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ABSTRACT

Basements are a common source of difficulties in residential housing. Leaks through the foundation wall create an
inhospitable basement environment; excess moisture can lead to mold, mildew and decay. Compounding the
problems presented by water leakage, termites can infest houses through cracks in the basement wall and cause
considerable damage. The cost of termite control is estimated at $1 M per year in Toronto, Ontario and $1.2B per
year in the United States (Su 1994). A solution has been proposed that uses a termite barrier sand as a
combination drainage layer/termite barrier. The sand is mixed with a degradable binder and installed using
shotcreting technology.

This thesis presents theory supporting the solution as well as results of laboratory investigations involving this
barrier system. Suggestions are made for further field testing and implementation.
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1 INTRODUCTION

1.1 The Problems

Basements are perhaps the most common source of difficulties encountered in houses. Some of the more
common problems are due to mold and mildew, dampness, rotting in wood next to the basement wall, and
radon gas. The most prevalent problems have been associated with the ingress of water into the basement.
To address this issue, the 1993 Ontario Building Code (Section 2.10.5) has mandated the use of a
drainage layer next to the foundation wall to reduce the incidence of leaks into the basement due to bulk
water from the ground encompassing the basement. While this change to the Code is an advance in
building practice, it can also be viewed as a benefit to occupant health and safety. The ingress of water
into assemblies in the basement, can lead to mold, which can affect human health.

This new requirement also has negative impacts in the form of increased cost and labour associated with
the provision of the drainage layer. These costs will inevitably be passed along to the consumer in the
form of increased housing cost. Examples of some drainage layers presently used are air-gap membranes,
mineral fibre insulation, and vertical layers of granular material. For air-gap membranes and mineral
fibre insulation, often a crew of two workers is required to painstakingly attach the drainage system to the
foundation wall. Intensive labour is also required with the use of granular material since the process of
backfilling becomes a tedious series of steps consisting of placing some granular then backfilling with
some soil, followed by more granular and so on, until backfilling is complete. To minimize the negative
impacts described above, there is a need to provide a drainage system that is both economical and requires
minimal labour for installation.

Another notable problem that has continued to increase in prominence is the infestation of houses by
wood-destroying termites. The problem is thought to cost Toronto residents about $1 million per year
(T.Star, July 20, 1993); in the United States an estimated $1.2 billion per year is spent on the control of
subterranean termites (Su 1994).

1.2 The Development of a Solution

This thesis outlines an approach that effectively addresses the problems of water leakage and termite
infestation. This solution is one that is easily implemented, easily inspected, does not introduce new



hazards to the local eco-system, and is a natural component of an Integrated Pest Management program.
The proposed system uses very simple and natural materials that are applied using a proven technology.

The solution uses a uniform granitic sand mixed with an easily degradable paste as a binder. This
mixture is applied to the foundation walls using existing shotcreting technology. A continuous layer of
sand is formed over the wall where it can then be easily inspected. After backfilling, naturally occurring
organisms within the soil rapidly multiply and degrade the binder into water soluble and soil enriching
products, leaving a vertical layer of densely placed, frecly draining, termite impermeable, non-toxic,
persistent sand.

This thesis will begin by examining the problems of termites and moisture to gain an understanding of the
dynamics that underly them. A discussion of termite behaviour and the approaches for controlling them
will be presented. This will be followed by a an examination of the moisture problem and the driving
forces behind moisture movement.

The theoretical background supporting the technology of the proposed solution is outlined next. The
characteristics of the aggregate used in the barrier are examined. To act as a successful filter, the
aggregate must meet certain requirements. The aggregate's performance in relation to these requirements
is then discussed. The drainage requirements that the system must meet to satisfy the building code are
then examined. Finally, the characteristics of the binder are outlined including its chemical composition,
the physics of adhesion, and the process of biodegradation.

The theoretical considerations of the proposed system are then complimented with a series of laboratory
investigations, which verify the system’s properties. These investigations deal with the permeability of
the system, its rate of drying, rate of biodegradation, strength and rate of strength loss. In addition, a
half-size model was built and investigations of the effect of impact pressure on the degree of adhesion of
the barrier material were done.

To complete the considerations of this system, a proposal for full-sized field testing is included that
outlines a method to be used for demonstrating the barrier system. Also, details demonstrating how the
system would be installed in new construction are included for the final stage of development involving
house trials.



2 BACKGROUND

2.1 The Termite Problem in Ontario

Termites are not native to Ontario and are commonly considered to be a problem only in more tropical
climes. Contrary to this misconception, it has been estimated that 40% of Ontario’s population (and 20%
of Canada's) live in areas populated by termites (Myles 1992). Termites in Ontario have been found as far
north as Kincardine, Ontario (44°11'N) (Grace et al. 1989). The migration of termites north is thought to
be attributable to the trend toward milder winters. The presence of termites in a certain locale does not
necessarily imply an infestation of neighbouring structures; numerous other sources of cellulose are
available for termites to feed on such as tree roots, scrap wood and fence posts. However, the presence of
termites means that structures are vulnerable to attack if these are not adequately designed to deter termite

ingress.

2.1.1 Termite Behaviour and Characteristics

In order to create an effective barrier for termites, it is necessary to have an understanding of termite
behaviour. Coulson and Witter (Coulson and Witter 1984) provide a good treatment of some basic
characteristics of termites, which is summarized here.

Termites
1
[ 1
Principally Grass and Soil-Feeding
Wood-Eating
N
L |
Attack decayed or
decaying wood. Attack sound wood
Dampwood Termites
]
| - |
Attack seasoned Attack living trees
vood Tree-dwelling termites
r
Maintain contact with 'No contact with soil
soil as source of moisture -gain moisture from wood
Subterrancan Termites Drywood termites

Figure 1 - System to differentiate species of termites. (Creffield 1991)
3



There are more than 2500 species of termites and luckily only about 300 of these are thought to cause

damage to structures (Logan et al. 1990). Varieties include grass and soil-feeding, dampwood, drywood,
tree-dwelling, and subterranean termites. Creffield (Creffield 1991) differentiates among these varieties
using a flow chart found in Figure 1. A more thorough coverage of the various species is given by Logan

(Logan et al. 1990).

“Termites (Isoptera)

Ants (Hymenoptera)

Colour

light, creamy depending on

dark, reddish brown to black ,

contents of stomach
Body soft hard |
Petiole never present always present
Thorax Inconspicuous, smaller than distinct, may be the size of
head and abdomen the head or larger than

abdomen

Legs

short, do not reach end of
abdomen

long, may reach past head
and abdomen

Antennae

straight, beadlike 11-15
segments, moiliform

elbowed - geniculate

Wings

front and hind similar

front larger and have more
veins than hind

Wing position at rest flat over abdomen heid above body
Rate of movement sluggish quick

Mandible ends in a point ends with a saw edge
Compound eye absent obvious

Neck not obvious distinct and thin

Runways, trails

Rarely in the open

commonly found in the
open

Anal end

blunt - never has a sting

may end in a point and

have a sting
Behaviour when escape to find sheiter from scurry, do not attempt to
disturbed light, don't sting, bites hardly hide - may bite or sting

perceptible

Table 1 - Distinguishing physical traits between termites and ants. (Couison and Witter 1984) and

Odour almost odourlesss when may have a pungent odour
crushed when crushed
Poison soldiers may eject a milky fluid | never eject milky fluid from
from head head but may have poison
in sting
Damage to wood Attack wood until only a paper | May use wood to nest

thin veneer remains

(Creffield 1991)
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While termites are insects bearing a resemblance to ants, there are a number of marked differences in
their appearance. Table 1 lists some of the attributes that distinguish ants from termites.

A subterranean termite known as Reticulitermes flavipes (Kollar) is the variety found in the Toronto area.
Other subterranean species occurring in North America are outlined in Table 2.

| Comments
Cér.itral to eastem US, ON Described below
US far west, BC Similar to R. flavipes
Westemn and central US Similar to R. flavipes

TX, LO, SC, Hawaii, tropical | Queen may lay up to
and subtropical Asia Bggs pe

Table 2 - Subterranean Termite species common to North America. Summarized from (Coulson
and Witter, 1984. p 590)

Four types of members comprise a termite colony: primary and supplementary reproductives, soldiers and
workers. If a colony loses its king or queen, the supplementary reproductives may step in to fulfil the role.
In larger colonies, supplemental reproductives may also be involved in reproduction. Defense of the
colony rests with the sterile soldiers who protect the colony from threats such as ants, which are a
termite’s most notorious insect enemy (Comelius and Grace, 1994). The remainder of colony functions
fall to the workers who are responsible for foraging, tunnel building, and chewing the wood that is fed to
the rest of the colony proctodeatly and by regurgitation. Workers are either sterile or are nymphs, which
may mature into reproductives or soldiers. The workers are not able to digest the wood they chew;
digestion is accomplished with the aid of a number of protozoa and bacteria in the gut of the termites.
When the termites molt, these organisms are lost. Proctodeal feeding allows these termites to regain the
flora lost in the molting process.

Colonies can spread using two different mechanisms. One mechanism can occur afler a warm spring or
summer rain. Winged reproductives, known as alates, fly off from the colony, mate and establish a new
colony. The second mechanism, known as budding, predominates in northern climates. Supplementary
reproductives leave the colony via tunnels to establish new colonies. In cither case, the initial growth of a
colony is slow for R. flavipes since only 6-12 eggs are laid by the queen and these require a year to mature
into soldiers and nymphs. Supplemental reproductives, require three to four years to mature and will later



help in a more rapid growth of the colony that may have a population ranging from 0.2 to 5 million
members (Su et al. 1993a).

Behaviour

Subterranean termites have developed a number of behaviours that are well suited to their environment.
Remaining underground fulfils their need to be in a constant high humidity environment. If exposed to
light or in low humidity, termites can easily become desiccated.

Termite workers spend much of their time foraging, searching for new supplies of food and moisture.
Successful foraging underground necessitates continuous tunneiling and construction of shelter-tubes to
span above ground surfaces. Foraging of a termite colony may extend for up to 79 m (Grace et al. 1989)
and encompass an area up to almost 2400 m? (Su ¢t al. 1993a). Upon encountering an obstruction such as
a basement wall, termites tend to forage along the surface of the obstruction, which helps them find
access into buildings through cracks in foundation walls (Myles 1994b). Termite workers are blind but
have an olfactory sense that allows them to navigate the complex network of tunnels. Termites are able to
lay down a pheromone trail that is recognizable by other colony members and provides a way of marking
their own tunnel networks (Hickin 1971). Some odours such as wood decaying from brown rot fungi
attracts termites. Conversely, ant semiochemicals, a type of defense mechanism used by ants, and white
rot fungi are thought to repel termites (Cornelius and Grace 1994; Coulson and Witter 1984).

Termites have excretions from their exoskeletons, which when combined with moisture (due to their soil
environment), cause dust and dirt particles to cling to their bodies. This protein rich excretion is thought
to be attractive to fellow termites and encourages grooming of each other and in this process, foreign
particles are also removed. The wood diet of termites is deficient in protein so grooming helps conserve
vital nitrogen. Also, dead, surplus, or redundant colony members may be cannibalized as another way of
conserving nitrogen. (Creffield 1991)

2.1.2 Methods of Abatement

Integrated Pest Management is the latest descriptive phrase describing effective termite control. IPM is
more a philosophy of practice than a technology. By employing a number of methods of prevention and
control, IPM minimizes the risk of damage wrought by the target pest. The implementation of IPM
creates a number of lines of defence against the pest infestation. If primary defence strategies fail,

6



subsequent measures assist in preventing insect invasion. These modes of defence create redundancy,
which is desirable for reducing the risk of ultimate failure.

Prevention and control are the two general types of measures that are employed against termites.
Prevention includes designing buildings to exclude the entry of termites into the building and removal of
deadwood from backfill (NBC 1995). Control measures may include attempts to form a chemical barrier
around and under the structure, which would bar further entrance into the building. Termites caught
within the house, behind the barrier, soon die since they cannot rejoin the colony and cannot gain access
to a water supply. Control measures could also include treatment with termicides or baiting techniques,
which slowly spread a toxin throughout the colony.

2.1.2.1 Preventative Measures

East York, a borough of Toronto, Ontario, has experienced numerous instances of significant termite
infestation. To address this, several measures of a preventative nature are outlined in the Termite By-Law
of East York (By-law 52-85 1985). These measures reduce wood to soil contact, aid in the inspection of
structures for shelter-tubes, and reduce wood contact with the basement floor in the event that cracks form
beneath the wood/concrete contact points.

In addition to these methods, flashings at the tops of basement walls and around service entries to the
building may be used. Other possibilities include impenetrable stainless steel mesh or aggregate barriers.

The focus of this thesis is the use of the aggregate barrier method of preventative termite management.
Aggregate barriers exclude termites since the aggregate particles are too large and heavy for the termites
to mine, the particles too hard for the termites to chew through, and the interstices between the aggregate
particles too small to allow the passage of termites. The aggregate barrier has the following benefits:

1. Acts as a permanent, physically impenetrable barrier to termite foraging.

2. Provides a drainage layer. The lack of water makes foraging less desirable and avoids wood
decay, which attracts the termites.

3. Chemical-free treatments are less prone to the development of resistance by termites. Since the

termites are not killed, the process of natural selection.is not engaged. Natural selection is



responsible for creating resistance to treatment, which can occur over time with chemical
methods.

4. Applied ony once. Chemical treatments must be applied every five to seven years to be effective.

The major disadvantage that has prevented the widespread use of aggregate barriers in new construction
has been the cost of implementation (Myles 1994b). Installation has required either the painstaking
backfilling to create a vertical layer of barrier sand or the replacement of all the backfill material with
barrier sand. The first installation technique is labour intensive and therefore costly. The second
installation technique is also costly because of the need to provide large amounts of the specialized sand
and to haul away the native backfill, which when combined, could add as much as $6000 per basement for
a 10 m by 10 m house.

2.1.2.2 Methods of Control

Chemical methods

Control of termites is achieved primarily by chemical means using broad spectrum insecticides. As the
name implies, broad spectrum insecticides are effective in controlling a number of insect species. Two
main groups of termicides used in current practice are organophosphates, which are effective in killing
the termites, and pyrethroids, which work primarily by repelling the termites (Su et al. 1991).
Cyclodienes, a subgroup of chlorinated hydrocarbon pesticides, had been widely used for termite control
because of their persistence. The high potential for environmental contamination has lead to the restricted
use of this group of pesticides. Cylcodienes may accumulate in the fatty tissues of nontarget animals
(Horn 1988, p.139). In addition, some members of this group of pesticides, namely, dieldrin, aldrin,
DDT, and DDE are particularly risky since the contamination process is one of biomagnification. In this
process, the pesticides become more concentrated as they are passed from plant, to insect, to smail
mammal, to birds without being metabolized (Pedigo 1989, p.365).

Another group of pesticides, organophosphates, were originally developed for human warfare and some
varieties are very toxic, though less persistent than chlorinated hydrocarbons (Horn, 1988, p.139). They
are known to decompose, within hours or days, into nontoxic products on exposure to light. Chlorpyrifos,
unlike some more toxic cousins, is described as relatively safe (Pedigo, 1989, p.373). A summary of some
of these chemicals is shown in Table 3.



I Trade Name, Chemical name, Manufacturer

' y ermicde

Dursban TC and Equity *, 1% chlorpyrifos, Organophosphate - toxicant

| DowElanco

| XRM-5160, 0.75% chiorpyrifos, DowElanco Organophosphate - toxicant|
Dragnet FT', 0.5% permethrin, FMC corp. Pyrethroid - repellant

| Prevail FT*, 0.3% cypermethrin, FMC corp. Pyrethroid - repellant
Biflex FT, 0.031% bifenthrin, FMC corp. Pyrethroid - repellant
Pryfon 6%, 0.75% isofenphos, Miles Organophosphate - toxicant

| Demon TC', 0.25% & 0.5% cypermethrin, ICI Pyrethroid - repellant
Americas
PP321, 0.125% lambdacyhalothrin, ICl Americas Pyrethroid - repellant
Sumithion 20 MC?, fenitrothion, Sumitomo Chem., | Organophosphate - toxicant
Japan

' ragistered termicide in the U.S.A., *Registered termicide in Japan
Table 3 - Summary of some available termicides. (Su et al. 1993b)

In most cases, these chemicals are injected around and beneath the affected structure. An undesirable
side effect is the possibility that the termicide may enter the water supply either through house drainage
system connections to sewer lines or by contamination of the ground water supply. Cost of treatment is
also significant, approximately $1200 every five years.

A novel approach to attempt to control termites has been investigated by T. Myles at the University of
Toronto. The method involves trapping about 1% of termites in a colony and painting them with a resin
laced with sulfluramid, a slow-acting toxicant, and releasing these treated termites to rejoin their colony.
Upon their return, the poison is spread throughout the colony by way of the termites’ grooming of each
other (Myles 1994¢).

The use of slow acting toxicants has also been investigated by others (Su 1994). These toxicants are
introduced into bait blocks planted throughout the infested area. Other types of chemicals used in bait
techniques include insect growth regulators (Su 1994) that interfere with the normal development of the
colony members. Such interference may ultimately lead to the death of the colony (Horn 1988, p. 164).

Both of these approaches, baiting and trap and treat, have the advantage of using less termicide than
regular barrier treatments. However, the potential exists, as with any chemical control measure, for the



termites to develop resistance to the treatments. Resistance is developed as a result of the biological
process of natural selection (Hom 1988, p.150).

Non-chemical Methods

Non-chemical methods could include the use of nematodes, parasitic worms that infect the termite and
fungi, which are infectious to termites (Grace 1991). These methods are currently confined to the
laboratory (Logan et al. 1990; Creffield 1991). Logan (Logan et al. 1990) presents a comprehensive
review of non-chemical methods of termite control.

Summary

The use of chemical barriers to control termite infestation has been widely used. While there will, no
doubt, continue 1o be a place for chemical control measures, their use does pose the potential for adverse
effects. Prime among these effects is the impact on 'non-target’ organisms (i.¢. other insects) and the
possibility of developing insecticide resistance among termites. The role of chemicals should be viewed as
a remedial approach within an IPM system.

It has been said that "an ounce of prevention is worth a pound of cure”. Another truism states that "it is
better to work with nature than against®. Chemical control measures, which are efforts against nature, are
likely to be met with failure or disaster in the long run. Prevention is among the strongest arguments for
the use of aggregate barriers.

2.1.3 The Moisture Problem

Moisture is one of the most common sources of difficulties in buildings; practically every deterioration
process and damage that can occur to a building can be associated with water (except for problems arising
out of poor structural design). Excess moisture can lead to corrosion of metals, rotting of wood members,
efflorescence, freeze-thaw deterioration, spalling due to subflorescence, mould and mildew problems as
well as other difficultics. When it is considered that there has historically been a high incidence of
basement leaks, estimates up to 60% of all houses, the true magnitude of the problem can be realized. A
survey in the United States also estimated that "88% of builders have call-backs on leaky basements”
(Platts 1992). In addition, there is significant cost associated with this damage and was estimated by
Frank Ganone of Fram Construction in Toronto to cost approximately $300 per basement. This estimate
10



was for hard costs, materials and labour associated with the repair, so the figiure may be larger if soft
costs, including administration time and opportunity cost, are considered. It is not surprising then, that
the Ontario New Home Warranty Program requested changes to the Ontario Building Code (Marshall
1992). The 1993 Ontario Building Code, in an attempt to deal with this issue, introduced the requirement
for a vertical drainage layer to protect the foundation wall ( OBC, 2.10.5, 1993).

Three questions result from these considerations of moisture problems in basements: first, where does the
water come from? second, why do basements leak? third, will the new requirements in the building code
ensure that leaky basements are solely of historical interest?

Water and Basements

A recent paper deals with the issues of water and the design of dry basements in a comprehensive manner
(Timusk et al. 1995) and will be summarized below.

Five different manifestations of water can be found within building materials or moving through them:
bulk water, capillary water, adsorbed water, water vapour, and chemically combined water. These
different types of water are distinguished by the potential, or driving force, that predominates in the
behaviour of the water. Of these forms of water, chemically combined water does not lead to basement
moisture problems since it is tightly held within the structure of a material by strong intermolecular
forces. The other four types of water may participate in creating a basement with moisture problems.

In addition to understanding the various types of water that may lead to a wet basement, it is essential also
to understand the mechanisms or driving forces that cause the water to move into the basement so that
these potentials for water movement can be managed by design.

Driving Forces Causing Moisture Movement

For any change to occur throughout the universe, there must be a potential or gradient driving the system
toward change. Newton's first law states this antithetically by suggesting that there will be no change in
velocity (including zero velocity) of an object if there is no applied force, whereas the third law quantifies
the relationship between the applied force (potential) and the resulting change.
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From a thermodynamic point of view, this same assertion, that change occurs as the result of a potential,
follows less obviously from the first and second laws of thermodynamics. The first law is a statement of
conservation of energy. The second law states that entropy may never decrease. Entropy may be
considered to be the degree of randomness within a system and bespeaks the underlying connection
between thermodynamics and statistical mechanics. When these two laws are explored, the idea of a
spontaneous change arises. A spontaneous change can be described as a change that produces an increase
in entropy in the system without the addition of external work or heat. In thermodynamic terms, a
spontaneous change may be predicted by considering the Clausius inequality for an irreversible process (a
process that requires the provision of external work to return the system to its original state). The
conclusion that follows from these considerations is the natural tendency of a system to move from a state
of high energy to one of lower energy. This difference in energy, or ability to move from one state to
another, is known as a potential or driving force. Some of the common driving forces are gravitational,
chemical, and electrical potentials (Alberty 1983, pp.59-89).

Pursuing this idea of potential, if two systems having different potentials are brought together, there will
be a flow toward a state of intermediate potential known as equilibrium. Gravitational potential leads to
the manifestation of weight, commonly thought of as ‘force’ by civil engineers. This potential gives rise to
the phenomenon of hydrostatic pressure and gradients in this potential lead to the flow of bulk water.
Chemical potential may take the form of gradients in vapour pressure or temperature (leading to the flow
of water vapour or heat, respectively, by diffusion) or gradients in Gibb's energy, also known as surface
tension, (leading to adsorption or capillary rise). It is these various potentials that lead to the differing
behaviours observed for the types of water outlined.

If a designer wishes to prevent excess water from entering into the basement, measures are needed to
neutralize the potentials responsible for moving the water into the basement or to manage it once it is
there. This can be likened to the concept of IPM discussed earlier. A philosophy of water management,
by providing appropriate "water works" rather than waterproofing (an attempt to conquer the effects of
water) is needed (Timusk 1992). Success is obtained when a basement is designed to make dryness its
preferred state.

A summary of the four types of water, the driving forces (potential or gradient) behind them and the
techniques for alleviating the potential are found in Table 4.
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| Type of Water Ding Direction of Moisture
‘ Force Movement
4 Bulk sHydrostatic | *Into basement (unless *Drainage to alleviate

pressure basement is already flooded) [ hydrostatic pressure next
to basement wall

I Capillary *Surface sToward [ow r.h. side sCapillary break
< tension -into basement -dampproofing -create
-R.H. -Temp. hydrophobic pore surface

-pore size -granular material with
large pores

*Vapour into basement in winter *Vapour retarder
pressure Out from basement in summer ] *Control indoor r.h.
gradient (i.e. dehumidifier)

sSurface sControl r.h.
tension *Create hydrophobic pore
-R.H.

Table 4 - Summary of types of water, their driving forces and techniques to neutralize gradients.
It can be seen from Table 4 that capillary water and adsorbed water both have surface tension as a driving
force. In fact, these two types of water are closely related. Adsorbed water can be thought of as water
vapour that comes to rest on the surface of a material. This ‘coming to rest’ produces a stabilizing effect
on hydrophilic surfaces, which is to say that there is a reduction in the Gibb's energy of the surface. Thus,
layers of water molecules line the surface and the number of layers is dependent on the relative humidity
(which can be thought of as the moisture potential of the air). All adsorbed water, by definition, is
influenced by the surface onto which it is adsorbed and it is this factor that distinguishes it from capillary

water.

Capillary water is water held in a pore by surface tension as shown in Figure 2. Unlike adsorbed water,
only the capillary's surface experiences any interaction with the pore surface and the adsorbed water layer.
The remaining molecules in the capillary water experience the tension exerted by the meniscus. This
hydrostatic tension accounts for capillary rise and more generally, the suction of water into the pores of a
material.

The next part of our initial question is: "Why do basements leak?”. More accurately put: " Why is there

excess moisture in the basement?". Answering such a question without knowing the details of each
particular situation, is a dangerous endeavour. It is possible, however, to demonstrate the possible
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Adsorbed water

Surface Tension

\Copillcry water

Figure 2 - Capillary tube demonstrating the difference between capillary water and
adsorbed water.

shortcomings of older requirements. An example of the requirements for drainage is summarized by the

pertinent section from the 1990 Code and Guide for Housing (2.10):

(4) Unless it can be shown to be unnecessary, drainage shall be provided at the
bottom of every foundation wall that contains the building interior.

Figure 3 demonstrates a typical basement design that would satisfy the 1990 OBC requiring only drainage
at the footing. The difficulty comes in the reliance on the combination of a relatively thin dampproofing
layer and a weeping tile located at the bottom of the wall. The dampproofing can provide a capillary
break at the wall surface, by virtue of the hydrophobic nature of the dampproofing. If any cracks were to
occur in the concrete wall though, the dampproofing would not be able to span the cracks and the cracks
could give clear access for water to move into the basement. For bulk water, if the clear opening of the
crack poses less resistance to flow than does the soil between the water and the weeping tile, the water will
take the low energy route, or path of least resistance, and leak through the crack in the basement wall.

Capillary water in the soil next to the wall may not find its way into the basement through a crack in the
dampproofing since the shoulders of the crack are still coated with hydrophobic material. Thus, capillary
continuity is still disrupted by the dampproofing unless bulk water or small soil particles enter the crack.
However, it should be noted that this capillary effect would be insignificant in comparison to the water
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entering the basement by leakage of butk water.

Figure 3 - Schematic of a typical basement wall complying with the drainage requirements
prior to the 1993 OBC

The recent OBC requirements manage the mechanism of bulk water leakage. The vertical drainage layer
provides an opportunity for hydrostatic pressure to be dissipated. The ease of flow through the drainage
medium offers water a preferential route to lose its elevation potential. In this way, the available driving
force of gravity is exploited by the draining medium. If hydrostatic pressure is dissipated, cracks
occurring in the dampproofing become harmless.

Does this new OBC requirement now mean an end to wet and damp basements? No. There is still the
possibility of dampness occurring in the basement due to other sources of moisture. Among these sources
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of moisture is water vapour from inside the house, from the soil beneath the basement floor, and from
construction moisture.

In the summer months, a higher vapour pressure may exist inside the basement than exists in the soil
surrounding the basement, giving rise to a flow of vapour through the basement wall. If this water
condenses and is trapped within the basement wall construction and cannot drain away, moisture
problems can result. Conversely, in winter months, the indoor vapour pressure may be lower than that of
the surrounding soil, leading to vapour diffusion through the basement floor slab. Low permeance
materials, such as rubber backed carpeting, applied on the low vapour pressure side of the slab may retard
vapour flow and insulate the slab, leading to condensation behind the low permeance surface. If this
condensation is trapped, moisture problems may result.

Similarly, if construction moisture, in the form of vapour from the drying lumber and concrete (moisture
that exists in larger capillary pores and is unable to participate in the continued hydration of the cement
paste), reaches the dew point, condenses, and is trapped within the wall construction, moisture problems
may occur. Therefore, the only assurance against wet basements is good building practice. Engineers
have the opportunity to impact directly on the quality of new housing stock by providing thorough and
specific details that include moisture management strategies within the design.

The necessity for superior detailing is emphasized by Drysdale (Drysdale 1991) in his study of
construction failures occurring in multi-family dwellings. He notes that thorough and comprehensive
plans with good details, tend to result in better constructed buildings with significantly fewer claims being
filed with the Ontario New Home Warranty Program.

Proper basement design can manage the movement of moisture thus controlling the amount making its
way through the building envelope in either direction. The most effective way to manage moisture is to
provide a preferential route for its movement. By carefully choosing this route, excess moisture is directed
away from the building envelope.

2.2 A New Solution

A solution to these combined problems is to provide a combination drainage layer/ termite barrier along
the outside of the basement wall.
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One of the issues that must be addressed is the method of installation of this drainage layer/termite
barrier. As mentioned earlier, the possible methods of installation include manual separation during
back-filling, supporting the layer with a form that would remain in the soil, or total replacement of the
native backfill with termite sand. However, none of these methods are efficient and would require too
much labour. The issue of installation may be resolved by spraying the layer into place using a method
similar to "shotcreting”.

The efficiency of this shotcreted system has the following benefits with regard to the construction process:

1. easily inspected - to verify continuity, workerly installation;
2. easily placed - minimum of labour or special skill required;
3. minimizes the number of passes around the basement;

4. minimal impact on critical path/ construction schedule; and,

5. minimizes the amount of specialized aggregate to be purchased and transported.

All of these benefits have a cummulative effect of reducing housing cost while simultaneously providing a
drainage layer and a termite barrier.

2.3 Development of the Aggregate Barrier

2.3.1 Desired Characteristics for the Aggregate Barrier

It is desirable for the aggregate barrier to fuifill two functions. It should act as an effective filter excluding
the passage of both termites and particles of base soil, but these two requirements are mutually exclusive.
It should also provide the required drainage as mandated by the Ontario Building Code. These functions
are distinct and will be considered separately.

2.3.2 Filter Requirements

The aggregate barrier may be thought of as acting as a ‘filter’ against termites, and as a filter to prevent

migration of the base soil into the barrier. As a termite barrier, termites need to be prevented from

migrating into or through the barrier. As a drainage layer, particles of the native base soil must be

prevented from migrating through the barrier and into the weeping tile where they may settle and

accumulate thereby reducing the capacity of the foundation drain. Also, if soil particles migrate into the
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drainage layer and lodge within its pores, the permeability of the drainage layer would be reduced.
However, it is worth noting that the passage of soil particles into the barrier sand would not deter from its

performance as a termite barrier.

Ripley (Ripley 1986) outlines the prerequisites for an effective filter:

1. particle size of filter;
2. low susceptibility to segregation; and,

3. ‘crack stopper’ capability.
These principles may be extended to include the requirements for an effective termite barrier and each of
them will be considered in turn.

Particle Size

Filter performance is largely governed by the size and geometry of the network of pores occurring between
particles comprising the filter. It is the pores of the filter that determine the filter's ability to prevent the
penetration of termites or soil particles washed toward the filter by water, and pore size is related to the
size of the particles in the filter.

There is an upper and lower limit restricting the size of particles in an effective termite barrier. The
particle size needed to prevent penetration by termites through the filter’s interstices will be referred to as
the passage limit. Considering the lower end of particle sizes, if the particles comprising the filter are too
small or too light, they may be excavated by termites in the course of foraging. This lower limit of the
filter gradation will be referred to as the minability limit. For a termite barrier to be effective, the particle
size and mass must be too large to be excavated and the pores too small to allow passage of the termites.

To provide effective filtering of the base soil, the pores of the filter must be small enough to prevent
migration of the base soil particles through the filter.
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The Passage Limit

This upper limit on the allowable grain size is required to exclude the passage of termites and soil
particles, and has been investigated by both entomologists studying aggregate barriers for termites and by
geotechnical researchers studying filter design. The key consideration is defining a grain size
distribution that has a network of pores too small to be penetrated by the protected soil or by termites.

Research particularly relevant to this consideration has been done by Kenney (Kenney et al. 1985). His
investigations considered the maximum spherically shaped particle that could pass through the filter
medium. This pore size is called the controlling constriction size. The investigations are particularly
helpful as they minimized the arching of soil particles across the pore openings of the filter.

From Kenney's investigations, relationships between soil geometry and controlling constriction size were
found to yield ratios of D°/D,=0.18 (D", is the controlling constriction size and D, is the minimum
particle diameter of the filter medium) forC,=1.2 (C, = %‘3), D’ /D,;=0.25 for C = 3, and D°/D,=0.26
for C,=6-12 were determined. These relationships are valid for linear grain size distributions with
porosity n=0.30-0.32 for C =3 and n=0.34-0.36 for C,=1.2. In general, Kenney determined

D?/Ds <0.25 (1), or
D?/Dys £0.20 2).

The sand used in this thesis has a linear grain size distribution with C,=1.7 implying that the use of
D°/D,=0.25 is conservative. It is possible to use this relationship to determine the largest possible D,
particle size that could be used within the barrier to exclude termites.

The other information needed to make such an estimate is termite size. For this purpose, it is desirable to
use the dimension of the head capsule (Myles 1994a). Estimates based on head capsule dimensions (Su et
al. 1991) may be found in Table 5. R. flavipes are generally more uniform in overail size than
Coptotermes formosanus (Su et al. 1991).

There have been several studies to determine the particle sizes and grain size distributions that are
effective in excluding R. flavipes and other subterranean species. These are summarized by Myles (Myles
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1994a). For comparative purposes, the results of laboratory tests (Myles 1994a; Su et al. 1991) and field
tests (Su et al. 1992) are summarized in Table 6 along with the predictions from Table 5.

Termite Species | Mean Sizeof | Minimum Size | Max. D, that will] Max. D, that will
head Capsule measured exclude termites] exclude termites
[mm] [mm] [mm] [mm]
R. flavipes * 1.03+0.10 0.91 364 4.55
C. formosanus * 1.2920.12 1.06 4.24 5.30
C. formosanus * 1.15 1.03 412 5.15

t as measured by Su et al. 1991, 1 as measured by Oshima, 1919, * estimate based on size range from Su et al. 1991
Table 5 - Estimation of minimum particle size that will effectively exclude termites

| Termite Smallest effective | Largest effective | Predicted largest
L fraction fraction
| R. flavipes  [Su, 1991] 1.00-1.18 2.00-2.36 <4.55
" [Su, 1992 1.70-2.00 2.36-2.80
[Myles, 1994] | 1.40-1.70 2.36-2.80
C. formosanus [Su, 1991] 1.40-1.70 2.36-2.80 <5.15
Su, 1992 2.00-2.36 2.36-2.80

Table 6 - Summary of Aggregate Sizes for Effective Termite Barriers
This maximum aggregate size, estimated using the concept of controlling constriction size, is larger than
that determined experimentally to be impermeable (Myles 1994a; Su et al. 1991; Su et al. 1992). The
reason for this discrepancy can be attributed to the test method used. The soils were tested in containers
of small diameter, which creates larger pores at the edges of the test container than exist through the rest
of the soil as noted by Myles (Myles 1994a). This reasoning is borne out by Myle's observation that the
termites passed along the walls of the container in the larger aggregate samples. While it may be argued
that the upper limit set by Myles is appropriate to prevent the passage of termites along the interface
created by service pipes passing through the barrier, a flashing with proper detailing, could provide
adequate protection and allow a coarser gradation of sand to be used. Remaining within the upper limits
determined experimentally does allow another fayer of protection. Insuring the impermeability of the
interface between the sand and a flat surface implies that termites would be unable to forage along the
sand/wall interface, in the event that the termite barrier is breached for some reason. This reduces the
probability of penetration by termites into the home, a consideration termed the interactive effect (Myles
1994b). This gain in protection should be balanced by the realization that a coarser gradation would
allow the same barrier sand to be effective against other larger species of termites.
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Minability Limit

The lower limit of the sand gradation must also be considered in order to prevent penetration of the
barrier by termites. Particles must be large and heavy enough to prevent individual particles from being
excavated by termites, which could result in penetration of the barrier. This lower limit has been
determined experimentally and is included in Table 6. A complication arises when the lower limit is
considered conceptually in relation to a gradation broader than the limits determined by testing. It may be
possible to use a gradation of particles that contains particles finer than the minability limit; the fine
particles could fill the voids between larger impermeable particles. The question becomes one of
probability; what is the likelihood that the particles small enough to be excavated by the termites will lie
contiguously through successive layers thereby allowing penetration? Myles (Myles 1994a) has suggested
that an aggregate barrier would still be successful if a limit on the the proportion of fine particles, ranging
in size between 0.22 mm and 1.40 mm, were set at a2 maximum of 25% by mass.

Fortunately, several combinations of grain sizes have been investigated (Myles 1994b). The range of
impenetrable sand gradations is shown by the shaded region in Figure 4. Also plotted is the grain size
distribution of the sand used in this thesis.

Grain Size Distribution
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Figure 4 - Range of grain size distributions found to be successful as termite barrier. (Myles
1994a) Sands field tested by Myles (Myles 1994b) included .
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Other species outlined by Myles requiring coarser gradations larger than 2.00 mm to be effective, include
Coptotermes spp., found from Texas through to the Florida, Paraneotermes simplicicornis, found in the
southwestern states. Mastotermes darwiniensis Froggatt termites found in northern Australia are also
quite large and would likely require a coarser aggregate barrier as theorized by Myles.

Filter Characteristics

The particle size of the sand, having been dictated by the need to act as a termite barrier, also makes it
appropriate for use as a vertical drainage layer for the exterior of the basement wall. Due to its uniform
gradation, this filter would be expected to be remain unclogged over time, but would demonstrate a more
binary type of behaviour, either allowing soil particles to pass through its pores or causing a thin skin of
small particles to be formed along the outer face of the filter. Progressive clogging of filter media is a
phenomenon observed with broadly graded filters that have a gradation size that borders the ranges for
successful and unsuccessful critical filters (Vaugan and Soares 1982). The next task then, is to predict
the size of soil particle that may pass through this uniform filter.

At this point, it is necessary to consider the level of surety required to prevent the passage of the native
soil into the filter. Most filter criteria research for fine grained soils uses extreme test measures such as
slurry testing and slot testing. Slurry tests suspend the base soil in the water over the filter while the water
washes through the filter. The filter is successful if a skin forms over its surface, preventing the migration
of soil particles through the filter, and flow stabilizes. In the slot test, the base soil is placed over the filter
and a slot or hole formed in the base soil. Water flows through the slot simulating a concentrated leak

and eroding the base soil. Again, the filter is successful if a skin forms over the filter surface (Sherard et
al. 1984) .

This degree of conservatism is warranted for filters that must seal off concentrated leaks occurring in
carth-fill dams but would be considered excessive for the drainage layer of a residential building. The
performance expected from a vertical drainage layer in residential housing is more in line with what is
termed a 'noncritical’ filter (Sherard et al. 1984). Sherard tested a highly erodable clayey silt using a less
stringent method where the base soil was compacted directly next to the filter in a conventional filter test.
This less demanding test demonstrated that filters were capable of preventing the migration of a wider
range of base soil gradations. A filter grain size to base grain size ratio up to D,s/dg= 150 was found to
be successful. For the case of the termite sand, D,s=1.26 mm, would be expected to successfully protect a
base soil having d,,= 8.4 um, the size of medium silt. This implies that termite sand would be expected to

22



protect all but extremely fine noncohesive or highly dispersive clay soils. It is worth noting that Sherard
had tested 36 different fine grained soils and the finest of these had a d, size of 10 um. Also, initial tests
demonstrated that none of the filters failed if the pressure was kept below a head of 10 m. A maximum
head of 2 m would be expected in a residential setting, suggesting that the filtering capability of the sand
should be quite adequate.

Segregation

This second requirement builds on the first by ensuring that the controlling constriction size desired in
design, is obtained in practice; segregation may lead to local areas having controlling constriction sizes
differing significantly from design values. Due to the uniformity of the termite sand used, segregation is

not a concern.

Crack-Stopper

The third requirement ensures that the filter is self-healing; a crack in the filter medium could undermine
the protection provided by the filter. The termite sand used is itself noncohesive. A complication arises
due to the use of a binder for the installation of the sand. For the filter to provide reliably persistent
protection, the cohesion provided by the binder material, must have ceased before the sand layer is likely
to experience any movement that could give rise to the formation of a crack. This can be ensured by
maximizing the rate of degradation of the binder, an issue that is dealt with later in this thesis. However,
it should be noted that even if a crack were to form in the barrier, the void size at the barrier / wall
interface is too small to allow the passage of termites. Since it is highly unlikely that the crack in the
basement wall would coincide with the crack in the barrier, the barrier should still be effective even in the
event of a crack developing.

The termite sand used for this thesis meets all three of the filter criteria described by Ripley. In addition,
this granitic sand is chemically resistant and thus unlikely to change in its properties for at least the life of
the building, making the use of this termite barrier and drainage layer technology a desirable and
long-term preventative option.
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2.3.3 The Drainage Requirement

The 1993 OBC (2.10.4) lists three options for providing a drainage layer:

(a) not less than 19 mm (3/4 in) mineral fibre insulation with a density of not less
than 57 kg/m® (3.56 Ib/ft°),

(b) not less than 100 mm (4 in) of free draining granular material, or

(c) a system which can be shown to provide equivalent performance to that
provided by the materials described in Clauses (a) or (b).

The aggregate barrier proposed easily falls under Clause (b) if 100 mm is the thickness applied to the
basement wall. If adhesion of such a thick layer proves to be an ongoing difficulty in practice, satisfying
the requirements of Clause (c) may prove to be the viable alternative.

The idea of equivalency as it is introduced in Clause (c), has been addressed by the Canadian Construction
Material Centre (CCMC). Two main classes of equivalency exist, Class A and Class B. The Class A
category is known as the 'true drainage’ category. Materials must have a flow rate of 0.72 m*/hr/m at a
hydraulic gradient of 1 m/m to meet the Class A requirements; this performance likens the product to a
free draining granular material. Alternatively, materials like mineral fibre insulation, which provide a
capillary break, may fall into the category of Class B materials if a flow of 500 ml is shed within 15
minutes when tested under the side water inflow test (Waters, personal communication).

Employing the criteria for a Class A drainage system implies that the system must posses a hydraulic
conductivity of at least 4 mm/s if the drainage layer is to be 50 mm thick. Similarly, to comply with the
drainage requirements under the Class B category, the system would need to have a hydraulic conductivity
of 0.01 mm/sec.

2.4 Development of the Binder System

Having determined the successful gradation for the aggregate, the next consideration is the binder that
will adhere the aggregate to the wall temporarily, until the excavation is backfilled. Using the shotcrete
process to install the barrier sand, it is possible to use a relatively thin layer of this specialized sand. This
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saving of material reduces the material and transportation costs for providing the sand as well as reducing
the haulage charges for removal of excavation material.

2.4.1 Desired Characteristics for the Binder

To complement the effectiveness of the aggregate barrier, an appropriate binder is required to assist in the
barrier placement and enable the cost savings discussed above.

The desired characteristics include:

1. Sufficient cohesion to restrain the lateral pressure exerted by a vertical layer of filter 50-100 mm
thick.

2. Sufficient adhesion to attach a vertical layer of sand/binder mixture to a dampproofed wall
without sloughing during the backfilling operation.

3. Minimal binder persistence to ensure the filter's inability to support a crack and ability to reach
maximum permeability.

4. Minimal impact on the surrounding eco-system as the binder degrades.

5. Economy to ensure competitiveness with other drainage options.

6. Maximum ease of implementation.

7. Availability in potentially large quantities.

The first requirement can be met by using a binder that is in itself a cohesive mass. This cohesion must
develop quickly given the shotcreting process proposed. A starch paste can meet these conflicting
demands due to the thixotropic nature of the paste. Thus, the mixture can be pumped and shot, but
shortly after impact, the mix is no longer fluid. This initial cohesion is later enhanced as the paste
retrogrades. In the process of retrogradation, some of the starch precipitates, creating a stiffer gel.
Retrogradation will be discussed in greater detail below.
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24.2 Binders Investigated

Initially, any possible substance that possessed tack was considered. Low cost options such as casein and
bitumen were disregarded because of their persistence. More careful consideration was given to two
binders, starch and wax.

24.2.1 Wax

Crude wax, which consists mostly of paraffin wax and lower molecular weight waxes, did not perform
well on its own. Crude wax failed to hold the sand in place during shooting. It allowed the sand grains to
rebound from the surface, leaving only a generous coating of wax on the test wall. Some of the trials
using mixtures of crude wax and a microcrystalline wax however, were successful.

Microcrystalline wax, on its own, was found to be ideally suited for providing the required cohesion and
tack. Because the cost of microcrystalline wax is higher and the rate of deterioration slower (due to its
higher average molecular weight than crude scale wax), a mixture of crude scale wax and the
microcrystalline wax was used. A successful mixture consisted of 25% crude scale wax and 75 % of
microcrystalline wax. Appendix A lists the wax mixtures tried.

The material cost for using wax was estimated to be $26/m? (binder and sand, 50 mm thick) if rail-car
quantities of wax were purchased from the supplier.

Paraffin coated paper cups are said to decay at the same rate as leaves ( McEwen, personal
communication). Since leaves are mainly composed of cellulose, it is reasonable to predict that this rate
of degradation would be significantly slower than the rate of starch degradation based on the above
analogy.

While similar to starch in being a polymeric chain built from glucose units, cellulose is "far more resistant
to microbiological and enzymatic breakdown" (Alexander 1977, p.149). In addition, hydrocarbons can be
metabolized, but their rate of metabolization decreases if given a "readily metabolized substrate”
(Alexander 1977, p.211).

The slower rate of degradation can be explained by the very low solubility of wax in water and the
possible toxicity of lower molecular weight compounds formed during degradation (Morgan and
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Watkinson 1994). These low molecular weight compounds may act as a solvent on cell membranes of

degrading organisms.

Waxes are aliphatic hydrocarbons. Paraffin waxes consist of shorter chains than microcrystalline waxes.
Alexander (Alexander 1977, p.208) indicates that increased chain length reduces the rate of degradation.
Thus, the mixture of waxes used for the binder would likely degrade even more slowly than the crude
scale wax considered above.

2.4.2.2 Starch Paste

Early indications pointed to a greater economy and degradability for a starch binder compared to the
binders noted above. For these reasons, the starch binder became the focus of investigation. For this
study, corn or maize starch was used because it is readily availabile in large quantities in Ontario at a

reasonable price.

Molecular Description of Starch and Gelatinization

Starch is composed of two types of molecules, amylose and amylopectin. While they are composed of the
same base units of polymerized glucose ( Zorbel 1984), or more accurately glucopyranose (McMurry
1984), the manner of assemblage differs. This difference in assembly yields widely differing properties
between the molecules.

Amylose, poly-(1-4)-a. -D-glucan, is predominantly linear and is helical shaped. This shape is assumed
to help stabilize the molecule because the «-1-4 arrangement is not particularly stable (Lazarus 1983).
The chemical name describes much of the molecule's structure. The a indicates that this molecule is the
trans anomer (anomers are molecules that have the same components but differ in that the trans anomer
has two functional groups that are on opposite sides of the ring, while these groups are on the same side in
the cis molecule). The D, which stands for dextrorotatory, indicates that the molecule also exists in an
enantiomeric pair. Enantiomers are isomers that are mirror images of each other, giving them a
handedness called chirality. The D enantiomer is naturally occurring and, while some physical properties
may be similar to other enantiomers, differing enantiomers tend to react differently biochemically.
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Amylopectin, in comparison, is also composed of these same chains but is highly branched, attached via
a-1-6 linkages. The difference due to assemblage is again seen in the comparison of these molecules to
cellulose, which is also composed of glucopyranose base units.

CH,OH*
0)
H -
HO o *- indicates trans groups
OH

a-D-Glucopyranose

CH,OH CH,OH

—0, O,
1 4
OH OH

poly-(1-4)- ¢ -D-Glucan

CH,OH
o)
o)
OH \
CH,0H CH, CH,OH
o o o,
1
o OH
OH OH OH

poly-(1-4)-a.-D-Glucan with (1-6) branch linkage

Figure 5 - Diagram showing the difference between unbranched and branched glucan units.

Cellulose molecules have their base units assembled at the p 1-4 position; base units in amylopectin are
attached at the o 1-4 position. This cellulose linkage is more stable, allowing long straight molecules
(Lazarus 1983) to be formed. Obviously, the long straighter chains of cellulose are able to align more
intimately with each other, accounting for the greater strength of wood as compared to starch gels. This
increased stability also accounts for the greater resistance of cellulose to biodegradation, which will be
discussed later.
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CHO CHO

H OH H OH
HO H HO H
H OH H OH
H OH HO H
CH,OH CH,0H
D-Glucose L-Glucose

Figure 6 - lllustration of enantiomers of Glucose using Fischer projections.

While starch is insoluble in cold water, it is none-the-less, hydrophyllic. As mixtures of starch and water
are heated, the starch granules absorb water until the mixture reaches the gelatinization temperature,
which is dependent on the source of the starch. At the gelatinization temperature, the granules take on
large amounts of water, swelling 10 - 100 times in volume. If all the starch in the mixture is not able to
become saturated in water, the solution develops a very thick consistency.

There are a number of starches that will produce a gel. However, as documented by Kruger and Lacourse
(Kruger and Lacourse 1990), only corn and wheat produce very high gel formations upon cooling.
Amylose chain length is also dependent on the source of the starch. Chain length has a significant impact
on the behaviour of the paste. Shorter chains tend to come out of solution, grouping together by hydrogen
bonding (Lazarus 1983), more quickly than longer chains. This process of dissolution is known as
"set-back” or retrogradation and results in a significant increase in the viscosity of the paste (Zorbel
1984). Retrogradation is similar to thixotropy but, unlike thixotropy, is usually not reversible (Lazarus

1983).

Comn starch was chosen as the desired type of starch since it develops a stiff gel as noted above. This
desired characteristic may be explained in terms of the amylose to amylopectin ratio, and amylose chain
length. The other consideration for the choice of corn starch, was its wide availability for a modest price.
The material cost for using corn starch was estimated to be $6/m? (binder and sand, 50 mm thick) if
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rail-car quantities of starch were purchased from the supplier. This compares favourably to the estimate
of $26/m? if wax were used. Pastes made from other sources of starch (eg. wheat) may also prove to be
feasible. Availability, price and the physical characteristics of the paste, need to be considered if different
starches are to be used.

The paste mixture considered most successful consisted of 20% corn starch by mass in tap water. A table
of all formulations investigated is found in Appendix B. In later work, tap water was replaced with a
nutrient broth to aid in the biodegradation of the paste. The mixture was prepared by first weighing the
components, then combining them while stirring, to decrease the tendency to settle (if the swollen starch
granules were allowed to settle, they formed a compact mass at the bottom of the vessel and became
difficult to redisperse). The mixture was stirred constantly as it was heated to a temperature of
approximately 70°C. Upon reaching the target temperature, gelatinization begzn and the viscosity of the
mixture rapidly increased. The cooking process was stopped once the paste was uniformly translucent.

This paste was cooled and covered to slow the process of degradation; it was kept covered until the time it
was mixed with the sand, which was within a day of the paste being made. On cooling, the paste formed
arigid gel. Mixing in a standard mixer for about three minutes was sufficient to uniformly incorporate
the paste into the sand. The proportions of the sand/paste mixture used was 20% paste by mass.

2.4.3 Adhesion

Adhesion is, in itself, a broad field of study, and includes the areas of surface chemistry, physics, and
rheology. This discussion will focus on those aspects that are relevant to our purposes here.

A successful adhesive must meet two requirements. First, the adhesive must act as an adsorbent, wetting
the adherand, or substrate, in order to create an interface. This wetting process is termed intrinsic
adhesion (Gent and Hamed 1990). The nature of this interaction ranges from chemisorption (including
covalent and ionic bonds), which creates strong bonds, to adsorption (including H-bonding and van der
Waals interactions) (Alberty 1983, p.287), which creates weaker bonds. In addition, the adhesive must
possess viscosity, or shear shrength, to prevent slip from occurring within itself. Viscosity is one aspect
that differentiates adhesives from lubricants.



For adsorption to occur, the adherand must be wetted by the adhesive. Thermodynamic motivation is
necessary for wetting to occur; this motivation is a decrease in the Gibbs free energy, which is a term that
incorporates the internal energy, work and entropy of the system. Gibbs free energy is defined as:

G=U+PV-1IS=H-1S (3] (Alberty 1983, p.88).

Because the process of a liquid adsorbing on a substrate causes molecules to be more orderly than they
were within the liquid, there is a decrease in entropy. This decrease causes an unfavourable increase in
the Gibbs energy. Thus, for adsorption to occur, there must be a release of heat or decrease in enthalpy,
for adsorption to be favourable.

In less theoretical terms, the Gibbs energy per unit area is the surface tension, y (Nm™), of the surface of
the liquid or solid (Alberty 1983, p.275). This leads to the generalization that low energy liquids will
spread on high energy surfaces (unless the film adsorbed creates a lower energy surface than that of the
liquid as occurs with autophobic liquids)( Zisman 1977). Dupré further summarized the process of a
liquid wetting a solid by defining the work of adhesion, ¥, , as

Wa=Ysv + Yov — YsL [4).

Zisman (Zisman 1977) goes on to develop this and show that spreading requires the surface energy of the
liquid to be lower than the surface energy of the solid.

Adhesion need not occur via a film spreading over a surface; there are several ways that the adhesive and
adherand can be brought into intimate contact. One such mechanism is employed for pressure sensitive

adhesives. These adhesives form the adhesive interface with the aid of applied pressure. This is a viable
mechanism for adhesives that are too thick to flow or are unable to spread on the surface of the adherand.

Dampproofing is applied to the exterior of basement walls to act as a vapour retarder and capillary break.
This dampproofing layer is also used here to act as the adhesive for the starch binder. Because the
dampproofing layer is thin and unable to flow, the starch paste must be brought into intimate contact with
the dampproofing layer. The resulting system can be described as a pressure sensitive adhesive. The
pressure is applied by virtue of the conversion of momentum into force upon impact. In this way, the
dampproofing layer is able to ‘wet’ the starch. The result is a solid-adhesive-adhesive-solid system. The
starch adheres to the sand and the dampproofing is adhered to both the starch and the concrete wall. In
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addition, the impact may cause individual grains of sand to pierce the starch coating and adhere directly
to the dampproofing layer. This last hypothesis was verified by shooting unpasted sand directly at the
dampproofing layer. While much of the sand rebounded, a number of grains were nevertheless able to
adhere soundly to the dampproofing.

A complication arises when attempting to make generalizations regarding dampproofing formulations,
since the formulations possible are numerous and range from emulsified asphalts, to solvent diluted
asphalts, to hot-melt asphalt mixes. Also, the composition of asphalts is variable, dependent upon the
source and the extent of refining. Asphalts may have softening points that range from 25°C to 55°C
(Speight 1980, p.452)or higher.

Asphalts are defined as the nondistillable portion of crude oil; they are the residual found at the bottom of
vacuum distillation towers in the refining process (Altgelt and Boduszynski 1994; Speight 1980, p.452).
The composition of asphalt is complex. It is generally described in terms of three main components: oils,
resins and asphaltenes. Qils are predominantly aliphatic (composed of straight chains with few carbon -
carbon double bonds) while resins are more aromatic in nature and asphaltenes are the most aromatic
components. The importance of the aromatic component in dampproofing is its ability to be polarized.
Aromatic substances, composed of a series of 'Lego-like’ benzene rings, produce a diffuse cloud of charge
from the staggered double bonds. This electron cloud acts in a fluid way in response to a polar substance.
When a polar molecule is near, electrons may pool or retreat, creating a polarization within the aromatic
compound. For this reason, asphaltenes have the ability to hydrogen bond as suggested by Speight
(Speight 1980, p.252).

Given the variation in composition, it is surprising and fortunate that surface tension of petroleum
substances varies over a narrow range of 24 -38 x10° N m* (Speight 1980, p.89). Given the aromatic
nature of asphalt, the estimate of 35 x10™ N m" based on a phenyl ring edge protruding from the surface
(Zisman 1977), is a reasonable number. Thus, the surface tension of asphalt is too low to be wet by water
(y=71.69 x10° N m'), but is just low enough to wet starch (y = 39 x10° N m* ) and its gel constituents
(amylose, y = 37 x10™ N m" and amylopectin, y = 35 10 N m") (Shaftin 1975). It is interesting to note
the excellent adhesion of the waxes tested, which were not highly dependent on the pressure applied. The
low surface tension of waxes easily explains this observation (y = 25 x10° N m) (Speight 1980).

The particular arrangement of adhesives, where the dampproofing adheres a starch paste, was not found
in the literature. Testing using this adhesive system demonstrated that low impact energies, due to low
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nozzle-velocities, resulted in inadequate adhesion. This implies that significant force is required to bring
the starch and bitumen surface into intimate contact. In addition, higher nozzle velocities also increase
the density of the aggregate within the paste matrix, allowing the internal friction of the sand to be
exploited.

The stiffness of the corn starch gel complements the adhesive action between the dampproofing and the
starch gel. The result is an effective binder system that is able to hold the aggregate layer in place until
back filling is complete.

2.4.4 Biodegradation

One of the requirements for the termite barrier system is the short persistence of the binder that is used for
application of the barrier sand to the wall. After the excavation is backfilled, it is desirable for the binder
to desist, allowing the sand to regain its self-healing property and to develop its ultimate degree of
permeability.

In addition to meeting the requirement of short persistence, the binder also meets the duty of care that is
necessary when creating any new product or system that will have access to the waste water system and
the ground water ecosystem. The binder is a naturally occurring product; its degradation will pose no
hazards (o the environment. The increase in BOD (Biochemical Oxygen Demand) on influent to waste
water treatment facilities would be slight since the release of degradation byproducts would occur over the
course of weeks and the byproducts themselves are readily degradable.

Starch is a polysaccharide and falls into the broad category of carbohydrates. An assortment of
polysaccharides naturally occur within soil and are a source of metabolites for microorganisms. These
organisms use the organic carbon for energy and convert it into CO,. The CO, is then used by plant-life
to form plant tissue via photosynthesis. Thus, these sugars are an important part of what is known as the
carbon cycle (Alexander 1977, p.113).

The hydrolysis of starch in soil is not rare. Hankin (Hankin et al. 1974) found that the frequency of
amylolytic activity, associated with the degradation of starch, fell between the most frequent process of
protein transformations and the least frequent process of cellulose transformation. Against this reassuring
background, the mechanism of degradation and factors that aid or hinder this process will be discussed.
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The average length of the chains comprising the starch and proportions of amylose to amylopectin would
be thought to affect the rate of degradation. Longer chains would require more time to degrade by virtue
of requiring a larger number of cleaving reactions to depolymerize the starch. Amylopectin is thought to
degrade more slowly since it must rely on various enzymes to cleave the various linkages in its structure.
As previously mentioned, micelle/granule size (the capsules that are constructed from the starch
molecules), chain length, and amylose to amylopectin ratio are characteristics that vary with the source of
starch. Stark and Tetrauit found that some starches are more easily degraded by a given organism than
others. Differences in degradability may exist among different brands of the same type of starch and even
among different batches of the same brand. By testing soluble starch (made from partially hydrolyzed
potato starch), and the starches of potato, corn, rice and arrowroot, they found that soluble starch and rice
starch were more easily degraded, while corn and potato starches were less easily degraded (Stark and
Tetrault 1951).

Degradation Process

The degradation process, known as hydrolysis, is enabled by organisms called enzymes. Enzymes,
produced by bacteria, fungii and many other organism in nature, are proteins that catalyze specific
chemical reactions. Amylolytic enzymes act on the glucose to glucose bonds within the chains of amylose
and amylopectin. The enzymes involved in the degradation process, known generally as
amylosaccharidases, include a-amylase, B-amylase, glucoamylase, and c-glucosidase. a-Amylase is
known as an endo enzyme, which indicates that it randomly attacks the «-1-4 bonds of amylose and
amylopectin. These random attacks create a variety of products including dextrins (short versions on
starch), glucose, maltose (consisting of 2 glucose units), and maltotriose (consisting of 3 glucose units).
B-Amylase also attacks the a-1-4 bonds but, since it is an exo enzyme, does so more systematically,
starting from one end of the chain and cleaving every second bond, making maltose the only by-product
formed. Glucoamylase acts in a similar fashion to f-amylase but instead cleaves off singular units of
glucose. Some glucoamylases are also able to cleave the 1-6 bonds that occur at the branch points of
amylopectin. a-Glucosidase, an exo enzyme, acts on the a-1-4 bonds of the dextrins, maltose and
maltotriose reducing them to glucose. Ultimately, glucose is the end product resulting from this
enzymatic activity (Alexander 1977, pp.189-190).



Table 7 is a non-exhaustive list of organisms that produce amylosaccharidases.

IMicroorganism

Enzymes produced

Bacillus'
Pseudomonas’
Clostridium'

Thermoanaerobacter
Thermotoga
Pyrococcus

Others

Aeromonas’', Bacteriodes?,
Chromobacterium’, Cerynebacterium?,
Cytophaga’, Eikenella®, Flavobacterium',
Fusobacterium?, Gardinerella®, Gemella®,
Lactobacillus®, Microccocus’,
Streptobacillus®, Streptococcus’, Vibrio*

Actinomycetes
Streptomyces
Thermoactinomyces
Others

pora’, Nocardia®

easts
Saccharomyces
Endomycopsis, Candida

Rhizopus

| Trichoderma

| Fusarium

lothers

| Fomes', Polyporus®

Note:

1 - species common in surface and tap watsr. May become invoived via this route. (Horsnel 1996a)

a-, p-amylase; a-glucosidase, and others
a-, B-amylase, isoamylase

a-, f-amylase; a-glucosidase, CGTase,
glucoamylase

a-glucosidase
a-, p-glucoamylase
a-amylase; a-glucosidase

a-, p-amylase; a-glucosidase isoamylase
a-, p-amylase

a-amylase; isoamylase
glucoamylase, a-glucosidase

a-, f-amylase; glucoamylase
a-, p-amylase; glucoamylase
a-, p-amylase; glucoamylase
a-glucosidase

T Varietes known (o be able fo be isolated from soi (Horsnell 1996a)

Table 7 - Partial listing of organisms that produce enzymes that degrade starch. (Ramesh et al.

19984). ‘(Alexander 1977, p.189), *(Horsnell 1996a)

As seen from Table 7, many organisms produce one or more of the enzymes that participate in the
degradation of starch, making starch paste significantly susceptible to biodegradation. Among the
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organisms that hydrolyze starch are yeasts, fungi, and bacteria. The optimal environment is unique for
each organism and metabolites may be converted in various ways. Organic carbon, in the form of glucose
or other sugars, can be converted into CO,, enzymes, organic acids or cell mass (Vogt and Staffeldt 1975).
Glucose produced by the hydrolysis of the starch paste can go on to degrade further if it is not washed
away. The glucose molecule is small enough and water soluble enough to be directly used as a source of
carbon by microorganims. It is in the degradation or utilization of glucose that a host of end products may
be formed, including a number of organic acids, depending upon the environmental conditions.

Vogt and Staffeldt (Vogt and Staffeldt 1975) studied naturally occurring fungi and bacteria indigenous to
two different soils. They found that a variety of Bacillus spp. was the most effective organism in
degrading starch, out-ranking the starch-consuming fungi species and many other bacteria present in the
soils. The majority, 86%, of carbon was converted to CO, while little carbon went to the production of
cell mass, enzymes, and organic acids. It should be noted that, in Vogt's study, the environment was the

same for each scil sample.

In addition to the effect of the degrading species on the end-products formed, Greenwood (Greenwood
1968) noted that the amount of oxygen and nutrients available to the bacteria is also a significant factor in
determining the end-products formed, regardless of soil type. Under aerobic conditions, glucose was
metabolized into CO, and cell mass. Under anaerobic conditions, the end-products consisted of larger
amounts of volatile fatty acids and lesser amounts of cell mass. The fatty acids produced include acetic
acid and butyric acid. The odour of these acids can, at best, be described as undesirable. Alexander
(Alexander 1977, p.143) adds methane and hydrogen gas to the list of products formed by anaerobic

degradation.

Variab ng rate of tion

Having established how degradation occurs, it is also necessary to consider the rate of degradation. A
general idea of this rate may be inferred from the work of Cheshire (Cheshire et al. 1969) who found
practically no trace remaining of the starch in a soil sample after 84 days of incubation at 20°C. The loss
of starch was determined by the use of C'* to label starch added to the soil. Afer 84 days, the relative
proportion of sugars in the soil returned to their original levels. Cheshire (Cheshire et al. 1969) added an
amorphous (gelled) 0.5% solution of wheat starch to a soil sample and after incubating the sample for 28
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days at 20°C, found that the soil was able to re-establish the relative proportion of several sugars to their
original values. After 84 days, 60-80% of the starch was liberated as CO,. The rate found is not a fixed

and certain value; it is dependent upon many variables.

There are ways of increasing the rate of degradation of the paste mixture. One option is to enhance the
environment for the growth of organisms. The other possibility is to select organisms that prefer to use
the paste mixture as a substrate.

In improving the environment for the organisms, some practical concerns limit possibilities. Organism
growth is predominantly a function of temperature, pH, availability of water, oxygen (for aerobic
organisms), substrate, and nutrients (Alexander 1977, p. 21). It should be noted that cost and feasibility
may limit the amount of control that can be exerted on the underground environment.

Temperature

Increased temperature increases the rate of growth. Temperatures of 30°C to 35°C, which would
significantly increase the rate of degradation, would be impractical to maintain in soil to a depth of 2m. It
may be helpful, though, to slow the cooling of the soil by increasing its thermal lag. This could be
accomplished by horizontally insulating the soil around the house. Seepage of ground water toward the
drainage layer, however, could subvert the effectiveness of this insulation. A study of the variation of soil
temperature with depth, in an open field in Ottawa, demonstrated that a range from 8°C to 13°C exists at
a depth of 2m. When the house is initially backfilled, the temperature of the soil near the foundations is
likely to be closer to the average seasonal temperature. There is a considerable lag in the temperature at
2m depth as stated by Hutcheon and Handegord (Hutcheon and Handegord 1989, p.196), who show the
maximum temperature at 2m to occur in November. The lowest temperature at 2m occurred in March. If
the soil temperature at the time of backfilling is significantly warmer than the customary temperature at
2m, the length of time for the temperature to drop to its minimum value would be longer, and the
minimum temperature reached, would be higher. It should be noted, though, that soil temperature is not a
well behaved and easily predicted quantity. Factors such as soil type, ground cover, weather patterns, soil
draining ability, level of the ground water table, and amount of heat flow from the abutting basement wail,
have a large impact on the thermal climate that the soil will experience.
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Seil pH

While the pH of soil is difficult to change en masse, the paste mixture can easily be made to have an
optimal pH for bacterial growth. Any difference between the pH of the paste and the surrounding soil
would be neutralized at the interface of soil/paste contact, but water held in the gel structure, would likely
hold with it the hydronium or hydroxyl ions, maintaining the pH of the paste for a longer period. Over
time, the pH would approach that of the soil; the initial paste pH may exist long enough to enhance initial
bacterial growth. For this reason, correcting the pH of the paste is a reasonable measure provided the cost
is not prohibitive.

Soil Moisture

The natural presence of moisture in the soil is beneficial since water is necessary to sustain bacteria and
other organisms (Alexander 1977, p. 21). An excess of moisture though, will decrease the soil's ability to
transfer gases, since voids hold air more effectively than water. Cyclic wetting and drying could then
increase the rate of degradation by introducing oxygen into the soil matrix during the drying phase.
Greenwood (Greenwood 1968) rationalized that this increase in the rate of degradation could be due to
interparticle movements that occur as a result of drying and rewetting; these movements allow the bacteria
access to regions inaccessible prior to drying. The process of drying and rewetting can be likened to the
opening and closing of a door within the soil structure. This increased rate of degradation was verified by
Sorensen (Serensen 1974). Serensen studied glucose degradation in soils using C* labelled glucose and
found soil samples liberated more CO, if air dried and rewetted every 30 days than similar samples kept

continuously moist.

Oxygen Supply

As mentioned above, partial drying enhances gas transfer within the pores of the soil. This transfer is
beneficial in increasing the rate of the decomposition process. The influence of the rate of oxygen supply
was noted by Clark (Clark 1968). He demonstrated that an increase in flow rate increases the rate of
decomposition of wheat straw. Further, for the same amount of oxygen provided to the soil during a given
time period, oxygen provided at a higher concentration significantly enhanced the rate of decomposition.
This indicates that the concentration of oxygen provided to the soil has a greater effect than the flow rate



provided. However, for similar oxygen concentrations, increased flow rate does increase the rate of
decomposition.

In addition to organisms’' other needs, several nutrients are essential for their proliferation. The specific
needs depend upon the particular organism considered. Examples of requirements for two bacteria are
shown in Table 8, adapted from Alexander (Alexander 1977, p.118).

Pseudomonas sp. Bacillus subtillis
Energy source Glucose Glucose
Carbon source Glucose Glucose
Minerals NH,C! NH.CI
K;HPO, K,HPO,
MgSoO, KH,PO,
FeSO, MgSO,
CacCl, Na,SO,
FeSO,
MnSO,
CacCl,
Growth factors - Glutamic Acid
Cysteine

Table 8 - Nutrient requirements for two common bacteria

The listing of nutrients above can be seen to vary depending on the organism; some of the factors they
share in common though, are the availability of K*, PO,Z, $0,%, NH,", Ca®* and Fe?* ions to the
organism. Clark (Clark 1968) reported that glucose was degraded at a maximum rate if the C:S ratio
(carbon to sulphur ratio) was 900 or less.

Serenson (Serenson 1974) also found that the addition of unlabelled glucose during the degradation
process increased the release of labelled CO,. This was termed the priming effect by Clark (Clark 1968).

In a2 more general sense, it is the soil environment that affects the rate of degradation. This environment

necessarily encompasses all of the above issues. The soil environment is shaped by its history. The range

of available organisms that will compete for the substrate have, no doubt, been influenced by factors such

as previous land use. This general consideration of the influence of soil environment on the degradation

process was considered by Hankin (Hankin et al. 1974). Hankin's study investigated the ability of several
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soils from Connecticut to create degradative enzymes. The influence of past and present use on the
percentage of active enzymes was examined and it was found that amylolytic enzymes were significantly
affected by these differences in land use. The percentage of bacteria that produce amylolytic enzymes
ranged from 5% in a tidal marsh soil to 60% in a cultivated soil. These figures are average values taken
from the various soil samples tested. A ranking of seven soils in order of increasing enzymatic activity
was determined as follows: tidal marsh, orchard, forest, forest litter, pasture, swamp, and cultivated soils.
Under another classification system used by Hankin, slightly acid, well-drained soils of the limestone
uplands had the highest numbers of desired bacteria while the worst soils were the poorly-drained, saline
soils of the tidal marshes. While there is a great deal of scatter in their data, tidal marshes and orchards
both showed fewer desired bacteria. Based on these observations as well as the beneficial effect of cyclic
wetting and drying, the starch paste binder should degrade easily. Its presence amid a drainage layer,
which by its nature is well-drained and subjected to cyclic wetting and drying, should facilitate the
degradation of the starch.

This flushing activity that occurs in the drainage layer would have other beneficial effects. Water soluble
sugars produced as intermediates in the degradation process would be flushed from the sand matrix as
well as undesirable fatty acids. Also, the drainage layer is quite porous, which enhances the level of
aeration. The availability of oxygen allows a more complete aerobic degradation of the starch, thereby
reducing the amounts of undesirable fatty acids produced.

Selection of Organisms

Another way of increasing the rate of degradation is to select organisms that prefer to use the paste
mixture as a substrate. Gary Horsnell (Horsnell 1996b), a microbiologist with the Ontario Ministry of the
Environment, suggested that it is possible through successive isolation, to separate a colony from within a
species of organisms that has superior performance to other colonies. This superior colony is then diluted
and the best colony is again isolated. In this manner, it is possible to isolate a specialized, yet still
naturally occurring organism that is most ideally suited to its environment. In addition, if the selection
process is performed on a spore forming organism, it might be possible to cause the bacteria to sporulate
and then collect the spores. Spores are more hearty than the parent bacteria and can be stored in a dry
state where they remain inactive. These spores could then be dispersed in water and applied to the
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installed barrier. Upon encountering a moist, nutrient and food rich environment, the spores would
germinate and produce colonies to degrade the starch binder.

This process could have a number of key benefits. The most successful organism could be used to degrade
the starch quickly. It might also be possible to select an organism that has a limited tendency to produce
undesirable organic acids. As this termite protection technology may find use in other countries, this
selection process could also be used to develop organisms reared from native soil flora and adapted to
regionally specific conditions, which would pose few concerns related to the introduction of
non-indigenous organisms (bringing unknown results).

Summary

Some attention has been given to the formation of butanoic acid ( also known by the trivial name of
butyric acid) during the degradation of starch and cellulose. Butanoic acid is a rather foul smelling
organic acid and has been targeted as reducing indoor air quality. This acid can be among many organic
acids produced during degradation, but the final by-products of degradation are dependent on the species
of organisms present. To focus on one possible end-product, would border on an over-simplification of
the degradation process. As it applies to this thesis, the end products produced by the degradation process
are unlikely to enter the house. Butyric acid is not water soluble, which would prevent it from being
transported through capillary water in the concrete, and into the house. Also, there is a high probability
that many of the degradation by-products would be flushed into the weeping tile around the house. While
butyric acid is not water soluble, it, as well as other organic acids, would be soluble in the damp-proofing
material. As noted above, it is unlikely that the presence of the acids in the dampproofing would affect
indoor air quality. Also, the organic acids, produced by the degradation of starch, naturally occur within
soil and, to date, the occurence of organic acids in the soil has not been connected to indoor air quality
problems. Thus, the production of organic acids in the process of binder degradation is not considered to
pose a hazard to the indoor air.
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3 LABORATORY INVESTIGATIONS

This chapter will describe the investigations done using the sand and paste barrier system. The topics

covered include:

1. Preparation of specimens and the method of placement of the material.
2. Permeability of the sand and the sand/paste system.

3. Rate of drying.

4. Rate of biodegradation.

5. Strength and strength loss of the system with time.

6. Half-size model of the barrier system.

7. Impact testing.

3.1 Termite Barrier Properties

The termite barrier properties of the sand used in these experiments was investigated by Myles (Myles
1994b) and shown to be effective.

3.2 Application/Placement of Samples

3.2.1 Method of Preparation

Tables listing all the wax and corn starch mixtures tried in the course of development can be found in
Appendices A and B, respectively. The most successful binder consisted of 20% by mass purified food
powder corn starch and 80% tap water. In later work, the tap water was substituted with a nutrient broth.
These nutrients were provided to enhance the ability of microorganisms to degrade the starch paste. The
composition of this broth is based on the proportions of a Basal synthetic medium. Basal synthetic
medium is used for investigating a bacteria’s ability to use a particular carbon source (Collins, Lyne, and
Grange 1995). In this case, the carbon source is the starch paste binder. Similar ratios of P:K:Mg were
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maintained per litre of water and the details of proportions are found in Table 9. Calcium carbonate, 4%
by mass, was also added to the paste to provide a source of calcium for Bacillus spp..

~ | Mass
1.26¢g
1.13g

0.10g
1000 mi
pH (adjusted with HCI -Muriatic Acid) ~6

Table 9 - Composition of nutrient broth used.

Initially, the aim was to maintain the same concentration of nutrients in solution. However, the suggested
proportion of starch to be added to this broth is 0.2%. As the binder is comprised of 20% starch, perhaps
up to 100 times the concentration of nutrients could have been present in the solution for the starch

binder.

To make the paste, the starch, calcium carbonate, and nutrient broth were weighed out and combined, and
then heated while stirring until gelatinization was complete. The paste was either mixed immediately
with the sand or left to cool and later mixed with the sand. While it appeared that fresh paste gave the
mixture better tack, the usual practice was to make the paste a day before testing. This routine was

adopted for reasons of convenience and to ensure conservative results.

3.2.2 Method of Placement

All trial samples were shot into place using a gun designed to roughly simulate a wet-mix shotcrete
machine. The gun, pictured in Figure 7, was powered by compressed air supplied within the lab. The
material was fed into the machine by hand. The air supply that provides compressed air to the Building
Science laboratory, where testing was done, normally operates at 586 kPa (85 psi) and at a maximum of
827 kPa (120 psi). The maximum flow rate that can be supplied is 4.1 m*/min (68.4 Vsec or 145 cfm). It
should be noted that this air supply is not dedicated to one laboratory. As a result, the maximum flow rate
was not always available due to simultaneous use of the air supply elsewhere in the building, which
sometimes reduced the available pressure at the gun during shooting.
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Figure 7 - Picture of the gun used in testing.

3.2.3 Density as placed

The density of material was measured ‘as-placed’. The test was done in the evening when the available
compressed air capacity was at a maximum. The sand paste was shot into a 4 litre container that had been
coated with a solvent based asphalt solution used for dampproofing. The mass of the barrier material
placed was determined and divided by the measured volume of the container. The density was found to be

1730 kg/m’® (g1).

In comparing the density of cylindrical specimens prepared for the strength tests, the density of the shot
material was lower. The cylinders were compacted in three layers, each layer being rodded 25 times; the
density of the cylinders ranged from 1840 kg/m? to 2050 kg/m?.

It is thought that a continuous stream of material shot at a higher nozzle pressure would compact the
barrier material more densely. Thus, the deficiencies of the delivery method are considered to be the
cause of the lower density of the shot material in comparison to the rodded specimens.



3.3 Engineering Properties
3.3.1 Pemmeability

3.3.1.1 Method

Permeability tests were conducted on both the termite sand itself, as well as the sand/paste mixture. A
variation on the constant head test was used to measure the soil permeability. The testing equipment used
in these tests in shown in Figure 8. This equipment was used instead of more standard equipment because
it was desirable to test the permeability of the sand 'as placed’. The equipment used allowed the
sand/paste mixture to be shot directly into position, providing a more accurate evaluation of the material's
permeability as-placed. Secondly, the purpose of these investigations was to evaluate relative changes in
permeability more than to measure the sand's absolute permeability.

Hoat
valve | + Pump
, / % |-g
I e Diffuser\‘
I Sand ;&;\%

from water supply  Bose @)

Base b)

Figure 8 - Schematic of permeability test setup.

Two variations of the tests were done. In the first type, pictured in Figure 8 a), the base consisted of a
large opening screen (18 mm x 44 mm across the vertices of the diamond shaped opening), covered with a

20 mm thick layer of selected 19 mm gravel and topped with a 20 mm thick layer of 10 mm clear washed
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gravel. The second type of test, pictured in Figure 8 b), used a layer of fibreglass mesh (1 mm x 2 mm
openings) as a base covering the large opening screen. In both cases, the sand or sand paste mixture was
then placed over the prepared base.

The permeability tests were started by initiating the water supply lines to the testing column with the aid
of a small pump. Care was taken to ensure that the initial flow of water was gentle to avoid disturbing the
top layer of the test material. The column was then filled to the height that would be used in the tests and
time allowed for the flow to stabilize. This stabilization time varied depending on the height of the water
column and the flow rate. The flow was considered to be stabilized when the height fluctuations in the
column of water followed the fluctuations occurring in the reservoir.

The thickness of the test layer of material was then measured and recorded. Before measuring the flow
rate, the height of the column of water over the material was measured. The flow rate was then measured
by diverting the draining water into a graduated cylinder while measuring the filling time with a stop
watch. After measuring the flow rate, the height of the column of water was again measured and the
average value was used for calculations. Several sets of measurements would be made to help alleviate

variations in measurement due to reaction time.

Two tests were performed on the termite sand itself; one used the first set-up, and the other used the
second set-up. For the barrier material, which consisted of the sand and the corn starch paste (made with
tap water), the change in permeability over time was also investigated for two cases.

The first test on the barrier material studied the effect of silt sized particles on the permeability of the
system. Initially, silt sized particles were mixed into the column of water over the sand/paste material
while water was flowing through the test set-up. These particles were allowed to settle and then the
permeability was measured. The process of incorporating the silt included two additions of 75g followed
by additions of 200g and 150g of silt. Finally, silt was added to form a uniform layer, 19 mm thick, over
the sand and again the permeability was measured. The water was stopped and the silt layer allowed to
dry. A long term test was then performed to determine if progressive clogging of the sand would occur
due to the presence of the silt. Water flow was provided continuously, with the exception of breaks in the
siphon supplying the water, over the course of a week.

The second study of change in permeability with time considered the effect of biodegradation on
permeability. The paste binder was shot into place over the base as shown in Figure 8 b). It was allowed
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to degrade and the permeability of the mixture was measured periodically. Once the permeability seemed
to plateau, the column was carefully removed from the screen and transferred to a base constructed in the
same manner as shown in Figure 8 a). This was done in order to compare the difference in head-loss
between the two systems.

3.3.1.2 Results

Results for the two tests on the sand alone can be found in Table 10. As a comparison, Hazen's
relationship (Craig 1992) can be used to approximate the permeability of sands with the equation:

k=10"2-D3% (m/sec) 3],

where k is the permeability constant and D, for the sand was 1.14 mm.

} . | Set-up as in Figure a) | Predicted by Eq. 3|
Permeability of | 3.0 mm/sec 13 mm/sec

Table 10 - Permeability of termite sand for each test set-up.

Change in Permeability vs. Mass of Silt|

4 Permeability of Sand with silt
£ Predicted decrease due to silt

Hydraulic Conductivity, k
[mm/sec)
N

ksand/paste=3.2 mm/sec |
k $it=0.009 mm/sec

)]
Mass of Sit Added

Figure 9 - Plot of the change in permeability with addition of silt.
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The results of the test studying the effect of silt on the filter's permeability over time are summarized in
Figure 10. In the first tests, shown in Figure 9, the silt initially added did not cover the surface of the
sand uniformly. This is demonstrated in the results where the measured change in permeability was much
less than the predicted change. The hydraulic conductivity of the silt was calculated based on the change
in permeability of the system from the state of the sand/paste mixture alone to the state of the 19 mm layer
of silt covering the sand/paste mixture. The prediction of change in permeability for the system found in
Figure 9, which includes the sand/paste mixture and the layer of silt, was based on the value of hydraulic
conductivity determined for the silt.

Figure 10 demonstrates the change in permeability with time due to the effect of silt. The test was
performed to determine if the sand would clog over time. After a week of testing with nearly continuous
flow, no noticeable decrease in permeability was noticed. There was significant variability in the results
shown in Figure 10. This is due to unevenness occurring in the layer of silt. If there was a break in the
siphon providing the water supply, due to release of dissolved gases in the water, the water supply would
need to be re-initiated, inevitably disturbing the layer of silt. As seen from Figure 10, differences in the
depth of this relatively thin layer of silt had a significant impact on the permeability of the system. If such
fluctuation is used to view the results, it is apparent that the permeability of the system remained basically
unchanged after a week of testing.

Change in Permeability with Time}

19 mm Layer of Sitt Covering Bamer Sand

005

ettt L A L L L L L X N

004 |-

4 Measured Permeability
- - Initial Permeability Measured

Hydraulic Conductivity, k
[mm/sec)

001 1 1 L
0 2 4 8 8
(days]
Time

Figure 10 - Plot of the change in permeability over time - effect due to siit.



In the second set of tests, the change in permeability was measured over a longer period of time and the
results are shown in Figure 11. The increase in the permeability of the system as the binder left the pores
of the sand was to be expected. It is worrisome to note that the permeability remained low after a
significant amount of time had passed.

Change in Permeability with Time

Increass Due to Biodegradation

/ Set-up as in Figure 8 b)

—a
Fungal growth
a- a

*Set-up as in Figure 8 a)

Hydraulic Conductivity, k

| ksand=S mm/s |

| A ] 't
40 60 80

[days]
Time

Figure 11 - Plot of the change in permeability over time - effect due to biodegradation.

A possible explanation of this effect is the onset of biological clogging. While microorganisms are
degrading the starch, they are also multiplying. The biomass that is created would cover the grains of the
sand. This layer over the grains of sand would prevent the permeability of the system from attaining the
permeability of the virgin sand. This clogging effect has been studied by others and the results due to
clogging produce similar decreases in permeability (Allison 1947). The effect of biological clogging
resulting from a fungal growth is shown in Figure 11. Twenty two days after the test had been started,
fungal growth was observed on the surface of the sand in the column. The permeability measured that day
was lower than observed in the previous measurement. While there was a noticeable decrease in the
permeability, it was not significant. Considering the permeability of the system, despite partial clogging
by microorganisms, it is hopeful to note that the permeability is still sufficient to meet the requirements of
a Class B drainage layer as outlined by CCMC and discussed in Chapter 2.
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The method used for testing could lead to another explanation for the plateauing in permeability that
occurred. For these tests, tap water was used and allowed to drain away; this water was not recycled
through the system. Tap water contains residual chlorine, which is maintained in many municipal water
supplies because it inhibits microbial growth in water mains. Thus, it is thought that the residual free
chlorine present in tap water could have inhibited the growth of the starch hydrolyzing organisms.
Natural runoff and infiltrating water would not have residual chlorine and would be rich in
microorganisms washed in from neighbouring soil. Consequently, the effect of rain water and ground
water washing through the filter would produce better results, possibly increasing the rate of loss of the
binder. Further tests that would study the change in permeability over time using distilled water could
provide insight as to the mechanism responsible for preventing the sand from attaining only 10% to 17%
of its maximum permeability. These tests could be run in an adapted form of the ASTM D1987 - 91
Standard Test Method for Biological Clogging of Geotextile of Soil/Geolextile Filters.

In addition, the density of the material tested was subject to significant variation. Varied densities of the
same material from one test to another would produce differences in the permeabilities measured.

3.3.2 Rate of Drying

3.3.2.1 Method

It may be helpful in future investigations of this barrier system to know its rate of drying. The binder is
significantly stronger when it is dry than it is in its wet state. Fears of sloughing during the backfilling
process could be allayed if the material was dry. To determine the rate of drying of the barrier material,
two tests were done.

In the first test, the barrier material was compacted into a 100 mm deep by 110 mm in diameter. This
container was then left open to the ambient environmental condition in the laboratory, from June through
to November. The temperature was 21°C ( 2°C) while the relative humidity ranged from 30% to 60%
depending on the season.

The second test was performed under more controlled conditions. Barrier material was compacted into
150 mm diameter cylindrical molds. The three molds, 50 mm, 100 mm, and 150 mm deep were placed in
an air-tight plexiglass box. The humidity was regulated within the box using a saturated salt bath of
sodium chloride (Hickman 1970) with a fan circulating air over its surface. The conditions for drying
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were 75% r.h. and 21°C (= 2°C) and were checked using wet and dry-bulb thermocouples situated in
front of the fan's air stream. The temperature was the ambient temperature in the laboratory.

3.3.2.2 Resuits

The results for the first and second tests are summarized in Figures 12 and 13 respectively. In each case,
the data was fit to a power function of the type W=bt* (W, moisture loss; t, time in days) and the
coefficients for each test are found in Table 11. The correlation with the power law fit was good.

Upon inspection of Figure 12, which plots the results for the sample exposed to the laboratory
environment, a slight increase in the rate of drying can be seen. This is likely due to the cooler outdoor

weather that resulted in decreased indoor relative humidity.

Mass Loss Due to Drying

Tral 1 - Exposed to Laboratory Envircnment

— 100mm deep sample
& Power Law BestFit

lmss:m;nhomsq

[days]
Time

Figure 12 - Plot of moisture loss on drying versus time for first test.
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21°C 2°C

21°C $2°C

30% - 60%

75%

0.55

0.67

1.90

8.40

Tabie 11 - Power law coefficients describing results from rate of drying tests
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Figure 13 - Plot of moisture loss on drying versus time for second test.

While an attempt was made in this test to approximate one dimensional flow, cracks due to drying, which
occurred at the top edge of the specimens , created another path for drying to occur. Thus, the results
describe a situation where drying would occur more quickly than in a true one-dimensional case; when the
material is on the wall of a basement, one-dimensional drying would predominate if no cracks formed in
the barrier. If cracks due to drying shrinkage were to form on the basement wall, the rate of drying might

be similar to the test results.
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These test results indicate that the barrier system dries rather slowly. If the system was left without being
backfilled, nearly six weeks would be required for complete drying of a 50 mm layer. In comparison,
more than three months would be required for complete drying of a 100 mm layer of the barrier system.
While solar radiation and wind would increase the rate of drying, further study of the influence of these
factors would be needed to determine the full impact of these effects. The slow drying of the barrier
material has a benefit; the moisture needed for biodegradation can be held by the barrier material for a
considerable length of time. This would ensure the continuation of the degradation process even during
short periods of drought.

3.3.3 Rate of Biodegradation

It is desirable that the binder lose its cohesive strength soon after the basement is backfilled to ensure that
the self healing qualities of the sand are realized. It is reasonable to believe that the binder's strength
would be reduced as it degrades. The purpose of these tests was to obtain an estimate of the rate of
degradation of the starch binder while part of the sand mixture.

These tests were run before the paste was adapted with the addition of nutrients. Thus, the rates are likely
conservative. Also, the seed used to inoculate these specimens was not as aggressive as it could have
been. Of the bacteria present, only 0.54% were capable of hydrolysing starch ( Horsnell 1996a). The
report containing these results can be found in Appendix C.

3.3.3.1 Method

When starch decays, CO, is one of the end-products produced. It has been observed that the amount of
CO, liberated during degradation may be as much as 86% of the orgininal amount of starch by mass (Vogt
and Staffeldt 1975). Thus, the extent of degradation was measured using loss in mass, due to the
off-gassing of CO,, as a surrogate indicator. The mass lost was corrected for change in moisture content
The remaining loss of mass would be due to liberation of CO, or other gases and volatiles. However, CO,
and other gaseous by-products are only some of the final products of degradation as indicated in the
discussion in Chapter 2. The non-volatile degradation products may include polysaccharides and
increased biomass. Comprehensive measurement of degradation activity is beyond the scope of this thesis.
While the rates of degradation obtained are not definitive, they do provide useful estimates of the rate of
degradation.
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The first set of tests consisted of the paste/sand mixture compacted into three 150 mm deep by 150 mm
diameter cylinders having 1 mm mesh screen bottoms. These samples were kept above water in a closed
container at 23°C.

The next series of tests used a set of eight specimens. Each set contained three samples measuring 60
mm x 60 mm x 40 mm deep. These eight specimens were initially made to investigate loss of strength
due to degradation of the starch binder. The testing was to be done in a direct shear testing machine, but
transferring the specimens to the machine caused excessive disturbance to the test samples. The
remaining seven specimens were then kept and used to monitor the rate of degradation. Sample 1 was
kept over water at 16°C while the others were kept over water at 30°C. All specimens were inoculated
with the seed mentioned above, except for sample 7, which was not inoculated.

3.3.3.2 Resuits

The resuits, corrected for change in moisture content, are summarized in Figures 14 and 15. Figure 14
demonstrates the mass lost over time for the three cylinders tested. It is worth noting that the sample
receiving the washes with tap water, sample C, demonstrated increased mass loss. Some of the spikes
occurring in the curve can be casily explained; it takes some time for the wash water to drain from the

ate of Biodegradatio
at 23°C
£
&
: .......... remsegenonesrees PP Zaadd Y2
O 1 Sl S ] o @ .ecaeeasctronntee
=< B axl /| o /L BT e PR LK Rt -
g3 % eGP
[ ]
=
€
8
a -- Sampie A — Sampie C
... Sample B @ Wash through
.20% L 1 |
0 50 0 50 200
(days)
Time
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Figure 14 - Mass loss due to biodegradation over time - first trial.
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sample therefore increasing its moisture content temporarily. However, one curious trend occurs at about
the fiftieth day of the test. At fifty days, the amount of mass lost remained below its former value for a
period longer than the time that would be required to return the sample to its equilibrium moisture
content. One explanation for this observation might be due to an increase in biomass at this stage in the
degradation process. Such an increase would also explain the later increased rate of degradation relative
to the other samples.

Figure 15 plots the mass lost by the second set of tests. Six of the seven specimens were inoculated with a
weak microbial sced. The seventh specimen was not inoculated; thus, only organisms present already in
the sand, the corn starch, or the air were available for starch degradation. This absence of any inoculum
is significant. The first specimen was kept at 16°C while the others were maintained at 30°C. The
difference in temperature did not seem to significantly affect the rate of mass loss contrary to what was
expected. It is significant to note however, that innoculation of the samples was seen to markedly increase
the rate of degradation.

Mass Loss Due to Biodegradation
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Figure 15 - Mass loss due to biodegradation over time - second trial.
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3.34 Strength

One of the key parameters required to ensure the efficacy of the termite barrier is the quick loss of
cohesive strength within the barrier material. A qualitative test was run to determine the length of time
required until a crack could not be supported in the barrier material. In addition, two separate trials
performed on samples incubated at 16°C and 30°C, measured strength loss with time.

3.3.4.1 Method

The qualitative strength test used the same square molds that were used in the biodegradation tests,
measuring 60 mm x 60 mm by 40 mm deep. The test was conducted to determine the length of time
required for the barrier material to lose the strength required to support itself vertically. Barrier material
was compacted into the two end sections and one side removed leaving a vertical face of material. The
sample was kept in a container over water, at ambient laboratory temperature, and washed with 1 mm of
nutrient broth at day 22 and day 40. Bulging of the sides of the sample was observed after 4 days and a
crack developed in the bulge after 7 days of testing. By day 13, a piece of the barrier material had spalled
off from one end and after the washing at day 40, the end sloughed off from the rest of the specimen as
pictured in Figure 16.

Figure 18 - Final state of qualitative strength test at 40 days.



In the quantitative tests, strength was determined by uniaxial compression tests using the machine
pictured in Figure 17. Two sets of specimens were each tested over a period of 60 days. Each specimen
was 50 mm in diameter and 100 mm high.

Figure 17 - Uniaxial compression testing machine used in strength determinations.

The first set of specimens were compacted in a split mold lined with fibreglass mesh having 1 mm by
2mm rectangular openings. Once the specimen was compacted, the mold was opened and the sample
carefully removed. Split bands were slid around the specimen to hold the mesh in place. In this first set
of tests, the paste used was made from tap water. In addition, these samples were inoculated with the mild
inoculum mentioned above. This first set was placed in a sealed container suspended over water and kept
at 30°C until testing.

The second set of samples was made using the paste that had been modified with the addition of the
nutrient broth described above. This second set was wrapped in polyethylene instead of the mesh. The
polyethylene decreased the availability of oxygen to the specimens and maintained a higher moisture
content in the specimens. This second set was also kept over water but was stored at 16°C, to more
closely simulate the temperature that might be expected bencath the ground's surface. The inoculum used
for this set was more potent than the one used for the first set of tests, and is described below.
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The improved inoculum was cultured from a fresh sample of rich soil . The soil was mixed (10% soil by
mass) with nutrient enriched paste and nutrient broth. This mixture was kept at room temperature
(~21°C) for a few days until noticeable activity developed; bubbles, from the evolution of carbon dioxide,
indicated the activity of microorganisms. A portion of this solution was then used and mixed with fresh
nutrient broth and paste, and again incubated. After repeating this process about four times, some of the
sample was taken, diluted with nutrient broth and used as the inoculum for the second set of strength tests.

For both sets, the initial weight of each sample was recorded and specimens were weighed periodically as
testing proceeded. In the second set of tests, the samples were held above the water by a layer of sand.
This strategy lead to difficulties since some of the sand attached itself to the bottoms of the samples
making mass determinations for the samples inaccurate. The samples were tested periodically over the
course of 60 days. After testing, the moisture content of the tested specimen was determined by drying to
constant weight at 110°C.

3.3.4.2 Resuits

Fresh

Prior to the two sets of tests being run, samples of the same dimensions were made and tested as practice
using the testing machine. These trial runs when combined with the fresh samples for the two sets of
trials, demonstrated a relationship between the compacted density of the specimens and the strength
measured. The results are plotted in Figure 18 along with the relationship that was derived from these
results. This relationship was later used to predict the initial strength for the samples tested.

Strength Loss Due to Biodegradation

The results for strength loss tests require interpretation to determine the cohesive strength component,
which is the quantity of interest. The result sought through these tests was the change in cohesive
strength provided by the binder, over time. The uniaxial compressive tests do not measure cohesive
strength directly, but yield the principle stresses defining the failure envelope. Knowing the principie
stresses and the internal angle of friction of the sand, it is possible to determine the cohesive strength
component of the samples tested.
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Strength vs. Density
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Figure 18 - Plot of fresh strength versus initial density.

The compressive strength of the samples consists of two elements, the frictional strength of the sand and
the cohesive strength of the paste. The contribution from each component may be determined using
Mohr's circle. Assuming the frictional strength of the sand remains constant, the cohesive strength may
be determined by drawing a line tangent to the failure envelope. The angle that the tangent line makes

Use of Mohr's Circle to Determine Cohesive Strength
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Figure 19 - Use of Mohr’s circle to determine cohesive strength.
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with the axis is the frictional angle of the sand. The intersection of the tangent line with the axis of zero
compressive stress gives the value of cohesion provided by the paste as pictured in Figure 19.

The frictional angle of the sand was determined by direct shear tests on saturated sand; the results,
summarized in Figure 20, showed the frictional angle to be 39.6°. Using the concept of Mohr's circle, the
cohesive strength of the sand/paste mixture was determined assuming drained conditions. This
assumption is based on the relatively porous nature of the sand mixture, suggesting that pore water
pressures would be easily and quickly dissipated. The strength loss was determined by predicting the
specimen'’s initial strength based on its initial density using the relationship described in Figure 18.

Plot of Shear Stress vs. Vertical Stress
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Figure 20 - Plot of vertical stress versus shear stress for direct shear tests.

Figure 21 shows the percent loss of starch with time for the 11 specimens of the first set tested at 30°C,
while Figure 22 is the similar plot for the 10 specimens in the second set tested at 16°C.

To determine the percentage of starch lost, corrections were required due to the change in moisture
content during the course of the test. The reason for the change in moisture content is likely due to the
test set-up used in the first trial. Toward the end of testing in the first trial, moisture contents drifted
downward from a relatively consistent 13.5% to 12.8% and finally to 7.6% in the last specimen. In the
second set of tests, moisture contents remained consistently above 15%, which is attributable to the
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Mass Change Due to Biodegradation
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Figure 21 - Percent loss of starch over time for the first set.

Mass Change Due to Biodegradation
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Figure 22 - Percent loss of starch over time for the second set.
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samples being wrapped in polyethylene and the container being more air-tight than the one used in the
first trials.

As a way of correcting the mass loss results, the moisture lost was deducted from the total mass lost. The
resulting proportion of starch lost to total mass lost was assumed constant throughout the test and the
intermediate results were scaled by the final proportion. This produced an approximation of the amount
of starch lost at intermediate points during the testing based on overall changes in mass. The
shortcomings of this approach are twofold. First, the assumption that the ratio of starch loss to water loss
remaining constant seems reasonable but is not absolute. Second, there is doubt regarding the initial
moisture content of the individual specimens. Moisture content samples were taken for each of the mixes
prepared, but as seen in Figure 21, by the mass gain of sample A, which was in a closed system, the
sample taken is not necessarily representative of the initial moisture contents of the individual specimens.
Given these uncertainties, however, the figures do illustrate similar trends.

As mentioned earlier, the specimens in the second trial were initially placed directly on top of loose sand
above water. This led to difficulties since some of the sand used for the base adhered to the bottoms of the
specimens after being placed in the container. To counter this, mesh was placed over the sand to prevent
further complications. As a way of correcting the results of the weight measurements, the weight of the
specimens at the time of the first weighing was used as the initial weight. This is shown in Figure 22 and
causes the recorded losses of starch to be lower than if the correction had not been necessary.

Comparing the two plots, it can be seen that there is greater variation among the specimens in the first set
than in the second set. The increased variation may be attributable to the inoculum used for the first set.
The inoculum had a low population of microorganisms, which decreases the likelihood that all specimens
would be exposed to an aggressive starch hydrolizing strain. The selectively cultivated organisms used to
inoculate the second set of specimens would then account for the relatively more narrow band shown in

Figure 22.

Figures 23 and 24 demonstrate the change in cohesive strength with time for the first and second trials
respectively. Both sets reveal an increase in strength early on in the test. The most likely explanation for
this trend is the retrogradation of the starch. As discussed previously, retrogradation is the increase in
crystallinity of the starch molecules in the gel. This increased crystallinity causes a corresponding
increase in the rigidity of the gel and would explain the observed trend. However, as degradation of the
starch proceeds, strength loss follows. In Figure 24, the delay in strength loss is noticeably extended in
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Change in Strength vs. Time
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Figure 23 - Percent loss of strength over time for the first set. Strength was determined by
uniaxial testing and the cohesive component then determined using Mohr’s circle.
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Figure 24 - Percent loss of strength over time for the second set. Strength was determined
by uniaxial testing and the cohesive component then determined using Mohr’s circle.
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comparison to the length of delay shown by the first trial in Figure 23. The lower temperature is a
reasonable explanation for the slower start shown by the second set. After 50 days though, the second set
had lost strength to the same extent as was shown in the first set.

The seeming increase in strength shown at 60 days in Figure 23 is likely due to the low moisture content
of the final specimen of the set , 7.6%, compared to 12.8% for the specimens tested at 40 days. Drying
could account for the apparent increase in strength.

Figures 25 and 26 compare percent starch lost to percent strength lost. Again, the apparent gain in starch
demonstrated in Figure 25 is attributable to the value of the initial moisture content used. Also, the scatter
demonstrated in Figure 25 may be due to inconsistencies in the environmental conditions for the first set.
The first set was kept in a container that was not as tightly sealed as the container used for the second set.
While a fan was used to circulate the air in the container for the first set, the lack of tightness may have
lead to relative humidities of less than saturation within the container. Thus, depending on the sample's
position relative to the circulating air stream, the sample may not have been in a consistently saturated
environment. This explanation is supported by the low moisture content measured in the final sample of
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Figure 25 - Comparison of loss in starch to loss in strength for the first set.
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the first set as noted above. Unsaturated environmental conditions would tend to dry the specimen, giving

it greater strength.
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Figure 26 - Comparison of loss in starch to loss in strength for the second set.

3.4 Half-size Model

Scale often significantly affects the behaviour of materials. Small samples may be unrepresentative of the
behaviour present in larger specimens. Defects present in a small specimen may be exaggerated by the
effect of flaws. An example of this might be comparing the presence of a knot in a piece of lath board to
the same knot in a plank. The strength of a lath board may be significantly reduced by a knot, while the
same knot in a plank may have minimal impact. Conversely, large flaws are likely absent in smali
specimens. To use a similar comparison, knots are usually not found in toothpicks since the toothpick it
too small to hold a knot. In this last case, the toothpick would be proportionately stronger than the board
from which it was made. For this reason, a large scale test was done.
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3.4.0.1 Method

Figure 27 - Application of the barrier material to the half-size wall.

Two concrete slabs measuring 600 mm square were joined together by dowels and mortar forming a small
wall 1.2 m high. This wall was dampproofed with the solvent based asphalt compound used in the other
tests and trials.

Initially an attempt was made to use a stucco sprayer to apply the sand/paste mixture. The lack of nozzle
pressure and a nozzle opening that was too small, precluded effective use of the device. Therefore, the
barrier was applied using the simulated shot-creting gun mentioned above.

Dampproofing of the wail was done a number of days before the test to ensure that it was dry. The 16 1 of
paste required, was prepared approximately 18 hours prior to testing. Immediately before application of
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the material, the paste and sand were effectively mixed in a paddle-type concrete mixer. Shooting of the
barrier was done in the middle of the day.

3.4.0.2 Results

Figure 27 shows the barrier being shot into place. The application of the barrier proceeded without
problems initially. Once the barrier had been applied in a thick layer, a steel ruler was plunged into the
barrier to measure the depth of material placed. Shooting proceeded and depth checks continued
periodically.

At the point when the barrier material was almost uniformly 100 mm thick, a large section sloughed off
from the middle of the wall. The failure is shown in Figures 28 and 29.

As can be seen in Figure 28, the failure occurred immediately below the point where the ruler had been
used to measure depth. The probing of the ruler may have contributed to the failure by creating localized
stresses in the displaced material. A further reason, and perhaps the more significant one that underlies
the failure, is identified in the close-up photograph in Figure 29. Large glossy areas can be seen in a
number of locations over the failure surface. This gloss is indicative of an adhesion failure at the interface
between the barrier and the dampproofing. As discussed in the adhesion section of Chapter 2, the barrier
system is a type of pressure sensitive adhesive. Since the dampproofing is the component providing the
‘wetting', the paste binder must be brought into intimate contact with the dampproofing. Such intimate
contact can only be practically accomplished with this system if the barrier material has sufficient velocity
when it leaves the nozzle of the gun. It is presumed therefore, that the lack of sufficient air pressure
supplied to the nozzle was the reason for the failure.

In addition to reducing the adhesion at the interface, the reduced pressure in the nozzle, and consequent
low nozzle velocity, would have led to a reduction in the density of the barrier material placed. The
reduced barrier density would result in decreased shear strength within the barrier, which is a relationship
shown in Figure 18. This reduction in barrier strength would place greater reliance on the adhesive
interface since the resistance to sloughing would be provided to a greater proportion by the cohesive
component of the barrier. This is to say, that decreased density reduces the ability of the frictional
resistance to carry the force that resists the tendency to slough; this is known as the active earth pressure
in geomechanics. With a decrease in the frictional strength of the barrier, the active carth pressure must
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be resisted and carried by the cohesive component, which is already poorly connected to the wall.

Figure 28 - Sloughing failure of barrier.

This failure demonstrates the importance of nozzle velocity to the success of the starch binder system.
Nozzle velocity determines the amount of impact force exerted by the barrier particles when they hit the
wall, creating the crucial wetting contact that is needed for adhesion. Nozzle velocity also determines the
density of the barrier and consequently the barrier’s initial strength. The greater the strength in the
barrier material initially, the less reliance it must place on the adhesive interface to provide support.

In addition to increasing the nozzle velocity in the application of the barrier material, it may also be
possible to increase adhesion by increasing the roughness of the interface. If sand particles were
incorporated into the dampproofing, mechanical interlocking could occur at the adhesive interface. The
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dampproofing itself would carry some of the shear of the interface, therefore reducing the total reliance on
intrinsic adhesion to carry the shear. For such an approach to be effective, the dampproofing material
would need to be capable of carrying this shear even when heated due to insolation. The thickness of the
dampproofing layer is one factor affecting its shear strength, thus, a thick coating of dampproofing should
be avoided. If increased nozzle velocity does not adequately resolve the difficulty of adhesion at the
interface, the addition of sand to the dampproofing should be considered. Trials should be done using
various sizes of sand particles to determine the optimal particie size that would create the highest degree
of interlocking while at the same time minimizing the thickness of the dampproofing layer.

Figure 29 - Close-up of the failure surface.

3.5 Adhesion

Subsequent to the failure of the half-size model, a semi-qualitative investigation was done to compare the
adhesion of the barrier material when applied under low nozzle velocities to that applied under high
nozzle velocities
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3.5.1 Method

The test method used sudden impact to create a shearing force between the block and the barrier material.
In this way, both the adhesive interface and the matrix of the barrier material itself were tested
simultaneously. The device used for this purpose consisted of a frame supporting two pulleys. For
testing, the block was attached to a wire rope running over the pulleys. At the other end of the rope, a
hanger was attached for supporting masses. Mass was added to the hanger until the block was balanced,;
the block neither rising nor falling under its own power. The block was then raised until the hanger
rested on the floor. A piece of wood was placed underneath the block to absorb some of the impact. The
height of the block above the wood was measured. Mass was removed from the hanger and the hanger
was then quickly released, allowing the block on the other end of the rope to fall and impact against the
wood. If no failure was noticed, more mass was removed from the hanger, the hanger was brought back
to the floor, and the block again allowed to fall. This sequence was repeated until the barrier material
became detached from the block.

Two concrete blocks were coated with dampproofing on one face and allowed to dry. The first block had
barrier material applied mid-day when the available air supply energy supplied to the laboratory was low.
This resulted in a low density sample of barrier material. The block was tested immediately after shooting
to prevent the influence of any drying cffects and minimize the effects due to retrogradation of the paste.

The second block had the barrier material applied in the evening when the available air supply energy was
relatively higher. This resulted in a more densely placed barrier material that was also tested immediately
following application.

3.5.2 Results

The weights and heights used along with the corresponding work provided to the block immediately prior
to impact are summarized for each block in Table 12.

Energy of
Air Supply

Table 12 - Summary of results from impact tests used to qualitatively compare adhesion.
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The final result of testing for the first block is shown in Figure 30. A picture of the second block after the
second, third, and fourth impacts are shown in Figures 31 through 33.

For comparison of results, work was chosen as the measure of comparison because it represents the energy
of the block immediately prior to impact. Since both blocks impacted upon the same piece of wood, the
energy prior to impact is a reasonable quantity to use to comapare results.

The first specimen, having the barrier material applied when the available air supply energy was lower,
failed on the first impact as shown in Figure 30. In comparison, the second specimen, which had the
barrier material applied when the available air supply energy was higher, showed no signs of damage after
the first impact. The second impact for the second specimen caused a crack to form near the top of the
block and a portion to dislodge from the bottom as shown in Figure 31. The result of the third impact on
this second block, pictured in Figure 32, was an opening of the crack to about 4 mm in width. The fourth
impact finally caused the ultimate failure of the barrier material shown in Figure 33.

Comparing the results of the two blocks, the effect of nozzle velocity or force used to place the barrier
material is obvious. The first sample sustained only one impact at the low energy level. In contrast, the
second specimen was able to sustain the same amount of energy without demonstrating any visible signs
of damage. For the more densely placed specimen, three addtional impacts at a higher energy level were
required to cause a failure in the barrier material.

These observations confirm the hypothesis that this barrier material was acting as a pressure sensitive
adhesive. Thus, if sufficient nozzle velocity is imparted to the barrier material by the shotcreting gun, the
barrier material will be able to create the pressure needed to come into intimate contact with the
dampproofed surface causing adhesion to occur. Also, the density of the barrier material is higher when
increased nozzle pressure is uesd, resulting in an increase in the barrier's in situ strength.

These results also support the hypothesis explaining the failure of the mid-size test. The same half-size
test should have been successful if shooting of the barrier material had occurred when the gun had been
supplied with air of greater energy.
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3.6 Summary

The series of laboratory investigations outlined above provide a number of insights into the behaviour and

properties of the barrier material. A summary of some of these properties is shown in Table 13.
Property

Relationship Type

Constants

™% starch loss -
| (g lost g starch)

y=mx+b

m= 0.84%/day to 0.83%/day
b=4.1% t0-3.7%

% Change in strength

y=mx+b

=-1.64%/day to -1.74%/day
b=15.4% to 2.2%

Rate of Drying

w=bt'

a=0.55 to 0.67
b=1.91t08.4

| Permeability

Barrier material - initial
- material - eventual

sand

k=3.0 mnvsec t0 5.3 mm/sec
=0.13 mm/sec t0 3.2 mmvsec
k=0.35 mmsec i0 0.52 mmsec

Table 13 - Summary of barrier material properties.

The laboratory investigations provide a basic level of verification that the barrier material will perform as
theoretically predicted in Chapter 2. To achieve a greater level of certainty about the feasibility of the
barrier material and the effecacy of shotcreting, a full scale field trial needs to be performed. The next
chapter will discuss the issues that a field test could resolve and outline details for such a test.
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4 PROPOSED DEMONSTRATIONS

Theory suggests that the aggregate barrier system should work well, and the laboratory investigations
support what theory suggests. There are still aspects of the system though that require demonstrations to
prove that the system does indeed work. These demonstrations should occur in two stages. The first stage
would be set of field studies to verify those aspects of the system that were not treated by the laboratory
testing. The second stage would be the implementation of the system on a group of test homes, moving
the system from the prototype stage, and demonstrating the viability of the system.

The field testing should focus on two aspects. First, the effectiveness of the system to act as a termite
barrier should be verified. Secondly, the method of application should be refined. The house trials should
show that the system could form an integral part of a broader basement design approach. Some design
considerations for the implementation will be discussed below. Finally, a comparison of costs for different
approaches is included.

4.1 Field Testing

The field test should demonstrate the following two aspects:

1. the ability of a standard shotcrete machine to efficiently place the barrier material; and,
2. the ability of the barrier system to exclude foraging termites from the basement in both a cracked

and uncracked state.

4.1.1 Methods of Application

Two possible approaches for applying the barrier material need to be evaluated. Each of these approaches
could be demonstrated within the same field trial. The first approach would use the same paste material
as was used in the laboratory investigations; this paste, mixed with the sand, would then be applied using
a dry-mix shotcrete machine. The second approach would create the paste as part of the application
process; a partially uncooked starch slurry, combined with the sand, would be mixed with steam at the
nozzle to complete the cooking of the starch.

For the first approach, preparation of the paste requires some additional planning. If the paste is to be
made on-site, a kettle must be used that has specialized stirring equipment since the paste becomes
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extremely viscous once it reaches the gelatinization temperature. In order to prevent burning, the paste
must be stirred until gelatinization is complete. The cooked paste must then be transferred to a separate
mixer to be incorporated into the termite sand. Once the barrier material is mixed, it would be transferred
to the hopper of the shotcrete machine for application.

If the paste is prepared off-site, difficulties in the transporting and handling of the gelled binder would
occur. The amount of binder required to install the barrier around a 10 m by 10 m by 2m high basement
wall would be about 850 litres or almost 4 oil drums. This could make the installation of the barrier
system undesirably labour intensive.

In the second approach, the gel would be made at the time of application, thereby avoiding some of the
complications posed by the first approach. It is worth noting that this second method for preparing a
starch paste was not found in the literature. The barrier material would be created in a series of steps. To
start, a thin consistency 3% comn starch carrier paste, would be cooked on site. This thin paste could be
pumped to a mixer where the remaining uncooked corn starch, approximately 21.25% by mass of the
carrier, would be added and mixed with the sand. This partially cooked mixture would be fed to the
hopper of the shotcrete machine. At the nozzle, pressurized steam would cook the remaining uncooked
portion of the corn starch to complete the binder. If the layer of slurry coating the sand is thin, and the
temperature of the steam is high, the rate of gelatinization would be increased (Lepoutre and Inoue 1993).
Turbulent mixing within the nozzle should assist in the uniform gelatinization of the paste. The
proportions of the corn starch in each fraction are an adaptation of a TAPPI "carrier type" recipe
(Lepoutre and Inoue 1993).

Should it prove to be successful, this second approach would have a number of advantages over the first
method. The binder could be easily made on-site in the amounts required using more standardized
equipment, i.e. a standard kettle and steam generator. The production of the barrier material would be less
labour intensive since there would be no handling of the binder.

In these application trials, the influence of adding sand to the dampproofing layer should also be studied.
As mentioned earlier, sand incorporated within the dampproofing would increase the roughness of the
dampproofing surface, allowing some mechanical interlocking to occur within the dampproofing/starch
paste interface. This interlocking would enhance the adhesion of the barrier system to the dampproofed
layer. A caution, mentioned above, regarding the addition of sand to the dampproofing should be
reiterated. If sand is added to the dampproofing, the mechanical interlocking will transfer more of the

75



shear force to the dampproofing layer. If the dampproofing layer is too thick, the dampproofing layer
itself may experience a shear failure, particularly if the dampproofing is heated due to insolation.

4.1.2 Termite barrier verification

The termite barrier aspect of the system would also benefit from a demonstration of performance. While
the sand used in the barrier system is known to act as a termite barrier, this ability should be verified when
combined with the binder. Two separate functions should be tested. First, the barrier should demonstrate
its ability to prevent foraging through the interstices of the sand. Second, the ability of the barrier system
to prevent foraging along the sand/wall interface, as well as interfaces between service connections and
the sand, should be verified. A possible test method is outlined below.

The test site should be chosen in an area of known termite activity. Stakes made of white pine could be
located throughout the test area to determine areas of termite activity (Grace 1989). For the tests, a 300
mm wide by 600 mm deep by about 1.7 m long trench should be excavated in an area determined to have
significant termite activity. Testing done in this manner would be similar to the exposure methods used in
Australia for demonstrating the effectiveness of stainless steel mesh as a termite barrier ( Lenz and Runko
1994).

A series of four test panels, measuring 300 mm by 300 mm and 12 mm thick should be made from
decaying ship-lapped white pine. One of the panels could be used to verify the ability of the barrier
system itself to prevent the passage of termites. Two other panels could be used to study the effect of a
gap or crack occurring in the barrier. These two panels could be covered with sheet metal leaving a
vertical 10 mm strip of exposed pine board. This gap in the sheet metal would be offset by a vertical gap
in the barrier material of either 50 mm or 100 mm. The last of these panels could demonstrate the
effectiveness of the barrier system around service connections that penetrate the barrier. Capped pipes of
the size of water and sewage connections could be glued to the pine panels at locations offset from one
side of the panel to the other. The panels should be shot with barrier material to a thickness of 50 mm on
one side and 100 mm on the opposite side, then lowered into the trench. Prior to backfilling the trench, a
layer of kraft paper or cardboard should be placed on each side of the coated panels to further encourage
termite activity. The arrangement of these panels can be seen in Figure 34. Once the backfill has reached
the top of the panels, a 100 mm layer of barrier sand shouid be placed over the trench to ensure the panels
are attacked from the barrier face. A layer of fencing, or other material could then be placed over the sand
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to avoid disturbance due to the digging of dogs as was encountered by Myles (Myles 1994b). Finally, the
backfilling could be completed, filling the trench.

The effectiveness of the barrier sand to protect service connections penetrating the floor slab can also be
demonstrated in this test. Sealed pipes could be pushed into the floor of the testing trench and barrier
sand placed around the pipes. A piece of decaying white pine could be placed around the pipes and then
another layer of barrier sand used to cover the pipe and pine board. This arrangement is also shown in
Figure 34.
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Figure 34 - Arrangement of panels for proposed field test.

After a year of exposure, the test site could be carefully excavated and the various panels visually
inspected for signs of termite attack. Once all monitoring resuits have been obtained, the data should be
carefully examined to ensure consistency with the predicted behaviour. Any difficulties should be
resolved before further development proceeds.
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4.2 House Trials

If the field tests clearly demonstrate the effectiveness of the barrier material, trials on residential housing
should proceed. In this second phase, ease of implementation and the effect on construction sequencing
should be demonstrated.

It may be possible to incorporate exterior insulation into the barrier system. Exterior insulation of the
basement is the preferred approach since it keeps the basement wall warm, reducing the condensation
difficulties encountered with a cold basement wall (Timusk et al 1995).

Other arrangements of exterior insulation may be possible, but attention should be paid to ensuring:

1. The insulation is not short-circuited by seepage of ground water;
2. Foraging at the basement wall is prevented; and,
3. No alternate routes of possible entry by termites into the structure are provided by the

above-ground details.

The first requirement can be satisfied by placing the drainage layer on the outer side of the insulation.
Satisfying the second requirement places a contradictory condition on the system, requiring the barrier
material to be placed next to the basement wall. Finally, the third requirement may be resolved with the
use of appropriate flashing details.

One method of implementing exterior insulation that satisfies all three requirements could involve
sandwiching the insulation between layers of barrier material. The outer layer of barrier material would
act as a drainage layer, while the inner layer would serve as a second line of defence, preventing foraging
along the basement wall in the event of a breach in the outer barrier. The insulation could be installed by
impaling it on anchors adhered to the basement wall.

4.3 Cost

Cost is a significant consideration in the housing industry. Increased building cost is undesirable since it
may decrease the number of sales for builders and decrease affordability for consumers.
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A comparison of some options for providing a drainage layer and termite protection is shown in Table 14.

| Termicide treatments - per application, reapplied every 5 yrs.
I DrainClad - 19 mm mineral fibre insulation

’ Hand backfilling with termite barrier sand - 100 mm layer
| Backfilling whole excavation with termite barrier sand
Proposed Barrier System - 50 mm layer

- 100 mm layer
Note: Estimates based on: 8 10 m by 10 m house with a basement wall 2 m high.

Table 14 - Comparison of costs for various drainage layers and termite protection measures.

4.4 Summary

The field and house demonstrations should verify the effectiveness of the barrier system. In addition, if
the cost of the system were to remain within the estimates given above, its use would certainly make
economic sense in termite prone areas because the added cost would be returned to the owner simply by
avoiding the need for a single treatment of termicide. Refinements made to the application procedure may
help to reduce the cost of installation, thereby further enhancing its appeal as a building system.

These final demonstrations, if successful, will establish the effectiveness and viability of the barrier system
as a solution to the problems posed by termites and water leakage.
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5 CONCLUSIONS & RECOMMENDATIONS

5.1 Conclusions

Two significant problems that can afflict basements are water leakage and termite infestations. Both of
these problems can be costly to repair or control after the basement has been built. A solution to these
problems that uses a uniform sand and corn starch binder to provide a combination drainage layer and
termite barrier has been outlined in this thesis. This barrier material can be easily installed by shotcreting

it into place.

The sand of the barrier material has a demonstrated ability to exclude the foraging of termites. The sand
also possesses desirable characteristics as a filter and drainage layer. The sand would successfully protect
all but the very finest of silty or dispersive clay soils and has a draining ability sufficient to prevent
hydrostatic pressure from existing against the foundation wall.

Under laboratory conditions, the binder for the barrier material used to aid in the installation of the
barrier, was found to lose over 80% of its initial strength within 2 months. Also, the products of
degradation were seen to be innocuous and normally occurring within the soil. This binder is a form of
pressure sensitive adhesive and was successful in adhering the barrier material to the wall if the material
was applied with sufficient force.

While further demonstrations are needed to develop this prototype into an implementable product, the
system appears (0 be a feasible preventative measure to combat the problems of basement water leakage
and termite infestation.

5.2 Recommendations for further research

1. A full size test should be done to demonstrate the effectiveness of this barrier system and uncover
and resolve any unforeseen difficulties.

2. Further permeability studies on the barrier material are advisable. These studies should
investigate the influences that the following factors have on permeability of the barrier material:

density of the placed material; biodegradation with time using tap water and distilled water; and,

80



exposure to various distributions of silt sizes and the potential for clogging. Also, side inflow
tests should be done on the material to determine compliance with CCMC requirements.

Further refinement to the composition of the binder material may enhance the rate of degradation
in the soil environment. Investigations into the culturing of bacteria best suited to degrading the
binder should be done and a method developed for selecting native organisms for use in each
region where the barrier material may be used.

Further study should address the delivery or application of the material. Adaptations to existing
shotcrete technology may ease the use of the system. Methods that are able to produce the binder
continuously on site should receive particular attention.

The impact on site work scheduling should be investigated to optimize the sequencing of
processes in house construction.

Investigations into the response of the barrier material to imposed strains, due to settlement of
the basement wall, should be done. These studies should examine the change in porosity in
response to the applied strain and the strain required to allow passage of termites through the

interstices of the sand. This study should also be done for different stages of starch degradation.
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Appendix A

Listing of wax binders investigated



Trials for various wax formulations.

Batch ID JFormulation Adhesion Tack Consistency |Drying/Setting
rate
727B |20% wax 2281 excellent none - all sand moderate-slow
rebounded
728 |20 % wax 5714 " high shot in clumps |good
729A |20% wax 5818 " good
729B |19% wax 2281 " more sand
7.5% wax 5714 adhered
720C  ]20% wax 5714 " high good good |
720D ]20% wax 2281 " as before [
804 |5% wax 2281 " good low rebound |good
15% wax 5818
Notes:

Percentages are per mass of barrier material mixed. If two waxes were used in a trial they were weighed

out and mixed in a molted state prior to combining with the sand.
Wax 2281 - Crude scale wax.
Wax 5714 - High molecular weight microcrystalline wax.

Wax 5818 - Moderate molecular weight microcrystalline wax.

All waxes were provided courtesy of [GI International Waxes Ltd
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Appendix B

Listing of Corn Starch Binders Investigated



possible gel-forming substance.

Consistency

Trials for various com starch formulations. Hydroxylethyicellulose is included in these trials as a

Drying/Setting |
rate

2% HEC

poor

thick/plastic

4% KOH
20 % CS

thick

2%KOH
20% CS

30% CS

fin 40g tepid water
added to 30g
water at 100°C

marginal*

moderate

20% CS with
cellulose

fgood*

good

10% HEC with
cellulose

marginal*

thick gel

slow

10% Found'n
Coat
(by mass sand)

good

poor - thin

sloppy

still drying days
after
application

30% CS
50% hot water
50% tepid water

poor

Flow

As in 705B with
mineral spirits
added

7058

worse than in

30% CS
1.5% borax

Pgood

moderate

moderate

10% CS
1% borax
3.6% HEC
1.5% NacCl

only if block
prepasted

poor

15% CS
1% borax
3.4% HEC
0.5% NaCl

poor

30% CS
1.5% borax
0.75% NaCl
0.1% soap

13% CS
8.7% borax

moderate

B-1
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‘ Formulation  [Adhesion

Tack

Consistency

Drying/Setting
rate

I712A

30% CS
0.75% CaCl,

Wsluny

229 10% KOH
added t0 200 g

slurry

poor

me gel

added 1.59 borax

moderate

moderate

ltnick

30% CS
10% CaCl,
1.5% borax

slurry

30% CS
5% CaCl,
10% MgCl,

slurry

20% CS
4% KOH
4% borax

rubbery mass

15% CS
1% KOH

Gravy-like sol

15% CS
1% KOH
borax

rubbery mass

16% CS
2% KOH
2% borax

slurry

158

20% CS
3% KOH
2% borax

Moderate

High rebound

moderate

19A

20% CS
2.8% KOH
3.2% borax

curdled

198

20% CS
5.6% KOH

moderate

low rebound

moderate

20A

25% CS

goodt

little rebound
best if in thin
layers

208

JLarge batch of A |goodt

21A

20% CS
20% flour

[moderatet

poor -
sloughed after
10 min.
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Batch ID |[Formulation Adhesion Tack Consistency }Drying/Setting
rate
25A 20% CS [moderatet forms slurry - [better than in
5.8% NaCl salt must be ]720A
added after
Igelling
25B-1 as above
25B-2 |as above mixed {moderatet better than B-1
with 2% gypsum
26A 20% CS moderatet good fgoad skins quickly -
1% HCI better than
720A
26B asin A moderate
7.2% NaCl
26C asin A thick moderate
7.2% NaCl
5% gypsum
26D asinA best - dry to
4% borax sprayed touchin 1 hr.
over surface
727A 15% pregel fnone only when dry
|Duragei™
03A 20% CS Imoderatet
1% HCI
038 asin A moderatet good
8% borax sprayed
03C 20% CS moderatet turns to
5.6% KOH rubbery mass
6% borax
03D asinC moderatet
no barax
Notes:
Percentages are per mass of liquid.

*. applied to bare concrete block
t - soap applied to dampproofing layer prior to shooting
For trials with KOH or Duragel no cooking was involved. Also, no cooking was involved in batches
712B, and 712C.
CS - Purified food powder com starch
KOH - Potassium Hydroxide
Borax - Na,B,0,10H,0
CaCl, - Calcium chioride
NaCl - Sodium chloride
MgCl, - Magnesium chloride
flour - bleached white all purpose wheat flour
gypsum - depapered pulverized wall board
HCI - hydrochloric acid
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DETECTION AND CHARACTERIZATION OF STARCH HYDROLYSING BACTERIA IN A
SAND-STARCH PASTE DEVELOPED TO ACT AS A TERMITE BARRIER.

INTRODUCTION:

Many bacteria, which require an organic source of carbon for
growth (heterotrophic), have the ability to produce the enzyme
amylase to hydrolyse starch. Amylase may be excreted from the
cells into the surrounding environment. This provides a
mechanism by which starch may be broken down into glucose
which can be shunted into the cells and utilised as a source
of energy during metabolism. Aerobic, anaerobic and
facultatively anaerobic bacteria are included in this group.
Bacteria capable of starch hydrolysis include species of the
following genera;

* Actinomyces Fusobacterium
Aeromonas Gardinerella
* Bacillus Gemella
Bacteriodes Lactobacillus
* Clostridium * Pseudomonas
* Corynebacterium Streptobacillus
Eikenella * Streptococcus
* Flavobacterium Vibrio
* May be isolated from soil. The remainder are unlikely to

be isolated from soil, although Aeromonas species are
common in surface water and tap water.

In addition, certain fungi are also capable of starch
hydrolysis.

A paste consisting of a mixture of sand, starch and water has
recently been developed at the University of Toronto. 1In
theory, .the paste can be applied to the exterior foundation of
a building. When the excavation is backfilled, bacteria from
the soil should hydrolyse the starch causing the sand to
become permeable to water for good drainage while leaving the
sand in place to provide a barrier against termite invasion.

A sampié of paste, inoculated with soil, was provided to the
Ministry of Environment and Energy, Laboratory Services
Branch, Microbiology Unit for analysis.

PURPOSE:

The analyses were designed to;

1) isolate, from the paste, any heterotrophic bacteria
capable of growing in air and capable of hydrolysing
starch,
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2) characterize and identify those bacterial strains capable
of hydrolysing starch.

METHODS :

An agar culture medium (mHPC agar), typically used to recover
heterotrophic bacteria from water, was modified. The pH
indicator (bromocresol purple) was removed and soluble starch
was added to the formulation at a 2% concentration.

One gram (gm) of termite barrier paste was aseptically
transferred to a dilution blank containing 99 millilitres (mL)
of sterile, phosphate buffered water. The suspension was
homogenized and dilutions of the suspension were prepared by
transferring 11 mL of the original suspension to a second 99
ml dilution blank, 11 mL from the second to a third dilution
blank and so on. Amounts of 0.1 ml from the original
suspension and each dilution were spread over the surface of
separate culture plates containing the starch culture medium
in an attempt to obtain bacterial growth which would produce
in the range of 20 - 100 colonies on a plate from one of the
dilutions. Duplicate culture plates were prepared from the
original suspension and each dilution.

One set of culture plates was incubated aerobically at 35°C.
The second set of culture plates was incubated aerobically at
room temperature (approximately 22°C). The culture plates were
observed each day over a period of two weeks for evidence of
clear zones (starch hydrolysis) around or under any of the
bacterial colonies growing on an otherwise opaque agar.

A small amount of growth from each unique bacterial colony
type showing evidence of starch hydrolysis was transferred
aseptically to a fresh starch agar plate and streaked for
purity. Pure cultures of bacteria capable of starch hydrolysis
were subjected to a series of tests to characterize and
identify the bacterial strains. :

In addition, the count of bacteria capable of starch
hydrolysis and the total bacterial count per gram of paste
were calculated.

RESULTS:

Table 1 presents the bacterial counts per gram of material.
Table 2 presents the reactions of bacteria capable of starch
hydrolysis and their identification.

Very few bacteria capable of starch hydrolysis were detected
using the method outlined. Recovery rates of bacteria capable
of starch hydrolysis ranged from 0.027% (room temperature) to
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0.54% (35°C) of the total aerobic, heterotrophic bacterial
population per gram. Hydrolysis occurred more rapidly at the
higher temperature. Only 3 colony types were observed among
those capable of starch hydrolysis. Further tests revealed
that these were representative of only 2 genera. Not all
strains hydrolysed starch equally well. Starch hydrolysis
ranged from moderate to good based upon the size of the zone
of clearing around the colonies and the degree of clearing.

All of the bacterial strains isolated, which were capable of
starch hydrolysis, were gram positive. Due to limitations in
the ability of the laboratory to identify gram positive
bacteria, the bacteria capable of starch hydrolysis could only
be identified to genus level. Four bacterial strains were
tested.  Three of the four strains were species of the genus
Bacillus. Two of these strains appeared to be identical
species (type 1). Both strains had moderate but slightly
different abilities to hydrolyse starch. The third strain was
a different a species of Bacillus (type 2) but it was the best
starch hydrolyser. It revealed a very clear, 2-3 millimetre
zone of hydrolysis in the agar around its colonies. The fourth
bacterial strain could only be categorized as being a member
of a group of bacteria referred to as the Actinomycetes. It
had moderate ability to hydrolyse starch.

All of these strains could hydrolyse starch at both
temperatures but all ‘performed better at 35°C. Hydrolysis took
about 3 days at 35C but took 7 days or longer at room
temperature. Those bacteria with moderate ability to hydrolyse
starch revealed hydrolysis only directly underneath the
growth. They did not produce a zone of hydrolysis extending
sideways into the agar beyond the colonies.

CONCLUSIONS:

Analysis revealed that bacteria capable of starch hydrolysis
were present in the termite barrier paste submitted. The low
recovery rate and limited variation in the types of bacteria
which were isolated and able to hydrolyse starch, may have
occurred for the following reasons. Recovery was limited by
the aerobic incubation technique to only aerobic and
facultatively anaerobic bacteria. Strictly anaerobic bacteria
(e.g. Clostridium species) could not grow. The type of soil
used for inoculation of the paste may have had a limited
initial bacterial population. The age of the material used to

inoculate the paste and bacterial competition for nutrients
may have caused a reduction in the variation of bacterial
types. Bacteria capable of producing spores (e.g. Bacillus
spp. and Actinomycetes) would have had a better chance to
survive any adverse conditions.

Many starch hydrolysing fungi and bacteria, including
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Actinomycetes and Bacillus species (spp.), may be found in
soils throughout the world. Therefore, it would appear
feasible that the system will work in a field trial situation
regardless of location. However, soils will likely differ in
the 1levels and types of starch hydrolysing bacteria.
Therefore, to ensure that sufficient levels of bacteria able
to hydrolyse starch are present and that hydrolysis will
proceed at some optimum rate, it may be prudent to consider
spraying a light mist of a liquid suspension containing spores
of bacteria, known to hydrolyse starch effectively, over the
paste before the soil is backfilled into the trench around the

foundation.



Bacterial Counts Per Gram of Termite Barrier Paste

35°c, 3 days

Room Temperature (22°C), 7 days

ﬁ

Starch +

370000 | 2000 | 370,000 | 100

Starch +

Table 2: Characterization of Bacteria Capable of Starch Hydrolysis Isolated from
Termite Barrier Paste
? Colony Cell . Tentative
|_Isolate | Type Gram | Cell Shape | Arrangement | Spores Motile Identification
| 1 Round + Rod Chains Yes Yes Bacillus spp. (type 1)
| Rough
!
6“ 2 Round + Rod Chains Yes Yes Bacillus spp. (type 1)
‘ Rough
I 3 Round + Rod Chains Yes Yes Bacillus spp. (type 2)
| Smooth
| 4 Round + Filamentous Not No Actinomycete
! Hard ' Seen
" Compact

Ability to hydrolyse starch;

Bacillus species, type 1 - moderate
Bacillus species, type 2 - good
Actinomycete - moderate






