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ABSTRACT 

Hamy N icos lordanou: Continuous Versus Discrete Sliding Mode Conirol as Applied 
to a Pneuniatic Positioning Sysiem. Ph.D.Thesis,Queen's University at Kingston, Aprii 1998. 

Presented in this thesis is the development of a practical set of design guidelines 
to improve the performance of pneumatic positioning systems by appropriate sizing of 
the valve and the cylinder, and by careful choice of the tuning pararneters For Continuous 
Sliding Mode (CSLM) and Discrete Sliding Mode (DSLM) controllen. CSLM and 
DSLM were selected because of their robustness in the presence of nonlinearities such as 
those found in a pneumatic positioning system. 

Pneumatic systems exhibit parameter variations along the length of the stroke due 
to air cornpressibility. The size ratio (area to stroke) of the cylinder was found to dictate 
the limitations on the sampling time for adequate performance with a linear controller. A 
technique to identify the ultimate gain is presented, in order to illustrate how system 
stability varies with piston position and cylinder size ratio. Finally, the effect of the 
cylinder size ratio, valve port area and valve configuration on system performance with a 
linear Proportional-Velocity-Acceleration (PVA) controller is documented. 

The first nonlinear controller investigated was CSLM. Techniques for the design 
of the sliding surface, the selection of the boundary layer thickness and sliding gain, as 
well as the effect of the equivalent gain, were investigated and a comprehensive design 
procedure was developed. With CSLM, the sliding surface design can be linked to 
familiar tirne domain performance parameters, but its performance is limited to relatively 
small sampling times. The robustness of CSLM in the context of its ability to maintain 
specified overshoot and settling time was tested by changing the payload rnass. 

The second nonlinear controller investigated was DSLM which is intended for 
discrete implementation and consequently takes explicit account of the sampling time. 
Techniques for the design of the controller are presented that are based on a compilation 
of existing methods, but with new features added for sliding surface design and controller 
tuning. The main contributions are: 1) the design approach for the sliding surface, where 
a link to tirne domain performance is established, and 2) the switching elements of DSLM 
which are selected by rneans of a classical linear controls approach. Finally, an original 
set of comprehensive design guidelines for DSLM are documented. 

Following a set of experimental tests to validate the system model, a series of additional 
robustness tests were performed in simulation. These tests were designed to further 
ver@ the performance of the linear PVA and the nonlinear CSLM and DSLM controllers 
in the presence of model errors such as incorrect bore size and incorrect stroke length. In 
conclusion, DSLM was found to be the more robust of the three controllers for large 
sarnpling times. On the other hand, CSLM was competitive with DSLM for small 
sampling times. 
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NOMENCLATURE 

aj = coefficients of 2" order transfer function with J=O. I ,2 
A = continuous time system matrix 
A, .A, = areas for chamben a and b 
A, = symmetric cylinder chamber area 
A,,, = instantaneous valve opening area 
A ,  Ave = vaive supply and exhaust port areas 
Av = maximum valve opening area 
2 = augmented closed loop system dynamics 

b = control uncertainty 

bj = arbitrary constants determined from initial conditions 
b(x) =nonlinearstategainmatrix 
B = continuous time gain matrix 

c,,c,,c, = sliding surface coefficients 
= sliding vectors 
= sliding surface rnatrix 
= companion rnatrix of A 
= discharge coefficient 
= flow coefficient 
= constant-pressure specific heat 
= constant-volume specific heat 
= companion matrix of 
= canonical sliding surface matrix 

= cylinder size ratio 
= disturbance bound 
= disturbance vector 
= cylinder diameter 

= total intemal energy of the control volume 

= nonlinear state system matrix 
= switching elements 
= viscous fiction coefficient 
= nonlinear state system matrix 
= estimated dynamics 
= constant extemal force 
= static coulomb force 
= dynamic coulomb force 
= estimation enor 
= discrete equivalent gain matrix 



Ff = overall friction force 
Fsw = discrete sliding gain matrix 

g(x) = nonlinear gain matrix 
G = matrix of desired eigenvalue sector 

h = sampling time 
hin = total energy per unit mass of fluid into the control volume 
hout = total energy per unit mass of fluid out of the control volume 
hp = system opening ratio 

I = identity matrix 

4 = flow gain 
k2 = flow-pressure coefficient 
ki = varying sliding gain slope factor 
kf , k; = switching feedback gains 
K = pole placement gain matrix 
Ka = acceleration gain 

Kq = continuous equivalent control gain matrix 
= matnx of switching feedback gains 

Kp = proportional gain 
Ks = sliding gain 
K,', K: = upper and lower sliding gain limits 

= varying sliding gain (inside boundary layer) 
= continuous sliding gain matrix 
= ultimate gain 
= velocity gain 

= cylinder stroke length 
= function used by Furuta and Pan (1995) 
= Lie Derivatives 
= sliding and convergence condition functions 

= air mass 
= effective load inertia or mass 
= maximum overshoot 

= number of states, or system order 
= valve opening coefficient 
= nuil space 

= rectangular coordinate 
= pressiue 

xii 



= downstream pressure 
= pressure ratio 
= supply pressure 
= upstream pressure 
= pressure at vena contracta 
= n o m  of discrete state 

= rectangular coordinate 
= weighting matrix 
= heat flow to the control volume 

= polar coordinate, vec tor length 
= transforrned variables 
= modal transformation 
= steady state pressure ratio 
= weighting matrix 
= gas constant 
= range space 

= sliding f'unction 
= sliding surface 

Sup Sdw = directional (up and down) sensitivities 

t = time 
= total settling time 

tr = reaching time 
ts = sliding settling time 
T = transformation matrix 
T ,  Tb = temperatures for charnbers a and b 
Td = desired eigenvector matrix 
T' = supply temperature 
Tu = upstream temperature 
TV = eigenvector (modal) matrix 

u = control signal 
u ,  ut, ud uw, ux = coefficients for steady state analysis 
ueq = equivalent action 
us, = sliding action 
U = valve underlap 

2, = estimated equivalent action 

v,, v,.. = eigenvectors 
V = cylinder volume 
V(x) = Lyapunov's fùnction 

xiii 



= Vandermonde matrix 
= projector vector 

= intemal switching states 
= controllability matrix (original) 
= strictly positive state weight for j 
= controllability matrix (transformed) 

= state variable(s) 
= tracking error in state variable@) 
= transformed state as in Zodhy (1 995) 
= perturbation in state variable(s) 
= canonical fonn state variable(s) 

= position of cylinder piston 
= nominal operating point 
= valve spool displacement 
= extemal states 

= z-transfonn 
= stability variable as in Furuta (1 990) 
= transformed state as in Woodham and Zinober ((1993) 

Greek Symbols 
a = real, non-zero root of 3" order system 
a,,% .. = coefficients of characteristic equation 
,û = gain margin 
Y = specific heat ratio 
Wk), 6j = boundary layer for DSLM 
6 = strictly positive constant 
6 = darnping ratio 

rt = strictly positive constant 
8 = polar coordinate, argument 
A, ,h, . . . h,, = eigenvalues for system of order n 

= filter cut-off frequency 
= pneumatic mode1 coefficients 
= positive real number 
= rate of convergence (to sliding surface) 
= transformed state as in Woodham and Zinober (1993) 
= density 
= time constant 
= pertubation gain bounds for discrete control 
= fixed boundary layer for CSLM 

xiv 
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Aj = uncertainty on variable j 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Pneumatics retain a dominant role in many autornated, materials-handling tasks due to their 

ability to provide a low-cost, safe and compact positioning system that is well suited for 

light to medium-duty applications. Furthemore, they are fast acting, c l a n  and require little 

maintenance. They are widely used in industry to perform simple pick-and-place fixed- 

setpoint tasks. However, pneumatic systems have not been widely used for servo- 

applications (variable setpoint) because of their poor dynamic response as compared to 

electric or hydraulic systems. Air compressibility can cause spongy operation and delays in 

signal transmission, affecting both response time and positioning accuracy. Friction in 

pneumatic systems is generally much higher than in hydraulic systems since oil in hydraulic 

systems is both the working fluid and the lubricant. In general, static friction in a pneumatic 

cylinder combined with valve hysteresis create undesirable setpoint offsets which can cause 

high control chatter and erratic system behaviour. Furthemore, the dynamic stability of 

pneumatic systems is known to be dependent on stroke position. It has been observed that 

pneumatic systems are less stable when operating about the mid-stroke position compared 

with the end-stroke position (Burrows, 1972). 

A typical pneumatic system uses an air cornpressor to pressurise air to a desired level. An 

air filter traps air impurities and a pressure regulator maintains the air pressure to a 

constant level. A c o ~ l  valve ailows flow of air into one charnber of a cylinder, while air 

is ailowed to exit from the other charnber to atmosphere. The most critical of the 

components of a pneumatic system are the valve and the cylinder. Over the years, many 

improvements have been made on pneumatic component design. For instance, rodless 

cylinders have been introduced as an alternative to conventional rodded cylinders. One 

arrangement for a rodless cylinder is to have the in-cylinder piston connected to the load 



canying carriage through a direct physical coupling. A seal across the track prevents air 

leakage. The lack of a rod means that a rodless cylinder requires half the space of a rodded 

cylinder and more importantly from a dynarnic standpoint, has a symmetnc piston area. 

This is in contrast to a rodded cylinder which, of course has unequal piston areas and 

consequently a nonlinear force charactenstic. However, rodless cylinders can exhibit high 

friction due to the requirement for stiff sealing. Another rodless cylinder arrangement is 

one that magnetically couples the carriage to the in-cylinder piston. However, magnetic 

coupling can also exhibit high friction due to the requirement for a minimal air leak 

between piston, seal and carriage. To counter the effect of friction in rodded cylinders, low 

friction seals and bearing materials, along with imovative seal designs, have been 

introduced. 

Given that the "heart" of a pneumatic positioning system is the control valve, it is 

worthwhile to note that there are three major configurations for proportional actuation: 

Digiiai stepping, where multiple conventional ONIOFF solenoid valves, a digi ta1 

multiplexer and a switched-output programmable contmller is used. The control signal is 

received by the multiplexer, which in turn activates the appropriate number of solenoid 

valves whose combined flow output equals that required. 

Pulse- Width-Modulation, where the actuator is initially powered in the normal 

marner through an ON/OFF valve, but as the actuator nears its final position, the valve is 

pulsed rapidly ON/OFF, feathenng the actuator into position. 

Proportional servovalves, which resemble their hydraulic counterparts. A spool 

moves within the valve body and provides a flow of air in proportion to the control signal. 

New valve designs incorporate a servomotor to move the spool via an eccentric. This 

approach is not possible with most hydraulic valves due to higher flow forces and spool 

masses. Hydraulic valves tend to use proportional solenoids to move the spool. The use of 

a servomotor enables higher valve bandwidths. 



It is generally acknowledged that proportional servovalves offer the best opportunity for 

high performance. However, the cost differential is on the order of a factor of ten ($100 for 

an OWOFF solenoid valve versus $1000 for a proportional servovaive). Servovalves have 

improved in terms of both their linearity and bandwidth. Proportional pneumatic 

servovalves were not even cornmercially available 10 years ago. Furthemore, it is only in 

recent years that more than one size of valve has becorne available. 

With advancements in pneumatic component design, positiuning accuracies in the order of 

k 0.025 mm (0.001 in) are readily achievable. The overall improvement in the performance 

of pneumatic systems opens a wider range of possible applications. Apart fiom the 

traditional industrial uses, one can now see pneumatic systems king used in: 

Vehiclegearshifîs: The transmission sewo includes a number of 

components such as pneumatic cylinders, solenoid valves, sensors and on- 

board computer. The computer monitors instantaneous values such as road 

speed, engine speed and the selected gear, and controls the gear level and 

clutch in accordance to the selected program and any changes in the 

parameters ( Wright, i 9996). 

Wufking Robots: Walking robots are designed to perform the work of 

human workers in hazardous areas (such as nuclear disposai sites) and are 

equipped with legs for greater mobility on uneven terrain and active 

cushioning. Walking robots with six legs are now available: linear 

pneumatic actuators lifi the legs, swivel pneumatic actuators perform the 

fine tuning movements required for walking by adjusting vertical and 

transverse positions. An on-board computer serves as the system's 

controller (FESTO, 1995). 



1.2 Objectives 

The work documented in this thesis, which is motivated by an increasing interest towards 

the use of high-performance pneumatic systems, has two main features: 

1.2.1 Examination of Pneumatic Positioner Design 

The examination is conducted by means of simulation and experiment. Simulation will be 

used to examine the performance of the pneumatic system in terms of system design issues 

such as the size of the valve, the stroke and the bore of the cylinder. For example, a design 

issue that will be considered is the square root ratio of the cylinder chamber area to the 

cylinder stroke. It will be show that the smaller the ratio is, the harder it is to provide 

smooth setpoint tracking. 

Another aspect of the hardware design is the size of the valve. Selecting a valve that is too 

small for a certain application (undersking) means that maximum actuator speed may not 

be accomplished which would result in longer settling times. Selecting a valve too large 

(oversizing) does improve speed of response but may result in poor sensitivity which in turn 

could cause higher steady state errors. 

1.2.2 Examination of Nonlinear System Controller Design 

A pneumatic system is inherently a nonlinear system. Sliding Mode Control (SLM) has 

been promoted as a particularly robust controller as applied to nonlinear systems. In the 

context of this thesis, the meaning of "robust" refen to the ability of a model-based 

controller to maintain system performance in the presence of bounded erroa in the 

modelled parameters. This thesis sets out to investigate the robustness of SLM controllers 

in both the continuous (CSLM) and discrete (DSLM) implementations. To put the 

performance of the SLM controllen into perspective, a cornparison will be made to a well 

designed linear Proportional-Velocity-Acceleration (PVA) controller. 



The objective is to determine which one of the three controllers (PVA, CSLM, DSLM) 

provides the "best" control in terms of speed of action, elimination of steady state errors and 

robustness. A good actuator speed is considered to be 1 d.~. Steady state errors in the 

order of I 0.2 mm are judged acceptable. The robustness of the controllers will be 

examined in terrns of deliberate model errors. These model errors include an incorrect mass 

payload and an incorrect cylinder, either in terms of using a cylinder with a double bore, or 

with a double stroke. Doubling the stroke or the bore of cylinder without suitable 

compensation in the contmller gains normally degrades the system's response. The 

question is: how much does the performance of each controller degrade ? 

To optimize the design of SLM, a nurnber of tests will be performed to investigate the effect 

of controller design parameters such as the sampling interval, boundary layer thickness, 

sliding gain and state weights. 

1.2.3 Overall Objective 

The overall objective of the research is to improve the performance of pneumatic 

positioning systems through an appropriate selection of the huiing parameters of CSLM and 

DSLM. This can be done by careful selection of the pneumatic system components and by 

customising the controller to the system needs and requirements. By examining the effects 

of the sliding gain, state weights, etc. a set of gain selection guidelines can be generated for 

CSLM and DSLM. Furthemore, a simple design for the sliding surface of DSLM which 

links tirnedomain performance parameters to the coefficients of the sliding surface needs to 

be generated. With a comprehensive understanding of pneumatic systern behavior and with 

a good set of gain selection guidelines, pneumatic positioning systems will be better located 

to challenge electric and/or hydraulic systems. 



1.3 Thesis Outline 

Chapter 2 presents a literature review on pneurnatic systems. Modelling considerations for 

valves and cylinders, which compose the core of pneumatic system design are presented. 

Both linear and nonlinear models of a pneurnatic system are developed. Fundamental 

dynamic behavior such as the effect of system nonlinearities on the ultimate gain for a 

proportional only controller are presented. 

Chapters 3 and 4 include a literature review on CSLM and DSLM, respectively. 

Furthemore, various modifications suggested by researchers over the years are addressed 

and new modifications that improve the performance of the controllers are presented. The 

gradua1 improvement in the performance of the controllers is demonstrated by a set of 

simulation results. 

Chapter 5 presents the model validation procedure for the experimental setup. The model 

panuneters are detemined fiom a set of open and closed loop tests. To M e r  evaluate the 

robustness of the controllers, a set of tests are conducted to examine the effect of doubling 

the cylinder bore, and doubling the cylinder stroke, without correcting the design of the 

controller. The degradation in the performance of the pneumatic system under these tests is 

an indication of the robustness of the controller. 

Chapter 6 summarises the expenmental and simulation results presented in earlier chapters. 

It also provides a set of guidelines for customising and tuning SLM controllers to 

pneurnatic systems. Some guidelines for pneumatic system design are also listed. Finally, 

recomrnendations for funue work are given. 



CHAPTER 2 

PNEUMATIC SYSTEMS 

This chaptcr describes pneumatic positioning systems, fiom the dynamic modelling of 

the individual components to the analysis of steady state conditions. Some important 

aspects that will be stressed include: linear versus nonlinear models, rnodelling static 

and dynamic friction, subsonic versus choked flow, steady versus variable pressures and 

volumes. 

2.1 Introduction to Pneumatic Systems 

Pneumatic systems utilize the energy of compressed air. Such systems have been 

applied traditionally to non-industrial applications such as dental drills and surgical 

instruments as well as to many industrial applications that do not involve a control 

system such as chipping, rearning, drilling, fomiing and stamping operations. With 

advancements in microcornputer and servovalve technology, pneumatic systems are 

now being considered for industrial applications that do involve a control system, such 

as for fiee positioning of a workpiece. 

Fig. 2.1 shows a typical pneumatic setup for position control with a directional valve 

controlling the flow of air fiom a regulated supply to a rodded cylinder. Fig. 2. la shows 

the different components of the valve and the cylinder together with the key 

nomenclature to be used in this chapter. The control signal to the valve determines the 

position of the spool, which allows air to flow into either cylinder chamber "a " or "b ". 
The illustrated valve has 5 ports and allows 3 ways of motion. Thus, it is referred to as 

a 5-port 3-way, directional valve. Depending on the location of the valve spool, the 

piston could be extending or retracting (Fig. 2. lb  and 2. lc respectively). 

When the spool is centered and there is an overlap (area of spool peg greater than the 

valve port), then there is no air flow to either end of the cylinder and its positim is 

"fiozen". This type of valve is called a closed-center valve. If there is an underlap 



exhaust 

"1 

1 --- 
Figure 2. la: 3-way, 5-port valve and asymmetric cylinder 

Figure 2.1 b: Extending Figure 2.1 c: Retracting 

Figure 2.1 : 3-way, 5-port valve and asymmetric cylinder 

(area of spool peg smaller than the valve port), then both chambers exhaust to the 

atrnosphere if the spool is centered. This is called an open-center valve. Finally, if the 

spool is centered while the supply port is greater than the spool peg and the exhaust 

ports are blocked, then both chambers are charged. This type of valve is called the 

pressure-cenier valve. These three configurations are show in Fig. 2.2. The choice of 

which configuration to use depends on the process requirement when the system is at 

rest and the valve is centered (Lamb and Schrader, 1986). 

The opensenter valve allows free positioning of the cylinder (ports open to 

atmosphere), the pressure-center valve holds the cylinder in place by rnaintaining the 



pressure at both ends (ports to supply pressure), and the closed-center valve also holds 

the cylinder, but at whatever pressure was present at the time when the valve was 

centered (closed port). The 5-port 3-way valve show in Fig. 2.1 is an open-center 

valve. As will be shown later in this chapter, the center configuration greatly affects the 

dynamic behaviour of the pneumatic system. 

(b) pressure center 
v v 

exhaust exhaust 
SUPP~Y 

(c) closed center 
- - -- . 

Figure 2.2: 3-way valve configurations 

Typically, since the driving medium is pressurised air, a compressor is used to charge a 

receiver tank with the required air pressure. A relief valve, a pressure operated valve 

which bypasses compressor air delivery to the atmosphere, is included to limit pressure 

to a predetemined maximum value. Further downstream, an air filter is introduced 

which traps air impurities fiom contaminating the valve and cylinder. The next 

downstream component is a pressure regulator which M e r  controls the pressure of the 

stored potential energy and prevents fluctuations caused by the compressor. A filtered 

and regulated air supply is then ready to enter the directional pneumatic valves. 



2.1.1 Modelling Valves 

Proportional servovalves are directional valves that may be variably positioned to 

provide control of both the amount and the direction of fluid flow. A great deal of 

research has been done on the modelling of servovalves for pneumatic systems (Pu and 

Weston, 1 990, Moore et al, 1992, Ye et al, 1992, Uebing et al, 1997). The basic 

approach is to consider the valve as a variable orifice restriction. The mass flow rate 

across a variable orifice can be given as (McCloy and Martin, 1980): 

where Cd is called the discharge coefficient and it depends on the geometry of the 

orifice. It is introduced as a correction factor to take into account the jet contraction and 

is usually determined experimentally. Values for the discharge coefficient cm range 

fiom 0.61 to 0.95 depending on the type of valve opening. Typical values for Cd are 

reported as (Andersen, 1967): 

nozdes O. 95 

squared-edged orifices O. 82 

sharp-edged orifices 0.61 to 0.84 

poppets: conical 0.72 to 0.87 

sphencal 0.75 to 0.88 

The valve that was modelled in simulation and used in expriment is the HR-Textron 

valve. The valve was chosen despite its high cost ($1 700) because it has a machined 

metallic spool with intemal position feedback which makes the valve a rugged system 

which does not require an air filter, or need special setup. Other valves, such as the 

FESTO valves, although cheaper (S 700) have a plastic spool and are more susceptible to 

air impurities. Therefore, they require air filtration to the order of a p. Furthemore, 

al1 components such as fittings, exhaust mufflers and tubing need to be ultrasonically 

cleaned for the FESTO valves, and no teflon tape for fittîngs is permitted. 

The HR-Textron valve c m  be considered to have a a sharpedged orifice, therefore the 

value taken for the discharge coeficient was 0.72. AA, is the instantaneous valve 



opening area and is variable in the case of servovaives, as it can be controlled by the 

adjusting the position of the spool. PU is the upstream pressure, Tu is the upstrearn 

absolute temperature and Cm is the flow coefficient. The value of the flow coefficient 

depends on whether the flow through the valve orifice is subsonic or choked. At this 

point, the pressure ratio needs to be introduced: 

where P,,, represents the static pressure ai the 

downstream flow. The pressure at the throat is 

(2.2) 

vena contracta, or the throat of the 

very dificult to measure but cm be 

assurned equal to the downstream static pressure provided that the downstream chamber 

is considerably larger than the orifice area (McCloy and Martin, 1980). This modifies 

Eq. 2.2 to: 

Fig. 2.3 shows the variation of Cm with the pressure ratio. It can be seen that if the 

pressure ratio is greater than a critical value (Pr=0.528), the flow is subsonic. If this is 

the case, then the flow coefficient is: 

where Ru is the gas constant (0.287 kl/kgK) and y is the ratio of the specific heat~,'%,~ 

(1.4 for air). For values of the pressure ratio less than the critical, the flow can be 

assurned to be choked and the flow coefficient has: 

In the case where the working fluid is air and the flow is choked, Cm is 0.0405. 

Given the physical setup illustrated in Fig. 2.1b and using Eq. 2.1, the mass flow rates 

into charnber a and out of chamber b are: 



In other words, charnber a is charging, while chamber b is discharging, or exh austing. 

Note that Cm, and C d  are fwictionr of Pm = 'fir and Ph = p$h respcctivcly. 

From the energy standpoint, one can Say that the rate of energy being stored inside the 

control volume (as seen in Fig. 2. la) is equal to the energy inflow minus the energy 

outflow. 

Premure Ratio, Pr 

- 

Figure 2.3: Flow coefficient versus Pressure Ratio 

This gives: 

where Qh is the heat flow to the control volume, @h is the work done by the system, 

h», and hout are the total energies per unit mass of fluid, in and out of the control 



volume. Finally, E is the total intemal energy stored in the control volume. The rate of 

heat flow to the control volume has: 

where p = yRuT for air behaving as an ideal gus. The constant pressure specific heat 

can be set as C,, = y Rj/ y - 1 -  It is then assumed that there is no heat to orfrom the 

control volume, that is adiabatic conditions with @h=O. 

In later chapters, the performance of the controllers under investigation will be 

evaluated in a series of robustness tests. These tests include: increasing or decreasing 

the payload by a factor of 3 and increasing the volume of the cylinder by up to a factor 

of 4. The linear gains of these controllen are based on a linearised mode1 of the 

pneurnatic positioner. As will be shown later in this chapter, the dynamic performance 

of pneumatic actuators (nahirai frequency and damping) is heavily dependent on the 

location of the setpoint and on the direction of motion (in the case of asymrnetric 

cylinders). Since there are so many other dynamic effects that dominate the 

performance of pneumatic actuators, then a M e r  assumption cm be made for the 

energy balance of Eq. 2.9: that the temperature variation in the chambers is negfigibfe, 

i.e. bT'=dTb=O (Uebing et al, 1997). The mass flows in and out of the chambers can 

then be shown as: 

Pu et al (1995) have shown charging and discharging flow equations for a pneurnatic 

servomechanism that are identical to Eq. 2.10 and Eq. 2.1 1 .  McCIoy and Martin ( 1  980) 

show charging and discharging flow equations only for a symmetric actuator, therefore 

P e P b .  A M e r  assumption is that Ta and Tb are equal to the supply pressure Ts. 

Steady state analysis that will be presented Iater in the chapter will demonstate how a 



scaling factor between steady state charnber pressures and the supply pressure cm be 

determined. 

2.1.2 Modelling Actuators 

Co~ec ted  to the servovalve is the pneumatic cylinder, of which the piston rnoves back 

and fonh according to the forces acting on it. A force balance on the piston yields: 

d ' y  
P u A u  - PhAh = M e - +  F +  F,  

dt 

where Me is the effective inertial load or mass, F is a constant extemal force such as 

gravity (this could be zero if the cylinder is horizontal) and Ff which is the fnction 

force. Typical fnction versus speed plots are shown in Fig. 2.4. The static coulomb 

fnction force is the fnction that opposes motion when the cylinder is at rest and is 

denoted as Fm. Once motion is initiated, the static coulomb fiction force is replaced 

by the dynamic fnction force. One formulation of the dynamic fnction force is: 

where Fcd is the directional dynamic coulomb fnction force and f, is the viscous 

fiction coefficient. Typically, piston and r d  seals tend to have a greater breakaway 

(static) friction than running (dynamic) fnction - a condition known as sfiction. The 

presence of stiction can cause undesirable position tracking performance when the load 

approaches the setpoint and the controller decreases flow to decelerate the load in 

preparation for stopping. When the speed drops to a certain point, stiction inhibits 

M e r  motion which stops the load short of the setpoint. The controller compensates 

by increasing pressure in the charging charnber and as a result the load most likely 

jurnps ahead of the setpoint. This effect is not as dramatic when it cornes to hydraulic 

systems since the working fluid is also the lubricant, which decreases both fiction 

coefficients. Stiction still occurs, but Fcd = Fm 
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Figure 2.4a: Exponential Friction Model 
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Figure 2.4b: Simplified Friction Model 
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Figure 2.4: Typical Friction Versus Speed Models 



The pneumatic system model is therefore described by Eq. 2.6,2.7,2.10,2.11,2.12 and 

2.13. It is a nonlinear model as govemed by: air compressibility effects, 

choked/subsonic flow conditions and, presence of static friction. A summary of 

assumptions used in the derivation of the pneurnatic system model equations is given 

below: 

Air behaves as an ideal gas 

No extemal forces on cylinder (horizontal loading), which implies that F show 

in Eq. 2.12 is zero. 

Adiabatic conditions, i.e. no heat flow fiom, or to the control volume 

Pressure at vena contracta is same as downstream pressure 

Valve spool dynamics (with intemal feedback) have a bandwidth of 200 Hz and 

are much faster than the dynamics of the rest of the pneurnatic system, which 

has a bandwidth in the order of 10 Hz Therefore, the valve spool dynamics can 

be neglected. This implies that the valve opening, Aw can be set directly 

proportional to the control input to the valve, u; hence Aw=u. 



2.2 Linearisation of Pneumatic Model 

The derivation of the pneumatic model in the previous section highlighted the presence 

of nonlinearities. An additional set of assumptions cm be made to enable mode1 

linearisation: 

Supply pressure P, and temperature Ts are constant. 

The piston moves around the center position of the cylinder (linearisation point) 

and only over small distances. 

Cylinder pressures Vary only by a small amount fiom their steady state values. 

Starting with Eq. 2.6 and 2.7, and assuming small variations in pressures and position 

offsets fiom the center position, one can write: 

(S. 14) 

S m ,  = k,JA,,  + k,,6P, (2.1 5) 

Furthet simplifications are possible since kl,=k,b=kl and k,,=-hb=b. In addition, since 

most valves are symrnetric, A ,  = A, = A,,, . Thus the linearised valve model can be 

written as (McCloy and Martin, 1980): 

6 ma = k16A,,, + k,SPu (2.1 6) 

S mb = kI6A, ,  - k$P, 

where k, = ) and k, = (d";b). 

Combining Eq. 2.16 and 2.17 with Eq. 2.10 and 2.1 1, and denoting initial conditions 

with the subscnpt i, one cm write: 

1 
d i "  = -(Pi d ( K )  vi d m ' , )  

dt 
+ -  

R U T S  Y dt 1 



Assuming a symrnetric actuator is in use, i.e. Aa=A&=A,, the charnber control volumes 

Va and Vb can be given as: 

Vu = V, + A,Gy (2.20) 

V,  = V, - A,$& (2.2 1 ) 

with y measured from the center position of the cylinder and Vi as the initial volume in 

each of the cy linder chambers, equal to A, % + VU_, where L is the cylinder length and 

V , ,  is the volume of air at each end of the cylinder, as Fig. 2.5 shows. 

- - .- .. ..... .-pp.p---- . d  

Figure 2.5: Nominal Operating Position and Pressures 

Subtracting Eq. 2.19 fiom 2.18 and using Va - Vb = 2A, LFy fiom Eq. 2.20 and 2.21, one 

has : 

Since a horizontal (F=O in the absence of other external forces to the systern) and 

symrnetric actuator (A,=Ab=AJ is used, Eq. 2.12 cm be simplified to: 

As(6P,  - & ) =  M, ÿ + 6 ~ ,  (2.23) 

Combining Eq. 2.16,2.17,2.22 and substiniting into Eq. 2.23 yields: 



where y, A,,,,, F, and are the perturbation variables for position, valve opening, 

fnction and rate of change of friction. The coefficients pi and Xi are given as: 

Note that the linearised pneumatic system model given as Eq. 2.24 is 3rd order with 

respect to position. 

The coefficients k, and k, tirst appeared in Eq. 2.16 and 2.17. The fint coefficient, k,  is 

directly proportional to thejlow-gain coefficient as suggested by Burrows (1972) . The 

second coetrtcient is called the jiow-pressure coefficient and it has been show by 

Burrows and Webb (1969) that the effect of the k, term is negligible, which greatly 

simplifies the coefficients of Eq. 2.24 to: 

Dividing al1 elements of Eq. 2.24 by p, moâidifi the linearised pneumatic model to: 

For M e r  simplification of the above model, one assumes that the static friction can be 

set to zero (&=O) which makes f i I  equal to fv d2%2 as Eq. 2.13 implies. With 

these simplifications the model s h o w  as Eq. 2.24 c m  be M e r  simplified to: 

... f , . .  P, A,' RTsAs  - 
y + - y + 2 y P y =  2 y k l  

Me KY, MeYi 
A"" 



The instantaneous valve opening A can be assurned to be proportional to a normalised 

control input signal, u so that A, = Av u, where Av is the full valve opening area. The 

flow coefficient k, can then found to be equal to C&, yfi. If the initial pressure in the 

chamber, Pi is considered to be at steady state, then there exists a relationship between 

the chamber pressure and the supply pressure P,. For now though, consider that 

Pi=rfs, where r,, is called the steady state pressure ratio. An expression for the steady 

state pressure ratio will be provided in Section 2.3 of this chapter. With k, , r, and Avv 

substi tuted into Eq. 2.26, the linearised pneumatic model becomes: 

Note that the above equation has Pi = Pa = Pb at initial conditions for a symmetric 

cylinder and is also the nominal operating pressure. With y as the nominal openting 

point, the following is me:  

which modifies Eq. 2.27 to the following: 

Once a linearisation point is chosen (eg. y=@, the coefficients of Eq. 2.29 assume 

constant values. The resulting linearised model cm then be used to generate the linear 

gains for the PVA controller and the equivalent gains for the SLM Controllers. 

A PC-MATLAB program was written to simulate the process for which selected parts 

are listed in Appendix B. The model used was nonlinear to account for nonlinear valve 

dynamics (choked versus subsonic flow, hysteresis) and nonlinear friction. In the linear 

model, chamber volumes are considered constant as well as the chamber pressures. In 



simulation, the pressures in the cylinders can be found by differentiating the ideal gas 

law with respect to time. The ideal gas law is given as: 

In reality, only parameters P. m and V are time-variant. Differentiating Eq. 2.30 with 

respect to time (for chamber a), and assuming negligible temperature variations: 

The pressures in chamben a and b , can be found sequentially by using Euler 5 I n  order 

approach for numerical implementation of the difference equation. The resulting 

difference equation for any pressure, is given as: 

P,,, = P, + P, h 

where k is the "IP" time step. 

The simulation sampling time w d  was set to IOms, to match the sampling time 

availab!e to the expenmental setup by the microcomputer in use. This sampling time 

was adequate considering that the smallest settling time for the srnailest mass (2.2 kg) in 

open loop was 250 ms. Numerical stability issues are addressed in Uebing et al (1997). 



2.2.1 Stability Issue 

One recognises that the linearised model of the pneumatic system can be written as: 

- " 

y+ai y+a, y = a o u  (2.33) 

where the coefficients a, a, and a, are defined according to Eq. 2.29. The open loop 

transfer function for the pneumatic mode1 can be found to be: 

If a proportional-only controller with unity feedback is implemented to the pneumatic 

model of Eq. 2.34, a closed loop transfer function can be obtained as: 

where Kp is the proportional gain. Using the Routh-Hurwitz's stability cnterion, one 

can find the following stability requirement: 

which provides the upper limit for Kp : 

Ue bing et al ( 1  997) report a similar upper limit for Kp. Surgenor and Vaughan ( 1  996) 

reported the above upper lirnit for Kp with the absence of r, which relates the steady 

state chamber pressures to the supply pressure. Further discussion on the denvation of 

the steady state pressure ratio, r, will be given in Section 2.3. 

A larger value for K' indicates higher stability margins. One can then Say that the 

stability of the system increases if the viscous fiction coefficient and the cylinder areas 

increase, when the effective mass is reduced or the area of the opening decreases, Le. a 

smaller valve is used. Note also that Eq. 2.37 indicates that the ultimate Kp is 

independent of the position of the piston dong the cylinder. This is in disagreement 

with results presented in Pu and Wesion (1990) where such a dependency is reported. 



The ratio xb which results fiom Eq. 2.36 eliminates any possibility for Vi to appear, 

which is the element that causes a position dependency. It should be noted though that 

the overall dynamic behaviour of pneumatic systems does depend on the position of the 

cylinder piston, as originally shown by Burrows (1969). Therefore, a numerical 

stability issue will arise due to the link between the nahiral frequency of the system and 

the sampling interval. 

Looking at the denominator of the open loop transfer function given in Eq. 2.34, it can 

be realised that the pneumatic linear mode1 consists of a second order system and an 

integrator. Linked to the second order system, parameters such as natural frequency, % 

and damping ratio, 5 cm be identified: 

and 

c= f" 
1 

1 + 
A , ( % + Y ) + V ) , ~  A , ( % - Y ) + Y , , ~  

The above two equations give nse to the following issues: 

The relationship between cylinder size ratio and natural frequency. 

The relationshi p between operating position and natural fiequenc y. 

The relationship between operating position and damping. 

Both aspects (operating position and cylinder size ratio) will influence sampling interval 

stability. To proceed with M e r  analysis, the size ratio of a symrneûic cylinder needs 

to be defined: 



2.2.2 Natural Frequency and Cylinder Size Ratio 

In order to determine the relationship between the natural fiequency and the size ratio, a 

further simplification was perforxned. If the operating point is assumed to be at the 

center of the cylinder, Le. y = O in Eq. 2.38, then the minimum chamber volume Vmin 

cm be assumed to be negligible compared to the chamber volumes Va and Vb. This 

assumption simplifies Eq. 2.38 to: 

Table 2.1 shows the ultimate gains predicted by the model (as given in Eq. 2.37) for a 

series of cylinders with size ratios ranging fiom 1.2 to 6.1. Size ratios of 1.2 and 6.1 

roughly correspond to stroke / cylinder diameter ratios of 1.0 and 10.0 respectively. 

These stroke / cylinder diameter ratios correspond to typical low and upper bounds of 

commercially available pneumatic cylinders. 

The "benchmark" cylinder has a stroke of 120 mm and a diameter of 25 mm. It can be 

seen as the bold entry in the middle of the table. The remaining cylinders have an 

overall chamber volume equal to the volume of the benchmark cylinder. The stroke, or 

length of the cylinders was changed by intervais of !O mm fiom an initial stroke of JO 

mm to a final stroke of 200 mm, whiie simultaneously adjusting the chamber area so that 

the overall volume is kept the same (which allows for the use of the same valve). The 

size ratio, de can be seen as the last column entry. 

Upon inspection of Table 2.1, one can see a discrepancy between predicted values for 

the ultimate gain, KU and the one obtained by nonlinear simulation with a proportional 

ody controller (that is the value of K' that generated marginal stability in the system's 

response). It can be seen though that there exists an approximate ratio of 2 between the 

Iinear and the nonlinear ultimate gains. This can be explained if one realises that the 

linear model makes the assumption that only choked flow occurs throughout the 

duration of the test, i.e. Cm = 0.0405, whereas in nodinear simulation, Cm can assume 



Table 2.1: Ultimate Gain for cylinders of different Size Ratios 

Length, Area, Diametcr, KP, K u 9  Size ratio, 

(L) mm (Ab mm2 nonlinear 

simula~ion 

27.0 

22.0 

17.5 

16.2 

14.0 

11.5 

9.5 

8.9 

8.0 

7.4 

6.9 

6.4 

5.8 

5.2 

4.9 

4.6 

4.3 

linear model 

predict ion 

14.4 

11.4 

9.4 

7.9 

6.8 

6.0 

5.3 

4.7 

4.3 

3.9 

3.5 

3.3 

3 .O 

2.8 

2.6 

2.4 

2.2 

both choked and subsonic values, for which an average would be about half of the 

choked vaiue, i.e. 0.0202. Therefore, the ultimate gain obtained by nonlinear simulation 

would be approximately double the value of the gain predicted by the linear model. 

Fig. 2.6, 2.7 and 2.8 show the simulated response of the pneumatic cylinders with size 

ratios of 6.1, 2.0 and 1.2, respectively for a setpoint scenario where the piston is 

sequentially moved between center- and quarter-length positions. When comparing the 

responses shown in Fig. 2.6 and 2.7, one can see that the nahiral fiequency of the 

cylinder that has a stroke of 40 mm and a diameter of 43.3 mm (i.e. de = 6.1) is indeed 



about 3 times greatcr than the fiequency reached by a cylinder that has a stroke of 120 

mm and a diameter of 25.0 mm (Le. de = 2.0). Similarly, if the responses shown in Fig. 

2.7 and 2.8 are compared, then it can be seen that the natural fiequency of the cylinder 

that has a stroke of 120 mm and a diameter of 25.0 mm (Le. de = 2.0) is indeed about 

1.6 times greater than the freguency achieved by a cylinder that has a stroke of 200 mm 

and a diameter of 19.4 mm (i.e. de = 1.2). 

Sizel: Kp=27.00. A=1472.54, Lc=40.00, ChV48901.4 1 
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Figure 2.6: Marginal Response with Ultimate Gain for Cylinder of 4=6.1 



Sirel: Kp=8.00, A=490.87. Lc=120.00. ChV=S8904.86 
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Figure 2.7: Marginal Response with Ultimate Gain for Cylinder of d ~ 2 . 0  
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Figure 2.8: Marginal Response with Ultimate Gain for Cylinder of de=l .2 



In the case of the system shown in Fig. 2.6, the frequency is about 15 Hz. Thus, for 

adequate control when applied to a cylinder with this size ratio, one would require a 150 

Hz sampling interval for control purposes. This corresponds to a sampling time of 6.67 

ms. Therefore, the larger the size ratio of the cylinder at hand, the faster the 

microprocessor used for control has to be. 

2.2.3 Natural Frequency and Operating Position 

If the linearisation point is moved from the center of the cylinder, to the quarter-length 

position (i.e. at y=& l/4), then the natural frequency of the pneumatic system, according 

to Eq. 2.38 (at center) changes fiom Eq. 2.41 to: 

Fig. 2.90 shows how the natural fiequency changes along the length of a cylinder. For 

a symmetric or rodless actuator where the cylinder chambers have the sarne area, there 

is a symmetry about the center of the cylinder. It c m  be s h o w  that at the center of a 

rodless cy linder, the natural frequency has its lowest value. The nomalised frequenc y, 

- On is shown on the y-axis. At the center &=O) the ratio is 1.00. At quarter length, 
a* l p o  

the ratio becomes 1.15 (Eq. 2.42 / Eq. 2.41) and at the stroke ends the fiequency ratio 

reaches a value of 2.5. 

2.2.4 Systern Damping and Operating Position 

Looking at Eq. 2.39, one c m  see that there is also a relationship between the operating 

position and the damping of the pneumatic system. If Vmin is neglected in Eq. 2.39, 

then, if the operating point is at the center of the cylinder, the damping can be given as: 

If one assumes that the operating point is halfway between the center and the end of the 

cylinder, i.e. at y=fU4 ,  then: 



Assuming that for a particular pneumatic system the damping coefficient at the center of 

the cylinder is 0.50, then at the quarter lengths, the darnping drops to 0.42. Fig. 2.9b 

shows how the darnping coefficient ratio changes along the length of the cy linder. For a 

symmetric actuator, there is again syrnmetry about the center of the cylinder, where it 

c has its maximum. The ratio of darnping coefficients, - is shown on the vertical 
5 l ,.O 

axis. At the center, Le. y=O the ratio is 1.00. At the quarter length. the ratio becomes 

0.86 and at the stroke ends the ratio of damping coefficients becomes 0.40. 

2.2.5 Asymmetric Cylindçr 

The above analysis was perfomed for a syrnmetric cylinder (A, = Ab). If an 

asymrnetric cylinder is used instead, a nonlinear model simulation predicts the behavior 

seen in Fig. 2.10. The simulated asymmetric cylinder has a stroke of 120 mm (similar to 

the cylinder used earlier), a bore diameter of 25 mm and a rod (piston) diameter of 10 

mm. The presence of the rod decreases the area of chamber 6, roughly fiom 490 mm2 to 

410 mm? Fig. 2.10 shows the response of this asymmetric cylinder when subjected to 

proportional-only control with a gain of 6.5. It can be seen that when the piston is in 

extension, marginal stability is reached. When the piston is in retraction, the response is 

still darnped. It becomes marginally stable only when the gain is increased to 8.0. An 

ultimate gain of 8.0 was also the gain determined for the symmetric cylinder with 120 

mm stroke and 25 mm bore diameter, show in Fig. 2.7. 

It can then be said that in an asyrnrnetric cylinder the direction of motion also affects 

the natural frequency and the damping of the system. Therefore, asymmetry affects the 

dynarnic response of the system, as well as its ultimate gain. Eq. 2.37 can still be used 

to predict the ultimate gain for a linear model by setting As equal to the smaller of the 

chamber areas. This is so because a smaller chamber area decreases the ultimate gain in 

extension. 
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2.3 Steady State Considerations 

An important consideration in the performance of pneumatic systems is the ratio of the 

charnber pressures Pa and Pb to the supply pressure Ps at steady state. Note that Pi as 

used earlier was in fact equal to the steady state operating pressure. For closed center 

valves and if the entry port flow is subsonic, Pa can be given as (Pu and Wesion, 1990): 

where P," denotes a nominal steady state pressure. n i e  ratio of the steady state pressure 

to the supply pressure corresponds to r,, as was first seen in Eq. 2.27. 

Note that subsonic flow is the usual condition for the entry pon, whereas for the case of 

the exit port, the flow is nomally choked. N.  the valve opening coefficient can be given 

as: 

N = h, C, 

where hp is defined as the system opening ratio, given by: 

h, = 4, 4 ut" ux 

A, 
where un, = - T a  C'h 

, ut=- A"', 
Jm' "" - , uw=- u x =  - 

Ab c d b  A", l u + y v  C/ -Y,* 

the valve spool underlap. Ck is given by: 

Note that for air, where y is 1.4, Ck is equal to 3.864. 

-1 and U denotes 

Usually ut and uw are equal to unity and ideally ud is equal to 1.00. For a small 

underlap in U and with y, as the displacement of the valve spool fiom the center 

position, i.e. y, WY, then 1lX becomes I .O.  This simplifies Eq. 2.46 to N = u,Ck. 



For equal cylinder areas (u,=l), the steady state pressures are equal ( Pr= y), 
whereas for unequal cylinder areas ( u , d )  P," = P f  A,/A, with P: given by Eq. 2.45. 

To illustrate the effect of some of the parameters of the system, a set of simulation 

results will be presented (Fig. 2.1 1 to 2.14). In al1 cases the initial pressures are 100 kPli 

and the cylinder is repeatedly moved fiom its end position (y = -50 mm) to its center 

position O> = O mm) and vice versa. Each figure gives the cylinder position, the control 

signal, the absolute cylinder pressures and the differential pressure. nie  controller used 

was a typical Proportional-Velocity-Acceleration (PVA). The structure of a traditional 

PVA controller has: 

u = K , , ( x ,  -x)- K,X - K,X (2.49) 

with x as the controlled state (position) and xsel as the position setpoint. Kp. Kv and 

Ka are the proportional, velocity and acceleration gains respectively. For application 

to pneumatic systems, it is generally acknowledged that both velocity and 

acceleration are essential to ensure adequate performance (Burrows, 1972). An 

alternative linear controller for pneumatic systems is the proportional-differential 

pressure controller (PM) which can be used for symmetric actuators (Abou-Fayssd, 

1997) but was not used due to asymmetry problems. 

2.3.1 Symmetric Actuator 

If the actuator is syrnmetnc (u, = 1 )  then N=3.864 and according to Eq. 2.12 the ratio 

of P,"/P, is equal to 0.805; Fig. 2.11 illustrates this case. Both Pa and Pb start at 

their initial pressure of 100 kPa and gradually build up to their steady state values. It 

can be seen that the steady state pressure Pfdoes reach 523 kPa or 80.5% of the 

supply pressure Ps (650 kPa) and P," is equal to Pr. 

Note that as the pressures Pa and Pb increase, the quality of the response improves 

(less ovenhoot on position). As the pressures increase, the air becomes more 
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compressed and since its density rises, it starts to behave more as an incompressible 

(linear) fluid. 

2.3.2 Asymmetric Actuator 

Actuators are more commonly asymmetric due to the presence of the cylinder rod that 

creates non-equal cylinder areas, most commonly with ratios of A&:A, as 1:2 and 1:3. 

For these, the extending pressure ratios ( P," / P,) are equal to 49.9% and 29.1 % 

respectively. The extension of the piston requires that the driving (extending) pressure 

be applied to the cylinder chamber with the larger area, while for retracting, the opposite 

is done. The decrease of the pressure ratio in the extension of the piston is a 

disadvantage. 

Fig. 2.12 and 2.13 show the effect of the center configuration k ing  either open 

(exhaust) or closed (blocked) with an asymmeaic cylinder (Ab /Aa=0.84). According 

to Eq. 2.45, the pressure ratio P,"/ P, is equal to 0.74. In Fig. 2.12, the steady state 

cylinder pressures remain at their initial values (1 00 fi), whereas in Fig. 2.13, the 

pressures built up to the values dictated by Eq. 2.45 for unequal cylinder areas (hp 

=l. 167) and with N=4.509 ( P," = 483kPa and P) = 575 Wu). It can be seen that in 

Fig. 2.13 that the responses are smoother than the ones show in Fig. 2.12 due to the 

higher operating pressures. Thus, a closed center valve will produce better responses. 

Another observation is that in Fig. 2.12, steady state error appears in the position 

response. This cannot be eliminated by simply increasing the proportional gain. It is an 

effect that results fiom an open center valve configuration combined with an 

asymrnetric cy linder. Since the cy linder is asymmetric, then at steady state a differential 

pressure in the cylindea is required to equalise the resulting forces. This is not possible, 

since the valve is open center and both chambers exhaust to atmosphere. Therefore, a 

steady state error appears. 



When cornparhg Fig. 2.13 (unequal areas) with Fig. 2.1 1 (equal areas) one observes 

linle difference in the positioning performance. The only manifestation of the unequal 

areas in Fig. 2.13 is the nonzero pressure difference (Pa -Pb) in the steady state in order 

to ensure the force balance Pa A, =Pb Ab . Therefore, no great advantage can be seen 

between symmetric and asyrnmetnc actuatoa in terms of performance. Furthemore. 

the construction of symmetric actuators requires either a magnetic coupling between the 

in-cylinder m a s  and the carriage, or a physical coupling which would require better 

seals to prevent air leakage. In hoth cases, fictional effects are increased which tend to 

degrade the positioning performance of symmetric actuators. 
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2.3.3 Valve Port Areas 

It was show earlier that the system opening ratio, hp is a function of the cylinder area 

ratio (um) and other parameters, one of which is the valve port area ratio (u,). In a non- 

symmetric cylinder, um < 1. O, which decreases the cylinder operating pressures as 

dictated by PYand y .  This increases compressibility effects and creates a more 

"spongy" response. To counteract this efiect, u, can be made greater than 1.0 and the 

operating pressures are increased again. Specifically, the supply port area Am could be 

made greater than the exhaust port area A, . 

Fig. 2.14 shows the PVA responses when the ratio of the outlet to die inlet valve port 

areas is changed fiom unity (as was the case in Fig. 2.13) to 0.5. The steady state 

pressures are seen to increase and the system performance improves slightly over that of 

Fig. 2.13. Therefore, a conclusion is that a ratio of valve port areas less than unity does 

improve the perfomance of a pneumatic system. One should redise though, that the 

improvement is not significant and the use of a more robust controller would improve 

l inearity and overall performance without exhaust-metering . 

2.3.4 Other Considerations 

A formal steady state analysis should be perfomed to select suitable pneumatic system 

components. Guidelines exist in literature (for example: Hitchcox, 1996) and most 

rnanufacturers of pneumatic systems provide sufficient idormation in their catalogues 

to enable a designer to select a suitable valve and a suitable cylinder to perform a 

desired task. The valve and the cylinder are the most critical pneumatic system 

components. Typically the valve is sized for the minimum flow that provides 

maximum actuator speed. However, oversizing can cause stability and accuracy 

problems, whereas undersizing can result in slow responses. The cylinder should be 

sized for the maximum bore that is practical, while keeping in mind that too large a bore 

increases the volume of air that acts as a cornpliance chamber. In terms of stability, one 

should be aware of the cylinder's size ratio and the possibility of dynarnic instability, 
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which might arise at certain locations along the stroke of the cylinder where a localised 

high natural frequency and a small sampling interval combine. 

As far as the operating pressure goes, the highest pressure source available should be 

used to reduce the effect of air compressibility. However, one should not exceed the 

pressure rating of any of the components. The air should be clean, dry and with most 

valves non-lubricated. System filtration should be at least 25 p n  or better with a 

coalescing filter to minimise oil-vapor content. The servovalves should be located as 

close to the actuators as possible to avoid lags. Typically, every foot of tubing c m  

delay response by I msec. Finally, rigid tubing should be used, unless impossible. 

Flexible tubing, though cheaper and easier to install, can add cornpliance to the system. 

2.4 Summary 

Despite their nonlinear nature, pneumatic servomechanisms can be simplified and 

linearised about suitable operating points. Once the controller gains are generated from 

the linearised model and tuned for a desired performance, the pneumatic 

servomechanism can be tested in simulation. In simulation, the nonlinear state space 

equations can be used to determine the "tnie" (nonlinear) performance of the 

servomechanism. The ultimate gain for a rodless, or symmetric actuator can be 

detemined upon consideration of the linearised model and Routh-Hurwitz stability 

criteria. It was also show how to determine the ultimate gain for an asymmetric 

cylinder where the dynamic performance difiers when in extension or retraction. 

Furthemore, pneumatic system exhibit localised dynamics, which could be a cause for 

control instability. If, for exarnple one works with a cylinder that has a high size ratio, 

then the natural fkequency is higher than one that would result when a cylinder with a 

moderate size ratio is used. If the sampling time is not adjusted to account for the 

increased natural freguency, then the performance of the system degrades and instability 

couid occur. 



Finally, in the design of the pneumatic servomechanism, one should also consider the 

effects of the valve center configuration. Typically, for most position control tasks, the 

servovalve is a closed center valve. Open center valves are used when fiee positioning 

of the end-effector is required. In most cases the valve port area ratio is unity, but when 

exhaust-metering is required, the ratio can be chosen less than unity. A number of 

physical rneasurements of the servovalve and the actuator have be s h o w  to affect the 

steady state pressures. Typically, higher operating pressures improve performance by 

decreasing the effects of air compressibility. The only consideration is the maximum 

operating pressure that the pneumatic equipment can withstand. Finally, low fiction 

cylinders or valves that are insensitive to lubrication should be used to avoid stiction 

effects, 

The presence of so many nonlinearites in pneumatic servosystems calls for a controller 

that is able to maintain a high level of performance despite: 

Position of the setpoint, 

Direction of motion, 

Friction and, 

Noise. 

Furthemore, the controller should also be able to provide reasonable performance 

des pite: 

Improper selection of pneumatic components and, 

Payload variations. 

Hence, the interest in Sliding Mode Controllers which is of course the focus of this 

thesis. 



CHAPTER 3 

CONTINUOUS SLIDING MODE CONTROL 

Under normal operating conditions, conventional linear controllers, such as 

Proportional-Integral-Derivative offer satisfactory transient response and good 

disturbance rejection for linear systems. But in reality, there are transient and steady 

state disturbances, system nonlinearities, imperfect plant models and varying model 

parameters. Therefore, the performance of linear controllen can degrade as their tuning 

relies on perfect conditions (perfect model & constant plant parameters). With the 

addition of plant uncertainties, disturbances etc., they provide unpredictable responses 

and possible instability. For this reason, there is ongoing interest in the developrnent of 

more advanced and robust drive controllers. 

There are two main categories of controllers, namely linear and nonlinear. Of the two, 

the more general are the noniinear controllers since they can be successfully applied to 

linear systems whereas a linear controller might be i n ~ ~ c i e n t  for control of a nonlinear 

system. From there, the two most important subcategories of nonlinear are Robust 

control and Adaptive control. The Adaptive control option using gain scheduling, model 

reference or self-tuning can provide system parameter tracking and good disturbance 

rejection on stochastic noise but the performance degrades under deterministic 

disturbances with rising nsk of instability. The other option is Robust control, an 

approach of which is the Sliding Mode Methodology. Its structure is composed of a 

linear feedback law and a switching law which deals with the model's uncertainties. 

Sliding Mode Control can then be defmd as a Variable Structure controller whereby 

the gains are switched as the state of the system approaches reference States defined in 

ternis of a switching hyperplane (2&& et al, 1995). 

Utkin (1977) presented a survey of variable structure systems with sliding modes. In 

typical linear state regulator design, the feedback gain matrix is determined either 

from eigenvalue placement, or by quadratic minimisation. In variable structure 



systems, the control cm change its structure and the design problem is the selection of 

the structure parameters and the definition of the switching logic. These structures 

need not be asymptotically stable, but their combination defines an asymptotically 

stable system. New system properties evolve with these new structures and the 

desired trajectory is composed fiom parts of the trajectories of these structures. It is 

possible to define a trajectory which is not inherent in any of the structures. The 

motion on this trajectory is called the sliding motion and the behavior while on sliding 

motion depends only on the parameters of the trajectory, i.e. the coefficients of the 

sliding surface. This invariance with respect to plant parameten and disturbances is 

of extreme importance. 

3.1 Traditional Continuous Sliding Mode Control 

The Sliding Mode Control (SLM) technique is based on the fact that it is easier to 

control n 1st order differential equations, be they uncertain or nonlinear, than it is to 

control a general nth order differential equation (Slotine and Li, 1991). There are two 

critical design areas for traditional sliding mode control, the design of the sliding 

surface (which is a stable integral manifold of the closed loop system) and the control 

synthesis in the reduced order space. The sliding surface is considered as a subset of 

the system space and the procedure for the design of the controller starts with the 

representation of the system in a "convenient" fom. A sliding manifold is then 

chosen and finally the control action is designed so that the system reaches the 

manifold in finite time and then "slides" along it. 

"Perfect" performance can in principle be achieved in the presence of arbitrary 

parameter inaccuracies at the price of extremely high control activity. To achieve this, 

consider the following single-input dynamic system: 

xfn' = f (x) +b(x)u (3.1) 

where x(n) is the scalar output (nth order derivative), x is the state vector, b(x) is the 

control gain, u is the finite control input and n is the number of states. 



The function f(x) is generally nonlinear and not exactly known, as well as the control 

gain b(x). Both are bounded by known fünctions of x. The control problem is to get the 

instantaneous state vector to track a specific or desired (setpoint) time-varying state 

vector xser, where x , ,  = [ x ,  x,, xy;' 1,  in the presence of mode1 erros of f(x) and 

Mx). 

Consider s(x;î) as the time-varying sliding function in State-Space Mn): 

s(x; t )  = (%t + A)*-' x (3.2) 

where s(x;t) is the weighted sum of errors in position, velocity etc., A. is a positive 

constant and x is the tracking error state. Eq. 3.2 implies that the tracking error tends 

exponentially to zero with a tirne constant -% (from the sequence of n-1 filters of 

time constants equal to UA) and provides a general design for the sliding surface 

(Sloîine and Li, 1991). For a 2-state system, the result for s(x;î) is a first order system: 

s(x;t)=X+Âx=Cx (3.3) 

with the sliding surface matrix C defined as: 

recognizing that the sliding function s(x;t) = Cx = O defines a "sliding surface" in the 

phase plane of x. For simplicity, s(x;l) will be written as S. The time constant of the 

required tmjectory, s is in the tirne domain of x and can be shown to be equal to the 

reciprocal of A 

In order to keep the scalar quantity s at zero, the tracking n-dimensional xsei is replaced 

by a 1st-order stabilising problem in S. The objective is to keep s at zero and therefore 

the control law has to satisfy the following necessary condition: 

P(x) s O (3.5) 

Eq. 3.5 which is the sliding condition derived fiom Lyapunov's stability equation. 

Lyapunov's stability theorem is well docurnented in SIorine and Li (1991). V(x) is said 

to be a Lyapunov function for a system if it is positive definite, it has continuous 



partial derivatives and its time derivative along any state trajectory of the system is 

negative semidefinite. Lyapunov's local stability theorem States that if there exists a 

scalar function V(x) with continuous first partial derivatives such that VO is positive 

semi-definite and ~ ( x )  is negative semi-definite then the equilibriurn point is stable. 

For this particular case, Lyapunov function is defined by the following equation 

(Furuia, 1990): 

V ( x )  = %s' (3 -6) 

In particular, when on the surface S, the system trajectories remain on the surface, or 

simply when they satisfy Eq. 3.5, they make the S-surface an invariant set, or a domain 

of attraction of the equilibriurn point. 

The first derivative of the Lyapunov function can be shown to be: 

For stability, the following suficient condition has to be met: 

Y ( x )  = ss < -qlsl 

where r)  is a strictly positive constant. 

CSLM drives s to zero as time progresses by forcing ss < O  at al1 times, despite al1 

parametric uncertainty and input disturbances as long as they satisQ a norrn-bounded 

condition which will be shown later in the chapter. This bounded condition deals 

automatically with parameter uncertainties and implies that the approach condition s to 

zero holds at al1 times. 

Fig. 3.10 shows the phase plane X vs. x, when n=2 and for the ideal case of 

instantaneous control switchings. This would be the case if an analog controller was 

used. In the case where a digital cornputer is used for control, the control input is 

activated at discrete intervals and a time lag is introduced. Due to this lag, there is 



chattering in the s-hction, which then causes chattering in the control signal. This is 

shown in Fig. 3.1 b as nonideal sliding control. 

The general control law for CSLM is given as: 

u = ut,, - K,,sign(s) (3.9) 

where ueq is the equivalent control action, Ks the sliding gain and sign(s) is the signum 

function which is discontinuous. The equivalent control action to give optimal control 

can be evaluated as: 

utq = -Kqx (3.10) 

where Keq is the linear, or equivalent gain to give dr/dt=O assuming a perfectly known 

model. Assume that the system to be controlled has a linear state space representation: 

= A+ BU (3.1 1) 

To ensure Lyapunov's stability, S =O which implies that Eq. 3.1 1 has to be equal to zero 

(since s=Cx and C is a non zero matrix). Solving for u and combining with Eq. 3.3-3.9- 

3.10, Eq. 3.12 is obtained: 

u = -[(CB)-' C A ] x  - K,sign(s) (3.12) 

To avoid the chattering shown in Fig. 3. lb, i.e. to smooth out the control discontinuity, 

a boundary layer #, neighbouring the switching surface can be introduced (Slotine and 

Li, 1991). This boundary layer is shown in Fig. 3. lc. Introducing this parameter into 

the discontinuous terni of Eq. 3.12 yields the following equation: 

u = -[(CD)-' CA]x  - K,sat(s) (3.13) 

where the saturation hc t ion  sut(s) is equal to sign(s/+) when 1s 1 > # and s/# when Isl<#. 

The effect of the boundary layer will be seen later in Fig. 3.2. A discussion on the 

issues raised by the figure will be provided in Section 3.4.1. When the system is 

operating outside the boundary layer (Le. Isl>@, then Eq. 3.13 provides a (switched) 

sliding action and attracts the system towards the boundary layer and effectively 

towards the sliding surface. When the system enters the boundary layer (Le. Isl<#), 

then the same equation provides a (continuous) proportional action, which causes the 
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Figure 3.1 : Sliding Control, from Ideal to Nonideal to Idealized 

system's trajectory to slide along the sliding surface of Eq. 3.3, for which the time 

response is a 1' order dynamic with no overshoot (for the case where n=2). The sliding 

action and the boundary layer proportional action regions can also be seen in Fig. 3. lc. 

The chattering, in the presence of an appropriately selected boundary layer thickness, 

can be eliminated in both theory and practise. 



3.1.1 Alternate Approaches to CSLM 

A number of different approaches and versions of the control law given as Eq. 3.12 

have been developed and improved over the years. A number of papers were 

reviewed in order to examine the effect of tuning parameters of Sliding Mode. 

Furufa (1990) dealt with a SIS0 system with CSLM. The sliding surface was first 

designed (s=Cx=O) and then the control action needed to transfer the state to the sliding 

surface was selected. Starting with the state-space equation of the system with the 

variables in their perturbation form and by using Lyapunov h t i o n  Y@)= %s2 and the 

requirement for stability (dV(x)/dt c O ), Furuta derives the following sliding action 

conditions: 

s(x)CBxj<O= &<O 

s(x)CBxj>O=> Ks>O 

S(X) Cf3 xj = O Ks= O 

for j=l ... n. The resultant control iaw is different from the one presented in Eq. 3.13 : 

u=(Keq+Ksw) X (3.15) 

where Keq is as given in Eq. 3.12 and K' is given as -Ks sign(s[x(I) x(2)u. The above 

control law is for a 2-state system. At steady state the control voltage goes to zero to 

maintain the required setpoint. Also, note that fiom the Ksw x expression it can be seen 

that the feedback control law is of 1st order and that boundary layer action is not 

introduced to eliminate chattering. 

Luo et al. ( 1  995) investigated the control of uncertain coupled systems using a novel 

control scheme based on the sliding mode principle. The controller, under 

appropriate assumptions guaranteed the asymptotic stability of the overall system. 

The first step of the control design was to define a sliding vector s €Rn as: 

s = x + c , x  (3.16) 

where x and X are the system states, and c, is a scalar (tuning) parameter chosen to 

guarantee the closed-loop stability of the subsystem. A sliding motion is said to be 

generated in the subsystem if state variables x and X reach the sliding surface S at the 



tirne instant tr and then remain in S for al1 r 2 t,. The equivalent control law, ueq can 

be found by setting S=O, which when substituted in the state space equation provides 

the closed-loop dynamics of the subsystem in sliding mode. The example given was 

a second order subsystem. The explicit solutions for the subsystem in sliding mode ( r  

2 t r )  are given as: 

. . 
X = X ( l , )  e - ~ ~ ( ( - w  and (3.17) 

Looking at the above solutions, one can see that c, > O for stability (or, exponential 

error decay) and that states x  and x are bounded for al1 t 2 O and converge to zero 

exponentially as t + a  The other observation is that as a tuning parameter, cl will 

increase the speed of response as it increases. 

Jian (1995) investigated the issue of a variable sliding line, or surface. A 1st order 

sliding surface is designed for a 2"d system with s =c,x,+x, and x, as the fint 

derivative of x, and cl as the single tuning parameter for this simple case. The larger 

the value of cl ,  the faster the approach to the sliding surface. But upper limits for c, 

do exist since the presence of large errors in xl and x, would cause controller 

saturation, thus jeopardizing the robustness of the controller. The author then 

provides a limiting equation for the size of c, which depends on the controller gain, 

the size of the sliding gain, Ks and the expected maximum error in the states. 

Furthemore, the author implements state weights, w, and a proportional action within 

the boundary layer. The switching control law is given as: 

The general principle of state weights and a varying sliding gain have also been used 

and presented in (lordanou and Surgenor, 1995, 1997a) in the control of an inverted 



pendulum using DSLM. The switching laws are different h m  the ones presented in 

Jian. 

Fortell (1995) shows how a normal (or canonical) form that corresponds to affine 

state space systems can be generated. This generalized normal form is then used in 

the context of sliding mode control. The investigation is for a general, nonlinear 

system mode1 where the normal form is obtained from the Lie derivatives Lf and Lg, 

in the direction f(x) and g(x) of X = f(x)+ g(x)u respectively. The author then 

de fines an auxiliary output to the general system, the sliding function 

c x . + x,, . Note that cn for xn is set to unity which normalizes the S(X) = c;:: , , 
sliding surface. By imposing the discontinuous (switching) surface dynamics, and 

setting s(x)=O, the system has: 

X I  =x2 

(3.19) 

Xn-1 = X, = -CIXI -C2XZ WC,,_~X,.~ 

The author then concludes that a suitable choice of ci can generate an asymptotically 

stable motion towards x,=x,= ...=x n=O, but does not explain how these coefficients 

are obtained. 

Sira-Ramirez (1993) presents a thorough overview of some of the developments in 

sliding mode theory. Special consideration is given to dynamic sliding mode 

controllers whereby the sliding surface not only depends on the system states but also 

on the system inputs. The sliding fùnction, s is presented as the surn of the input and 

the output states. In the article, the control input is shown as the output of a low-pass 

filter (with a cut-off fiequency A) which k m  a discontinuous structure (with an 

amplitude v/& The amplitude of the switching action, v/n is better known as the 

sliding gain, Ks. The cut-off fiequency R relates to the exponential rate of approach 

of the controlled state to the desired value. The quantity v is defined as an arbitrary 



positive real number arising from dddt = - v sign(s) and can be used to measure the 

reaching time t, of the condition s=O. It is shown as v = R u,, where u,, represents the 

maximum input signal. This also provides a design approach to Ks. For a fixed u,, 

the relationship establishes an important tradeoff: the smaller the reaching time t,, the 

higher vas the following equation indicates: 

For a small reaching time one would require a higher cut-off frequency A. of the low- 

pass filter. This though, may give rise to a larger number of harmonic oscillations 

and when combined with extemal noise, could affect the control input. 

Noise in a measured variable can also present problems, especially if the higher states 

(e.g. velocity) are obtained through differentiation of a measured state (e.g. position). 

Filtering the signals decreases the noise, but introduces signal transmission delay 

which can then deteriorate the overall system response. State estimators can therefore 

be used to "predict" the states. Misawu (1995) uses the discrete sliding mode 

controller structure as proposed by Furuta (1990) with the addition of state 

estimators. An additional condition ensures that the estimation error for each state 

tends asymptotically to zero. 

Woodham and Zinober (1993) presented a sliding surface design originating from 

placement of the closed-loop eigenvalues in a specified sector in the lefi hand plane of 

the continuous-time root-locus dornain. An orthogonal transfonnation matrix T 

(where TT=T") is used which modifies the original B matrix of a general linear state 

space model, to one in canonical form, T B. Note that this transfonnation does not 

change A to its canonical form. The original states x(i) are transformed into z,(r), 

where z,(i)=T x(i). If one only considers the reduced order system, which is outside 

the range of the control action (i.e., for a SIS0 nxn systern with system matrices TATI . 

and T B, which has the control input appear in the nth row, the reduced order system 

is n-lxn-1) ,  then the reduced order dynarnics are: 



The sliding function for the new coordinate system has s=C,z,+C$ where C ,  and C, 

are sliding vectors. This reduces the equivalent dynamics to: 

2.- = [ A , ,  - A,,G]z,  (3.22) 

where G=GtC,.  Matrix G can be obtained for a required eigenvalue sector where the 

real intercept and the angle of sector line need to be specified. With these values of 

the real intercept and the angle of sector line, a hermitian, positive-definite matrix is 

obtained using the Riccati equation with weighting matrices Q and R as positive 

symmetnc. Since the dynamics under sliding are also independent of control input, 

the above equation provides, through the selection of G the dynarnics of the system 

under pure sliding as C=[G I] T, which for a SIS0 system reduces to C=[G I ]  T. The 

question is whether the above procedure can be extended to the design of a discrete 

time sliding surface. 

Habibi (1995) applies a variable structure controller to a multi-link hydraulic 

industrial robot. The implemented controller can offer robust control against bounded 

parametnc variations, friction and other uncertainties. A sliding surface with integral 

action is selected. The sliding hinction which is defined as the distance of the states 

fiom the switching hyperplane is given as: 

S(X,  I )  = (%t + A)" I ~ d t  (3.23) 

The hydraulic robot is considered to be a third order system (as is the pneumatic 

system for this thesis). For a 3d order system the sliding function becomes: 

The author then sets the coefficients of f ,?, I ~ d t  equal to the acceleration, velocity 

and position gains of a PVA controller, if one was to be designed for this particular 

system. However, it is not possible to achieve triple coincident eigenvalues as 



demanded by Eq. 3.24 due to model inaccuracies. Therefore, it is assumed that the 

sliding function, for best performance should be defined as: 

The control law used in the paper was the same as in Shine  and Li (1991). 

Paul et al (1994) present an implementation of a modified sliding mode controller to 

a pneumatic system. Servocontrol in pneumatic systems is of great interest to 

designers since pneumatics have a great economic advantage over electric ancilor 

hydraulic systems. But the use of servovalves for pneumatic systems increases the 

cost considerably. The authors replace the servovalve by 2 ON-OFF solenoid valves in 

order to cut d o m  the cost. They also claim that 2 control inputs increase the 

flexibility of the controller. The cylinder dynamics are assumed tndorder and static 

friction is neglected. A symmetric cylinder is used. When combined with valve 

dynamics (since fiowrates to the chambers are the inputs), the overall system becomes 

3rd order with 2 inputs, one for each valve. Typically, a 2nd order sliding surface 

would need to be designed. Instead, Paul et al implement a 1st order sliding surface: 

s ( x ; t ) = [ c ,  I ] x  (3  -26) 

The reduced order sliding surface requires complicated reachability and sliding mode 

existence conditions. The eigenvalues of the higher order range space that guarantee 

reachability become intricate. The complexity is increased further if a broader range 

of cylinders is used, especially if small stroke cylinders are used for which wide 

parameter variations take place for a small displacement of the piston. The structure 

of the control law is presented as: 

i u + ( x )  if SX, > O  
U ( X )  = 

u - ( x )  if S X ,  < O  

so that sh/dt c o. 

During charging, (sx,>O), the chamber pressures Pa and Pb are considered as 

functions of the supply and initial chamber pressures, as well as the time constants for 



chamber charging and discharging. These depend on the chamber volumes. hence 

they are position dependent. For a sliding mode to exist with sx,>O, a high 

differential pressure is essential. The stroke of the cylinder used, combined wi th a 

high value of cl resulted in a required differential pressure of 3.5 bar. For fast 

reachability, the switching line slope, cl should be as large as possible. An 

assumption is then made, that for a supply of 10.5 bar the required differential 

pressure of 3.5 bar is developed instantaneously. 

During discharging (sx,<O), both solenoid valves are kept OFF. The chamber 

pressures Pa and Pb, which are functions of both the position and speed of the piston. 

are presented as decreasing and increasing functions respectively. This implies that 

the piston slows down and reverses direction even with both valves OFF. To avoid 

limit cycles (near zero position error or in noisy environments) due to 

noninstantaneous pressure development, the sliding mode controller is switched to 

Pulse Width Modulation. The use of a reduced order Sliding Mode is therefore 

misleading. In the experiment, the piston is required to rnove a payload across a 

distance of I2O mm. A 0.006 sec sampling time was used; the resulting settling time 

was close to 1.80 sec and the steady state error was close to 1 mm, a result which is 

not particularly impressive. 

Zohdy et al (1 995) present a new output feedback variable structure controller design 

using dynarnic output feedback control. The original state space mode1 as: 

is then modified with the output feedback control approach to: 

where Gl,, G,, are observable (as A, I of Eq. 3.28) and G,, , G, are controllable (as A, 

B of Eq. 3.28). With F(t) = [x(t) x , ( t )Jr  and y( t )  = [y ( t )  x,(t)Jr , a new matrix & 
defines the augmented system closed loop dynamics as: 



The eigenvalues of &can be arbitrarily selected by proper choice of the feedback 

rnatrix G. The authors then present a procedure for determining G with T as a 

transformation matrix obtained from: 

T A - Q T = R  (3 .3  1 )  

where R and Q can be arbitrarily selected with the restriction that Q is a negative 

definite matrix and that Q and R compose a controllable pair. With T determined 

frorn equation 3.3 1, elements G,, and G,, of matrix G can be obtained as: 

with K denoting the desired closed loop matrix obtained from pole placement. 

Elements G,, and G,, can then be obtained from: 

The sliding surface is then defined as: 

s(x.t )  = C y ( t )  = O  (3.34) 

C if obtained from the desired dynarnics of the switching hyperplane. The control 

law is composed of the equivalent control part, ueq which is active in the vicinity of 

the sliding surface, and a corrective control part, us, which directs the system states 

towards the surface. The corrective control law, or switching control law has: 

u,, = p g n w ;  0) (3.35) 

where4 denotes a column of switching coefficients for the appropriate states. The 

paper provides simulation results for aircrafl control using the augmented system with 

dynamic output feedback. The design of the switching hyperplane is similar to the 

one presented in Woodharn and Zinober (1993) since it originates from a continuous 

tirne closed loop system representation, as Eq. 3.30 shows. 



3.1.2 Summary of Literature Review 

In conclusion, the Iiterature review indicates that there exist a number of CSLM 

implementation techniques, each with its own strengths and weaknesses. A key issue 

in CSLM is the design of the sliding surface and the construction of the switching 

control law. The sliding surface can be designed once a closed loop system 

representation is generated. Woodham and Zinobcr (1 993), Zohdy et al (1 995) have 

considered the closed loop system under pure sliding and commented on the 

generation of the sliding surface from eigenvalue selection. Most commonly though, 

the question of how the coefficients of the sliding surface are selected is left 

unanswered. 

Al1 implementations of CSLM use relatively very small sampling times. For 

example, Paul et al (1 994) worked with a sarnpling time of 0.002 sec for control of a 

pneumatic system with a required settling time of 1.8 sec. Jian (1995) used a 

sarnpling time of 0.001 sec for control of an electric positioning system with a 

required settling time of 0.5 sec. Zohdy et al (1995) do not state the sarnpling time or 

comment on its effects. 



3.2 Design of the Sliding Surface 

The design of the sliding surface is of primary importance to the performance of a 

sliding mode controller. In this section, a general technique will be shown for the 

determination of a canonical matrix system that helps in the design of the sliding 

surface of a continuous sliding mode controller (lordanou and Surgenor, 19976). 

3.2.1 Stability of a Continuous System 

The question of stability of the system x = Ax is important. The matrix A in this case 

represents the closed-loop dynamics. It can be derived if one considers that the 

sliding function has reached the value of zero; from then and on, the systern is under 

pure sliding. Generally, this system has solution x(t)=e/l*x, and is said to be 

asymptotically stable if the effect of any initial perturbation xo from equilibrium dies 

away as t+m. It c m  be shown that necessary and sufficient conditions for asymptotic 

stability is that al1 eigenvalues of A have negative real parts. 

The system can also be s h o w  to be asymptotically stable if a positive definite 

quadratic form V(x) =xTk  (equivalent to Lyapunov function) c m  be found such that 

dV(x)/dt is negative definite. In other words, for stability: 

which reduces to: 

where Q=ATR+RA and is a negative-semidefinite, symmetric matrix such as -I. 

The procedure provides sufficient conditions for the design of the switching laws for 

CSLM. 

3.2.2 Canonical Form of a Continuous System 

An important part of the sliding surface design is the characterization of the original 

system in its canonical form. A general nxn matrix A cm be represented as A x = k ,  



where x is called the eigenvector (usually nomalized) and 1 its associated eigenvalue. 

The non-trivial solution for A x = h  is obtained by considering its characteristic 

polynomial det(Al-A)=O which has: 

At' + a A"“+ ...+q, = O (3.3 8) 

for which there exist n distinct roots A,, ... A,,. 

If one considers the transformation x=TV r,,,, where TV is the matrix of eigenvectors 

(usually called the modal matrix) and substitutes in A x = h ,  then: 

where A is a diagonal matrix with the eigenvalues of A in the diagonal. Therefore 

r,, = a,eA1' < j= 1,2,..n and: 

where ûj are arbitrary constants determined from initial conditions. 

A cornpanion matrix to A is denoted as CA and it has the sarne characteristic equation, 

or polynomial as s h o w  above and has a canonical form (Barnett, 1990) as: 

CA is obtained by considering the Vandermonde matnx Y' that has the general fom: 

where 9 b represent the eigenvalues of A. Assurning Vn is non-singular (i.e. al1 3's 
are distinct), then CA can be found as: 

cA =fi V , - + ~ A ( T ~  vn$ (3.43) 



The canonical fonn of the system is now detennined. The reason for obtaining this 

fom is to then replace the original variable x with a transformed variable Z,  where 

x = T x .  Note that x relates to A, and Z relates to CA, or the cornpanion matrix of A. 

The eigenstructures of x and X are therefore identical and a sliding surface design 

with the Z -variable can be linked directly to the x-variable through the matrix T that 

serves to transform the system to its canonical form. 

The derivation of the transformation matrix T poses as the final part of the sliding 

surface design. It can be found if the controllability matrix of the system is 

considered. A system is said to be controllable if the rank of the system is equal to 

the rank of the controllability matrix W, which, for a continuous system is an 

augmented matrix defined as: 

W, = [ B  AB ... A"-'BI (3.44) 

If new coordinates X are introduced by a nonsingular transformation matrix T, then 

for the new coordinates the controllability matrix becomes: 

The transformed matrices Â and B can be shown as 1 =TAT -1 and B =TB. The 

derivation will be presented in Chapter 4 for their discrete time equivalents @, r a n d  
- - 
@, r . If these matrices are substituted into Eq. 3.45, then: 

W C  = [ T B  TAT-'TB ... TA*-'T-'TB]=TW, (3.46) 

One then concludes that the matrix T can be found by considering the controllability 

matrices of the original and the transformed system, such that: 



3.3 Switching Control Law 

The sliding function s has been shown as a weighted function of the system States: 

s ( t ) = C ~ = [ c ,  cf-c,,],x (3 -48) 

with vector x denoting the state enors. If one works with the transformed variable 3 .  

where x=TX , the above is modified to: 

s ( t ) = c ~ = c T ' x = [ c ,  C,**-C,,]~T-' x (3.49) 

Typically the sliding surface is nomalized to c,, since it does not affect the system's 

eigenstmcture. The switchings of the sliding function were given by Eq. 3.13: 

For a 3" order system, normalisation of the sliding surface coefficients leads to c,=l . 
The coefficients c, and c, cm be then selected to match performance parameters of a 

desired 2" order system as shown in Surgenor and Vaughan (1 996). 

3.4 Controller Parameter Issues 

The following section will demonstrate some CSLM tuning and stability issues. The 

CSLM controller was implemented in simulation to control the position of the piston 

of an asymmetric pneumatic cylinder controlled by a proportional servovalve, sirnilar 

to the one described in Chapter 2, technical specifications for which are iisted in 

Appendix A. The input to the system (or, the controller output) drive a proportional 

servovalve. Unless specified otherwise, the benchmark conditions used in the 

simulations are as follows: 

The sliding surface is designed for a damping factor 5 of 1.0 and a settling 

time ts of 0.2 sec. 

The nominal payload mass Me is 8.5 kg. Robustness tests were implemented 

with payloads of 23.0 and 2.2 kg. 

The sampling time h is 0.001 sec. 



The boundary layer @ is 4.5. 

The sliding gain Ks is 1.0 (normalised) . 
The equivalent gain action, ueq is active. 

The last point referes to the fast the some authors (Jian, 1995, Gambie and Vaughan, 

1994, Tang und Walker, 1994) tend to ignore this term in the sliding control law of 

Eq. 3.9. Surgenor and Vaughan (1996) comment that the equivalent gain cm be 

ignored when a sufficiently large sliding gain that compensates for uncertainities is 

used and when stability limits are not approached in the application at hand. Even 

though the sliding action of the ovenll CSLM control law is independent of the 

system rnodel, the equivalent control law is designed based on matrices A and B of 

Eq. 3.1 1 ; therefore an error in A andor R would induce an incorrect equivalent control 

law. The fact that the sliding surface (and consequently the sliding action of CSLM) 

is independent of the systern in use will be shown in Chapter 4. 

A further consideration for the tuning of CSLM is the boundary layer which is used to 

minimize chattering effects; a tradeofl exists between steady state positioning 

accuracy (resulting from a large boundary layer thickness) and chatter (resulting from 

a small boundary layer thickness). 

Important issues that will be addressed in simulation are: 

The effect of the boundary layer on the control signal (chatter) and system 

response (Fig. 3.2) 

The effect of the sampling time on the system response (Fig. 3.3) 

The effect of the sliding gain on the system response (Fig. 3.4) 

The robustness (different puyIoads) of CSLM vs. PVA with h=l ms (Fig. 3.5 

and 3.6) 

The robustness (different puyloud~) of CSLM with h = 1 O ms (Fig . 3 .7 )  

The effect of Keq on the robustness of CSLM with h=lO ms (Fig. 3.8) 



The effect of the settling time design parameter (Fig. 3.9) 

The effect of the darnping factor design parameter (Fig. 3.10) 

The effect of static friction on the system response (Fig. 3.1 1) 

The effect of noise and filtering on the system response (Fig. 3.12) 

The design procedure of the sliding surface and other aspects of CSLM will be shown 

in Fig. 3.13. 

3.4.1 The Boundary Layer 

Fig. 3.2 illustrates the effect of the boundary layer thickness, 4. The effect of chatter 

due to non-instantaneous switchings (shown in Fig. 3.lb) when d=O is shown as a 

dashed line. The position response is linear, but again the control signal exhibits high 

chatter, as expected. The resulting steady state enor was determined to be 0.3 mm. 

This large error is caused by the saturated switchings of the controller. The 

performance of CSLM improves considerably when a boundary layer is irnplemented. 

as was demonstated in Fig. 3. lc. The position response with e 1 . 5  c m  be seen as a 

solid line in Fig. 3.2. The response is clearly linear and the control signal is smooth. In 

addition, the resulting steady state error was determined to be 0.05 mm, which is a great 

improvernent. If one increases the size of the boundary layer considerably, the 

controller performance degrades since the proportional action inside the boundary layer 

can introduce a steady state error. This can be seen in Fig. 3.2 as the dotted line 

response which corresponds to +10.0. Though the transient response shows little 

deviation fiom the one obtained with a boundary layer of 1.5, the steady state error 

increases considerably to 0.5 mm. 
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3.4.2 Sampling Time Considerations 

Fig. 3.3 shows the effect of the sampling time, h. A boundary layer of 15.0 and a 

sliding gain of 1.0 were used. The solid line response corresponds to a sampling time 

of 1 m. It is the smoothest response because of the fast switchings about the surface. 

If the sampling time is increased ten-fold to 10 ms (dotted lines), the performance of 

the system is still considered acceptable. The reason why the performance is still 

acceptable is due to the large boundary layer (qb15.0) which "relaxes" the switching 

action. High chatter appears with h=IO ms and a qkI.5. 

If the sampling time is fiuther increased to 50 rns (dashed lines), CSLM becomes 

unstable. Increasing the boundary layer could restore stability, but the controller 

would no longer be considered a sliding mode contmller since switchings would be 

explicitly eliminated. Empirically, one needs to use a sampling time at least 20 times 

smaller than the open loop time constant of the system. For example, if the open loop 

time constant for a particular pneumatic system is O. I sec, the sampling time should 

be in the order of 0.005 sec. Sampling time limits for CSLM have been reported by 

Pieper (1 992) but are not applied in this thesis. 

3.4.3 Sliding Gain and Transient Responsc 

Fig. 3.4 shows the effect of the sliding gain Kso Three responses are s h o w  in the 

figure. The solid response corresponds to a sliding gain of 1.0. This is a nonalized 

value for the sliding gain which indicates the maximum value permissible for the 

gain. It corresponds to a valve input of 5 volts which indicates maximum flow 

through the valve. The simulated valve has a maximum flow of 1.88 //sec (4 scfm) . 
The dotted response corresponds to a sliding gain of 0.5 and the dashed response 

corresponds to a sliding gain of 2. O. A C4.5 is used to eliminate chatter effects that 

would result with &=O.S. If one compares the three responses, the first realization is 

that the overall settling time is unaffected. This should be no surprise, since the 

dominant part of the overall settling time is the sliding settling time which is linked to 

the sliding surface. 
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The sliding gain, as will be seen in Chapter 4 can be linked to the reaching time (the 

time to reach the sliding surface) which can only slightly affect the transient response 

of the system. This can also be seen in the responses. The dashed iine response of 

the highest sliding gain (Ks=2.0) rises faster than the other two responses; the slower 

of the three, the dotted response corresponds to the lowest sliding gain (&=O. 5). 

The effect of K, is best highlighted by the sliding function plot which shows that the 

system is outside the boundary layer the longest when the lowest gain is used, which 

results in a slowest response. 

The nonlinearity in the system (position and direction dependence) can be seen in the 

dissimilar control input response. Note that the figure shows the normalized control 

input; in actual fact, fl v in the plot corresponds to 25 v input to the valve. The input 

stays saturated for a longer time when the motion is from the center to the end @=O to 

y=-50mm), rather than from the end to the center, mainly due to the larger charnber 

volume that needs to be filled when one moves fiom the center to the end. 

3.4.4 Robustness Test for CSLM 

A test for the robustness of CSLM is to design the controller for a certain payload and 

apply the controller to different payloads. Fig. 3.5 shows the effect of the payload 

mass, Me. The correct mass for which the controller should be designed is 8.5 kg. 

The system response with the correct mass is seen in Fig. 3.5 as a solid line. 

The controller was then used unaltered to control a payload of 23.0 kg (dotted line) 

and a payload of 2.2 kg (dashed line). One can observe a slightly slower transient 

response in the case of the larger mass and a slightly faster transient response in the 

case of the smaller payload mass. This is intuitive. The control signal shows that 

additional control effort is required to bring the larger mass to the sliding surface. 

Conversely, "less" control effort is required in the case of the smaller payload mass. 
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The chatter in the control signal in the case of the smaller payload has to do with the 

fact the smaller payload responds faster to the input. 

In summary, CSLM is robust but only if the sampling tirne is sufficiently small. The 

controller robustness deteriorates if an inadequate sampling tirne is used. In the case 

of the pneumatic system under study and the available hardware, the limiting 

sarnpling tirne was IOms. The responses for the same robustness test with h= 10ms 

will be show in the next section. 

Fig. 3.6 shows the same robustness test presented in Fig. 3.5 but instead of a CSLM 

controller, a conventional PVA controller is used. The solid lines correspond to the 

correct controller design with a payload of 8.5 kg, the dashed and dotted lines 

correspond to the incorrect system payloads of 2.2 kg and 23.0 kg, respectively. The 

gains that were used (Kp= 12.5, Kv=0.49, Ka=0.06) were calculated for the settling 

time and damping requirements using pole-placement (Surgenor and Vaughan, 1996). 

One observes that PVA not only has poor robustness, but even in the correct system 

response (solid lines) it indicates a nonlinear behaviour: an underdamped response 

when the positioner moves to the center of the stroke, and a darnped response when it 

moves towards the ends of the stroke. Therefore, the nonlinear nature of the 

pneumatic positioner of which the performance is position dependent is still evident. 
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3.4.5 Robustness Test for CSLM with Inadequate Sampling Time 

Fig. 3.7 provides an identical robustness test to the one presented in Fig. 3.5, but with 

a sampling time that was increased from I ms to 10 ms. For h=l  Oms, Ks= 1, (=45 

and Me=8.Skg, CSLM results in sustained oscillations and poor setpoint tracking 

which is caused by excessive control chatter, unlike the case when h=lms (Fig. 3.4). 

Therefore, the boundary layer needs to be increased, from 4.5 as used in Fig. 3.4 and 

Fig. 3.5, to I5.O. The tradeoff for the smooth control signal with a larger boundary 

layer is a higher steady state error. When using a large sampling time (h=lOms), it 

was also important to decrease the size of Ks, fiom 1.0 to 0.8 to avoid controller 

saturation which can cause poor response and possible instability. The solid line 

responses of Fig. 3.7 illustrates a slight oscillation about the sliding surface, caused 

by the combination of the large sampling time and the large boundary layer. 

The controller was then applied to a payload of 2.2 kg (dotted line) and a payload of 

23.0 kg (dashed line). The response of the larger payload deteriorates but remains 

stable. But the smaller mas, due to its small inertia reacts faster than the 8.5 kg, and 

overshoots the sliding surface at each switching. This causes oscillations and large 

steady state enon on the order of 20 mm. One way of correcting this would be to 

decrease the size of the switching action (Ks) and increase the boundary layer. 

Unfortunately, with this combination of corrective actions, the large mass response 

becomes marginally stable. This leads to the conclusion that CSLM has poor 

robustness in the presence of a large sampling time. 
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Figure 3.7: Robustness of CSLM with 3 masses and h=lOms 



3.4.6 Equivalent Action and Robustness 

Fig. 3.8 shows the effect of the equivalent control action. It has been shown that the 

control law for CSLM is composed of two parts, the equivalent action and the sliding 

action. The dominant action is the sliding action which directs the system to the 

sliding surface and to the equilibrium point, or the final setpoint. The equivalent 

action is a linear feedback law that helps the sliding action in keeping the system on 

the sliding surface. The solid line response represents the behavior of the 8.5 kg 

payload when the equivalent gain is used. 

If the equivalent action is removed, the performance of the controller degrades (dotted 

line). First of all, the response is slower due to the decreased control action. 

Secondly, one can notice that both the sliding function and the control signal begin to 

"blow up" when the positioner is at the end of the stroke (y=-5Omrn). This indicates 

instability. The role of the equivalent action is to keep the system on the sliding 

surface, therefore its absence will have a negative effect, especiall y since the 

sampling time is large (10 ms). When a small sampling time ( 1  ms) is used, there is 

no visible change in the performance of the system, mainly because the sliding action 

is able (on its own) to drive the system to the surface and keep it on the surface by 

faster switchings. 

The larger inertia of a 23.0 kg payload mass eliminates the increasing amplitude of 

the control signal oscillations, even with no equivalent action (dashed line). 

In conclusion, the equivalent action has a positive eftèct in the overall system 

behavior. The degree of performance degradation when one neglects the equivalent 

action depends on the sampling time. 
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Figure 3.8: Equivalent Gain and Robustness of CSLM 



3.4.7 Sliding Surface Design Parameters 

The sliding surface design for CSLM as applied to a 3" order pneumatic system is 

simplified to a 2" order sliding surface for which one cm select the desired sliding 

settling time and surface damping factor. The overall settling time is the sum of the 

sliding settling time and the reaching time. Of the two, the dominant component is 

the sliding settling time. Fig. 3.9 shows the response of the pneumatic system when 

the sliding settling time was set to 0.2 sec, 0.3 sec and 0.4 sec. The responses are 

shown as solid, dotted and dashed lines respectively. For these, the desired damping 

factor was set to 1. O (critically darnped response). 

Fig. 3.10 shows the responses for three designed damping factors of 1.0, 0.70 and 

0.50 and are shown as solid, dotted and dashed lines respectively. For al1 cases the 

sliding settling time was required to be 0.20 sec. The responses clearly indicate that 

al1 responses have a settling time comparable to 0.2 sec while overshoots of about 5% 

and 16% are seen for the cases where the damping factors were set at 0.70 and 0.50 

respective1 y. The observed overshoots are in agreement with the expected oveahoots 

derived fiom the classic expression for the percent overshot for a 2" order system as a 

function of the damping factor (Palm, 1986): 

Fig. 3.9 and 3.10 clearly illustrate how the shape of the response can be manipulated 

by the design of the sliding surface. If the sampling time is increased ten-fold to 10 

rns, the shape of the response cannot be manipulated as easily by the designer. 
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Figure 3.9: Sliding Surface Design for a set of Settling times 
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Figure 3.10: Sliding Surface Design for a set of Darnping Factors 



3.5 Static Coulomb Friction and Noise Considerations 

Static friction in pneumatic systems is a significant performance inhibitor. Fig. 3.1 1 

shows considerable performance deterioration of the system with increasing static 

friction. The solid line represents the response of the system with no static coulomb 

friction. The dotted and the dashed lines show the response of the system with a 

static coulomb friction of 5 N and I O  N, respectively. A static friction test was 

performed on the experimental setup to determine reasonable values for the static 

coulomb friction. An average static coulomb force was determined at F,,=IO N (see 

Appendix B for MA RTONAIR cylinder). 

Sensor noise can also be a problem in practise. A realistic level for noise in the 

measured position was determined by examining the datafiles obtained from 

experimental tests. It was detemined that a f 0.5% sensor noise was evident in the 

recorded position when the control signal was constant. For visualisation reasons, the 

noise level used in simulation was f 1.0%. A settling time of 0.3 sec was chosen that 

better shows the lag that is introduced by the filter. Fig. 3.12 shows the response of 

the system with no noise in dashed lines. 

In simulation, the "dean" actuator position is obtained by a nonlinear simulation. A 

1.0% white noise signal is then added to the "clean" actuator position signal and this 

becomes the "sensed" position to be fed into the control law. The noise is 1% of full 

scale and was obtained from an open loop test. The controller's response with 1.0% 

noise is s h o w  as a solid line in Fig. 3.12. The noise can be better realised if one 

observes the velocity plot. With the 1.0% position noise, velocity noise is amplified. 

Acceleration noise is amplified even further (recall that in experiment, velocity and 

acceleration are obtained by single and double differentiation of position). 

The use of a filter cm decrease the effects of sensor noise, but at a cost. A lag can be 

seen in the dotted response of the system in Fig. 3.12 This is due to the presence of a 
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Figure 3.1 1 : Effect of Static Coulomb Friction on performance of CSLM 
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Figure 3.12: Effect of Noise and Filtering on performance of CSLM 

2"" order Butterworth filter being used with a cut-off frequency of 15 Hz. The 

response is smooth again, but with a visible lag. 



3.6 Summary 

The design procedure for the sliding surface of CSLM is summarized in Fig. 3.13. 

The continuous system colurnn shows how the transformation matrix T is obtained 

from the controllability matrices of the original state space model and the canonical 

system state space model. The continuous sliding surface column shows the 

procedure for the two methods for the design of the sliding surface, the pole 

placement technique as outlined in the chapter and the filter method which had been 

shown in Iordanou and Surgenor (1996). 

The chapter presented some basic issues for the CSLM controller by means of 

simulation of pneumatic positioning system. These issues include the effect of the 

tuning parameters of CSLM, namely: 

The sliding gain, and 

The boundary layer thickness, 

as well as the design parameters for the sliding surface, narnely: 

The sliding settling time, and 

The darnping factor, 

and finally the effect of: 

The sampling time. 

In summary, CSLM is a highly robust controller under the following conditions: 

The sampling time is sufficiently small, so that the continuous structure of the 

controller is not negated by large discrete sampling times and yet large enough 

to be achievable with a modest control cornputer. 

The sliding gain is suf'fïciently large without exceeding stability limits, so that 

model errors do not compromise robustneu and yet small enough to be 

achievable in practise. 

The boundary layer is suficiently large so that chatter is eliminated and yet 

sufficiently small so that positioning accuracy is not compromised. 
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CHAPTER 4 

DISCRETE SLIDING MODE CONTROL 

CSLM with its inevitable implementation on a digital cornputer ignores by definition 

the effect of the sarnpling tirne. More precisely, the implementation of CSLM 

assumes that the sampling time is small enough such that its effect can be ignored. In 

the case of Discrete Sliding Mode Control (DSLM), the stability conditions that 

generate the switching laws are derived frorn a difference function as opposed to a 

derivative function. In other words, the DSLM switching laws take explicit account 

of the sampling time. 

4.1 Traditional Discrete Sliding Mode Control 

To help introduce some of the parameters and ternis to be used in this chapter, 

consider a single-input discrete system: 

x f i + l ) = @ x ( k ) + T u ~  (4.1 ) 

with @ and r obtained from the state space matrices A and B of the continuous 

domain. A full-state feedback DSLM is designed whereby the discrete sliding 

function s(k) can be given as: 

s(k) = C x(k) (4.2) 

where C denotes the discrete sliding surface matrix. 

During pure sliding it can be assumed that the value of the sliding function remains 

the same, Le., s(k) =s(k+l) =s(k+2) ... If one sets s(k+ 1) =s(k), then by inspection of 

Eq. 4.2 one can see that C x(k+l)=C x(k). This final equation is used to derive the 

closed loop dynamics of the system under pure sliding. A full description of the 

procedure will be provided later in this chapter. 

One of the first cornprehensive approaches to DSLM was presented by Furuta (1 W U ) .  

A general approach to the selection of the sliding surface C was presented, which 

should be selected so that the following system is stable: 



x(k+ i )  = [ @ T ( C I ) - ~ ( Q L I ) ]  ~ ( k )  (4.3) 

s fi) =Cx(k) =O 

The above equation gives the plant's response once the sliding surface is reached and 

can be used as the foundation for the design of the sliding surface. The system can be 

rewritten as : 

where x(k+ 1) =zF xfi) .  The only requirement for stability is that IZ ,~  < 1. 

A more recent paper by Furuta and Yaodong (1995) described a new approach to 

designing the boundary layer directly within the state space, as opposed to around the 

sliding mode, or sliding surface. The approach cm be applied to both continuous- 

time and discrete-time systems. For the general discrete system shown in Eq. 4.1, 

or P -nom of the discrete state, the function and the discrete-time boundary 

layer, or sliding sector S are defined as: 

where Q and R are positive definite symmetric and positive semi-definite symmetric 

matrices, respectively. For the boundary layer m), we have s2(k)c  &k). A 

transformation is then defined, x ( k )  = E ( k )  so that the original system is brought to 

canonical form. The coefficients of the characteristic polynomial of the last row of 

the canonical system, a., a,, q ... an compose the transformed sliding surface which 

can be transfomed back to the original state space variable x(k) by using the 

transformation matrix T. The boundary layer m) is also defined in terms of the 

variable z(k) and is transformed back to the variable x(k) using T. However, the 



rnethod does not explain how different setpoint profiles can be selected, since Q and 

R are said to be chosen arbitrarily. 

Paden and Tomizuku (1995) considered a simple nonlinear system with n discrete 

time state feedback control law. A scalar sliding function s(k)=CTx(k) where CT=[c, 

c, ... c,-, i] is composed which defines a target manifold for the closed loop dynamics, 

i.e. sliding surface. cT is nonnalized so that cn=l.  Starting from a Lyapunov's 

function of the system, a sliding manifold is defined and is then used to develop 

sarnpling rate thresholds for the discrete controller. The paper concludes that the 

selection of the gains for a discrete sliding mode controller not only depends on the 

performance requirements (Le. reaching time and asymptotic rate of decay on the 

manifold), but also depends on the discrete sampling time used. A recommendation 

for systems with higher uncertainties, is to use smaller sampling times. 

Iordanou et al (1995) prcsented a procedure for the design of the sliding surface of a 

DSLM controller for an nth order system as a combination of a transformation matrix 

T with a cascaded series of n-1 firstsrder filters, thus composing a sliding surface of 

n-lth order. The filter bandwidth, A becomes the sliding sutface design parameter. 

The coefficients of the nth-state of the canonical system can be linked to closed loop 

system dynarnics. The filter bandwidth is chosen according to the desired decay 

speed of the system on the surface. In other words, the higher the bandwidth, the 

faster the decay on the surface. The upper limit for the bandwidth is determined by 

the available system sarnpling rate. Iordanou and Surgenor (1996) implemented 

additional features. These features included state weights and a varying sliding gain. 

Pieper (1992) investigated the issue of optimising the sliding surface coefficients 

using a minimisation technique similar to the linear quadratic control structure. The 

work shows stability limits on the sampling time when a pseudo-DSLM is 

implementated to a general nth order system. From there, two techniques are 

presented for the design of the Td order system sliding surface. The first method is 



based on selection of eigenstructures and the second is based on linear quadratic 

optimisation. The more popular of the two methods is the one that is based on 

eigenstructure selection. For a general discrete system as shown in Eq. 4.1, the closed 

loop dynamics can be shaped so that: 

x(k+ 1) = ([I-VP]W VJ x(k) (4.6) 

where Y, is a projector defined as: 

vp = u-'c (4.7) 

The component (1-Y,)@ of Eq. 4.6 maps # into the nuIl space of the sliding surface 

matrix C, and Vp maps the state into the range of A new variable T, is defined as 

the eigenvector matrix of I - Y,. The desired closed loop eigenvector T, is then 

chosen by eigenvalue assignrnent by considering Eq. 4.6 and 4.7. The diagonal 

matrix of eigenvalues R and the eigenvector matrix T, satisQ: 

# Td - Td Â= vp[@-q Td (4.8) 

The left hand side can be chosen arbitrarily, but it should be of full rank. The left 

generalised inverse of r i s  defined as Tg and is chosen so that PT=! and Tg T, =O. 

The sliding surface matrix C is then found by solving for: 

c = [cnrg (4.9) 

The simplest design for the sliding surface with this method would be if the scaling 

factor C r  in Eq. 4.9 is assurned to be the identity matrix I which then makes C= P. 



4.2 Design of the Sliding Surface 

The design of the sliding surface is of prirnary importance to the performance of a 

sliding mode controller. It defines the nature of the required response, or graphically, 

the shape of the desired sliding surface. If one considers a 2" order system, the 

sliding surface is a 1" order surface (or a sliding line) since the sliding regime is a 

dimension less than the system itself. For a third order system, a second order sliding 

surface is defined. 

In this section, an original technique will be developed for the design of the sliding 

surface of a discrete sliding mode controller where its coefficients are given as 

functions of desired closed loop performance of the system under pure sliding. The 

sliding surface is based on a dominant set of desired closed loop poles and can match 

the more conventional sliding surface design characteristic where the sliding surface 

has one order less than the system (lordanou and Surgenor, 1 99 76). 

4.2.1 Discrete Time Domain 

A single-input, single-output ( S M )  discrete control system has: 

x(k+l)=@x(kj+Tu(k) (4.1 O )  

with @=eAh and r = e At Bdt where h represents the sampling tirne and A. B are 
O 

the continuous-time domain state matrices. The matrix exponential can be written as 

& h = 1 + ~ h + ~ ~ h ~ / 2 ! + ~ ' h ~ / 3 ! + .  . . . The identities I + ~ h + A ~ h ~ / 2 !  and ihB+~Bh'/2! can be 

considered as good approximations for the matrix exponential 0 and convolution 

integral & respectively if a small sampling time is used. For example, consider the 

following continuous time matrix A, which yields a discrete time matrix 0 as 

obtained using the above matrix exponential equation as: 



The approximation ï+Ah+~'h*/2! and the next term (A3h3/39 are calculated as: 

Clearly, the last term ( ~ 3 h 3 / 3 ! )  is within f2% of @ , therefore i + A h + ~ J h 2 / 2 !  can be 

given as a good approximation for the matrix exponential. A similar result can be 

shown for the expansion of the convolution integral, T: The discrete sliding function 

s(k) can be given as: 

$fi) =w!) (4.1 1 )  

where C denotes the discrete sliding surface matrix. 

4.2.h Stability of a Discrete System 

The first consideration for stability of a discrete system is the permissible size of the 

roots of its characteristic equation. If the system is discrete, it has x(k+l)=&(k) 

where x(k) =[x,(k) x&) .... xn(kl] for k=0,1,2 ... Its solution can be written as x@)= 

&.(O). This is obtained by x(k+l)= &~X(O)= @&(O) = <Dx(k). For stability of a 

discrete system, the eigenvalues of @ have a modulus of less than 1.  O, since &+O as 

r+a Geometrically, al1 roots lie inside the unit circle in the complex plane. 

The solution for x(k+i)=&(kl c m  then be calculated. If one considers the 

transformation xfl) = T M )  then: 

r(k+ 1) =A r(k) (4.12) 

where A is the diagonal eigenvalue matrix of 9 and TV is the matrix of eigenvecton. 

Therefore, rj(k)=bj~.' V i=l ,2, . .n and: 

x ( k )  = T, [ b , 4  b , ~ :  ... b& ] (4.13) 

where bj  are arbitrary constants determined fiom initial conditions. 

The system can also be shown to be asymptotically stable if a positive-definite 

quadratic form v=xT~r (equivalent to the Lyupunov function) can be found such that 



the difference (rather than the derivative as in continuous time domain) is negative- 

definite. Just as before, R has to be a positive-definite matrix. In other words. for 

stability : 

V(k + 1) - V(k) = -xr(k)px(k) < O (4.14) 

where in this case -Q=&RCR. For stability, Q is positive-semidefinite, real- 

symmetric rnatrix and d 4  as I+W. The procedure provides suffkient conditions 

for the design of the switching laws for DSLM. 

4.2.lb Canonical Form of a Discrete System 

For a controllable system, there exists a unique transformation T for x(k)=T F (k) 

which transfomis the original discrete system, to I (k+ 1) = 3 Z (k) + u(k) which is 

in pure canonical form (lordanou and Surgenor (1997b), Furuta (1 990). Pieper 

(1 992)). 

The procedure for generating the canonical form of the original discrete system is 

similar to the procedure outlined in Chapter 3. The companion matrix C, of the 

original system matrix 0 can be found if one considers the Vandermonde matrix Y,, 

composed of the eigenvaiues A,, A, . . . A, as: 

TV is the matrix of eigenvectors v,, v, . . . v,, as: 

TV = [ Vl I v* 14 V" ] 
The companion matrix C,, or & can then be shown as: 

- c ,  = 0 = (T,V;~)-~@(T~V,") 

The discrete system in canonicai form c m  then be shown as: 



For stability, dut-ing pure sliding of the transformed discrete system, the following 

condition should be satisfied: 

The following section presents the procedure for the determination of a suitable 

transformation matrix T. The controllability matrix of the system is therefore 

considered. A system is said to be controllable if the rank of the system is equal to 

the rank of the controllability matrix W, which, for a discrete system, is an 

augmented matrix defined as: 

y, = [r @r ... m t T ]  (4.20) 

If new coordinates (fiom x(k) to 3 fi)) are introduced by a nonsingular transformation 

matrix T, then for the new coordinates the controllability matrix becomes: 

The transformed matrices & and T were shown in Eq. 4.18 as & =T1@T and 

f. = T i r .  If these matrices are substituted in Eq. 4.21, then: 

WC = [T-~T T-'@TT-~T . . . T - ~ < D ~ - ~ T T - ~ ~ ]  = T-1 W, (4.22) 

This concludes that matrix T that transforms a system to its canonical form can be 

found by considering the controllability matrices of the original and the transformed 

system, such as: 

T=W,W:' (4.23) 

Furuta and Pan (1995) showed that if R of Eq. 4.19 is set equal to ( T T ~ ) - I ,  then the 

following is me:  



s(k) = C X(k) = [cr, a, ... a ,,-, ] X(k) (4.24) 

which gives another design procedure for the discrete sliding surface described by C, 

(s(k) =Cx(k)) since: 

C = CT-' (4.2 5 )  

Another technique for Ccan be given if the modified X -dynamics are required to 

behave as a set of coupled 1'-order filters of the form (11/di+~)n-l where A, the filter 

bandwidth represents the rate of decay of the sliding function s(k)= C X (k) on the 

surface (lordanou and Surgenor, 19976). It can be chosen according to the desired 

decay speed of the system on the surface. Transformed to the original states, one gets 

s(k) = C 7%(k) with the final sliding surface matrix C defined as C PI. The main 

advantage of this procedure is the simplicity of its implementation. The disadvantage 

is that its limits the flexibility of the sliding surface design. 

4.2 .1~ Pole Placement Method 

A novel technique considers the transformed system with X -States from x(k) =T X (k) 

as: 

where & and are the open loop system matrices in canonical form and the overall 

system has the same dynarnic behavior with the original system with the x-states. The 

sliding function sfi) is a function of the new state vector f fl). 

D u h g  pure sliding it is assumed that the value of the sliding fùnction remains the 

same, Le. s(k) =s@+ 1) =s(k+2) ... If one sets s(k+ 1) =SR). then C X (k+ 1) = C X (k). 

Replacing X (k+l) by Eq. 4.26 and solving for the control signal, one can obtain the 

equivalent control action, ueq (sarne context as ueq for continuous SLM as in Eq. 3 -9) 

which is responsible for maintaining the value of the sliding fûnction constant once 



the surface is reached; in other words, it keeps the system on the sliding surface at al1 

subsequent times. The equivalent control action can be shown as: 

U, (k) = -(C $)-' C(b- 1 )  x(k) (4.27) 

If the equivalent control action is replaced in the state equation, one can obtain a state 

equation for the closed loop system dynamics during pure sliding: 

- - -  - - 
where mc= [&- ~ ( c T ) - '  C ( 0 -  1)] and simplifies Eq. 4.28 to X (k+I)= aC X (k). 

A few observations cari be made for the system under pure sliding. First, no 

additional control action is required. Since the dynamic response under sliding is 

unaffected by r ,  or the range space of r , fl((T), then ideal sliding occurs only in the 

nul1 space of C, N(C), under the assurnption that !W(ht(T) and K(C) are purely 

complementary subspaces. Therefore, the motion of the system in only dependent on 

C. The control signal only drives the system to the sliding subspace and maintains it 

there. Second, convergence of the state vector is ensured by a suitable choice of the 

feedback rnatrix Qc ,which in tums constitutes C as the only tuning parameter for the 

system dynamics under sliding. Some procedures for determining the sliding surface 

have already been presented. 

The closed loop dynamics have been show to be a direct function of the state 

canonical state matrices and the sliding surface matrix (Eq. 4.3 and 4.28). The 

characteristic equation for the discrete systern under sliding can be found if one 

considers the solutions of the following: 

de t (z I -aC)=O (4.29) 

where z denotes the argument of the z-transform in discrete domain. The solution for 

a general characteristic equation f+a , f l+  ... + a+, = O gives a set of solutions for z. 

An absolute condition for stability of this discrete system would be that al1 roots have 

a modulus less than unity, a condition which corresponds to al1 roots be negative for 



stability of a continuous system. If the coefficients ai c m  be selected, then pole- 

placement on the z-domain is achievable. 

The general solution of an nth order system can be very involved. The following 

section describes the pole placement design approach for a 3" order system. 

Specificaily, a continuous state space mode1 of a pneumatic positioner is used with 

the state matrices defined as: 

a#= O 0.92 5.7*10-' r= O (4.30) 1 [O-" : 1 [Yj 
The discretised matrices 0 and r were obtained assuming a sampling time of 0.01 sec 

(lordanou and Surgenor, 199 7b). 

The canonical form for the discrete system is then obtained using the procedure 

described earlier and is found to be: 

A general sliding surface for an nih order system has [c, c, c, .. . cn]. It is quite 

common to normalize the sliding surface matrix to cn, since the solution of the 

characteristic equation is unaffected. Therefore, the SI iding surface for the 3rd order 

pneumatic system has: 

c = [c, c2 11 (4.32) 

The closed loop dynarnics during sliding were given earlier (Eq. 4.28) as 5 (k+I)= 

F (k) with mc as a function of the canonical state matrices 5 and rand the sliding 

surface matrix C . For the system at hand, Oc reduces to: 



This is an important result since it demonstrates that the closed loop behavior of the 

system during sliding is only subject to the sliding surface and not the system itself. 

It can also be seen that Oc for a general order systern simplifies to canonical form 

with the sliding surface coefficients cornposing the last row. 

The characteristic equation for the system under sliding (Eq. 4.33) cm then be shown 

as: 

z'+(c2-I) 2+(c,-c2) z -c, = 0 (4.34) 

If underdarnping is required in the closed loop response of the system, the solution 

should have a pair of complex roots. In this context, the general solution to any 3" 

order system can be given as: 

(2-p-iq)(z-p + iq)(z-a)=O (4.3 5 )  

with the restriction that al1 roots have a modulus less than uniiy for stability. Note 

that p,q and a are real, non-zero numbers. If the complex pair of roots are the 

dominant roots of the system, then the closed loop system behavior can be 

approxirnated as a 2"d order system. This can be done by setting a=l . If Eq. 4.34 is 

divided by z-1, then the resulting 2nd order polynomial defines the dynamic 

performance of the 3rd order system as a 2" order sliding surface or trajectory. 

4.2.ld Pole Placement for a Pure Second Order System 

A continuous second order transfer fùnction G(s) has a pair of complex roots s,.,: 
.I 

G ( S )  = with s,,, = -<a>,, f i r u , , J g  
s2 + 250,s + wn2 

where s denotes the Laplace transform in the continuous domain and should not be 

mistaken with the sliding function variable used in other sections of this chapter. In 



the discrete domain, where the z-transfomi z=& and with h as the sarnpling time, the 

solutions for s , ,  correspond to: 

r,, ,  = ë C " a h ~  L o, ,h Jq (4.3 7) 

which can be equated to polar ~ , , ~ = r L f  4 with r = ëNh and O = o,,h J I  - <' . By 

taking the ratio of r to 0and reananging, the damping factor < c m  be s h o w  as: 

If one considers the time constant of the poles, r = )&a and assumes that the f 2% 

settling time is 42, then the settling time for the 2"d order system can be shown to be: 

If Eqs.4.3 8 and 4.39 are rearranged for r and O, one can get: 

4.2.le Application to 3" Order System 

Eq. 4.35 is the general solution to Eq. 4.34 and can be expanded as: 

z' + d (-2p- a) + z (2pa+p2+q2) + (- p2a - q2 a) = O (4.4 1 ) 

Eq. 4.34 is the characteristic equation for the system under pure sliding. Its dynamics 

are a function of the nonnalised (with c,=l) sliding surface coefficients c,  and c2. 

When the ternis of Eq. 4.34 are compared to the terms of Eq. 4.41, then the following 

can be derived: 

c, = p2+q2 (4.42) 

c, = -2p 

The dominant z " ~  order polar roots z,,= pkiq cm be s h o w  in terms of the polar 

coordinates as pcrcos0 and q=r sine. Given r and 0 in tems of the desired settling 

time and damping (Eq. 4.40) and then substituting into Eq. 4.42, it can be s h o w  that 



the sliding surface coefficients of C = [c,  c, l ]  for a desired closed loop 

performance under sliding are: 
-8h - 

C, = e 'r 

Once the sliding surface has been defined with the use of a canonical system 

transformation as C = C r t ,  it can be substituted back into the original state space 

model. 



4.3 Switching Laws for DSLM 

The DSLM control law given as Eq. 4.27 is incomplete, as strictly speaking the 

control law for a sliding mode controller is composed of a linear part (Fq xfi)) and a 

nonlinear part (Fsw xp)). Or in other words the design of the sliding surface for Feq 

does not solely determine the performance. The complete DSLM control law is: 

u(k) = F x(k)  + F x(k) 
S W  

(4.44) 
e'? 

The relative size of the two parts can determine the nature of the response of the 

controller when used with systems with varying degrees of uncertainty. The linear 

control part, or equivalent control law, is generated from a linear model of the system 

and the sliding surface design. It acts to prevent the system from escaping from the 

surface, once on it. It has been shown that the equivalent control law Feq is the 

control part responsible to keep s(R+l)=s(k). This condition is necessary but not 

sufficient to ensure system convergence. 

The nonlinear control law, or sliding control law, directs the system states towards the 

sliding surface. The size of the switching gain depends on the desired rate of 

approach to the sliding surface and the magnitude of model inaccuracies and 

disturbances, as will be shown. 

Consider the discrete Lyapunov's function Y(&) = x s2(k)  with s(k)  = Cx(k) . A 

necessary condition for convergence, or stability is that V(k+ 1) < Y(%). In other words, 

s2fi+l)<s2fi) which can be simplified to Is(k+l) 1 +fi) 1. The sliding iùnction 

difference c m  be defined as Asfi+ 1) =s(k+ 1)-s(k) where s(k + 1) = Cx(k + 1 )  . It can 

then be shown that the convergence condition c m  be rewritten as: 

s(k)As(k + 1 )  < -%As2(& + 1) (4.45) 

The sliding function difference As(k+l) can also be given in terms of 0. r. C if one 

substitutes the discrete state space equation and sliding function s h o w  as Eq. 4.10 

and 4.1 1 into s(k + 1) = Cx(k + 1 )  : 



d r ( k  + 1 )  = C(Tu(k)  + (@ - I ) x ( k ) )  (4.46) 

If Feq, shown as Eq. 4.27 is substituted in Eq. 4.44 and rearranged, then the sliding 

function difference can be s h o w  as: 

A s ( k + l ) = C T F  x ( k )  
SW 

(4.47) 

where Fsw is a I xn matrix with elementsd such that 14- I=  1 jj+ I=Ks. The stability 

condition can then be written as: 

s ( k ) C f  F x ( k )  < - ( c f  )2 ( F x(k))' 
SW SW 

if one realizes that Crand Fs& are scalars. In fact: 

fI 

The final switching conditions have been shown per state to be: 

where $(k) c m  be found as: 

The overall settling tirne t, is composed of 2 parts, the reaching time s h o w  earlier as 

t ,  and the sliding settling tirne, t,. With the realization that the dominant component 

of the overall settling time is the sliding settling tirne, one can then design the DSLM 

according to ts. 



4.4 Sliding Gain 

Sloiine's original work on Sliding Mode Control focused on the continuous 

implementation (Slotirze, 1991). The procedure that is shown below presents some of 

the basic issues surrounding the sliding gain and can be extended to discrete systems. 

By definition, the stability of a CSLM controller, or the condition for sliding 

convergence is given by (Sloiine, 1991): 

ss < O (4.52) 

which can be also written as: 

ss s -qlAj (4.5 3) 

where q is a strictly positive constant that can be related to tr, the so-called reaching 

time or the time the system requires to reach the sliding surface: 

For a general nonlinear system with x(n)=/,+u, where/. and u denote plant dynarnics 

and control input respectively, the amount of uncertainty or estimation e m r  F, is 

bounded by: 

IT -LIS 4 
where j denotes the estimated plant dynamics. 

A typical structure for the control law of CSLM (Eq. 3.9) has, 

u = u, - K,sign(s) (4.56) 

For a second order system (n=2) the sliding surface can be defined by a series of 

coupled first-order filters as: 

and the first derivative of the sliding function becomes: 

S = f  4,  +A? (4.58) 

The condition for sliding convergence shown in Eq. 4.40 then becomes: 



which, when reananged, provides the first sizing guideline for the sliding gain as: 

K., 2 F, + rl (4.60) 

Based on the above, the size of the sliding gain should be increased in the presence of 

large systern unccrtainties andor a fast reaching time requirement. If there is 

uncertainty on the control gain of the nonlinear system x(*)=f+bu, where the 

uncertainty b is bounded by bmin<b<bma, then the gain margin P is defined as: 

Eq. 4.60 with the addition of the gain uncertainty changes to: 

K, 2 p K  + rl)+(P- I)Iû,I (4.62) 

In summary, in the case of CSLM, there is only one condition for sliding convergence 

or stability. The main conclusion is that the required size of the sliding gain increases 

with larger parametric uncertainty. The overall uncertainty originates from Fe, the 

estimation error in the nonlinear mode1 and l j l  a measure of the gain margin. 

Furthemore, if a small reaching time is required, the size of Ks should be increased. 

Furuta (1990) investigated the stability limits of the sliding gain for both CSLM and 

DSLM controllers. In discrete time, the state space has x(k+l)=@@)+Tu(k) and the 

sliding function has s@)=Cxfi). The control law has already been shown as 

ufi)=(Feq+Fsw) xfi) with the Feq defined as F , ~ = - ( C I ) - ~ ( ~ I )  (see Eq. 4.27). 

In Furuta's DSLM, the sliding convergence is assured by enforcing the condition 

V(k+l)<V(k), where Vfi) defines the LyapunovS fùnction V(k)=%s*(k). The 

convergence condition can be shown as: 

where As(k+l)=s(k+l)-s~).  From Eq. 4.35 and with Fsw=lf; ... fd, where 

Q+1=Q-l=Ks , the amplitude of Ks can be shown to be bounded by: 



O c c 

where Ctj=O Vj=2 ... n and Q , = l .  

If some uncertainty exists, Le. A@ = O-  0 ,  then A@=iïI ,  where D=[d, 4 ... d,J 

and bounded by It$l< 181. The permissible range for the sliding gain, earlier 

defined by Eq. 4.34, is now changed to allow for the uncertaintieslgl : 

In summary, Furuta generates a range for values of the sliding gain that ensure 

stability and convergence. The range for DSLM, much as in the case of CSLM 

depends on the pararnetric uncertainties and also on the sliding surface design, which 

indirectly links to the time domain performance requirements such as the settling 

time. 

Pieper and Surgenor (1992) present a switching function that is equivalent in form to 

the one presented in Furuta (1 990). The authors considered both the pseudo-DSLM 

(discrete implementation of CSLM) and /rue-DSLM (discrete mode1 and controller) 

and derived bounds for the sliding gain for both implementations. Bounds for the 

sliding gain are similar to the ones by Furuta where the bounds on the perturbation 

gain for discrete control are given as: 

Note also that i7ieper (1992) considers, without loss of generality that Eq. 4.65 can 

use f : ~ t , , l = ~  for i l=[  O . .  O 11 T. 
j=I 



In the case of the largest possible plant 

switching gain is reported as: 

perturbation, the upper bound for the 

(4.67) 

In the case where a dynamic, as opposed to a static sliding gain is used, the maximal 

robust dynamic optimal switching gain is reported as: 

where ~~r(k)ll,= x;., lx, (k)I  . In summary, Pieper generates upper bounds for a static 

and a dynamic sliding gain where plant uncertainties and time response requirements 

define the bounds. 

Hwang (1992) investigated the permissible size of the sliding gain for a DSLM 

controller. The switching laws are similar to the ones used by Furuia (1990), but the 

sliding gain is a dynamic gain. The stability limits for the varying sliding gain as 

suggested by Hwang are reported as: 

The gain Ks(k) is active if the following condition is satisfied: 

Sarpturk et al (1987) considered the stability limits for DSLM controllers. The 

sliding motion condition dr(k+l)s(k)<O is necessary, but is considered non-suficient 

for the existence of sliding motion. The condition, s h o w  earlier as Is(k+l) 1 +fi) 1, 
which results in Eq. 4.45 is alternatively broken down in 2 parts and is presented as: 

lm+ l)-sfi)j sig~(~&.)) < 0 (4.71) 

which is called the siidhg condition necessary to assure quasi-sliding motion, and: 



fs(k+ 1) +s(k)] sign(s&) 2û (4.72) 

which is called the convergence condition necessary to prevent a divergent motion 

from occuring. The two conditions define upper and lower bounds for the control 

input, which is tightly linked to the sliding gain Ks. Hence, the upper and lower 

bounds for the sliding gain. The implemented sliding action has u(k)=u+(k) for 

s(k)>O and u(k) =u-@) for s(k)<O and is similar to the traditional sliding action law as 

u(k)=Ks sign(s(k)) dictates. Note though that u+(k) and u-fi) denote the upper and 

lower bounds for Ks respectively. 

For sliding, a new function is defined for the input to the system: 

Ls = C[I- #] x(k) - Clit(k) (4.73) 

Using Eq. 4.7 1 and 4.73 a set of upper and lower bounds for the sliding gain are 

defined for sliding towards the sliding surface as: 

sup (cf u+(k)) < in/ &+), where Ls+ is evaluated for s(k) >O (4.74) 

and 

inf (Cr um(k)) > sup (Lsi), where Ls- is evaluated for s(k) <O (4.75) 

Definitions for the injimum' (m and supremum2 (sup) functions are given below. 

For convergence, a new function is defined for the input to the system: 

Lc = -Cl[+ CD] X# - CT'i(k) (4.76) 

Using Eq. 4.72 and 4.76 a set of upper and lower bounds for the sliding gain are 

defined for convergence on the sliding surface as: 

' inf(4 
Let A be an ordered set and X a subset of A. An element b is called o lower bound for the sct X if every 
element in X is greatcr than or equal to b. If such a lower bound exists, the set X is called boundcd 
below. Let A be an ordered set, and Xa subset of A. An clemcnt b in A is called a greatest lower bound 
(or infimum) for X if b is a lower bound for X and there is no other lowcr bound b' for X that is greater 
than b. We write b = i n m .  By its definition, if a grcatest lowcr bound exists, it is unique. 

* sup(X) 
Let A be an ordered set and X a subsct of A. An tlement b is callecl an upper bound for the set X if every 
element in X is less ihan or equal to 6. If such an upper bound cxists, the set Xis called bounded above. 
Let A be an ordered set, and X a subset of A. An eltmcnt b in A is called a Icast uppcr bound (or 
supremum) for X if b is an upper bound for X and there is no other upper bound b' for X that is less than 
b. We write b = sup(X). By its definition, if a lcast uppcr bound exists, it is unique. 



hf ( ~ r u + ( k ) )  > sup (Lc+), where L,+ is evaluated for s(k) >O (4.77) 

and 

sup (Cru-fi)) < inf (L&, where Ls- is evaluated for s(k) <O (4.78) 

The above control structure is not usehl for real time computations and Sarptltrk et cd 

considered a feedback control law of the form u(k)=-K(x,s) x(k) where the feedback 

control matrix contains the switching feedback gains as: 

k; ; s(k)x,  ( k )  > 0 K, ( x ,  S )  = 
kJ ; s (k )x ,  ( k )  < 0 

with the upper and lower bounds kf and kJ computed by Eq. 4.71 and 4.72 and the 

feedback gains v(x,,s) as computed using the hierarchy of controls methods of Utkin 

(1977).  The difference between the upper and lower bounds for the switching gains 

depend on the size of the disturbances and the sampling time. For small sampling 

periods, the bounds are driven apart and approach the bounds presented for CSLM, as 

the sampling period approaches zero. For large sarnpling periods, the lower and 

upper bounds move closer to each other. For a critical sampling period, no interval 

can be found between the upper and the lower bound for the gains which indicates 

marginal numerical stability. In conclusion, the lower bounds for the sliding gain are 

functions of the parameter variations and input disturbance bounds. The upper 

bounds appear to be mainly fict ions of the sarnpling period. 

Utkin (1 977) presents the control law in sliding mode as: 

with a, and B, as constant coefficients and as a small positive constant. For a 

sliding plane to exist, a set of inequalites for a, and fi need to be satisfied. These 

inequalities include the coefticients of the sliding surface. For a 3d order system in 

phase canonic form, the sliding fùnction is defined as: 



s = clxI + c2x2+x3 (4.8 1 ) 

with the strictly positive sliding surface coefficients cl and c, given as c, = ci . More 

importantly the switching elements 4, f i  are given as ai >-c, c, and P, <-cl c, which 

contrains the choice of the parameters of the sliding surface and also restricts the 

variety of sliding modes. Furthemore, the choice of these switching elements is still 

open for investigation since the only restriction is that they do not violate the 

condition for existence of the sliding plane. 



4.4.1 Permissible Range for the Sliding Gain 

The condition for sliding convergence was shown in Section 4.3 as Is(k+ 1) 1 c ls(k) 1. I t 

can be rewritten in terms of the rate of convergence, Ç as: 

where 15 1'1 for convergence of the sliding function towards the sliding surface. The 

rate of convergence cm be related to the reaching time ir. Consider the exponential 

decay in continuous time: 

where y0 denotes the initial condition for state y and ras the decay time constant. In 

discrete time notation, the decay can be written as: 

where h denotes the sampling tirne. If one considea the state change per single 

sarnpling tirne, then: 

At four times the tirne constant, it is assumed that the steady state is reached. This 

time denotes the settling time, or in this case the reaching time and can be found by 

combining Eq. 4.82 and 4.84 so that: 

The sliding function difference h(k+l) can be also written in terms of the rate of 

convergence as: 

As(k + 1) = s(k + 1) - s(k) 
= gs(k)  - s(k) 
= N k )  (5 - 1) 

For sliding convergence it was shown that &(k+1)<-2dr(k+l)s@) which when 

cornbined with Eq. 4.47 and substituted in Eq. 4.87 provides the following condition: 

- 2 s' (k) 
( f , x ,  + f2x ,  +g**f;,x.)' < (cr). {4-4 



withJ, /,, . . . f, as the switching gains (+Xs) for states x,, x,, . . .xn respectively. A 

new variable, yl is defined as: 

W j  = sign(fi) (4.89) 

where Wj denotes the state weight for state j and is a strictly positive constant. We can 

assume for now that the size of each of the state weights is the same, therefore Wj=l 

V j= l . .n .  The switching gains c m  then be shown as: 

Si= ~ K S  (4.90) 

where Ks is now a strictly-positive, static gain since its direction, or sign is subject to 

'q* 

If Eq. 4.90 is substituted in Eq. 4.88, the convergence condition is modified to: 

which when rearranged c m  be written as: 

The right hand side of Eq. 4.92 is always positive, since (1-0 is positive. Therefore, 

the condition c m  be written in terms of the sliding gain as: 

which defines the upper bound of the sliding gain for convergence stability. 

For position control systems and assuming that initially the system is at steady state, 

n 

i.e. xj=O V j d ,  the v,x, quantity that appears in Eq. 4.93 c m  be simplified io: 
j-1 



At the instant the setpoint changes, the value of the sliding function is s(0) =clx,(0). 

Combining Eq. 4.93 and 4.94 gives the upper bound for Ks for a position control 

system as: 

4.4.2 Varying Sliding Gain 

Once the size of the sliding gain is selected and the switching laws are set to activate 

the sliding action in the region outside the inherent boundary layer of the DSLM 

controller, a few improvements can be made. 

Iordanou and Surgenor (1997~)  demonstrated that instead of implementing a zero- 

action within the boundary layer, it is more beneficial to maintain the on-off switching 

of the sliding action but with a magnitude that decreases upon approach to the surface. 

Fig. 4. l a  shows the original switching behavior for state ~jp) .  The switching action is 

positive or zero or negative depending on the relative size of the inherent DSLM 

boundary layer 3 and the state CTs(k)x,(k) of Eq. 4.50 and 4.5 1. When this 

switching regime is implemented, the controller exhibits high controller action and 

sensitivity to the assigned value of Ks. To alleviate this high controller action, a varying 

sliding gain was incorporated in the sliding laws and is active only within the boundary 

layer. This varying sliding gain decreases the magnitude of the sliding action on 

approach to the sliding surface and can therefore prevent overshoot. The varying 

sliding gain inside the boundary layer has been shown to improve speed of response and 

decrease chattering. It also prevents a cyclic control signal which results in those cases 

where sensor noise causes DSLM to continuously switch between f values of Ks. 

Introducing a varying Ks within the DSLM's inherent boundary (k) eliminates this 

effect . 
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Figure 4.1 : DSLM Boundary Layer Action Modifications 



Fig. 4 Ib shows the modified switching behavior for state xj(k) where the zero action 

within the switching boundary is replaced by a proportional action, Le., the size of the 

sliding gain is linearly proportional to CTs(k)x j  ( k )  . The magnitude of the dope of 

the line enclosed within t8j is: 

The size of the switching action within the boundary layer can then linked to the 

magnitude of 1 s(k)x ( k )  1 : 

To allow Ks, to attain positive or negative values as dictated by the sign of 

s(k)x, (k) , the following modification can be made: 

- K,v KY, = - s(k)  x (k)sign(s(k) x (k ) )  
4 

If 9 is substituted into Eq. 4.98, then: 

which can be rewrîtten as: 

- K,s(k) x, (k)sign(s(k) ) sign(x, (k))) 
fi, = (4.1 00) 

x c W ~ ,  ( Q I  t l q k ) l  
j/= / 

With s(k) sign(s(k)) = ls(k)1, Eq .  4.100 can be simplified, and the size of the sliding gain 

within the boundary layer can be show to be: 

- - 2  IsWI 
J - Cr& 1 xd ( k )  l+ E 

fi, denotes the sliding gain within the boundary layer and a represents a small positive 

constant which prevents numerical instability caused by division by zero when at rest or 

when the operation point is on the sliding surface. Note also that the structure of Eq. 

4.10 1 is similar to the structure of Eq. 4.68 as proposed by Pieper (1992). 



One should recognise that the implementation of a varying Ks can be performed by 

gradually increasing the dope of the sliding gain within the boundary ?fi). A slope of 

zero would imply the use of zero action wthin the boundary layer, just as shown in 

Fig. 4.la A maximum permissible slope would give a sliding gain as show in Eq. 

4.10 1. Between the zero- and maximum- sliding gain slope, a scaling factor on the size 

of the varying gain can be introduced, shown as a dotted line in Fig. 4.1 b. Eq. 4.10 1 

changes to: 

where &,- denotes the varying sliding gain slope factor with a possible range of O<w. 

The switching laws of Eq. 4.47 remain the same but Ks inside the boundary layer is 

given by Eq. 4.102. If one sets b=I. O, then the switching laws become: 

if CTs(k)x , (k)  c -6, => f, = K,. 

Fig. 4.2 shows the simulated response of the pneumatic positioner with the DSLM 

switching laws as outlined in Eq. 4.50 and Eq. 4.103 as a dotted and dashed line 

respectively. The solid line response corresponds to the last modification of the 

swtching laws for DSLM, which will be presented in the next section. The simulation 

mode1 used is the same as the one presented in Chapter 2 for which the parameters are 

summarised in Appendix B. The setpoint change matches the one presented in 

Chapter 3. Cornparhg the original to the varying sliding gain response, one c m  see a 

considerable performance improvement due to the elimination of backlash in the 

control action which can cause sustained oscillations in the response. With the 

varying sliding gain inside the boundary layer, the action is made "continuous". 

Therefore, the position setpoint tracking improves considerably. 
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Figure 4.2: Effect of Boundary Layer Action in Simulation 



4.4.3 State Weights and the link to PVA gains 

To M e r  optimize the responses, control weights were assigned to the individual 

states. The switchings per state can be seen in Fig. 4. Ic. 

The switching laws of Eq. 4.103 are modified to: 

if C Ts(k)x,  ( k )  < -6, fJ = WJ K,$ 

if CTs(k)x, (k) > 6, 3 r. = -W, K, 

with Wj is the control weight on state j. 

In the work presented in Iordanou and Surgenor (1 997a) the system under control was 

a four state cart-pendulum arrangement. The control task was to control the position of 

the cart and the angle of the pendulurn, in both the hanging (vertically downwards) and 

the inverted (vertically upwards) configuration. The state weights for this system were 

selected under the premise that the main controlled variables were states 1 and 3, Le. 

position of cart and pendulum angle. These states are called the primary states. The 

weights for states 2 and 4, Le. cart velocity and pendulum angular velocity, which are 

obtained by direct differentation of the sensor outputs are subject to differentation 

noise, are called the secondary states. 

In the work presented in Iordanou and Surgenor (19976) the state weights implernented 

on the pneumatic positioner matched the gains of a traditional PVA controller that was 

used on the sarne system. 

The structure of a traditional PVA controller has been s h o w  as: 

u = K , ( x ,  - x ) -  K , , i -  KuX (4.105) 

with x as the controlled state (position) and xset as the position setpoint. Kp Kv and 

& are the proportional, velocity and acceleration gains respectively. For application 

to pneumatic systems, it is generally acknowledged that both velocity and 



acceleraiion are essential to ensure adequate performance (Burrows, 1972). The gains 

can be chosen so that the system can have a general predesigned performance with a 

specified settling time and overshoot. Typical gains for the PVA controller used for 

the system were Kp=l  7.0, Kv =O. 107 and Ka =O. 08. 

This suggested that the choice of the weights cm simply be an assignment of gains of a 

traditional linear controller of a PVA. These gains are seiected for a stable performance 

of PVA and result to a critically darnped response with a settling timr similar to the one 

for which the sliding surface of DSLM was designed. 

Since the DSLM control law has: 

u(k)  = %x(k)  + F,,x(k) (4.106) 

with the nonlinear sliding action as FSW= [ j; . . . f3 1 for 1 j; 1 = 1 1; 1 = KS. I f  one 

compares the control structure of the DSLM controller to the control structure of the 

PVA controller as shown in Eq. 4.105, then a relationship can be established between 

the size of the switching elements be r  state) to the linear PVA gains. Normally, the 

primary element of the equivalent control vector, n a m e l ~ f , ~ ,  is equal to zero. The 

reason is that the function of the equivalent control law is to prevent the system fiom 

escaping the sliding surface once on it, therefore it acts only on the higher States, 

narnely velocity and acceleration if the controlled state is position. The general 

structure of the nonlinear switching action can be written as: 

Fw =[&fi 4f2 **3,/;,l (4.107) 

with switching elementsx as Ms. 

The relationship between the DSLM state weights (gains) and the PVA gains cm then 

be presented as: 

K, = W, Ks (4,108) 



with as the PVA or linear state controller gains. For the system at hand, where the 

primary or controlled state is position and with velocity and acceleration composing 

the higher states, Eq. 4.108 can be written as: 

The response of the pneumatic positioner with the addition of state weights was 

shown in Fig. 4.2 as a solid line (lordanou und Surgenor. 19976). Cornpared to the 

original (dotted line) and the varying sliding gain (dashed line) irnplernentations, the 

performance of the controller with addition of state weights shows a very good 

setpoint tracking, little oscillations, good sliding function convergence and decreased 

control action. The setpoint requirements for a sliding settling time of 0.2 sec and a 

damping factor of 1.0 are met. Furthemore, the pneumatic positioner response is 

linear despite the position and direction dependency which was demonstrated in 

Chapter 2. 

4.5 Simulation Results using the Pole Placement Technique 

The following section will demonstrate some DSLM tuning and stability issues. The 

DSLM controller was implemented in simulation to control the position of the piston 

of an asymmetric pneumatic cylinder, similar to the one described in Chapter 2, 

technical specifications for which are listed in Appendix B. Unless specified 

otherwise, the benchmark conditions used in the simulations presented are as follows: 

The sliding surface is designed for a darnping factor C of 1.0 and a settling 

time ts of 0.2 sec. 

The nominal payload mass Me is 8.5 kg. Robustness tests were implemented 

with payloads of 23.0 and 2.2 kg. 

The sampling time h is 0. Of sec. 

The sliding gain K' is 1. O (nornalised) . 
The equivalent gain action, ueq is active. 

The state weights are W,=I 7 (KJ, W2=0. 107 (K,) and W3=0.08 (KJ 



Important issues that will be addressed are: 

The effect of the sampling time on the systern response (Fig. 4.3) 

The effect of the sliding gain on the system response (Fig. 4.4) 

The effect of the sliding gain and state weights (Fig. 4.5) 

The effect of ueq (Fig. 4.6) 

The robustness (dlfferent payIoads) of DSLM with h= l0ms (Fig. 4.7) 

The effect of the sliding surface design parameters (Fig. 4.8 and Fig. 4.9) 

The effect of static fiction on the system response (Fig. 4.10) 

The effect of noise and filtering on the system response (Fig. 4.1 1 )  

The design procedure of the sliding surface and other aspects of DSLM is shown in 

Fig. 4.12. 



4.5.1 Sampling Time Tolerance of DSLM 

As already stated, the main advantage of DSLM over CSLM is the ability of DSLM 

to provide stable responses despite greatly increased sampling times. The greater 

robustness of DSLM with respect to sampling times is due to the fact that the 

switching action is derived from a discrete Lyapunov's function. 

Fig. 4.3 illustrates the effect of the sampling time, h. The response of the controller 

with I ms, 10 ms and 50 ms sampling times is shown as a dotted, solid and dashed 

line, respectively. Note that the responses with 1 and 10 ms appear very similar and 

satisfy the sliding surface performance requirements. Recall that the canonical 

system state space matrices are different for each tirne step (Eq. 4.43), which provide 

a different set of sliding surface coefficients and transformation matrices for each 

tirne step. Furthemore, the state weights have been shown as a function of the PVA 

gains and the sliding gain, Ks (Eq. 4.109). The sliding gain has been s h o w  to have 

an upper bound linked to the rate of convergence 5 (Eq. 4-93, which in turns is a 

function of the sarnpling time (Eq. 4.86). Therefore, the state weights need to be 

adj usted for each sampling time. 

As a test for the suitability of DSLM in the presence of large sarnpling times is the 

implementation with a sampling time of 50 ms (dashed line). Despite the large steady 

state error, which appears when the positioner is required to move towards the end of 

the stroke, the response with h=50ms is stable throughout the whole test. Arguably, 

the positioner meets the setpoint requirements. 

The ability of DSLM over CSLM to provide stable responses despite greatly 

increased sarnpling times, can be seen if one compares Fig. 4.3 (for DSLM) with the 

conesponding Fig. 3.3 (for CSLM). In Fig. 3.3, CSLM fails dramatically to maintain 

performance stability at 50 ms. Though not shown, the linear PVA controller also 

fails under the 50 ms stability test. DSLM, on the other hand, not only ensures 

stability but the response can be considered satisfactory. 
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4.5.2 Effect of the Sue of the Sliding Gain 

The dominant part of the control law of DSLM is the switching action. Therefore, 

one would expect that the size of the sliding gain would greatly affect the 

performance of the system. Eq. 4.95 shows that the permissible maximum size for 

the sliding gain is inversely proportional to the size of the valve in use. A properly 

selected valve is one for which the size is selected to match the desired speed of 

response requirements; in other words, a settling time requirement. For a properly 

selected valve, one can use the size of its permissible input as the size of the sliding 

gain. If al1 is normalised, then the suitable size of the sliding gain is 1.0. 

Fig. 4.4 shows the effect of the size of the sliding gain Ks on the response of 

pneumatic positioner. The solid, dotted and dashed lines correspond to sliding gains 

of I. O, O. 5 and 0.25, respectively. Since a 2. O scfm valve is used in simulation, these 

gains correspond to valve sizes of 2.0, 1.0 and 0.5 S C ! ,  respectively. The 2 scfm 

valve was selected to provide this speed of response. Clearly, the solid line response 

is the one that best matches the performance requirement. The performance of the 

system with sliding gains of 0.5 and 0.25 degrade slightly, but this is to be expected 

because of the inherent link between valve size and sliding gain. A smaller sliding 

gain would, in fact suggest a smaller valve. A smaller valve would cause a slower 

response, if the settling time requirement is too demanding. 
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Figure 4.4: Effect of Size of Sliding Gain 



4.5.3 Effcct of the Size of the Sliding Gain and State Weights 

The responses presented in Fig. 4.4 were generated with activated state weights. Fig. 

4.5 shows the simulated pneumatic system response for 3 cases and demonstrates the 

cffect of the state weights and the sliding gain. 

The solid line response presents the case where state weights are inactive (W, = IV2 = 

W, = 1.0). The switching laws were given in Eq. 4.101 and graphically, the 

controller's switching regimc was shown in Fig. 4.lb. The significance of this 

response is that it illustrates that even with the aid of the varying sliding gain, the 

performance of DSLM is limited and does not meet the requirements set by the 

designed sliding surface unless state weights are used. 

The dotted line response presents the case where the state weights are active and 

Ks=i.O. The use of state weights considerably improves the performance of the 

controller. The state weights are given values that correspond io gains of a suitable 

PVA, as shown in Eq. 4.103 and 4.1 10. For Ks=i (corresponds to the fully open 

valve) and using Eq. 4.107, the state weights are W, =17.0, Kv =O. 107 and &=O. 08. 

The dashed line response presents the case where the state weights are active but 

&=O.S. The state weights used are the same as appeared previously at K,=I.O. 

Fig. 4.5 dernonstates that the use of state weights and a varying sliding gain do not 

guarantee good performance unless a sliding gain that corresponds to the maximum 

opening possible for a suitable valve is used in conjuction. A suitable valve is one 

that provides the necessary air flow to match actuator speed requirements of a 

pneumatic c y linder. 
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4.5.4 Sliding Versus Equivalent Control Actions 

Fig. 4.6a shows the equivalent (dotted line) and sliding action (dashed line) 

contribution to the overall control law as was seen in Fig. 4.2. One first observes the 

smooth profile of the equivalent control action. It is a linear control action with 

velocity and acceleration components that are active once the system escapes the 

sliding surface. This is the reason why there is no equivalent action at the instant 

when the setpoint changes. To better observe this effect, Fig. 4.6b zooms into the 

first 0.3 sec of the overall test shown in Fig. 4.6a. At O. IO sec, the position setpoint 

changes. At the next instant, Le. at O. I I  sec, the switching action (dashed line) is 

energised. The pneumatic system requires a couple more time steps before it gets 

sufficiently charged, to initiate motion. This is due to the delay associated with air 

compressibility (charging the cy linder) and pay load inertia. Once velocity andor 

acceleration are detected (at 0.13 sec) and the system starts to move away from the 

sliding surface and the equivalent action (dotted line) is energised. 
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Figure 4.6: Sliding Versus Equivalent Control Action 



4.5.5 DSLM Robustness 

Fig. 4.7 shows the simulated responses of the pneiimatic positioner for a set of three 

payloads. The DSLM controller was designed for a payload of 8.5 kg (nominal 

payload) which is shown as the dotted line, and for payloads of 2.2 kg (low payload) 

and 23.0 kg (high payload) which are shown as dashed and dotted lines, respectively. 

Despite the large rnodel mismatch in both the low and high payload cases, the 

responses roughly meet the response requirements set for the nominal payload. 

If one compares Fig. 4.7 for DSLM and Fig. 3.7 for CSLM, the robustness advantage 

of DSLM over CSLM for higher sampling times is in evidence. CSLM exhibited 

increased sensitivity and reaches marginal stability at the low payload robustness test, 

which can be explaincd if one realises that the low payload system has a smaller open 

loop time constant. CSLM therefore fails because of an insufficient sampling time. 

DSLM on the other hand, cm still maintain stability with greater sampling times 

which is the reason why the responses of Fig. 4.7 are stable and fit the set of 

requirements. 
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Figure 4.7: DSLM Robustness Test 



4.5.6 Sliding Surface Design Parameters 

Fig. 4.8 shows the simulated response of the pneumatic positioner with the sliding 

surface designed for a settling time, t ,  of 0.2 sec and for a set of three damping 

factors, of 1.0 (solid line), 0.7 (dotted line) and 0.5 (dashed line). 

Fig. 4.9 shows the simulated response of the pneumatic positioner with the sliding 

surface designed for a settling time, ts of 0.3 sec and for a set of three damping 

factors, <of 1.0 (solid liiie), 0.7 (dotted line) and 0.5 (dashed line). 

Despite the large sampling time of 0.01 sec, the controller is able to meet the design 

requirements in both Fig. 4.8 and 4.9. The roots of the 3" order system under pure 

sliding had been selected using the pole-placement method and were designed for a 

dominant 2"d order response. The 3" root was chosen as a fast 1' order dynamic with 

a time constant 10 times faster than the time constant of the 2" order system. 

It can be seen that the despite the large sampling time. the requirements for settling 

time and damping have been fùlfilled by the controller. Figures 3.9 and 3.10 show 

the respective responses using CSLM but the sampling time used was 0.001 sec. 

CSLM was unable to fûlly meet settling tirne and damping requirements with a 

sampling time of 0.01 sec. 
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4.5.7 Static Coulomb Friction Result 

A static friction test was performed on the experimental setup. It was determined that 

the setup exhibited directional static coulomb friction coefficients. In simulation, the 

higher of the 2 directional static fiction coefficients was used. The maximum static 

coulomb friction coefficient was determined to have F,,=I-IN. An average static 

coulomb coefficient was determined to have Fm=ION. 

Fig. 4.10 demonstrates a gradua1 performance deterioration with increased static 

coulomb fiction. The solid line represent the response of the system with no static 

coulomb friction, Fcs=ON. The dotted and dashed lines give the response of the 

system with Fcs=5N and F,,=ION, respectively. The higher the static friction, the 

greater the likelihood of stiction which in closed-loop causes increased activity in the 

control action. The stick-slip phenornenon can be seen by the erratic position 

response. 

One observes that, when Fig. 4.10 for DSLM is compared with the corresponding Fig. 

3.1 1 for CSLM, that DSLM can handle static friction better than CSLM. 
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4.5.8 Effect of Sensor Noise and Filtering on DSLM 

Noise in the position, the sensed variable in the actual apparatus was determined by 

examining the datafiles obtained from open-loop experimental tests on the setup. It 

was determined that a f 0.5% sensor noise was present in the recorded position when 

the control signal was kept constant. The 20.5% noise was of full scale with constant 

variance. In order to provide a conservative result, it was decided to use a value of 

I 1.0% for the noise level in simulation. Fig. 4.1 1 shows in dashed lines the response 

of the system with no noise. 

In order to show the effect of noise in simulation, the position as obtained by the 

nonlinear state space mode1 was "compted" with a f 1.0% white noise signal. The 

controller's response is shown as a solid line and can be seen to degrade relative to 

the clean dashed line responses. The effect of noise can be better appreciated if one 

observes the velocity plot (recall that velocity is obtained by di fferentiation of the 

position signal). With the t 1.0% position noise, velocity noise is amplified more 

than &1.0%. Acceleration noise is amplified even further. The use of a filter can 

decrease the effects of sensor noise, but not without a negative side effect. A lag can 

be seen in the dotted response of Fig. 4.1 1. This is due to a 2" order Butterworth 

filter being added to filter the simulated noise with a cut-off fiequency of I5 Hz. The 

response is smooth again (compare solid and dashed lines), but with a O. I sec lag. 

If Fig. 4.1 1 for DSLM is compared with Fig. 3.12 for CSLM, one can see that both 

perfom equally well when it comes to noise rejection. 
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4.6 Summary 

A number of papen on the subject of DSLM were reviewed and discussed in this 

chapter. The authoa showed how a traditional DSLM is implemented. Some authors 

provided techniques for improving the existing algorithm with added features such as 

state estimators, varying sliding gain, state weights, filters, etc. Just as in CSLM, the 

design of the DSLM controller was broken in two main parts, the switching control 

laws and the design of the sliding surface. Some existing techniques for 

determination of the sliding surface were presented. These techniques were tested in 

simulation and evaluated. A novel pole-placement technique for designing the sliding 

surface of a general nth order system, which then focused on a typical 3rd order 

pneumatic system, was shown. The technique enables the designer to select slidinp 

surface coefficients which would result in more traditional time performance 

parameters such as settling time and maximum overshoot (or damping). Furthermore, 

a varying sliding gain and state weights were implemented to improve the 

performance of DSLM. These state weights have been linked to gains of a linear 

PVA controller. 

Fig. 4.12 illustrates the general design guidelines for a DSLM controller. The 

procedure for generating the canonical system matrices and the transformation matrix 

for the discrete system is shown in the left column of the figure. The right column of 

the figure shows the procedure for the design of the sliding surface of the canonical 

discrete system. The two columns combined can generate the sliding surface matrix, 

C which is used in both the switching and the equivalent control action of DSLM. 

The simulation responses with the pole placement technique for sliding surface design 

show good trajectory tracking and design flexibility. DSLM can be seen as a robust 

controller that is able to maintain stability and good performance even at higher 

sampling times. DSLM also exhibits good behavior in the presence of high static 

friction and sensor noise. Its main advantage over CSLM is its robustness at higher 

sampliiig times. 
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CHAPTER 5 

EXPERIMENTAL AND SIMULATION MSULTS 

The chapter will present open loop results for the pneumatic system, which will then 

be used to validate model parameters in simulation. These model parameters include 

the static coulomb, dynamic coulomb and viscous forces and coefficients. The 

effective payload masses will also be determined. 

The experimental setpoint profile is first selected. A typical center-le#-center-right- 

center setpoint change is examined, from which the most demanding 2-step change 

window was selected. Next, a series of tests are perfonned to confirm the robustness 

of 3 controllers: the PVA, the CSLM and the DSLM. These tests evaluate the 

controllers under different scenarios: double bore - same stroke and double stroke - 
sarne bore. Finally, how the results relate to issues presented in Chapters 2, 3 and 4 

will be highlighted. 

5.1 Experimental Setup 

A schematic diagram of the experimental setup is s h o w  in Fig. 5.1. The cylinder is 

connected to a payload which is fiee to move on a horizontal track and also moves a 

continuous Mt .  The arnount of inertial load and "dead" load driven horizontally can be 

varied. The belt is elastic but pre-tensioned to provide a near rigid coupling to the 

inertia load. The position of the belt, and consequently that of the cylinder, is measured 

by a rotary potentiometer. The cylinder air pressures and supply pressures are also 

measured. An 80-386 microcomputer is used for control and data acquisition and is 

able to generate a sarnpling interval of 10 ms. A U B M S T E R  data acquisition board has 

an accuracy of *O.O5%. When combined with the accuracy of the rotary potentiometer, 

the position can be measured to within *O. 1 mm. The velocity is obtained by 

differentiation of the position signal and subsequently filtered digitally with a second 

order Buttenvorth filter. The acceleration is obtained by differentiation of the velocity 

signal. 
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Figure 5.1 Experimental Apparatus 

5.2 Valve Modeling 

The valve used is a linear HR-Textron servovalve (part #27A1OF-3DOI) and is 

capable of supplying 1.88 [/sec (4 scfin) of air at a supply pressure of 689.5 kPa (100 

psi). The valve is positioned by an electric servomotor via a mechanical eccentric and 

generates flows that are linearly proportional to the valve input. It is the sarne valve 

presented in simulation in Chapters 2, 3 and 4. Although designed as a hydraulic, the 

HR-Textron servovalve can be used for pneumatic systems. Intemal leakage for 

pneumatic use is negligible. Another advantage of this valve is that there are no air 

quality restrictions. Therefore, the air supply does not have to be oil free or filtered. 

A slight overlap provides a small but measurable deadband on the order of G . 5 %  or 

f O. 1 v. The fact that there is an overlap formulates a closed-center configuration and 

gives rise to certain dynamic characteristics described in Chapter 2. Technical 

specifications for the valve can be found in Appendix A. 

Typically, the relationship between flow through an orifice and the orifice area is 

nonlinear. In most valves, there is a linear relationship between valve opening and 



valve spool position. The control input to the valve is, in most cases, an electrical 

signal which activates the valve spool. If a linear relationship between the output 

flow and the control input to the valve spool is desired, one can either modify the 

valve opening area or modify the control input by use of an intemal positioning 

circuit. The latter is the case for the HR-Textron valves. The control signal to the 

valve is fed through valve electronics, which linearize the relationship between output 

flow and the control signal. 

in order to confirm the linearity of the HR-Textron, a test was performed. The control 

input to the valve was increased at discrete intervals while the flow was being 

monitored by use of flowmeters. A total of three flowrneters were used. Each had a 

different range and thetefore a different sensitivity. The large-range flowmeter can 

read flows up to 3.77 l'sec (8 scfm), the mid-range can read up to 1.57 Usec (200 scjh 

or 3.33 scfm) and the small-range flowmeter cm read up to 0.39 l/sec (50 scjh or 

0.833 SC fm). All three ilowmcters were required since for medium flows (< 0.4 7 [/sec 

or C I  scfm), the peg of the large-range flowmeter was not responsive, and for small 

flows ( ~ 0 . 2 3  !/sec or 4 5  scfm) the peg of the mid-range flowrneter was not 

responsive. Table 5.1 gives the valve input and the resulting flows using the three 

flowmetea. The supply pressure was 620 &Pa (90 psi). 

Figure 5.1 shows the flow (scfm) through the valve as a function of the control input 

(volts). The large-dotted lines correspond to the large-range flowmeter (8 scfm), the 

solid lines correspond to the mid-range flowmeter (3.33 scfm), and the small-dotted 

lines correspond to the small-range flowmeter (0.833 scfm). A linear relationship 

between flow and control input can be seen and the valve supplies the specified rated 

flow of 1 scfm at the maximum input of I5 v. 



Table 5.1 Flow versus Valve Control Input 

Figure 5.2: Flow vs. Control Input for HR-Textron 4 



5.3 Actuator Modeling 

An asymmetric, or rodded cylinder is used in the experimental setup. It is a BIMBA 

cylinder ( part # 095-DX) which has a stroke of 127 mm (5 in), a bore of 26.9 mm 

(1416 ") and a piston diameter of 7.9 mm (0.312"). The actuator is a low friction 

cylinder with a specified breakaway pressure of 34.5 k h  (5 psi) at no load. 'îhe 

breakaway pressure is the minimum pressure required to initiate motion in a frictional 

cylinder. 

More technical specifications on the BIMBA cylinder (part # 095-DX) can be found in 

Appendix A. In later sections of the chapter, the issue of robustness will be 

investigated. The performance of a set of different cylinders will be compared to the 

BIMBA cylinder @art # 095-LX). The performance of BIMBA @art # 095-DX) 

becomes the benchmark and the cylinder is called the nominal cylinder. 

5.3.1 Static Coulomb and Dynamic Coulomb Forces 

Fig. 2.4 showed typical friction versus speed plots, with the bottom subfigure being 

the simplified friction model. To cumpletely model friction, one needs to identifj 

three components, two of which are coulomb friction components, namely static 

coulomb friction, Fcs and dynarnic coulomb force, Fcd. Now Fcs can be thought of 

as the breakaway force, whereas Fcd is the running friction with constant amplitude 

and a sign that depends on the direction of motion. The third friction component 

stems the viscous friction coefficient, fv, which increases linearly with speed. 

In order to estimate the values for the Fcs and Fcd a technique first documented for 

pneumatic systems by Abou-Faissal (1997) is used. The procedure consists of 

applying a positive ramp control signal until the breakaway force is reached and the 

piston starts moving. The pressure in the cylinder chambers is measured at that 

instant and is then used to determine the net force that acts on the piston. That force 

equals the static fiction. Once motion is detected, the ramp is reversed and 

consequently the velocity starts dropping. When the piston reaches a relatively low 



velocity and is about to stop, the pressure force is measured again to give an estimate 

of the coulomb dynamic friction. It is assumed that at low speed the contribution of 

viscous friction force is negligible. To investigate whether fi-iction in an asymmetric 

cylinder is linear, the test was perfonned for both extension and retraction of the 

piston to detemine the directional values of Fm and Fd. 

Fig. 5.3 shows the response of the pneumatic system under the extension and 

retraction coulomb friction tests, in solid and dotted lines, respectively. Frorn the top 

to the bottom of the figure, one has the position Y, the control signal LI, the pressure 

in the small chamber Pb, the pressure in the large chamber Po and most importantly, 

the coulomb friction response FE. The latter is calculated by taking the difference of 

Pb and Pa at  the instant motion is detected and accounting for difTerent areas. The 

first observation is that friction appean to be direction dependent. 

For extension, the calculated average static coulomb force Fm was 4.25 N with a 

standard deviation of 0.85 N. The calculated average dynarnic coulomb force F d  

was 0.87 N with a standard deviation of 0.53 N. 

For retraction, the calculated average static coulomb force Fm was 8.62N with a 

standard deviation of 0.52 N. The calculated average dynamic coulomb force Fcd 

was 6.97 N with a standard deviation of 0.81 N. 
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5.3.2 Viscous Friction Coefficient Vv) and Effective Mass (Me) 

In Chapter 2, Eq. 2.29 presents the 3" order model for the pneumatic positioner. The 

viscous friction coefficient is given as f,. A number of techniques are available for 

experimental determination of the viscous friction coefficient. Abou-Faissal (1 997) 

reports in his thesis a technique for determining the viscous force coefficient for a 

pneumatic actuator. The method is based on the fact that if the piston is forced to 

move at constant speed, then the acceleration becomes zero and the viscous force 

coefficient c m  be related to the differential pressure force, the dynamiç coulomb 

force and the speed of the piston. The test requires a constant step input and when the 

piston reaches constant speed the viscous force coefficient can be calculated. Aboir- 

Faissal implemented the technique on two FESTO pneumatic actuators of 700 mm 

and 400 mm strokes. Both actuators were long enough for constant speed to be 

reached and enabled the viscous force coefficient to be obtained. This is not the case 

for the BIMBA actuator which at a mere 120 mm of strokc is just too small for such a 

test to be performed. 

A different technique for detemining the viscous force coefficient was therefore 

used. Eq. 2.37 presents an ultimate gain formulation for a P-only controller in use 

with the 3" order pneumatic model of Eq. 2.29. A relationship between the ultimate 

gain and the viscous friction coefficient c m  be seen. The same equation indicates 

that the ultimate gain also depends on the effective mass payload, Me. 

The method for detemining both the viscous friction coefficient and the effective 

mass is as follows. A P-only controller is used for control. Initially the payload rests 

a small distance away from the setpoint. Once the test is initiated, the controller 

senses the enor in the position and starts to move towards the setpoint. If Kp is 

considerably less than the ultimate gain, it will approach the setpoint with no 

overshoot and possibly a steady state error. If Kp is increased (but is still less than 

the ultimate gain), oscillations will occur about the setpoint but the system will 

eventually settle. If Kp is increased further, marginal stability will eventually be 



reached which means that the system will enter a state of sustained oscillations. The 

amplitude and period of these oscillations can be related to the viscous friction 

coefficient and the effective mass. 

In simulation, the same test was performed. In order to properly scale the ultimate 

gain for use in simulation, the following was considered: 

+ In the experiment, the control input to the servovalve ranges between -Sv to Sv 

and the position signal ranges between Ov to IOv. Therefore the input and 

output ranges are 10 ( 5 ~ - ~ 5 v ) }  and 10 { IOv-Ov), respectively. The ratio of 

the input over the output is I .  

+ In simulation, the control input to the servovalve ranges between - I V  to IV  

(normalized) and the position signal ranges between -0.06m to 0.06 m (1 2Omm 

stroke). Therefore the input and output ranges are 2 and 0.12, respectively. 

The ratio of the input over the output is 16.67. 

Therefore, Kp=l in the experiment corresponds to a Kp= 16.67 in simulation. 

Fig. 5.4 presents the marginally stable position response of the pneumatic positioner, 

in the experiment with an unknown payload mass (large-dotted line). The ultimate 

gain used was 3.2. The frequency and amplitude of the oscillations can be determined 

from the Figure as 9.2 Hz and 6.5 mm respectively. The sarnpling time was 10 ms. 

Fig. 5.4 also shows the simulated response of the pneumatic positioner (solid line) 

with the mode1 as given in Chapter 2 and listed in Appendix B. The gain used was 

53.3, which was determined by considering the scaling factor of 16.67 required to 

convert from experiment to simulation and given the experimental ultimate gain of 

3.2. By adjusting the effective payload mass and the viscous fnction coefficient 

entries in simulation, the amplitude and frequency of the oscillations of the 

marginally stable system can be clianged. For an fv of 63 Ns/m and an Me of 2.2 kg ,  

the amplitude and frequency match very closely the ones obtained in the experiment 

(large-dotted line response). 
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Figure 5.4: Viscous Friction Force and Effective Mass Payload - Experiment vs. 
Simulation 

Two sensitivity tests were then performed that set out to evaluate the accuracy of the 

model: an intentional 5% increaîr in the value of fv (66. I S  N s h )  and a 5% decrease 

in the value of Me (2.08 k@. The mponses are shown in dotted and dashed lines, in 

Fig. 5.4 respectively. One can realise that even a f5% error in the value of f, or in 

the value of Me result in approximately 50% decrease in the amplitude of oscillations 

and a phase shift on the order of 180". Both are large deviations from the nominal 

response. 

Note also that the phase shift in both the control signal and the position response of 

the experiment (large-dotted line) with respect to the control signal and the position of 

the nominal design in simulation (solid line) was intentional in order to better 

illustrate their individuai performance. 



In order to check whether the determined effective mass is realistic, the block the 

mass, the carriage and rollers, and the extension rod were weighed. The weights for 

each me 1.12 kg, 0.19 kg, respectively and the total weight is 2.05 kg. The small 

difference in the measured weight to the effective mass payload determined by the 

viscous friction rnethod is only 0.15 kg, which could be attributed to the inertia of the 

potentiometer be!t. Therefore, the determined values for the viscous coefficient and 

the payload mass can be considered as good approximations for the physical system. 

The cornponents are shown in Fig 5.5. 

, piston cylinder 
block mass , r. extension rod ., 1- 

' - inertia load potentiometer A 

Figure 5.5: Effective Mass Components 

Figure 5.6 shows a robustness test for the DSLM controller as designed in Chapter 4. 

The controller was designed for a settling time of 0.2 sec and damping of 1.0. Note 

that for this test the controller was designed for a payload of 8.5 kg, which was 

experirnentally done by adjusting an inertial load as s h o w  in Figure 5.5. The 

effective payload was determined using the procedure outlined in Section 5.3.2. 

The response of the nominal payload is shown as a solid line. The responses for the 

low payload (2.2 kg) and the large payload (23 kg) are shown in dotted and dashed 

lines, respectively. Note that the DSLM design requirements are roughly met in al1 

cases, and the steady state errors were determined to be under 0.2 mm, which is a very 

good result. 
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Figure 5.6: Robustness Test with DSLM, Experirnent 
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5.4 Choicc of Setpoint change 

Most pick-and-place applications start with the end effector at one location, then the 

end effector rnoves to another location and finally returns to the initial location. To 

mimic this typical industrial scenario, a 2-step setpoint change was chosen to be 

implemented in the experimental tests. There exist though an infinite number of 

different setpoint change scenarios. Chapter 2 demonstrated that the natural 

fiequency and damping in pneumatic cylinders depend upon both the direction of the 

move (for rodded cylinders) and the location of the move (for rodless and rodded 

cylinders). For example, Fig. 2.9 showed that for a symmetric cylinder, the minimum 

natural fiequency occurs at the center of the stroke and the maximum at the ends of 

the stroke. In order to test the controllers under these nonlinear conditions, 2 distinct 

locations were initially chosen, the center and the end of the stroke. The 4-step step 

change s h o w  in Fig. 5.7 was used to test these pick-and-place scenarios. 

-5 - 
t 1 l 

O 0.5 1 1.5 2 2.5 



The total stroke length for the BIMBA cylinder is 127 mm. Thus it has 63.5 mm of 

travel on either side of the ccnter position. To prevent the piston from hitting the ends 

of the cylinder, the setpoints are selected to be a safe distance away from the 

endstops. In this case, 40 mm of travel is considered appropriate. In Fig. 5.7, one can 

see four distinct setpoint change scenarios: O to #O mm, 40 to O mm, O to -40 mm and 

-40 to O mm. These are dcnoted as scenarios I to 4, respectively. 

The controller used in the test shown as Fig. 5.7 was a PVA controller. This linear 

controller wsls chosen because of its low robustness relative to CSLM and DSLM. I t  

could therefore better demonstrate the relative performance of the four scenarios. For 

this asymmetric cylinder, retraction of the piston causes appreciable steady state error; 

1.7 mm and 1.5 mm during setpoint scenarios 2 and 3 respectively. Setpoint scenario 

4 indicates a significant steady state error of 0.3 mm but aiso ovenhoots of 5%. 

1 I 1 1 

3 

-5 , - 
1 1 t 1 
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Figure 5.7: CStep Setpoint-change Scenmio with PVA, Experiment 



Since setpoint scenarios 3 and 4 appear to be the areas of increased control difficulty 

and iower performance, it was decided to use them as the benchmark setpoint change, 

with one slight modification. During experimental robustness tests, the possibility of 

large overshoots is increased. For this reason, to avoid hitting the ends of the 

cylinder, the setpoint change was modified slightly: the piston starts at -32 mm, 

moves to the center and then back to -32 mm. In the case of the nominal B/MB/! 

cylinder, the -32 mrn location corresponds to the quarter length of the stroke. 

5.4.1 Closed Loop Experiment and Mode1 Validation 

Once the friction forces and coefficients are calculated, a mode1 validation test in the 

closed loop is performed. In the open loop, the typical control input step-sequence 

failed to provide a good result, because of the fact that an asymmetric cylinder 

behaves differently in extension than in retraction. Due to the unequal cylinder 

chamber areas, the piston moves faster in extension than in retraction. As a result, the 

piston moved closer and closer to the end of the stroke at each step change. This drift 

meant that a test of adequate duration could not be realised. 

Fig. 5.8 shows the simulated result for the step change described in Section 5.3. A 

payload with an effective mass of 2.2 kg was moved fiom the quarter length position 

of an asymmetric cylinder (-32 mm) to the center and back. The nominal BIMBA 

cylinder was used. A viscous force coefficient of 63 Ndm, a dynamic coulomb force 

of 3.9 N (average of extension and retraction dynarnic coulomb forces) and a static 

coulomb force of 6.4 N was used (average of extension and retraction static coulomb 

forces). Finally, a linear servovalve (HR-Textron) is modelled with a valve opening 

of 2.13 mm2 capable of producing 1.88 Usec (4 scfm) of maximum flow at a supply 

pressure of 689.5 kPa (1 O0 psi). A sampling time of 10 msec is used that matches the 

speed of the microcomputer / data acquisition system. A DSLM controller is applied 

which has k e n  designed for a sliding settling time of 0.2 sec and a darnping of 1.0. 

The state weights used were W,=22, W2=2.S and W,=O.35, which for a nomalized Ks 

of 1. O correspond to Kp '22, Kv=2. 5 and &=O. 35, respective1 y. 



Figure 5.8 shows the response of the expenment under the same setpoint change 

scenario. One can see a good match between experirnent and simulation. This leads 

to the conclusion that the mode1 can be used to predict performance with different 

controllers for this particular setpoint scenario. This is not çlaimed to be proof that 

the mode1 is valid for different setpoint scenarios. Therefore, testing the robustness of 

the controllers under consideration can be performed in simulation for a series of 

different cylinders for the adopted setpoint scenario. 
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Figure 5.8 Closed Loop Pneumatic Positioner Response, Simulation 
and Experiment 



5.5 Robustness Results of PVA, CSLM and DSLM with Different Cylinders 

Earlier sections in this chapter demonstrated how the unknown mode1 parameters 

were detemined for the nominal pneumatic positioner (servovalve: 4 scfm HR- 

Textron, actuator: BIMBA 095-DX). The positioning performance and overall 

robustness o f  the conventional linear PVA and the nonlinear CSLM and DSLM 

controllers will now be compared under a series of simulation tests. These tests 

included a double bore md a double stroke scenario for which the controller and al1 

other simulatcd hardware, such as the servovalve remained unaltered. 

For the double bore scenario, the bore diarneter was doubled while the stroke was left 

the same. A BIMBA cylinder that matches the double bore characteristic was selected 

from the manufacturer's catalog and its technical specifications were modeled in 

simulation. The double bore cylinder @art # 315-DXP) has a bore diameter of 50.8 

mm, a stroke of 127 mm and a piston rod diameter of 15.8 mm. The enclosed air 

volume of the double bore asymmetric cylinder is approxirnately 4 times greater than 

the volume of the nominal BlMBA cylinder (part # 095-Da. 

Similarly, for the double stroke scenario the stroke was doubled while the bore 

diameter was left the same. A BIMBA cylinder that matches the double stroke 

characteristic was found fiom the manufacturer's catalog and its technical 

specifications were modeled in simulation. The double stroke cylinder (part # 0910- 

DX) has a stroke of 254 mm, a bore diarneter of 26.9 mm and a piston rod diameter of 

7.9 mm. The enclosed air volume of the double stroke asymmetric cylinder is 

approximately 2 times greater than the volume of the nominal BIMBA. The technical 

specifications for both the double bore and the double stroke cylinders are included in 

Appendix A. 

Of the two tests outlined above, the more demanding is the double bore test. The 

controllers were implemented in simulation for a setpoint scenario as outlined in 

Section 5.4 and were designed for a critically damped settling time of 0.2 sec. The 



controllers were tuned for an effective payload mass of 2.2 kg. In the figures that 

Follow, the position of the piston is shown as a percentage of the stroke so that the 

responses obtained under the double stroke test could be presented alongside the ones 

obtained with the nominal and double bore cylinders. This also implies that the 

srtpoint scenario for al1 3 cylinders (nominal, double bore and double stroke) was to 

move the piston from the quarter length position, to the center and back. In a cylinder 

that is linearized about the center position, the quarter length position is denoted as - 
25% siroke and the center as 0% stroke, with the two ends of the cylinder denoted as 

-50% stroke and 50% stroke. 

In most cases, one can rate the responses in a qualitative rnanner by observing 

whether the trajectory requirements are met (settling tinie and overshoot), whether 

stiction is present in the position response, whether chatter appears in the control 

signal and whether there is considerable steady state error. In addition to qualitative 

observations, one can look at quantitative performance measures such as the 

integrated absolute error (IAE) and the integrated control effort (ICE). In order to 

obtain the IAC and ICE, the positioning error and control effort at every sampling 

interval are sumed over the duration of the test. The IAE and ICE generated with the 

nominal cylinder can be used as the benchmark. It is expected that both quantities 

will increase for the double bore and double stroke tests. For the double bore test, the 

IAE and ICE c m  be compared directly to the benchmark measures obtained when 

using the nominal cylinder because the stroke is the same. However, for the double 

stroke test, the double distance that the piston travels, results in twice the positioning 

error at each sampling interval. To compensate for this inconsistency, the IAE 

generated under the double stroke test has to be divided by a factor of 2.0. For a 

linear servovalve, such as the HR-Textron, one can Say that the control input is 

proportional to the air flow. Due to air compressibility though, the motion of the 

piston is nonlinear to the air flow. Therefore, the ICE obtained fiom the double 

stroke scenario should not be compared to the benchmark ICE. Instead, the ICE 



obtained from the 3 controllers for the double stroke test will be compared among 

themselves. 

Fig. 5.9 shows the rcsponses generated with the conventional PVA controller as 

applied to the pneumatic positioner. The responses for the nominal, double bore and 

double stroke cylinden are show as solid, dotted and dashed lines, respectively. The 

top plot shows the position response as a percentage of stroke and the bottom plot 

shows the control input to the servovalve. 

The solid line response (nominal cylinder) clearly shows the static coulomb friction 

effects. The positioner slows down as it approaches the setpoint. When its spced 

becomes low enough, stiction grabs hold of the piston. The resulting steady state 

error is sensed by the controller which compensates by increasing the control signal to 

free the cylinder. This corresponds to the sudden jurnp in the position. This stick-slip 

phenornenon occurs a few more times before the piston finally reaches the setpoinl 

and results in a very jerky motion. 

For the double bore scenario, the dotted lines indicate a considerably slower response. 

For the double stroke scenario, the dashed lines show an improved speed of response 

and the setpoint is reached at about the same time as it was reached by the nominal 

cylinder. The L4E and ICE for the 3 cylinders and PVA are shown in Table 5.2. In 

the sarne table, the IAE and ICE for the 3 cylinders and the 2 nonlinear controllers 

(CSLM and DSLM) are also given. The sarne table also tabulates the % increase in 

LIE for the double stroke and for the double bore cylinders, as compared to the 

benchmark IAE (nominal cylinder). Furthemore, the % increase in ICE for the 

double bore cylinder only as compared to the benchmark ICE is also shown. 

Fig. 5.10 shows the responses generated with the CSLM controller (h=l  O ms) as 

applied to the pneumatic positioner. The responses for the nominal, double bore and 

double stroke cylinders are shown as solid, dotted and dashed lines, respectively. The 



top figure shows the position response as a percentage of stroke, the middle figure 

shows the sliding function behavior and the bonom figure shows the control input to 

the servovalve. 

The response of the nominal cylinder with CSLM can be described as slightly jerky 

and is marginally similar to the response with the PVA controller, as shown in Fig. 

5.9. For the payload at hand, the boundary layer used was 65.0. If a smaller 

boundary layer was used, excessive chatter would result which would cause greater 

steady state erron and increased oscillations. The inability of CSLM to adequately 

control a small payload boils down to sampling time intolerance. A small system 

time constant (due, to a small payload of 2.2 kg) combined with a relatively large 

sampling tirne, will degrade the overall performance of CSLM. 

In the case of the double bore cylinder (dotted lines), one can see a much slower 

position response. The control signal appears more chattery and the sliding function 

diverges, contrary to the conditions of the sliding law. The extreme conditions of this 

test (incorrect cylinder model, small payfoad, high sampling time) have degraded the 

performance of CSLM to the point of instability. 

In the case of the double stroke cylinder (dashed lines), one can see a much improved 

response. Despite a slightly greater settling time the sliding function converges and 

the control signal is smooth. 

Fig. 5.1 1 shows the responses obtained with the DSLM controller. The responses for 

the nominal, double bore and double stroke cylinders are shown as solid, dotted and 

dashed lines, respectively. As before, the top figure shows the position response as a 

percentage of stroke, the middle figure shows the sliding fùnction behavior and the 

bottom figure shows the control input to the servovaive. 
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The response of the nominal cylinder with DSLM is smooth. The stiction effects seen 

with PVA and the control chatter seen with CSLM are no longer as visible. The 

sliding fùnction converges to zero and the sliding conditions are met. 

In the case of the double bore cylinder (dotted lines), the response shows a small 

delay. When compared to the delay that resulted with PVA and CSLM, it becomes 

clear that DSLM is the most robust of the 3 controllers, when the sampling time is 

large. In the case of the double stroke (dashed lines), the response improves hrther 

and is comparable to the one with the nominal cylinder. 

Table 5.2 summarizes the IAE and ICE taken fiom Fig. 5.9, 5.10 and 5.1 1. If one 

compares the nominal IAE for PVA with the corresponding IAE for DSLM might 

prompt one to make the assumption that PVA behaves better than DSLM, in the 

absence of qualitative observations. The contrary, though is true. DSLM produces a 

smooth response, whereas PVA exhibits high stiction effects which are undesirable. 

Comparing the % increase in IAE for the three controllers at both robustness 

scenarios, one can see that DSLM has the lowest overall increase. This confinns the 

result of the qualitative observations. If one looks at the ICE for the 3 controllen, can 

realize that al1 exhibit roughly the same increase fiom the nominal values. 

The performance of CSLM improves considerably with either the use of a sampling 

time in the order of 1.0 ms, or the use of a larger payload. It has been seen in 

simulation that the performance and the robustness of CSLM can surpass those of 

DSLM provided the sampling time is suficiently small, relative to the time constant 

of the system. Empirically, when selecting a suitable sampling time for CSLM, one 

needs to sarnple at least 20 times per time constant of the fastest component of the 

controlled system. 
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dslm-7: OSLM, Me=2.2 

Time (sec) 

nominal (solid), double bore (dotted), double stro ke (dashed) 

5 

0 

-5 

-10 

-15 

-20 

-25 

-30 

1 000 

500 

O 
cn 

-500 

-1000 

Figure 5.1 1:  Robustness Tests with DSLM - Simulation 

- 1 1 1 I I 1 - 
- - 
- - 
- - 
- - 
1 

1 

- I 1 1 1 - 

'- I I I 1 I I 

! 'a 
1 ' - ; '... 

- - 
I .  

1 1 .  - # 

1 1 I 1 1 1 

O 0.2 
1 

0.4 
1 

0.6 0.8 1 1.2 

O 0.2 0.4 0.6 0.8 1 1.2 
Time (sec) 



5.6 Summary 

Following a set of experimental tests to validate the model coefficients, a series of 

robustness tests were performed in simulation. These tests were designed to verify 

the performance of the linear PVA and the nonlincar CSLM and DSLM controllers in 

the presence of significant model erron. The controllers were tuned to meet certain 

setpoint change scenarios for a particular pneumatic positioning system. They were 

then applied to a pneumatic system that had twice the cylinder bore diameter and 

twice the cylinder stroke. Qualitative observations such as smoothness of response, 

and quantitative measures such as the IAE and ICE, were used to evaluate the 

performance of the controllers. 

For the siniulated pneumatic systems and the implemented sarnpling time, DSLM was 

shown to be the more robust of the three controllen tested. Its greatest advantage is 

the ability to tolerate large sarnpling times. CSLM, on the other hand fails in the 

presence of large sampling times, which is the reason behind its poor performance in 

the tests presented in this chapter. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The two main aspects of the design of pneumatic positioning systems, namely the 

sizing of the valve and cylinder and the design of an appropriate controller, were 

investigated in this thesis. The main objective was to improve the performance of 

pneumatic systems and generate a set of guidelines for better system design. The 

adopted nonlinear controller was Sliding Mode (SLM) control, in both continuous 

(CSLM) and discrete (DSLM) implementations. 

6.1.1 Pneuma tic Positioning System 

In Chapter 2, a linear and a nonlinear model of a pneumatic positioning system was 

developed. Models for system components were determined from first principles 

using compressible flow, energy conservation, mass balance and force balance 

equations. Conditions such as choked versus subsonic flow, static and dynamic 

coulomb Friction, and air compressibility were combined to generate a 3" order 

nonlinear model. Simulation tests with the nonlinear mode1 indicated that in 

pneumatic positioning systems the dynarnic performance (natural frequency and 

damping) depends on the position of the piston (rodded and rodless cylindea) and on 

the direction of the motion (rodded cylinders). The presence of these nonlinearities 

limits the performance of linear controllers since their design is based on a linear 

model of the system and do not compensate for large parameter variations. 

The performance of the pneumatic positioning system was then tested in simulation. 

A linear PVA controller was used, for which the gains were determined fiom a 

linearised model of the pneumatic system for a set of tirne-domain performance 

pararneters, namely settling time and overshoot. The application of a fixed gain linear 

controller to a system that was considered nonlinear was intentional in order to 

highlight how different parameters affected system performance. The following 



conclusions resulted from the investigation of the pneumatic positioning system undrr 

PVA control: 

Ultimate Gain - Cylinder Type: When one needs to determine the ultimate 

gain that can be used for a rodless cylinder, then Eq. 2.37 can be used. If a 

rodded cylinder is used, the dynamic performance depends on the direction of 

motion (extension or retraction) which implies that the ultimate gain is different 

in either direction. In fact, the ultimate gain is lower if the piston is in extension 

than in retraction. Therefore, in order to predict the ultimate gain for a rodded 

cy linder, one should use the smaller of the two charnber areas in Eq. 2.37. 

Sampling Tirne - Size Ratio: Pneumatic systems exhibit Iocalised dynarnics, 

which could be a cause for control instability. If, for example, one works with a 

cylinder that has a high size ratio, then the natural fiequency is higher than one 

that would result when a cylinder with the same capacity and a moderate size 

ratio is used. If the sarnpling time is not adjusted to account for the higher 

natural fiequency, then the performance of the system degrades and instabi lity 

could occur. The link between nahiral frequency and size ratio has been 

generally ignored in the literatwe. 

Valve Center Configuration - Valve Port Ratio: In the design of pneumatic 

systems, one should also consider the effects of the valve center configuration. 

For position control tasks, the servovalve should have a closed-center 

configuration since higher operating pressures are needed. Open center valves 

should be used only when fiee positioning of the payload is required. 

Supply and Steady State Pressures: A number of physical rneasurements of 

the servovalve and the actuator have be shown to affect the steady state 

pressures. Typically, higher operating pressures irnprove performance by 



decreasing the effects of air compressibility. The only restriction is the 

maximum operating pressure that the pneumatic equipment can withstand. 

Friction: Low friction cylinders or valves that are insensitive to the lack of 

natural lubrication should be used to avoid stiction effects. 

The nonlinear nature of a pneumatic positioning systern requires a controller that is able 

to maintain a high level of performance despite variations in: 

Position of the setpoint, 

Direction of motion, 

Friction and, 

Noise. 

Furthemore, the controller should also be able to provide reasonable performance 

despite: 

Improper sizing of pneumatic components and, 

Payload variations. 

In the pneumatic system presented in this thesis, the natural frequency and damping 

were shown to Vary by as much as a factor of 2.5 fiom the center to the ends of stroke. 

For this range of parameter variations, the PVA controtler performed poorly. This is 

due to the fact that nonlinearities in the system are not compensated for. Hence, the 

interest in the nonlinear Sliding Mode Controllers which cm handle these 

nonlinearities. 

6.1.2 Continuous Sliding Mode Control 

In Chapter 3, the design procedure for the sliding surface of CSLM was presented and 

illustrated as Fig. 3.13. A continuous canonical system state space mode1 is 

determined using a transformation matrix T. Time domain performance parameters of 

a 2"d order system are then used to generate the coefficients of the canonical sliding 



surface. Finally, the canonical sliding surface is changed to its original state space 

variables by use of matrix T. 

Basic issues for the design of a CSLM controller as applied to the control of a 

pneumatic positioning system were examined by means of simulation. These issues 

include the effect of the tuning parameters of CSLM, namely: 

+ The sliding gain, and 

+ The boundary layer thickness, 

as well as the design parameters for the sliding surface, namely: 

+ The sliding settling time, and 

+ The damping factor, 

and finally the effect of: 

+ The sampling time. 

In summary, CSLM is a highly robust controller under the following conditions: 

+ Sampling Time: The sampling tirne needs to be sufficiently small, so 

that the continuous structure of the controller is not negated by large discrete 

sampling times and yet large enough to be achievable with a modest control 

computer. Empirically, one needs to use a sampling time at least 20 times 

smaller than the open loop time constant of the system. For example, if the 

open loop time constant for a particular pneumatic system is 0.1 sec, the 

sampling time should be in the order of 0.005 sec. 

+ Boundary Layer: The boundary layer needs to be suficiently large so that 

chatter is eliminated and yet sufficiently small so that positioning accuracy is 

not compromised. 

In general, CSLM is a fairly easy controller to design and use. Its performance is very 

good if the sampling time is sufficiently small. This thesis does not set out to 



investigate the sampling time limitations of the CSLM controller in theory. Instead, the 

discrete (DSLM) implementation of CSLM was investigated, which compensates 

explicitly for the sampling time and was shown to be able to maintain stability even at 

high sampling times, while CSLM failed. 

6.1.3 Discrete Sliding Mode Control 

In Chapter 4, techniques For improving the basic DSLM control algonthm were 

reviewed. These techniques included state estimators, varying sliding gains, state 

weights and filters. The best features were then selected. A novel pole-placement 

approach for the determination of the sliding surface coefficients was then presented. 

The sliding surface was based on a dominant set of desired closed loop poles and can 

match the more coiiveniional sliding surface design characteristic where the sliding 

surface has one order less than the system. A novel approacli to the assignrnent of the 

switching gains for DSLM was also presented. 

The following summarises the adopted design procedure for the sliding surface of a 

DSLM controller, and some of the modifications that were made on the switching 

law . 

Sliding Surface Design: A novel pole-placement technique for designing 

the sliding surface of a general n*h order system, which then focused on a 

typical 3rd order pneumatic system, was developed. The technique enables 

the designer to select sliding surface coefficients according to traditional time 

performance parameters, namely settling time and maximum overshoot (or 

damping). 

To facilitate analysis, the closed loop dynamics of the system under pure 

sliding were modified to a canonical form. Techniques for generating the 

canonical state space matrices were presented. The coenicients of the 

characteristic equation of the closed loop canonical state space matrix were 



then linked to desired poles in the discrete domain. Finally, the sliding surface 

coefficients were calculated to match a set of poles that generaie a dominant 

2 "  order subsystem of the general 3" order pneumatic systcm. The simulation 

responses with the pole placement technique for sliding surface design showed 

good trajectory tracking and design flexibility. 

Varying Sliding Gain: The switching laws of DSLM were modified to 

implement o varying sliding gain within the boundary layer which decreased 

in magnitude upon approach to the sliding surface. Therefore limit cycles, 

high chatter and large steady state erron could be eliminated. 

State Weights: To further optimize the responses, control or state 

weights were assigned to the individual states. A direct and novel comparison 

of the control structure of the DSLM controller to the control structure of the 

PVA controller indicated a direct relationship between the size of the 

switching elements (per state) to the linear PVA gains. The implementation of 

PVA gains as state weights for the DSLM controller resulted in very good 

setpoint tracking, decreased oscillations, good sliding function convergence 

and decreased control action. 

Sliding Gain Bounds: Bounds for the sliding gain for convergence 

stability were then determined in terms of the coefficients of the sliding 

surface, the desired reaching time, the sampling tirne and the control gain 

matrix. 

The performance of DSLM indicated better behavior than CSLM in the presence of 

high static fiction. CSLM and DSLM perform equally well in the presence of noise. 



6.1.4 Robustncss Tests 

Experimental open loop results for the pneumatic system were presented in Chapter 5 .  

Thesc tests were used to determine the model parameters for the pneumatic system. 

Then a series of tests were performed to confirm the robustness of the three 

controllers: the PVA, the CSLM and the DSLM. These tests evaluated the controllers 

under different scenarios: double bore - same stroke and double stroke - sarne bore. 

Qualitative observations such as smoothness of response and quantitative rneasures 

such as the IAE and ICE, were used to evaluate the performance of cach controller for 

each of the robustness tests performed. 

For the simulated pneumatic system and the implemented sampling time, DSLM was 

shown to be the more robust of the three controllers tested. Its greatest advantage 

over CSLM is the ability to tolerate large sampling times. An additional series of 

tests were performed to confirm the robustness of the three controllers in terms of 

incorrect payloads. The tests were implemented with sampling times of I rns and 

10 ms. The conclusion was that at 10 ms, DSLM was the more robust of the three 

controllen tested which confirms the result from Chapter 4. When a sufficiently 

small sampling time was used, which was the case with a sampling time of I ms, 

CSLM was s h o w  to be just as robust as DSLM. In al1 robustness tests performed, 

the SLM controllen were superior to the PVA controller. 

6.2 Design Recommendations 

For both CSLM and DSLM the sliding gain needs to b e sufficiently larg e without 

exceeding stability limits, so that model errors do not compromise robustness and yet 

small enough to be achievable in practice. In practice, the size of the control input 

that M y  opens the selected valve (which meets steady state speed of response 

requirements of the pneumatic system), should be used for the size of the sliding gain. 

For DSLM, the state weights for the switching laws of DSLM should match the gains 

of a PVA controller. The gains of the PVA should be designed for a critically 



damped response and a settling time similar to the one used in the design of the 

sliding surface of DSLM. Furthemore, a varying sliding gain should be used within 

the boundary layer. 

Generally, the control structure of DSLM is more complex than the control structure 

of CSLM. For this reason, CSLM with its simplicity of implementation and design 

has been more popular than DSLM. But with better design guidelines for both the 

sliding surface design and the switching laws, DSLM is becoming more attractive. 

When implementing a CSLM controller, one should use the smallest sarnpling timc 

available, since it enables the controller to reach its full capability. This is becoming 

easier with the ever increasing speed of microcomputers for control applications. 

6.3 Recommendations for Future Work 

A theoretical investigation on the stability limits of CSLM should be performed, since 

DSLM surpasses the performance of CSLM only with large sarnpling times. 

Recently, relatively inexpensive proportional valves by ASCO have corne on the 

market @rice<$fUO). Although of lower bandwidth than the HR-Texiron valve used 

in this thesis (25 Hz versus 200 Hz for latter), the performance of the pneumatic 

positioning system with these relatively inexpensive valves should be investigated. 

An experimental verification of the effects of sizing ratio should also be perfomed 

that would investigate the robustness of CSLM and DSLM in the context of changes 

in cylinder bore and cylinder stroke, recognizing that Iordanou and Surgenor (19976) 

only verified CSLM and DSLM in the context of changing payload mass. 

Finally, a Kalman Filter cari be used to provide optimal estimate for the output states 

if noise is present. Furthemore, the use of such a filter could m e r  reduce noise 

problems associated with digital differentiation of the measured output. 
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APPENDIX A 

Technical Spccifications 

HR-Textron Valve Specifications: 



BIMBA Cylinder Specifications: 



Data Acquisition Board: 

Model : 

Sampling Time: 

Input Channels: 

Output Channels: 

A/D Resolution: 

Potentiomcter: 

Mode1 : 

Model number: 

Resistance: 

Standard Tolerance: 

Standard Linearity: 

Max. Power Rating: 

Mechanical Travel : 

Maximum Torque: 

Maximum Weight: 

Mounting: 

Bearing : 

LABMASTER 

10 ms 

8 analog, set for O to 1 O volts 

2 analog, set for O to 1 O volts 

12 bit 

MIDORI 

CPP-45B 

500 - 20 K 

+ 15% 

k 0.5% 

3 W / 70°C 

360" 

18g-cm 

60 g 

Servo & Screw 

Bal1 

Operating Temp. Range: -40°C - + 1 25°C 

Coostruction and Source of Data Acquisition Code: 

The original apparatus was built by Dr. Brian Surgenor while on sabbatical leave at 

Bath University, England in 1995. The original data acquisition code was written by 

Dr. Brian Surgenor. Subsequent modifications of a minor nature to both the 

apparatus and the code were made by the author for this study. 



APPENDIX B 

Simulation Source Code - Mode1 Parameters 

The following source code is a listing of the routines used in PC-MATLAB for 

simulation purposes. The component parameters and initial conditions are first listed. 

Then, the hysteresis model and flow conditions model is presented. The nonlinear 

valve model is used in the thesis, as well as a nonhear static kinetic friction model. 

Finally, the cylinder volume and pressure model is presented along with the limits on 

position, velocity and control. 

COMPONENT SETTINGS 
M, = payload mass = 2.2 or 8.5 kg 
di = piston diameter = 25 or 26.99 mm 
A, = chamber area = n*(diA2)/4* 1 e-06 m2 
A, = piston area = n *(10A2)/4* le-06 m2 
Lc = stroke length = 0.120 of 0.127 m 
Cd = discharge coefficient = 0.72 
4. = valve supply opening = 2.13 or 3.4 mm2 
A, = valve exhaust opening = ratio*A, 
R, = universal gas constant = 0.287 kUkgK 
CL = leakage factor = O or 10 
Hys = valve deadband = 0.025 
V,, = end volume = 1 O* 1 e-6 m2 
T, = operating temperature = 293 K 
fv = viscous coefficient = 70 (MARTONAIR), or 

63 (BIMBA) Ndm 
F, = static coulomb fiction =O, 10 (MARTONAIR) 

6.4 (BIMBA) N 
n, = ideal or polytropic = 1 or 1.4 
Po = atmospheric pressure = 10 1 kPa 
Pi = initial pressure = 400 kPa 
P, = supply pressure = 653 kPa 
h = sarnpling and control interval = 0.01 sec 

MARTON AIR (Ch. 2-3-41 
Stroke Length = 120mm 
Charnber diameter = 25 mm 
Piston diameter = 10 mm 
fv= T O M ,  Fa= I ON, Fcd=5N 

BIMBA 095-DX [C/t.51 
Stroke = 127mm 
Chamber diameter = 26.9mm 
Piston diarneter = 7.9 mm 
fv=63Ns/m, Fcs=6. 4iV, F c 3 . 9 N  

BIMBA 0910-DX [Ch. 5 )  
Stroke = 254mm 
Chamber diameter = 26.9mm 
Piston diarneter = 7.9 mm 

Stroke = 127mrn 
Chamber diameter = 50.8mm 
Piston diarneter = 15.8 mm 

iNITIAL CONDITIONS 
P,=Pi; P,,=P,*AJA, dydr0; y=O; u=O; V,,=O; 
d2yde=0; ma=O; mb=O; P,=O; F,,=O; 



WSTERESIS MODEL 
if u > Hys 

Pra = PJP,; Pr, = PJP,; 
elseif u < -Hys 

Pra = PJP,; Pr, = Pdp,; 
else 

if flagN=O; 
Pra = 1; Prb = 1; 

Valve 
el se 

% --- Closed Center 

% --- Open Center Valve 
end 

end 

FLOW CONDITIONS 
if Pr*>=l; 

Cm, = 0; 
elseif Pr,, >= 0.528; 

d y = (PrdA(2/ 1.4) - Pr,"(( 1.4+ 1 )/ 1.4)); 
Cm* = sqrt(2* 1 .4*dy/(100OtR.,,*(l .4- 1))); % --- Subsonic Ffotv 

else 
Cm, = 0.0405; % --- Choked Flow 

end 

LINEAR VALVE MODEL 
ma = Cd*0.0405 *A,,* 1 OOO*P(sqrt(To)* u; 
mb = -ma; 

N0NLINEA.R VALVE MODEL 
if u > Hys 
ma = Cd*Cma*u*q* 1 OOO*P/sqrt(T,); 
mb = -Cd*Cmb*u*A,* ~oOo*P~~ql't(T,); 

elseif u < -Hys 
ma = Cd*Cma*u*Ae* 1 OOO*PJsqrt(T,); 
m, = -C,*Cm,*u*&* 1 OOO*P(sqrt(T,); 

else 
if flagN=O; 

m,=O; m,=O; % --- Cl0 
else 

sed Centre Valv 

Q = -Cd*Cmat 1 .O*Ae* 1 OOOIP Jsqrt(T,); % --- Open Center Valve 
mb = -Cd*Cmba 1 .O*AeZ 1000*P,,/sqrt(To); 

end 
end 



CYLINDER PROFILE 
A, = A,; Ab = A,; 
A, = A,; Ab = A,-A2; 

% --- Static-Kinetic Friction Mode1 

CYLINDER MODEL 
F, = 1000*(A,*Pa - Ab*Pb); 
if mlogic=O & abs(F,)>F,; 

mlogic = 1 ; 
elseif mlogic=l & abs(F,)<(FJ2) ; 

mlogic = 0; 
end 
if F,==O; mlogic = 1 ; end 
if mlogic= 1 ; 

d2ydt2 = (Fp - sign(dydt)*FJ2 - F,*dydt)/M,; 
dydt = dydt + h*d2ydt2; 

else 
dydt = 0; d2ydt2 = 0; 

end 

STATE UPDATES 
y = y + h'dydt; 

if dydt>V,,,; V,, = dydt; end 
if y < -LJ2; y = -LJ2; dydt = 0; end 
if y > LJ2; y = LJ2; dydt = 0; end 
if u > 4,; u= hm; end 
if u < -u,,,=; u=-4,; end 

CYLINDER VOLUME MODEL 
va*,, = va 
Vb,, = Vb 
Va = A,*(LJ2 + y) + V min 

V, = Ab'(LC2 - Y) + Ki" 
dVJt = (Va - Vaold)/h 
dvbdt = ( vb  - vbol&/h 

% --- Velocity Limiis 
% --- Position Limirs 

% --- Control Limits 

PRESSURE MODEL 
dPadt = ~*(R,,*To*ma - P,*dV,dt)N, 
Pa = Pa + h*dP,dt 

dPbdt = \*(&*To*mb - PbedVbdt - CL*Pb)Nb 
Pb = Pb + h+dPbdt 
if Pa c PO; Pa = Po; dPadt=û; end % --- Pressure Limits 
if Pa > P,; Pa = P,; dPadt=O; end 
if Pb < Po; Pb = Po; dPbdt=O; end 
if Pb > PI; Pb = P,; dPbdt=O; end 



SIMULATION SAMPLING TIME: 

Examination of the program listing in the previous pages highlights that Euler's 1 order 

numerical method was used to solve the differential equations of the nonlinear modrl. 

For example, the difference equation for a chamber pressure (see Pressure Mode1 in 

listing) is given as: 

fk+, = pk + P& h 

where k is the "K"" tirne step. 

The simulation sampling tirne used was set to 10 ms, to match the sampling time 

available to the experirnental setup by the microcomputer in use. Using a sampling 

time of I O  ms on a linear system with a r of 100 ms (dh=lO), results in a maximum 

numerical error of 18% (if one compares the Euler approximation to the exact solution 

step by step). But relative to the final steady state (unit step change), the error is less 

than 0.33%. Using a sampling time of 10 ms on a linear system with a r of 1000 nis 

(dh=100), results in a numerical error of 0.5%. As the dh ratio increases the truncation 

error decreases, but the round-off error increases. 

A sampling time of 1 ms is not nomally viewed as a "difficult" sampling time to 

achieve, but many industrial PLC based controllers can only sample at 100 ms, although 

the actual microprocessor dock speed is considerably higher. 






