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Abstract

Measuring human subcutaneous fat is useful for assessing health risks due to obesity and for

monitoring athletes’ health status, body shapes and weight for various sports competitions such as

gymnastics and wrestling. Our aim is to investigate the use of ultrasound imaging in automatically

measuring human subcutaneous fat thickness.

We proposed to use the spectrum properties extracted from the raw radio frequency (RF) signals

of ultrasound for the purpose of fat boundary detection. Our fat detection framework consists of

four main steps. The first step is capturing RF data from 11 beam steering angles and at four

focal positions. Secondly, two spectrum properties (spectrum variance and integrated backscatter

coefficient) are calculated from the local spectrum of RF data using the short time Fourier transform

and moment analysis. The values of the spectrum properties are encoded as gray-scale parametric

images. Thirdly, spatial compounding is used to reduce speckle noise in the parametric images

and improve the visualization of the subcutaneous fat layer. Finally, we apply Rosin’s thresholding

and Random Sample Consensus boundary detection on the parametric images to extract the fat

boundary.

The detection framework was tested on 36 samples obtained at the suprailiac, thigh and triceps

of nine human participants in vivo. When compared to manual boundary detection on ultrasound

images, the best result was obtained from segmenting the spatial compounded spectrum variance

values averaged over multiple focuses. A reasonable result could also be obtained by using a single

focus. Further, our automatic detection results were compared with the results using skinfold

caliper measurements. We found that the correlation is high between our automatic detection

and skinfold caliper measurement, and is similar to the previous studies which are not automatic.

Our work has shown that the spatial compounded spectrum properties of RF data can be used

to segment the subcutaneous fat layer. Based on our results, it is feasible to detect fat at the

suprailiac, thigh and triceps sites using the spectrum variance. The values of spectrum variance

change more rapidly in the fat tissue than the non-fat tissue.
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Glossary

In vitro In an artificial environment outside the living organism.

In vivo Within a living organism.

A-mode The amplitude mode of ultrasound imaging.

Adipocyte A fat cell from human tissue.

Adipose tissue Also known as fat tissue. Is a layer of loose connective tissue specialized in storing

lipids.

Agar A gelatinous material that controls the stiffness of a phantom.

Air-displacement plethysmography A device that measures the percentage of body fat by

immersing a subject in a closed air-filled chamber.

ANOVA Analysis of variance.

Attenuation Decrease in amplitude and intensity over a distance travelled by a wave.

B-mode The brightness mode of ultrasound imaging.

Beam focusing The concentration of the ultrasound beam into a small beam area.

Beam steering The change of direction of the ultrasound beam.

BIA Bioelectrical impedance analysis. A equipment that measures fat in terms of tissue conduc-

tivity.

Bimodal histograms A histogram with two distinct modes.

Binary image An image consisting of only zeros and ones.
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Cellulose A complex carbohydrate that controls the scattering of a phantom.

Collagen A long, fibrous protein structure that makes up the connective tissue.

Connective Tissue A type of soft tissue that contains collagen. It connects and supports organs

and tissues of the body.

CT Computed tomography.

DEXA Dual Energy X-ray Absorptiometry. A method that uses two low doses of X-ray beams

with different energy levels to detect bone and soft tissues.

DFT Discrete Fourier transform.

Echogenicity The relatively strength of echoes. A higher echogenicity (i.e. hyperechoic) means a

tissue structure having relatively strong echoes; a lower echogenicity (i.e. hypoechoic) means

a tissue structure having relatively weak echoes.

Elastography The measurement of the elastic properties of tissue with ultrasound.

Energy absorption Energy is absorbed and converted to heat when the sound wave propagates

through tissue.

Fascia A sheet of fibrous connective tissue covers and separates muscles, organs, and other soft

tissues. It can be used to refer to the strong acoustic interface between subcutaneous fat and

the muscle layer.

IBS Integrated backscatter coefficient. It indicates the total reflected power and strength of the

backscattering.

Interface A surface that separates two kinds of soft tissues.

Lagrange multiplier A method for optimizing a function that has several variables subject to

one or more constraints.

MF1 The method of stitching values of a spectrum property obtained at multiple focal positions.
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MF2 The method of averaging values of a spectrum property obtained at multiple focal positions.

MRI Magnetic resonance imaging.

Obese A person is obese if an excessive storage of body fat (women with more than 35% of body

fat and men with more than 25% of body fat is accumulated in the body.)

Parametric image A two-dimensional image of a spectrum property whose values are encoded

into gray-intensity scale.

Phantom An artificial object that has some acoustic properties of soft tissues.

Pulse-Echo Ultrasound Imaging A clinical ultrasound imaging technique that uses the same

transducer for both the pulse generator and echo detector.

RANSAC Random Sample Consensus.

Raw data coordinates The coordinates calculated with respect to the transducer.

Reverberation Multiple ultrasound reflections between a structure and the probe.

RF signal Radio-frequency signal is the raw signal of ultrasound.

Sagittal The sagittal plane of the human body is an imaginary plane that symmetrically divides

the body into right and left sections.

Scan line A single line of ultrasound data that is parallel to the axial direction.

Scattering The redirection of sound in several directions.

Segmentation The partitioning of an image into two or more regions.

SF Single focus at 25mm.

Skinfold caliper A caliper that measures skinfold thicknesses by pinching a fold of skin and the

underlying subcutaneous fat.

Spatial compounding The averaging of multiple overlapping data for reducing speckle noise.
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Speckle Acoustic noise in ultrasound imaging due to the destructive and constructive interference

of ultrasound pulses with randomly distributed scatters.

Spectrum properties The properties of the power spectrum of the raw radio-frequency ultra-

sound data.

STFT Short time Fourier transform.

Subcutaneous fat The fat layer that is immediately underneath the skin.

Suprailiac The area on the side of human waist and on the iliac crest.

TGC Time gain compensation.

Thigh The area between the pelvis and buttocks, and the knee at the lower limb.

Transducer A device, which consists of an array of piezoelectric elements, generates ultrasound

pulses by converting electrical energy to acoustical energy.

Triceps A large three-headed skeletal muscle runs along the back of the upper arm of human.

Underwater weighing A method that measures the percentage of body fat by immersing a

subject in a water tank.

Unimodal histograms A histogram with only one distinct mode.

Visceral fat The fat layer that is located around internal organs.
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Notation

BMIBS(x, y)) A binary image that contains the potential boundary candidates obtained from

IBS.

BMσ2
s
(x, y) A binary image that contains the potential boundary candidates obtained from

σ2
s .

CI The confidence Interval.

IBS(x, y, F ) A value of IBS at the coordinates (x,y) of the spatial compounded parametric

image obtained at the focal position of F .

IBS(x, y, θ, F ) A value of IBS at the coordinates (x,y) of the parametric image obtained at

the steering angle θ and focal position of F .

N The number of angles used in the spatial compounding.

S(w) The power spectrum.

W The bandwidth of the spectrum.

dfc

dy
The rate of change of central frequency along the depth.

ˆIBS(x, y) The spatially compounded parametric image of IBS after combining values

from different focal positions.

σ̂2
s(x, y) The spatially compounded parametric image of σ2

s after combining values from

different focal positions.

λ The wavelength of an ultrasound pulse

D The mean difference between two methods.

φ The step size of angles used in the spatial compounding.

σ2
s Variance of the spectrum.

σ2
s(x, y, F ) A value of σ2

s at the coordinates (x,y) of the spatial compounded parametric

image of obtained at the focal position at F .
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σ2
s(x, y, θ, F ) A value of σ2

s at the coordinates (x,y) of the parametric image obtained at the

steering angle θ and focal position of F .

bBMIBS
(x, y) A binary image that contains the fat boundary points obtained from IBS.

bBM
σ2

s

(x, y) A binary image that contains the fat boundary points obtained from σ2
s .

c The speed of sound.

dERR The average thickness error of a detected boundary.

dRMS The root mean square error of a detected boundary.

fo The central frequency of the transducer.

fc The central frequency of the power spectrum.

mj The jth moment of a power spectrum.

s The standard deviation of difference between two methods.

x(t) A window of RF signal.

IBS(x, y) The parametric image of IBS for segmentation.

σ2
s(x, y) The parametric image of σ2

s for segmentation.

k A parameter of the RANSAC algorithm. It is the number of iterations required

for the algorithm.

n A parameter of the RANSAC algorithm. It is the smallest number of points

required to fit the model.

t A parameter of the RANSAC algorithm. It is the threshold (in pixel) required

to determine if the data fit well.

IBS Integrated backscatter coefficient.
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Chapter 1

Background and Introduction

Early interest in measuring human body fat distribution can be dated back to 1921 when Matiegka

[1] developed body fat predictive equations from subcutaneous fat skinfold thickness, body length,

width and circumferences. Body fat analysis has been useful in assessing obesity to prevent health

risk, monitoring athletes’ health status for giving appropriate nutritional counselings and moni-

toring body shapes and weight for sports competition such as gymnastics and wrestling. Skinfold

caliper measurement, body density weighing and bioelectrical impedance analysis have been popu-

lar in assessing body fat. Recent advances in measuring body fat include the introduction of clinical

imaging techniques such as computed tomography, magnetic resonance imaging and ultrasound.

These techniques produce images of human anatomy and provide a more accurate technique for

researchers. Among these imaging techniques, we are especially interested in ultrasound imaging

because of its portability, safety and relatively low cost.

Diagnostic ultrasound is a non-invasive, portable imaging device used mainly for clinical diagno-

sis concerning organs and soft tissue. Recently, there has been a growing interest in assessing body

composition using ultrasound – in particular measuring thickness of subcutaneous fat. For exam-

ple, researchers proposed to use ultrasound in order to overcome the drawbacks of compressibility

and elasticity in skinfold caliper measurements [2]. Other proposals include using it for measuring

the thickness of subcutaneous fat of obese persons [3] and on elderly people or at sites that are not

convenient for skinfold caliper measurement [4]. Perin et al. [5] also evaluated the occurrence of

natural variations in thigh and abdominal subcutaneous fat thickness related to the phases of the

menstrual cycle by using ultrasound measurements. In animals, ultrasound was used to predict

intramuscular fat percentage at regions of interest by texture analysis in live swine [6]. Meanwhile,

Abe et al. [7] attempted to calculate the subcutaneous fat volume by multiplying the fat thickness

obtained from B-mode ultrasound by the skin surface area. In wrestling, Saito et al. [8] measured

the subcutaneous fat thickness of wrestlers at specific body sites and developed equations to predict
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percentage of body fat. All of these methods have involved the manual analysis of the ultrasound

data to extract quantitative measurements.

This thesis proposes to develop an automatic method to detect the subcutaneous fat thickness

using ultrasound in vivo . In this introductory chapter, we will first survey the current techniques

of human body fat measurement and describe our motivation. After that, we will present the

principles of ultrasound based on the pulse-echo technique. The properties of subcutaneous fat

thickness and the difficulties in ultrasound detection are then discussed. Lastly, the thesis objectives

and organization are presented.

1.1 Current Techniques of Human Body Fat Measurement

Current techniques that measure human body fat can be divided into the following categories: body

density weighing, bioelectrical impedance analysis (BIA), skinfold caliper, and imaging techniques

such as dual energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and

ultrasound imaging. Although they have the same goal of measuring body fat, their assumptions

are different. For example, the body density weighing method estimates the percentage of body fat

based on the body density whereas the BIA measures the fat tissues in terms of tissue conductivity.

The skinfold caliper measures skinfold thicknesses at specific body sites and the percentage of fat

is calculated based on these measurements. Compared with the above methods, the imaging

techniques are more direct in measuring body fat as they can image fat directly as soft tissues. The

current techniques of measuring body fat are summarized in this section.

1.1.1 Body Density Weighing

Underwater weighing and air-displacement plethysmography are two common methods that esti-

mate the percentage of body fat based on body density [9]. The body density can be computed

from the body volume and mass.

1.1.1.1 Underwater Weighing

The underwater weighing technique requires the subject to be immersed in a tank of water while

fully exhaling. The calculation of the body density is based on Archimedes’s principle. This
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principle states that the weight loss under water is directly proportional to the volume of water

displaced. The fat tissues are less dense than the bones and muscles; therefore, a person with a

higher percentage of fat makes the body lighter in water [10]. This method is time consuming and

its equipment requires a lot of space. The results can be affected by the amount of air existing in

the subject’s lungs, changes in hydration and proportion of bone minerals. Moreover, the subjects

have to be fully immersed in water and this may cause discomfort.

1.1.1.2 Air-displacement Plethysmography

The air-displacement plethysmography requires a subject to immerse in a closed air-filled chamber.

At a fixed temperature, the body volume of the subject can be directly measured by Boyle’s law

which states an inverse relationship between the pressure versus volume. This method does not

require the subjects to immerse in water. Also, multiple readings can be recorded in a short period

of time. Therefore, the air-displacement plethysmorgraphy has begun to replace the underwater

weighing method [9]. Further, a good linear correlation of 0.94 is shown between between the

underwater weighing and air-displacement plethysmography [11]. Nevertheless, the accuracy of

this method can be affected by changes in breathing pattern and movement of the subject.

1.1.2 Bioelectrical Impedance Analysis

The bioelectrical impedance analysis equipment measures fat in terms of tissue conductivity. Lean

tissue and water conduct electricity better than fat tissue; therefore, the measurement of the resis-

tance to electrical current can be used to estimate the percentage of body fat. For the traditional

bioelectrical impedance analyzer (e.g. Tanita BIA scales), spot electrodes are placed on a person’s

bare feet. The resistance of a small electrical signal is measured as it passes through the body. By

modeling a body as a cylindrical conductor with its length proportional to the subject’s height,

the impedance index can be calculated as the ratio of height square to body impedance [9]. This

method is easy to operate, inexpensive, portable and fast (less than 1 minute). However, it tends to

overestimate the body fat in obese people, and cannot distinguish between body fat and fluid[12].
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1.1.3 Skinfold Caliper

The skinfold caliper measures skinfold thicknesses by pinching a fold of skin and the underlying

subcutaneous fat. The average of multiple readings is needed at each body site to enhance accuracy.

The common practice is to obtain skinfold thicknesses at three or four body sites and estimate the

percentage of body fat using predictive equations [13].

The predictive equations calculate the percentage of body fat by substituting the values of fat

thicknesses measured at several sites into a formula. Skinfold test formulas exist in many forms

and are derived by human skinfold experiments. These formulas make use of the fat thicknesses

measured at several sites for reducing measurement errors to calculate body fat percentage. For

example, the equations developed by Jackson and Pollock [14, 15] used fat thicknesses measurements

from the triceps, suprailiac and thigh sites for females, and the chest, abdominal and thigh sites

for males. Yuhasz [16] used the fat thickness measured at the triceps, subscapular, supraspinal,

abdominal, thigh and calf sites for all male and female subjects. The constants in the equations

can be different between males and females.

This method is the most widely used tool for evaluating body fat as it is fast, inexpensive and

convenient [17]. However, there are drawbacks of this method. The precision of the measurements

can be affected by the compressibility, thickness and water content of the subcutaneous fat layer,

and also the elasticity of skin. Therefore, it is not possible to make precise measurements in obese

people, the elderly, athletes in training, and those experiencing rapid weight gain or loss [2, 13]. The

quality of the calipers is also a factor: skinfold calipers should be accurately calibrated and should

have a constant specified pressure applied. Also, the precision of the method heavily depends on

the skill of a technician. Furthermore, the skinfold caliper is not suitable for all body locations. For

instance, Nordander et al. [4] attempted to measure skinfold thickness directly over the trapezius

but was not successful. The failure was due to the difficulty of grasping the skinfold.

1.1.4 Imaging Techniques

Dual Energy X-ray Absorptiometry (DEXA), Computed tomography (CT), magnetic resonance

imaging (MRI) and ultrasound are commonly used imaging techniques for clinical diagnostic pur-

poses and they have also been introduced to quantify human body fat.
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1.1.4.1 Dual Energy X-ray Absorptiometry

The Dual Energy X-ray Absorptiometry uses two low doses of X-ray beams with different energy

levels to detect bone and soft tissues. By assuming constant attenuation of the pure fat and lean

tissues within the soft tissues, the portion of fat and lean can be interpolated from each soft tissue

pixel [18]. Tothill et al. [19] show a 15% difference in body composition was noticed between the

equipment produced from different manufacturers. The accuracy of DEXA is dependent on the

technology, method of calibration and interpolation of fat tissue. DEXA is costly and not portable.

It also exposes subjects to ionizing radiation hazards. A trained technician is required to operate

the equipment. In addition, DEXA provides projection images and can only present the percentage

of body fat that represents a substantial region.

1.1.4.2 Computed Tomography

CT is a radiological technique that generates cross section images of human anatomy using X-ray

beams. By measuring the intensity of attenuated X-ray beams, the fat tissue, lean tissue and

bones can be recognized. The fat tissue can be recognized as attenuation values between -190 to 30

Hounsfield units (HU). Although slightly different intervals of attenuation values can be observed

between investigators, they only have minor influence on the results [20]. Since the 1980s, several

studies have measured the areas of abdominal subcutaneous and visceral fat using CT [21] and

calculated the fat tissue volume [22, 23] . The volume of fat could be calculated by multiplying

a cross-sectional area of fat tissue by the distance between each slice [22]. CT is used as a gold

standard of body fat measurements because of its excellent accuracy and precision [17, 25]; however,

its immobility, high cost and exposure to a high dose of radiation make it inappropriate for frequent

use.

1.1.4.3 Magnetic Resonance Imaging

MRI is an imaging technique that uses both a strong magnetic field and a radio frequency electro

magnetic pulse. The nuclei of hydrogen atoms in human soft tissues interact with the magnetic field

that is generated from the machine. Then, the pulsed radio frequency is applied to interact with

the hydrogen protons. After that, the radio frequency pulse is turned off and the protons release

the absorbed energy at a certain rate. The rate of energy release, which is the relaxation time, is
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related to the properties of the soft tissues. The adipose tissue (i.e. fat tissue) has a typical, short

longitudinal relaxation time compared to other tissue [26]. High contrast between the fat tissue

and adjacent muscles can be generated by a T1 weighted inversion recovery pulse sequence [27].

Foster el al. [27] first applied MRI to research in body composition in 1984. MRI was used to

characterize the distribution of human subcutaneous fat tissues in 1988 [28]. The fat and lean tissues

were observed at the mid-abdomen level and also for the whole body [29]. As in the case of CT,

the volume of fat can be calculated by multiplying the cross-sectional area by the thickness of each

image slice. Despres [20] summarized that MRI has a higher expected error for the measurements

of visceral fat than the measurements of subcutaneous fat. The coefficient of variation is in the

range from 1.1% to 10.1% for the repeated measurements of subcutaneous fat and is in the range

from 5.3% to 10.6% from the repeated measurements of visceral fat. He also concluded that CT

and MRI are the methods of choice for precise measurement of the subcutaneous and visceral fat.

In terms of segmentation, Positano et al. [30] investigated the unsupervised segmentation

of both abdominal subcutaneous and visceral fat tissue by fuzzy clustering approach using MRI

images. High linear correlations were found in the segmentation of both subcutaneous fat (r =

0.9917) and visceral fat (r = 0.9601) when the results are compared with manual segmentation.

Their method of segmentation overestimated the volume of subcutaneous fat with a mean per-

centage difference of 6.4%, but underestimated the volume of visceral fat by a mean percentage

different of 7.9%.

1.1.4.4 Ultrasound

Ultrasound is sound at frequencies that are above the range of human hearing: from 20kHz to several

hundred MHz. A higher frequency of ultrasound gives a better resolution, but, in turn, has a lower

penetration power. Medical ultrasound usually uses frequencies from 1MHz to 10MHz; however,

high frequency ultrasound ranging from 20MHz to 45MHz has also been used in characterizing

relatively shallow skin structures. Tissue boundaries can be distinguished because ultrasound pulses

are reflected at interfaces between tissues with different acoustic properties. The amplitude mode

(A-mode) and the brightness mode(B-mode) are two common modes of displaying the reflected

ultrasound echoes of soft tissue. Both of the modes involve the use of a focused ultrasound beam

that interrogates tissue along a line in space. In A-mode, reflected echoes are represented as
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Figure 1.1: Human Subcutaneous Fat in an ultrasound B-mode image.

amplitude versus depth in one-dimension. In B-mode, multiple equally spaced beams are used and

reflected echoes are represented as two-dimensional brightnesses images whose axes correspond to

the lateral and axial direction of the scanning plane. In this way, each column of a B-mode image

can be considered as a form of A-mode data. Tissues with stronger reflection are represented by

brighter intensities in both A-mode and B-mode images.

The first mention of measuring subcutaneous fat thickness with ultrasound was in 1966 [31]. It

was not until 1984 that Volz and Ostrove [32] used a portable A-mode ultrasound to quantitatively

determine subcutaneous fat thickness in college woman. A-mode ultrasound measures the fat

thickness by estimating the time required by an ultrasound pulse to be reflected from the fascia

(i.e. the strong acoustic interface between subcutaneous fat and the muscle layer). They found

a lack of agreement between ultrasound and half skinfold measurements: agreement ranged from

87% at supraprailiac to 141% in thigh. The large range of error was believed to be caused by

multiple echoes reflected by the connective tissue layers dispersed within the fat tissues. Therefore,

A-mode ultrasound alone is not sufficiently reliable to measure fat thickness. The later introduction
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of B-mode ulrasound machines, which generate cross-sectional slices instead of just lines, makes

it easier to interpret the depth of subcutaneous fat as two-dimensional ultrasound can depict the

structural information about the subcutaneous fat layer. Various studies have been carried out to

demonstrate the reliability and reproducibility of B-mode ultrasound for quantifying subcutaneous

fat. For instance, Kuczmerski et al. [3] measured subcutaneous fat thickness on obese adults to

overcome the limitations of the skinfold calipers in 1987. They proved that ultrasound is superior

to the caliper technique in the prediction of the body density of obese persons. Bellisari et al. [33]

recommended ultrasound as a measurement tool for subcutaneous fat. They evaluated the intra

and inter-observer error and found that technical error was less than 0.2mm except in the female

triceps where the inter-observer error was found to be 0.62mm. The reliability between observers

was above 90% except in the paraspinal site (82%). Flygare et al. [34] proved that ultrasound can

reproduce measurements of subcutaneous fat in infants when performed by the same operator. In

1996, Abe et al. [7] attempted to calculate subcutaneous fat volume by multiplying the fat thickness

obtained from B-mode ultrasound with the skin surface area. They found that the volume of fat

measured by ultrasound was significantly correlated (r = 0.79-0.95) with MRI measurements at

the forearm, upper arm, trunk, thigh and lower leg. Other researchers using manual ultrasound

methods have found that there are also high correlations between ultrasound and skinfold methods

[32, 35, 36, 37, 2].

CT and MRI are able to measure visceral fat by subtracting subcutaneous fat from the total

fat tissue[20]. However, ultrasound is not a good choice for quantifying visceral fat due to its low

resolution and poor penetration. Nevertheless, Tornaghi et al. [25] proposed one valid method

to indirectly assess the amount of visceral fat with ultrasound by measuring the intra-abdominal

depth that correlates to the amount of visceral fat area.

1.2 Motivation

Subcutaneous fat thickness is accepted as a body fat indicator because about 40 to 60% of total body

fat is in the subcutaneous regions [38] and it is appropriate to use the distribution of subcutaneous

fat as an indicator. Measuring subcutaneous fat is important in relation to human health problems,

athletic performance and general public interest.
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Assessing human health risk – Body fat percentage can be used to assess obesity and human

health risk. A person is obese if an excessive storage of body fat (women with more than 35% of body

fat and men with more than 25% of body fat [39]) is accumulated in the body. It is generally agreed

by health professionals that an obese person has a higher chance of developing health problems

such as hypertension, coronary artery diseases, stroke, gallbladder diseases, osteoarthritis, type 2

diabetes, sleep apnea, respiratory problems, and cancers. Obese individuals may also suffer from

social stigmatization and discrimination [40].

Evaluating performance of athletes – For professional athletes, monitoring their body

weight and percentage of body fat can help to improve and maintain their sports performance.

Body weight cannot be the sole indicator relating to the performance of athletes: for the same

weight of bodies, more strength and endurance can be generated from bodies composed of more

muscle than fat. Therefore, an optimal percentage of body fat can help the athlete to achieve the

desired performance in speed, agility, strength and endurance. The optimal percentage of body fat

depends on the nature of the sport, the sex of the athlete, and is determined on an individual basis.

For example, gymnasts and figure skaters maintain little body fat for appearance and agility while

achieving optimal strength. Power sports such as football, skiing, volleyball and hockey require

more fat (5 to 19% in males and 10 to 20% in females [41, 42]) to achieve a higher strength-to-weight

ratio for generating power. Sports like wrestling, weight lifting and body building set limitations in

terms of body weight. Saito et al. [8] state that it is important to develop a method for measuring

the body fat percentage of sumo wrestlers so that their weight can be monitored to prevent obesity-

related diseases and also to maintain their competitive athletic performance and qualification for a

specific weight category. Athletes may suffer from eating disorders and poor energy level when the

level of body fat is too low and this can be an indication of over-training. There is also a trend in

female atheletes to suffer from disruptions of menstrual cycles [43], amenorrhea and osteoporosis

[42].

General public interest in modern culture – Our modern culture and fashion industry

tend to emphasize personal body shape, appearance and slimness. Under peer pressure, people

may consider being fat or carrying excessive fat at a particular body site to be unattractive. Obese

individuals may also be afraid of discrimination. Due to these social and psychological issues,

people are eager to monitor their body fat distribution, not only to minimize health problems, but
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also for the sake of appearance.

In general clinical practice, medical practitioners commonly use BMI as an indicator of obesity

because it is easy to obtain. However, this method is not reliable [44]. On the other hand, it

is inappropriate to assess athletes based solely on body weight because this does not reflect the

percentage of body fat. Development of a precise method to measure subcutaneous fat will allow

people to monitor their body fat percentage. Based on the measurements, health care practitioners

can provide diet and nutritional counseling, recommendations on aerobic and exercise activities

that will prevent and control obesity, get the body in shape and set personal fitness goals.

As discussed in section 1.1, there are several methods to estimate body fat percentage. Com-

pared with techniques like body density weighing, BIA or skinfold caliper measurement, ultrasound

imaging is superior because it can provide real images of fat. Moreover, ultrasound imaging is more

portable and cheaper than DEXA, CT and MRI. Also, it does not require a radiation dose. The

above factors make it ideal for measuring subcutaneous fat thickness for general use. Moreover,

ultrasound imaging can be used to observe the macroscopic structure of the fat layer [2]. Studies

also show that ultrasound is reliable and its results are repeatable for inter-observer data. [33, 45].

The above reasons have motivated us to investigate the possibility of the automatic detection

of human subcutaneous fat. Although ultrasound has been introduced to measure subcutaneous

fat for a few decades, we are not aware of any published work related to the automatic detection

of subcutaneous fat in vivo. Indeed, Glasbey et al. [46] investigated the automatic interpretation

of subcutaneous fat in sheep using B-mode imaging. However, their automatic method only in-

terpreted fat boundaries at two locations: the last rib and the third lumbar vertebra where the

anatomy is relatively simple and presumed the skin boundary was known. Automatic detection

can overcome the tedious task of manual detection, reduce the discrepancy among judgments of

different operators, and standardize the measurement technique. We believe that automatic de-

tection of fat thickness using ultrasound may potentially help to bring the technology into general

application by making it more user-friendly.
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1.3 Pulse-Echo Ultrasound Imaging

Ultrasound machines, which are mainly used for medical applications, are based on the pulse-

echo technique. In other words, the same transducer acts as both the pulse generator and echo

detector. Ultrasound is generated in pulses and these pulses are reflected from different body soft

tissues as the pulse propagates through tissues. These echoes are separated in time and the time

is in proportion to the depth of the tissue interfaces. The depth and location of soft tissues can

be calculated by the arrival time of a reflected echo using the generalized speed of sound of soft

tissues. Moreover, the strength of the reflected echo indicates the difference in acoustic properties at

the interfaces. This section describes how an ultrasound machine works, how ultrasound interacts

with soft tissue, the influence on the radiofrequency (RF) spectra and the current development of

ultrasound image segmentation.

1.3.1 Apparatus

An ultrasound machine consists of three main components: a transducer, an image processing

unit and the display unit. The transducer consists of an array of piezoelectric elements which

generates ultrasound pulses and receives reflected echoes. A group of adjacent piezoelectric elements

can be activated simultaneously generates an ultrasound pulse by converting electrical energy to

acoustical energy. The same group also receives reflected echoes as electrical voltages. The reflected,

unprocessed radio-frequency echoes are referred to as RF signals. A scan line of RF signal provides

amplitude data of the reflected echoes in the axial direction and thus forms A-mode data. A

lateral collection of RF scan lines provides the amplitude information in both the axial and lateral

directions and thus forms a B-mode image (Figure 1.2). Furthermore, the time sequence of firing

of elements within the group can be controlled for the application of beam focusing and steering.

Overall, the transducer plays an important role in beam focusing, beam steering and controlling

the penetration and resolution of an ultrasound pulse.

Focusing sound beams can improve resolution by reducing the beam width. The ultrasound

transducer can control the position of the focal point in three ways: using curved piezoelectric

elements, a lens or by phased timing. The first two methods use the geometric shape of the

elements or lens to reduce the ultrasound beam width. The phased timing method is more common
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Figure 1.2: A group of adjacent elements activated simultaneously to generates an ultrasound pulse
and receives reflected echoes. A scan line consists of a single reflected RF signal that is normally
amplified and rectified. A B-mode image consists of a collection of scan lines which are taken
independently and combined to form an image of pixels. The scan lines are shown parallel here,
but may also spread radially in a fan for curvilinear transducers.

in clinical ultrasound machines and allows the focus to be adjusted electronically. Figure 1.3 shows

that pulses can be fired by the element groups at separated time intervals to adjust the apparent

curvature of the beam wavefront for controlling the location of the focus. A longer delay between

elements in Figure 1.3(a) increases the curvature of the beam wavefront and the focus is moved

closer to the transducer, whereas a shorter delay in Figure 1.3(b) decreases the curvature of the

beam wavefront and the focus is moved farther from the transducer. This technique allows the use

of multiple pulses at each scan line for positioning more than one focal point at different depths;

however, the frame rate is decreased due to the need to fire multiple pulses[47].

Moreover, phase timing can also control the beam steering angle by introducing additional

phase delays between the firing of individual elements. Figure 1.4 shows that the application of

voltage pulses on the element groups with no delays generates a steering angle of zero degrees

(no steering), whereas applying voltage pulses with increasing delay from left to right changes the
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Figure 1.3: The mechanism of focusing using phased timing.

steering direction to the left and applying voltage pulses with increasing delay from right to left

changes the steering direction to the right. Beam steering allows the anatomy to be viewed from

different angles. This approach is especially useful for techniques that aim to improve image quality

by averaging multiple views of the anatomy and for techniques that generate panoramic images by

stitching images together.

Ultrasound focusing can improve resolution at the focal point by reducing the beam width,

but the overall system resolution of an ultrasound imaging system is determined mainly by the

frequency of the ultrasound pulses. There is always a tradeoff between the system resolution and

the penetration power of ultrasound pulses. The penetration and resolution of an ultrasound pulse

is directly related to the frequency (f) and the wavelength (λ) of an ultrasound pulse. f and λ are

related by the speed of ultrasound (c) via

c = fλ. (1.1)

In most ultrasound machines, c is assumed to be 1540ms−1 because ultrasound travels at nearly the

same speed for most biological tissues. The higher the frequency, the lower the penetration ability
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Figure 1.4: The ultrasound beam steering generated by phased timing.

of the ultrasound is. The smaller the wavelength and the shorter the ultrasound pulse, the better

the resolution is. Therefore, an increase in frequency reduces the penetration power but improves

the resolution; a decrease in frequency increases the penetration power but reduces the resolution.

The change of frequency can be achieved by changing the natural frequency of the piezoelectric

elements.

To display ultrasound echoes, the received echoes are first amplified by the time gain compen-

sation (TGC). TGC normally increases with depth so that it compensates for the effect of tissue

attenuation with depth. After TGC, envelope detection is applied to each scan line of RF data

and a brightness image is obtained. The resulting two dimensional brightness image is referred to

as an ultrasound B-mode image. In order to display the image, the B-mode image then undergoes

the scan conversion process. In this process, the scanlines are mapped to real spatial coordinates

according to the dimensions and geometry of the transducer. After that, the amplitude of the

signals are calculated and logarithmically compressed to match the dynamic range of the monitor.
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1.3.2 Interaction of Ultrasound with Soft Tissues

When an ultrasound pulse is fired from the transducer and propagates through soft tissue, atten-

uation of the ultrasound energy occurs. Absorption, reflection, refraction and scattering are the

most important mechanisms in the attenuation of the ultrasound energy and will be discussed. To

simplify the interaction process, we assume there are no diffraction effects from the transducer be-

cause it is not directly related to the tissue properties. Moreover, the characteristics of attenuation

are determined solely by the acoustic properties of soft tissue.

Reflection occurs at a boundary between two tissues with different acoustic impedances (Z).

The acoustic impedance of soft tissue is defined as

Z = ρc (1.2)

where ρ is the density in g/m3 and c is the speed of sound in m/sec. c is assumed to be fixed at

1540m/sec in the ultrasound machine. Given an incident wave perpendicular to a tissue boundary,

the amount of wave energy transmitted across the surface is determined by the ratio of acoustic

impedances of the two adjacent tissue. The ratio R of reflected intensity Ireflected and the incident

intensity Iincident is

R =
Ireflected

Iincident

= (
Z2 − Z1

Z2 + Z1
)2 (1.3)

Lower values of R means more energy is transmitted through the interface.

Refraction occurs at a tissue interface when there are different sound speeds of the two tissues

and the wave incidence angle is not 90◦. If an ultrasound wave travels from a soft tissue of speed

v1 to a soft tissue with a speed of v2, the relationship between the angles of incidence θincident and

refraction θrefracted is given by Snell’s law:

θincident

v1
=

θrefracted

v2
. (1.4)

The variation in the speed of sound in soft tissues causes refraction and may resulted in incorrect

positions of tissues in the B-mode images.

Scattering occurs when structures inside tissues are about the same size or smaller than the

wavelength of ultrasound. Unlike specular reflection, scattering causes the sound beam to be
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reflected in several directions and this reduces the echo strength. The factors affecting the scattering

properties include: the size and number of point scatterers per unit volume within a tissue, the shape

and structures of scatters and the acoustic impedance differences at the scattering tissue interfaces.

Energy lost due to scattering is small when it is compared to energy absorption[48, 49]. The

backscattering of tissues is related to the presence of collagen structures, such as microvasculature

and elastin fibers[49]. For example, collagen fibers produces stronger scattering than blood cells[50].

Scattering contributes to the local echogenicity of a tissue region; however, the destructive

and constructive interference of ultrasound pulses with randomly distributed scatters can generate

speckle that does not reflect the structure of the underlying tissues. Speckle patterns are random

and they usually appear when the scatterers are smaller than the resolution of an ultrasound pulse.

They reduce the contrast resolution and degrade the details of the image. They can be found in

both RF data and B-mode images; the texture of the speckle patterns does not necessarily reflect

the structure of the corresponding tissue.

Energy is absorbed and converted to heat when the sound wave propagates through tissue. The

amount of energy absorbed is dependent on the relaxation phenomena of the translational and

rotational vibration modes of the biological macromolecules [50]. For example, lung tissue consists

of air sacs and has a very high attenuation, whereas degassed water has low attenuation.

Generally, the overall attenuation is due to both scattering and energy absorption. The overall

energy lost is expressed by the attenuation coefficient (µ) which indicates the energy lost in decibels

per centimeter of travel. It is generally assumed that the attenuation coefficient in human tissue is

linearly proportional to ultrasound frequency except in blood (1.25dBcm−1), bone(1.7dBcm−1) or

lungs(0.6dBcm−1) [51, 52, 53]. Note that an increase in ultrasound frequency causes an increase

in attenuation. Moreover, Goss et al. [52, 53] summarized the ultrasound properties of various

mammalian tissues and showed that the acoustic property of the same type of tissue can vary due to

many factors such as the temperature, location of the sample, homogeneity of tissue, experimental

techniques and in vitro or in vivo experiments. For example, the attenuation of fat is 10-15% higher

at the room temperature than at a temperature of 37oC [52].

It can be seen that the interaction between ultrasound and tissue is complicated but trends and

models exist. The interaction affects both amplitude and spectrum properties of the tissue due to

the frequency dependence of the interaction. However, B-mode images, which are commonly used



Chapter 1. Background and Introduction 17

in traditional clinical analysis, are normally displayed after envelope detection so the spectrum

content is lost. Spectrum properties can be an important description of soft tissues with different

acoustic properties; therefore, spectrum properties of ultrasound RF signal will be discussed in the

following section.

1.3.3 Backscattered Radiofrequency Spectra

The previous section describes how ultrasound waves propagate through soft tissues in terms of

the tissue properties. This section describes the interaction based on the spectrum of RF data. A

simplified model of the pulse-echo ultrasound interaction in the frequency domain at a particular

location can be described as

R(f) = P (f)B(f)A(f) (1.5)

where R(f) is the spectrum of the received echo and P(f) is the spectrum of a transmitted pulse.

The interaction of the transmitted pulse and the soft tissues is characterized by the spectrum

backscattering B(f) and spectrum of attenuation A(f) [54].

Assuming the transmitted pulse is Gaussian in shape, P(f) can be described as

P (f) = Poe
−

(f−fo)2

2σ2 (1.6)

where Po is amplitude constant, fo is the transducer central frequency and σ is the bandwidth of

the pulse spectrum. The backscattering spectrum can be modeled as

B(f) = Bof
z (1.7)

where z is the scatter power and ranges from 0 to 4, and most human tissue is within the range of

z = 1 to 2 [49]. On the other hand, the attenuation spectrum can be modeled as

A(f) = Aoe
−αf (1.8)

if we assume attenuation in human tissue is a linear function of frequency and ultrasound attenuates

exponentially [48]. α is the total accumulative round trip attenuation in tissue. The typical

value of α in soft tissue is 0.5dB(MHzcm)−1 [55] and this value varies among soft tissues. For
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example, striated muscle has a value of 1.30dB(MHzcm)−1, fat tissue at 37◦C has a value of

0.61dB(MHzcm)−1 and blood has a value of 0.15dB(MHzcm)−1 [52].

By combining Equations 1.6 to 1.8, the spectrum of the received echo R(f) becomes

R(f) = PoBoAoe
−

(f−fo)2

2σ2 e−αffz. (1.9)

Therefore, R(f) can be expressed in proportion to f , fo and z as:

R(f) ∝ e
−[f−(fo−ασ2)]2

2σ2 fz (1.10)

.

According to the work of Treece et al. [54], fz can be expressed as an exponential and the

scaling factors that are not related to frequency f are dropped. As a result, R(f) can be simplified

and expressed in terms of a received Gaussian pulse as:

R(f) ∝ e
−

(f−fc)2

2σ2 (1.11)

where

σ = σ2 f2
o

f2
o + zσ2

(1.12)

and

fc = fo − ασ2 +
zσ2

fo

. (1.13)

σ and fc are the bandwidth and central frequency of the received pulse R(f) respectively.

From equation 1.13, it is noticed that the central frequency fc of the received pulse spectrum

shifts down as the round trip attenuation α increases. α increases when the travelling depth of

the pulse increases; therefore, fc decreases as the depth increases. If z changes abruptly from one

tissue to another tissue, there will be an abrupt change in the center frequency fc and a reduction

of the bandwidth σ.

Moreover, Fink et al. [56] used the short time Fourier transform (STFT) analysis and showed
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that the downshifting rate of fc is proportional to the attenuation α as

dfc

dy
= cασ2(y) (1.14)

where c is the speed of sound in soft tissue, σ2(y) is the bandwidth of the received spectrum that

changes with depth (y) and dfc

dy
is rate of change of fc.

The above equations have shown that soft tissues with different acoustic properties would have

different influences on the central frequency and bandwidth of the received echo spectrum.

1.3.4 Current Development of Ultrasound Segmentation

Most research in ultrasound segmentation is concentrated on B-mode images. For instance, Akgul et

al. [57] used a deformable contour to detect the tongue boundary in B-mode images. An automatic

fuzzy multi-resolution-based algorithm was developed for cardiac left ventricular epicardial and

endocardial boundary detection [58]. Madahushi and Metaxax [59] automatically found lesion

margins in ultrasound images by using both empirical domain knowledge used by radiologist and low

level image features. Low level image features include texture, intensity and directional gradients.

These are just a few examples of a large body of literature. However as mentioned, B-mode

images are formed after envelope detection of RF signals, so spectral information that describes

the properties of soft tissue is lost.

Not until recently have researchers started to investigate boundary detection using RF signals.

In 1999, Hammoude [60] first attempted to detect edges based on abrupt changes in the central

frequency due to the attenuation rate. However, his method failed to correctly identify the bound-

ary due to erratic changes in ultrasound signal. Boukerroui at al [61] investigated a 3-dimensional

adaptive clustering segmentation method for in vivo echocardiographic 3D data based on gray-scale

intensity, two-dimensional texture features calculated envelope data and the local mean frequency

of the spectrum. In 2003, Dydenko et al. extracted the power of the signal, spectral-based au-

toregressive parameters, and a velocity-based parameter to detect boundaries in echocardiographic

images by an adaptive smoothing algorithm. They also obtained promising results from performing

boundary detection in cardiac sequences in vivo using the variance of velocity [62]. Davignon et

al. used the integrated backscatter and mean central frequency to improve their multi-resolution
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Bayesian region-based algorithm that was based on envelope data. Their algorithm was tested on

agar-gel phantom and proved that a multiparameteric approach could improve the segmentation

result [63]. These examples show that it is feasible to use spectrum information of the RF signals

for the purpose of segmentation.

1.4 Properties of Human Subcutaneous Fat

The properties of human subcutaneous fat are presented from the biological and the ultrasound

viewpoints. The potential difficulties in detecting the fat layer in B-mode ultrasound images are

discussed.

1.4.1 Biological characteristics

Fat, which is also known as adipose tissue, is a layer of loose connective tissue specialized in storing

lipids. Fat cells are held together by thin fibrous membranes of connective tissue. Connective

tissue in fat usually appears as thin and relatively sparse collagen fibers. Fat cells found in humans

(mostly white adipose tissue) are also known as adipocytes and consist mainly of lipids (80% of

a fat cell) and can range up to 120µ in diameter [64]. They are spherical in shape when isolated.

However, fat cells are usually packed to form a meshwork and become polyhedrical in shape. The

number of fat cells increases mainly during our infancy. An adult gains weight mainly because of

an increased accumulation of lipids in fat cells and not an increase in the number of fat cells [64].

In the human body, fat can be divided into two types: subcutaneous fat and visceral fat. The

subcutaneous fat layer is immediately underneath the skin and usually found in the thigh, waist,

abdomen and buttocks. Visceral fat is usually located internally, around kidneys, at mesentery and

retroperitoneal spaces etc [65]. However, in this thesis, we are mainly interested in the subcutaneous

fat layer.

1.4.2 Ultrasound characteristics

As mentioned before, fat tissue consists mainly of lipids with sparse connective tissues. In ul-

trasound B-mode image (as shown in Figure 1.1), human subcutaneous fat is separated from the

next soft tissue layer (usually the muscle) by a continuous white layer called fascia. This layer
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(a) suprailiac (b) triceps (c) thigh

Figure 1.5: B-mode images showing subcutaneous fat at different body sites. The thickness of the
fat layer is indicated with arrows.

usually generates a strong reflection of the ultrasound pulse and is referred to as the fat boundary.

Connective tissues are also dispersed within the fat tissue.

Figures 1.5(a) to 1.5(c) show the appearance of the subcutaneous fat layer in B-mode images.

In this study, when we refer to the subcutaneous fat layer, it starts with, and includes, the dermis of

the skin, and ends at the continuous white layer which is the fascia. When the layer of subcutaneous

fat is homogeneous, it usually appears to be less echogenic than other tissue layers such as muscles

(Figure 1.5(a)). In addition, fibrous membranes of connective tissue, whose length, thickness and

density vary between people and body sites, can be found within the layer of fat. As a result, the

layer of subcutaneous fat appears to be more echogenic in the presence of thicker connective tissue

(Figures 1.5(b) and 1.5(c)). From our images, we noticed that subcutaneous fat at the suprailiac

site (figure 1.5(a)) is usually more homogeneous (with less or thinner connective tissue) than at

the triceps and thigh. At the triceps and thigh (Figure 1.5(b) and 1.5(c)), the layer of fat usually

consists of longer, thicker and denser connective tissues.

Researchers have conducted studies to investigate the acoustic properties of human fat. Sum-

maries from [52, 53] show that fat has a relatively low speed of sound (∼1480ms−1) compared with
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other human soft tissue, while connective tissue (∼1613ms−1) has a relatively high speed of sound.

Therefore, fat tissue is highly heterogeneous and may cause ultrasonic wavefront distortion [66].

Moreover, previous research has also shown that different types of fat tissues have dissimilar

acoustic properties. For example, Greenleaf and Bahin [67] investigated fat in the breast using

transmissive ultrasound computerized tomography and found that an increase in the number of

collagen in fat content would increase its speed of sound and its attenuation. Landini and Sarnelli

[68] also found that the attenuation coefficient is lower for tissues with a large predominance of fat

cells and this increases with more collagen fiber content.

The usual practice of a sonographer in determining the subcutaneous fat thickness is to draw

a vertical line from the surface of skin to the fascia [13]. There are several factors affecting the

visual interpretation of the fat boundary. For example, dense connective tissues may appear near

the fascia and make the fat-muscle boundary less clear, and a long connective tissue layer may

also be wrongly interpreted as the fascia. Moreover, it is harder to define the boundary between

subcutaneous fat and muscle because of the smaller amounts of intermuscular fat tissues[13].

Although the fascia and fibrous connective tissues are well imaged because of their specular

characteristics, the amplitude of the received pulse can be affected by the angle of incidence of the

ultrasound beam. In our images, the transducer was kept vertical to the skin so that the angle of

incidence was near 90◦.

1.4.3 Difficulties in Segmentation of Fat in Ultrasound Images

From the observations in the previous section, we noticed that the variations in echogenicity, size

and density of connective tissue among different people and body sites make it difficult to extract

the fat layer from B-mode images alone. Several authors have also reported that heterogeneity of

subcutaneous adipose tissue was observed in ultrasound and X-rays images [31, 32]. Additional

strong interfaces could appear near skin and intermediate membranes dispersed through the fat

tissues. Other researchers also show that the thickness and texture of fat affects the overall ap-

pearance of B-mode images. Haberkorn et al. [69] investigated the influence of the subcutaneous

fat layer on the diagnosis of B-mode images. They mentioned that the size of fat clusters might

change the ultrasound wave length, and showed that an increase in thickness of fat caused darker

and lower contrast images. Pomaroli et al. [70] performed a histologic analysis and showed that
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fatty tissues with more connective tissues appeared to be more echogenic in B-mode than fatty

tissues with fewer connective tissues. Moreover, Hinkelman et al. [66] also mentioned that thick

layers of fat may cause poor B-mode image quality at the abdominal wall because they distort

ultrasound beams due to their scattering and absorption effects.

1.5 Thesis Objectives and Organization

Conventional B-mode ultrasound images describe tissue structure only in terms of echogenicity and

texture. Based on our observed difficulties, fat tissue does not have a consistent description of both

texture and brightness; therefore, image segmentation of subcutaneous fat is difficult when applied

to B-mode images. Conversely, RF signals retain the frequency, phase and amplitude information.

Spectrum properties of the RF signal give additional information related to the acoustic properties

of fat; thus, we will investigate the feasibility of measuring the subcutaneous fat by detecting the

changes of the spectrum from one layer to another. Moreover, the existence of speckle also affects

the texture of ultrasound images. Ultrasound speckle adds noise to the RF raw data, reduces the

contrast resolution and weakens the detectability of soft tissue layers. Therefore, the existence of

speckle also imposes further challenges on the segmentation problem.

This thesis explores the use of the spectrum properties of RF signals to detect the boundary of

the subcutaneous fat layer and presents an image processing and boundary detection framework

to automatically detect the fat boundary in vivo. An experiment with nine human subjects is

also presented to validate the accuracy of the method by comparing our automatic measurements

with manual measurements. Furthermore, the correlation between ultrasound measurements and

skinfold measurements is also investigated. The thesis is organized into four chapters as follows:

Chapter 2 describes our method of image processing and boundary detection using the RF

signals. The calculation of spectrum properties is presented and spatial compounding is introduced

to reduce the noisy spectrum measurements. The values of the spectrum properties are encoded as

gray-scale parametric images for segmentation. A new segmentation technique on selected spectrum

properties using thresholding and boundary detection is also discussed. At the end, capturing RF

data from multiple focuses is proposed to overcome the drawbacks of using a single focus.

Chapter 3 shows the overview of the entire human subcutaneous fat detection framework.
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The steps of the detection framework include RF data capture, calculation of spectrum properties,

preprocessing of spectrum properties map and segmentation. Moreover, our method is tested at the

suprailiac, triceps and thigh sites of nine volunteers and is compared to the skinfold caliper method.

The procedures of the user study in collecting skinfold caliper measurements and ultrasound data

are discussed.

Chapter 4 evaluates the results of our fat boundary detection method. First, our results are

compared with the manual detection on B-mode images in terms of average thickness error and

RMS error. We also investigate whether data obtained from multiple focuses will improve the

robustness of our detection algorithm. Furthermore, relationships between skinfold caliper and

ultrasound measurements are presented in terms of their linear correlation and mean differences.

Chapter 5 summarizes our work and presents the future work. It also describes the remaining

issues of our detection method using ultrasound.
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Chapter 2

Method in Developing Image

Processing and Boundary Detection

In the previous chapter, we have shown that the acoustic properties of soft tissues can be related

to the spectrum of the received radiofrequency (RF) signal. This chapter proposes the use of

unprocessed RF signals to develop an image processing and boundary detection algorithm to extract

the human subcutaneous fat layer. We discover that the characteristics of human subcutaneous fat

tissues can be described by the local spectrum properties of RF signals. The spectrum properties are

encoded into gray-intensity images called parametric images. Then, we develop an image processing

and boundary detection method based on our observations on the parametric images. Moreover, we

discover that the method of spatial compounding increases the signal to noise ratio and improves

the detection of subcutaneous fat from their parametric images of the spectrum properties. With

the spectrum properties established through spatial compounding, a thresholding and boundary

detection method is proposed to segment the subcutaneous fat layer and locate the fascia - the fat

boundary. Finally, we also consider using spectrum properties obtained from multiple focuses to

improve the segmentation result.

2.1 Processing of Radiofrequency Signal

RF signals are stochastic (i.e. next state of the signal is partly but not fully determined by

the previous state of the signal) and their spectrum characteristics vary with time; therefore,

their spectrum properties are estimated by local spectrum calculations. In each RF signal, local

spectra are calculated by short time Fourier transform (STFT). The total energy, mean central

frequency and spectrum variance are calculated for each local spectrum and their relationship with

the subcutaneous fat layer is investigated.
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The reasons for using these three spectrum properties are as follows:

• The total energy reflects the strength of echoes. Since echoes reflected from the fascia are

relatively strong, the total energy can indicate the location of the fascia.

• The mean central frequency shifts downward with depth when the pulse propagates. Its rate

of change is proportional to the attenuation coefficient of the soft tissue and can potentially

serve as a descriptor of soft tissues with different acoustic properties.

• The spectrum variance provides the deviation of spectrum values from fc. It gives the un-

certainty measurement for the estimation of the mean central frequency. It can potentially

describe the shape and bandwidth of the power spectrum which vary among different soft

tissues.

2.1.1 Calculation of Spectrum Properties

STFT is performed on each RF scan line. A window, which consists of 32 samples, is shifted down

in depth with a 50% overlapping of the previous window. Then, a Hamming window and discrete

Fourier transform (DFT) are applied to the window. M-point DFT is performed by Matlab’s fft

function. The spectrum is obtained by:

S(w) = |X(w) ∗ X(w)| (2.1)

w ∈ {0, fo, 2fo, ...(M − 1)fo}

where fo is the sampling frequency of RF signals, X(w) is the DFT applied to a windowed RF

signal x(t) and S(w) is the power spectrum with a length of M/2. As mentioned in Section 1.3.3,

the spectrum is assumed to have a Gaussian distribution.

The three spectrum properties (total energy, mean central frequency and spectrum variance)

of S(w) are calculated within a bandwidth W but not the whole spectrum. The purpose is to

eliminate unwanted frequencies that are considered to be non-significant data. We use W from

0.5MHz to 11MHz for data obtained from a 6.6MHz transducer. Since the transmission frequency

of the transducer is 6.6MHz and its bandwidth is small, it is reasonable to restrict the signal to
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this range. A rule of thumb for the axial resolution of a 6.6MHz transducer is 0.35mm1. The

window size of 32 samples, which corresponds to 0.62mm, is around twice the axial resolution of

the transducer.

The first spectrum property discussed is the total energy of the spectrum, also referred to as the

integrated backscatter coefficient (IBS)[71, 63]. The IBS coefficient indicates the total reflected

power and strength of the backscattering; a larger value corresponds to more energy reflected from

the tissues. The IBS is calculated by:

IBS =
Wmax
∑

w=Wmin

S(w) (2.2)

where w is from Wmin to Wmax MHz, S(w) is the power spectrum with a length of M/2.

The mean central frequency (fc) describes the spectrum central frequency which is the average

of the frequencies present in a window. Section 1.3.3 show that the rate of change of fc is directly

proportional to the attenuation and its value fluctuates when the ultrasound pulse propagates

through tissue and is reflected by tissues with different acoustic properties. fc can be calculated

using the moment analysis. Moment analysis has been used by several authors [56, 63] to calculate

local spectrum properties of RF signals. Fink et al. [56] proved that the moment analysis can be

used calculate the central frequency and variance of the power spectrum. In moment analysis, the

jth moment mj is calculated as the following:

mj =
Wmax
∑

w=Wmin

wjS(w) (2.3)

where S(w) is the amplitude of the spectrum and wj is the jth power of w. By using Equation

(2.3), fc is expressed by the zeroth moment(m0) and first moment (m1) of the spectrum [56] as

fc =
m1

m0
(2.4)

The last spectrum property is the spectrum variance(σ2
s). It tells the deviation of spectrum

values from fc within a bandwidth W; a larger value corresponds to a higher uncertainty for the

1The axial resolution (for a three cycle pulse) = (temporal pulse length x 3) x c/2 = (c x 3)/(fo x 2)
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estimation of fc. To our knowledge, this spectrum property is rarely used in investigating tissue

properties in ultrasound. Bylund at al [73] discovered that the estimated spectrum variance was

low at the reverberation artifact locations[74]. According to Fink et al. [56] σ2
s can be calculated

using the first and second moment(m2) of the spectrum and fc given by:

σ2
s =

m2

m0
− f2

c . (2.5)

The calculation of σ2
s , as proved by Fink et al. [56], is shown in Appendix A.

2.1.2 Noise Reduction using Spatial Compounding

Statistical fluctuations exist in backscattered RF signals due to speckle noise and heterogeneity

in tissues and result in noisy spectrum properties. Spatial compounding has been used to reduce

speckle and improve boundary continuity in B-mode images [75, 76, 77]. Recently, compound

imaging is also applied to reduce the variance of displacement estimations in elastography [78], to

improve temperature estimations due to the thermo-acoustic lens effect in high intensity focused

ultrasound [79] and to reduce variance of attenuation measurements and enable coarse attenuation

imaging [80]. In our work, compound imaging is used to improve the estimations of IBS, fc and

σ2
s .

The concept of spatial compounding is shown in Figure 2.1 for B-mode images. The object

(gray circle) appears inhomogeneous in the presence of speckle and the speckle pattern changes

under different viewing angles. The two beam-steered B-mode images at left and right (not taken

from the 0◦ direction), are transformed and interpolated from the raw data coordinates to Cartesian

spatial coordinates. The raw data coordinates are with respect to the transducer and the spatial

coordinates are in the real space. In the end, the resulting images in their spatial coordinates

are averaged to form a single compounded image. Since speckle patterns are random, their shape

and distribution changes with beam angle, so averaging images from different views can reduce

speckle and the object appears more homogeneous. Our idea of applying spatial compounding to

the spectrum properties is similar to the above discussion except spatial compounding is applied to

obtain the spectrum properties values (IBS, fc and σ2
s) instead of the B-mode pixel values. The

details of implementation will be discussed next.



Chapter 2. Method in Developing Image Processing and Boundary Detection 29

Raw data
Coordinates

Real spatial
coordinates

Compound Image

Average

Beam steering
angle

Figure 2.1: The concept of spatial compounding for reducing speckle in B-mode images. After
averaging images taken from different angles, speckle patterns are reduced and the object appears
more homogeneous.

2.1.2.1 Implementation

Spatial compounding is applied to each spectrum property as shown in Figure 2.2. RF data are

first obtained from N different steering angles by beam steering of the transducer. For each steering

angle θ, a spectrum property (IBS or fc or σ2
s) is calculated from each RF scan line as described

in section 2.1.1. As a result, N two-dimensional spectrum properties , whose width is the number

of RF scan lines and height is the number of STFT windows, are computed for each spectrum

property. The values of fc, σ2
s and IBS may be presented as two-dimensional images. We will refer

to these two-dimensional images of the spectrum properties as “parametric images”throughout the

thesis.
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Figure 2.2: Application of spatial compounding on a spectrum property.

The next step is to convert a parametric image from its raw data coordinates to the real spatial

coordinates using the geometry of the steering (Figure 2.3).
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Figure 2.3: Mapping the coordinates from the raw data space to the real space by geometry. A1

is a spectrum property value at its raw data coordinates (x1, y1) in the parametric image obtained
from the steering angle θ. A2 is the corresponding spectrum property value of A1 at the real spatial
coordinates (x2, y2).

Let A1 be a spectrum property value at the raw data coordinates (x1, y1) in the parametric

image obtained from the steering angle θ and A2 be the corresponding spectrum property value of

A1 at the real spatial coordinates (x2, y2). Using geometry (Figure 2.3), (x2, y2) can be calculated

as:

φ = −θ

ℓ = y1

x1 − x2

ℓ
= sinφ

x2 = x1 − ℓsinφ (2.6)

y2

ℓ
= cosφ

y2 = ℓcosφ (2.7)

Thereafter, a two-dimensional bilinear interpolation is applied to find the interpolated spectrum

property value A2(x2, y2) in the real spatial coordinates space. The Matlab function interp2 is

used for the the bilinear interpolation based on the known original raw data coordinates, real spatial
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coordinates and values of the parametric image in the raw data coordinates space.

2.1.2.2 Experiments

A custom-made phantom is used to find the best range and step size of steering angles for spatial

compounding by calculating the uncertainty in estimating the rate of change of fc. Moreover, the

spatial compounding method is compared to neighbour averaging to show that the reduction of

speckle noise in spectrum properties is more effective when averaging from different viewing angles

instead of simply from neighbouring data. The best range and step size of steering angles obtained

from the phantom experiment are then used for observing the qualitative improvements on the

parametric images of IBS, fc and σ2
s in real human tissue.

2.1.2.2.1 Phantom Experiments Given a phantom that is homogeneous and composed of

only one type of tissue with a constant attenuation rate, the rate (dfc

dy
) of down-shifting fc along

the depth (y) direction is then linearly proportional to its attenuation rate. Since the value of fc

vs y is erratic, we can characterize the change of fc for each RF scan line by linear regression as

shown in Figure 2.4. (dfc
dy

) is then the slope of the linear regression line. The standard deviation of

slope values among all scan lines indicates the uncertainty in estimating dfc

dy
of a homogeneous layer.

If the standard deviation is small, there is less statistical fluctuation of the spectrum value. We

used a homogeneous phantom to investigate the improvement in the standard deviation by using

spatial compounding and contrast the advantage of using spatial compounding over averaging with

neighbouring values.

2.1.2.2.1.1 Method A homogeneous phantom was constructed by agar and cellulose - agar

controls the stiffness of the phantom while cellulose controls the scattering. The phantom consists

of 1% cellulose, 3% agar and 96% water. The transducer was mounted on a stand and stabilized

with a clip during the experiment. We collected 127 scan lines of RF data from the phantom.

RF data are used to compute fc by the method described in the Section 2.1.1 and are spatially

compounded in accordance with the Section 2.1.2.1.

The above procedure was tested with step size angles of 0.5◦, 1◦, 2.0◦ and 3.0◦. In the region

of interest, the linear regression fitting was applied at each scan line to compute the slope dfc

dy
. The

standard deviation of dfc

dy
between scan lines was calculated.
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Depth y
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Figure 2.4: The slope dfc

dy
of the linear regression line is proportional to the attenuation rate of a

specific phantom layer. The red line is fc and the green dot line is the linear regression line of fc.

In the alternative method of neighbour averaging, values of fc are averaged with values from

neighbour scan lines. A set of fc values along a scan line is averaged with values from n scanlines

(from both left and right neighbouring lines).The slope dfc

dy
can again be computed for each scan

line of fc. The standard deviation of dfc

dy
between scan lines is also calculated.

2.1.2.2.1.2 Results and Discussions Figure 2.5 shows the normalized standard deviation of

the regression line slope dfc

dy
versus the number of angles N used for a given angle step size φ. The

standard deviation is normalized to that obtained without spatial compounding or neighbor averag-

ing. Figure 2.5 shows that spatial compounding helps to reduce the uncertainty in measurements.

For a particular angle step size φ, the standard deviation decreases when the number of angles N

used in spatial compounding increases. This indicates that greater numbers of frames increases the

signal to noise ratio. In addition, more improvement is noticed when using a step size of 2.0◦ and

3.0◦ than 0.5◦. It is because a larger separation of angle produces greater independence of the RF

lines, so more speckle is reduced by averaging.

Spatial compounding shows a more convincing improvement in reducing noise in spectrum prop-

erties than neighbour averaging. Figure 2.6 shows the normalized standard deviation of regression

line’s slope versus the number of neigbouring scan lines used for averaging spectrum parameter val-

ues. The standard deviation is normalized by the value without neighbour averaging. The result

shows that neighbour averaging does not produce a significant decrease in the standard deviation
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as the number of neighbouring lines increases and it does not improve the standard deviation to

less than 0.9. Therefore, neighbour averaging does not improve the signal to noise ratio as much

as spatial compounding because the data come from neighbouring lines are more correlated than

data from different angles.

Step size

Number of angles (N)

N
o

rm
a

li
z
e

d
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D

Figure 2.5: Reduction of the standard deviation in estimating the slope m of an fc scan line using
spatial compounding with different step sizes of steering angle θ and different numbers of angles.
The data points are fitted by the function 1

x
.
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Figure 2.6: Improvement in the standard deviation of estimating the slope m of the fc scan line
using neighbour averaging with varying number of neighbour scan lines.

Nevertheless, there are tradeoffs of using spatial compounding. The increase of the range of

angles improves the overall compounding effect, but the area covered by full compounding reduces

as depth increases. We want to perform segmentation on a parametric image with every pixel

compounded with the same number of angles; therefore, we want to choose a step size angle φ

and a number of angles N that covers a fair amount of area and has a substantial noise reduction

effect. According to our experiments, a combination of N = 11 and φ = 2◦ is best. For φ = 2◦, the

compounding effect is similar to that of N = 9 and φ = 3◦. The former combination requires an

angle range of (±10◦) and latter combination requires a larger range of angles (±12◦). In addition,

if the steering angle is too large, the probability of echoes returned from tissue to the transducer

becomes lower. Based on the above reasons, we used N = 11 and φ = 2◦ (0◦,±2◦,±4◦,±6◦,±8◦

and ±10◦) for our experiments with human in vivo.

2.1.2.2.2 Human Experiments

2.1.2.2.2.1 Method From the experiments with the phantom, it was shown that spatial com-

pounding could improve the signal to noise ratio of spectrum calculation and the steering angle

combination of 0◦,±2◦,±4◦,±6◦,±8◦ and ±10◦ was chosen. A similar set of calculations was per-

formed on the suprailiac, thigh and triceps sites of a human subject in vivo. Parametric images

shown in the following sections are cropped to show the area with the same number of compound

frames N .
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2.1.2.2.2.2 Results and Discussions Figures 2.7 to 2.9 show the normalized spectrum prop-

erties with and without spatial compounding. Obvious quality improvements are shown in the fc,

σ2
s and IBS parametric images as the number of compounding frames increases. The paramet-

ric images of fc and σ2
s obtained from one angle (0◦) are erratic. Lack of uniformity is especially

observed at the triceps (Figure 2.8) and the thigh (Figure 2.9). At the above two sites, the subcuta-

neous fat is less homogeneous than at the suprailiac site (Figure 2.7). The estimation of the power

spectrum is affected by speckle noise, but the spatial compounding reduces speckle noise in para-

metric images of fc, σ2
s and IBS by averaging their values obtained from different angles. Values

are smoother and less erratic after spatial compounding; the characteristics of fat is differentiated

from other tissues after spatial compounding.

The parametric images of both fc and σ2
s show that their values decrease when depth increases,

and their values are relatively higher in the fat tissue than other tissues. The discontinuity of their

values is also observed at the fat boundary. It is also observed that the structure of subcutaneous

fat affects the appearance of fc and σ2
s . For example, the B-mode image of Figure 2.8 shows that

the subcutaneous fat is less homogeneous in the triceps when compared to that of the suprailiac

site(Figure 2.7). Dense fibrous membranes of connective tissue are also observed in the middle of

the fat layer at the triceps. At regions near the connective tissue, there are sudden changes of

values in fc and σ2
s . The fibrous membranes are the source of inhomogeneity in the fat tissue and

the cause of abrupt changes in the spectrum.

IBS shows that strong interfaces happen at the fascia (the fat boundary) and fibrous membranes

of connective tissue in the fat tissue. In addition, stronger interfaces also appear at the bone or

tendon at the triceps and thigh. Parametric images of IBS show that these strong interfaces are

more complete after spatial compounding. Since strong interfaces are mostly smooth and specular

surfaces, viewing them at different angles increases the chance of achieving an incidence angle of 90◦

when reflection is maximum. As a result, their boundaries appear more continuous and complete

in compound IBS parametric images.

In general, fc, σ2
s and IBS do show characteristics of subcutaneous fat. As observed, the

subcutaneous fat layers have relatively higher values of σ2
s and fc than other tissues. However,

higher contrast between the subcutaneous fat layer and non-fat tissue is noticed in the parametric

images of σ2
s than in the parametric images of fc; therefore σ2

s is more suitable and easier for
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segmentation. In addition, IBS shows valuable information about strong reflected interfaces that

tells the locations of the fascia (i.e. the location of the fat boundary) and the thick fibrous connective

tissue in the subcutaneous fat.
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(a)

(b)

Figure 2.7: Improvement in spectrum properties at a human suprailiac site after using spatial
compounding. (a) B-mode image. (b)Spectrum Properties(fc, σ2

s and IBS). The left most column
shows the spectrum properties without spatial compounding. The second and third columns show
the compound spectrum properties using 5 and 11 angles of step size 2◦ respectively.
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(a)

fc

IBS

(b)

Figure 2.8: Improvement in spectrum properties at a human triceps after using spatial compound-
ing. (a) B-mode image. (b)Spectrum Properties(fc, σ2

s and IBS). The left most column shows
the spectrum properties without spatial compounding. The second and third columns show the
compound spectrum properties using 5 and 11 angles of step size 2◦ respectively.



Chapter 2. Method in Developing Image Processing and Boundary Detection 40

(a)
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(b)

Figure 2.9: Improvement in spectrum properties at a human thigh after using spatial compound-
ing. (a) B-mode image. (b)Spectrum Properties(fc, σ2

s and IBS). The left most column shows
the spectrum properties without spatial compounding. The second and third columns show the
compound spectrum properties using 5 and 11 angles of step size 2◦ respectively.

2.2 Thresholding on Spectrum Properties

Based on the visual observation of compounded spectrum properties, thresholding is proposed to

separate the subcutaneous fat layer and the non-fat layer. In a typical bilevel thresholding case,

there should be two distinct modes in the parametric image histogram (i.e. a bimodal histograms);

however, there can be cases when only one obvious peak or a very small second peak is found in

the parametric image histogram. Classic thresholding algorithms like Otsu’s method [81] assumes
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the histogram is bimodal and obtains the threshold by minimizing the within-group variance. For

unimodal histograms, Rosin [82] developed a unimodal thresholding technique based on finding

a corner in the histogram. His method can calculate a threshold in unimodal histograms and is

not affected by the distribution of histogram. Good results have been shown in various threshold-

ing tasks [82] and remote sensing image thresholding [83] using his thresholding method. In our

thresholding task, we noticed that the intensity histogram of spectral parameters may be unimodal.

Based on our assumptions of segmentation and observations, Rosin’s thresholding method is used

and will be discussed in this section.

2.2.1 Unimodal Thresholding

To use Rosin’s thresholding method, assumptions are made on the parametric images of the spec-

trum properties:

1. The subcutaneous fat (with skin) is always the first top layer of tissue; therefore, it has a

relatively higher value of fc and σs than the values of the following layer if no noise is present.

2. In the parametric images of IBS, strongly reflective tissues such as the fascia and fibrous

membranes of connective tissue in fat layers always has higher intensity values than poorly

reflective tissues.

3. A main peak is always found in the intensity histogram and it is always much higher than

the secondary peak (if any).

Rosin’s thresholding is simple but assumes “here is one dominant population in the image

that produces one main peak located at the lower end of the histogram relative to the secondary

population.”[82]. To locate the threshold in Figure 2.10, a straight line AB is drawn from the

main peak A to point B which is the first empty bin of the histogram following the last filled bin.

The threshold is located by finding the maximum perpendicular distance from straight line AB

as shown in Figure 2.10(a). In addition, we also consider bimodal cases (Figure 2.10(b)) where

histogram intensity values may be larger than line AB. Since the threshold is most likely located

at a concavity, histogram values that are greater than AB are not considered. We use geometry

to solve the threshold and the calculation is shown in Appendix C. Since the histogram appears

noisy, it is smoothed by a 5-point Gaussian filter before finding the threshold by Rosin’s method.
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(a)

(b)

Figure 2.10: Detection of threshold using Rosin’s thresholding method on (a) unimodal histogram
and (b) bimodal histogram.

2.2.2 Thresholding results

Figures 2.11 to 2.13 show the thresholding results of fc, σ2
s and IBS. The values of parametric

images are normalized between 0 to 1. Higher gray intensity values of the histogram indicate

brighter pixels in the parametric images.

Rosin’s thresholding is not accurate in detecting the fat boundary in the histogram of fc because

of the poor contrast in the value of fc. Although the boundary can be detected in fc when the

histogram of fc is bimodal (Figure 2.11), the thresholding method fails to detect the fat boundary

in Figure 2.13. In the histogram of fc in Figure 2.13, the main peak is wide and not obvious. As

observed in the B-mode image, the value of fc appears to be disrupted by the connective tissue

within the fat tissue and the resulting parametric image of fc has a poor contrast. Based on our
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observations on the fat tissues with different structures, the parametric image of σ2
s has a better

contrast than that of fc and is more suitable for the thresholding technique.

The histogram of σ2
s shows that the gray intensity pixel values of the fat tissue change more

rapidly than that of the non-fat tissue. In the histogram of σ2
s , the left side of the vertical threshold

line are pixels that belong to the non-fat tissue and the right side of the vertical threshold line are

pixels that belong to the fat tissue. The pixels in the fat region (which are brighter in the gray

intensity) have a wider range of gray intensity values than that of the non-fat region (which are

darker in the gray intensity). The pixels from the non-fat region make up a main peak in the

histogram and the pixels from the fat region make up a tail in the histogram. The main peak

corresponds to a slow change in pixel values and the long tail corresponds to a fast change in pixel

values. The above condition satisfies the assumptions of the Rosin’s thresholding method and the

Rosin’s thresholding method is able to detect the change from the fat tissue to the non-fat tissue

from σ2
s .

We suggest that a relatively rapid change in the pixel values of σ2
s at the subcutaneous fat

layer than its other tissue layers is observed because the fat tissue constitutes two very different

components: the fat cells and connective tissue. We discussed the structure of the subcutaneous

fat in Chapter 1 and showed that the fat cells in the subcutaneous fat layer are held by connective

tissue. The large-scale variation in speed of sound between fat and connective tissue ( ∼1480ms−1

vs ∼1631ms−1) imposes more fluctuations in the power spectrum and can distort the ultrasound

wavefront. As suggested by Hinkelman at el. [66], the subcutaneous fat has greater energy level and

waveform distortion than muscle when they investigated the effect of abdominal wall morphology

on ultrasonic pulse distortion. Therefore, we imply that the high variation in the tissue structure

of subcutaneous fat causes more fluctuations in the received spectrum, and this results in a greater

change in the spectrum variance.

Moreover, the thresholding method is able to locate strongly reflective interfaces from the IBS

(right most column of figures 2.11 to 2.13). Not only is the fascia located in the binary map of

IBS, structures with strong echoes are also located in the middle of the binary map of triceps and

thigh (Figure 2.12 and 2.13). The effects of thresholding will be discussed further in Chapter 4 in

the concept of the full system.
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(a)

(b)

Figure 2.11: Results of thresholding on spectrum properties captured at the human suprailiac site.
(a) B-mode image. (b) Spectrum properties’ images(1st row), their histograms (2nd row) and binary
maps (3rd row). The vertical line in the histogram indicates the calculated threshold.
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(b)

(a)

Figure 2.12: Results of thresholding on spectrum properties captured at the human triceps site. (a)
B-mode image. (b) Spectrum properties’ images(1st row), their histograms (2nd row) and binary
maps (3rd row). The vertical line in the histogram indicates the calculated threshold.
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(a)

(b)

Figure 2.13: Results of thresholding on spectrum properties captured at the human thigh site.
(a) B-mode image. (b) 2nd to 4th row: a spectrum property’s image, histogram and binary map
respectively. The vertical line in the histogram indicates the calculated threshold.
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2.3 Fat Boundary Detection

Boundary detection is applied to the binary image obtained from thresholding. Since the binary

image consists of holes and discontinuous edges due to inhomogeneity of the subcutaneous fat and

fibrous connective tissues, a line fitting method called Random Sample Consensus (RANSAC) [84]

is proposed to reject outliers and link the fat boundary candidates. First, boundary candidates

are obtained from the binary image by differentiation. Then, RANSAC is used to fit the boundary

candidates by assuming the fat boundary is a straight line. The assumption is based on the fact

that while the fat boundary is naturally a curve, it approximates a straight line in the narrow field

of a sagittal ultrasound image.

2.3.1 Extraction of Boundary Candidates

The binary map (BM) consists of only ones and zeros; therefore, boundary candidates can be

located at the transition from zero to one, or from one to zero. In both vertical and horizontal

directions, a transition happens when there is a difference in the binary values between the current

and the next pixel and differentiation can be used to extract boundary candidates.

In the binary map of σ2
s (BMσ2

s
), the possible fat region consists of ones, and the non-fat region

consists of zeros; therefore, we assume fat boundary candidates happen when a transition from one

to zero in the vertical direction and we do not consider edge pixels with zero to one transition in

the vertical direction. Equation 2.8 is used to compute the likelihood of a pixel being a boundary

candidate in a BMσ2
s

and is separated into three cases. Let BMσ2
s
(i, j) be a pixel in the binary

map at the horizontal and vertical coordinates (i, j) and (x, y)boundaryCandidate be the coordinates

of any boundary candidate. A boundary candidate exists at the coordinates (x, y)boundaryCandidate

under the following conditions:

(x, y)boundaryCandidate =



























(i, j − 0.5) if BMσ2
s
(i, j) − BMσ2

s
(i, j − 1) = −1

(i + 0.5, j) if BMσ2
s
(i + 1, j) − BMσ2

s
(i, j) = 1

(i + 0.5, j) if BMσ2
s
(i + 1, j) − BMσ2

s
(i, j) = −1

(2.8)
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(a) (b)

Figure 2.14: An example illustrates the extraction of boundary candidates in (a) a binary map of
σ2

s using Equation 2.8 and (b) a binary map of IBS using Equation 2.9. A white pixel represents
the value of one and a black pixel represents a pixel of zero. Blue solid crosses denote the bound-
ary candidates obtained in the vertical direction and green dotted crosses denote the boundary
candidates obtained in the horizontal direction.

Referring to the first case of Equation 2.8, a transition of a pixel valued one to a pixel valued

zero in the vertical direction denotes an existence of a boundary candidate in between the two

vertically adjacent pixels. In the second and third cases, a transition of a pixel valued one to

a pixel valued zero or a transition of a pixel valued zero to a pixel valued one in the horizontal

direction denotes an existence of a boundary candidate in between the two horizontally adjacent

pixels. Since a boundary candidate is defined at the transition between two pixels, its coordinates

(x,y) is recorded at the mid point between pixels. Figure 2.14(a) illustrates the usage of Equation

2.8.

In the binary maps of IBS (BMIBS), strongly reflective interfaces appear as lines with certain

thicknesses. Since the thickness of fascia is human dependent and the usual practice to find the fat

thickness is from the skin to the surface of fascia [13], we assume fat boundary candidates are found

at transition from zero to ones in the vertical direction and do not consider edge pixels with one to

zero transition in the vertical direction. Equation 2.9 is used to compute the likelihood of a pixel

being a boundary candidate in a BMIBS and is separated into three cases. Let BMIBS(i, j) be a

pixel in the binary map at the horizontal and vertical coordinates (i, j) and (x, y)boundaryCandidate



Chapter 2. Method in Developing Image Processing and Boundary Detection 49

be the coordinates of any boundary candidate. A boundary candidate exists at the coordinates

(x, y)boundaryCandidate under the following conditions:

(x, y)boundaryCandidate =



























(i, j − 0.5) if BMIBS(i, j) − BMIBS(i, j − 1) = 1

(i + 0.5, j) if BMIBS(i + 1, j) − BMIBS(i, j) = 1

(i + 0.5, j) if BMIBS(i + 1, j) − BMIBS(i, j) = −1

(2.9)

Referring to the first case of Equation 2.9, a transition of a pixel valued zero to a pixel valued

one in the vertical direction denotes an existence of a boundary candidate in between the two

vertically adjacent pixels. In the second and third cases, a transition of a pixel valued one to

a pixel valued zero or a transition of a pixel valued zero to a pixel valued one in the horizontal

direction denotes an existence of a boundary candidate in between the two horizontally adjacent

pixels. Since a boundary candidate is defined at the transition between two pixels, its coordinates

(x, y) is recorded at the mid point between pixels. Figure 2.14(b) illustrates the usage of Equation

2.9.

2.3.2 Fitting Boundary Candidates using Random Sample Consensus

(RANSAC)

Boundary candidates consist of edge points from not only the real fat boundary, but also from the

fibrous membranes of connective tissues and noise. A line fitting algorithm is needed to cluster

points that lie on the same structure. The Hough transform is the most general line fitting al-

gorithm, but it suffers from quantization errors and difficulties with noise [85]. Considering our

boundary candidates, it is noticed that the number of unwanted candidates highly depends on the

body location, and the homogeneity and thickness of subcutaneous fat (e.g. more unwanted candi-

dates are found in fat with thicker fibrous connective tissue and when the fat thickness is small.) It

is difficult to pick a suitable grid size of the accumulator array for all different cases. Also, Forsyth

and Ponce [85] have demonstrated this algorithm is very sensitive to noise. To fit a boundary in

the presence of many outliers, the RANSAC algorithm is proposed due to its robustness to outliers.
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2.3.2.1 Total Least Squares Fitting

Since the measurement error depends on the coordinate frame, total least squares fitting is used

instead of using the classic least squares fitting. Although the least squares fitting is simple, it

measures only the vertical distance error. Alternatively, the total least square fitting measures the

perpendicular error which is more robust to pixel errors. The problem of total least square fitting

is to minimize the sum of the perpendicular distances between points and lines, i.e.

∑

(axi + byi + c)2

and its minimization problem can be solved with the Lagrange multiplier and the final solution

[85] is:

c = −ax − by (2.10)
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(2.11)

where A =







x2 − xx xy − xy
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Equation 2.11 is a 2D eigenvalue problem. Matlab function eig is used to find the two eigenvalues

d and their eigenvectors −→v (v1, v2) of matrix A and gives
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Finally, a, b and c can be solved by choosing the eigenvalue d which gives the smallest
∑

(axi + byi + c)2.

2.3.2.2 Theory and Implementation

RANSAC randomly picks and fits n data points, and checks how many data points can fit to a

model. The process is iterative and continues until a high probability of finding the correct model

is attained [84]. Given our model (i.e. the fat boundary) is a line structure, our problem is to fit

the edge candidates to a line whose equation is ax + by + c = 0. The algorithm is outlined in the
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following:

Loop until k iterations have occurred

1. Select n boundary candidates at random.

2. Fit the set of n data points and find a line model using total least squares fitting.

3. If determinant of matrix A (from Equation 2.11) is not zero:
To find boundary candidates that are close to the line model:
For each boundary candidate

Test the perpendicular distance (dist) to the line model,
If dist ≤ t,

Keep boundary candidate
End If

End For
End If

4. If (number of candidates) > (current maximum number of good candidates)
Save the current sets of boundary candidates.
Update k by using equation (2.12).

EndIf

End Loop

In the algorithm, three parameters are needed to be determined and they are:

· n is the smallest number of points required to fit the model.

· t is the threshold (in pixel) required to determine if the data fit well.

· k is the number of iterations required for the algorithm.

Parameter n is dependent on the fitting model. In our case, n is set to 2 because only two

points are required to fit a straight line. Occasionally, two randomly picked candidates may fail to

fit the line model (e.g. if two candidates are too close to each other.) To ensure the fitting model is

valid, the determinant of matrix A is calculated and checked if it is zero. If the determinant value

is zero, the two candidates cannot generate a valid line model.

Parameter t determines whether a boundary candidate is sufficiently close to the fitting model

and represents the maximum perpendicular distance from a good candidate to the fitting line. This

parameter can be decided by varying the pixel values (in our case, we tried between 0.5 and 2.5

pixels) in our data sets and visually determining the best fit. By trial and error in our experiments,

t is set to 1 pixel.
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Parameter k can be found by considering the probability of k consecutive failures and the

probability of good fit of a random data (Pfit) (Pfail) [85]:

Pfail = (1 − Pfit
n)k

k =
log(Pfail)

log(1 − Pfit
n)

(2.12)

We assume the probability of a successful fitting is 99% and therefore Pfail is set to 0.01. k is

updated whenever a better set of boundary candidates is found.

Figures 2.15, 2.17 and 2.19 show the results of boundary detection on σ2
s and Figures 2.16, 2.18

and 2.20 show the results of boundary detection on IBS. In the figures, sub-figure(a) shows the

boundary candidates extracted by the differentiation method as described in section 2.3.1 and sub-

figure(b) shows the boundary detected by RANSAC. The RANSAC algorithm successfully omits

the false boundary candidates caused by holes within the fat tissue area (i.e. binary value equals

1) and pixels from noise.

(a) (b)

Figure 2.15: Results of extraction and detection of boundary candidates from the binary map
BMσ2

s
obtained from a human suprailiac site: (a) potential boundary candidates (red crosses) and

(b) fat boundary candidates found by RANSAC (red crosses).
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(a) (b)

Figure 2.16: Results of extraction and detection of boundary candidates from the binary map
BMIBS obtained from a human suprailiac site: (a) potential boundary candidates (red crosses)
and (b) fat boundary candidates found by RANSAC (red crosses).

(a) (b)

Figure 2.17: Results of extraction and detection of boundary candidates from the binary map
BMσ2

s
obtained from a human triceps: (a) potential boundary candidates (red crosses) and (b) fat

boundary candidates found by RANSAC (red crosses).
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(a) (b)

Figure 2.18: Results of extraction and detection of boundary candidates from the binary map
BMIBS obtained from a human triceps: (a) potential boundary candidates (red crosses) and (b)
fat boundary candidates found by RANSAC (red crosses).

(a) (b)

Figure 2.19: Results of extraction and detection of boundary candidates from the binary map
BMσ2

s
obtained from a human thigh: (a) potential boundary candidates (red crosses) and (b) fat

boundary candidates found by RANSAC (red crosses).
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(a) (b)

Figure 2.20: Results of extraction and detection of boundary candidates from the binary map
BMIBS obtained from a human thigh: (a) potential boundary candidates (red crosses) and (b) fat
boundary candidates found by RANSAC (red crosses).

2.3.3 Calculation of Spectral Content using Multiple Focuses

There is only one focus available in the RF data capture mode of our ultrasound machine. How-

ever, fat thicknesses can be different among people and the focus at a fixed position may not be

appropriate for all thicknesses. For the above reason, the use of multiple focal points is considered.

RF data is separately captured for different focuses and converted to spectrum properties by spa-

tial compounding. Two approaches are investigated to combine spectrum properties obtained by

multiple focuses: stitching and averaging.

2.3.3.1 Stitching Focused Spectrum Properties (MF1)

The approach of stitching combines a spectrum property obtained from several focuses as shown

in Figure 2.21(a). This is an idea of combining the focused spectrum property values from pairs

of focuses. The region of focus Fx is overlapped with the next focus Fx+1. To guarantee a smooth

transition, the two regions are combined by a ramp-like weight function as shown in Figure 2.21(b).

In the overlapping region, the sum of the weights from region Fx and Fx+1 at a certain depth is

100%, and the weight of region Fx decreases when the depth increases and the weight of region

Fx+1 increases when the depth increases. Focuses Fx at 10mm, 20mm, 30mm and 40mm are used

in our experiments.
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Figure 2.21: Stitching of a spectrum property map obtained from multiple focuses: (a) stitching of
spectrum properties values (b) the weight function that combines two overlapping regions.

2.3.3.2 Averaging Spectrum Properties from Multiple Focuses (MF2)

This approach simply averages all the whole parametric images obtained from multiple focuses.

The idea is to smooth parametric images and reduce the effect of a particular focus.

2.3.3.3 Results

Figure 2.22 shows the resulting compound parametric images of σ2
s and IBS obtained at different

single focuses and the result of stitching (MF1) and averaging (MF2) multiple focuses. It is shown

that the results of using the averaging method (MF2) gives a smoother σ2
s and IBS and leads to

a binary map with fewer holes.
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Figure 2.22: The comparisons between (a)σ2
s and (b)IBS obtained from: (1st-4th column) single

focuses (SF) where F indicates the focus position, (5th column) stitching spectrum properties from
multiple focuses (MF1) and (6th column) averaging spectrum properties from multiple focuses
(MF2).

2.4 Summary

We investigated the characteristics of human subcutaneous fat in terms of the properties of power

spectrum and encoded the values of spectrum properties into gray-scale parametric images. Then,

we presented the method of image processing and fat boundary detection on these parametric image.

We found that the spectrum properties σ2
s and IBS could be used to characterize subcutaneous

fat. The parametric image of σ2
s represents a coarse area of the subcutaneous fat tissue and the

parametric image of IBS represents potential locations of the fascia.

The characteristics of fat observed in the parametric images of σ2
s and IBS are more distinct
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after the application of spatial compounding that reduces spectrum noise due to speckle. The

parametric image of σ2
s shows the area of subcutaneous fat and the parametric image of IBS

shows the potential area of the fascia and other strong tissue reflectors. The histogram of the

parametric image of σ2
s shows that fat pixels change more rapidly than non-fat pixel and a long tail

in the histogram results. We suggested that the relative rapid change in the gray-intensity values

of fat pixels is due to the high variation in the tissue structure of subcutaneous fat. This causes

high fluctuations in the received spectrum, and this results a more rapid change in the spectrum

variance.

Histograms of σ2
s can be bimodal or unimodal; the Rosin’s unimodal thresholding method is

used to detect the global threshold which separated the fat and non-fat pixels in the parametric

images of σ2
s . The same thresholding method was applied to the parametric images of IBS. Then,

boundary candidates were extracted from the binary map and the fat boundary was detected by

RANSAC. Total least squares was used as a fitting algorithm and we were able to use a the same

fitting threshold (i.e. 1 pixel) to detect the fat boundary at the human suprailiac, triceps and thigh

sites. Finally, we proposed two methods: the stitching and averaging spectrum properties obtained

from multiple focuses to overcome the drawbacks of a single focus.
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Chapter 3

Experimental Methodology

This chapter presents an overall framework of our human subcutaneous fat detection method using

the spectrum properties of RF data, which we discussed in Chapter 2. To test our algorithm,

our subcutaneous fat detection framework was applied to human participants at the suprailiac,

triceps and thigh sites. These sites were chosen because they have a good range of fat thickness

and they have been popularly used for the assessment of body fat in both females and males

[13]. Different properties of fat are also seen in these regions: fat at the suprailiac site is more

homogeneous, whereas fat in the thigh and triceps is less homogeneous and varies in the density

of fibrous connective tissue. Furthermore, these body sites have large regions of flat areas that

allow the linear transducer to make a complete contact with the skin surface without compression.

The ultrasound measurements will also be compared to the skinfold caliper measurements. The

procedures for using ultrasound and skinfold caliper to measure subcutaneous fat are described at

the end of this chapter.

3.1 Overview of the Human Subcutaneous Fat Detection

Framework

The overview of the human subcutaneous fat detection framework is shown in Figure 3.1. The

detection process is divided into four main steps: data capture, calculation of spectrum parameters,

preprocessing of spectrum properties maps and segmentation.
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Figure 3.1: The framework of human subcutaneous fat detection.
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3.1.1 Data capture

RF data was captured by using an Ultrasonix ES500 (Ultrasonix Medical Corporation, Burnaby,

BC) with a L9-4 linear transducer. The L9-4 linear transducer operates in a frequency range

between 4 and 9MHz. In our experiment, the central transducer frequency was set to 6.6MHz. The

research package of the ES500 allowed us to build software for direct access to the RF data and

control of ultrasound parameters like transducer frequency, field of view and time gain compensation

(TGC).

RF data capture software was written in Visual C++ and Microsoft Foundation Classes (MFC).

A frame of RF data was captured for each steering angle and each focus. The software also allowed

users to control the number and step size of compounding angle and number of focuses. Changing

the focus position was faster than the steering angle, so the fastest sequence of data collection is

shown in Figure 3.2. TGC was set to the “Muscleskeleton”preset on the ES500.

The data scanning depth was 50mm and the scanning width was 38.2mm. Each frame of

RF data consisted of 127 RF scan lines and each scan line consisted of 2560 data points. 11

compounding angles at a 2◦ step size were used for the human experiment. Data were captured at

each focus every 10mm, from 10mm to 40mm.

With the beam angle steering function, the current refresh rate in capturing a frame of RF data

is 2Hz with the size of RF data stated above. Frames of RF data were saved to files for later offline

processing in Matlab.
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If current focal
position > final position

Advance focal
position by one

increment

- Reset focus to home
position.
- Increase angle by one
step size.

If current
angle > final

 angle

End

Yes

Yes

No

No

Capture RF
data

Figure 3.2: The sequence of capturing RF data.

3.1.2 Calculation of Spectrum Properties

The second step is to calculate spectrum properties from RF data captured at each steering angle

(θ) and focus position (F ). From the experiment mentioned in Section 2.1.2.2.2, we found that

σ2
s and IBS were the most indicative factors in determining the fat boundary. Therefore, we

only considered the calculation of σ2
s and IBS in our framework. The local power spectrum and

their spectrum properties are computed as in Section 2.1.1. As a result, the parametric images of
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spectrum properties σ2
s(x, y, θ, F ) and IBS(x, y, θ, F ) are computed at each θ and F .

3.1.3 Pre-processing of Spectrum Properties Map

The next step is the pre-processing which includes spatial compounding and combining data from

multiple-focused parametric images. The values of σ2
s(x, y, θ, F ) and IBS(x, y, θ, F ) at each focus

position are first spatially compounded to the parametric images σ2
s(x, y, F ) and IBS(x, y, F ).

Spatial compounding converts the parametric images from their data coordinates to the spatial

coordinates and the method was described in detail in Section 2.1.2. After that, the parametric

images captured at different focal positions are combined with the method of Section 2.3.3. The

resultant parametric images of σ̂2
s(x, y) and ˆIBS(x, y) are normalized. The normalization rescales

the pixel intensity values of spectrum properties maps between 0 to 1, and increases the contrast

between layers. The normalized σ̂2
s(x, y) and ˆIBS(x, y) are then smoothed by a 3x3 Gaussian filter

to further remove noise. The compounded, normalized and smoothed parametric images of σ2
s(x, y)

and IBS(x, y) will be used for segmentation.

3.1.4 Segmentation

Lastly, the fat boundary was delineated from the parametric images by Rosin’s thresholding and

RANSAC. An intensity histogram of 128 bins was computed from each parametric image. Rosin’s

thresholding, which is described in Section 2.2, was used to find the threshold and obtain a binary

map representing the subcutaneous fat layer. The threshold indicates the change from subcutaneous

fat to the muscle layer.

Potential boundary candidates were obtained from the binary maps (BMσ2
s
(x, y) and BMIBS(x, y))

using the differentiation method defined in Section 2.3.1. RANSAC is then applied to find the fat

edges. As mentioned before in Section 2.3.2.2, the parameter n (i.e. smallest number of points re-

quired to fit the model) was set to 2, and the parameter t (i.e. the threshold required to determine

if the data fit well) was set to 1 pixel. The detected edges of the fat boundary may be incomplete;

therefore, cubic spline interpolation was used to link broken edges using Matlab toolbox to obtain

the final fat boundary bBM
σ2

s

(x, y) and bBMIBS
(x, y). The reason for choosing the cubic spline

interpolation over the linear interpolation is that the resulting boundary is smoother in the former

case. Figure 3.3 illustrates an example of the segmentation.
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Threshold the parametric
images by the Rosin

Thresholding method.

Extract potential
boundary candidates.

Detect the boundary by
Ransac.

Link broken edges by the
spline interpolation.

A parametric
image of

A parametric
image of

Figure 3.3: An example illustrates the segementation process on the parametric images of σs and
IBS.
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3.2 Procedures in User Study

Nine volunteers - five females and four males aged between 20 to 30 – were recruited for the user

study1. The study consisted of two parts: skinfold caliper measurements and ultrasound data

capture. The skinfold caliper test was carried out before the ultrasound test to avoid bias on

skinfold measurements.

Measurements took place at three body sites: the suprailiac, triceps and thigh areas. For the

skinfold caliper and ultrasound measurements, two sets of results were both collected on the left

and right sides of the body as shown in Figure 3.4. The direction of the arrows indicates the grasp of

the skinfold caliper. At the suprailiac site(Figure 3.4(a)), the measurement was taken at above the

crest of the ilium in a diagonal fold of skin. Measurements were taken midway between the shoulder

and elbow at the triceps (Figure 3.4(b)), and midway between the inguinal crease and proximal

border of patella figure(3.4(c)). In addition, two sets of ultrasound data, one set from each side of

the body, were taken at each site at random locations. As a result, there were 36 sets of ultrasound

data for evaluating the results of segmentation and 18 sets of skinfold and ultrasound data for

evaluating the results between skinfold and automatic ultrasound measurements. The procedures

for the skinfold and ultrasound measurements are presented in the next section. Since our method

is compared to manual segmentation, the procedure of manually locating the fat boundary is also

presented.

3.2.1 Measurement of Skinfold Fat Thickness

Prior to the user study, the investigator2 practiced the skinfold caliper technique until consistent

measurements were obtained. A Lange caliper (Figure 3.5) was used throughout the experiment.

The maximum thickness that can be measured by this caliper is 60mm. The reading was recorded

to the nearest 0.5mm.

The investigator followed the skinfold measurement technique prescribed by the Canadian So-

ciety for Exercise Physiology [86] and was instructed by an experienced skinfold caliper operator3.

During the procedures, the participants were asked to stand and relax. A cross, which indicated the

1This study was reviewed and approved by the Behavioral Research Ethics Board, Reference No.: B05-0820. The
copy of the certificate is attached in the Appendix D.

2Jessie Ng, author of this thesis.
3Barry Legh, Senior Instructor, Human Kinetics Department, UBC.
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(a) suprailiac (b) triceps

(c) thigh

Figure 3.4: Body sites selected for skinfold caliper and ultrasound measurements. The direction of
the arrows indicates the grasp of the skinfold caliper.
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Figure 3.5: A Lange skinfold caliper.

location of the skinfold grip, was first pen-marked on the skin of the site. The skinfold of fat was

grasped by the thumb and forefinger with one hand 1cm above the pen-mark. The grasped skinfold

was shaken with both fingers to avoid including the muscle layer in the measurement. With the

caliper in another hand, the caliper was positioned at the pen-mark and released. The pressure of

fingers should be maintained during the release of the caliper. A reading was taken after the com-

plete release of the caliper and the indicator on the caliper had become stable. Measurements were

repeated three times and the final result was the mean of the three measurements. Furthermore,

to ensure consistency in maintenance of the pressure by fingers on the skinfold, all measurements

were made by the same investigator.

3.2.2 Collection of Ultrasound Data

Ultrasound data collection was performed after the collection of skinfold measurement data. The

settings of the ultrasound machine and the type of the transducer used have been detailed in Section

3.1.1. To ensure proper contact of the transducer with the skin, and valid capture of data, the

B-mode image was used to aid the capture process to obtain good image quality. If the investigator

was unable to recognize the fat layer, adjustments were made to the position or orientation of the

transducer. Since the fascia is specular in nature, the brightness of the fascia is affected on the

incident angle of the ultrasound. The B-mode image can also help the investigator to adjust the
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orientation of the transducer for obtaining maximum reflection from the fascia. At the triceps

and the thigh, the transducer was positioned in the sagittal plane. This is because the transducer

is a linear array and it is not convenient for it to be placed on an arched surface. Also, tissue

compression can be avoided.

Ultrasound gel was applied to the skin to act as a coupling medium between the skin and the

transducer. For each body site, the center of the ultrasound transducer was positioned at the

cross. Ultrasound measurements were taken in the sagittal plane for the triceps and thigh. At the

suprailiac site, the transducer was aligned to match the direction of skinfold measurement. The

thickness of the gel was just enough (∼0.1mm) to obtain a clear B-mode image. Excessive gel was

removed by sweeping the transducer back and forth. Moreover, the transducer was kept upright

to the skin. The investigator applied just enough pressure on the transducer to allow contact

between its surface and the skin while avoiding the compression of the subcutaneous fat layer.

From our experience, the compressibility of fat can be up to approximately 1/3 of the original fat

thickness depending on the total fat thickness. This could be determined from the B-mode image

by observing the change in the thickness of fat when it was alternatively compressed and relaxed.

3.2.3 Reference Fat Boundary from Manual Segmentation

The automatic segmentation result was compared to that for manual segmentation. The reference

fat boundary, which is defined as the thickness between the skin surface and the fascia surface,

was obtained by manual delineation on the B-mode image. For each column of the B-mode image,

the investigator clicked on the pixel that could be recognized as the fat boundary. The selected

boundary edges were linked together by cubic spline interpolation to obtain a complete boundary.

3.3 Evaluation Method

In our application, we are interested in finding the fascia, which is the subcutaneous fat boundary,

and comparing it to our reference boundary obtained by manual segmentation. To evaluate the

boundary error between manual segmentation and auto-detection, we used two parameters: the

average thickness error (dERR) and the root mean square error (dRMS).
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Assume a boundary B consisting of a set of N boundary points, then B can be represented as:

B = {(b1x, b1y), (b2x, b2y), ..., (bnx, bny)...(bNx, bNy)}

where bnx is the x-coordinate and bny is the y-coordinate of a boundary candidate. We will define

the coordinates of the reference boundary as R = {(r1x, r1y), (r2x, r2y), ..., (rnx, rny), ...(rNx, rNy)}

and the segmented boundary as S = {(s1x, s1y), (s2x, s2y), ..., (snx, sny), ...(sNx, sNy)} for calculating

dERR and dRMS in the following sections.

3.3.1 Average Thickness Error Metrics

Since the average thickness (d) of S is

d =

∑N
n=1 bny

N
(3.1)

where bny is the depth of an edge point bn and N is the total number of edge points. Then, the

average thickness error (dERR) between the reference boundary and the segmented boundary is the

sum of the differences between their y-coordinates at the same column of pixels. We define dERR as:

dERR =

∑N
n=1 (sny − rny)

N
(3.2)

where sny is the y-coordinate of an edge point in the segmented boundary S and rny is the y-

coordinate of an edge point in the reference boundary R. A positive dERR indicates the detected

average thickness is overestimated and a negative dERR indicates the detected average thickness is

underestimated. In our evaluation, the reference boundary is the boundary obtained from manual

segmentation.

Note that d and dERR are in pixels. To convert their unit to mm, we can multiple them by a

conversion factor C. If a scan line of RF data consists of Nrf points, the window size of STFT is

w and the image depth is D, C can be calculated as:

C =
D

Nrf

∗
w

2
(3.3)

Nrf = 2560, w = 32 and D = 50mm in our experiment. Therefore, C equals 0.31 mm/pixel.
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3.3.2 Root Mean Square Error Metric

Since the positive and negative errors can cancel in dERR, we also look into the root mean square

error (dRMS) that tells the deviation of a boundary measurement. To measure the root mean

square difference between the reference and the segmented boundaries, dRMS was used and it can

be calculated as follows:

dRMS =

√

∑N
n=1 (sny − rny)

2

N
(3.4)

where sny is the y-coordinate of an edge point in the segmented boundary S, rny is the y-coordinate

of an edge point in the reference boundary R and dERR is the average thickness error. The dRMS is

the average distance of a data point from the reference boundary, measured along a vertical distance.

In our evaluation, the reference boundary is the boundary obtained from manual segmentation.

3.3.3 Difference against Mean

In addition to the evaluation of results between the manual and automatic ultrasound measure-

ments, we also compare the average thickness of the ultrasound measurements with the 1
2 skinfold

caliper measurements. The 1
2 skinfold thicknesses is used because the skinfold caliper measures a

fold of skin that comprises two layers of subcutaneous fat. Since the ultrasound and skinfold are

two independent measurements and we do not know the true value of fat thickness, the method of

difference against mean helps us to investigate the possible relationship between the measurement

error and the true value [87].

As shown in Figure 3.6, the mean difference D and the standard deviation of differences(s) are

used to characterize the difference against mean between the skinfold and ultrasound measurements.

The x-axis is the paired mean between the 1
2 skinfold and ultrasound measurements, and the y-axis

is the paired difference between the 1
2 skinfold and ultrasound measurements. D is the systematic

difference between methods and s is the standard deviation of differences. D±2s indicates the 95%

limits of agreement.

3.4 Summary

The overall subcutaneous fat detection framework was discussed. The subcutaneous fat detection

involved four main steps: RF data capture, calculation of σ2
s and IBS from the local spectrum
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Figure 3.6: A figure showing the mean difference D and the standard deviation of differences(s)
between two methods. Example data are provided for illustration.

of RF data, pre-processing of the parametric images of spectrum properties using spatial com-

pounding and segmentation. Two detection results are obtained from σ2
s and IBS respectively. To

evaluate our automatic segmentation results, the manually detected boundaries from ultrasound

B-mode images were first used as reference boundaries to compare with the automatically detected

boundaries. The average thickness error (dERR) and the root mean square error dRMS were used

to evaluate the manual and automatic results. The second part of the evaluation was to compare

the ultrasound measurements with the skinfold caliper measurements. We finally presented the

method of difference against mean for the comparison between the ultrasound measurements and

the frac12 skinfold caliper values.
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Chapter 4

Evaluation of Results

This chapter presents the results of subcutaneous fat boundary detection using the proposed imag-

ing processing and detection framework. In Chapter 2, we showed that compound parametric

images of σ2
s indicate the subcutaneous fat region while the compound parametric images of IBS

indicates possible location of fascia and other strongly reflective tissue. Therefore, we first illustrate

and discuss the qualitative results of segmentation using σ2
s . Then the average thickness and the

root mean square thickness errors between the manual and automatic ultrasound measurements are

used to quantitatively evaluate our segmentation results. In the quantitative evaluation, the dif-

ference between using σ2
s and IBS as our segmentation factors is first assessed. Then, we compare

the segmentation results obtained from a single focus (SF), stitching spectrum properties from

multiple focuses (MF1) and averaging spectrum properties from multiple focuses(MF2). Lastly,

the correlations between ultrasound (both manual and automatic methods) and the half skinfold

caliper measurements are presented.

4.1 Qualitative Results: Segmentation Using Spectrum Variance

σ
2
s

For human subcutaneous fat detection framework is applied to human in vivo, this section presents

the qualitative result of segmentation with σ2
s obtained from a single focus. Figures 4.1(a) to

4.1(i) illustrate some results from the fat detection algorithm for subcutaneous fat with different

body sites, thickness and structure. The cyan boundaries represent the result of the manual

segmentation carried out by the investigator prior to the automatic segmentation, and the red

boundaries represent the result of the automatic segmentation. The structure of fat tissue is

human dependent and the fat tissue found at the suprailiac site is more homogeneous than that at

the triceps and thigh. At the triceps and thigh, the structure is more complicated as more fibrous
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membranes are dispersed within the fat tissue. The length, density and thickness of fibrous tissue

membranes vary in these examples; however, our fat detection algorithm is able to identify the

location of the fat boundaries with varying degrees of accuracy.
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Figure 4.1: Examples (1st row: suprailiac, 2nd row: triceps and 3rd row: thigh) demonstrate the
segmentation results of σ2

s at a single focus obtained from different structures and thicknesses of
subcutaneous fat tissue. The cyan boundary is the manual segmentation and the red boundary is
the automatic segmentation.
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It is harder to detect the fascia boundary when the layer of fat is thin. As shown in the B-mode

images of Figures 4.2(a) and 4.2(b), the subcutaneous fat and the location of fascia are not obvious.

The skin is close to the fascia and the subcutaneous fat layer consists of dense fibrous connective

tissues. Since only a small amount of fat tissue is observed between the skin and the fat boundary,

it is hard to detect the fat boundary. In the above figures, our algorithm falsely detects the fat

boundary at the location near the skin. The binary images of σ2
s show that there are too many

boundary candidates and this leads to errors in boundary detection using RANSAC.

(a) (b)

Figure 4.2: Two examples demonstrate the segmentation results of σ2
s on participants with fat

thickness ≤5mm. Ultrasound data is obtained using a single focus positioned at 25mm. In sub-
figures (a) and (b), the left image is the binary image of σ2

s and the right image is the B-mode
image. The cyan boundary is the manual segmentation and the red boundary is the automatic
segmentation.

4.2 Evaluation of Segmentation

Results between the manual and automatic segmentation are evaluated in this section. First, we

show the mean thickness results of σ2
s and IBS obtained from using a single focus positioned at

25mm and investigate if IBS is an appropriate parameter for locating the fat boundary at various

body sites. Secondly, we investigate if there is any improvement in the segmentation result on σ2
s

using multiple focuses.
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4.2.1 Results: Spectrum Variance σ
2
s vs Integrated Backscattering Coefficient

IBS

In this section, we investigate if IBS is an appropriate parameter for locating the fat boundary.

The fat boundary, which is fascia, is characterized by strong reflection; however, the heteroge-

neous texture of fat appears at different anatomical structure and IBS may not be an accurate

representation.

4.2.1.1 Correlation

This section shows the correlation of the average thickness between the manual segmentation and

automatic segmentation. The Pearson’s linear correlation coefficient (r) and the linear regression

equation of the data points are shown. The correlation results are analyzed at each body site

separately.

For the segmentation with σ2
s , Figure 4.3 shows that the correlation coefficients r are 0.81, 0.71

and 0.82 at the suprailiac, triceps and thigh sites respectively. In the case of segmentation using

IBS, Figure 4.4 shows that the correlation coefficients r are 0.77, 0.14 and -0.20 at the suprailiac,

triceps and thigh sites respectively. The results show that there is no correlation between the

manual and automatic measurements when using IBS as the spectrum property for segmentation

at the triceps and thigh; however, high correlation is found at the suprailiac site.
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Figure 4.3: Correlation between manual and automatic measurements using σ2
s at the (a) suprailiac

(b) triceps and (c) thigh sites. The red dashed line represents the one-to-one relationship, the blue
line is the linear regression line of the 36 samples (blue crosses).
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Figure 4.4: Correlation between manual and automatic measurements using IBS at the(a) suprail-
iac (b) triceps and (c) thigh sites. The red dashed line represents the one-to-one relationship, the
blue line is the linear regression line of the 36 samples (blue crosses).
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4.2.1.2 dERR

As discussed in Chapter 3, dERR represents the average thickness error between the boundaries for

the manual and automatic segmentation. For each body site, the paired t-test was conducted to

determine whether the mean of dERR obtained from σ2
s is different from that obtained from IBS

with a significance level of 0.05.

dERR (mm) Paired t-test
Body Site Group Mean ± SD t(df=35) p-value CI

Suprailiac σ2
s −0.32 ± 2.99 −1.18 0.24 (-2.59, 0.68)

IBS 0.63 ± 3.95

Triceps σ2
s 1.29 ± 4.30 −2.23 0.032 (-8.62, -0.40)

IBS 5.80 ± 11.16

Thigh σ2
s −0.48 ± 2.76 −5.42 0.000005 (-16.92, -7.69)

IBS 11.82 ± 13.93

Table 4.1: Average dERR of 36 samples in 9 subjects (4 samples per participant) at the suprailiac,
triceps and thigh sites respectively. The paired t-test is used to compare the mean difference
between σ2

s and IBS. t(df=35): t-value of the paired t-test with a degree of freedom (df) of 35.
CI : 95% confidence interval (CI) of the statistical mean difference between σ2

s and IBS. If the CI
does not include 0, there is a significant difference between groups. p-value: if a p-value < 0.05, it
indicates there is significant difference between the the dERR of σ2

s and IBS.

Table 4.1 shows the mean and standard deviation of dERR from σ2
s and IBS among 36 samples

at each site. The t-values, p-values and confidence intervals that were calculated by the paired

t-test between σ2
s and IBS are presented. If the p-value < 0.05 and the 95% confidence interval

does not include 0, there is a significant difference between groups. Significant differences in dERR

were only found at the triceps and thigh (p < 0.05). The comparisons of the dERR differences

between σ2
s and IBS are summarized as follows:

1. At all body site, the values of dERR obtained from σ2
s were smaller than that obtained from

IBS.

2. Using σ2
s as the segmentation parameter, the smallest mean of dERR was noticed at the

suprailiac site(-0.32mm±2.99mm). The thigh had a similar mean of dERR (-0.48mm±2.76mm)

with the suprailiac site. The largest mean of dERR was noticed at the triceps (1.29mm±4.30mm).

3. Using IBS as the segmentation parameter, the smallest mean of dERR was also noticed at the

suprailiac site (0.63mm±3.95mm). Compared with the result of the suprailiac site, the dERR
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was much higher in the triceps (5.80mm±11.16mm) and thigh (11.82mm ±13.93mm). It

indicates that IBS yields higher variance and average value when detecting fat from different

participants at the triceps and thigh than the suprailiac site.

4. Significant differences in dERR between σ2
s and IBS were noticed at the triceps (t(df = 35)

= -2.23, p = 0.032) and thigh (t(df = 35) = -5.42, p = 0.000005) but not at the suprailiac

site(t(df = 35) = -1.18, p = 0.024). The boundaries detected from the IBS property have a

significant larger average thickness error than that detected from σ2
s at the triceps and thigh,

but not at the suprailiac site.

4.2.1.3 dRMS

As discussed in Chapter 3, dRMS represents the root mean square thickness error between the

boundaries for the manual and automatic segmentation. For each body site, the paired t-test was

conducted to determine whether the mean of dRMS obtained from σ2
s is different from that obtained

from IBS with a significance level of 0.05.

dRMS (mm) Paired t-test
Body Site Group Mean ± SD t(df=35) p-value CI

Suprailiac σ2
s 2.00 ± 2.49 −0.03 0.98 (-1.60, 1.55)

IBS 2.02 ± 3.49

Triceps σ2
s 2.38 ± 3.88 −2.32 0.026 (-8.54, -0.57)

IBS 6.94 ± 10.50

Thigh σ2
s 2.10 ± 1.90 −4.78 0.000031 (-15.21,-6.14 )

IBS 12.78 ± 13.04

Table 4.2: Average dRMS of 36 samples in 9 subjects (4 samples per participant) at the suprailiac,
triceps and thigh sites respectively. The paired t-test is used to compare the mean difference
between σ2

s and IBS. t(df=35): t-value of the paired t-test with a degree of freedom (df) of 35.
CI : 95% confidence interval (CI) of the statistical mean difference between σ2

s and IBS. If the CI
does not include 0, there is a significant difference between groups. p-value: if a p-value < 0.05, it
indicates there is significant difference between the the dRMS of σ2

s and IBS.

Table 4.2 shows the mean and standard deviation of dERR obtained from σ2
s and IBS among 36

samples at each body site. If the p-value < 0.05 and the 95% confidence interval does not include

0, there is a significant difference between groups. Significant differences in dRMS were only found

at the thigh and the triceps (p < 0.05) . The comparisons of the dRMS difference between σ2
s and

IBS are summarized as follows:
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1. The dRMS values of the triceps (2.38mm±3.88mm) and thigh (2.10mm±1.90mm) that were

obtained from σ2
s were smaller than that their values (triceps: (6.94mm±10.50mm) and thigh

(12.78mm±13.04mm) obtained from IBS . At the suprailiac site, dRMS obtained from σ2
s

(2.00mm±2.49mm) was similar than that obtained from IBS (2.02mm±3.49mm).

2. Using σ2
s as the segmentation parameter, the smallest mean of dRMS was found at the suprail-

iac site (2.00mm±2.49mm). The thigh (2.10mm±1.90mm) had a similar mean of dRMS with

that of the suprailiac site. Triceps (2.38mm±3.88mm) had the largest dRMS among all body

sites.

3. Using IBS as the segmentation parameter, the smallest mean of dRMS was also found at the

suprailiac site(2.02mm±3.49mm). This value was similar to the error of σ2
s (2.00±2.49mm).

4. Significant differences in dRMS between σ2
s and IBS were noticed at the triceps (t(df = 35) =

-2.32, p = 0.026)and thigh (t(df = 35) = -4.78, p = 0.000031) only. The boundaries detected

from the IBS property have a significant larger root mean square thickness error than that

detected from σ2
s at the triceps and thigh, but not at the suprailiac site.

4.2.2 Results: Multiple-focuses vs Single Focuses

To investigate whether the application of multiple focuses would improve the segmentation result

on σ2
s , a one-way ANOVA was applied to dRMS and dERR obtained from the single focus at

25mm(SF), stitching multiple focuses(MF1) and averaging multiple focuses(MF2) respectively. In

order to identify difference between groups, Tukey’s honestly significant difference (HSD) multi-

comparison tests were conducted for the pairwise comparisons between SF and MF1, MF1 and

MF2, and SF and MF2. Multiple comparisons were performed using Tukey’s method with Matlab

function multcompare.

4.2.2.1 dERR

As discussed in Chapter 3, dERR represents the average thickness error between the boundaries

for the manual and automatic segmentation. For each body site, the one-way ANOVA test was

first conducted to determine whether the mean differences of dERR among SF, MF1 and MF2 are



Chapter 4. Evaluation of Results 82

significantly different with a significance level of 0.05. Table 4.3 summarizes the results of the

one-way ANOVA tests.

dERR (mm) One-Way ANOVA
Body Site Group Mean ± SD F(2,105) p-value

Suprailiac SF −0.32 ± 2.99 0.08 0.92
MF1 −0.63 ± 5.76
MF2 −0.30 ± 2.30

Triceps SF 1.29 ± 4.30 5.21 0.0069
MF1 −1.79 ± 5.58
MF2 0.80 ± 2.63

Thigh SF −0.48 ± 2.76 0.02 0.82
MF1 −0.75 ± 6.79
MF2 −0.09 ± 2.23

Table 4.3: Average dERR of 36 samples in 9 subjects (4 samples per participant) at the suprailiac,
triceps and thigh sites respectively. The one-way ANOVA test is used to compare the mean
difference among results obtained from the SF, MF1 and MF2. F(2,105): F-value of the one-way
ANOVA test with a between-groups degree of freedom of 2 and a within-group degree of freedom
of 105. p-value: if a p-value < 0.05, it indicates there is a significant difference among the groups.

Body Site Group A Group B mean difference 95% CI
(mm) (mm)

Suprailiac SF MF1 0.32 (-1.95, 2.59)
SF MF2 −0.01 (-2.28, 2.26)
MF1 MF2 −0.33 (-2.60, 1.94)

Triceps SF MF1 3.08 ( 0.64, 5.52)†
SF MF2 0.49 (-1.94, 2.93)
MF1 MF2 −2.58 (-5.02, -0.15)†

Thigh SF MF1 0.26 (-2.21, 2.74)
SF MF2 −0.39 (-2.87, 2.09)
MF1 MF2 −0.65 (-3.13, 1.82)

† 95% confidence interval does not include 0; therefore, there is a significant difference between
groups A and B.

Table 4.4: Tukey’s HSD multiple comparisons for the difference in dERR within a group. SF:
single focus at 25mm, MF1: stitching multiple focuses and MF2 averaging multiple focuses. mean
difference: the estimated statistical mean difference from the Tukey’s HSD test. CI : 95% confidence
interval of the statistical mean difference between groups A and B.

Table 4.3 shows the mean and standard deviation value of dERR from SF, MF1 and MF2 among

36 samples at each body site. If the 95% confidence interval does not include 0, there is a significant

difference between group A and B. Significant differences in dERR were only found at the triceps

(p < 0.05). Multiple comparisons were then performed between SF and MF1, SF and MF2, and

MF1 and MF2 at each body site. Table 4.4 presents the results of multiple comparions in terms
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of the statistical mean difference and the 95% confidence interval. If the confidence interval does

not contain 0, the difference between two groups is significant. If the confidence interval contains

0.0, the difference between two groups is insignificant. Comparisons of dERR among SF, MF1 and

MF2 are summarized as follows:

1. MF1 had the largest mean and standard deviation of dERR at all body sites. Its values

of dERR were (-0.63±5.76)mm at the suprailiac site, (0.80±2.63)mm at the triceps and (-

0.75±6.79)mm at the thigh.

2. MF2 had the smallest mean and standard deviation of dERR at all body sites. Its values

of dERR were (-0.30±2.30)mm at the suprailiac site, (0.80±2.53)mm at the triceps, and (-

0.09±2.23)mm at the thigh.

3. Significant differences were found between SF and MF1 (CI = (0.64,5.52)), and MF1 and

MF2 (CI = (-5.02,-0.15)) at triceps (F(2,105) = 5.21, p = 0.0069) only. In both cases, MF1

had a worse dERR than SF and MF2.

4. Although the differences between SF and MF2 were insignificant at the suprailiac (CI =

(-2.28,2.26)), triceps (CI = (-1.94,2.93)) and thigh (CI = (-5.02,0.15)) sites, there were im-

provements on dERR from using MF2 over SF at all body sites. The values of dERR were

improved from (-0.32±2.99)mm to (-0.30± 2.30)mm at the suprailiac site; (1.29±4.30)mm to

(0.80±2.63)mm at the triceps, and (-0.48±2.76)mm to (-0.09±2.23)mm at the thigh.

4.2.2.2 dRMS

As discussed in Chapter 3, dRMS represents the root mean square thickness error of between the

boundaries between the manual and automatic segmentation. For each body site, the one-way

ANOVA test was first conducted to determine whether the mean differences of dRMS among SF,

MF1 and MF2 are significantly different with a significance level of 0.05. Table 4.5 summarizes the

results of the one-way ANOVA tests.

Table 4.5 shows the mean and standard deviation value of dRMS obtained from SF, MF1 and

MF2 among 36 samples at each body site. If the 95% confidence interval does not include 0,

there is a significant difference between group A and B. A significant difference in dRMS was only
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dRMS (mm) One-Way ANOVA
Body Site Group Mean ± SD F(2,105) p-value

Suprailiac SF 2.00 ± 2.49 1.74 0.18
MF1 2.95 ± 5.04
MF2 1.42 ± 2.05

Triceps SF 2.38 ± 3.88 2.27 0.11
MF1 3.71 ± 4.62
MF2 1.94 ± 2.07

Thigh SF 2.10 ± 1.90 3.68 0.029
MF1 3.89 ± 5.68
MF2 1.78 ± 1.46

Table 4.5: Average dRMS of 36 samples in 9 subjects (4 samples per participant) at the suprailiac,
triceps and thigh sites respectively. The one-way ANOVA test is used to compare the mean
difference among results obtained from the SF, MF1 and MF2. F(2,105): F-value of the one-way
ANOVA test with a between-groups degree of freedom of 2 and a within-group degree of freedom
of 105. p-value: if a p-value < 0.05, it indicates there is a significant difference among the groups.

found obtained at the thigh (p < 0.05). Multiple comparisons were then performed between SF

and MF1, SF and MF2, and MF1 and MF2 at each body site. Table 4.6 presents the results of

multiple comparions in terms of the statistical mean difference and the 95% confidence interval. If

the confidence interval does not contain 0, the difference between two groups is significant. If the

confidence interval contains 0.0, the difference between two groups is insignificant. We summarize

the results when multiple comparing dRMS among the methods of SF, MF1 and MF2:

1. Among all methods, MF1 resulted in the largest mean and standard deviation of dRMS at all

body sites. The values of dRMS were (2.95±5.04)mm at the suprailiac sites, (3.71±4.62)mm

at the triceps and (3.89±5.68)mm at the thigh.

2. Among all methods, MF2 had the smallest average and standard deviation of dRMS at all

body sites. The values of dRMS were (1.42±2.05)mm at the suprailiac site, (1.94±2.07)mm

at the triceps and (1.78±1.46)mm at the thigh. Compared with different body sites, the

average value was lowest at the suprailiac area and the standard deviation was the lowest at

the thigh.

3. A significant difference of dRMS between MF1 and MF2 was only noticed at the thigh (CI

= (0.12, 4.11)). The mean value of dRMS obtained from MF2 (1.78±1.46)mm is significantly

smaller than that of MF1 (2.10±1.90)mm. Although there was no significant difference of

dRMS between MF1 and MF2 at the triceps (F(2,105) = 2.27, p = 0.11, CI = (-0.29,3.84)),
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Body Site Group A Group B mean difference 95% CI
(mm) (mm)

Suprailiac SF MF1 −0.92 (-2.88, 1.05)
SF MF2 0.62 (-1.35, 2.58)
MF1 MF2 1.53 (-0.43, 3.50)

Triceps SF MF1 −1.33 (-3.40, 0.73 )
SF MF2 0.44 (-1.62, 2.51 )
MF1 MF2 1.78 (-0.29, 3.84 )

Thigh SF MF1 −1.79 (-3.79, 0.20 )
SF MF2 0.32 (-1.68, 2.31 )
MF1 MF2 2.11 ( 0.12, 4.11 )†

† 95% confidence interval does not include 0; therefore, there is a significant difference between
groups A and B.

Table 4.6: Tukey’s HSD multiple comparisons for the difference in dRMS within a group. SF:
single focus at 25mm, MF1: stitching multiple focuses and MF2 averaging multiple focuses. mean
difference: the estimated statistical mean difference from the Tukey’s HSD test. CI : 95% confidence
interval of the statistical mean difference between groups A and B.

this showed a trend toward significance.

4. There was no significant difference of dRMS between SF and MF2 at all body sites. Nev-

ertheless, there are improvements on the mean and standard deviation of dRMS over SF by

using MF2 at all body sites. The values of dRMS were improved from (2.00±2.49)mm to

(1.42±2.05)mm at the suprailiac site; (2.38±3.88)mm to (1.94±2.07)mm at the triceps and

(2.10±1.90mm) to (1.78±1.46)mm at the thigh.

5. No significant difference was noticed between SF and MF1 at all body sites(CI = (-2.88,1.05)

at the suprailiac site, CI = (-3.40,0.73) at the triceps and CI = (-3.79, 0.20) at the thigh).

However, the value of dRMS obtained from SF is smaller than that of MF1 at all body sites.

The values of dRMS were decreased from (2.95±5.04)mm to (2.00±2.49)mm at the suprailiac

site; (3.71±4.62)mm to (2.38±3.88)mm at the triceps and (3.89±5.68) to (2.10±1.90mm) at

the thigh.

4.2.3 Discussions

We showed that the segmentation with σ2
s (obtained from a single focus at 25mm) was a feasible

technique to detect the location of the fat boundary at the suprailiac, triceps and thigh sites. How-

ever, outliers were observed in the linear correlation plots (Figure 4.3) at all such sites. Although
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there was high correlation between the manual measurement and automatic measurement using

σ2
s , the presence of outliers indicated that σ2

s only provided a coarse estimation on the area of fat

tissue and was affected by the variation in tissue structures of samples.

The evaluations on segmentation with σ2
s using a single focus at 25mm showed similar errors

at the suprailiac and thigh sites. The dERR and dRMS were (-0.32±2.99)mm and (2.00±2.49)mm

at the suprailiac site, and (-0.48±2.76)mm and (2.10±1.90)mm at the thigh. The worst result

was shown at the triceps where dERR was (1.29±4.30)mm and the dRMS was (2.38±3.88)mm. We

believe that the reason for the worst results at the triceps was the presence of denser and thicker

fibrous of connective tissue there. Earlier, Bellisari et al. [33] also reported the worst technical

error was found in the triceps site in females.

Moreover, the results of segmentation with σ2
s are degraded when the fat thickness is too thin.

This is because a smaller amount of fat tissue is present between the fascia and the skin while dense

connective tissue is present. Roche [13] also reported that it was harder to define the boundary

between the subcutaneous fat and muscle in ultrasound B-mode images due to the presence of

smaller amounts of intermuscular fat tissue. In our experiment, participants had the smallest mean

and range of fat thickness at the triceps (Table 4.7), this is another reason for why the largest dERR

and dRMS errors are noticed at the triceps.

Reference Thickness (mm) Suprailiac Triceps Thigh

mean±SD 13.34 ± 4.91 7.76 ± 2.56 9.05 ± 4.18
minimum 5.45 3.03 3.24
maximum 23.82 13.53 22.13

Table 4.7: Summary on reference average thickness of subcutaneous fat collected from 9 participants
with 4 samples for each person at each body site. The reference thickness is obtained by manual
segmentation on ultrasound data.

A subcutaneous fat boundary is characterized by strong reflection; however, we observed that

it was not reliable to use IBS to locate the fat boundary at the thigh and triceps but it was

feasible to detect the fat boundary at the suprailiac site. Referring to Figures 4.4(b) and 4.4(c)

of the triceps and thigh, we noticed that outliers were mostly located in a deeper area. This is

because strong echoes can be generated not only by the fibrous connective tissues within the fat

layer, but also by structures like tendons and bones. Our results show that there was no correlation

between the manual and automatic measurements when using the IBS property at the triceps and
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thigh. Further, we discovered that IBS could be used as a segmentation factor at the suprailiac

site because fat is more homogeneous there than at the triceps and thigh. There are no structures

with strong echoes like tendon and bone around this anatomical site, and fewer and thinner fibrous

connective tissue are found there (as shown in Figure 4.5). No significant differences in dERR and

dRMS were noticed between segmentation with σ2
s and IBS among the 36 samples at the suprailiac

site.

(a)

(b )

(c )

Figure 4.5: Show the results of IBS and σ2
s at the (a) suprailiac, (b) thigh and (c) triceps sites. IBS

is not reliable in locating the fat boundary at the thigh and triceps because of the presence of other
soft tissues with strong reflection. In subfigures (a),(b) and (c), from left to right: binary map from
IBS, segmentation result from IBS, binary map from σ2

s and segmentation result from σ2
s . The

cyan boundary is the manual segmentation and the red boundary is the automatic segmentation.
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The effect of using multiple focuses to improve results was investigated because we assumed

that thicknesses could be different among people and a focus at a fixed position might not be

appropriate for all thicknesses. Our statistical analysis showed that there was no significant benefit

in using multiple focuses over a single focus, although we found that averaging σ2
s with multiple

focuses smoothed the value of σ2
s and tended to report smaller values of dERR (-0.32mm±2.99)mm

vs (-0.30±2.30)mm at suprailiac sites, (1.29±4.30)mm vs (0.80±2.63)mm at the triceps and (-

0.48±2.76)mm vs (-0.09±2.23)mm at the thigh and dRMS (2.00±2.49)mm vs (1.42±2.05)mm at the

suprailiac,(2.38±3.88)mm vs (1.94±2.07)mm at the triceps and (2.10±1.90)mm vs (1.78±1.46)mm

at the thigh, whereas stitching σ2
s with multiple focuses degraded the segmentation quality espe-

cially in the presence of fibrous tissues.

Moveover, Bellisari et al. [33] evaluated the inter-observer technical errors of manual ultrasound

measurements and found that the absolute technical errors were 0.15mm at the suprailiac site,

0.62mm at the triceps site and 0.13mm at the mid-thigh site. Our absolute mean values of dERR

obtained at multiple focuses are close to their technical error. The mean values of dERR were

–0.30mm at the suprailiac , 0.80mm at the triceps and -0.09 at the thigh sites. Similarly, both of

our results showed that the worst error was found at the triceps site.

From our visual investigation, we noticed that the thresholding result of σ2
s captured with a

single focus occasionally underestimated the area of fat tissue. It happened when the surface of the

fascia was not well-defined and fibrous tissues appeared near the fascia (as shown in Figures 4.6

to 4.8). As a result, a fat layer with significant holes and boundary gaps appeared in the binary

map of σ2
s obtained with a single focus (Figure 4.6(a)). However, the gap was annihilated in the

binary map at Figure 4.6(c) after averaging σ2
s captured from multiple focuses. Figure 4.7 shows

a case where a thin layer of fibrous tissue appeared near the top right of the fascia. Averaging the

binary map of σ2
s with multiple focuses reduced the gap near the fat boundary and corrected the

location of the boundary detected. Figure 4.8 shows another case that benefited from averaging σ2
s

with multiple focuses. As shown in the B-mode image, an obvious layer of fibrous tissue is found

within the layer of fat and the resulting binary map (Figure 4.8(a)) obtained with a single focus

was incorrect. The averaging technique was less sensitive to noise and thick fibrous connective

tissue, and the detection of the fat boundary from the binary map was therefore improved.
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(a)

(b)

(c)

Figure 4.6: An example showing the improvement of using MF2 over SF and MF1. In subfigures (a)
SF,(b) MF1 and (c) MF2, from left to right: binary map of σ2

s and, segmentation result of σ2
s . The

cyan boundary is the manual segmentation and the red boundary is the automatic segmentation.
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(a)

(b)

(c)

Figure 4.7: An example showing the improvement of using MF2 over SF and MF1. In subfigures (a)
SF,(b) MF1 and (c) MF2, from left to right: binary map of σ2

s and, segmentation result of σ2
s . The

cyan boundary is the manual segmentation and the red boundary is the automatic segmentation.
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(a)

(b)

(c)

Figure 4.8: An example showing the improvement of using MF2 over SF and MF1. In subfigures
(a) SF,(b) MF1 and (c) MF2, from left to right: binary map of σ2

s and segmentation result of σ2
s at

a triceps. The cyan boundary is the manual segmentation and the red boundary is the automatic
segmentation.
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In addition, we found that the method of stitching spectrum properties with multiple focuses

(MF1) resulted in statistically higher values of dRMS (at the thigh) and dERR (at the triceps) than

using single focus (SF) and averaging multiple focuses (MF2). The idea of stitching the values of a

spectrum property at each focus was to improve the detail representation of the spectrum property.

However, the presence of extraneous membranes within the fat tissue interfered with the value of

σ2
s randomly. Stitching values from multiple focuses exaggerated unwanted details and caused

errors in thresholding. On the other hand, averaging the spectrum values obtained from multiple

focuses could smooth out the irregularities and improve the ability to find the global change in

thresholding. Although its result did not appear statistically worse at the suprailiac site than the

other two methods, we suggest that this may be due to the fact that the structure of subcutaneous

fat is different in various body sites. From visual observation, it was noticed that fewer fibrous

tissues were seen at the suprailiac site than at the triceps and thigh sites. The idea of stitching

the values of a spectrum property at each focus was to improve the detail representation of the

spectrum property. However, the presence of extraneous membranes within the fat tissue interfered

with the value of σ2
s randomly. Stitching values from multiple focuses exaggerated unwanted details

and caused errors in thresholding. On the other hand, averaging the spectrum values obtained from

multiple focuses could smooth out the irregularities and improve the ability of finding the global

change in thresholding.

In the evaluation, we used both the mean thickness error dERR and the root mean square

error dRMS as the indicator for the segmentation errors because positive and negative y-coordinate

values can cancel in dERR but not in dRMS . The average thickness errors dERR at the suprailiac,

triceps and thigh sites were close to 0mm (< 1mm at all body sites when using the MF2 method).

However, the dRMS were all larger than the dERR at all body sites. This implies that averaging the

boundary points over the lateral direction reduces the uncertainty of the boundary measurement

when we are only interested in the average thickness measurement of the fat layer. If we want

to represent the boundary in both axial and lateral direction, the uncertainty of the boundary is

higher than the averaged boundary thickness.

Overall, we found that it was more difficult to detect the threshold when the fat layer was

thin or in the presence of thicker, extraneous fibrous membranes. If a fat layer was homogeneous

with less and thinner fibrous membranes, our method would be more robust as σ2
s was less noisy;
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however, if fibrous membranes appear in the middle of a homogeneous layer, σ2
s was interfered with

and changed randomly. The structure of the fat tissue is the main factor of the efficiency of the

segmentation.

4.3 Comparison of Auto-detected Fat Thickness with Skinfold

Caliper Measurements

In section 4.2, we evaluated the segmentation result in terms of dERR and dRMS and concluded

that the combination of MF2 and σ2
s yielded the best result. Therefore, we will use 18 samples in

nine participants (two sets per participant) of automatic ultrasound measurements from this com-

bination for nine human participants to compare with the measurements using skinfold calipers in

this section. Since the investigator was new to the use of the skinfold caliper, an evaluation of her

skinfold caliper technique is first presented. Furthermore, the manual and automatic ultrasound

measurements are compared with the half of the skinfold thicknesses (1
2 skinfold thicknesses). The

1
2 skinfold thicknesses is used because the skinfold caliper measures a fold of skin that comprises two

layers of subcutaneous fat. The relationship between the ultrasound and 1
2 skinfold caliper mea-

surements is investigated using linear correlation. After that, the mean difference values between

the two techniques are presented.

4.3.1 Evaluation on Skinfold Caliper Technique

A skinfold caliper operator is considered proficient if consistent measurements are made at the same

spot. Therefore, we evaluated the skinfold caliper technique of the student investigator by checking

the discrepancy of measurements that were repeated at a body site. After training and practice, a

test was performed on three participants at the suprailiac, triceps and thigh sites. A mark was first

placed at a body site. In the first trial, three skinfold measurements were taken and averaged to

obtain an average thickness of the trial. At an interval of 15 minutes, another three measurements

were recorded and averaged. A total if 5 trials were executed. Water content of subcutaneous fat

changes in time and this may affect the magnitude of the skinfold caliper measurements; therefore,

the measurements were taken at the same time of the day at relatively short 15 minute intervals.

Table 4.8 presents the justification results in terms of the discrepancy within a trial and the
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Site Participant Average Average Discrepancy Average Discrepancy
Thickness within a trial from 5 trials

(mm) (mm) (mm)

Suprailiac 1 6.4 0.2 0.4
2 23.0 0.4 0.7
3 24.1 0.5 1.8

Triceps 1 6.2 0.2 1.2
2 18.7 0.5 0.6
3 11.8 0.2 1.1

Thigh 1 6.6 0.3 1.1
2 29.1 0.8 1.0
3 6.9 0.2 0.6

Overall Median in discrepancy 0.3 1.0

Table 4.8: Discrepancies in skin-fold caliper measurement taken at the same spot of a body site.

discrepancy of average thickness from five trials. The discrepancy within a trial is the standard

deviation value for the three thickness measurements in the trial. The discrepancy from 5 trials

is the standard deviation value for the averaged thickness from 5 trials. The average discrepancy

within a trial is from 0.2mm to 0.8mm with a median at 0.3mm. Average discrepancy from five

trials ranged from 0.4mm to 1.8mm with a mean of 1.0mm.

The above results are acceptable because the median in discrepancy within a single trial was

0.3mm that was within the instrument error of the caliper (i.e. ±0.5mm). Furthermore, the median

in discrepancy from five trials was 1.0mm that was higher than the error of a single trial. This result

was reasonable because there were more variations between independent trials and the resulting

error still fell at the limit of the caliper resolution (i.e. 1.0mm).

4.3.2 Result of Correlation

The average thickness of the ultrasound boundary is compared to that established by the 1
2 skinfold

measurements. Correlation between 1
2 skinfold caliper and ultrasound measurements is computed

by Pearson’s linear coefficient. 1
2 skinfold caliper measurements are compared with ultrasound

measurements obtained from manual segmentation and automatic detection respectively. The

linear relationship is presented by both the linear coefficient (r) and the equation of a regression

line. Figures 4.9 to 4.11 shows the linear relationship at the suprailiac, triceps and thigh sites

respectively. The solid blue line shows the linear relationship between caliper measurement and

ultrasound measurement, and the dotted blue line represents an one-to-one relationship. The mean
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values, linear coefficient and equation of regression line for the three subcutaneous fat measurements

obtained by skinfold caliper and ultrasound techniques are summarized in Tables 4.9 to 4.10.

As observed in the case of manual segmentation vs 1
2 skinfold caliper measurement, high cor-

relations are found at the suprailiac (r = 0.93), triceps (r = 0.86) and thigh (r = 0.87) sites.

The correlation coefficients r are smaller in the case of automatic detection vs 1
2 skinfold caliper

measurement and the values are 0.90, 0.72 and 0.89 at the suprailiac, triceps and thigh sites re-

spectively. Automatic detection gives a smaller value of r at the suprailiac site and triceps but a

larger value at the thigh.

Site Caliper (mm) Ultrasound (mm) r Linear Relationship

Suprailiac 12.08 ± 5.17 13.39 ± 5.03 0.93∗ y = 0.90x + 2.47
Triceps 5.78 ± 1.92 7.81 ± 2.34 0.86∗ y = 1.05x + 1.74
Thigh 10.14 ± 4.56 9.73 ± 4.63 0.87∗ y = 0.88x + 0.83

*p < 0.0001

Table 4.9: The correlation coefficient r of average thickness between the manual ultrasound seg-
mentation vs 1

2 skinfold caliper measurements for 18 samples in nine participants (two samples per
participant).

Site Caliper (mm) Ultrasound (mm) r Linear Relationship

Suprailiac 12.08 ± 5.17 12.81 ± 3.85 0.90∗ y = 0.78x + 4.00
Triceps 5.78 ± 1.92 8.59 ± 2.62 0.72† y = 0.99x + 2.84
Thigh 10.14 ± 4.56 9.38 ± 5.12 0.89∗ y = 1.00x - 0.74

*p < 0.0001,
†p < 0.001

Table 4.10: The correlation coefficient r of average thickness between the automatic ultrasound
segmentation vs 1

2 skinfold caliper measurements for 18 samples in nine participants (two samples
per participant).
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Figure 4.9: The relationship of the average thickness between the ultrasound and the skinfold
measurements at the suprailiac site: (a) manual ultrasound detection vs 1

2 skinfold (b) automatic
ultrasound detection vs 1

2 skinfold.
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Figure 4.10: The relationship of the average thickness between the ultrasound and the skinfold mea-
surements at the triceps : (a) manual ultrasound detection vs 1

2 skinfold (b) automatic ultrasound
detection vs 1

2 skinfold.
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Figure 4.11: The relationship of the average thickness between the ultrasound and the skinfold
measurements at the thigh: (a) manual ultrasound detection vs 1

2 skinfold (b) automatic ultrasound
detection vs 1

2 .

4.3.3 Result of Difference Against Mean

To assess the inter-method differences (i.e. skinfold caliper and ultrasound measurements), the

mean differences between the methods are calculated. Since we do not know the true value of

fat thickness, difference against mean helps us to investigate the possible relationship between

the measurement error and the true value [87] as discussed in Section 3.3.3. For each data set,

the difference is computed between the skinfold thickness and ultrasound thickness. The mean

difference (D) and standard deviation of differences (s) are computed.

For both manual and automatic methods, the largest mean difference is noticed at the triceps.
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The magnitude of mean difference for the automatic method is slightly higher (<1mm) than that

for the manual method at all sites. The automatic measurements give a higher standard deviation

of difference (s) than the manual measurements.

Body site Manual Measurement Automatic Measurement

D(mm) s D s(mm)

Suprailiac −1.31 1.94 −0.73 2.62
Triceps −2.03 1.21 −2.81 1.81
Thigh 0.41 2.39 0.76 2.33

Table 4.11: Mean difference and standard deviation values between the ultrasound measurements
and the 1

2 skinfold thicknesses. D is the mean difference and s is the standard deviation.

4.3.4 Discussions

Our results showed that similar correlation values between the manual ultrasound segmentation

vs 1
2 skinfold caliper measurement, and automatic ultrasound segmentation vs 1

2 skinfold caliper

measurements are noticed at both suprailiac and thigh sites. At the triceps, a lower r was obtained

from the automatic detection than from manual detection (r = 0.86 vs r = 0.73). This is under-

standable because our segmentation algorithm yields a large error in dERR. Several researchers

[2, 32, 35, 36, 37] have compared the correlation between the manual ultrasound and skinfold mea-

surements at different body sites. Their results are summarized in Table 4.12. Manual ultrasound

and skinfold measurements are highly correlated (r > 0.7) in past studies except for the study

carried out at the suprailiac site by Stevens-Simon et al. [37]. This discrepancy may be due to

the difficulty in obtaining skinfold caliper measurements at the suprailiac sites of pregnant women.

Although we cannot directly compare our correlation value r with that of other researchers because

of differences in sample size, age and gender of participants, our results show a high correlation

between automatic ultrasound and skinfold caliper measurements. Other researchers using manual

ultrasound methods have found that there is also a good correlation between the ultrasound and

skinfold methods.

As we could not establish the true value of fat thickness, we investigated the mean difference

of average thickness between the skinfold caliper and ultrasound measurements. The manual and

automatic ultrasound measurements were compared to skinfold measurements respectively. Im-

provement of D by using automatic segmentation occurs at the suprailiac site. However, the mag-
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Correlation Coefficient r

Reference Results

Body site Our automatic Volz and Bullen Fanelli and Stevens Ramirez
measurements Ostrove et al. Kuczmarski -Simon

[32] [35] [36] [37] [2]

Suprailiac 0.90 0.86 0.85 0.73 0.52 0.84
Triceps 0.72 0.79 0.92 0.81 0.89 0.85
Thigh 0.89 0.73 − 0.87 0.73 −

Table 4.12: A comparison of correlations between ultrasound measurements and skinfold measure-
ments at the suprailiac, thigh and triceps sites in this and past studies. The ultrasound measure-
ments are obtained by automatic segmentation in this study, and by manual segmentation in the
above past studies.

nitudes of mean difference are similar (<1mm) between the manual and automatic segmentation

at suprailiac, triceps and thigh sites.

It is of interest to note that Ramirez [2] reported differences (D ± s) of (1.2±2.75)mm at the

suprailiac and (4.1±2.85)mm at the triceps sites. With our automatic method, the difference

of (-0.73±2.62)mm at the suprailiac site is similar to Ramirez’s results; however, our difference

of (-2.81±1.81)mm at the triceps which was different from them. This again indicates that the

segmentation results at the triceps is worse than the results at the suprailiac site. There are no

reported values at the thigh by Ramirez.

We compared the values established through the manual and automatic ultrasound measure-

ments to the 1
2 skinfold caliper values. Although we cannot quantify the true thickness of subcuta-

neous fat, the high degree of correlation show that the automatic measurement is at least as good

as the manual method studied by other researchers.

4.4 Summary

We evaluated the automatic ultrasound measurement technique by comparing its results with

those from the manual measurements and 1
2 skinfold caliper measurements. This showed that

segmentation with σ2
s was a feasible technique to detect the location of the fat boundary at the

suprailiac, triceps and thigh sites. However, the robustness of segmentation with σ2
s was affected

when the thickness of fat was small and when there were fibrous membranes of connective tissues

near the fascia. On the other hand, IBS could be used at the suprailiac sites to detect the fat
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boundary, but not at the triceps and thigh. Although using multiple focuses to average spectrum

properties reduced the value of dERR and dRMS at all three body sites, there was no significant

improvement in the results . With the presence of fibrous connective tissue, stitching values from

multiple focuses exaggerates unwanted details and causes errors in thresholding. This method

did not improve the detection and its result was much worse than simply averaging values from

multiple focuses. Since we could not establish the true thickness of fat, we tested the efficiency

of automatic ultrasound measurement by comparing its results to those of manual ultrasound and

skinfold measurements. We found that the mean difference at the suprailiac site was similar to

that established in a previous research; however, our value obtained at the triceps was not similar.

This was understandable because the automatic segmentation result obtained from the triceps was

the worst among all sites.
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Chapter 5

Conclusions and Future Directions

5.1 Summary and Conclusion

This thesis explored the use of ultrasound to automatically detect the boundary of subcutaneous

fat in vivo. We discovered that the variance of the spectrum (σ2
s) and the integrated backscatter

coefficient (IBS) carried information related to the properties of subcutaneous fat. We encoded the

values of σ2
s and IBS into separate gray-intensity parametric images, and show that σ2

s represents

a coarse area of the subcutaneous fat tissue and IBS represents possible locations of the fascia.

Then, we presented a framework to detect human subcutaneous fat in vivo by using the information

of σ2
s and IBS. A user study of nine participants was carried out to evaluate our segmentation

method at the suprailiac, triceps and thigh sites.

Our subcutaneous fat detection framework consists of four main steps: data capture, calculation

of σ2
s and IBS from the local spectrum of RF data using STFT and moment analysis, pre-processing

of parametric images using spatial compounding and segmentation. Spatial compounding plays a

very important role in our framework by reducing noise of the spectrum properties. The non-

compounded parametric images of the spectrum properties appear to be noisy because of the

speckle texture of ultrasound. In addition, the non-compounded parametric images of σ2
s also

appear to be erratic in the presence of fibrous connective tissues in the fat tissue. We showed

that spatial compounding reduced speckle noise of the parametric images and differentiated the

properties of subcutaneous fat. We determined the suitable step size and number of steering angles

from the experiment with a homogeneous phantom. In the experiment, we noticed that the signal-

to-noise ratio increased when the number of angles increased and the step size increased. This is

because more independent data are available. Although increasing the range of angles can improve

the overall compounding effect, the area covered by the full compounding effect is reduced as

depth increased. In our current approach, spectrum properties obtained from in vivo data were
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interpolated and averaged with 11 compounding angles at 0◦,±2◦,±4◦,±6◦ ±8◦ and ±10◦.

After spatial compounding, the visualization of fat using the parametric images of σ2
s was im-

proved and the specular boundaries shown in the parametric images of IBS were more continuous.

The improvement in σ2
s was particularly noticed at the triceps and thigh sites where connective

tissues were present in the fat layer and they interfere with the value of σ2
s . The histogram of the

parametric images of σ2
s was characterized by a long tail at higher gray levels. The long tail shows

that fat pixels change more rapidly than non-fat tissues. The fat pixels also have relatively higher

values than the non-fat pixels. We suggested that the relative rapid change in the gray-intensity

values of fat pixels was due to the high variation in the tissue structure of subcutaneous fat. This

caused high fluctuations in the received spectrum, and this resulted in a more rapid change in the

spectrum variance. Moreover, the histogram of the parametric images can be bimodal or unimodal.

Using Rosin’s thresholding method, we were able to separate the fat and non-fat tissue from σ2
s

and extracted the possible location of the fascia from IBS. Nevertheless, the IBS also represents

other structures with strong echoes such as tendon or bone.

Our user study showed that the segmentation with the parametric images of σ2
s was a feasible

technique to detect the location of the fat boundary at the suprailiac, triceps and thigh sites.

There are two factors affecting the robustness of segmentation using σ2
s . First, it is harder to

detect the fascia boundary when the layer of fat is too thin because the connective tissues and

the small amount of fat tissue add uncertainties to the value of σ2
s . Second, the robustness of the

thresholding algorithm decreases in the presence of connective tissues appearing near the fascia.

The thresholding algorithm is more robust in homogeneous fat as σ2
s appears to be less erratic. In

our user study, similar levels of dERR and dRMS errors were noticed at the suprailiac and thigh

sites. The worst result was found at the triceps.

On the other hand, IBS can be used at the suprailiac site to detect the fat boundary, but it is

not possible at the triceps and thigh. It is because tendon and bone, which are strong reflectors,

can be imaged at the triceps and thigh areas. Our segmentation method could not distinguish

them from the IBS.

Our statistical analysis showed no significant improvement in the segmentation results on σ2
s

when using multiple focuses to average spectrum properties. However, we showed that it reduces

the mean thickness errors and root mean square errors when compared to the results obtained from
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a single focus and it can improve the thresholding results obtained from a single focus when fibrous

connective tissue is present close to the surface of the fascia. Testing on 36 samples for each body

site, the mean thickness errors dERR are (-0.30±2.30)mm at the suprailiac site, (0.80±2.63)mm

at the triceps and (-0.09±2.23)mm at the thigh, and the root mean square thickness errors dRMS

are (1.42±2.05)mm at the suprailiac site, (1.94±2.07)mm at the triceps and (1.78±1.46)mm at

the thigh. We also found that our mean values of dERR were close to the inter-observer technical

errors of manual ultrasound measurements performed by Bellisari et al. [33]. They found that the

absolute technical errors were 0.15mm at the suprailiac site, 0.62mm at the triceps site and 0.13mm

at the mid-thigh site. Similarly, both of our results showed that the worst error was found at the

triceps site.

The segmentation results on σ2
s obtained by averaging multiple focuses were compared to those

using skinfold caliper measurements. As we did not know the absolute true value of fat thickness,

comparisons were based on the correlation and the mean difference values. High correlation was

noticed between the skinfold caliper values and those obtained via the manual and automatic

ultrasound. When our automatic detection results were compared with the results using skinfold

caliper measurements, we found that there was a high correlation between the two methods and the

correlation values were 0.90, 0.72 and 0.89 at the suprailiac, triceps and thigh sites respectively. The

correlation appeared lowest at the triceps; however, higher and similar correlations were found at the

suprailiac and thigh sites. Our results showed a high correlation between ultrasound and skinfold

caliper measurements, which were similar to other researchers’ results. Moreover, the magnitudes

of mean difference were similar (< 1mm) when comparing the manual and automatic segmentation.

The results indicates that there is a high correlation between our ultrasound measurements and

our the skinfold measurements.

Although the structure of human subcutaneous fat varies in different body sites and human, our

work showed that spatial compounded parametric images of ultrasound RF spectrum properties can

be used to segment the subcutaneous fat layer at the suprailiac, triceps and thigh sites of nine human

participants. From the histograms of the parametric images of the spectrum variance, we noticed

that the gray-intensity value of fat pixels is higher than that of the non-fat tissues and it changes

more rapidly than those of other tissue layers. We also suggested that this relative rapid change is

due to the fat tissue being composed of two structures with very different acoustic properties: the
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fat cells and fibrous connective tissue. Based on our visual observation on the parametric images of

the spectrum variance, the segmentation algorithm using the thresholding and RANSAC boundary

detection was designed to extract the subcutaneous fat and to calculate the average fat thickness.

The main contribution of this work is that an automated technique for determining the human

subcutaneous fat layer using clinical ultrasound has been developed and applied to the human

suprailiac, thigh and triceps in vivo. Our evaluations with the skinfold caliper measurements gave

comparable results with the manual ultrasound measurements previously studied.

5.2 Future directions

The current subcutaneous fat segmentation technique depends in part on the transducer positioning

skills of the operator. For instance, the operator has to position the transducer upright to the skin

for maximum reflection from the fascia, and must avoid compression of the fat through observation

of the B-mode images. Moreover, the operator must avoid arched surfaces by experimenting with

different body locations that allow easy placement of the transducer. A transducer with a smaller

footprint may be a better way to solve the above problems as it covers a smaller skin area. However,

the tradeoff is the decrease in field of view of the transducer.

The spectrum variance σ2
s is more sensitive to the thick, long fibrous connective tissues located

in particular near the fascia and when the fat layer is too thin. Therefore, further investigation

should be made to reduce the impact of analysis errors by averaging the error effect with a large

number of analyzed images. Fibrous connective tissues dispersed within the fat tissues appear

shorter in length, smaller in volume and less continuous than the fascia which is a continuous sheet

of tissue. Viewing shorter and less continuous tissue at different angles or positions will generate

different appearances. In our current spatial compounding technique, the direction of beam steering

is parallel to the image plane and the average spectrum properties are only averaged in one plane.

However, if we translate the transducer in the direction parallel to the skin (Figure 5.1), we can

average spectrum properties from adjacent plans and smooth out the effect of fibrous connective

tissues. This idea is similar to the 3D freehand ultrasound. Moreover, this idea can be extended

to volumetric measurement of subcutaneous fat.

Further, the experiment is conducted with the ultrasound frequency at 6.6MHz and the thickest
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Direction parallel to the skin

Image planes

Figure 5.1: Moving the transducer parallel to the skin to generate cross sectional images in a
volume.

sampled fat thickness is smaller than 30mm. Since the frequency of ultrasound affects the pene-

tration ability, the efficiency of the thresholding algorithm with growing fat thickness is uncertain.

More investigations can be conducted to assess the range of fat thickness that can be measured

using our algorithm.

Ultrasound machines assume that the speed of sound in soft tissues (1540ms−1) is constant;

however, the speed of sound is variable in different tissues and fat tissue has a relatively low speed

of sound (∼1480ms−1)[52, 53]. The variation in speed casts doubt on the accuracy of spatial

thickness measurements and the boundary can be displaced by around 4%(i.e.(1540-1480)/1540).

The absolute thickness error increases when the fat thickness increases.

Other drawbacks of the system are the slow RF data capture rate. The current frame rate for

capturing RF data is about 2Hz but we need 44 RF frames (11 steering angles with 4 focuses each)

for the spectrum calculations; therefore, the total data capture time excluding processing of RF

data is about 22 seconds. To reduce capturing time, fewer steering angles with larger angle step

sizes can be used. The potential problem can be the lower probability of receiving echoes and the

limitation of the depth coverage when the angle step size is too large.
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Our current evaluation method relies on the manual segmentation of B-mode ultrasound im-

age and its correlation with skinfold measurements. We do not have a gold standard that has a

better accuracy to evaluate the true value of fat thickness and the effect of the speed displacement

described in the previous paragraph. It may be worthwhile to consider using other imaging tech-

niques, such as CT and MRI, as additional tools for further comparison. It may be possible that

CT and MRI could provide a better gold standard. Further investigation with a gold standard will

help to validate and improve the segmentation algorithm.
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Appendix A

Calculation of the Spectrum Central

Frequency and Variance

Fink et al. [56] proved that the the spectrum moments of the short time Fourier transform are

correlated to the attenuation rate, the spectrum central frequency and variance.

For a linear attenuation with frequency and neglecting diffraction effects, Fink et al. [56] showed

that the relationship between the central frequency fc(t) and the spectrum variance σ2
s(t) that vary

with time t is

dfc

dt
= −βcσ2

s(t) (A.1)

where dfc

dt
is the attenuation rate, β is the attenuation coefficient and c is the speed of sound.

The spectrum due to attenuation is:

ǫ(f, t) = ǫo(t)e
−(α(f)ct). (A.2)

And if the attenuation is linear with respect to frequency, then Equation A.2 becomes

ǫ(f, t) = ǫo(t)e
−(β|f |ct). (A.3)

The nth moment of the spectrum ǫ(f, t) is

mn(t) =

∫ f1

f2

ǫo(t)e
−(β|f |ct)fndf. (A.4)
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The differentiation of Equation A.4 becomes

dmn(t)

dt
= −βcmn+1(t). (A.5)

fc of the spectrum is the spectrum centroid; therefore,

fc =
m1(t)

m0(t)
. (A.6)

dfc

dt
can be obtained by differentiating the Equation A.6 by the quotient rule and Equation A.4:

dfc

dt
=

d

dt

m1(t)

m0(t)
(A.7)

= −βc(
1

m0(t)
(
dm1(t)

dt
) −

m1(t)

m2
0(t)

(
dm0(t)

dt
)) (A.8)

= −βc(
m2(t)

m0(t)
) − (

m1(t)

m0(t)
)2) (A.9)

= −βc(
m2(t)

m0(t)
) − f2

c ) (A.10)

= −βcσ2
s(t). (A.11)

Therefore, the spectrum variance σ2
s is m2(t)

m0(t) − f2
c .



119

Appendix B

Normalization of a Spectrum

Property Image

A parametric image Mij is normalized between 0 to 1 before carrying out the thresholding step.

Mij is normalized as follows:

M̂ij = g ∗
(Mij − min(Mij))

(max(Mij) − min(Mij)
(B.1)

where M̂ij is the normalized Mij

g is the maximum value of the normalized parametric image and its value is 1 for normalizing the

parametric image between 0 to 1,

i is the column index,

j is the row index,

max is the function to find the maximum value in Mij , and

min is the function to find the minimum value in Mij .
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Appendix C

Solution to Rosin’s Thresholding

Method
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Figure C.1: Finding the threshold by Rosin’s thresholding method.

Let the histogram be a function y = f(x) and the threshold located at the point (x,y) which

has the maximum perpendicular distance from the straight line in the histogram.

Let (Xs, Ys) be the histogram main peak, (Xf , Yf ) the first empty bin of the histogram following

the last filled bin, m the slope of the straight line joining the (Xs, Ys) and (Xf , Yf ) and (xz, yz)is

a point on the straight line that achieves the maximum perpendicular distance to the straight line.

To find (xp, yp), the first step is to find equations representing xz and yz.
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The slope of the straight line is

m =
(Ys − Yf )

(Xs − Yf )
. (C.1)

Assume (x,y) is a point on the histogram, its perpendicular distance to the straight line can be

calculated by the dot product as follows:







x − xz

y − yz






·







Xs − xz

Ys − yz






= 0. (C.2)

Rearranging the terms in Equation C.2, we have

ax2
z + bxz + c = 0 (C.3)

where

a = 1 + m2

b = −(Xs + x) − m(y − Ys) − 2m2Xs

c = xXs + m(XsYs + Xsy − 2XsYs) + m2X2
s .

xz is solved from the roots of the quadratic Equation C.3 for each point (x,y) that lies between

main peak (Xs, Ys) and the last bin (Xf , Yf ).

Then, yz can be found as

yz = m(xz − Xs) + Ys. (C.4)

The perpendicular distance from the straight line to (x,y) is then

distance = (
√

(x − xz)2 + (y − yz)2). (C.5)

The threshold point is the point (x,y) that has the maximum distance in Equation C.5.
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