosphere. Therefore, a
steady state error appears.
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When comparing Fig. 2.13 (unequal areas) with Fig. 2.11 (equal areas) one observes
little difference in the positioning performance. The only manifestation of the unequal
areas in Fig. 2.13 is the nonzero pressure difference (P4 -Pp ) in the steady state in order
to ensure the force balance Pg Ag =Pp Ap . Therefore, no great advantage can be seen
between symmetric and asymmetric actuators in terms of performance. Furthermore,
the construction of symmetric actuators requires either a magnetic coupling between the
in-cylinder mass and the carriage, or a physical coupling which would require better
seals to prevent air leakage. In both cases, frictional effects are increased which tend to

degrade the positioning performance of symmetric actuators.
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2.3.3 Valve Port Areas

It was shown earlier that the system opening ratio, Ay is a function of the cylinder area
ratio (#y,) and other parameters, one of which is the valve port area ratio (u,y). Ina non-
symmetric cylinder, u;,</.0, which decreases the cylinder operating pressures as
dictated by P~and A”. This increases compressibility effects and creates a more
“spongy” response. To counteract this effect, u,, can be made greater than /.0 and the

operating pressures are increased again. Specifically, the supply port area 4, could be

made greater than the exhaust port area Ay, .

Fig. 2.14 shows the PVA responses when the ratio of the outlet to the inlet valve port
areas is changed from unity (as was the case in Fig. 2.13) to 0.5. The steady state
pressures are seen to increase and the system performance improves slightly over that of
Fig. 2.13. Therefore, a conclusion is that a ratio of valve port areas less than unity does
improve the performance of a pneumatic system. One should realise though, that the
improvement is not significant and the use of a more robust controller would improve

linearity and overall performance without exhaust-metering.

2.3.4 Other Considerations

A formal steady state analysis should be performed to select suitable pneumatic system
components. Guidelines exist in literature (for example: Hitchcox, 1996) and most
manufacturers of pneumatic systems provide sufficient information in their catalogues
to enable a designer to select a suitable valve and a suitable cylinder to perform a
desired task. The valve and the cylinder are the most critical pneumatic system
components. Typically the valve is sized for the minimum flow that provides
maximum actuator speed. However, oversizing can cause stability and accuracy
problems, whereas undersizing can result in slow responses. The cylinder should be
sized for the maximum bore that is practical, while keeping in mind that too large a bore
increases the volume of air that acts as a compliance chamber. In terms of stability, one

should be aware of the cylinder’s size ratio and the possibility of dynamic instability,
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which might arise at certain locations along the stroke of the cylinder where a localised

high natural frequency and a small sampling interval combine.

As far as the operating pressure goes, the highest pressure source available should be
used to reduce the effect of air compressibility. However, one should not exceed the
pressure rating of any of the components. The air should be clean, dry and with most
valves non-lubricated. System filtration should be at least 25 um or better with a
coalescing filter to minimise oil-vapor content. The servovalves should be located as
close to the actuators as possible to avoid lags. Typically, every foot of tubing can
delay response by / msec. Finally, rigid tubing should be used, unless impossible.

Flexible tubing, though cheaper and easier to install, can add compliance to the system.

24  Summary

Despite their nonlinear nature, pneumatic servomechanisms can be simplified and
linearised about suitable operating points. Once the controller gains are generated from
the linearised model and tuned for a desired performance, the pneumatic
servomechanism can be tested in simulation. In simulation, the nonlinear state space
equations can be used to determine the “true” (nonlinear) performance of the
servomechanism. The ultimate gain for a rodless, or symmetric actuator can be
determined upon consideration of the linearised model and Routh-Hurwitz stability
criteria. [t was also shown how to determine the ultimate gain for an asymmetric

cylinder where the dynamic performance differs when in extension or retraction.

Furthermore, pneumatic system exhibit localised dynamics, which could be a cause for
control instability. If, for example one works with a cylinder that has a high size ratio,
then the natural frequency is higher than one that would result when a cylinder with a
moderate size ratio is used. If the sampling time is not adjusted to account for the
increased natural frequency, then the performance of the system degrades and instability

could occur.
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Finally, in the design of the pneumatic servomechanism, one should also consider the
effects of the valve center configuration. Typically, for most position control tasks, the
servovalve is a closed center valve. Open center valves are used when free positioning
of the end-effector is required. In most cases the valve port area ratio is unity, but when
exhaust-metering is required, the ratio can be chosen less than unity. A number of
physical measurements of the servovalve and the actuator have be shown to affect the
steady state pressures. Typically, higher operating pressures improve performance by
decreasing the effects of air compressibility. The only consideration is the maximum
operating pressure that the pneumatic equipment can withstand. Finally, low friction
cylinders or valves that are insensitive to lubrication should be used to avoid stiction

effects.

The presence of so many nonlinearites in pneumatic servosystems calls for a controller
that is able to maintain a high level of performance despite:

¢  Position of the setpoint,

L Direction of motion,

. Friction and,

®  Noise.
Furthermore, the controller should also be able to provide reasonable performance
despite:

¢  Improper selection of pneumatic components and,

¢  Payload variations.
Hence, the interest in Sliding Mode Controllers which is of course the focus of this

thesis.
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CHAPTER 3
CONTINUOUS SLIDING MODE CONTROL

Under normal operating conditions, conventional linear controllers, such as
Proportional-Integral-Derivative offer satisfactory transient response and good
disturbance rejection for linear systems. But in reality, there are transient and steady
state disturbances, system nonlinearities, imperfect plant models and varying model
parameters. Therefore, the performance of linear controllers can degrade as their tuning
relies on perfect conditions (perfect model & constant plant parameters). With the
addition of plant uncertainties, disturbances etc., they provide unpredictable responses
and possible instability. For this reason, there is ongoing interest in the development of

more advanced and robust drive controllers.

There are two main categories of controllers, namely linear and nonlinear. Of the two,
the more general are the nonlinear controllers since they can be successfully applied to
linear systems whereas a linear controlier might be insufficient for control of a nonlinear
system. From there, the two most important subcategories of nonlinear are Robust
control and Adaptive control. The Adaptive control option using gain scheduling, model
reference or self-tuning can provide system parameter tracking and good disturbance
rejection on stochastic noise but the performance degrades under deterministic
disturbances with rising risk of instability. The other option is Robust control, an
approach of which is the Sliding Mode Methodology. Its structure is composed of a
linear feedback law and a switching law which deals with the model's uncertainties.
Sliding Mode Control can then be defined as a Variable Structure controller whereby
the gains are switched as the state of the system approaches reference states defined in

terms of a switching hyperplane (Zohdy et al, 1995).
Utkin (1977) presented a survey of variable structure systems with sliding modes. In
typical linear state regulator design, the feedback gain matrix is determined either

from eigenvalue placement, or by quadratic minimisation. In variable structure
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systems, the control can change its structure and the design problem is the selection of
the structure parameters and the definition of the switching logic. These structures
need not be asymptotically stable, but their combination defines an asymptotically
stable system. New system properties evolve with these new structures and the
desired trajectory is composed from parts of the trajectories of these structures. It is
possible to define a trajectory which is not inherent in any of the structures. The
motion on this trajectory is called the sliding motion and the behavior while on sliding
motion depends only on the parameters of the trajectory, i.e. the coefficients of the
sliding surface. This invariance with respect to plant parameters and disturbances is

of extreme importance.

3.1  Traditional Continuous Sliding Mode Control

The Sliding Mode Control (SLM) technique is based on the fact that it is easier to
control n /5! order differential equations, be they uncertain or nonlinear, than it is to
control a general nth order differential equation (Slotine and Li, 1991). There are two
critical design areas for traditional sliding mode control, the design of the sliding
surface (which is a stable integral manifold of the closed loop system) and the control
synthesis in the reduced order space. The sliding surface is considered as a subset of
the system space and the procedure for the design of the controller starts with the
representation of the system in a “convenient” form. A sliding manifold is then
chosen and finally the control action is designed so that the system reaches the

manifold in finite time and then “slides” along it.

"Perfect” performance can in principle be achieved in the presence of arbitrary
parameter inaccuracies at the price of extremely high control activity. To achieve this,
consider the following single-input dynamic system:

x™ = f(x)+b(x)u @G.D
where x(® is the scalar output (nth order derivative), x is the state vector, b(x) is the

control gain, u is the finite control input and » is the number of states.
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The function f{x) is generally nonlinear and not exactly known, as well as the control
gain b(x). Both are bounded by known functions of x. The control problem is to get the

instantaneous state vector to track a specific or desired (setpoint) time-varying state

vector Xggp, where x,, =[x, X, *-- x! ], in the presence of model errors of f{x) and

b(x).

Consider s(x.1) as the time-varying sliding function in State-Space #(":
s(x;0)= (Y + )" x (3.2)

where s(x;1) is the weighted sum of errors in position, velocity etc., A4 is a positive

constant and x is the tracking error state. Eq. 3.2 implies that the tracking error tends
exponentially to zero with a time constant /7~ ! 2 (from the sequence of n-/ filters of

time constants equal to //1) and provides a general design for the sliding surface
(Slotine and Li, 1991). For a 2-state system, the result for s(x;¢) is a first order system:

s(x;t)=%+Ax=Cx 3.3)
with the sliding surface matrix C defined as:

c=r¥% 1j (3.4)
recognizing that the sliding function s(x;t) = Cx = 0 defines a "sliding surface" in the
phase plane of x. For simplicity, s(x;) will be written as s. The time constant of the
required trajectory, ris in the time domain of x and can be shown to be equal to the

reciprocal of A.

In order to keep the scalar quantity s at zero, the tracking n-dimensional xg,; is replaced
by a /S!-order stabilising problem in s. The objective is to keep s at zero and therefore
the control law has to satisfy the following necessary condition:

V(x)<0 (3.5)
Eq. 3.5 which is the sliding condition derived from Lyapunov's stability equation.
Lyapunov's stability theorem is well documented in Slotine and Li (1991). V(x) is said

to be a Lyapunov function for a system if it is positive definite, it has continuous
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partial derivatives and its time derivative along any state trajectory of the system is
negative semi-definite. Lyapunov's local stability theorem states that if there exists a
scalar function V(x) with continuous first partial derivatives such that V{x) is positive
semi-definite and ¥(x) is negative semi-definite then the equilibrium point is stable.

For this particular case, Lyapunov function is defined by the following equation
(Furuta, 1990):

V(x)=Y,s (3.6)
In particular, when on the surface S, the system trajectories remain on the surface, or
simply when they satisfy Eq. 3.5, they make the S-surface an invariant set, or a domain

of attraction of the equilibrium point.

The first derivative of the Lyapunov function can be shown to be:

. d
Pix)=Yyors 3.7)
For stability, the following sufficient condition has to be met:
V(x)=ss<-nls (3.8)

where 7 is a strictly positive constant.

CSLM drives s to zero as time progresses by forcing s§ <0 at all times, despite all
parametric uncertainty and input disturbances as long as they satisfy a norm-bounded
condition which will be shown later in the chapter. This bounded condition deals
automatically with parameter uncertainties and implies that the approach condition s to

zero holds at all times.

Fig. 3.1a shows the phase plane % vs. x, when n=2 and for the ideal case of
instantaneous control switchings. This would be the case if an analog controller was
used. In the case where a digital computer is used for control, the control input is

activated at discrete intervals and a time lag is introduced. Due to this lag, there is
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chattering in the s-function, which then causes chattering in the control signal. This is

shown in Fig. 3.1b as nonideal sliding control.

The general control law for CSLM is given as:
u=u, — K sign(s) (3.9)
where ugq is the equivalent control action, K the sliding gain and sign(s) is the signum

function which is discontinuous. The equivalent control action to give optimal control

can be evaluated as:
u, =-K,x (3.10)
where Kq is the linear, or equivalent gain to give dx/dr=0 assuming a perfectly known

model. Assume that the system to be controlled has a linear state space representation:

dy/ = Ax + Bu 3.11)
To ensure Lyapunov's stability, § =0 which implies that Eq. 3.11 has to be equal to zero
(since s=Cx and C is a non zero matrix). Solving for ¥ and combining with Eq. 3.3-3.9-
3.10, Eq. 3.12 is obtained:
u=~[(CB)" CA]x - K sign(s) (3.12)
To avoid the chattering shown in Fig. 3.1b, i.e. to smooth out the control discontinuity,
a boundary layer ¢, neighbouring the switching surface can be introduced (Slotine and
Li, 1991). This boundary layer is shown in Fig. 3.1c. Introducing this parameter into
the discontinuous term of Eq. 3.12 yields the following equation:
u=—[(CB)”"'CA]x - K sat(s) (3.13)
where the saturation function sai(s) is equal to sign(s/p) when |s|>¢@ and s/¢ when |s|<g.
The effect of the boundary layer will be seen later in Fig. 3.2. A discussion on the
issues raised by the figure will be provided in Section 3.4.1. When the system is
operating outside the boundary layer (i.e. |s|>¢), then Eq. 3.13 provides a (switched)
sliding action and attracts the system towards the boundary layer and effectively
towards the sliding surface. When the system enters the boundary layer (i.e. |s|<¢),

then the same equation provides a (continuous) proportional action, which causes the
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Figure 3.1:  Sliding Control, from Ideal to Nonideal to Idealized

system's trajectory to slide along the sliding surface of Eq. 3.3, for which the time
response is a 1* order dynamic with no overshoot (for the case where n=2). The sliding
action and the boundary layer proportional action regions can also be seen in Fig. 3.1c.
The chattering, in the presence of an appropriately selected boundary layer thickness,

can be eliminated in both theory and practise.
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3.1.1 Alternate Approaches to CSLM
A number of different approaches and versions of the control law given as Eq. 3.12
have been developed and improved over the years. A number of papers were

reviewed in order to examine the effect of tuning parameters of Sliding Mode.

Furuta (1990) dealt with a SISO system with CSLM. The sliding surface was first
designed (s=Cx=0) and then the control action needed to transfer the state to the sliding
surface was selected. Starting with the state-space equation of the system with the
variables in their perturbation form and by using Lyapunov function V(x)= /s’ and the
requirement for stability (dV(x)/dt < 0 ), Furuta derives the following sliding action
conditions:

s(x) CBxj <0 = Ks< 0

s(x) CBxj>0 = K> 0 (3.14)

s(x) Cij =0 = Ke=0
for j=1 ...n. The resultant control law is different from the one presented in Eq. 3.13 :

u=(Keg+Ksw) x (3.15)

where Keg is as given in Eq. 3.12 and Ky is given as -K sign(s[x(1) x(2)). The above
control law is for a 2-state system. At steady state the control voltage goes to zero to
maintain the required setpoint. Also, note that from the Ky, x expression it can be seen
that the feedback control law is of /5! order and that boundary layer action is not

introduced to eliminate chattering.

Luo et al. (1995) investigated the control of uncertain coupled systems using a novel
control scheme based on the sliding mode principle. The controller, under
appropriate assumptions guaranteed the asymptotic stability of the overall system.
The first step of the control design was to define a sliding vector s eR" as:

s=X+c,X (3.16)
where x and x are the system states, and c, is a scalar (tuning) parameter chosen to
guarantee the closed-loop stability of the subsystem. A sliding motion is said to be

generated in the subsystem if state variables x and x reach the sliding surface S at the
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time instant ¢, and then remain in S for all ¢ 2¢,. The equivalent control law, Ugq can
be found by setting s =0, which when substituted in the state space equation provides
the closed-loop dynamics of the subsystem in sliding mode. The example given was
a second order subsystem. The explicit solutions for the subsystem in sliding mode (¢

2 1y) are given as:

x=x(t,)e " and x=x(1,)e """ (3.17)
Looking at the above solutions, one can see that ¢, > 0 for stability (or, exponential
error decay) and that states x and X are bounded for all ¢ > 0 and converge to zero

exponentially as r—»  The other observation is that as a tuning parameter, ¢, will

increase the speed of response as it increases.

Jian (1995) investigated the issue of a variable sliding line, or surface. A /5 order
sliding surface is designed for a 2™ system with s =cx,+x, and x, as the first
derivative of x, and c, as the single tuning parameter for this simple case. The larger
the value of ¢, the faster the approach to the sliding surface. But upper limits for ¢,
do exist since the presence of large errors in x, and x, would cause controller
saturation, thus jeopardizing the robustness of the controller. The author then
provides a limiting equation for the size of ¢, which depends on the controller gain,
the size of the sliding gain, K and the expected maximum error in the states.
Furthermore, the author implements state weights, w; and a proportional action within

the boundary layer. The switching control law is given as:

r

n={
K, if K, < Z wjllesign(s}
n=1 jn-ll
U= wjllesign(s) if |K|< ij|lesign(s) (3.18)

Jal J=i

n-1

-K, if -K, >ij|lesign(s)

\ j=l

The general principle of state weights and a varying sliding gain have also been used

and presented in (Jordanou and Surgenor, 1995, 1997a) in the control of an inverted
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pendulum using DSLM. The switching laws are different from the ones presented in

Jian,

Fortell (1995) shows how a normal (or canonical) form that corresponds to affine
state space systems can be generated. This generalized normal form is then used in
the context of sliding mode control. The investigation is for a general, nonlinear
system model where the normal form is obtained from the Lie derivatives Ly and Lg,
in the direction f{x) and g(x) of x = f(x)+ g(x)u respectively. The author then

defines an auxiliary output to the general system, the sliding function

n-t . . . .
s(x)= ZJ'_ ,€;X; +x,. Note that ¢, for x, is set to unity which normalizes the

sliding surface. By imposing the discontinuous (switching) surface dynamics, and

setting s(x)=0, the system has:

3.19)
Xl = Xy = =0\ X) =C2X3 =Cp 1 X o)
The author then concludes that a suitable choice of ¢; can generate an asymptotically

stable motion towards x,=x,=...=x,=0, but does not explain how these coefficients

are obtained.

Sira-Ramirez (1993) presents a thorough overview of some of the developments in
sliding mode theory. Special consideration is given to dynamic sliding mode
controllers whereby the sliding surface not only depends on the system states but also
on the system inputs. The sliding function, s is presented as the sum of the input and

the output states. In the article, the control input is shown as the output of a low-pass
filter (with a cut-off frequency A) which has a discontinuous structure (with an
amplitude v/4). The amplitude of the switching action, w4 is better known as the
sliding gain, K5. The cut-off frequency A relates to the exponential rate of approach

of the controlled state to the desired value. The quantity v is defined as an arbitrary
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positive real number arising from ds/dt = -v sign(s) and can be used to measure the
reaching time ¢, of the condition s=0. It is shown as v = 4 u, where u, represents the
maximum input signal. This also provides a design approach to K. For a fixed u,,
the relationship establishes an important tradeoff: the smaller the reaching time ¢, the
higher vas the following equation indicates:

_|so))

t =
" Au,

(3.20)

For a small reaching time one would require a higher cut-off frequency A of the low-
pass filter. This though, may give rise to a larger number of harmonic oscillations

and when combined with external noise, could affect the control input.

Noise in a measured variable can also present problems, especially if the higher states
(e.g. velocity) are obtained through differentiation of a measured state (e.g. position).
Filtering the signals decreases the noise, but introduces signal transmission delay
which can then deteriorate the overall system response. State estimators can therefore
be used to “predict” the states. Misawa (1995) uses the discrete sliding mode
controller structure as proposed by Furuta (1990) with the addition of state
estimators. An additional condition ensures that the estimation error for each state

tends asymptotically to zero.

Woodham and Zinober (1993) presented a sliding surface design originating from
placement of the closed-loop eigenvalues in a specified sector in the left hand plane of
the continuous-time root-locus domain. An orthogonal transformation matrix T
(where T7=T"') is used which modifies the original B matrix of a general linear state
space model, to one in canonical form, T B. Note that this transformation does not
change A to its canonical form. The original states x(?) are transformed into z,(1),
where z,(1)=T x(t). If one only considers the reduced order system, which is outside
the range of the control action (i.e., for a SISO nxn system with system matrices TAT "'
and T B, which has the control input appear in the nf# row, the reduced order system

is n-/xn-1), then the reduced order dynamics are:
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z, Ay | Az 0
g ) Ay | 4y E ¥ B_, N (3.21)

The sliding function for the new coordinate system has s=C,z,+C,x where C, and C,

are sliding vectors. This reduces the equivalent dynamics to:

z.=[A,-A4,G]z, (3.22)
where G=C,"'C,. Matrix G can be obtained for a required eigenvalue sector where the
real intercept and the angle of sector line need to be specified. With these values of
the real intercept and the angle of sector line, a hermitian, positive-definite matrix is
obtained using the Riccati equation with weighting matrices Q and R as positive
symmetric. Since the dynamics under sliding are also independent of control input,
the above equation provides, through the selection of G the dynamics of the system
under pure sliding as C={G [] T, which for a SISO system reduces to C={G /] T. The
question is whether the above procedure can be extended to the design of a discrete

time sliding surface.

Habibi (1995) applies a variable structure controller to a multi-link hydraulic
industrial robot. The implemented controller can offer robust control against bounded
parametric variations, friction and other uncertainties. A sliding surface with integral
action is selected. The sliding function which is defined as the distance of the states
from the switching hyperplane is given as:

s(x.t)= (Y +A) [%dt (3.23)
The hydraulic robot is considered to be a third order system (as is the pneumatic

system for this thesis). For a 3™ order system the sliding function becomes:

s(x,0) =%+ 34 % + 387 ++4 [Fdr (3.24)

The author then sets the coefficients of ¥,¥, Ii‘dt equal to the acceleration, velocity

and position gains of a PVA controller, if one was to be designed for this particular

system. However, it is not possible to achieve triple coincident eigenvalues as
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demanded by Eq. 3.24 due to model inaccuracies. Therefore, it is assumed that the

sliding function, for best performance should be defined as:
s(xt) =%+ K, ¥+ KF ++K, [Tdt (3.25)

The control law used in the paper was the same as in Slotine and Li (1991).

Paul et al (1994) present an implementation of a modified sliding mode controller to
a pneumatic system. Servocontrol in pneumatic systems is of great interest to
designers since pneumatics have a great economic advantage over electric and/or
hydraulic systems. But the use of servovalves for pneumatic systems increases the
cost considerably. The authors replace the servovalve by 2 ON-OFF solenoid valves in
order to cut down the cost. They also claim that 2 control inputs increase the
flexibility of the controller. The cylinder dynamics are assumed 2nd order and static
friction is neglected. A symmetric cylinder is used. When combined with valve
dynamics (since flowrates to the chambers are the inputs), the overall system becomes
3rd order with 2 inputs, one for each valve. Typically, a 2nd order sliding surface
would need to be designed. Instead, Pau! et al implement a /5! order sliding surface:

s(x;t)=[c, 1]x (3.26)
The reduced order sliding surface requires complicated reachability and sliding mode
existence conditions. The eigenvalues of the higher order range space that guarantee
reachability become intricate. The complexity is increased further if a broader range
of cylinders is used, especially if small stroke cylinders are used for which wide
parameter variations take place for a small displacement of the piston. The structure
of the control law is presented as:

u(x)={u'(x) if sx,>0

u(x) if sx, <0 (327

so that sd%t <0.

During charging, (sx,>0), the chamber pressures P and Pp are considered as

functions of the supply and initial chamber pressures, as well as the time constants for
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chamber charging and discharging. These depend on the chamber volumes, hence
they are position dependent. For a sliding mode to exist with sx,>0, a high
differential pressure is essential. The stroke of the cylinder used, combined with a
high value of ¢, resulted in a required differential pressure of 3.5 bar. For fast
reachability, the switching line slope, ¢, should be as large as possible. An
assumption is then made, that for a supply of /0.5 bar the required differential

pressure of 3.5 bar is developed instantaneously.

During discharging (sx,<0), both solenoid valves are kept OFF. The chamber
pressures Pg and Pp, which are functions of both the position and speed of the piston,
are presented as decreasing and increasing functions respectively. This implies that
the piston slows down and reverses direction even with both valves OFF. To avoid
limit cycles (near zero position error or in noisy environments) due to
noninstantaneous pressure development, the sliding mode controller is switched to
Pulse Width Modulation. The use of a reduced order Sliding Mode is therefore
misleading. In the experiment, the piston is required to move a payload across a
distance of /120 mm. A 0.006 sec sampling time was used; the resulting settling time
was close to /.80 sec and the steady state error was close to / mm, a result which is

not particularly impressive.

Zohdy et al (1995) present a new output feedback variable structure controller design

using dynamic output feedback control. The original state space model as:

x(t)= Ax(t)+ Bu(t)

3.28
Y1) =x(1) (328

is then modified with the output feedback control approach to:
X, (1) =Gpux, (1) +Gyy(t) (3.29)

u(t)=G,x,(1)+ G, y(t)
where G,,, G,, are observable (as 4, / of Eq. 3.28) and G,, , Gy, are controllable (as 4,

B of Eq. 3.28). With X(¢) = [x(¢) x,(t)]" and y(¢) =[y(¢) x,(1)] , a new matrix .:ir

defines the augmented system closed loop dynamics as:
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(3.30)

)= A5() = [A + BG, C Bc;u]}_(!)

GZI GH
The eigenvalues of ;fccan be arbitrarily selected by proper choice of the feedback
matrix G. The authors then present a procedure for determining G with T as a
transformation matrix obtained from:

TA-QT=R (3.31)
where R and Q can be arbitrarily selected with the restriction that Q is a negative
definite matrix and that Q and R compose a controllable pair. With T determined

from equation 3.31, elements G,, and G,, of matrix G can be obtained as:

1 -/
[G, G, j=KH (3.32)

with K denoting the desired closed loop matrix obtained from pole placement.
Elements G,, and G,, can then be obtained from:

RQ= T(Gcz, —Tchgj,) G-33)
The sliding surface is then defined as:

s(x,t)=Cy(t)=0 (3.34)
C if obtained from the desired dynamics of the switching hyperplane. The control
law is composed of the equivalent control part, ugq which is active in the vicinity of
the sliding surface, and a corrective control part, ug,, which directs the system states
towards the surface. The corrective control law, or switching control law has:

u,, = f;sign(s(x; 1)) (3.35)
where £ denotes a column of switching coefficients for the appropriate states. The
paper provides simulation results for aircraft control using the augmented system with
dynamic output feedback. The design of the switching hyperplane is similar to the

one presented in Woodham and Zinober (1993) since it originates from a continuous

time closed loop system representation, as Eq. 3.30 shows.
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3.1.2 Summary of Literature Review

In conclusion, the literature review indicates that there exist a number of CSLM
implementation techniques, each with its own strengths and weaknesses. A key issue
in CSLM is the design of the sliding surface and the construction of the switching
control law. The sliding surface can be designed once a closed loop system
representation is generated. Woodham and Zinober (1993), Zohdy et al (1995) have
considered the closed loop system under pure sliding and commented on the
generation of the sliding surface from eigenvalue selection. Most commonly though,
the question of how the coefficients of the sliding surface are selected is left

unanswered.

All implementations of CSLM use relatively very small sampling times. For
example, Paul et al (1994) worked with a sampling time of 0.002 sec for control of a
pneumatic system with a required settling time of 1.8 sec. Jian (1995) used a
sampling time of 0.00! sec for control of an electric positioning system with a
required settling time of 0.5 sec. Zohdy et al (1995) do not state the sampling time or

comment on its effects.
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3.2  Design of the Sliding Surface

The design of the sliding surface is of primary importance to the performance of a
sliding mode controller. In this section, a general technique will be shown for the
determination of a canonical matrix system that helps in the design of the sliding

surface of a continuous sliding mode controller (fordanou and Surgenor, 1997b).

3.2.1 Stability of a Continuous System

The question of stability of the system x = Axis important. The matrix 4 in this case
represents the closed-loop dynamics. It can be derived if one considers that the
sliding function has reached the value of zero; from then and on, the system is under
pure sliding. Generally, this system has solution x(z)=edlx, and is said to be
asymptotically stable if the effect of any initial perturbation x, from equilibrium dies
away as —co It can be shown that necessary and sufficient conditions for asymptotic

stability is that all eigenvalues of 4 have negative real parts.

The system can also be shown to be asymptotically stable if a positive definite
quadratic form V{(x) =xTRx (equivalent to Lyapunov function) can be found such that
dV(x)/dt is negative definite. In other words, for stability:

vV
dd(tx) =iTRe+x Rt <0 (3.36)
which reduces to:
V
__d d(:x) =x"Ox <0 (3.37

where Q=ATR+RA and is a negative-semidefinite, symmetric matrix such as -/.
The procedure provides sufficient conditions for the design of the switching laws for
CSLM.

3.2.2 Canonical Form of a Continuous System

An important part of the sliding surface design is the characterization of the original

system in its canonical form. A general nxn matrix 4 can be represented as Ax=Ax,

58



where x is called the eigenvector (usually normalized) and A its associated eigenvalue.
The non-trivial solution for Ax=Ax is obtained by considering its characteristic
polynomial det(Al-A4)=0 which has:

Ara, A+ +a, =0 (3.38)

for which there exist n distinct roots 4, 4, ...4,,.

[f one considers the transformation x=T), r_, where T), is the matrix of eigenvectors

(usually called the modal matrix) and substitutes in Ax=Ax, then:

r,=T ' AT x = Ar, (3.39)
where A is a diagonal matrix with the eigenvalues of 4 in the diagonal. Therefore
Ty = aje'l' ! Vv j=1,2,..n and:

x(1)=T,[ae"" ae*..ae'']” (3.40)

where aj are arbitrary constants determined from initial conditions.

A companion matrix to 4 is denoted as C4 and it has the same characteristic equation,

or polynomial as shown above and has a canonical form (Barnett, 1990) as:

0o 1 0 .
0o 0 10

Ca={ . L. (3.41)
-, -a, .. .. —-Q,,

C4 is obtained by considering the Vandermonde matrix ¥, that has the general form:

e

[ 1 1 . 1
A A, . A,

v=| 2 A . A (3.42)

A A i '_
where J;'s represent the eigenvalues of A. Assuming V), is non-singular (i.e. all 4;'s

are distinct), then C 4 can be found as:
Ca=(TvVu -1 ATy Vil (3.43)
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The canonical form of the system is now determined. The reason for obtaining this
form is to then replace the original variable x with a transformed variable X, where
x=TX. Note that x relates to 4, and X relates to C4, or the companion matrix of 4.
The eigenstructures of x and X are therefore identical and a sliding surface design
with the X -variable can be linked directly to the x-variable through the matrix T that

serves to transform the system to its canonical form.

The derivation of the transformation matrix T poses as the final part of the sliding
surface design. It can be found if the controllability matrix of the system is
considered. A system is said to be controllable if the rank of the system is equal to
the rank of the controllability matrix W, which, for a continuous system is an

augmented matrix defined as:
W,=[B AB..A"'B] (3.44)

[f new coordinates X are introduced by a nonsingular transformation matrix 7, then

for the new coordinates the controllability matrix becomes:
W.=[B AB..A"'B] (3.45)

The transformed matrices 4 and B can be shown as A=TAT -{ and B=TB. The
derivation will be presented in Chapter 4 for their discrete time equivalents &, I"and

@, I" . If these matrices are substituted into Eq. 3.45, then:

W.=[TB TAT'TB..TA"'T'TB]=TW, (3.46)
One then concludes that the matrix T can be found by considering the controllability

matrices of the original and the transformed system, such that:

T=W.-W' (3.47)
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33 Switching Control Law
The sliding function s has been shown as a weighted function of the system states:
s(t)=Cx=[c, ¢,-::c, ], x (3.48)
with vector x denoting the state errors. If one works with the transformed variable x,
where x=T'%X , the above is modified to:
s(t)=Cx=CT'x=[c, ¢,~c,];T" x (3.49)
Typically the sliding surface is normalized to c, since it does not affect the system’s

eigenstructure. The switchings of the sliding function were given by Eq. 3.13:

K

by

iflsl<g

S |w

u, = s (3.50)
K, sign (;) if ls|2 ¢
For a 3" order system, normalisation of the sliding surface coefficients leads to c,=1.

The coefficients ¢, and ¢, can be then selected to match performance parameters of a

desired 2" order system as shown in Surgenor and Vaughan (1996).

3.4  Controller Parameter Issues

The following section will demonstrate some CSLM tuning and stability issues. The
CSLM controller was implemented in simulation to control the position of the piston
of an asymmetric pneumatic cylinder controlled by a proportional servovalve, similar
to the one described in Chapter 2, technical specifications for which are listed in
Appendix A, The input to the system (or, the controller output) drive a proportional
servovalve. Unless specified otherwise, the benchmark conditions used in the

simulations are as follows:

¢ The sliding surface is designed for a damping factor £ of /.0 and a settling

time £ of 0.2 sec.

¢  The nominal payload mass M, is 8.5 kg. Robustness tests were implemented
with payloads of 23.0 and 2.2 kg.

¢  The sampling time A is 0.00] sec.
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®  The boundary layer ¢is 4.5.
®  The sliding gain K is 1.0 (normalised).

®  The equivalent gain action, uegq is active.

The last point referes to the fast the some authors (Jian, 1995, Gamble and Vaughan,
1994, Tang and Walker, 1994) tend to ignore this term in the sliding control law of
Eq. 3.9. Surgenor and Vaughan (1996) comment that the equivalent gain can be
ignored when a sufficiently large sliding gain that compensates for uncertainities is
used and when stability limits are not approached in the application at hand. Even
though the sliding action of the overall CSLM control law is independent of the
system model, the equivalent control law is designed based on matrices 4 and B of
Eq. 3.11; therefore an error in 4 and/or B would induce an incorrect equivalent control
law. The fact that the sliding surface (and consequently the sliding action of CSLM)

is independent of the system in use will be shown in Chapter 4.

A further consideration for the tuning of CSLM is the boundary layer which is used to
minimize chattering effects; a tradeoff exists between steady state positioning
accuracy (resulting from a large boundary layer thickness) and chatter (resulting from

a small boundary layer thickness).

Important issues that will be addressed in simulation are:

° The effect of the boundary layer on the control signal (chatter) and system
response (Fig. 3.2)

° The effect of the sampling time on the system response (Fig. 3.3)

° The effect of the sliding gain on the system response (Fig. 3.4)

° The robustness (different payloads) of CSLM vs. PVA with A=/ ms (Fig. 3.5
and 3.6)

° The robustness (different payloads) of CSLM with h=10 ms (Fig. 3.7)

° The effect of Keq on the robustness of CSLM with 4=10 ms (Fig. 3.8)
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° The effect of the settling time design parameter (Fig. 3.9)
. The effect of the damping factor design parameter (Fig. 3.10)
. The effect of static friction on the system response (Fig. 3.11)

. The effect of noise and filtering on the system response (Fig. 3.12)

The design procedure of the sliding surface and other aspects of CSLM will be shown
in Fig. 3.13.

3.4.1 The Boundary Layer

Fig. 3.2 illustrates the effect of the boundary layer thickness, §. The effect of chatter
due to non-instantaneous switchings (shown in Fig. 3.1b) when ¢=0 is shown as a
dashed line. The position response is linear, but again the control signal exhibits high
chatter, as expected. The resulting steady state error was determined to be 0.3 mm.
This large error is caused by the saturated switchings of the controller. The
performance of CSLM improves considerably when a boundary layer is implemented,
as was demonstated in Fig. 3.1c. The position response with ¢=/.5 can be seen as a
solid line in Fig. 3.2. The response is clearly linear and the control signal is smooth. In
addition, the resulting steady state error was determined to be 0.05 mm, which is a great
improvement. If one increases the size of the boundary layer considerably, the
controller performance degrades since the proportional action inside the boundary layer
can introduce a steady state error. This can be seen in Fig. 3.2 as the dotted line
response which corresponds to ¢=/0.0. Though the transient response shows little

deviation from the one obtained with a boundary layer of 1.5, the steady state error

increases considerably to 0.5 mm.
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AlRcsimm: With Keq, Ks=1.00, phi=1.5, tss=0.20, zeta=1.00
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Figure 3.2:  Effect of Size of the Boundary Layer with h=/ms
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3.4.2 Sampling Time Considerations

Fig. 3.3 shows the effect of the sampling time, #. A boundary layer of /5.0 and a
sliding gain of /.0 were used. The solid line response corresponds to a sampling time
of / ms. It is the smoothest response because of the fast switchings about the surface.
If the sampling time is increased ten-fold to /0 ms (dotted lines), the performance of
the system is still considered acceptable. The reason why the performance is still
acceptable is due to the large boundary layer (¢=/5.0) which “relaxes” the switching

action. High chatter appears with /=10 ms and a ¢=/.5.

[f the sampling time is further increased to 50 ms (dashed lines), CSLM becomes
unstable. Increasing the boundary layer could restore stability, but the controller
would no longer be considered a sliding mode controller since switchings would be
explicitly eliminated. Empirically, one needs to use a sampling time at least 20 times
smaller than the open loop time constant of the system. For example, if the open loop
time constant for a particular pneumatic system is 0./ sec, the sampling time should
be in the order of 0.005 sec. Sampling time limits for CSLM have been reported by
Pieper (1992) but are not applied in this thesis.

3.4.3 Sliding Gain and Transient Response

Fig. 3.4 shows the effect of the sliding gain K;. Three responses are shown in the
figure. The solid response corresponds to a sliding gain of /.0. This is a normalized
value for the sliding gain which indicates the maximum value permissible for the
gain. It corresponds to a valve input of 5 volts which indicates maximum flow
through the valve. The simulated valve has a maximum flow of /.88 l/sec (4 scfm).
The dotted response corresponds to a sliding gain of 0.5 and the dashed response
corresponds to a sliding gain of 2.0. A ¢=4.5 is used to eliminate chatter effects that
would result with K¢=0.5. If one compares the three responses, the first realization is
that the overall settling time is unaffected. This should be no surprise, since the
dominant part of the overall settling time is the sliding settling time which is linked to
the sliding surface.

65



20
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Figure 3.3:

Effect of Sampling Time on Stability of CSLM
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AlRcsimm: With Keq, Ks=1.00, phi=4.5, 1s5=0.20, zeta=1.00
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Figure 3.4:  Effect of Size of K on Performance with Small Sampling
Time
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The sliding gain, as will be seen in Chapter 4 can be linked to the reaching time (the
time to reach the sliding surface) which can only slightly affect the transient response
of the system. This can also be seen in the responses. The dashed line response of
the highest sliding gain (Kg=2.0) rises faster than the other two responses; the slower

of the three, the dotted response corresponds to the lowest sliding gain (K=0.5).

The effect of K is best highlighted by the sliding function plot which shows that the
system is outside the boundary layer the longest when the lowest gain is used, which

results in a slowest response.

The nonlinearity in the system (position and direction dependence) can be seen in the
dissimilar control input response. Note that the figure shows the normalized control
input; in actual fact, £/ v in the plot corresponds to #5 v input to the valve. The input
stays saturated for a longer time when the motion is from the center to the end (y=0 to
y=-350mm), rather than from the end to the center, mainly due to the larger chamber

volume that needs to be filled when one moves from the center to the end.

3.4.4 Robustness Test for CSLM

A test for the robustness of CSLM is to design the controller for a certain payload and
apply the controller to different payloads. Fig. 3.5 shows the effect of the payload
mass, M. The correct mass for which the controller should be designed is 8.5 kg.

The system response with the correct mass is seen in Fig. 3.5 as a solid line.

The controller was then used unaltered to control a payload of 23.0 kg (dotted line)
and a payload of 2.2 kg (dashed line). One can observe a slightly slower transient
response in the case of the larger mass and a slightly faster transient response in the
case of the smaller payload mass. This is intuitive. The control signal shows that
additional control effort is required to bring the larger mass to the sliding surface.

Conversely, “less” control effort is required in the case of the smaller payload mass.
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Figure 3.5:  Robustness of CSLM with 3 masses and A=Ims
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The chatter in the control signal in the case of the smaller payload has to do with the

fact the smaller payload responds faster to the input.

In summary, CSLM is robust but only if the sampling time is sufficiently small. The
controller robustness deteriorates if an inadequate sampling time is used. In the case
of the pneumatic system under study and the available hardware, the limiting
sampling time was /0Oms. The responses for the same robustness test with 4=/0ms

will be shown in the next section.

Fig. 3.6 shows the same robustness test presented in Fig. 3.5 but instead of a CSLM
controller, a conventional PVA controller is used. The solid lines correspond to the
correct controller design with a payload of 85 kg, the dashed and dotted lines
correspond to the incorrect system payloads of 2.2 kg and 23.0 kg, respectively. The
gains that were used (Kp=12.5, Ky=0.49, K4=0.06) were calculated for the settling
time and damping requirements using pole-placement (Surgenor and Vaughan, 1996).
One observes that PVA not only has poor robustness, but even in the correct system
response (solid lines) it indicates a nonlinear behaviour: an underdamped response
when the positioner moves to the center of the stroke, and a damped response when it
moves towards the ends of the stroke. Therefore, the nonlinear nature of the

pneumatic positioner of which the performance is position dependent is still evident.
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3.4.5 Robustness Test for CSLM with Inadequate Sampling Time

Fig. 3.7 provides an identical robustness test to the one presented in Fig. 3.5, but with
a sampling time that was increased from / ms to /0 ms. For h=[0ms, K¢=1, ¢=4.5
and M,=8.5kg, CSLM results in sustained oscillations and poor setpoint tracking
which is caused by excessive control chatter, unlike the case when A=/ms (Fig. 3.4).
Therefore, the boundary layer needs to be increased, from 4.5 as used in Fig. 3.4 and
Fig. 3.5, to /5.0. The tradeoff for the smooth control signal with a larger boundary
layer is a higher steady state error. When using a large sampling time (h=/0ms), it
was also important to decrease the size of K, from /.0 to 0.8 to avoid controller
saturation which can cause poor response and possible instability. The solid line
responses of Fig. 3.7 illustrates a slight oscillation about the sliding surface, caused

by the combination of the large sampling time and the large boundary layer.

The controller was then applied to a payload of 2.2 kg (dotted line) and a payload of
23.0 kg (dashed line). The response of the larger payload deteriorates but remains
stable. But the smaller mass, due to its small inertia reacts faster than the 8.5 kg, and
overshoots the sliding surface at each switching. This causes oscillations and large
steady state errors on the order of 20 mm. One way of correcting this would be to
decrease the size of the switching action (K5) and increase the boundary layer.
Unfortunately, with this combination of corrective actions, the large mass response
becomes marginally stable. This leads to the conclusion that CSLM has poor

robustness in the presence of a large sampling time.

72



20 AlRcsimm: With Keq, Ks=0.80, phi=15.0, tss=0.20, zeta=1.00

T |

L e .

-20
Y(mm)

-40

.60 1

0:6 08
Time (sec)

h=10ms, Mg=8.5kg (solid), Mg=23.0kg (dashed), Mp=2.2kg (dotted)

0 0.2 04

[l
06 08 1
Time (sec)

Figure 3.7:  Robustness of CSLM with 3 masses and h=1/0ms

73

12



3.4.6 Equivalent Action and Robustness

Fig. 3.8 shows the effect of the equivalent control action. It has been shown that the
control law for CSLM is composed of two parts, the equivalent action and the sliding
action. The dominant action is the sliding action which directs the system to the
sliding surface and to the equilibrium point, or the final setpoint. The equivalent
action is a linear feedback law that helps the sliding action in keeping the system on
the sliding surface. The solid line response represents the behavior of the 8.5 kg

payload when the equivalent gain is used.

If the equivalent action is removed, the performance of the controller degrades (dotted
line). First of all, the response is slower due to the decreased control action.
Secondly, one can notice that both the sliding function and the control signal begin to
“blow up” when the positioner is at the end of the stroke (y=-50mm). This indicates
instability. The role of the equivalent action is to keep the system on the sliding
surface, therefore its absence will have a negative effect, especially since the
sampling time is large (/0 ms). When a small sampling time (/ ms) is used, there is
no visible change in the performance of the system, mainly because the sliding action
is able (on its own) to drive the system to the surface and keep it on the surface by

faster switchings.

The larger inertia of a 23.0 kg payload mass eliminates the increasing amplitude of

the control signal oscillations, even with no equivalent action (dashed line).
In conclusion, the equivalent action has a positive effect in the overall system

behavior. The degree of performance degradation when one neglects the equivalent

action depends on the sampling time.
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Figure 3.8:  Equivalent Gain and Robustness of CSLM
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3.4.7 Sliding Surface Design Parameters

The sliding surface design for CSLM as applied to a 3" order pneumatic system is
simplified to a 2" order sliding surface for which one can select the desired sliding
settling time and surface damping factor. The overall settling time is the sum of the
sliding settling time and the reaching time. Of the two, the dominant component is
the sliding settling time. Fig. 3.9 shows the response of the pneumatic system when
the sliding settling time was set to 0.2 sec, 0.3 sec and 0.4 sec. The responses are
shown as solid, dotted and dashed lines respectively. For these, the desired damping

factor was set to /.0 (critically damped response).

Fig. 3.10 shows the responses for three designed damping factors of /.0, 0.70 and
0.50 and are shown as solid, dotted and dashed lines respectively. For all cases the
sliding settling time was required to be 0.20 sec. The responses clearly indicate that
all responses have a settling time comparable to 0.2 sec while overshoots of about 5%
and /6% are seen for the cases where the damping factors were set at 0.70 and 0.50
respectively. The observed overshoots are in agreement with the expected overshoots
derived from the classic expression for the percent overshot for a 2™ order system as a
function of the damping factor (Palm, 1986):

.Y
M, =100 i % (3.51)

Fig. 3.9 and 3.10 clearly illustrate how the shape of the response can be manipulated
by the design of the sliding surface. If the sampling time is increased ten-fold to /0

ms, the shape of the response cannot be manipulated as easily by the designer.
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Figure 3.9:  Sliding Surface Design for a set of Settling times
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Figure 3.10:  Sliding Surface Design for a set of Damping Factors

78

1.2




3.5 Static Coulomb Friction and Noise Considerations

Static friction in pneumatic systems is a significant performance inhibitor. Fig. 3.11
shows considerable performance deterioration of the system with increasing static
friction. The solid line represents the response of the system with no static coulomb
friction. The dotted and the dashed lines show the response of the system with a
static coulomb friction of 5 N and /0 N, respectively. A static friction test was
performed on the experimental setup to determine reasonable values for the static
coulomb friction. An average static coulomb force was determined at F.g=/0 N (see
Appendix B for MARTONAIR cylinder).

Sensor noise can also be a problem in practise. A realistic level for noise in the
measured position was determined by examining the datafiles obtained from
experimental tests. It was determined that a £0.5% sensor noise was evident in the
recorded position when the control signal was constant. For visualisation reasons, the
noise level used in simulation was +/.0%. A settling time of 0.3 sec was chosen that
better shows the lag that is introduced by the filter. Fig. 3.12 shows the response of

the system with no noise in dashed lines.

In simulation, the “clean” actuator position is obtained by a nonlinear simulation. A
1.0% white noise signal is then added to the “clean” actuator position signal and this
becomes the “sensed” position to be fed into the control law. The noise is /% of full
scale and was obtained from an open loop test. The controller’s response with /.0%
noise is shown as a solid line in Fig. 3.12. The noise can be better realised if one
observes the velocity plot. With the /.0% position noise, velocity noise is amplified.
Acceleration noise is amplified even further (recall that in experiment, velocity and

acceleration are obtained by single and double differentiation of position).

The use of a filter can decrease the effects of sensor noise, but at a cost. A lag can be

seen in the dotted response of the system in Fig. 3.12 This is due to the presence of a
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Figure 3.11:  Effect of Static Coulomb Friction on performance of CSLM
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Figure 3.12:  Effect of Noise and Filtering on performance of CSLM

2" order Butterworth filter being used with a cut-off frequency of /5 Hz. The

response is smooth again, but with a visible lag.
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3.6 Summary

The design procedure for the sliding surface of CSLM is summarized in Fig. 3.13.
The continuous system column shows how the transformation matrix T is obtained
from the controllability matrices of the original state space model and the canonical
system state space model. The continuous sliding surface column shows the
procedure for the two methods for the design of the sliding surface, the pole
placement technique as outlined in the chapter and the filter method which had been

shown in lordanou and Surgenor (1996).

The chapter presented some basic issues for the CSLM controller by means of
simulation of pneumatic positioning system. These issues include the effect of the
tuning parameters of CSLM, namely:

° The sliding gain, and

o The boundary layer thickness,
as well as the design parameters for the sliding surface, namely:

J The sliding settling time, and

° The damping factor,
and finally the effect of;

. The sampling time.

In summary, CSLM is a highly robust controller under the following conditions:

. The sampling time is sufficiently small, so that the continuous structure of the
controller is not negated by large discrete sampling times and yet large enough
to be achievable with a modest control computer.

o The sliding gain is sufficiently large without exceeding stability limits, so that
model errors do not compromise robustness and yet small enough to be
achievable in practise.

o The boundary layer is sufficiently large so that chatter is eliminated and yet

sufficiently small so that positioning accuracy is not compromised.
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CHAPTER 4
DISCRETE SLIDING MODE CONTROL

CSLM with its inevitable implementation on a digital computer ignores by definition
the effect of the sampling time. More precisely, the implementation of CSLM
assumes that the sampling time is small enough such that its effect can be ignored. In
the case of Discrete Sliding Mode Control (DSLM), the stability conditions that
generate the switching laws are derived from a difference function as opposed to a
derivative function. In other words, the DSLM switching laws take explicit account

of the sampling time.

4.1 Traditional Discrete Sliding Mode Control
To help introduce some of the parameters and terms to be used in this chapter,
consider a single-input discrete system:

x(k+1)=®@ x(k)+ I uk) 4.1)
with @ and I obtained from the state space matrices 4 and B of the continuous
domain. A full-state feedback DSLM is designed whereby the discrete sliding
function s(k) can be given as:

s(k) = C x(k) 4.2)

where C denotes the discrete sliding surface matrix.

During pure sliding it can be assumed that the value of the sliding function remains
the same, i.e., s(k)=s(k+1)=s(k+2)... If one sets s(k+1)=s(k), then by inspection of
Eq. 4.2 one can see that C x(k+/)=C x(k). This final equation is used to derive the
closed loop dynamics of the system under pure sliding. A full description of the

procedure will be provided later in this chapter.

One of the first comprehensive approaches to DSLM was presented by Furuta (1990).
A general approach to the selection of the sliding surface C was presented, which

should be selected so that the following system is stable:

84



x(k+1)=[@&-ICH-1C(@-1] x(k) 4.3)
s(k)=Cx(k)=0

The above equation gives the plant’s response once the sliding surface is reached and

can be used as the foundation for the design of the sliding surface. The system can be

D-z.I I'|x(k)
[ c 0}[;4(/:)]:0 4.4)

where x(k+1)=z; x(k). The only requirement for stability is that |z¢|</.

rewritten as :

A more recent paper by Furuta and Yaodong (1995) described a new approach to
designing the boundary layer directly within the state space, as opposed to around the
sliding mode, or sliding surface. The approach can be applied to both continuous-
time and discrete-time systems. For the general discrete system shown in Eq. 4.1,

P.or P -norm of the discrete state, the function L and the discrete-time boundary

layer, or sliding sector S are defined as:

P, =|x(k)|, = Jx(k)’ Qx(k), x(k)eR"
L = |x(k)|’e = x(k)" Qx(k), Vx(k) e R",x =0 (4.5)
§ = {x|x(k)" (®7Q® - Q)x(k) < —x(k)" Rx(k), x(k)e R"}

where O and R are positive definite symmetric and positive semi-definite symmetric
matrices, respectively. For the boundary layer &%), we have s*k)< &h). A
transformation is then defined, x(k) = Tx(k) so that the original system is brought to
canonical form. The coefficients of the characteristic polynomial of the last row of
the canonical system, a,, @), @, ... @y compose the transformed sliding surface which
can be transformed back to the original state space variable x(k) by using the

transformation matrix 7. The boundary layer &%) is also defined in terms of the

variable z(k) and is transformed back to the variable x(k) using 7. However, the
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method does not explain how different setpoint profiles can be selected, since Q and

R are said to be chosen arbitrarily.

Paden and Tomizuka (1995) considered a simple nonlinear system with a discrete
time state feedback control law. A scalar sliding function s(k)=C"x(k) where C"=/c,
¢, ... ¢, 1] is composed which defines a target manifold for the closed loop dynamics,
i.e. sliding surface. CT is normalized so that c,=/. Starting from a Lyapunov’s
function of the system, a sliding manifold is defined and is then used to develop
sampling rate thresholds for the discrete controller. The paper concludes that the
selection of the gains for a discrete sliding mode controller not only depends on the
performance requirements (i.e. reaching time and asymptotic rate of decay on the
manifold), but also depends on the discrete sampling time used. A recommendation

for systems with higher uncertainties, is to use smaller sampling times.

lordanou et al (1995) presented a procedure for the design of the sliding surface of a
DSLM controller for an n’? order system as a combination of a transformation matrix
T with a cascaded series of n-/ first-order filters, thus composing a sliding surface of
n-1t" order. The filter bandwidth, A becomes the sliding surface design parameter.
The coefficients of the nfA-state of the canonical system can be linked to closed loop
system dynamics. The filter bandwidth is chosen according to the desired decay
speed of the system on the surface. In other words, the higher the bandwidth, the
faster the decay on the surface. The upper limit for the bandwidth is determined by
the available system sampling rate. lordanou and Surgenor (1996) implemented

additional features. These features included state weights and a varying sliding gain.

Pieper (1992) investigated the issue of optimising the sliding surface coefficients
using a minimisation technique similar to the linear quadratic control structure. The
work shows stability limits on the sampling time when a pseudo-DSLM is
implementated to a general n'# order system. From there, two techniques are

presented for the design of the 2* order system sliding surface. The first method is
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based on selection of eigenstructures and the second is based on linear quadratic
optimisation. The more popular of the two methods is the one that is based on
eigenstructure selection. For a general discrete system as shown in Eq. 4.1, the closed

loop dynamics can be shaped so that:

x(k+1) = ([I-V, J&+V,) x(k) (4.6)
where V, is a projector defined as:
v,=rrcryjic 4.7

The component (I-V, )@ of Eq. 4.6 maps @ into the null space of the sliding surface
matrix C, and /, maps the state into the range of /. A new variable 7, is defined as
the eigenvector matrix of / - ¥,. The desired closed loop eigenvector 7, is then
chosen by eigenvalue assignment by considering Eq. 4.6 and 4.7. The diagonal
matrix of eigenvalues A and the eigenvector matrix 7, satisfy:
OT, -T, A=V, [®-I]T, (4.8)
The left hand side can be chosen arbitrarily, but it should be of full rank. The left
generalised inverse of /”is defined as /°® and is chosen so that /"8/"=/ and /"® T, =0.
The sliding surface matrix C is then found by solving for:
c=[crre (4.9)
The simplest design for the sliding surface with this method would be if the scaling

factor CI” in Eq. 4.9 is assumed to be the identity matrix / which then makes C= /"%
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4.2  Design of the Sliding Surface

The design of the sliding surface is of primary importance to the performance of a
sliding mode controller. It defines the nature of the required response, or graphically,
the shape of the desired sliding surface. If one considers a 2™ order system, the
sliding surface is a /™ order surface (or a sliding line) since the sliding regime is a
dimension less than the system itself. For a third order system, a second order sliding

surface is defined.

In this section, an original technique will be developed for the design of the sliding
surface of a discrete sliding mode controller where its coefficients are given as
functions of desired closed loop performance of the system under pure sliding. The
sliding surface is based on a dominant set of desired closed loop poles and can match
the more conventional sliding surface design characteristic where the sliding surface

has one order less than the system (lordanou and Surgenor, 1997b).

4.2.1 Discrete Time Domain

A single-input, single-output (S/SO) discrete control system has:

x(k+1)=@x(k)+ " u(k) (4.10)
ith @=edh _ {" At I
with @= and I = € Bdt where h represents the sampling time and A4, B are

the continuous-time domain state matrices. The matrix exponential can be written as

eAh=[+Ah+A2hY21+ Al /3!+.... The identities [+Ah+A4*H/2! and [hB+ABh*/2! can be
considered as good approximations for the matrix exponential @ and convolution
integral 7, respectively if a small sampling time is used. For example, consider the

following continuous time matrix 4, which yields a discrete time matrix @ as

obtained using the above matrix exponential equation as:

0 I 0 ] 00094 27*10
A=10 -8 0057|—2"5@=|0 0849 0.00054
0 -26430 | 0 -246486  0.929
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The approximation /+Ah+A’h/2! and the next term (4°h%/3/) are calculated as:

, |0 00096 28*10” , |0 -00001 7.9*107
( Ah) (Ah)
J+Ah+—-3,—= 0 0845 0055 |and T 0 0004 -0.00001
' 0 -25256 0924 ) 0 -638 0.002

Clearly, the last term (43h3/3!) is within +2% of @, therefore /+Ah+A2h2/2! can be
given as a good approximation for the matrix exponential. A similar result can be

shown for the expansion of the convolution integral, /= The discrete sliding function
s(k) can be given as:

s(k)=Cx(k) 4.11)

where C denotes the discrete sliding surface matrix.

4.2.1a Stability of a Discrete System

The first consideration for stability of a discrete system is the permissible size of the
roots of its characteristic equation. If the system is discrete, it has x(k+1)=®x(k)
where x(k)=[x,(k) xy(k) ... xp(k)] for k=0,1,2... Its solution can be written as x(k)=
@*x(0). This is obtained by x(k+1)= k+1x(0)= dDkx(0)= Px(k). For stability of a
discrete system, the eigenvalues of @ have a modulus of /ess than 1.0, since k-0 as

t—co Geometrically, all roots lie inside the unit circle in the complex plane.

The solution for x(k+1)=®x(k) can then be calculated. If one considers the

transformation x(k)=Tyr(k) then:
r(k+1)=A r(k) (4.12)
where A is the diagonal eigenvalue matrix of @ and 7, is the matrix of eigenvectors.

Therefore, rj(k)=bjAik ¥ i=1,2,.n and:
x(k)="T, [bA bA.bA]" (4.13)

where b; are arbitrary constants determined from initial conditions.

The system can also be shown to be asymptotically stable if a positive-definite

quadratic form V=xTRx (equivalent to the Lyapunov function) can be found such that
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the difference (rather than the derivative as in continuous time domain) is negative-
definite. Just as before, R has to be a positive-definite matrix. In other words, for
stability:

Vik+1)-V(k)=-x"(k)Ox(k)<0 (4.14)
where in this case -Q=¢T R@-R. For stability, Q is positive-semidefinite, real-
symmetric matrix and @k 0 as t—»o.  The procedure provides sufficient conditions

for the design of the switching laws for DSLM.

4.2.1b Canonical Form of a Discrete System

For a controllable system, there exists a unique transformation T for x(k)=T ¥ (k)

which transforms the original discrete system, to X (k+/)=® ¥ (k)+T u(k) which is
in pure canonical form (lordanou and Surgenor (1997b), Furuta (1990), Pieper
(1992)).

The procedure for generating the canonical form of the original discrete system is
similar to the procedure outlined in Chapter 3. The companion matrix C, of the

original system matrix @ can be found if one considers the Vandermonde matrix ¥V,

composed of the eigenvalues 4,, 4, ... 4, as:

) A U B
ArA, A, . A
vo=[Ah A A o Al (4.15)

Aoayt oAyt LA

Ty is the matrix of eigenvectors v, v, ... v, as:

T, =[ v, v |l v, ] (4.16)
The companion matrix C,, or @ can then be shown as:
Co =D =(T, V") '®(T,V,") 4.17)

The discrete system in canonical form can then be shown as:
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[ 0 | 0
0 0 ! .. 0
o=T"'@oT=| : : R s |, C=T'r=[0 0..0 1] (4.18)
0 0 /Y |
-a, -a -a, .. -a,,]

For stability, during pure sliding of the transformed discrete system, the following

condition should be satisfied:

O "RO-R=-0<0 (4.19)

The following section presents the procedure for the determination of a suitable
transformation matrix 7. The controllability matrix of the system is therefore
considered. A system is said to be controllable if the rank of the system is equal to
the rank of the controllability matrix W, which, for a discrete system, is an
augmented matrix defined as:

W, = or..o"'T] (4.20)
If new coordinates (from x(k) to ¥ (k)) are introduced by a nonsingular transformation

matrix 7, then for the new coordinates the controllability matrix becomes:

We.=[T oT..0"'T) 4.21)
The transformed matrices ® and T were shown in Eq.4.18 as ®=7"'®T and
T =T"'T. If these matrices are substituted in Eq. 4.21, then:

W.=[T'T T'OTT'T..T'O"'TT'I}=T"W, (4.22)
This concludes that matrix T that transforms a system to its canonical form can be
found by considering the controllability matrices of the original and the transformed

system, such as:

T=W, W' (4.23)
Furuta and Pan (1995) showed that if R of Eq. 4.19 is set equal to (TTT)~1 then the

following is true:
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s(tk)=Cx(k)=[a, a,..a,, ]x(k) (4.24)
which gives another design procedure for the discrete sliding surface described by C,
(s(k)=Cx(k)) since:

C=CT"" (4.25)
Another technique for C can be given if the modified ¥ -dynamics are required to
behave as a set of coupled /*-order filters of the form (d/dt+A)"-1 where A, the filter
bandwidth represents the rate of decay of the sliding function s(k)= C % (k) on the

surface (lordanou and Surgenor, 1997b). It can be chosen according to the desired

decay speed of the system on the surface. Transformed to the original states, one gets

s(k)= C T-x(k) with the final sliding surface matrix C defined as C T-/. The main
advantage of this procedure is the simplicity of its implementation. The disadvantage

is that its limits the flexibility of the sliding surface design.

4.2.1¢ Pole Placement Method
A novel technique considers the transformed system with x -states from x(k)=T x (k)

as.

X (k+])=® % (k)+T uk) (4.26)
st)=C % (k)
where ®and T are the open loop system matrices in canonical form and the overall

system has the same dynamic behavior with the original system with the x-states. The

sliding function s(%) is a function of the new state vector x (k).

During pure sliding it is assumed that the value of the sliding function remains the
same, i.e. s(k)=s(k+1)=s(k+2)... If one sets s(k+1)=s(k), then C x (k+1)=C % (k).
Replacing ¥ (k+1) by Eq. 4.26 and solving for the control signal, one can obtain the
equivalent control action, ugq (same context as ugq for continuous SLM as in Eq. 3.9)

which is responsible for maintaining the value of the sliding function constant once
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the surface is reached; in other words, it keeps the system on the sliding surface at all

subsequent times. The equivalent control action can be shown as:

Up(k)=—(CT)"' C(®~1)%(k) (4.27)
If the equivalent control action is replaced in the state equation, one can obtain a state

equation for the closed loop system dynamics during pure sliding:
X(k+1)=[@~-T(Cr)' C(d-1)]%(k) (4.28)

where @ =[®~ [(CT)"' C(®- 1] and simplifies Eq. 4.28 to X (k+1)=®_ ¥ (k).

A few observations can be made for the system under pure sliding. First, no

additional control action is required. Since the dynamic response under sliding is
unaffected by T, or the range space of T, #(T ), then ideal sliding occurs only in the
null space of C, N(C), under the assumption that %#(T) and &(C) are purely
complementary subspaces. Therefore, the motion of the system in only dependent on

C . The control signal only drives the system to the sliding subspace and maintains it

there. Second, convergence of the state vector is ensured by a suitable choice of the

feedback matrix ®_ ,which in turns constitutes C as the only tuning parameter for the
system dynamics under sliding. Some procedures for determining the sliding surface

have already been presented.

The closed loop dynamics have been shown to be a direct function of the state
canonical state matrices and the sliding surface matrix (Eq. 4.3 and 4.28). The
characteristic equation for the discrete system under sliding can be found if one
considers the solutions of the following:

det(z/-®, )=0 (4.29)
where z denotes the argument of the z-transform in discrete domain. The solution for
a general characteristic equation z*+a,z"'+ ... + a,, = 0 gives a set of solutions for z.
An absolute condition for stability of this discrete system would be that all roots have

a modulus less than unity, a condition which corresponds to all roots be negative for
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stability of a continuous system. If the coefficients a; can be selected, then pole-

placement on the z-domain is achievable.

The general solution of an nth order system can be very involved. The following
section describes the pole placement design approach for a 3 order system.
Specifically, a continuous state space model of a pneumatic positioner is used with

the state matrices defined as:

0 I 0 0 I 00! 0 0
A=|0 -8 57«10” |B=| 0 |=>®=|0 092 57«10°|=| 0 |@4.30)
0 -26430 ! 42666 0 ~246.5 1 4266

The discretised matrices @ and I" were obtained assuming a sampling time of 0.0/ sec

(lordanou and Surgenor, 1997b).

The canonical form for the discrete system is then obtained using the procedure

described earlier and is found to be:

0 1 0 0
D=} 0 0 1|, T=|0 4.31)
09 -28 29 I

A general sliding surface for an nf# order system has [c, ¢, ¢, ... cp). Itis quite
common to normalize the sliding surface matrix to cj, since the solution of the
characteristic equation is unaffected. Therefore, the sliding surface for the 3/ order

pneumatic system has:

C=[c, c, 1] (4.32)
The closed loop dynamics during sliding were given earlier (Eq. 4.28) as X (k+/)= @,
X (k) with @, as a function of the canonical state matrices ®and T and the sliding

surface matrix C . For the system at hand, @, reduces to:
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0 1 0
®d ={0 0 1 (4.33)
q ¢-¢ l-¢
This is an important result since it demonstrates that the closed loop behavior of the
system during sliding is only subject to the sliding surface and net the system itself.
It can also be seen that &, for a general n'? order system simplifies to canonical form

with the sliding surface coefficients composing the last row.

The characteristic equation for the system under sliding (Eq. 4.33) can then be shown
as:

Z4(c3-1) PH(cp-c2)z-¢; =0 (4.34)
If underdamping is required in the closed loop response of the system, the solution
should have a pair of complex roots. In this context, the general solution to any 3
order system can be given as:

(z-p-ig)(z-p+igl(z-0)=0 (4.35)
with the restriction that all roots have a modulus less than unity for stability. Note
that p,q and o are real, non-zero numbers. If the complex pair of roots are the
dominant roots of the system, then the closed loop system behavior can be
approximated as a 2" order system. This can be done by setting a=1. If Eq. 4.34 is
divided by z-/, then the resulting 2™ order polynomial defines the dynamic

performance of the 3 order system as a 2" order sliding surface or trajectory.

4.2.1d Pole Placement for a Pure Second Order System

A continuous second order transfer function G(s) has a pair of complex roots s, ,:

2

= 2;‘0’)" —— withs,, =~¢w, tio,|1- e (4.36)

G(s)=

where s denotes the Laplace transform in the continuous domain and should not be

mistaken with the sliding function variable used in other sections of this chapter. In
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the discrete domain, where the z-transform z=e$” and with  as the sampling time, the

solutions for s, , correspond to:

2, =" Lt o M1 -¢* (4.37)
which can be equated to polar z,,=rZ+6 with r=e™ " and 8=w,h\/-¢* . By

taking the ratio of r to #and rearranging, the damping factor £ can be shown as:

__=In(r)

= ——— 438
N @39

If one considers the time constant of the poles, v = ), and assumes that the +2%

settling time is 47, then the settling time for the 2™ order system can be shown to be:

.. 4.39
5 ln(") ( . )
If Eqs.4.38 and 4.39 are rearranged for r and 6, one can get:
—ih
o 4h 2
r=e and 6= ‘. 1-¢ (4.40)
4.2.1e Application to 3™ Order System
Eq. 4.35 is the general solution to Eq. 4.34 and can be expanded as:
2+ 7' (-2p-a) +z Qpa+p’+q’) + (- p'a-g'a) = 0 (4.41)

Eq. 4.34 is the characteristic equation for the system under pure sliding. Its dynamics
are a function of the normalised (with c,=/) sliding surface coefficients ¢, and c,.
When the terms of Eq. 4.34 are compared to the terms of Eq. 4.41, then the following
can be derived:
¢, = p+q’ (4.42)
c, =-2p
The dominant 2* order polar roots z,,= ptig can be shown in terms of the polar
coordinates as p=rcos@ and g=r sinf. Given r and @ in terms of the desired settling

time and damping (Eq. 4.40) and then substituting into Eq. 4.42, it can be shown that
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the sliding surface coefficients of C=/[c,c, 1] for a desired closed loop

performance under sliding are:

-4h
L
-h

c, = —2e " cos(—gfl\/l . (4.43)

Once the sliding surface has been defined with the use of a canonical system

transformation asC = CT™', it can be substituted back into the original state space

model.
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4.3  Switching Laws for DSLM

The DSLM control law given as Eq. 4.27 is incomplete, as strictly speaking the
control law for a sliding mode controller is composed of a linear part (Feq x(k)) and a
nonlinear part (Fgy x(k)). Or in other words the design of the sliding surface for Feq
does not solely determine the performance. The complete DSLM control law is:

u(k)= Feqx(k) + stx(k) (4.44)

The relative size of the two parts can determine the nature of the response of the
controller when used with systems with varying degrees of uncertainty. The linear
control part, or equivalent control law, is generated from a linear model of the system
and the sliding surface design. It acts to prevent the system from escaping from the
surface, once on it. It has been shown that the equivalent control law Fgq is the
control part responsible to keep s(k+/)=s(k). This condition is necessary but not

sufficient to ensure system convergence.

The nonlinear control law, or sliding control law, directs the system states towards the
sliding surface. The size of the switching gain depends on the desired rate of
approach to the sliding surface and the magnitude of model inaccuracies and

disturbances, as will be shown.

Consider the discrete Lyapunov’s function V(k)=}4s*(k) with s(k)=Cx(k). A
necessary condition for convergence, or stability is that V(k+/)<V(k). In other words,
s2(k+1)<s2(k) which can be simplified to |s(k+1)|<|s(k)). The sliding function
difference can be defined as As(k+1)=s(k+1)-s(k) wheres(k+1)=Cx(k+1). It can

then be shown that the convergence condition can be rewritten as:
s(k)AS(k +1) < = Y As* (k +1) (4.45)

The sliding function difference 4s(k+/) can also be given in terms of @,7",C if one
substitutes the discrete state space equation and sliding function shown as Eq. 4.10

and 4.11 into s(k+1)=Cx(k+1):
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As(k +1)=C(lu(k)+ (D -1 )x(k)) (4.46)
If Feq, shown as Eq. 4.27 is substituted in Eq. 4.44 and rearranged, then the sliding

function difference can be shown as;

As(k+1)=CIrF_ x(k) (4.47)

where Fyy is a /xn matrix with elements fj such that | i~ |= | jj* |=Ks. The stability

condition can then be written as:
S(k)CIF_ x(k) < -Ycr)y F_x(k)) (4.48)

if one realizes that C/"and Fyx(k) are scalars. In fact:

stx(k) = gfjxj(k) (4.49)
The final switching conditions have been shown per state to be:
if CrIs(k)x;(k)<-6, =[f, =K,

if |crsce)x,k)<ls| =r,=0 (4.50)
if Crs(k)x,(k)>8, = f =-K,

where b}'(k) can be found as:
8,(k)= VoK, (Cr)|x,(k )|i|xﬂ.(k ) (4.51)
di=l

The overall settling time ¢, is composed of 2 parts, the reaching time shown earlier as
t and the sliding settling time, ¢5. With the realization that the dominant component
of the overall settling time is the sliding settling time, one can then design the DSLM

according to fs.
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4.4  Sliding Gain
Slotine’s original work on Sliding Mode Control focused on the continuous
implementation (Slotine, 1991). The procedure that is shown below presents some of

the basic issues surrounding the sliding gain and can be extended to discrete systems.

By definition, the stability of a CSLM controller, or the condition for sliding
convergence is given by (Slotine, 1991):
s§<0 (4.52)

which can be also written as:
5§ < -n|s 4.53)

where 1 is a strictly positive constant that can be related to ., the so-called reaching

time or the time the system requires to reach the sliding surface:

s(0)
=— 4.54
t, " (4.54)

For a general nonlinear system with x(")=f +u, where f, and u denote plant dynamics

and control input respectively, the amount of uncertainty or estimation error F, is
bounded by:

|f-fI<F, (4.55)

where f denotes the estimated plant dynamics.

A typical structure for the control law of CSLM (Eq. 3.9) has,
u=u, - K sign(s) (4.56)
For a second order system (n=2) the sliding surface can be defined by a series of

coupled first-order filters as:
d n-l =
s=(-d—t+,1) X=X+Ax 4.57)
and the first derivative of the sliding function becomes:

§=¥-%, +A% (4.58)

The condition for sliding convergence shown in Eq. 4.40 then becomes:
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s$=(f,~f)s—K,|s (4.59)

which, when rearranged, provides the first sizing guideline for the sliding gain as:
K.2F +n (4.60)
Based on the above, the size of the sliding gain should be increased in the presence of
large system uncertainties and/or a fast reaching time requirement. If there is

uncertainty on the control gain of the nonlinear system x("W=f+bu, where the

uncertainty b is bounded by bpmin<b<bmay, then the gain margin 8 is defined as:

L 4.61
A=} (4.61)

Eq. 4.60 with the addition of the gain uncertainty changes to:

K. 2 B(F, +n)+(B- 1)\, (4.62)
In summary, in the case of CSLM, there is only one condition for sliding convergence
or stability. The main conclusion is that the required size of the sliding gain increases
with larger parametric uncertainty. The overall uncertainty originates from Fj, the

estimation error in the nonlinear model and f a measure of the gain margin.

Furthermore, if a small reaching time is required, the size of K should be increased.

Furuta (1990) investigated the stability limits of the sliding gain for both CSLM and
DSLM controllers. In discrete time, the state space has x(k+1)=®x(k)+u(k) and the
sliding function has s(k)=Cx(k). The control law has already been shown as
u(k)=(Feq+Fsw) x(k) with the Fg defined as Foq=-(CI)~/C(®-I) (see Eq. 4.27).

In Furuta’'s DSLM, the sliding convergence is assured by enforcing the condition

V(k+1)<V(k), where V(k) defines the Lyapunov's function V(k)=Ys2(k). The

convergence condition can be shown as:
/ )
s(k)4as,,, <—3(As,”,)' (4.63)

where As(k+1)=s(k+1)-s(k). From Eq. 435 and with Fgy=[f, f, ... fn/, where
[fi*|=lfj 1=K , the amplitude of Ks can be shown to be bounded by:
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2
0<K, <|—— (4.64)

cry. Il ,‘,|
J=1

where Ctj=0 V/j=2...nand Ct,=1.

If some uncertainty exists, i.e.A® =@ —-®, then AD=ID, where D=[d, d, ... dy]
and d; bounded by ldj|<|¢?l. The permissible range for the sliding gain, earlier
defined by Eq. 4.34, is now changed to allow for the uncertainties|d| :

J<k <——1_a (4.65)

cryl,|
J=l

In summary, Furuta generates a range for values of the sliding gain that ensure

stability and convergence. The range for DSLM, much as in the case of CSLM
depends on the parametric uncertainties and also on the sliding surface design, which
indirectly links to the time domain performance requirements such as the settling

time.

Pieper and Surgenor (1992) present a switching function that is equivalent in form to
the one presented in Furuta (1990). The authors considered both the pseudo-DSLM
(discrete implementation of CSLM) and true-DSLM (discrete model and controller)
and derived bounds for the sliding gain for both implementations. Bounds for the
sliding gain are similar to the ones by Furuta where the bounds on the perturbation
gain for discrete control are given as:

U<KJ<C1_,

-0 (4.66)

Note also that 2ieper (1992) considers, without loss of generality that Eq. 4.65 can

use ilt,j|=1 forty=[0..01]T.

i=l
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In the case of the largest possible plant perturbation, the upper bound for the

switching gain is reported as:

k =|-L
“ler

R ]

4.67)

In the case where a dynamic, as opposed to a static sliding gain is used, the maximal
robust dynamic optimal switching gain is reported as:

__Istk))
" Alecr ],

(4.68)

where ||x(k)|l,=Z:_ le ,(k )’ . In summary, Pieper generates upper bounds for a static

and a dynamic sliding gain where plant uncertainties and time response requirements

define the bounds.

Hwang (1992) investigated the permissible size of the sliding gain for a DSLM
controller. The switching laws are similar to the ones used by Furuta (1990), but the
sliding gain is a dynamic gain. The stability limits for the varying sliding gain as

suggested by Hwang are reported as:

2ls(k
0<K.(k)< —ﬂl'— (4.69)
ZI"J (")l
=i
The gain K(k) is active if the following condition is satisfied:
Isk)x; (k1> $1x, (k) 2K (k)1x (k)] (4.70)

ii=l

Sarpturk et al (1987) considered the stability limits for DSLM controllers. The
sliding motion condition As(k+1)s(k)<0 is necessary, but is considered non-sufficient
for the existence of sliding motion. The condition, shown earlier as |s(k+1)|<|s(k)|,

which results in Eq. 4.45 is alternatively broken down in 2 parts and is presented as:

{s(k+1)-s(k)} sign(s(k)) <0 “4.71)

which is called the sliding condition necessary to assure quasi-sliding motion, and:
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{stk+1)+s(k)} sign(s(k)) 0 (4.72)
which is called the convergence condition necessary to prevent a divergent motion
from occuring. The two conditions define upper and lower bounds for the control
input, which is tightly linked to the sliding gain K5. Hence, the upper and lower
bounds for the sliding gain. The implemented sliding action has u(k)=u*(k) for
s(k)>0 and u(k)=u(k) for s(k)<0 and is similar to the traditional sliding action law as
u(k)=Kj sign(s(k)) dictates. Note though that u*(k) and u~(k) denote the upper and

lower bounds for K respectively.

For sliding, a new function is defined for the input to the system:
Ly = C[I-®] x(k) - CTu(k) (4.73)
Using Eq. 4.71 and 4.73 a set of upper and lower bounds for the sliding gain are
defined for sliding towards the sliding surface as:
sup (Crut(k) < inf(Lg*), where L is evaluated for s(k) >0 (4.74)
and
inf (CI"u"(k)) > sup (Ls~), where Lg is evaluated for s(k) <0 4.75)
Definitions for the infimum' (inf) and supremum’ (sup) functions are given below.
For convergence, a new function is defined for the input to the system:
Lo =-C[I+®D] x(k) - CTu(k) (4.76)
Using Eq. 4.72 and 4.76 a set of upper and lower bounds for the sliding gain are

defined for convergence on the sliding surface as:

Linf(X)
Let 4 be an ordered set and X a subset of A. An element b is called a lower bound for the set X if every
¢lement in X is greater than or equal to 4. If such a lower bound exists, the set X is called bounded
below. Let A be an ordered set, and X a subset of A. An clement b in 4 is called a greatest lower bound
(or infimum) for X if b is a lower bound for X and there is no other lower bound b’ for X that is greater
than 5. We write b = inf{X). By its definition, if a greatest lower bound exists, it is unique.

? sup(X)
Let A be an ordered set and X a subset of A. An element b is called an upper bound for the set X if every
element in X is less than or equal to b. If such an upper bound exists, the set X is called bounded above.
Let A be an ordered set, and X a subset of 4. An clement b in A is called a least upper bound (or
supremum) for X if b is an upper bound for X and there is no other upper bound &' for X that is less than
b. We write b = sup(X). By its definition, if a least upper bound exists, it is unigue.
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inf (CIu™*(k)) > sup (Let), where Lot is evaluated for s(k) >0 4.77)

and

sup (CI'u"(k)) < inf (Ls™), where Lg- is evaluated for s(k) <0 (4.78)

The above control structure is not useful for real time computations and Sarprurk et al
considered a feedback control law of the form u(k)=-K(x,s) x(k) where the feedback
control matrix contains the switching feedback gains as:

ki, s(k)x,(k)>0

ko shyx,(k) <0 “4.79)

Kj(x,s)={

with the upper and lower bounds &/ and k; computed by Eq. 4.71 and 4.72 and the

feedback gains Kj(x,s) as computed using the hierarchy of controls methods of Utkin
(1977). The difference between the upper and lower bounds for the switching gains
depend on the size of the disturbances and the sampling time. For small sampling
periods, the bounds are driven apart and approach the bounds presented for CSLM, as
the sampling period approaches zero. For large sampling periods, the lower and
upper bounds move closer to each other. For a critical sampling period, no interval
can be found between the upper and the lower bound for the gains which indicates
marginal numerical stability. In conclusion, the iower bounds for the sliding gain are
functions of the parameter variations and input disturbance bounds. The upper

bounds appear to be mainly functions of the sampling period.

Utkin (1977) presents the control law in sliding mode as:

u= -Z:'__I"I{x, - nsign(s)
a if xs>0 (4.80)
T8 if xs<0
with a; and A as constant coefficients and 7 as a small positive constant. For a
sliding plane to exist, a set of inequalites for @, and 3 need to be satisfied. These
inequalities include the coefficients of the sliding surface. For a 3™ order system in

phase canonic form, the sliding function is defined as:
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s=0xt et 4.81)
with the strictly positive sliding surface coefficients ¢, and c, given as ¢, =c¢;. More
importantly the switching elements g, £ are given as «; >-c, ¢, and £ <-c, ¢, which
contrains the choice of the parameters of the sliding surface and also restricts the
variety of sliding modes. Furthermore, the choice of these switching elements is still

open for investigation since the only restriction is that they do not violate the

condition for existence of the sliding plane.
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4.4.1 Permissible Range for the Sliding Gain
The condition for sliding convergence was shown in Section 4.3 as |s(k+/)|<|s(k)|. It
can be rewritten in terms of the rate of convergence, £ as:

stk+1)=Es(k) (4.82)
where |£ |<1 for convergence of the sliding function towards the sliding surface. The
rate of convergence can be related to the reaching time f,. Consider the exponential

decay in continuous time:

_t
yt)=ye * (4.83)

where yp denotes the initial condition for state y and 7 as the decay time constant. In

discrete time notation, the decay can be written as:

kg

yk)=ye (4.84)
where A denotes the sampling time. If one considers the state change per single
sampling time, then:

h,
r

yek+1)=y(k)e”r (4.85)
At four times the time constant, it is assumed that the steady state is reached. This
time denotes the settling time, or in this case the reaching time and can be found by

combining Eq. 4.82 and 4.84 so that:

E= e (4.86)
The sliding function difference As(k+/) can be also written in terms of the rate of
convergence as:
As(k+1)=5s(k+1)-s(k)
Es(k)—s(k) (4.87)
s(k)(§-1)
For sliding convergence it was shown that As*(k+1)<-24s(k+1)s(k) which when

i

combined with Eq. 4.47 and substituted in Eq. 4.87 provides the following condition:

-25(k)

(fix, + foxy 4+ f,%,)% < W{;—I} (4.88)

107



with £, £, ... fn as the switching gains (+Kj) for states x,, x,, ...x, respectively. A
new variable, y is defined as:

w, =W, sign(f,) (4.89)
where W denotes the state weight for state j and is a strictly positive constant. We can
assume for now that the size of each of the state weights is the same, therefore Wi=1
V j=1..n. The switching gains can then be shown as:

Ji= viKs (4.90)

where K is now a strictly-positive, static gain since its direction, or sign is subject to

l,(/j.

If Eq. 4.90 is substituted in Eq. 4.88, the convergence condition is modified to:

: =25%(k)
(K.'(l//,x, +Y,x, +...W”x")) <—(EI_)—2'{§-1} 4.91)
which when rearranged can be written as:
o\ 2s'(k)
——1!- 4.92

The right hand side of Eq. 4.92 is always positive, since {/-&} is positive. Therefore,

the condition can be written in terms of the sliding gain as:
inf\|s(k )|\ 21 -

< f(l ( )l) ( 4‘) (4.93)
CI“sup(ijij

Jui

¥

which defines the upper bound of the sliding gain for convergence stability.

For position control systems and assuming that initially the system is at steady state,

i.e. xj=0V j=/, the Z ;X ,; quantity that appears in Eq. 4.93 can be simplified to:

Jel

Qv =yx,(0) (4.94)

j=!
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At the instant the setpoint changes, the value of the sliding function is s(0)=cx,(0).
Combining Eq. 4.93 and 4.94 gives the upper bound for K for a position control
system as:

g o SN2(1=8)

r=F (4.95)

44.2 Varying Sliding Gain
Once the size of the sliding gain is selected and the switching laws are set to activate
the sliding action in the region outside the inherent boundary layer of the DSLM

controller, a few improvements can be made.

lordanou and Surgenor (1997a) demonstrated that instead of implementing a zero-
action within the boundary layer, it is more beneficial to maintain the on-off switching

of the sliding action but with a magnitude that decreases upon approach to the surface.

Fig. 4.1a shows the original switching behavior for state x;(k). The switching action is

positive or zero or negative depending on the relative size of the inherent DSLM

boundary layer & and the state CI"s(k)x;(k) of Eq. 4.50 and 4.51. When this

switching regime is implemented, the controller exhibits high controller action and
sensitivity to the assigned value of K. To alleviate this high controller action, a varying
sliding gain was incorporated in the sliding laws and is active only within the boundary
layer. This varying sliding gain decreases the magnitude of the sliding action on
approach to the sliding surface and can therefore prevent overshoot. The varying
sliding gain inside the boundary layer has been shown to improve speed of response and
decrease chattering. It also prevents a cyclic control signal which results in those cases
where sensor noise causes DSLM to continuously switch between + values of Kj.
Introducing a varying K within the DSLM'’s inherent boundary &; (k) eliminates this
effect.
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Fig. 4./b shows the modified switching behavior for state x;(k) where the zero action
within the switching boundary is replaced by a proportional action, i.e., the size of the

sliding gain is linearly proportional to CI"s(k)x (k). The magnitude of the slope of

the line enclosed within i@' is:

K,
slope = —5- (4.96)

p)
The size of the switching action within the boundary layer can then linked to the

magnitude of |s(k)x;(k)|:
+ K.t
Ks) = =50k )x, (k) (4.97)
J

To allow Ks; to attain positive or negative values as dictated by the sign of

s(k)x ,( k) , the following modification can be made:

K
Ks, = 5." s(k)x,(k)sign(s(k)x;(k)) (4.98)

J

If & is substituted into Eq. 4.98, then:

~K,s(k)x,(k)
Ks, = r sign(s(k)x,(k)) (4.99)
%crx,|xj(k)[zl|x,,(k)|

which can be rewritten as:
i Kesth)x,(k)sign(s(k)) sign(x, (k)
i~ n
BCIK,|x, (k)| 2 |x (k)]

zj=!

(4.100)

With s(k) sign(s(k)) = |s(k)|, Eq. 4.100 can be simplified, and the size of the sliding gain
within the boundary layer can be shown to be:
—2|s(k)|

= 4.101
K= ersy in, o e @190

Ks; denotes the sliding gain within the boundary layer and & represents a small positive
constant which prevents numerical instability caused by division by zero when at rest or
when the operation point is on the sliding surface. Note also that the structure of Eq.
4.101 is similar to the structure of Eq. 4.68 as proposed by Pieper (1992).
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One should recognise that the implementation of a varying K can be performed by

gradually increasing the slope of the sliding gain within the boundary &; (k). A slope of
zero would imply the use of zero action wthin the boundary layer, just as shown in
Fig. 4.1a. A maximum permissible slope would give a sliding gain as shown in Eq.
4.101. Between the zero- and maximum- sliding gain slope, a scaling factor on the size
of the varying gain can be introduced, shown as a dotted line in Fig. 4./b. Eq. 4.101

changes to:

=2 |s(k)|
Ks., =k, .
J LT, |x,(k)+ e (4.102)

g=1

where &; denotes the varying sliding gain slope factor with a possible range of 0<k;jsl.

The switching laws of Eq. 4.47 remain the same but K inside the boundary layer is
given by Eq. 4.102. If one sets k;=1.0, then the switching laws become:
if Cls(k)x, (k)<= = f, =K,
. - 2s(k)
l_f Cl"s(k)x(k)55 =>f‘= n
sk bls] =gt
if CrI's(k)x;(k)>6, = f,=-K

(4.103)

Fig. 4.2 shows the simulated response of the pneumatic positioner with the DSLM
switching laws as outlined in Eq. 4.50 and Eq. 4.103 as a dotted and dashed line
respectively. The solid line response corresponds to the last modification of the
swtching laws for DSLM, which will be presented in the next section. The simulation
model used is the same as the one presented in Chapter 2 for which the parameters are
summarised in Appendix B. The setpoint change matches the one presented in
Chapter 3. Comparing the original to the varying sliding gain response, one can see a
considerable performance improvement due to the elimination of backlash in the
control action which can cause sustained oscillations in the response. With the
varying sliding gain inside the boundary layer, the action is made ‘“continuous”.

Therefore, the position setpoint tracking improves considerably.
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4.4.3 State Weights and the link to PVA gains
To further optimize the responses, control weights were assigned to the individual

states. The switchings per state can be seen in Fig. 4./c.

The switching laws of Eq. 4.103 are modified to:
if CrIs(k)x,(k)<-9, =>f,=WK,

- 2ls(k)|
if |Crs(k)x (k)<|6 =W -
if | i i |/l =>f/ 'CFZﬂ_,x,,(k)‘+s
if Cls(k)x;(k)>3, = f,=-WK,

(4.104)

with W} is the control weight on state j.

In the work presented in Jordanou and Surgenor (1997a) the system under control was
a four state cart-pendulum arrangement. The control task was to control the position of
the cart and the angle of the pendulum, in both the hanging (vertically downwards) and
the inverted (vertically upwards) configuration. The state weights for this system were
selected under the premise that the main controlled variables were states / and 3, i.e.
position of cart and pendulum angle. These states are called the primary states. The
weights for states 2 and 4, i.e. cart velocity and pendulum angular velocity, which are
obtained by direct differentation of the sensor outputs and are subject to differentation

noise, are called the secondary states.

In the work presented in Jordanou and Surgenor (1997b) the state weights implemented
on the pneumatic positioner matched the gains of a traditional PVA controller that was

used on the same system.

The structure of a traditional PVA controller has been shown as:
u=K,,(xw -x)-Kx~K, i (4.105)
with x as the controlled state (position) and xgey as the position setpoint. Kp, Ky and
K are the proportional, velocity and acceleration gains respectively. For application

to pneumatic systems, it is generally acknowledged that both velocity and
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acceleration are essential to ensure adequate performance (Burrows, 1972). The gains
can be chosen so that the system can have a general predesigned performance with a
specified settling time and overshoot. Typical gains for the PVA controller used for

the system were Kp=17.0, Ky =0.107 and K4 =0.08.

This suggested that the choice of the weights can simply be an assignment of gains of a
traditional linear controller of a PVA. These gains are selected for a stable performance
of PVA and result to a critically damped response with a settling time similar to the one

for which the sliding surface of DSLM was designed.

Since the DSLM control law has:

u(k) = F;qx(k)+ F x(k) (4.106)
with the nonlinear sliding action as Fsy=[f, £, ... il for|f|=|f|=K; Ifone
compares the control structure of the DSLM controller to the control structure of the
PVA controller as shown in Eq. 4.105, then a relationship can be established between
the size of the switching elements (per state) to the linear PVA gains. Normally, the
primary element of the equivalent control vector, namely feq, is equal to zero. The
reason is that the function of the equivalent control law is to prevent the system from
escaping the sliding surface once on it, therefore it acts only on the higher states,
namely velocity and acceleration if the controlled state is position. The general
structure of the nonlinear switching action can be written as:

Fo=[W.f, WfyWf] (4.107)

with switching elements £ as £Kj.
The relationship between the DSLM state weights (gains) and the PV A gains can then

be presented as:

K, =WKs (4.108)
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with Kj as the PVA or linear state controller gains. For the system at hand, where the
primary or controlled state is position and with velocity and acceleration composing

the higher states, Eq. 4.108 can be written as:

W-K/~ ,_KA W,:/ (4.109)

The response of the pneumatic positioner with the addition of state weights was
shown in Fig. 4.2 as a solid line (Jordanou and Surgenor, 1997h). Compared to the
original (dotted line) and the varying sliding gain (dashed line) implementations, the
performance of the controller with addition of state weights shows a very good
setpoint tracking, little oscillations, good sliding function convergence and decreased
control action. The setpoint requirements for a sliding settling time of 0.2 sec and a
damping factor of /.0 are met. Furthermore, the pneumatic positioner response is
linear despite the position and direction dependency which was demonstrated in
Chapter 2.

4.5  Simulation Results using the Pole Placement Technique
The following section will demonstrate some DSLM tuning and stability issues. The
DSLM controller was implemented in simulation to control the position of the piston
of an asymmetric pneumatic cylinder, similar to the one described in Chapter 2,
technical specifications for which are listed in Appendix B. Unless specified
otherwise, the benchmark conditions used in the simulations presented are as follows:
¢  The sliding surface is designed for a damping factor £ of /.0 and a settling
time ¢4 of 0.2 sec.
¢  The nominal payload mass Mp is 8.5 kg. Robustness tests were implemented
with payloads of 23.0 and 2.2 kg.
¢ The sampling time A is 0.0/ sec.
¢  The sliding gain K is 1.0 (normalised).
¢ The equivalent gain action, ugq is active.

o The state weights are W,=17 (K,), W;=0.107 (K,) and W,=0.08 (K,).
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Important issues that will be addressed are:

The effect of the sampling time on the system response (Fig. 4.3)

The effect of the sliding gain on the system response (Fig. 4.4)

The effect of the sliding gain and state weights (Fig. 4.5)

The effect of ueq (Fig. 4.6)

The robustness (different payloads) of DSLM with h=10ms (Fig. 4.7)
The effect of the sliding surface design parameters (Fig. 4.8 and Fig. 4.9)
The effect of static friction on the system response (Fig. 4.10)

The effect of noise and filtering on the system response (Fig. 4.11)

The design procedure of the sliding surface and other aspects of DSLM is shown in
Fig. 4.12.
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4.5.1 Sampling Time Tolerance of DSLM

As already stated, the main advantage of DSLM over CSLM is the ability of DSLM
to provide stable responses despite greatly increased sampling times. The greater
robustness of DSLM with respect to sampling times is due to the fact that the

switching action is derived from a discrete Lyapunov’s function.

Fig. 4.3 illustrates the effect of the sampling time, A. The response of the controller
with / ms, 10 ms and 50 ms sampling times is shown as a dotted, solid and dashed
line, respectively. Note that the responses with / and /0 ms appear very similar and
satisfy the sliding surface performance requirements. Recall that the canonical
system state space matrices are different for each time step (Eq. 4.43), which provide
a different set of sliding surface coefficients and transformation matrices for each
time step. Furthermore, the state weights have been shown as a function of the PVA
gains and the sliding gain, K (Eq. 4.109). The sliding gain has been shown to have
an upper bound linked to the rate of convergence & (Eq. 4.95), which in turns is a

function of the sampling time (Eq. 4.86). Therefore, the state weights need to be

adjusted for each sampling time.

As a test for the suitability of DSLM in the presence of large sampling times is the
implementation with a sampling time of 50 ms (dashed line). Despite the large steady
state error, which appears when the positioner is required to move towards the end of
the stroke, the response with /=350ms is stable throughout the whole test. Arguably,

the positioner meets the setpoint requirements.

The ability of DSLM over CSLM to provide stable responses despite greatly
increased sampling times, can be seen if one compares Fig. 4.3 (for DSLM) with the
corresponding Fig. 3.3 (for CSLM). In Fig. 3.3, CSLM fails dramatically to maintain
performance stability at 50 ms. Though not shown, the linear PVA controller also
fails under the 50 ms stability test. DSLM, on the other hand, not only ensures

stability but the response can be considered satisfactory.
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4.5.2 Effect of the Size of the Sliding Gain

The dominant part of the control law of DSLM is the switching action. Therefore,
one would expect that the size of the sliding gain would greatly affect the
performance of the system. Eq. 4.95 shows that the permissible maximum size for
the sliding gain is inversely proportional to the size of the valve in use. A properly
selected valve is one for which the size is selected to match the desired speed of
response requirements; in other words, a settling time requirement. For a properly
selected valve, one can use the size of its permissibie input as the size of the sliding

gain. Ifall is normalised, then the suitable size of the sliding gain is /.0.

Fig. 4.4 shows the effect of the size of the sliding gain K on the response of
pneumatic positioner. The solid, dotted and dashed lines correspond to sliding gains
of 1.0, 0.5 and 0.25, respectively. Since a 2.0 scfm valve is used in simulation, these
gains correspond to valve sizes of 2.0, 1.0 and 0.5 scfm, respectively. The 2 scfim
valve was selected to provide this speed of response. Clearly, the solid line response
is the one that best matches the performance requirement. The performance of the
system with sliding gains of 0.5 and 0.25 degrade slightly, but this is to be expected
because of the inherent link between valve size and sliding gain. A smaller sliding
gain would, in fact suggest a smaller valve. A smaller valve would cause a slower

response, if the settling time requirement is too demanding.
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4.5.3 Effect of the Size of the Sliding Gain and State Weights
The responses presented in Fig. 4.4 were generated with activated state weights. Fig.
4.5 shows the simulated pneumatic system response for 3 cases and demonstrates the

effect of the state weights and the sliding gain.

The solid line response presents the case where state weights are inactive (W, = W, =
W, = 1.0). The switching laws were given in Eq. 4.101 and graphically, the
controller’s switching regime was shown in Fig. 4.1b. The significance of this
response is that it illustrates that even with the aid of the varying sliding gain, the
performance of DSLM is limited and does not meet the requirements set by the

designed sliding surface unless state weights are used.

The dotted line response presents the case where the state weights are active and
Ks=1.0. The use of state weights considerably improves the performance of the
controller. The state weights are given values that correspond to gains of a suitable
PVA, as shown in Eq. 4.103 and 4.110. For Ks=/ (corresponds to the fully open
valve) and using Eq. 4.107, the state weights are W,=17.0, K, =0.107 and K;=0.08.

The dashed line response presents the case where the state weights are active but

Kg=0.5. The state weights used are the same as appeared previously at Kg=1.0.

Fig. 4.5 demonstates that the use of state weights and a varying sliding gain do not
guarantee good performance unless a sliding gain that corresponds to the maximum
opening possible for a suitable valve is used in conjuction. A suitable valve is one
that provides the necessary air flow to match actuator speed requirements of a

pneumatic cylinder.
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4.5.4 Sliding Versus Equivalent Control Actions

Fig. 4.6a shows the equivalent (dotted line) and sliding action (dashed line)
contribution to the overall control law as was seen in Fig. 4.2. One first observes the
smooth profile of the equivalent control action. It is a linear control action with
velocity and acceleration components that are active once the system escapes the
sliding surface. This is the reason why there is no equivalent action at the instant
when the setpoint changes. To better observe this effect, Fig. 4.6b zooms into the
first 0.3 sec of the overall test shown in Fig. 4.6a. At 0./0 sec, the position setpoint
changes. At the next instant, i.e. at 0.// sec, the switching action (dashed line) is
energised. The pneumatic system requires a couple more time steps before it gets
sufficiently charged, to initiate motion. This is due to the delay associated with air
compressibility (charging the cylinder) and payload inertia. Once velocity and/or
acceleration are detected (at 0.3 sec) and the system starts to move away from the

sliding surface and the equivalent action (dotted line) is energised.
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Figure 4.6:  Sliding Versus Equivalent Control Action
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4.5.5 DSLM Robustness

Fig. 4.7 shows the simulated responses of the pneumatic positioner for a set of three
payloads. The DSLM controller was designed for a payload of 8.5 kg (nominal
payload) which is shown as the dotted line, and for payloads of 2.2 kg (Jow payload)
and 23.0 kg (high payload) which are shown as dashed and dotted lines, respectively.
Despite the large model mismatch in both the low and high payload cases, the

responses roughly meet the response requirements set for the nominal payload.

[f one compares Fig. 4.7 for DSLM and Fig. 3.7 for CSLM, the robustness advantage
of DSLM over CSLM for higher sampling times is in evidence. CSLM exhibited
increased sensitivity and reaches marginal stability at the low payload robustness test,
which can be explained if one realises that the low payload system has a smaller open
loop time constant. CSLM therefore fails because of an insufficient sampling time.
DSLM on the other hand, can still maintain stability with greater sampling times
which is the reason why the responses of Fig. 4.7 are stable and fit the set of

requirements.
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4.5.6 Sliding Surface Design Parameters
Fig. 4.8 shows the simulated response of the pneumatic positioner with the sliding

surface designed for a settling time, f5 of 0.2 sec and for a set of three damping

factors, ¢ of /.0 (solid line), 0.7 (dotted line) and 0.5 (dashed line).

Fig. 4.9 shows the simulated response of the pneumatic positioner with the sliding

surface designed for a settling time, ¢g of 0.3 sec and for a set of three damping

factors, ¢ of 1.0 (solid line), 0.7 (dotted line) and 0.5 (dashed line).

Despite the large sampling time of 0.0/ sec, the controller is able to meet the design
requirements in both Fig. 4.8 and 4.9. The roots of the 3" order system under pure
sliding had been selected using the pole-placement method and were designed for a
dominant 2™ order response. The 3" root was chosen as a fast 1* order dynamic with

a time constant /0 times faster than the time constant of the 2™ order system.

[t can be seen that the despite the large sampling time, the requirements for settling
time and damping have been fulfilled by the controller. Figures 3.9 and 3.10 show
the respective responses using CSLM but the sampling time used was 0.00! sec.
CSLM was unable to fully meet settling time and damping requirements with a

sampling time of 0.0/ sec.
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4.5.7 Static Coulomb Friction Result

A static friction test was performed on the experimental setup. It was determined that
the setup exhibited directional static coulomb friction coefficients. In simulation, the
higher of the 2 directional static friction coefficients was used. The maximum static
coulomb friction coefficient was determined to have F.g=/4N. An average static

coulomb coefficient was determined to have Fs=1/0N.

Fig. 4.10 demonstrates a gradual performance deterioration with increased static
coulomb friction. The solid line represent the response of the system with no static
coulomb friction, Feg=0ON. The dotted and dashed lines give the response of the
system with F¢=5N and F;=I10N, respectively. The higher the static friction, the
greater the likelihood of stiction which in closed-loop causes increased activity in the
control action. The stick-slip phenomenon can be seen by the erratic position

response.

One observes that, when Fig. 4.10 for DSLM is compared with the corresponding Fig.
3.11 for CSLM, that DSLM can handle static friction better than CSLM.
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4.5.8 Effect of Sensor Noise and Filtering on DSLM

Noise in the position, the sensed variable in the actual apparatus was determined by
examining the datafiles obtained from open-loop experimental tests on the setup. It
was determined that a +0.5% sensor noise was present in the recorded position when
the control signal was kept constant. The +0.5% noise was of full scale with constant
variance. In order to provide a conservative result, it was decided to use a value of
+/.0% for the noise level in simulation. Fig. 4.11 shows in dashed lines the response

of the system with no noise.

In order to show the effect of noise in simulation, the position as obtained by the
nonlinear state space model was “corrupted” with a £/.0% white noise signal. The
controller’s response is shown as a solid line and can be seen to degrade relative to
the clean dashed line responses. The effect of noise can be better appreciated if one
observes the velocity plot (recall that velocity is obtained by differentiation of the
position signal). With the +/.0% position noise, velocity noise is amplified more
than +/.0%. Acceleration noise is amplified even further. The use of a filter can
decrease the effects of sensor noise, but not without a negative side effect. A lag can
be seen in the dotted response of Fig. 4.11. This is due to a 2™ order Butterworth
filter being added to filter the simulated noise with a cut-off frequency of /5 Hz. The

response is smooth again (compare solid and dashed lines), but with a 0./ sec lag.

If Fig. 4.11 for DSLM is compared with Fig. 3.12 for CSLM, one can see that both

perform equally well when it comes to noise rejection.
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4.6 Summary

A number of papers on the subject of DSLM were reviewed and discussed in this
chapter. The authors showed how a traditional DSLM is implemented. Some authors
provided techniques for improving the existing algorithm with added features such as
state estimators, varying sliding gain, state weights, filters, etc. Just as in CSLM, the
design of the DSLM controller was broken in two main parts, the switching control
laws and the design of the sliding surface. Some existing techniques for
determination of the sliding surface were presented. These techniques were tested in
simulation and evaluated. A novel pole-placement technique for designing the sliding
surface of a general nth order system, which then focused on a typical 374 order
pneumatic system, was shown. The technique enables the designer to select sliding
surface coefficients which would result in more traditional time performance
parameters such as settling time and maximum overshoot (or damping). Furthermore,
a varying sliding gain and state weights were implemented to improve the
performance of DSLM. These state weights have been linked to gains of a linear

PV A controller.

Fig. 4.12 illustrates the general design guidelines for a DSLM controller. The
procedure for generating the canonical system matrices and the transformation matrix
for the discrete system is shown in the left column of the figure. The right column of
the figure shows the procedure for the design of the sliding surface of the canonical
discrete system. The two columns combined can generate the sliding surface matrix,

C which is used in both the switching and the equivalent control action of DSLM.

The simulation responses with the pole placement technique for sliding surface design
show good trajectory tracking and design flexibility. DSLM can be seen as a robust
controller that is able to maintain stability and good performance even at higher
sampling times. DSLM also exhibits good behavior in the presence of high static
friction and sensor noise. Its main advantage over CSLM is its robustness at higher

sampling times.
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CHAPTERSS
EXPERIMENTAL AND SIMULATION RESULTS

The chapter will present open loop results for the pneumatic system, which will then
be used to validate model parameters in simulation. These model parameters include
the static coulomb, dynamic coulomb and viscous forces and coefficients. The

effective payload masses will also be determined.

The experimental setpoint profile is first selected. A typical center-lefi-center-right-
center setpoint change is examined, from which the most demanding 2-step change
window was selected. Next, a series of tests are performed to confirm the robustness
of 3 controllers: the PVA, the CSLM and the DSLM. These tests evaluate the
controllers under different scenarios: double bore - same stroke and double stroke -
same bore. Finally, how the results relate to issues presented in Chapters 2, 3 and 4
will be highlighted.

5.1  Experimental Setup

A schematic diagram of the experimental setup is shown in Fig. 5.1. The cylinder is
connected to a payload which is free to move on a horizontal track and also moves a
continuous belt. The amount of inertial load and "dead" load driven horizontally can be
varied. The belt is elastic but pre-tensioned to provide a near rigid coupling to the
inertia load. The position of the belt, and consequently that of the cylinder, is measured
by a rotary potentiometer. The cylinder air pressures and supply pressures are also
measured. An 80-386 microcomputer is used for control and data acquisition and is
able to generate a sampling interval of /0 ms. A LABMASTER data acquisition board has
an accuracy of +0.05%. When combined with the accuracy of the rotary potentiometer,
the position can be measured to within £0./ mm. The velocity is obtained by
differentiation of the position signal and subsequently filtered digitally with a second

order Butterworth filter. The acceleration is obtained by differentiation of the velocity

signal.
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Figure 5.1 Experimental Apparatus

§.2  Valve Modeling

The valve used is a linear HR-Textron servovalve (part #274/0F-3D0!) and is
capable of supplying /.88 l/sec (4 scfm) of air at a supply pressure of 689.5 kPa (100
psi). The valve is positioned by an electric servomotor via a mechanical eccentric and
generates flows that are linearly proportional to the valve input. It is the same valve
presented in simulation in Chapters 2, 3 and 4. Although designed as a hydraulic, the
HR-Textron servovalve can be used for pneumatic systems. Internal leakage for
pneumatic use is negligible. Another advantage of this valve is that there are no air
quality restrictions. Therefore, the air supply does not have to be oil free or filtered.
A slight overlap provides a small but measurable deadband on the order of £2.5% or
+0.1v. The fact that there is an overlap formulates a closed-center configuration and
gives rise to certain dynamic characteristics described in Chapter 2. Technical

specifications for the valve can be found in Appendix A.

Typically, the relationship between flow through an orifice and the orifice area is

nonlinear. In most valves, there is a linear relationship between valve opening and
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valve spool position. The control input to the valve is, in most cases, an electrical
signal which activates the valve spool. [f a linear relationship between the output
flow and the control input to the valve spool is desired, one can either modify the
valve opening area or modify the control input by use of an internal positioning
circuit. The latter is the case for the HR-Textron valves. The control signal to the
valve is fed through valve electronics, which linearize the relationship between output

flow and the control signal.

In order to confirm the linearity of the FR-Textron, a test was performed. The control
input to the valve was increased at discrete intervals while the flow was being
monitored by use of flowmeters. A total of three flowmeters were used. Each had a
different range and therefore a different sensitivity, The large-range flowmeter can
read flows up to 3.77 I/sec (8 scfin), the mid-range can read up to /.57 l/sec (200 scfh
or 3.33 scfm) and the small-range flowmeter can read up to 0.39 I/sec (50 scfh or
0.833 scfm). All three flowmeters were required since for medium flows (< 0.47 l//sec
or </ scfm), the peg of the large-range flowmeter was not responsive, and for small
flows (<0.23 Il/sec or <0.5 scfm) the peg of the mid-range flowmeter was not
responsive. Table 5.1 gives the valve input and the resulting flows using the three

flowmeters. The supply pressure was 620 kPa (90 psi).

Figure 5.1 shows the flow (scfin) through the valve as a function of the control input
(volts). The large-dotted lines correspond to the large-range flowmeter (8 scfim), the
solid lines correspond to the mid-range flowmeter (3.33 scfim), and the small-dotted
lines correspond to the smali-range flowmeter (0.833 scfm). A linear relationship
between flow and control input can be seen and the valve supplies the specified rated

flow of 4 scfm at the maximum input of +5 v.
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5.3  Actuator Modeling

An asymmetric, or rodded cylinder is used in the experimental setup. It is a BIMBA
cylinder ( part # 095-DX ) which has a stroke of /27 mm (5 in), a bore of 26.9 mm
(1-1/16 ") and a piston diameter of 7.9 mm (0.312”). The actuator is a low friction
cylinder with a specified breakaway pressure of 34.5 kPa (5 psi} at no load. The
breakaway pressure is the minimum pressure required to initiate motion in a frictional

cylinder.

More technical specifications on the BIMBA cylinder (part # 095-DX) can be found in
Appendix A. In later sections of the chapter, the issue of robustness will be
investigated. The performance of a set of different cylinders will be compared to the
BIMBA cylinder (part # 095-DX). The performance of BIMBA (part # 095-DX)

becomes the benchmark and the cylinder is called the nominal cylinder.

5.3.1 Static Coulomb and Dynamic Coulomb Forces

Fig. 2.4 showed typical friction versus speed plots, with the bottom subfigure being
the simplified friction model. To completely model friction, one needs to identify
three components, two of which are coulomb friction components, namely static
coulomb friction, Fg and dynamic coulomb force, Fg. Now F¢g can be thought of
as the breakaway force, whereas Fq is the running friction with constant amplitude
and a sign that depends on the direction of motion. The third friction component

stems the viscous friction coefficient, f, which increases linearly with speed.

In order to estimate the values for the F5 and F4 a technique first documented for
pneumatic systems by Abou-Faissal (1997) is used. The procedure consists of
applying a positive ramp control signal until the breakaway force is reached and the
piston starts moving. The pressure in the cylinder chambers is measured at that
instant and is then used to determine the net force that acts on the piston. That force
equals the static friction. Once motion is detected, the ramp is reversed and

consequently the velocity starts dropping. When the piston reaches a relatively low
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velocity and is about to stop, the pressure force is measured again to give an estimate
of the coulomb dynamic friction. It is assumed that at low speed the contribution of
viscous friction force is negligible. To investigate whether friction in an asymmetric
cylinder is linear, the test was performed for both extension and retraction of the

piston to determine the directional values of F5 and Fg4.

Fig. 5.3 shows the response of the pneumatic system under the extension and
retraction coulomb friction tests, in solid and dotted lines, respectively. From the top
to the bottom of the figure, one has the position Y, the control signal U, the pressure
in the small chamber P, the pressure in the large chamber Pz and most importantly,
the coulomb friction response Fo. The latter is calculated by taking the difference of
Pp and P, at the instant motion is detected and accounting for different areas. The

first observation is that friction appears to be direction dependent.

For extension, the calculated average static coulomb force Fg was 4.25 N with a
standard deviation of 0.85 N. The calculated average dynamic coulomb force F
was (.87 N with a standard deviation of 0.53 N.

For retraction, the calculated average static coulomb force Fog was 8.62N with a

standard deviation of 0.52 N. The calculated average dynamic coulomb force Fgq
was 6.97 N with a standard deviation of 0.8/ N.
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5.3.2 Viscous Friction Coefficient (f,) and Effective Mass (M,)

In Chapter 2, Eq. 2.29 presents the 3" order model for the pneumatic positioner. The
viscous friction coefficient is given as f;,. A number of techniques are available for
experimental determination of the viscous friction coefficient. Abou-Faissal (1997)
reports in his thesis a technique for determining the viscous force coefficient for a
pneumatic actuator. The method is based on the fact that if the piston is forced to
move at constant speed, then the acceleration becomes zero and the viscous force
coefficient can be related to the differential pressure force, the dynamic coulomb
force and the speed of the piston. The test requires a constant step input and when the
piston reaches constant speed the viscous force coefficient can be calculated. Abou-
Faissal implemented the technique on two FESTO pneumatic actuators of 700 mm
and 400 mm strokes. Both actuators were long enough for constant speed to be
reached and enabled the viscous force coefficient to be obtained. This is not the case
for the BIMBA actuator which at a mere /20 mm of stroke is just too small for such a

test to be performed.

A different technique for determining the viscous force coefficient was therefore
used. Eq. 2.37 presents an ultimate gain formulation for a P-only controller in use
with the 3™ order pneumatic model of Eq. 2.29. A relationship between the ultimate
gain and the viscous friction coefficient can be seen. The same equation indicates

that the ultimate gain also depends on the effective mass payload, M.

The method for determining both the viscous friction coefficient and the effective
mass is as follows. A P-only controller is used for control. Initially the payload rests
a small distance away from the setpoint. Once the test is initiated, the controller
senses the error in the position and starts to move towards the setpoint. If Kp is
considerably less than the ultimate gain, it will approach the setpoint with no
overshoot and possibly a steady state error. If Kp is increased (but is still less than
the ultimate gain), oscillations will occur about the setpoint but the system will

eventually settle. If Kp is increased further, marginal stability will eventually be
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reached which means that the system will enter a state of sustained oscillations. The
amplitude and period of these oscillations can be related to the viscous friction

coefficient and the effective mass.

In simulation, the same test was performed. I[n order to properly scale the ultimate

gain for use in simulation, the following was considered:

. In the experiment, the control input to the servovalve ranges between -5v to Sv
and the position signal ranges between Ov to /0v. Therefore the input and
output ranges are /0 {5v-(-5v)} and 10 {]/0v-Ov}, respectively. The ratio of
the input over the output is /.

. In simulation, the control input to the servovalve ranges between -/v to /v
(normalized) and the position signal ranges between -0.06m to 0.06 m (I 20mm
stroke). Therefore the input and output ranges are 2 and 0./2, respectively.
The ratio of the input over the output is /6.67.

° Therefore, Kp=1 in the experiment corresponds to a Kp=/6.67 in simulation.

Fig. 5.4 presents the marginally stable position response of the pneumatic positioner,
in the experiment with an unknown payload mass (large-dotted line). The ultimate
gain used was 3.2. The frequency and amplitude of the oscillations can be determined

from the Figure as 9.2 Hz and 6.5 mm respectively. The sampling time was /0 ms.

Fig. 5.4 also shows the simulated response of the pneumatic positioner (solid line)
with the model as given in Chapter 2 and listed in Appendix B. The gain used was
53.3, which was determined by considering the scaling factor of /6.67 required to
convert from experiment to simulation and given the experimental ultimate gain of
3.2. By adjusting the effective payload mass and the viscous friction coefficient
entries in simulation, the amplitude and frequency of the oscillations of the
marginally stable system can be changed. For an f, of 63 Ns/m and an M, of 2.2 kg,
the amplitude and frequency match very closely the ones obtained in the experiment

(large-dotted line response).
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Figure 5.4:  Viscous Friction Force and Effective Mass Payload - Experiment vs.

Simulation

Two sensitivity tests were then performed that set out to evaluate the accuracy of the
model: an intentional §% increase in the value of f, (66.15 Ns/m) and a 5% decrease
in the value of M, (2.08 kg). The responses are shown in dotted and dashed lines, in
Fig. 5.4 respectively. One can realise that even a £5% error in the value of f, or in
the value of M, result in approximately 50% decrease in the amplitude of oscillations
and a phase shift on the order of 180°. Both are large deviations from the nominal

response.

Note also that the phase shift in both the control signal and the position response of
the experiment (large-dotted line) with respect to the control signal and the position of
the nominal design in simulation (solid line) was intentional in order to better

illustrate their individual performance.
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In order to check whether the determined effective mass is realistic, the block the
mass, the carriage and rollers, and the extension rod were weighed. The weights for
each are 1.12 kg, 0.19 kg, respectively and the total weight is 2.05 kg. The small
difference in the measured weight to the effective mass payload determined by the
viscous friction method is only 0.15 kg, which could be attributed to the inertia of the
potentiometer belt. Therefore, the determined values for the viscous coefficient and
the payload mass can be considered as good approximations for the physical system.

The components are shown in Fig 5.5.

-~ piston .- cylinder

block mass N ¢ extension rod

carriage & rollers \
|

potentiometer belt —
" — inertia load potentiometer -

Figure 5.5: Effective Mass Components

Figure 5.6 shows a robustness test for the DSLM controller as designed in Chapter 4.
The controller was designed for a settling time of 0.2 sec and damping of /.0. Note
that for this test the controller was designed for a payload of 8.5 kg, which was
experimentally done by adjusting an inertial load as shown in Figure 5.5. The

effective payload was determined using the procedure outlined in Section 5.3.2.

The response of the nominal payload is shown as a solid line. The responses for the
low payload (2.2 kg) and the large payload (23 kg) are shown in dotted and dashed
lines, respectively. Note that the DSLM design requirements are roughly met in all
cases, and the steady state errors were determined to be under 0.2 mm, which is a very

good result.
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Experiment: DSLM with t=0.2 sec and {=1, K,=5 v (maximum)

L) L ] !

A ¢,,=0.2mm (M, =8.5kg: nominal)
> 0.lmm (M,=2.2kg: low)

0.2mm (M,=23 kg: large)
20 e, =0.Imm (M,=8.5kg: nominal)
8 0.Imm (M,=2.2kg. low) h
0.lmm (M,=23 kg: large)
-40 1 L S 1
0.5 1 1.5 2 2.5

AIRdoc2g, t4d10 (solid:M,=8.5kg), 14d11(dotted:M,=2. 2kg), t4d12 (dashed: M,=23kg)

T - T T
5 r -1
K,=5v corresponds to /v (normalised in simulation)
0 y v = .
= [ - (i
5L ' L A ]
0 0.5 1 2 2.5

Time (sec)

Figure 5.6: Robustness Test with DSLM, Experiment

54  Choice of Setpoint change

Most pick-and-place applications start with the end effector at one location, then the
end effector moves to another location and finally returns to the initial location. To
mimic this typical industrial scenario, a 2-step setpoint change was chosen to be
implemented in the experimental tests. There exist though an infinite number of
different setpoint change scenarios. Chapter 2 demonstrated that the natural
frequency and damping in pneumatic cylinders depend upon both the direction of the
move (for rodded cylinders) and the location of the move (for rodless and rodded
cylinders). For example, Fig. 2.9 showed that for a symmetric cylinder, the minimum
natural frequency occurs at the center of the stroke and the maximum at the ends of
the stroke. In order to test the controllers under these nonlinear conditions, 2 distinct
locations were initially chosen, the center and the end of the stroke. The 4-step step

change shown in Fig. 5.7 was used to test these pick-and-place scenarios.
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The total stroke length for the BIMBA cylinder is /127 mm. Thus it has 63.5 mm of
travel on either side of the center position. To prevent the piston from hitting the ends
of the cylinder, the setpoints are selected to be a safe distance away from the
endstops. In this case, 40 mm of travel is considered appropriate. In Fig. 5.7, one can
see four distinct setpoint change scenarios: 0 to 40 mm, 40 to 0 mm, 0 to -40 mm and

-40 to 0 mm. These are denoted as scenarios / to 4, respectively.

The controller used in the test shown as Fig. 5.7 was a PVA controller. This linear
controller was chosen because of its low robustness relative to CSLM and DSLM. It
could therefore better demonstrate the relative performance of the four scenarios. For
this asymmetric cylinder, retraction of the piston causes appreciable steady state error;
1.7 mm and 1.5 mm during setpoint scenarios 2 and 3 respectively. Setpoint scenario

4 indicates a significant steady state error of 0.3 mm but also overshoots of 5%.

50
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Figure 5.7:  4-Step Setpoint-change Scenario with PVA, Experiment

148



Since setpoint scenarios 3 and 4 appear to be the areas of increased control difficulty
and lower performance, it was decided to use them as the benchmark setpoint change,
with one slight modification. During experimental robustness tests, the possibility of
large overshoots is increased. For this reason, to avoid hitting the ends of the
cylinder, the setpoint change was modified slightly: the piston starts at -32 mm,
moves to the center and then back to -32 mm. In the case of the nominal B/IMBA

cylinder, the -32 mm location corresponds to the quarter length of the stroke.

5.4.1 Closed Loop Experiment and Model Validation

Once the friction forces and coefficients are calculated, a model validation test in the
closed loop is performed. In the open loop, the typical control input step-sequence
failed to provide a good result, because of the fact that an asymmetric cylinder
behaves differently in extension than in retraction. Due to the unequal cylinder
chamber areas, the piston moves faster in extension than in retraction. As a result, the
piston moved closer and closer to the end of the stroke at each step change. This drift

meant that a test of adequate duration could not be realised.

Fig. 5.8 shows the simulated result for the step change described in Section 5.3. A
payload with an effective mass of 2.2 kg was moved from the quarter length position
of an asymmetric cylinder (-32 mm) to the center and back. The nominal B/MBA
cylinder was used. A viscous force coefficient of 63 Ns/m, a dynamic coulomb force
of 3.9 N (average of extension and retraction dynamic coulomb forces) and a static
coulomb force of 6.4 N was used (average of extension and retraction static coulomb
forces). Finally, a linear servovalve (HR-Textron) is modelled with a valve opening
of 2.13 mm* capable of producing /.88 I/sec (4 scfm) of maximum flow at a supply
pressure of 689.5 kPa (100 psi). A sampling time of /0 msec is used that matches the
speed of the microcomputer / data acquisition system. A DSLM controller is applied
which has been designed for a sliding settling time of 0.2 sec and a damping of /.0.
The state weights used were W,=22, W,=2.5 and W,=0.35, which for a normalized K
of 1.0 correspond to Kp=22, Ky=2.5 and Kq=0.35, respectively.
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Figure 5.8 shows the response of the experiment under the same setpoint change

scenario. One can see a good match between experiment and simulation. This leads

to the conclusion that the model can be used to predict performance with different

controllers for this particular setpoint scenario. This is not claimed to be proof that

the model is valid for different setpoint scenarios. Therefore, testing the robustness of

the controllers under consideration can be performed in simulation for a series of

different cylinders for the adopted setpoint scenario.
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Figure 5.8 Closed Loop Pneumatic Positioner Response, Simulation
and Experiment
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5.5  Robustness Resuits of PVA, CSLM and DSLM with Different Cylinders

Earlier sections in this chapter demonstrated how the unknown model parameters
were determined for the nominal pneumatic positioner (servovalve: 4 scfm HR-
Textron, actuator: BIMBA 095-DX). The positioning performance and overall
robustness of the conventional linear PVA and the nonlinear CSLM and DSLM
controllers will now be compared under a series of simulation tests. These tests
included a double bore and a double stroke scenario for which the controller and all

other simulated hardware, such as the servovalve remained unaltered.

For the double bore scenario, the bore diameter was doubled while the stroke was left
the same. A BIMBA cylinder that matches the double bore characteristic was selected
from the manufacturer’s catalog and its technical specifications were modeled in
simulation. The double bore cylinder (part # 315-DXP) has a bore diameter of 50.8
mm, a stroke of /27 mm and a piston rod diameter of /5.8 mm. The enclosed air
volume of the double bore asymmetric cylinder is approximately 4 times greater than

the volume of the nominal B/MBA cylinder (part # 095-DX).

Similarly, for the double stroke scenario the stroke was doubled while the bore
diameter was left the same. A BIMBA cylinder that matches the double stroke
characteristic was found from the manufacturer’s catalog and its technical
specifications were modeled in simulation. The double stroke cylinder (part # 0910-
DX) has a stroke of 254 mm, a bore diameter of 26.9 mm and a piston rod diameter of
7.9 mm. The enclosed air volume of the double stroke asymmetric cylinder is
approximately 2 times greater than the volume of the nominal BIMBA. The technical
specifications for both the double bore and the double stroke cylinders are included in

Appendix A.
Of the two tests outlined above, the more demanding is the double bore test. The

controllers were implemented in simulation for a setpoint scenario as outlined in

Section 5.4 and were designed for a critically damped settling time of 0.2 sec. The

151



controllers were tuned for an effective payload mass of 2.2 kg. In the figures that
follow, the position of the piston is shown as a percentage of the stroke so that the
responses obtained under the double stroke test could be presented alongside the ones
obtained with the nominal and double bore cylinders. This also implies that the
setpoint scenario for all 3 cylinders (nominal, double bore and double stroke) was to
move the piston from the quarter length position, to the center and back. In a cylinder
that is linearized about the center position, the quarter length position is denoted as -
25% stroke and the center as 0% stroke, with the two ends of the cylinder denoted as
-50% stroke and 30% stroke.

In most cases, one can rate the responses in a qualitative manner by observing
whether the trajectory requirements are met (settling time and overshoot), whether
stiction is present in the position response, whether chatter appears in the control
signal and whether there is considerable steady state error. In addition to qualitative
observations, one can look at quantitative performance measures such as the
integrated absolute error (JAE) and the integrated control effort (JCE). In order to
obtain the /AC and /CE, the positioning error and control effort at every sampling
interval are sumed over the duration of the test. The /AE and /CE generated with the
nominal cylinder can be used as the benchmark. It is expected that both quantities
will increase for the double bore and double stroke tests. For the double bore test, the
IAE and ICE can be compared directly to the benchmark measures obtained when
using the nominal cylinder because the stroke is the same. However, for the double
stroke test, the double distance that the piston travels, results in twice the positioning
error at each sampling interval. To compensate for this inconsistency, the /4E
generated under the double stroke test has to be divided by a factor of 2.0. For a
linear servovalve, such as the HR-Textron, one can say that the control input is
proportional to the air flow. Due to air compressibility though, the motion of the
piston is nonlinear to the air flow. Therefore, the ICE obtained from the double

stroke scenario should not be compared to the benchmark /CE. Instead, the /CE
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obtained from the 3 controllers for the double stroke test will be compared among

themselves.

Fig. 5.9 shows the rcsponses generated with the conventional PVA controller as
applied to the pneumatic positioner. The responses for the nominal, double bore and
double stroke cylinders are shown as solid, dotted and dashed lines, respectively. The
top plot shows the position response as a percentage of stroke and the bottom plot

shows the control input to the servovalve.

The solid line response (nominal cylinder) clearly shows the static coulomb friction
effects. The positioner slows down as it approaches the setpoint. When its speed
becomes low enough, stiction grabs hold of the piston. The resulting steady state
error is sensed by the controller which compensates by increasing the control signal to
free the cylinder. This corresponds to the sudden jump in the position. This stick-slip
phenomenon occurs a few more times before the piston finally reaches the setpoint

and results in a very jerky motion.

For the double bore scenario, the dotted lines indicate a considerably slower response.
For the double stroke scenario, the dashed lines show an improved speed of response
and the setpoint is reached at about the same time as it was reached by the nominal
cylinder. The /AE and ICE for the 3 cylinders and PVA are shown in Table 5.2. In
the same table, the JAE and I/CE for the 3 cylinders and the 2 nonlinear controllers
(CSLM and DSLM) are also given. The same table also tabulates the % increase in
IAE for the double stroke and for the double bore cylinders, as compared to the
benchmark /AE (nominal cylinder). Furthermore, the % increase in ICE for the

double bore cylinder only as compared to the benchmark ICE is also shown.

Fig. 5.10 shows the responses generated with the CSLM controller (k=10 ms) as
applied to the pneumatic positioner. The responses for the nominal, double bore and

double stroke cylinders are shown as solid, dotted and dashed lines, respectively. The
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top figure shows the position response as a percentage of stroke, the middle figure
shows the sliding function behavior and the bottom figure shows the control input to

the servovalve.

The response of the nominal cylinder with CSLM can be described as slightly jerky
and is marginally similar to the response with the PVA controller, as shown in Fig.
5.9. For the payload at hand, the boundary layer used was 65.0. If a smaller
boundary layer was used, excessive chatter would result which would cause greater
steady state errors and increased oscillations. The inability of CSLM to adequately
control a small payload boils down to sampling time intolerance. A small system
time constant (due, to a small payload of 2.2 kg) combined with a relatively large

sampling time, will degrade the overall performance of CSLM.

In the case of the double bore cylinder (dotted lines), one can see a much slower
position response. The control signal appears more chattery and the sliding function
diverges, contrary to the conditions of the sliding law. The extreme conditions of this
test (incorrect cylinder model, small payload, high sampling time) have degraded the

performance of CSLM to the point of instability.

In the case of the double stroke cylinder (dashed lines), one can see a much improved
response. Despite a slightly greater settling time the sliding function converges and

the control signal is smooth.

Fig. 5.11 shows the responses obtained with the DSLM controller. The responses for
the nominal, double bore and double stroke cylinders are shown as solid, dotted and
dashed lines, respectively. As before, the top figure shows the position response as a
percentage of stroke, the middle figure shows the sliding function behavior and the

bottom figure shows the control input to the servovalve.
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Figure 5.9:  Robustness Tests with PVA - Simulation
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The response of the nominal cylinder with DSLM is smooth. The stiction effects seen
with PVA and the control chatter seen with CSLM are no longer as visible. The

sliding function converges to zero and the sliding conditions are met.

In the case of the double bore cylinder (dotted lines), the response shows a small
delay. When compared to the delay that resulted with PVA and CSLM, it becomes
clear that DSLM is the most robust of the 3 controllers, when the sampling time is
large. In the case of the double stroke (dashed lines), the response improves further

and is comparable to the one with the nominal cylinder.

Table 5.2 summarizes the /AE and ICE taken from Fig. 5.9, 5.10 and 5.11. If one
compares the nominal /AE for PVA with the corresponding /AE for DSLM might
prompt one to make the assumption that PVA behaves better than DSLM, in the
absence of qualitative observations. The contrary, though is true. DSLM produces a
smooth response, whereas PVA exhibits high stiction effects which are undesirable.
Comparing the % increase in IAE for the three controllers at both robustness
scenarios, one can see that DSLM has the lowest overall increase. This confirms the
result of the qualitative observations. If one looks at the ICE for the 3 controllers, can

realize that all exhibit roughly the same increase from the nominal values.

The performance of CSLM improves considerably with either the use of a sampling
time in the order of /.0 ms, or the use of a larger payload. It has been seen in
simulation that the performance and the robustness of CSLM can surpass those of
DSLM provided the sampling time is sufficiently small, relative to the time constant
of the system. Empirically, when selecting a suitable sampling time for CSLM, one
needs to sample at least 20 times per time constant of the fastest component of the

controlled system.
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Figure 5.10: Robustness Tests with CSLM - Simulation
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5.6 Summary

Following a set of experimental tests to validate the model coefficients, a series of
robustness tests were performed in simulation. These tests were designed to verify
the performance of the linear PVA and the nonlincar CSLM and DSLM controllers in
the presence of significant model errors. The controllers were tuned to meet certain
setpoint change scenarios for a particular pneumatic positioning system. They were
then applied to a pneumatic system that had twice the cylinder bore diameter and
twice the cylinder stroke. Qualitative observations such as smoothness of response,
and quantitative measures such as the JAE and ICE, were used to evaluate the

performance of the controllers.

For the simulated pneumatic systems and the implemented sampling time, DSLM was
shown to be the more robust of the three controllers tested. Its greatest advantage is
the ability to tolerate large sampling times. CSLM, on the other hand fails in the
presence of large sampling times, which is the reason behind its poor performance in

the tests presented in this chapter.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The two main aspects of the design of pneumatic positioning systems, namely the
sizing of the valve and cylinder and the design of an appropriate controller, were
investigated in this thesis. The main objective was to improve the performance of
pneumatic systems and generate a set of guidelines for better system design. The
adopted nonlinear controller was Sliding Mode (SLM) control, in both continuous

(CSLM) and discrete (DSLM) implementations.

6.1.1 Pneumatic Positioning System

In Chapter 2, a linear and a nonlinear model of a pneumatic positioning system was
developed. Models for system components were determined from first principles
using compressible flow, energy conservation, mass balance and force balance
equations. Conditions such as choked versus subsonic flow, static and dynamic
coulomb friction, and air compressibility were combined to generate a 3" order
nonlinear model. Simulation tests with the nonlinear model indicated that in
pneumatic positioning systems the dynamic performance (natural frequency and
damping) depends on the position of the piston (rodded and rodless cylinders) and on
the direction of the motion (rodded cylinders). The presence of these nonlinearities
limits the performance of linear controllers since their design is based on a linear

model of the system and do not compensate for large parameter variations.

The performance of the pneumatic positioning system was then tested in simulation.
A linear PVA controller was used, for which the gains were determined from a
linearised model of the pneumatic system for a set of time-domain performance
parameters, namely settling time and overshoot. The application of a fixed gain linear
controller to a system that was considered nonlinear was intentional in order to

highlight how different parameters affected system performance. The following
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conclusions resulted from the investigation of the pneumatic positioning system under

PV A control:

d Ultimate Gain - Cylinder Type: ~ When one needs to determine the ultimate
gain that can be used for a rodless cylinder, then Eq. 2.37 can be used. If a
rodded cylinder is used, the dynamic performance depends on the direction of
motion (extension or retraction) which implies that the ultimate gain is different
in either direction. In fact, the ultimate gain is lower if the piston is in extension
than in retraction. Therefore, in order to predict the ultimate gain for a rodded

cylinder, one should use the smaller of the two chamber areas in Eq. 2.37.

¢  Sampling Time - Size Ratio: Pneumatic systems exhibit localised dynamics,
which could be a cause for control instability. If, for example, one works with a
cylinder that has a high size ratio, then the natural frequency is higher than one
that would result when a cylinder with the same capacity and a moderate size
ratio is used. If the sampling time is not adjusted to account for the higher
natural frequency, then the performance of the system degrades and instability
could occur. The link between natural frequency and size ratio has been

generally ignored in the literature.

¢  Valve Center Configuration - Valve Port Ratio: In the design of pneumatic
systems, one should also consider the effects of the valve center configuration.
For position control tasks, the servovalve should have a closed-center
configuration since higher operating pressures are needed. Open center valves

should be used only when free positioning of the payload is required.

¢  Supply and Steady State Pressures: A number of physical measurements of
the servovalve and the actuator have be shown to affect the steady state

pressures. Typically, higher operating pressures improve performance by
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decreasing the effects of air compressibility. The only restriction is the

maximum operating pressure that the pneumatic equipment can withstand.

° Friction: Low friction cylinders or valves that are insensitive to the lack of

natural lubrication should be used to avoid stiction effects.

The nonlinear nature of a pneumatic positioning system requires a controller that is able
to maintain a high level of performance despite variations in:

¢  Position of the setpoint,

U Direction of motion,

¢  Friction and,

®  Noise.
Furthermore, the controller should also be able to provide reasonable performance
despite:

o Improper sizing of pneumatic components and,

¢  Payload variations.
In the pneumatic system presented in this thesis, the natural frequency and damping
were shown to vary by as much as a factor of 2.5 from the center to the ends of stroke.
For this range of parameter variations, the PVA controller performed poorly. This is
due to the fact that nonlinearities in the system are not compensated for. Hence, the
interest in the nonlinear Sliding Mode Controllers which can handle these

nonlinearities.

6.1.2 Continuous Sliding Mode Control

In Chapter 3, the design procedure for the sliding surface of CSLM was presented and
illustrated as Fig. 3.13. A continuous canonical system state space model is
determined using a transformation matrix 7. Time domain performance parameters of

a 2™ order system are then used to generate the coefficients of the canonical sliding
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surface. Finally, the canonical sliding surface is changed to its original state space

variables by use of matrix 7.

Basic issues for the design of a CSLM controller as applied to the control of a
pneumatic positioning system were examined by means of simulation. These issues
include the effect of the tuning parameters of CSLM, namely:

. The sliding gain, and

. The boundary layer thickness,
as well as the design parameters for the sliding surface, namely:

. The sliding settling time, and

g The damping factor,
and finally the effect of:

. The sampling time.

In summary, CSLM is a highly robust controller under the following conditions:

. Sampling Time: The sampling time needs to be sufficiently small, so
that the continuous structure of the controller is not negated by large discrete
sampling times and yet large enough to be achievable with a modest control
computer. Empirically, one needs to use a sampling time at least 20 times
smaller than the open loop time constant of the system. For example, if the
open loop time constant for a particular pneumatic system is 0./ sec, the

sampling time should be in the order of 0.005 sec.
. Boundary Layer:  The boundary layer needs to be sufficiently large so that
chatter is eliminated and yet sufficiently small so that positioning accuracy is

not compromised.

In general, CSLM is a fairly easy controller to design and use. Its performance is very

good if the sampling time is sufficiently small. This thesis does not set out to
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investigate the sampling time limitations of the CSLM controller in theory. Instead, the
discrete (DSLM) implementation of CSLM was investigated, which compensates
explicitly for the sampling time and was shown to be able to maintain stability even at

high sampling times, while CSILM failed.

6.1.3 Discrete Sliding Mode Control

In Chapter 4, techniques for improving the basic DSLM control algorithm were
reviewed. These techniques included state estimators, varying sliding gains, state
weights and filters. The best features were then selected. A novel pole-placement
approach for the determination of the sliding surface coefficients was then presented.
The sliding surface was based on a dominant set of desired closed loop poles and can
match the more conventional sliding surface design characteristic where the sliding
surface has one order less than the system. A novel approach to the assignment of the

switching gains for DSLM was also presented.

The following summarises the adopted design procedure for the sliding surface of a
DSLM controller, and some of the modifications that were made on the switching

law.

¢  Sliding Surface Design: A novel pole-placement technique for designing
the sliding surface of a general nth order system, which then focused on a
typical 3’4 order pneumatic system, was developed. The technique enables
the designer to select sliding surface coefficients according to traditional time
performance parameters, namely settling time and maximum overshoot (or

damping).

To facilitate analysis, the closed loop dynamics of the system under pure
sliding were modified to a canonical form. Techniques for generating the
canonical state space matrices were presented. The coefficients of the

characteristic equation of the closed loop canonical state space matrix were
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then linked to desired poles in the discrete domain. Finally, the sliding surface
coefficients were calculated to match a set of poles that generate a dominant
2" order subsystem of the general 3" order pneumatic system. The simulation
responses with the pole placement technique for sliding surface design showed

good trajectory tracking and design flexibility.

¢  Varying Sliding Gain: The switching laws of DSLM were modified to
implement a varying sliding gain within the boundary layer which decreased
in magnitude upon approach to the sliding surface. Therefore limit cycles,

high chatter and large steady state errors could be eliminated.

e  State Weights: To further optimize the responses, control or state
weights were assigned to the individual states. A direct and novel comparison
of the control structure of the DSLM controller to the control structure of the
PVA controller indicated a direct relationship between the size of the
switching elements (per state) to the linear PVA gains. The implementation of
PVA gains as state weights for the DSLM controller resulted in very good
setpoint tracking, decreased oscillations, good sliding function convergence

and decreased control action.

¢  Sliding Gain Bounds: Bounds for the sliding gain for convergence
stability were then determined in terms of the coefficients of the sliding
surface, the desired reaching time, the sampling time and the control gain

matrix.

The performance of DSLM indicated better behavior than CSLM in the presence of
high static friction. CSLM and DSLM perform equally well in the presence of noise.
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6.1.4 Robustness Tests

Experimental open loop results for the pneumatic system were presented in Chapter 5.
These tests were used to determine the model parameters for the pneumatic system.
Then a series of tests were performed to confirm the robustness of the three
controllers: the PVA, the CSLLM and the DSLM. These tests evaluated the controllers
under different scenarios: double bore - same stroke and double stroke - same bore.
Qualitative observations such as smoothness of response and quantitative measures
such as the JAE and ICE, were used to evaluate the performance of each controller for

each of the robustness tests performed.

For the simulated pneumatic system and the implemented sampling time, DSLM was
shown to be the more robust of the three controllers tested. Its greatest advantage
over CSLM is the ability to tolerate large sampling times. An additional series of
tests were performed to confirm the robustness of the three controllers in terms of
incorrect payloads. The tests were implemented with sampling times of / ms and
10 ms. The conclusion was that at /0 ms, DSLM was the more robust of the three
controllers tested which confirms the result from Chapter 4. When a sufficiently
small sampling time was used, which was the case with a sampling time of / ms,
CSLM was shown to be just as robust as DSLM. In all robustness tests performed,

the SLM controllers were superior to the PVA controller.

6.2 Design Recommendations

For both CSLM and DSLM the sliding gain needs to be sufficiently large without
exceeding stability limits, so that model errors do not compromise robustness and yet
small enough to be achievable in practice. In practice, the size of the control input
that fully opens the selected valve (which meets steady state speed of response

requirements of the pneumatic system), should be used for the size of the sliding gain.

For DSLM, the state weights for the switching laws of DSLM should match the gains
of a PVA controller. The gains of the PVA should be designed for a critically
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damped response and a settling time similar to the one used in the design of the
sliding surface of DSLM. Furthermore, a varying sliding gain should be used within
the boundary layer.

Generally, the control structure of DSLM is more complex than the control structure
of CSLM. For this reason, CSLM with its simplicity of implementation and design
has been more popular than DSLM. But with better design guidelines for both the

sliding surface design and the switching laws, DSLM is becoming more attractive.

When implementing a CSLM controller, one should use the smallest sampling time
available, since it enables the controller to reach its full capability. This is becoming

easier with the ever increasing speed of microcomputers for control applications.

6.3 Recommendations for Future Work
A theoretical investigation on the stability limits of CSLM should be performed, since

DSLM surpasses the performance of CSLM only with large sampling times.

Recently, relatively inexpensive proportional valves by ASCO have come on the
market (price<$100). Although of lower bandwidth than the HR-Textron valve used
in this thesis (25 Hz versus 200 Hz for latter), the performance of the pneumatic

positioning system with these relatively inexpensive valves should be investigated.

An experimental verification of the effects of sizing ratio should also be performed
that would investigate the robustness of CSLM and DSLM in the context of changes
in cylinder bore and cylinder stroke, recognizing that Jordanou and Surgenor (1997b)

only verified CSLM and DSLM in the context of changing payload mass.

Finally, a Kalman Filter can be used to provide optimal estimate for the output states
if noise is present. Furthermore, the use of such a filter could further reduce noise

problems associated with digital differentiation of the measured output.
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APPENDIX A

Technical Specifications

HR-Textron Valve Specifications:

HREEIGE
MODEL 27A°

y For Low Pressure Hydrauli:
And Pneumatic Applications

SERVOVALVE CHARACTERISTICS

Supply Pressure
Rated Flow

Hydraulic IGPM

Internal Leckage
Hydraulic
Preumaltc

Null 8ias
Thrashold
Hysteresis
Linearity
Frequency Responie
Amplwude Rata
Phave Angle
Power + 15QH:
Chip Shear Force
Mas Power

+ 10O PSI
Pagqumaiic ISCFM = 100 PY)
Electrical Power - Full Hydraoutic Flow
Electrical Power - Full Pneumatic Flow g

Power Supply Required
Commond Inpui Signal
{Other Command Inputs Opt.onal)

Adjustable Upper Flow Limil 'o> 0% of Rated Flow

modular or integrated DDV

n 1000 PU

e e St T
THIHTIEE
10,10 20,87

1 2 Warey Mus

Viares A =

OO0IGPM Mar -
Neq'oqlb‘ﬂ
o 1% el Rarted Cammrara
Q 3% of RPated Command tns
1 0% of Reted Caruna=d Mas
5 0% of Roted Cammard Mag.
125% Command]
3dt, - 20CH: —
9C Degrees - 1 50H:
23 Warn (RWS)

1431 19%
318 Wars

160G PuD

Control Madule Characteristics
Contrel Module interface 20 Pin Module - Conauls KR

lor connaction information
23 14 25 ¥DC 40 Watts Paui
St -59DC

integrated Electronics Characteristics
Four Wire Interface
Power Supply Required 23 o 25 YDC 40 Warns Feni
Command Input Signal

2 Powor ong 2 Commang

510 -5 ¥YDC

{Othar Command inputs Qphanatl)

TEA IO

Related Products
® High Prassure Version - Model 27A5 -
¢ Wide selection ol mounting
) ] s ond TR
9o Matching Two Channel Analog/
Digital Control Coard (Model EC27A)
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BIMBA Cylinder Specifications:

- Bimba OrigirzilLine
Stainless 5teel Body Air Cylinders:

$21.35

8A3E
Add $1.25 per inch of stroke

8910

Optional Accessories:

D-13498-A Pvot Bracket

0-129 Mounting Bracket

0-100-1 Piston Rod Clevis
Base Weight: .33

Adder Per inch of Stroke: .08

Double Dismeter Cvlinder

PR

Stroke Lengths:
1%, 145, 2%, 24", 3%, 4%, 5.6, 7",

[};':::':ggm Y,

m--

31(1-0xpP

m
Mounting Type - Pivot or Double
Alr Raturn - Bronze Pivot

Standard Stroke
S D B
8,.9°, 10", 11%,12°, 13", 14", 15°,
167 17°, 18°, 19°, 20", 21°, 22°,
23,224

Maximum Stroke - 32

Stainiess Steel Rod Standard

Optional Accessories:
0-231-3 Piston Rod Clevis
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Lengths:
,25,24°,3, 4. 57,86, 7",




Data Acquisition Board:

Model:

Sampling Time:
[nput Channels:
Output Channels:
A/D Resolution:

Potentiometer:

Model;
Model number:

Resistance:

Standard Tolerance:

Standard Linearity:

Max. Power Rating:

Mechanical Travel:
Maximum Torque:
Maximum Weight:
Mounting:

Bearing:

LABMASTER

10 ms

8 analog, set for 0 to 10 volts
2 analog, set for 0 to 10 volts
12 bit

MIDORI
CPP-45B
500~20K
+15%

1 0.5%
3wW/70°C
360°
18g-cm
60g

Servo & Screw
Ball

Operating Temp. Range: -40°C ~ +125°C

Construction and Source of Data Acquisition Code:

The original apparatus was built by Dr. Brian Surgenor while on sabbatical leave at
Bath University, England in 1995. The original data acquisition code was written by
Dr. Brian Surgenor.

apparatus and the code were made by the author for this study.

Subsequent modifications of a minor nature to both the
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APPENDIX B

Simulation Source Code - Model Parameters

The following source code is a listing of the routines used in PC-MATLAB for
simulation purposes. The component parameters and initial conditions are first listed.
Then, the hysteresis model and flow conditions model is presented. The nonlinear
valve model is used in the thesis, as well as a nonlinear static kinetic friction model.
Finally, the cylinder volume and pressure model is presented along with the limits on

position, velocity and control.

COMPONENT SETTINGS
M, = payload mass = 2.2 or 8.5 kg

d, = piston diameter = 25 or 26.99 mm

A, = chamber area = n*(di*2)/4*1e-06 m’

A, = piston area = 1t *(10"2)/4* 1e-06 m’

L. = stroke length = 0.120 0f 0.127 m

C, = discharge coefficient = 0.72

A, = valve supply opening = 2.13 or 3.4 mm’

MARTONAIR {Ch.2-3-4]
Stroke Length = 120mm
Chamber diameter = 25 mm
Piston diameter = 10 mm
£,=70Ns/m, Fes=10N, Foq=5N

A, = valve exhaust opening = ratio*A,

R, = universal gas constant = 0.287 kJ/kgK
C, = leakage factor =0 or 10

Hys = valve deadband = 0.025

V., = end volume = 10*1e-6 m?

BIMBA 095-DX [Ch.5]
Stroke = 127mm
Chamber diameter = 26.9mm
Piston diameter = 7.9 mm
£, =63Ns/m,Fo5=6.4N,Fcq=3.9N

T, = operating temperature = 293 K

f, = viscous coefficient = 70 (MARTONAIR), or BIMBA 0910-DX [Ch.5}
63 (BIMBA) Ns/m Stroke = 254mm
F, = static coulomb friction =0,10 (MARTONAIR) |Chamber diameter = 26.9mm
6.4 (BIMBA) N Piston diameter = 7.9 mm

n, = ideal or polytropic = 1 or 1.4

P, = atmospheric pressure = 101 kPa

P, = initial pressure = 400 kPa

P, = supply pressure = 653 kPa

h = sampling and control interval = 0.01 sec

INITIAL CONDITIONS

P,=P; P,=P,*A/A,; dydt=0; y=0; u=0; V,_=0;
d’ydt’=0; m,=0; m;=0; P=0; F,=0;
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BIMBA 315-DXP [Ch.5)
Stroke = 127mm
Chamber diameter = 50.8mm
Piston diameter = 15.8 mm




HYSTERESIS MODEL
if u > Hys
Pr,=P/P; Pr,=P/P,
elseif u <-Hys
Pra = Po/Pl’ Prb = Pb/Pss
else
if flagN==0;
Pr,=1;Pr,=1; % --- Closed Center
Valve
else
Pr,=P/P,; Pr,=P/P,; % --- Open Center Valve
end
end

FLOW CONDITIONS
if Pr,,>=1,
Cm,,=0;
elseif Pr,, >=0.528;
dy = (Pr,,N(2/1.4) - Pr,,~((1.4+1)/1.4));
Cm,, = sqrt(2*1.4*dy/(1000*R *(1.4-1))); % --- Subsonic Flow
else
Cm,,, = 0.0405; % --- Choked Flow
end

LINEAR VALVE MODEL
m, = C,*0.0405*A.*1000*P /sqrt(T,)* u;
my = -m,,

NONLINEAR VALVE MODEL
if u> Hys
m,= C,*Cm,*u*A *1000*P/sqrt(T,);
m, = -C,*Cm,*u*A_*1000*P/sqr(T,);
elseif u < -Hys
m, = C,*Cm,*u*A_*1000*P,/sqrt(T,);
m, = -C,*Cm,*u*A,*1000*P/sqrt(T,);
else
if flagN==0;
m, =0; m, =0; % --- Closed Centre Valve
else
m, =-C,*Cm,*1.0*A_*1000*P /sqrt(T,); % --- Open Center Valve
m, =-C,*Cm,*1.0*A_*1000*P,/sqrt(T,);
end
end
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CYLINDER PROFILE
A=A A=A % --- Symmetric Actuator
A=A A =AA; % --- Asymmeltric Actuator

CYLINDER MODEL

F, = 1000*(A*P, - A, *P,);

if mlogic==0 & abs(F )>F; % --- Static-Kinetic Friction Model
mlogic = 1;

elseif mlogic==1 & abs(F )<(F/2) ;
mlogic = 0;

end

if F.==0; mlogic = |; end

if mlogic==1,
d’ydt’ = (F, - sign(dydt)*F /2 - F *dydtyM,;
dydt = dydt + h*d’ydt’;

else
dydt = 0; d’ydt’= 0;

end

STATE UPDATES
y =y + h*dydt;
if dydt>V,..; Vo = dydt; end % --- Velocity Limits
ify <-LJ/2;y=-LJ2; dydt=0; end % --- Position Limits
ify>LJ/2;y=LJ/2; dydt=0; end
ifu>u,,; u=u,;end % --- Control Limits
if u <-u,,,; u=-u,_,;end

CYLINDER VOLUME MODEL
Va, =V, % --- Charging
Vb=V, % --- Discharging

V.= AML2+Y)+ Vo
Vo= AXLJ2-y) + Vi
dv dt=(V,- Va,)/h
dv,dt=(V, - Vb, )/h

PRESSURE MODEL
dP dt=n*R*T,*m, - P,*dV dt)/V,
P,=P,+h*dPdt
dP,dt = n,*(R,*T,*m, - P,*dV,dt - C, *P,)/V,
P, =P, + h*dP,dt
if P, <P,; P, =P dP,dt=0; end % --- Pressure Limits
if p,>P; P, =P,; dP,dt=0; end
if P, <P, P, =P, dP,dt=0; end
if P, > P,; P, = P,; dP,dt=0; end
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SIMULATION SAMPLING TIME:

Examination of the program listing in the previous pages highlights that Euler’s 1 order
numerical method was used to solve the differential equations of the nonlinear model.
For example, the difference equation for a chamber pressure (see Pressure Model in

listing) is given as:

Poi = P+ Pih

where £ is the “&™ time step.

The simulation sampling time used was set to /0 ms, to match the sampling time
available to the experimental setup by the microcomputer in use. Using a sampling
time of /0 ms on a linear system with a 7 of /00 ms (7h=10), results in a maximum
numerical error of 18% (if one compares the Euler approximation to the exact solution
step by step). But relative to the final steady state (unit step change), the error is less
than 0.33%. Using a sampling time of /0 ms on a linear system with a 7 of /000 ms
(7h=100), results in a numerical error of 0.5%. As the z/h ratio increases the truncation

error decreases, but the round-off error increases.
A sampling time of / ms is not normally viewed as a “difficult” sampling time to

achieve, but many industrial PLC based controllers can only sample at /00 ms, although

the actual microprocessor clock speed is considerably higher.
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