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Abstract 

This thesis emphasizes the application of theory of functional partial dif- 

ferential equations to the dynasnics of a dass of diffusive population model. IR 

particular, we are interested in studying the dynamïcs of diffusive Nicholson's 

b lof ies  equation. We fkst establish two versions of attractivity of center mani- 

folds for the functional partial differential equations in an abstract setting. The 

attractivity theorems play a crucial role in studying Hopf bifurcation as we will 

also investigate. Neumann boundary problems and Dirichlet boundary problems 

are considered separately. In the case of Neumann boundary conditions, our global 

attractivity results are established by using the method of a lower-upper solution 

pair for functional partial difEerentia3 equation. W e  also discuss oscillating criteria 

of the solutions followed by an investigation of periodic solutions bifurcating fkom 

a positive equilibrium. Moreover, using the center manifold reduction method and 

a lengthy caldation by hand, we provide a sficient condition of stability of the 

bifurcated periodk solutions. Some ntunerical observations are also made before 

the end of our study of Neumann bou~daxy problems. We then switch our atten- 

tion to Dirichlet boundary problems. Before the study of global attractivity of the 

steady states, we give a necessasy and sufncient condition for the existence and 

uniqueness of a positive steady state. Under varieties of parametnc ranges, global 

attractivity of the zero solution and the positive steady state are stuclied respec- 

tively. On account of non-monotonicity, we develop a new approach in order to 

study the global attractivity of positive steady states and a better criterion is ob- 

tained along this approach than that through the theory of monotone semifiow. In 

the &al chapter, we propose a numerical method to compute the positive steady 

state of the diffusive Nicholson's blowflies equation for a one dimensional space 

mriable. This method gets through the numerical difficulties in that there are 



two solutions of the stationary equation. FinaUy, we present a brief description of 

proving the existence of the pure imaginary eigenvalues of the charocteristic equa- 

tion corresponding to the linearized functional partial differential equation about 

the positive steady state. Necessary conditions of such existence are dso obtahed. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Delayed differentid equations sometimes are also c d e d  differential dinerence 

equations or differential equations with deviating arguments. Howevei nowadays, 

these later two titles are seldom used; instead, the terminoIogy of "functional differ- 

erttial equations" is mostly utilized. Functiond differential equations are classined 

as of retarded: neutral, or advance type. Such a classification, first introduced 

by Myshkis (1951) in his monograph, lay the foundation for a generd theory of 

linear delayed systems. The simplest general delayed differential equations can be 

written as the form 

where f is a function satisfjring certain properties. 

Although the fkst speufic example of such a general class arose in the eigh- 

teenth century, and kom that t h e ,  many particular equations of such types have 

appeared in the mathematical fiterature, arising fiom geometric, physical, engi- 

neering, economic and biological sources. The 6 r s t  papers treating general classes 

of linear funetional differential equation are due to Schmidt (19 11) and Polossuchin 

(19 10). Schmidt considers solutions which with their derivatives are O( It 1') as 
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Itl + 00 and h d  a conneetion between these types of solutions and the charac- 

teristic equation of the lineas funetional differential equation. A general class of 

nonlineur delayed dinerentid equation is nrst discussed by Volterra (1928, 1931) 

who formulates a generic nonlinear differential equation incorporating the past 

states of the system su as to study predator-prey modeis and viscwlasticity- He 

also c l d e s  some properties of the solutions by using an energy method. How- 

ever, these papers are hast completely ignored and therefore do not have much 

immediate impact on the subject. 

Beginning with the late 19407s, the theory of delayed differentid equations 

develops rapidly and many papers have been published from that time to the 

present. Besides Myshkis' book, there also appear several monographs during 

the development of the theory of funetional differential equations (for example, 

B e h a n  and Cooke (1963), El'sgol'ts and Norkin (1973), Hale (1977): Hale and 

Verduyn Lunel (1993), Diekmann, van GiIs, Verduyn Lunel and Walther (1995), 

from which many valuable papers in this field can be found). 

As the development of the theory of functional (ordinary) differential equa- 

tions progresses, there develops an increasing interes t in studying parabolic equa- 

tions with time delays, because a time delay can naturally be introduced into 

reaction-diffusion equations. The first example is proposed by Wông (1963) who 

considers an automaticdy controlled furnace and studies the stability of the equi- 

li brium by Lyapunov's direct method. 

equations have also been arising fiom 

Some systems of delayed partial differential 

m o d e h g  genetic repression, climate, cou- 
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pled oscillators, viscoelastic materials, and stmetured populations. For details, 

we refer to Mahaffy and Pao (1984), Busaberg and Mahaffy (1985)' Hale (1994), 

Hetzer (1995), Dyson, VilleUa-Bressan, and Webb (1996), Rey and Mackey (1993): 

and references t herein. 

Because of the theory of semigroups (se Pazy (1983) for details), the fun- 
* 

damental theory of fundional partial differential equations has been set up in a 

semigroup setting by the pioneer work of Travis and Webb (1974, 1976, 1978). 

In their approach, functional partial differential equations are treated as abstract 

functional differential equations. Thus, some of the results in functional differen- 

tia! equations can be technicdy transplanteci into the theory of functional partial 

differential equations. From the point of view of dynamics, however, this approach 

is not all encompassing. On account of the utilization of semigroups, some of the 

dynamics and geometry of the original problems are lost. An elegant remedy is 

provided by the theory of in£inite dimensional monotone dynamical system. The 

beginnings of that theory appear in Matano (1979), which focuses on semilinear 

differential equations. An important idea of a strongly order preserving s e d o w  is 

introduced in Matano (1984). A paramount contribution in this field is attributed 

to Hirsch (1988 b), who also systematicdy develops the theory of monotone dy- 

namical systems for systems of differential equations (Hirseh (1982, 1985, 1988 a, 

1989, 1990, 1991)). Hirsch's and Matano's ideas axe applied to functional partial 

differential equations by Martin and Smith (1991). Travelling wave solutions of 

functional partial differential equations is also an interesting topic distinguished 
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fiom hctional differential equations. The existence of travelling wave solutions 

has been investigated recently by Zou and W u  (1997) and Wu (1996, chapter 10). 

Wu's monograph describes many fundamental results and methods of functiond 

partial differential equations, as well as provides a comprehensive bibliography 

fkom both mathematical and biological sources. SL-degree is also applied to study 

Hopf bifurcation of funetional paxtial dinerential equations (Krawcewicz, S p d y ,  

and Wu (1994)). 

1.2 MOTIVATION 

As previously mentioned, the monotone method is a friendly and powerfd 

tool in studying dynamics, especidy global dpamics of functional partial differ- 

ential equations. In applications, however, one tends to encounter non-monotonie 

situations. Nicholson7s adult blowfly model proposed by Gurney, Blythe and Nis- 

bet (1980), for instance, is the very description of a dyna.mical system without 

monotonicity. There are also other examples, as will be mentioned later. For the 

adult %y model, some results are obtained by introducing exponential ordering 

(Smith (1995, chapter 6)). Upfortunately, these results are not generalized to the 

dinusive blowfly equation. Therefore, one may ask the question "1s there any new 

approach tadding such non-monotonic dynamical systems of functional partial dif- 

ferential equations?" To answer this question in my thesis, 1 will be interested in 
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studying dynamical systems of fundional partial differential equations as follows 

where r is the delayed t h e ;  6 is a positive constant; x E i2 c Rn; Q is a bounded 

domain with a smooth boundary an, (t, X)  E D = (O, m) x Cl, r = (O, m) x aCl, 

D, [-r, O] x fi; & denotes the exterior normal derivative to dR; and f (z) is a 

nonlinear funetion, usudy with the following hypotheses: 

( 1  f (0) = 0 

(ii) h,,, f (2) = O 

(iii) There exists zo > O, such that j ( ~ )  is monotone increasing for z E [O, zo] and 

decreasing aftemwd. 

This research is also motivated by models without clifnision appearing in several 

areas, including physiology, ecology and optics (See Mackey and Glass (1977), 

Hadeler and Tomiuk (1977), Gumey, Blythe and Nisbet (1980), May (1980), 

Walther (lggl), Lani-Wayda and Walther (1995), and references in Mallet-Paret 

and Nussbaum (1986)). The general form of these models is described in the 

following form: 

ù(t )  = -bu@) + f (u ( t  - r ) ) ,  

5 



where the function f is assumed to s a t i e  certain properties. 

Since the 19707s, these models have been studied extensively by many au- 

thors. Chow (1974) and Hadeler and Torniuk (1977) prove the existence of periodic 

solutions using Browder% fked point theorem. Using the (u(t), zi( t ))  plane, Kaplan 
C 

and Yorke (1 977) show the existence of a slowly oscillating periodic solution whose 

derivative is &O slowly oscillating. They show that on the (u(t) ,  Y (t)) plane there 

exists an asymptotically stable m u l u s  whose boundary consists of a pair of non- 

trivial periodic orbits, and that d the aforementioned slowly oscillating solutions 

tend asymptoticdy to this annulus. Using circulant matrices, Nussbaum (1985) 

shows that equation (1.5) has no periodic solution of period 2 + $. Uniqueness of 

the penodic solution is also investigated by Cao (1996). 

Besides these periodic solutions, numerical studies of Wazewska-Czyzewska 

and Lasota (1976), Mackey and Glas (1977), Glass, Beuter and Larocque (1988), 

and Mackey and an der Heiden (1984) indicate the existence of apparently aperi- 

odic (chaatic) solutions. Theoretical proof of this chantic behavior can be found 

in an der Heiden and Walther (1983) for some classes of f. Walther (1991,1995, 

1996) also shows the existence and smoothness of an invariant manifold of slowly 

oscillating solutions and the 2-dimensional attractor. Chaotic attractors are stud- 

ied by Farmer (1982) through a computation of the spectrum of the Lyapunov 

component. 



The singular perturbation version of (1.5) is 

which is studied by Chow and Green (1985). Th& numerical simulation shows 

how small changes in c and p give rise to chaotic behavior in solutions. For 

this singular perturbation model, Mdet-Paret and Nussbaum (1986) describe the 

asymptotic behavior of the periodic solution as c -t O+ under sorne assumptions 

on f and the global bifurcation by using a continuation method based on degree 

theory. 

Moreover using Brouwer's degree theory, Schmitt ( M g ) ,  and MarteIli, Sehmit t 

and Smith (1980) show the existence of a periodic solution even for hannonicdy 

forced delay equation of (1.5). They c l a b  that "chaosn may be removed through 

extemal forcing. They also show via the Hopf bifurcation theorem that equa- 

tion (1.5) has nontrivial periodic solutions for certain values of the parameters. 

Unfortunately, they cannot determine the stability of such periodic solutions. 

In recent years, global attractivity of the positive equilibrium of a delay 

equation has been studied by Kdenovic, Ladas and Sficas (1989, 1992), Kuang 

(1992), So and Yu (t994), and Kazakostas, Philos and Sficas (1992). Oscillation 

theory of equation (1.5) can dso  be found in Kdenovic, Ladas and Meimaridou 

(1987). Furthemore Mallet-Paret and Sell (1994) have developed a Poincaré- 

Bendxison theorem for monotone cyclic feedback system with delay, and this result 

can be applied to equation (1.5). 

7 



The planar delayed diffierentid equations can be written as 

where U = col(ui,u2) E R2, and F = coZ(fi, f i )  is a map fkom W2 to itself. The 

existence and gIobd bifurcation of periodic solutions to this planar equation have 
C 

also been studied by Baptistini and Taboas (1996). 

Not until the late 1980's did diaisive delay equations get more and more 

attention, since spatial inhomogeneity exists eveqwhere in nature. In population 

dynamics, Hutchinson7s equation (sometimes c d e d  Wright's equation) with di&- 

sim is ofien considered. We should mention here that the Hutchinson's equation 

by using the trdormation x ( t )  = h(l + y(t)). The general form of equation 

(1.8) is 

This equation is simpler than (1.5). It turns out that only a few results can be 

found for the delay equation (1.5) with diffusion. Murakami (1995) and Murabmi  

aad Harnaya (1995) study the global attractivity of the steady state for a difiùsive 
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generahed Wazewska and Lasota's mode1 with Neumann b o u n d q  conditions, 

in w h i h  the nonlinear term is monotone decreasing. Dirichlet boundary con- 

ditions are even more scarcely considered. Some results of global dynamics are 

obtained by Cooke and Huang (1992)' in which the generalized diffusive Hutchin- 

son equation is considered under the assumption of a non-delay term dominating 

the system. Busenberg and Huang (1996) have studied Hopf bifurcation of the 

diffusive Hutchinson equation. More general types of &sive delay equations 

with Dirichiet boundary conditions have &O been investigated by Freitas (199'7). 

But the bifurcation analysis in his paper is restricted to a particulax case, i.e. the 

characteristic equation has nothing to do with the spatial variable. In equation 

(1.2) with assumptions (i)-(iii) on f ,  however, the nonlinear term is not mono- 

tone. This non-monotoniuty may result in some difliculties in the research and 

can also be expected to give rise to some additional phenornena in its dynamics. 

Furthermore, in this equation the characteristic equation of the linearized equa- 

tion about the positive steady state explicitly contaùis the spatial variable. This 

makes the bifurcation analysis considerably more complicated. Therefore in this 

thesis, 1 will make an effort to study the diffusive fimctional dinerential equation 

for the varieties of dynamics without monotonicity. 

1.3 U N  CONTRZBUTION AND ORGANIZATION 

The major contribution of this thesis lies in the following three aspects. 

9 



Firstly, we provide detded proofs of two versions of attractivities of center 

manifold. Although the idea cornes fiom the corresponding results in differential 

equations or funetional differentid equations, our proofs are original and nontriv- 

id. 

Secondly, for Fleurnaan boundary value problems of the dinusive Nicholson's 

bhv-flies equation, we obtain the existence of stable periodic solutions via Hopf 

bifurcation analysis. This is also new, since up to now, even the stability analysis 

of Hopf bifurcation for the non-difisive Nicholson's blowfties equation has not 

been carried out yet. 

Lastly, for Dirichlet boundary value problems of the diffusive Nicholson's 

bhd.ies equation, we develop a new approach to deal with the global attractiv- 

ities of the positive steady state in the case of non-monotonicity. Our idea is 

creative. This approach should be applicable to other Dirichlet boundary value 

problems of funetional partial Merential equations. Therefore, we expect that 

our contribution will have impact on the studies of dynamics of functional partial 

differential equations. 

The thesis is organized as follows. In chapter 2 , we will first introduce some 

basic results in functional partial differential equations whose proofs can be found 

elsewhere. Later, we will present two versions of attractivity of center manifolds 

with detailed proofs. The attractivity of the center manifold is crucial in studying 

the stability of periodic solutions bifurcating fkom positive steady states (Hopf 

bifurcation). From chapter 3 on, we will choose f(z) = Pse-a= in order to carry 
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out every proof and calculation, where P and a are constants. Puotice that with- 

out diffusion, equation (1.2) together with such dioice of f is exactly m o d e h g  

the population of adult blowfiies. Although we use this specsc f throughout 

our proofs, we should point out that, without any difficulties, some of the proofs 

are also applicable to a generd f satisfying (i)-(iii), as we will remark at  the 
C 

end of each chapter. Chapter 3 wi l l  focus on Neumann boundary problems. We 

&st present global attractivities of equiiibria followed by a discussion of oscilla- 

tion criteria and Hopf bifurcation. Criteria for stability of the bifurcated periodic 

solutions are &O given through a lengthy caldation. In chapter 4, we wiII con- 

sider Dirichlet boundaty problems. A new approach is introduced in deallig with 

the non-monotonie dynamical system of functiond partial differential equations. 

Global attractivities of positive steady state will be proved via tbis approach. The 

results are better than those derived fiom the theory of monotone semifiow. This 

new approach should be applicable to other Dirichlet boundary problems. Chap- 

ter 5 contains some numerical simulations of positive steady states. We also briefly 

describe the ideas of proving the existence of pure imaginary eigenvalues of the 

eigenvalue problems. Necessary conditions are &O provided. Findy at the end 

of the thesis, we attach an appendix where Nicholson's blowfiies experiments and 

models are briefly described, together with a co~edion of d the mathematical re- 

sults in the studies of dynamics of the Nicholson's blowflies equation. A problem 

is also addressed for M h e r  research in this field. 



1.4 DISCUSSION 

Throughout this thesis, we have çtudied the dynamiw of the diffusive Nichol- 

son's blowflies equations. In this thesis, one can see, that dynamics of Neumann 

boundary value problems with large diffusion rate is very similar to those of the 

# 

corresponding non-diausive model. This can be understood in the following way. 

By making a change of variables, we get a unit space region. Shen the 

diffusion rate (denoted by d )  is proportional to 5, where A is the real size of the 

space area. Therefore, when A is s m d ,  the diffusion d is large. Since Nicholson's 

data corne from his laboratory experiments, the real size of the space area c w o t  

be large. The dinusion rate therefore cannot be srnd. In this case, we are not 

strange that our results agree with Nicholson's data. When the real size of the 

space area is very large, however, the spatial patterns of our resuks are no longer 

simple, as indicates in our numerical simulation. In this case, Nicholson's data 

diçagree with out equation. Nonetheless, our studies of the dinusive Nicholson's 

blowflies equation shodd be stU important in the ecological problerns, since the 

difisive term and the tirne delay term in o u -  equation are quite representative. 

Besides Neumann boundary value problems, we also study Dirichlet bound- 

ary value problems. Our results on the global attractivities of the positive steady 

state for Dirichlet boundary d u e  problems are stronger than those for Neumann 

boundary value problems. However, unlike Neumann boundary value problems, 

Hopf bifurcation analysis for Dirichlet boundary value problems is far from corn- 



plete. This is due to the la& information of the positive steady state. Another 

ciifference between the results of Dirichlet boundary d u e  pmblems and those of 

Neumann boundary value problems is that the results of the former problems are 

related to the &st eigenvalue of Laplace operator -A. 

Ecologically, the diffusive Nicholson's blofies equation may be refsed to 

as "educational" rather than upracticaln. The sigdicance of our studies lies in 

the fact that this simple equation provides a process for gaining insight , expressing 

ideas, and eventually extending to more complex diffusion models. 

In ecology, spatial dispersion is important, because only when populations 

of orgaaisms are considered in both time and space can the ecological situation be 

understood. Experimental investigation of the phenornenon of animal dispersion 

develops e s t  from insects. Since the famous experiments of Dobzhansky and 

Wright (1943,1947) on the release of Drosophila fies, a &ety of excellent research 

has been conducted. Nowadays, people realize that a mode1 of dispersion must 

consider the forces operating between population individuals, and it cannot be 

limited to the simple random walk (simple diffusion). One method of accounting 

for these forces is to indude an advection in the diffusion equation (Shigesada 

and Teramoto (1979)). An advection-di&ision equation models are expected to 

be able to explain some particular behavior of animals, such as insect swarming 

and fish schooling. Therefore, it is naturd to require mathematicians to study 

advection-difision equations with time delay. 



CHAPTER II 

ATTRACTIVITIES OF CENTER MANIFOLDS 

2 INTRODUCTION 

Center manûold theory, which plays an important role in understanding the 

dynamics of nonlinear systems near an equilibrium, has been studied by many 

authors. We refer to Cari. (1981), Diekmann and van Gils (1991), Hale (1985), 

Kelley (1967) and Lin, So and Wu (1992) and references therein for details of the 

sub ject . 

The existence of center manifolds of funetional partial differential equations 

has been set up by Lin, So and Wu(1992). Smoothness also has been obtained by 

So, W u  and Yang (1998). In this chapter, we focus on the discussion of attractivity 

of center manifolds for functiond partial differentid equations. 

Attractivity of center madolds, plays a vital role in studying the stability 

of Hopf bifurcation, and so is of importance. In ordïnary aerential equations, 

there are two versions of attractivities of center-unstable manifolds, see Chow and 

Hale (1982, p.320-p.321). In Hale and Verduyn Lunel (1993, p.316), one version 

of attractivity of center-unstable manifolds for functional differential equations of 

retarded or neutral type, is stated with an outlined proof. Unfortunately, in this 
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book, the set-up of equation (10.2.14) is far from easy to foUow (and rnight have 

some errors), and also the fixed point mappkig in equation (10.2.19) need to be 

rnodified by putting a negative sign in front of the integation and the matrix B,. 

The objective of this chapter is to establish taro versions of attractivities of 

center manifolds for reaction-difnision equations with time delay. 

The rest of this chap ter is organized as follows. In Section 2.2, we r e c d  some 

basic results with some notations. The attractivity theorems and their proofs are 

in Section 2.3. 

In this section, we will recd some results on a fîmctional partial differentiai 

equation in the form 

where, u : W +- X is a continuous function and X is a Banach space over the reds 

R ,th a noml 1; u, is the usual notation for the element of C := C([-r, O]; X) 

dehed by u,(B) = u ( r f 9 )  for -r 5 û 5 O; C is the Banach space of a l l  continuous 

X-valued fùnctions defined on [-r, O], equipped with the supremum n o m  ( 1. 

Throughout this chapter, we need to pick up the following assumptions upon 

occasion. 



(Al) r > O is a fbced constant. 

(A2) {T(t))t>o - is a strongly continuous semigroup on X sati-g IT(f) 1 5 eut 

(t > 0 )  for some constant w E B. 

(A3) T( t )  : X + X is compact for t > 0. 

(A4) g E C(C; X )  , g(0)  = O and 

19Io.i := SUP 
Id49 - d+)I < m. 

91iECI Q#* 14 - (II 

(A5) L : C * X is a bounded linear operator. 

We denote the space of all bounded hear  operators on X equipped with the 

operator n o m  1 1 by C ( X ;  X ) .  For any q > O, we will also use BCYR; X ) ,  defined 

as 

endowed with the weighted supremum nom: 

Clearly, BCq(B; X) together with the norm 1 1, is a Banach space. The existence 

and uniqueness of fimctional partial differentid equations have been investigated 

by many authors. Theorems 2.1 and 2.2 following are due to Travis and Webb 

(1974, 1978). 

THEOREM 2.1. Suppose that (Al) and (A2) are satisfied, and 
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(Ag) F : C -P X is Lipschitz continuow, i e .  there ezists a constant K > O such 

that 

Then for every 4 E C ,  then ezists o unique continuous mapping u : [-r, W) + X ,  
? 

sometimes also denoted by u(q5), satisfying 

If we fvrther assume (A3), 

then for each fized t > r ,  the mapping 4 E C * ut(+) E C is compact. 

Fimlly, if in addition to ( A l ) ,  (A2) and (A6), we also assume that 

(A?) F : C -t X i s  continaously differentiable and there exists a constant M > O 

such that the Fréchet deriuative DF satisfies 

then for each 4 E C satisfying 

where AT : D(AT) c X + X denotes the infinitesimal genemtor of {T(t)) t>o,  - 

the solution u(4) : [O, oc) -t X of (2.9)-(2.4) is continuovsly differentiable and 
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satisfies the abstmct fanctional differential equation 

In the literature, solutions of the integral equation (2.3) are usually referred 

to as mild solutions of the differential equation (2.6). According to Fitagibbon 

(1978) and Maxtin and Smith (1990), every mild solution satisfies (2.6) for t > r,  

if {T(t))t>o - is andytic. 

Let us now consider the linearized equation of (2.3)-(2.4) as follows: 

2 

~ ( t )  = T(t)d(O) + / T(t - s)L(u,)  ds, t > O 
O 

Correspondingly, one defines the solution semifiow W(t )  : C + C by W(t)4 = 

ut (&), for t 2 O and 4 E C, where u (t) is the solution of (2.7)-(2.8). Moreover for 

each X E C, one can define a linear operator A(X) : D(AT) -+ X by 

The equation 

is c d e d  the characteristic equation of (2.6). The nontrivial solution pair (A, x) 

of (2.9), which means x # O in D(AT), is c d e d  an eigen-pair, where X E @ 

18 



is c d e d  a chasacteristic value of (2.6). Information on the characteristic d u e  

makes it possible to decompose the space C by appiying some operator algebra. 

More speUficdy; one has : 

THEOREM 2.2. {W(t))t>o - is a strongly continuous semigmup of bounded 

h e u r  operators on C with injkitesimal generator A : D(A) c C -t C given by 

(A#)(@) = #(@), -r 5 B 5 O, 

D(A) = (6 E C : # E C, 4(O) E D(Ar) ,  &(O) = A d @ )  + A&)- 

Moreouet, then  ezist three lineur subspaces U,N and S of C such that C = U 8 

JV S and 

(i) dim(U) + dim(N) < 00; 

(ii) for Q E U 8 JV, W(t)$ c m  be eztended to al2 of t E B; 

(iii) W ( t ) U  c U, WW(t)N c N for al1 t E W and W(t)S c S for al2 t 2 0; and 

(iv) there e z i s t  constants Y+,?- > O such thot for any O < E < min(?+,?-), 

then ezists a constant K(c) > O such that 

Basicdy, a variation-of-constants formula is a fundamental tool for studying 

a dynamical system with extemal forces or with a nonlinear perturbation. In order 

to present a variation-of-constants formula for (2.3) due to Memory (1991), one 
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needs to extend C to the metnc space 

E = {J : [-r, O] + X : there existsa E [or, O] such that J is continuous on [-Y, a), 

lim &) E X exists if a # -r and 8 is continuous on [a, O] if a # O) 
s+a- 

equipped with the supremum metric. Assume that L : C + X can be extended 

to a continuous linear operator 2 : C + X on C? Using the same argument as 

that of Travis and Webb (1978), one can show that the existence and uniqueness 

of solutions to (2.3)-(2.4) on the extended space CI. Moreover, for each & E ê, the 

unique solution u(&), when restncted on [O, oo) , is continuous. Furthemore, one 

can also defhe by W(t)  the solution semifiow of the iinearized system (2.7)-(2.8) 

for the extended space. We then have W(t) : C + CI for t 2 O and w(t)(C) C C 

for t > r. The projections P,y, Pu and Ps of C onto N ,  U and S reçpectively, 

c m  be applied to funetions 8 E ?(cf. Memory(l991)). 

Now 3 is denoted again by L. Let Xo : [-r,O] -t L ( X ; X )  be defined by 

where O (resp. 1) denotes the zero (resp. identity) operator on X.  For x E X, one 

deno tes 

where Xoz E is defined by (Xoz)(B) = Xo(8)z for @ E [-r, O]. After the prepa- 

ration above, one has a variation-of-constants formula as foIlows. 



(i) For any continuovs function h : [O, m) + X, the solution of 

can l e  ezpressed as 

(ii) Assume (A4). Then the solution of the initial-value problem 

sat isfies 

for al1 t 3 0. 

(iii) For x E X, 

w(t)~,Uz, w(~)x,Nz E C for t E R, 
(2.14) 

w(t)x,Sx E C for t 2 r. 

(k) For any O < E < min{y+, y-) ,  there exists K(o) > O such that for al2 x E X, 



one has 

for t 5 0; 

for t € W; (2. la) 

The existence and invariance of the center manifold were established in Lk, So 

and Wu (1992). A simplified proof of such existence and invariance was given in 

So, W u  and Yang (1998) by appiying the technique of the contraction on a Banach 

space. Followed is a brief description. 

Let r] and E be su& that O < E < 7 <  mir^(^+,-^-) - E and let BC"(B; X) 

be the contracted Banach space over X as defined in the beginning. Let us define 

a linear operator K: on BCYR; X) by 

where u(d)(-) is the solution of (2.3)-(2.4) with 4 E 2. 

According to (2.15), one obtains that K: : BC"(R;X) + BC"(W;X) is a bomded 

linear operator with 

From now on, let us consider system (2.1) with assumptions (Al), (A2), 
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(A3), (A4) holding. Define ATg on BC"(B; X) by 

One can show that Ng maps BC"R;X) into itself and thus the mapping R : 

THEOREM 2.4. If O < c < 1) < min{-y+, y-) - E and 

then for every 4 E PNC, the jized point equation 

has a unique solution IL*($) in BCT(W; X )  and the center manifold of (2.1) is 

defined by  Mg := { ( u * @ ) ) ~  : 4 E P d )  c C ,  which satisjies Me  following 

propert ies: 

(i) The rnappirag Q, E P d  I-+ u'(4) E BC'(B;X) is Lipschitz continuow. 

(C) u'(q5) is the unique solution in BC'(R;X) of (2.1) with Pnruo = 4 

(iii) The centre manifold Mg is invariant under the flow defined by (2.1), that is, 

if u is a solution of (2.1) with uo E Mg then u, E Mg for al1 r E W .  
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2.3 THEOREMS OF ATTRACTIVITY AND THEXR PROOFS 

h this section, we suppose that the unstable subspace of C is trivial, Le. 

U = (O). This implies C = N @ S according to Theorem 2.2. R e d  that for any 

solution u(t )  of (2.1) we have by Theorem 2.3 

We first make the assumption that lglOli can be as s m d  as we like so that 

there exists a constant A satisfying: 

Our first version of the attractivity of center manifolds is motivated by Hale and 

Verduyn Lunel (1993), (see dso Chow and Hale (1982)). 



THEOREM 3.1. Let assumptions (Ag) - (A10) be satisfied. Let 

Mg := ((u'(4))o : 4 E P d }  CC 

be the center manifold of (24 ,  when u* W defied in Theorem 2.4. Then there 

ezists a mapping M* : C 

0 t h ~  words, if (6, $) E WS(q5), then ut@ + $) E wS(z(t, 4)), where, 

ut(*, 6 + $) is the unique sohtion of (2.1) with initial condition uo(-)  = 

6 + $ E C and ~ ( t )  = z( t ,  4 )  is the solution of the following epuation 

~ ( t )  = w(t)d + W(t - s ) ~ f g ( ~ ~  ( ~ ( s ) ) )  ds, t E B, (3-4) 

w k e  uG(z(s)) = ( u * ( z ( ~ ) ) ~  E Mg is the solution of (2.1) on the center 

manifold, 



* 
PROOF. First of dl, we wil l  show that there exists a mapping M* satieing: 

(P 1) M* (4, u ~ * ( @ ) )  = O for 4 E N.  

(PZ) M'(#, $) is u d o d y  Lipschitz continuous with respect to the second corn- 

ponent and the Lipschitz constant is bounded by A, that is, 

Let 3 ( A )  be the set of all mappings from C to N with the properties of (P 1) 

and (P2). Define a metric on 3 by 

Then with this metric, F(A)  is a complete space. Now, for any M E 3 ( A )  and 

4 E N ,  $ E S, let $M = 4 + M(#, $). W e  denote by us( - ,  & + $, M) the solution 
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where, 

Now for s 2 t 2 0, we denote 

Then one can define a mapping T as follows: 

(TM)(+,  $1 

It is sufficient to show that mapping T has a h e d  point. For this purpose, we 

first note that since US(-, 6M + $, M )  satisfies (3.6) and ug(z(t,  4)) is the solution 

of (2.1) on the center manifold, we have 



for any t 2 O. Moreover TM(#, ugS (4 ) )  = O by (3.7). Hence, mapping TM satisfies 

(P 1) - Using sunilar calculations as above, one has 

~ I M  = 4 + M(4: $1) and &M = 4 + M(4> $2)- 

Next we WU show that TM satisfies (P2). After some caldations, using 

(3.7) and the estimate (3.9) one arrives at 

So by (AlO), TM satisfies (P2). 

Now one c m  show that T : 3 ( A )  + 3(h) is a contraction. In fact by (3.7) 



one has 

00 

- < K(r)lslo,i / e's[lu% $ML + tl ,  MI) - ~ ; ~ ( z ( s ,  4)) ~ ~ F ( M I ,  ~ 2 )  (3.10) 
O 

ushg (3.6), (3.8), and the ~rokwall inequality, one has 

Substituting (3.8) and (3.11) into (3.10) one obtains 

so that 

and hence T is a contraction by (Ag). Now by the fked point theorem of a 

contraction mapping, there exists M* E F(A) such that 

For such a fixed point M* and any (4, tl>) E C, one need to show (3.5) holds. Using 
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(3.7) and (3.12) one has 

This implies 

Claim: For s > t 2 0, 

Proof: According to (3-6), &(-, &(t, zy us, M*) + us(-: + éy M*) ,  M * )  sat- 
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+ US(-, &(t, Z, us, M*) + US(*, + +, W ) ,  M * ) )  dr. 

Again by (3.6) and properties of semigroup W(t )  one bas 

Substituting (3.17) into (3.16) and carryïng out a few calculations, we obtain 

On the other hand, since uf ( - ,  &,p + M*) is the solution of (3.6), it satisfies 

Combining (3.18) and (3.19) and noticing that z(s-t, z ( t ,  4 ) )  = z(s,  $), one obtains 



where Kf (e) := K (e) lglo,i (A + 1) and y+ ( E )  := y+ - E. Hence by applying Gron- 

wd's  inequality, we obtain (3.15). This completes the proof of the daim. 

ushg (3.4), (3.14), (3.15), and (3.13) one has 

This shows that 

.(t, 4)  + M'(+Y 4) ,  US(*, &M. + $7 M.))  + us(-? $M. + $3 M * )  

is the solution of (2.1) for t 2 O. By uniqueness of the solution of (3.1), one has 

u:(*, 6 ~ -  f d ,  ML) = u:(-, 6 + II>) 



We still define C$ as in (P3). Then 6 = H(q5, +). Moreover, by (3.5), 

( 4 4  41, &-, 6 f $1) = ~ ( t ,  #) + M* (z( t ,  41, us(*: 6 + II,) 

= uf( - ,  6 + $). 

Hence, (3.3) is also pnwed to be tme. 

So far, we have shown (i) of the theorem. Further, the estimates of (ü) in 

the theorem immediately follow fiom (3.8), (3.8) and the properties (P 1) and (P2) 

about mapping M*. This completes the proof. 

Next, we will present another version of attractivity of the center miLnif01d- 

Basically, this part is excerpted fkom So, Wu: and Yang (1998). Before invoking 

the proof of this version, we also need some assumptions as follows. Choose 7 

such that E < 7) < y+ - 2e. This r)  satisfies the requirements of Theorem 2.4. By 

taking 1g10,i sufEiciently s m d ,  we can assume that there elcist constants A,B > O 

s a t i w g  



where 

LEMMA 3.2. There ezists a continuous mapping 3 : IR+ x C -t S such that 

if ur(4 + $) (4 E N and + E S) is a solution of (2.1), then ut(# + $) exists for 

al1 t 2 0 and 

PROOF. It suffices to show that there exist continuous 3 : IRt x C -+ S and 

v : D x C -t N ,  where D := {(r,t) E B$ : 0 < T 5 t), J satisfis (3.21) and such 

that for given 6 E N and J> E S, one has 



and 

for O 5 r 5 t. Indeed, suppose such J and v exist. We wilI show that 

Let 4 = uf (4  + $), and denote 

for O 5 r 5 t ,  we have 

and for O 5 r 5 t 



Using Gronwall's inequality, we have 

This implies, for O 5 s i t ,  

Substituting (3.26) into (3.25), we obtain 



By interchanging the order of integration in the first tenn, we have 

for some constants Kl, Kz > O, where Y$(€) := 7+ - S E  - K(c)lglo,i- Thu~ 

Clearly, 3 is a complete metric space under the metric 



for any 3 E 3 and t 2 0, let v (T,  t, 6: 11; 9) denote the soIution of (3.23) for 

O 5 r < t, Le. 

where 

Such a solution does ex is t  and is continuous in (r, t ,  6: +) since (3.23) is a (finite 

dimensional) ODE in v. Let 3 E 3 be given. We define T g  by 

(Tg ) (& 6, $) = w(t)$ + 1- w(t - s ) x & ( v ~ ( s ,  t; 3)) di, t $0. 

We wiil show that T : F + P has a fixed point by using the contraction mapping 

principle. First we will show T ( 7 )  c 3. In fact, let 3 E 3. Shen 

where K~(É) := K(e)lgl0,,(A + 1). On the other hand, from (3.27) and by using 
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After a few simple calculations, one has 

where, 

c(4, B )  := K2(c) lgli,l A(A + 1)II;'. 

CShg (A12)-(A13), one obtains 

where, 



According to assumptions (Al1)-(A14), T is a contraction mapping. This corn- 

pletes the proof of the Iemma. 
P 

The following theorem shows that the centre manifold is attracting. 

THEOREM 3.3. Suppose assumptions (AU)-(A14) hold. Let ut (4  + 11) 
be the solution of (2.1) with initial condition # + + E N $ S.  Then there ezist 

constants KI > O and ,& > O uith Arl depending on 4 and such that 

where @ ( O )  = Ps(ug(-)) and IL,'(-) was introduced in Theotern 2.4. 

PROOF. Fix any t 2 O. The solution of (2.1) through uf($++)+uf(uf ($+ 

S))) is dehed for ail time and lies on the centre manifold 1 4 :  since M g  is invariant. 

Sherefore, we can find a point uz(#*) E M g ,  where q5* E N, such that 



If we take 6 = uf(4 + $), then u'_,(& = u&$*). Using the fact that any solution 

ut(d + $) of (2.1) satisfies the estimate 

and using Theorem 2.4, a few simple calculations show that lu;*(+*) 1 satisfies the 

estimate 

where 

such that (3.28) holds. This completes the proof of the theorem. 



REMARK. Both estimates (ii) in Theorem 3.1 and (3.27) in Theorem 3.3 imply 

that dist(ut (# + $), -Mg) + O as t -t a, since u;(uf (4 -+ $) ) E LW' Mg. Throughout 

this chapter, one can see that the center magif01d actually is a local feature of 

dynamicd systems since assumptions (A8)-(A14) are based on the cut-off tri&, 

see for example Hale and Verduyn Lunel (1993, p.314-p.315). Locally, the center 

r n d o I d  theorem dows us to reduce an infinite dimensional dynamical system 

into a finite dimensional system on the center manifo1d. The attractivity theorem 

therefore implies that stability of the equilibrium (or the periodic solution) of this 

finite dynamical system parantees the stability of the infinite dynamicd system. 

In the next chapter, we will make use of the center manifold reduction method to 

study the stability of periodic solutions bifurcating from a positive equilibriurn. 



CHAPTER III 

NEUMANN BOUNDARY VALUE PROBLEMS 

3.1 INTRODUCTION 

In this chapter, our aim is to study the global dynamics of fundional partial 

ciifkentia1 equations with Neumann boundary conditions. More specifically, we 

dl restrict our attention to 

w, 5 )  

at = Au(t7 x) - Ju(t: x) + f (u(t - r, x)), in D 

where, r is the delayed tirne; b is a positive constant; x E fi c Rn, Q is a bounded 

domain with a smooth boundary a0, ( t ,  x) E D G (0, m) x Q, I' r (O, al) x 

D, = [-T, O] x 0; & denotes the exterior normal derivative to 30; uo(B, x) is 

HWer continuous in D, with uo(O, I) E c'(a); and f (2) is a nonlinear function 

satisfying the following hypotheses: 

(4 f (0) = 0 

(ü) ~ * + ,  f (4 = 0 



(iii) there exists zo > O, such that f (2) is monotone inaeasing for z E [O, ro] and 

deueasing aftmards. 

As we mentioned in chapter 1, we will choose f(z) = Pze-"' as the carrier in 

d the proofs and cddations. For this partieuh ehoice of a nonlinear term, the 

above equation without diffusion is knom for modelling a population of addt &es. 

As a mode1 to describe the dynamics of Nicholson's blowiiies experiments (1954), 

the non diffusive delay equation was t t s t  proposed by Gurney, Blythe and Niçbet 

(1980) in the form of: 

together with the initial condition 

where N ( t )  is the size of the (adult) blowfiies population at thne t; P is the 

maximum per capita daily egg production rate; $ is the size at which the blonrflies 

population reproduces at its maximum rate; 6 is the per capita daily adult death 

rate; and r is the generation time. For this equation, global attractivity and 

oscillation of solutions have been investigated by several authors, with the following 

resdts. 

(i) So and Yu (1994): If O < $ 5 1, then every solution N ( t )  tends to zero as 

t+m.  
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(ii) So and Yu (1994) and Karakostas, Philos and Sficas (1992): If 1 < f < e, 

or if $ > 1 and (ebr - 1) ln $ 1, the positive equilibrium N' 3 In $ is 

a global attractor. 

(iii) Kulenovic and Ladas (1987): If $ > e and bre"(ln 5 - 1) > f , then every 

non-trivial solution N( t )  oscillates about the positive equilibrium N* . 

In addition, Kuang (1992) proves the global attradivity of the positive equilibrium 

under the condition 1 < g < e2, with no restriction on the delay. He also illustrates 

the global existence of periodic solution in a generalized setting. We also should 

mention Li (1996) and Luo and Liu (1996) for recent progress in the studies of 

Nicholson's bIowf?.ies equation. 

Recently there has been an increasing interest in studying parabolic equa- 

tions with time delays. It is the object of this chapter to extend the above results 

to the case where spatial diffusion is taken into consideration, Le. we consider the 

equation 

It appears that only a few papers have been published conceming the os- 

cillatory behavior of solutions for diffusive functional differential equations. We 

mention here the work of Erbe, Kong, and Zhang (1993), Fu and Zhuang (1995), 
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Kreith and Ladas (1985), Yoshida (1986, 1992) and the references therein. The 

earliest work seems to be Bykov and Kultaev (1983). In most of these papers, the 

nodineaz term f (u) is assumed to be odd and convex. As a result their methods 

cannot be directly appïred to (1.3)-(1.5). In this chapter, we wiiI develop an os- 

cillation theory for (1.3)-(1.5) parallel to the one in Kulenovic and Ladas (1987) 
* 

and Kulenovic, Ladas and Meimaxidou (1981) for delay differential equations. 

Our global attractivity results are established by using the method of lower- 

upper solutions pair for functiond partial differentid equations. We d e r  the 

interested reader to Bebernes and Ely (1983), Redlinger (1984) and the references 

therein for details. This method has been used by Gourley and Brieton (1993) and 

Redlinger (1985) for a similar purpose. 

As to periodic solutions, we obtain the existence of periodic solutions bifur- 

cating fiom a positive equilibrïum. Through a lengthy calculation by hand, we 

show that these periodic solutions are stable. The center manifold theorem and 

the attractivity of the center manifold play an essential role. 

The rest of the chapter is organized as  follows. First, the attractivity of 

equilibria will be considered in Section 2. In Section 3, we discuss the oscillatory 

behavior of solutions (about the positive equilibrium N e ) .  A Hopf bifurcation 

analysis is carried out in Section 4. Findy in Section 5, some numerical observa- 

tions are made. 



3.2 GLOBAL ATTRACTMTY OF EQUTLBRLA 

In this section, we WU first show the global attractivity of the zero solution 

for equations (1.3)-(1.5) wben O < $ 5 1. Next, we wiU show that the positive 

equilibrium is a global attraetor when 1 < 5 5 e. W e  begin with the fouowing 

lemma: 

LEMMA 2.1. The solution N(t ,x)  of (1.9)-(1.5) satisfies N ( t , x )  2 O for 

( t Y x )  E ( O ,  W) n. 

PROOF. We first show that N ( t , z )  2 O on (O,r] x 0. Suppose not. Then 

t h e  e s t s  ( to ,  20) E (0, T ]  x fi such that N( to ,  xo ) < O. We can find (t* , t*) E 

(O, T ]  x 0 S U C ~  that 

.N(t*, x*) = min N ( t , x ) < O .  
(t,x)E[O,r] xf2 

Since N(@,  2) 2 O for ( 8 , x )  E [-r,O] x a, by (1.3) we have 

Therefore if (t* , x* ) E (O, TI x R, then the minimum principle shows that for O < 

t I t*, N( t ,  X) N(t', x * )  < O, which is impossible since N(0, x) = #(O, x) 2 0. 

we m ~ s t  have (t*, x*) E ( O ,  r] x aR. However in this case, the strong mini- 

mum principle of Hopf &plies that ,,.) < O. This contradicts the boundary 

condition = O on an. Thesefore, N(t,  z) 2 O for (0,  r] x fi. 
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Applying this argument repeatedly (the method of steps), one can easily 

show that N(t,  x) 2 0 on (O, oo) x 0. This completes the proof. 

Next we will introduce the concept of a Iower-upper solutions pair due to 

RedIinger as adapted to (1.3)-(1.5). 

DEFINITION 2.2. A lower-upper so~utions pair for (1 3)-(1.5) k? a pair of 

suitably smooth fvnctions u and w such that: 

(i) v 5 w in D; 

(ii) v and w satisfy 

and 

f o r a l l ~ ,  E ~ ( ~ , n d )  with u stl> s w  in D , u ~ =  [ - r , ~ )  x o ;  end 

(G) ~ ( 0 ,  X) I 4(4 x) w (13, x) on D, . 

The following lemma is a special case of Redünger (1984, Theorem 3.4). 
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LEMMA 2.3. Let ( v ,  w )  be a lower-upper solution pair for the initial bound- 

ury valve problem (l.8)-(1.5). Then there ezists a %nique regdar solution N ( t ,  x) 

of (1.9)-(1.5) such that v < N 5 ul on Dy U 8. 

The next leigrna gives us boundedness of the solution N( t ,  x) .  

LEMMA 2.4. There ezists o constant K = K(4) 2. O such that N ( t ,  x) < K 

on D, u D. 

PROOF. Let w ( t )  be the solution of the ordinary differentid equation (ode) 

dw -- P 
dt 

- - 6 ~  + - t > 0: 
ae' 

s a t i w g  the initial condition 

Define ~ ( t )  by: 

w(O), for t E [-r,O] 
for t > 0. 

Then ( O ,  6)  is a lower-upper solution pair of (1.3)-(1.5) since O < 4 5 Iu and for 
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Hence by Lemma 2.3, O 5 N ( t ,  x) 5 ~ ( t )  for aU (t, x) E D, u D. Now since 

h t - r a ,  G ( t )  = &, there exists a constant K > O such that W(t) 5 K for t E 

[-T, w). This in tuni implies O _< N ( t , x )  5 K for (t, x) E [-r, oo) x fi. This 

completes the proof. 

LEMMA 2.5. If $(8, r) $ O on D,, then N ( t ,  X) > O for (t, 2) E (7, m) x fi- 

PROOP. It was shown in Lemma 2.1 that N ( t , x )  2 O for ( t : x )  E (O, m) x 0. 

There are two cases to consider. 

Case 1: 4(0: x) $ O. Then (1.3)-(1.5) implies 

on and 

We now show that N ( t ,  z) > O for all ( t ,  x) E ( O ,  w) x B. Suppose not, then there 

50 



exists (< 5) E (O, 00) x fi such that N ( t ,  2)  = O. But this is impossible according 

to the minimum principle and the strong minimum principle of Hopf. 

Case 2: 4(O, 2) r O for x E 0. We kst  show that N(t ,  x) f O for (t, x) E 

(O, r ]  xn.  Suppose net. From (1.3)-(1.5), we have 4(0, X )  = O for (6, x )  E Dr, which 

conttadicts the assumption O(0,x)  f O on Dr. Therefore there exists to E (O ,T ]  
* 

such that N(to , r )  $ O for r E Q. Now following the same argument as in Case 1 

one shows that N( t ,  x )  > O for ( t ,  x )  E (toi m) x 0. This completes the proof. 

W e  are now ready to state the main result of this section. 

THEOREM 2.6. 

(i) If O < g 1, then the solution N( t ,  x )  of (1.5)-(1.5) tends to zero (uni- 

formly in x )  as t + m. 

(ii) If 1 < $ 2 e, then any non-trivial solution N ( t , x )  of (1.9)-(1.5) satl9fies 

lim N(t ,  x) = N*, unifonnly in x ,  
t+oa 

when N* = ln $ às the positive equilibrium. 

PROOF. Let W ( t )  be the solution of the delay equation 



with initial condition 

Then (O, fi ( t ) )  is a Iower-upper solution pair since for aU $ E c (D, n D) such that 

O <$ ~ z Ü  on D ~ u D ,  we have 

Hence by Lemma 2.3, O N( t ,  s) < ~ ( t ) .  Consider the case when O < $ < 1. 

Shen limt+, C(t) = O (c.f. E17sgol'ts and Norkin (1973, p.131)). Consequently 

limt,, N ( t ,  z) = O unif 'ody in s. Next we consider the case when 1 < f < e. In 

this case we have a positive equilibrium N* = In 5. Let K(t) = minzen N ( t ,  s), 

- - 
X ( t )  = ma+,, N(t, x), N = a+, N(t), and W = lim+,= F(t). Then [K, F] c 

[O, &] C [O, $1, according to the proof of Lemma 2.4. We would like to improve 

P the upper solution so that we have a better upper bound for N(t ,  x). Let = K. 

Since the function f(z) = f - lnz is decreasing for 1 5 z 5 e and f(e) = O, we 

have > $ In $ for 1 < $ < e, that is y, > N*. For any sufEciently s m d  r > 0, 

there exists to 2 0 such that 



This implies N(t ,  x )  5 & + c < 3 on [to, m) x fi. Define wf to be the solution of 

the ode 

dwf -= 
dt -6~; + P(71 + c)e-a(~lf  €1 t > t o + 7  

and set 

Clearly (O, w f )  is a lower-upper solution pair. Consequently, 

and 

Since E c m  be made arbitrarily small, we have 

Let 7 2  = Then 72 < 71, since yl > N* implies $e-uyl < 1. By 

considering the function f ( z )  = $ z ë a z  - lV*, we h d  th& y2 > N*.  Repeating 
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the above procedure, we obtain a sequence {y,} satisfying 

and 

* 

In the limit we have 

Ne* we wodd like to improve on the lower solution. For E > O sufficiently s m d ,  

there exists tl > r such that F(t) 5 N* + E < $ for t 2 t l .  Let 

Let v; ( t )  be the solution of the ode 

and set 

for -r 5 t <ti, 
for tl 5 t tl + T.  



Define zu' (t) by 

P b  e-u&l < It is easy to verify that (vf, w E )  is a lower-uppes solution pair. Thus 7 0 - 

N < N 5 N* + E. Let Ji = $boe-abo. Then N* > > JO. As bef'ore we obtain a .  -- 
- 

increasing sequence {b,) s a t i m g  lim,,, 6, = N'. Hence = N = N*. The 

above approach can also be applied to the case when $ = 1 or when 5 = e. This 

completes the proof. 

3.3 OSCILLATION ABOUT THE POSITIVE EQUILIBRIUM 

ki this section we will consider the case % > e. We WU show that under 

some additional restrictions on the time delay r, all non-trivial solutions of (1 -3)- 

(1.5) oscillate about the positive equilibrium N* . First we introduce the change of 

variables N ( t ,  x) = N* + gu(t, x). Then equation (1.3)-(1.5) can be rewritten as 

w 1 4  

ât = Au(t, x) - 6u(t, x )  - cfF(u(t - T,  x)), in D 

where F ( z )  = aN'(1 - e-') - ze4'. Note that we are only interested in those 

solutions u(t, X) of (3.1)-(3.3) such that u(t ,  x) 2 -UN*. 
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DEFINITION 3.1. The solution u of (9.1)-(3.3) is said to oscillate in the 

domain R+ x Q if for euch t > O, there e z u t s  a point ( ta ,  xo) E [r, m) x Q such 

that u(to, xo) = 0.  

DEFINITION 3.2. System (9.1)-(9.2) is said to be on oscil[atory system 
? 

every solution of this system oscillates. 

Clearly the solution N ( t ,  x) of (1.3)-(1.5) oscillates about N* if and only 

if the solution u( t ,  x) of (3.1)-(3.3) oscillates about zero. IR order to show the 

oscillation of solutions of (3.1)-(3.3), we need to consider a lineaz partial clifFesential 

equation with time delay of the fonn 

For system (3 .4) - (34 ,  we have the following lemma. 

LEM M A  3.3. The following statements are equivalent. 

(i) The first characteristic equation of ($4)-(3.5) 



has no mal m t s .  

(ii) System (9.4)-(9.5) is oseilkutory. 

PROOF. (i) + (ii). Integrating (3.4) over fi, we have 

Let U( t )  = Jn ~ ( t ,  x ) ~ x .  Since JO AU = Jan & = O, we have 

The characteristic equation of (3.8) is exactly (3.7), which has no real roots. Thus 

every solution of (3.8) osdates (cf. Ladas, Sficas, and Stavroulakis (1983)). This 

implies that every solution u(t, s) of (3.4)-(3.6) oscdlates. 

(ii) (i). If Xo is a real root of equation (3.7), then u(t ,  x) = eX0 is a 

solution of (3.4)-(3.5) which does not oscillate. This completes the proof. 

REMARK. For equation (3.4) with Dirichlet boundary condition, the first charac- 

teristic equation is 

where X i  is the smdest eigenvalue comesponding to the operator -A with Dirich- 

let boundary condition. The conchsion in Lemma 3.3 still holds if we replace (i) 

by "equation (3.9) has no real roots". The proof is similar to the Neumann case by 
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mdtiplying (3.4) by q(z), the eigeafiuiction corresponduig to the srnailest eigen- 

d u e  A l ,  and integrating over Q and noting that 

To study oscillation of system (3.1)-(3.2) we need to consider the relationship 
r 

between the fouowing two equations 

and 

under Neumann boundary conditions, where 

The foIlowing Iemma is analogous to Theorem 2 in Kulenovic, Ladas, and Meimari- 

dou (1987). Note that the fist characteristic equation of (3.11) is 

LEMMA 3.4. Assume that (3.19) hm no real ruob. Then equation (9.10) is 

oscillatory. 



PROOF. By (3.12) there exists to > O such that Q(t,  z) - )q 2 O for ( t ,  +) E 

[to, oo) x 0. Suppose that (3.10) has an eventually positive solution. Then for 

sufficiently large t, we have 

Integrating the above inequality over 52 and letting U ( t )  = u(t,  x)dx: we get 

Let A be the set of ail X 2 O for which there exists to 2 O such that t?(t)+NJ(t) 5 O 

for ail t 2 to. By following the idea in Kulenovic, Ladas, and Meimaridou (1987), 

we get two contradictory properties for A: one of which is that A is bounded above 

and the other is that X E A + (A + y )  E A, where rn = minxca{.\ f qe-xr)  > 0. 

This completes the proof. 

REMARK. Consider the equation 

w 1 4  
dt = Au(t, x )  - 6u(t, x) - Q(t, x)u(t - T, x), in D (3.15) 



""(t 'z) = Av(t, z) - e J r ~ ( t ,  2)0(t - q t). at 

Since the change of variables preserves the oscillatory property of solutions, we 

have : p 

COROLLARY 3.5. If the equation 

is oscillatory, so is (5.1 5)-(3.16). 

We are now ready to prove our main result of this section. 

THEOREM 3.6. If $ > e and &esr( In - 1 )  > 1 hold, then system (5.1)- 

(9.2) is oscillatory or equivalently, every solution N ( t ,  t) of (1.9)-(1.5) oscillates 

a bout the positive equilibîium N* . 

PROOF. Suppose for the purpose of contradiction that (3.1)-(3.2) has an 

eventually positive solution u (t , x) . Then F(u ( t  - r, x) ) 2 O eventually because 

the function F(z )  = aN*(i  - e-') - te-' is increasing for z 2 O and F(O) = 0. 
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Therefbre we have eventually 

Wt? +) 
at = Au(t, 2 )  - 6u(t, Z) - dF(u(t - T,  x ) )  

< Au(t, z) - bu(t, x), - 

whieh implies, by the maximum principle, that 
P 

Next we assume (3.1) has an eventudy negative solution u(t, x). Without 

of generality we assume -aiV8 < u(t, x )  < O for aU ( t ,  x )  E (r, m) x 0. Since 

F(-aN*)  = aN* > O and since F(l - aN*) = lnT - -- l P  < O, whichis the 
e 6 

minhum, there exists A < O such that F(A) = O. Note that A is the unique zero 

of F ( z )  for 2 < O because the function F(z )  is decreasing on r 5 1 - aN* < 0. 

Consider the delay equation 

satisfying the initial condition 

where 

F* ( z )  = { [(')' for z E [-aN*, A] 
for z E (A ,  O]. 



We will show that v ( t )  5 u(t, 2) for ail ( t ,  x )  E [-r, cm) x 0. This can be done in 

steps. First we consider (t, x )  E [O, r] x 0. Let w(t ,  x) = u(t ,  x )  - v( t ) .  Then 

b ( t ,  2) 

ât 
= Aw(t, x) - bw(t, X )  - iF(F(u(t - r, x ) )  - F*(v(t - T ) ) ) .  

1Ve c l a h  that 

Indeed, since u(t - T, x) 2 v( t  - r )  for ( t ,  x) E [O, r] x 0 we have altogether three 

cases: ( i )  A > u ( t  - r, z) 2 v( t  - r) , (ii) u ( t  - r, z) 2 A 2 v( t  - r )  and (iii) 

u(t - T , X )  > v ( t  - r )  2 A. 

In Case ( i )  the claim is tme because F*(v(t - T ) )  = F(v( t  - r ) )  and F ( z )  is 

deeieasing. In Case (ii) the daim also holds since F* (v( t  - r ) )  = F(v(t  - 7)) 2 0, 

while F(u(t  - r, x)) O. In Case (Ki) the claim is again valid since F*(v(t - r ) )  = O 

and F(u(t - r, x ) )  5 0. 

aw(t > A From this we have - w (t  , x )  - bw ( t ,  z). Since w(O, x) 2 O, one can 

show by the minimum principle that w ( t  , x) 2 O, that is, u (t , x) 2 v ( t )  . We will now 

show v ( t )  + O as t  -+ m. Kote that -aN8 < v ( t )  < O and lirnt+, u ( t )  # -aN*. 

There are two cases to consider. 

Case 1: limi,,v(t) = rr exists. We c l a h  that a = O. ki fact if a < A < 0, 

then eventudy 



which implies a = O. Thedore a 2 A. If a = A, then we have -6A = O which 

i m p k  A = O, which is a contradiction. So a > A, in which case -60. = 0. 

Case 2: O 1 v(t) = T > 1 = h,, ~ ( t ) .  if C > A then eventually 

W )  v(t)  2 - c 2 A for sufficiently srnd s and hence eventually - = -6v(t). This 
dt 

impiies v( t )  + O .  Consequently 5 A < O and eventually 

f 

ù( t )  = -bv(t) - &F(v ( t  - T ) ) .  

Applying Lemma 3.2 in So and Yu (NW), we have v(t)  + O. 

Hence for an eventudy negative solution u(t,  x), we also obtain 

Rewriting (3.1)-(3.2) as 

where 

and 



The &st characteristic equation of the equation 

with Neumann boundary condition 

which has no real solution since brek(ln $ - 1) > t. Hence system (3.20)-(3.21) 

oscillates. This implies by CoroUary 3.5 that (3.18)-(3.19) is oscillatory and thus 

it contradids the assumption that (3.18)-(3.19) has an eventually positive (or 

negative) solution. This completes the proof. 

3.4 HOPI? BIFURCATION AND STABLE PERIODIC SOLUTIONS 

In this section, we will restrict our attention to the case when f2 c W and 

$ > e2. After an appropriate change of -able in space and tirne, the equation 

becomes 



with f2 = (0,1), where p = In $ and ? = rb and d is treated as a parameter inde- 

pendent of ?. and 0. P and b are parameters fkom (3.1). Note that the equilibrÏum 

u G O of (4.1) corresponds to the positive equilibrium N* of (1.3). The linearized 

equation (of (4.1)) about u = O is 

Moreover, the charaderistic equation of (4.2) is 

We know that for fixed d, (4.3.0) has a pair of simple characteristic values X = 

1 f i ( x  - arccos -) at .F = ro := l 
(T - arccos &) for ,û > 2. Let 00 be the 

,/a<a-2,a<a-2, 

unique real solution of ?r - arccos & = Jm. Then Q > 1, for 2 < /? < Bo.  B 1 

Note that Do 3-26 > 3. To apply the Hopf bifurcation theorem as developed for 

abstract funetional differential equations in Wu (1996), we need to show that ail 

the other characteristic values of (4.3.k) have negative real parts. First of all, we 

will consider the case when k 2 1. This can be done by employing the following 

well-known lemma whose proof can be found in Hale and Verduyn Lunel (1993). 

LEMMA 4.1. AI1 mots of the eqvation ( z  + a ) e X  + = O, when a and < are 
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real numbers, have negative ml parts if and only if 

a! > -1, 

& + ( > O ,  

psinp - ncosp > 6, 
P 

where p = =  2 ; fa=O andp i i t h e r m t  ofp=-atanp in(0,n) ifa#O. 

Sherefore we just need to ver* that for k 2 1, p sinp - (dk2 + TI) cos p > 

ro(P  - l), where p is the root of p = -(dk2 + r0) tan p in (O, n). Note since 

cr = dk2 +ro > O ,  p E (F, x ) .  Let us consider the function f (z) = + (ro  +dk2) tan 

*hi& is conti~uous and increasing for z E ( f, R) .  Since p sin p - (dk2 + ri) cos P = 

- dk2+r > 1- 
cos p 

dh2ir Clearly this is truefor a(B-:) d"+r~ , it sufEices to show cos p > -TQta-fl - 

dk2+r 7r dkZ+r <, and For the case when rO( &) 5 1, we have < n - arccos ro ( B  -FI 

dk2+r implies n - arccos ro(8-tl > P since f ( p )  = O and f ( E )  is increasing. Con- 

sequently, 



Secondly, we will show that at T = ro a.Il the roots of (4.3.0), except *i(n - 

arccos &), have negative real parts. Let X = p + qi, where p, q are real and 

q > O. Then (4.3.0) can be rewritten as 

Suppose (p, q) is a solution of (4.4)-(4.5) with p > O. Then sin q > O and cos q < O 

whkh imply that the angle q is in the second quadrant. Let us consider the 

functions f ( z )  = z - ro(P - 1)e-Psinr and g(z) = p + ro + ro(P - 1)e-Pcos t. 

Clearly, f (2) is inaeasing and g ( z )  decreasing for z in the second quadrant. Xote 

1 that for ;JO = R - WCCOS mi 

and that 

&O) = P + ro + ro(P - 1)e-p coswo > p + q + ro(P - 1) cos wo = p > O = g(q) 

which is irnpossibie. Lastly we need to veriijr the transversality condition p'(ro ) # 

O. In fact , according to the implicit function theorem 

Therefore the Hopf bifurcation theorem in Wu (1996, p.189) (see also Hassard, 
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Kazarinoff, and Wan (1981)) is applicable and the system has a family of periodic 

sohtions bifurcating fkom u = O when T is near ro.  

One can also consider the stability of these (bifixcated) periodic solutions by 

caldating the normal form on the center mssifold. Let A. (F) be the idhitesimal 

generator of the semitlow of the foUowing delay equation 

Let &(ri) denote the formal adjoint of &(ro) under the bilinear p e g  

where 

Let @ = (di, 4 2 )  E C([-1,0]; WZ) be such that 

Then we have 9 = (coswo8,sinwo~) where GO = rr - arccos &. Similarly, let 

a* = ($il ll;)T E c'([O, 11; W2) be such that 



which gives $; = sinuos and $$ = cos wos. Then 

We also defhe an inner product on X = C([O, 11; W) 

Now consider the "suspendedn system 

By applying the ~enter manifold theorem, we conclude that the fiow on the ~enter 

manifold is given a .  follows: 

u t  = ( t) ,  ~2 (t)lT 1 f h(Pv xl (t),  z2 ( t ) )  E C = C ( [ - ~ , O ] ;  q, 
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and 

where 

The existence, smoothness, and attractivity of the center manifolds for functional 

partial Mesential equations were discussed in Lin, So and W u  (1992) and So, W u  

and Yang (1998). See also ehapter 2 for the attractivity of the center manifold. 

Now let z = si - iz2 and A(?) be the eigenvalue of mat& da(?) defined by 

Then system (4.7)-(4.8) can be rewritten a s  



where 

where 

and 

Note that w, E PsC. 

Since the center manifold is invariant under the semiflow, w ( r ( t ) ,  f(t)) sat- 

isfies 



for d t E R, where Au denotes the infinitesimal generator of the solution semi- 

group of (4.2), X: is defined as 

O, for B E  [-1,O) 
(0) = { 

1, for e =o. 

Let 

where Hij E PsC. Note that on the center manifold, we have 

This equation together with (4. Il)-@. 12) 

from which wij can be solved through Hij .  Ging a near identity transformation 

42 



of the form 

where a20, ail ,  and a02 aTe appropriately chosen, we arrive at the normal form 

where 

- O.  Then @(O) = (Re q(8), h q(B)) and g, can be expressed as Let q(8) = -ex O 

where 



mhere 



and where 

Here we have used the fact that ro(p - 1) - 1 > O, since ra(B - 1) = - > 1. 

Hence for 2 < ,û < 3, we have Re cl(ro)  < 0. 

Summarizing the above discussion, we have the result : 

THEOREM 4.2. Assume $ > e2. Then there ezists ro at which spatial homo- 

geneous periodic solutions of (4.1) bifurcate from the positive equilibrium. More- 

over, there ezists co > e3 such that for e2 < $ < CQ, the bifurcated periodic 

s o l u t i o ~  are stable, 

3.5 SECONDARY BIFURCATION AND EFFECT OF DIFFUSION 
2 

It is well-known that for the Hutchinson's equation with difision, reducing 

the diffusion rate can drive the instability of the spatial homogeneous periodic so- 



lutions which bifurcated &om the positive equilibrium t h u g h  a Hopf bifurcation. 

We refer the interested reader to Yoshida (1982) and Morita (1984) for details. 

Such a destabilization &ect also occurs in our model. In fact, for s m d  enough 

d,  a second bifurcation occurs by fdng i > ro and using d as  the bifurcation 

parameter. Let us consider equation (4.3.1). Set X = bi, where b > O. Then 

so that b can be solved for provided i.(P - 1) > d + i, that is, f(j3 - 2) > d. 

Moreover, we have 

d +i + i ( B  - 1)cos J?*(P - 1)2 - (d + 1)2 = 0. 

Solve (5.1) for d = d(F) with d(rO)  = O and we get 

Equations (6.1)-(5.2) imply that for fked i > .ro there exists d = d ( f )  > O such 
- - - - - - -- 

that (4.3.1) has a pair of simple roots X = k i j f 2 ( ~  - 1)2 - (d + T)2. In this 

case, one could also use the center manifold reduction method to show that Hopf 

bifurcation occurs resulting in the existence of spatial inhomogeneous periodic 

solutions. However , these periodic solutions would be unstable (at least for i > r o  

and sdliciently close to ro) for in this case equation (4.3.0) has a root with positive 

real parts. 



Using the semi-discrete scheme 

where i = 1,2, , n - 1, coupled with 

together with a standard routine for solving systems of delayed differential equa- 

tions, we performed some numerical simulations. Here, n is the number of (equal) 

partitions of the interval [O, 11, h = k ,  and ui = u(t,ih). The results indicate the 

possibility of complicated dynamics (besides spatidy inhomogeneous periodic so- 

lutions). By choosing P = 3 and .T. = 10.25 (away fiom ro), Fig 3.1 shows that for 

d = 0.00015 (small), chaotic behavior takes place both in tirne and space; while 

for larger d, Say d = 0.015 and d = 0.15 as in Fig 3.2 and Fig 3.3 resp., chaotic 

behavior seems deduced and finally for d = 8.5 (c.f. Fig 3.4): chaotic behavior is 

replaced by periodic behavior (spatial homogeneity) . 





REMARK. BasicaUy, the lower-upper solution method rests on the maximum 

principle of parabolic inequality. To my understanding, the maximum principal 

gives rise to a cornparison principle, which is also h i e  in parabolic equation with 

time delay, provided that the the-delay term is a monotone function in some 

sense. Therefore the approach of this chapter can &O be applied to out general 

type diffusive delayed equation. We c m  also study the oscillation behivior in 

a simi las  manner, since these oscillation analyses of nonlinear *ive delayed 

equations axe dominated by the oscillation behavior of the linearized counterparts. 

Combining Theorems 4.2 and 2.5, one may see a gap of the parametric range 

since there is no assertion on the case of e < $ < e2. To fill out this gap, we may 

need an alternative approadi which wiU be introduced in the next chapter. By 

a slight modification, we caa still conclude the global attractivity of a positive 

equilibrium in this case. 

It is important to realize that there are still many problems unsolved for 

Neumann boundary value problems. Besides the complicated dynamics resulting 

from tirne delays, interactions between diffusion and time delays are believed to 

produce more complicated dynamics. But this is far from clear nowadays. Hale 

(1 986) claimed that the solutions of sys tems of delayed reaction-diffusion equations 

with Neumann boundary conditions are asymptotic to the solutions of delayed 

differential equations if the diffusivity is large (see also, Conway, Hoff and Smoller 

(1978)). By no means does this imply the insignificance of the research on the 

dynamics of Neumann boundary value problems. How the diffusion impacts on 
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the structure of the chaotic attradors, for example, is a huge interesthg project. 

As observed in our numericd simulation, spatial pattern is no longer simple when 

the diffusion rate is small. Futber research is needed to in this area. 



CHAF'TER IV 

DmCHLET BOUNDARY VALUE PROBLEMS 

We have studied some dpamics of functional partial dinerential equations 

with Neumann boundary condition. In partieular, criteria for the global attrac- 

tivity of the nomegative equilibria were obtained. In addition, the existence and 

stability of periodic solution were studied by using a Hopf bifurcation andysis. IR 

this chapter, we will switch our attention to Dirichlet boundary value problems. 

We still choose the diffusive Nicholson's blowflies equation as the representative of 

our general type delayed reaction-diffusion equations. More specifically, by rescal- 

ing the temporal and spatial variable, we d consider the diffusive Nicholson's 

blowflies equation as follows: 

where, x E Q c Rn, Q is a bounded domain with a smooth boundary BO1 (t, x) E 

D = (O+) x n, r I (O,OO) x a ~ ,  and D~ I [-1,0] x a. 
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Apparently, there are only a handfid of papess treating the long time be- 

havior of solutions for a reaction diffusion equation with delay under Dirichlet 

boundary conditions. Among those, the nodinear tenn containing the delay is 

often assumed to satisfy a monotonieity or quasi-monotonicity condition. Un- 

fortunately, this is not the case here. Friesecke's (1993) results require severe 

restrictions on the delay due to the use of a Lyapunov funetion for a correspond- 

ing reaction-diffusion equation (without delay). h e ,  Miyakawa, and Yoshida's 

(1977) approach, on the other haad, can only give local attractivity. Although 

convergence results could be found for a large number of semilinear parabolic 

Volterra in tegrderent ia l  equations (cf. Engler (l98l), Schia5na and Tesei 

(1981), Heard and Rankin (1988)' Yamada (1993), and the refixences therein), 

those approaches c m o t  be applied to our equation either. One should also men- 

tion Cooke and Huang (1992), who investigated the global dynamics of the gen- 

eralized difhisive Hutchinson's equation with Dirichlet boundaxy conditions. But 

the idea in their paper is essentially similar to that of Yamada (1993). In this 

chapter, we will develop a new approach to studying the global attractivity of 

the positive steady state for a reaction diffusion equation with time delays under 

Dirichlet boundary conditions. Roughly speaking, the idea is to divide the spatial 

domain according to the information given by the positive steady state and treat 

the subdomains separately. Our approach should be applicable to other Dirichlet 

problerns, although our andysis is specialized to the cliffisive Nicholson's blowflies 

equation. 



The rest of this chapter is organized as follows. In section 2, we give some 

preliminary results on the solutions of the diffusive Nicholson's blowfiïes equation, 

followed by existence and uniqueness of the positive steady state. The global 

attractivity of the zero solution is presented in section 3. In section 4, the local 

stability of the positive steady state is studied by analyzing the spectnun of the 

assoeiated linear operator, a procedure used in Green and Stech (1981) and Huang 

(199 1). Findy, in section 5, we discuss the global attractivity of the positive steady 

state. Here, a new approach is introduced and a better criterion is obtained dong 

this approach than that via the theory of monotone s e d o w .  At the end of this 

paper, we also improve the attractivity results in the sense of C1(R) by using an 

interpolation inequality (the so-cded Nirenberg-Gagliardo inequality) and an a 

priori estimate. 

4.2 PRELIblINARIES 

We consider the dinusive Mcholson's blowfiies equation 

where (t, x )  E D r (O, cu) x $2, with (homogeneous) Dirichlet boundary condition 



and initial condition 

where R C In(n  1 1) is a bounded domain with smooth boundary an. Here P ,  r, d 

are positive constants. The steady states Q> of (2.1)-(2.2) satisfy: 

dA+(z)  - r4(z) + ~ r q 5 ( z ) e - ~ ( = )  = 0, for x E f2 

Let n < p < m and put X = LP(Q). Let C := C([-1, O]; X) and d e h e  the operator 

A :  D(A) -t X by 

(Au)(x)  = -dAu(t, x )  + ru(t, x), 

D(A) = wZvP(S2) n w,"~(Q). 
It is weU-known that -A generates an analytic, compact semigroup T( t )  (t > 0) 
on X. For any a > O, we defme 

and let A" = (A-")-'. Let XI = D(A) and X, = D(Aa),  where $ f $ < a < 1, 

and equip these spaces with th& corresponding graph norms. Then XI c XX, c 

Ci (a). Furthemore, 

for some positive constants Kl and W .  For details, we refer to Pâzy (1983, p.243), 

Henry (1980, p.39) and Fkiedman (1976, p.160). Moreover, let us dehe  F : C -t X 
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Then (2.1)-(2.3) can be written in an integral hm (the Mliation of constants 

formula) 

t 

u ( t )  = T(t)uo(0) + / T(t - s)F(u,) ds. 
O 

It is dear that F is Lipschitz continuous and hence the existence and the uniqueness 

of a solution of (2.6) (called "mild solutionn of (2.1)-(2.3)) follow fkom Travis and 

Webb (1974, 1978). Furthermore, global continuation of the solution of (2.6) is 

due to the following proposition. 

PROPOSITION 2.1 .  Assume that there ezist Zocally integrable finetions ki 

and kz svch that 1 F(t ,  uo) ( 5 ki (t)[uol f k z ( t )  for uo E C and t  2 O .  Then equation 

(2.6) admits global solutions. 

PROOF. See Wu (1996, p.49-50). 

One should also note that according to Fitzgibbon (1978) and Martin and 

Smith (1990), every mild solution is a classical solution of (2.1)-(2.3) for t > 1 

since T(t )  (t  2 O) is analytic. Furthermore, one has : 



PROPOSITION 2.2. Let u(t)  l e  a solution of (2.6) with uo(O,-) E LP(R). 

Then there ezists a constant K independent of t sud that 

for a l l t  2 1, where O < p  < 1. C 

PROOF. Multiplying (2.6) by Aa and using (2.5), one has 

Now recall (c.f. Amann (1978)) that for p > n and O < p < 1 - P, t h e  a 

constant Kz independent of u and t such that 

I 

for di u E X,, where, 

constant K3 independent of t such that 



Thus, (2.7) follows by substituting (2.10) into (2.9) with K = K2&- This com- 

pletes the proof. 

The following result is due to Hess (1977). 

LEMMA 2.3. Cornider the Dirichlet pmblem 

where $2 c Wn(n 2 1 )  is a bovnded domain with smooth boundary 3Q. L = 

- CEjj=i & ( O i j ( z )  &) , mith s m t h  mal-vahed coeficient funetions aij = aji, 

i s  a unifomly elliptic, fomally seif-adjoint linear differential operator. Assume 

h : IZ x IR+ -t R is continuous. Suppose there ezists a constant M > O such that 

(i) h(x ,u)  2 0  for a l lu?  M,  z E$ 

(ii) h(z,u)  is  strictly increasing in u for u E [O, Mlt for al2 x E a. 

Then (2.11)-(2.12) admits at most one non-trivial, non-negative solvtion u. If, 

in addition, 

(fi) h ( t ,  O )  < -A1, for all x E where Xi w the principal eigenvalve of L with 

(homogeneous) Dirichlet boundary condition, 

then (2.1 1)-(2.12) has a unique positive solution. 

PROOF. See Hess's (1977) theorem and the remark foilowing it. 
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Using Lemma 2.3, we have following existence and uniqueness result on the 

positive solution of (2.4). 

COROLLARY 2.4. The boundary value ptvblem (2.4) possesses a unique pos- 

itive solution if and only if 

where XI is the principal eigenvalue of -A &th Dirichlet bovndary conditions. 

PROOF. Let L = -A, h(z,u) = ;(1 -De-.) and M = lnp. Then (i)-(ii) in 

Lemma 2.3 are satided. Suppose (2.13) holds. The existence and uniqueness of a 

positive solution for (2.4) follows immediately fiom Lemma 2 -3. Conversely, sup- 

pose 4 ( x )  is a positive solution of (2.4). Then 4 is unique accordhg to Lemma 2.3. 

Multiplying (2.4) by 4(x) and integating over Q, we obtain (using the variational 

chazacterization of Xi, i.e. Poincaré's inequality) 

This implies (2.13). 

REMARK 2.5. One easily shows, by means of the maximum principle, that [1#11, 5 

Inp for any positive solution q5 of (2.4). Indeed, suppose there exists x* E R such 

that lnP < $(x*) = max{+(z) : t E 52). Then A+(x*) < O but 1 - 0 e - 4 ( ~ ' )  > 0, 

which is a contradiction. 
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4.3 GLOBAL ATTRACTMTY OF THE ZERO SOLUTION 

In this section, we will consider the global attractivity of the trivial solution 

by using the method of steps. First we have 

LEMMA 3.1. Suppose y ( t )  2 O satisfies the diffenntial inequality 

PROOF. Let M = max(y(t) : t E [-1, O]) and fo(t) = 1 for t E [-1, O]. For 

t E [O, Il, we have 

which gives y ( t )  < fi ( t )M for t E [O, 11, where fi (t) = ëaL + z(1 - ëa') for 

t E [O, 11. Similady, for t E [L, 21 we have 

and 

where 



Inductively, we get 

where 

Note that fk+i (t) > O on [k, k + 11 and fk+1 (k) = f k ( k ) .  In order to show y ( t )  -t O 

as t -+ oo, it suffices to show that maxtc[k,k+~l fk+l(t) + O as k -t 00. 

XOW consider the recurrence relation (M), where fo ( t )  = 1 for t E [- 1, O]. W e  

wiii show by induction that fk(t) is decreasing on [k - 1 ,  k ]  and -a fk(k) +-y fk (k  - 

1) < O ,  for k = 0,1, . . . . Clearly fa@) = 1 is decreasing and -a fo(0)  + y fo(- 1) = 

-a+ y < O- Assume f k ( t )  is decreasingfor t E [k-1 ,k]  and - a f k ( k ) + y f c ( k - 1 )  < 

O .  Then for t E [k, k + 11, 

- ~ f k + l  (k + 1) + y fk+l  (k) 



Therefore f k+l (t ) is decreasing for t E [k, k f II and hence by (3.2) 

Next, we will show that fk(k) -t O as k -t oc. Let an = fk(k). Then 

so that {ak) is a monotone decreasing sequence. Since ar > O for k 2 1: the limit 

bk,, ak = A exists. Accordhg to (3.2), 

Since A 2 O and 

therefore A = O. The proof is complete. 

We have the following theorem. 

THEOREM 3.2. Suppose 



Then the solutions of (2.1)-(2~2) satisfy Ilu(t, - ) [ lLa(n)  + O as t -t 00. 

PROOF. First we multiply (2.1) by u(t,  x) and integrate it over O.  Using 

integration by parts, the Poincaré inequslity and the Holda inequality, one obtains 

The conclusion then follows immediately fkom Lemma 3.1. The proof is complete. 

4.4 LOCAL STABILITY OF THE POSITIVE STEADY STATE 

From now on, we assume that (2.13) holds. Hence there exists a unique 

positive steady state d ( x )  according to Corollary 2.4. Linearizing (2.1) about this 

steady state, we get 

The corresponding eigenvalue problem is 

The following lemma is an analogue of the Sturm cornparison theorem in one 

dimension. 



LEMMA 4.1. Let 

-da+ + P(x)tl> = O in 

$ = O  on asl, 

and 

-dA.+Q(t)+=O i n n  
* 

+ = O  onâS1. 

Suppose 4 > O in 0 and P ( x )  > Q ( x )  in Ci. Then ~,6 G 0. 

PROOF. Suppose 52+ = S>-l (O ,  m) is non-empty and let fii be a connected 

component of Q+. Multiplying the fist diffetential equation by 4 and the second 

by y, subtracting and integrating oves QI,  we get 

This contradicts the fact that .S> = 0 and 5 O on aQ1: and hence the proof is 

complete. 

Let us compare 

with 



We introduce the notation 

o(A) := { A  E C : there exists <I f O with $ = O on such that A(& +) = 0). 

Let L := d A  - r + @re-Nz). Since L: is (formdy) self-adjoint, the eigenvalues of 

C are real. Since 

it follows from Lemma 4.1 that a l l  the eigenvalues of & are non-positive. Therefore 

(Lqb, $) 5 O for all 11 E dl@) n H2(R). Let 41, be a solution of (4.2). Multiplying 

(4.2) by a aad întegrating the result over Q, we get 

THEOREM 4.2. Suppose 1 < P < e2. Then al1 the eigenvahes of (4.2) have 

negative real parts. 

PROOF. Let X = a + bi and let 11 be a non-trivial solution of (4.2). Shen 
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(4.3) can be rewritten as 

- (L& 4) + / (a - ~ r e - # ( ~ ) [ ~  - +(z)]ëa cos b + prë6('))  [$12 = 0, (4.4) 
Q 

and 

Note that 11 - q5(x)l 1 for ad x E 8, since O 5 Q(x) 5 In@ 5 2, according to 

Remark 2.5. W e  now show that a 5 0. Suppose a > O. Shen 

a - ~ r e - g ( ~ ) [ l -  9(z ) Iëa  cos b + / 3 ~ e - # ( ~ )  

This contradicts (4.4) since - (L$, 11>) 2 O. Next we WU show that a # 0. Suppose 

a = O. Then b # 0: since O $ o ( ~ ) .  Eguation (4.5) implies that b caxmot be an 

integer multiple of T and hence 1 cos bl < 1. Moreover, by (4.4) 

which is a contradiction. This completes the proof. 

It follows fkom Theorem 4.2 that the positive steady state is locally stable 

without any restriction on the t h  dday in the case where 1 < P 5 e2. Thus, 

the time delay is hannless in this case. When P > e2, however, the local stability 
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of the positive steady state can be guarmteed ody for smaU delay. We have the 

following theorem. 

THEOREM 4.3. Suppose P > e2. Then al2 the eigenvalues of (4.2) have neg- 

ative real parts pmuided r E [O, r,], where 
? 

PROOF. Let X = a+& ( b  2 O) be an eigenvalueof (4.2) with a corresponding 

eigenfunction d such that 1 l$li ,pcn, = 1. Suppose a 2 0. There are two possibilities 

to consider. 

(i) cos b 2 0. By ( 4 4 ,  

which is a contradiction. 

(ii) cos b < O and sin b 5 0. By (4.5), J, ë4(1 - #)[dl2 > O so that by (4.4) 

which is also a contradiction. 

Hence cos b < O and sinb > O. Let Il(d) = - Jn e-"") (1 - + ( x ) )  1$12. By 

(4.5) and the fact that b is a second quadrant angle, we have Il($) > O. Let 
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cosb 5 - a + PrIz(*) 
Pre-°I1(1C>) ' 

Since z H & is increasing for $ < x < a, therefore we have 

It follows immediately fiom (4.7) and (4.5) that 

However, the following Lemma 4.4 shows that this is impossible. Hence a < O and 

the proof is cornpiete. 

LEMMA 4.4. Suppose ,û > e2 and r E [O,r.]. Let a 2 O and + E a,'@) n 

H2(n),  wdh Iléllpcnl = 1 and a + f l r & ( $ )  5 ore-'Il($). Then F($,a) < R, 
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PROOF. Note that Iz($) 5 Il(@. By differentiating F with respect to a, it 

is easy to show that F($, a) is decreasing in a. T h d o r e ,  , 

Now, +(x) 5 lnp and Il > 0, and therefore 

Also 

4.5 GLOBAL ATTRACTIVITY OF THE POSITIVE STEADY STATE 
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In this section, we will consider the global dynamics of the dSusive blowflies 

equation. For the case 1 < p < e, the well-knom monotone method is applicable. 

We WU develop a new approach to handle the case where e 5 /3 < e2. The fist  

lemma belom provides an appropriate bound for the solutions to (2.1)-(2.2) as 

t +? 00. 

P 

LEMMA 5.1. Let u(t,  x )  be the solution of (2.l)-(2.3). Then u(t,  x )  > O for 

al1 x E 0 and t > O .  Moreovei, u ( t , z )  > O for al1 x E Q and t  > 1 if uo # 0- 

Furthemore, lirn sup,,, u(t, x) 5 pe-' - 

PROOF. It is easy to show that u(t ,z)  2 O for aU x E fi and t > O. Since 

uo f O, we have 

Therefore there exists to E [O, 1) suc. that for any given t > to, we can find x E f2 

satisfying u(t, x) # O. Moreover, according to the minimum principle and the 

strong minimum principle (cf. Protter and Weinberger (1984)), we have u(t ,  x) > 

O for ( t , s )  E ( t o , m )  x R, and elan < O for t > to. Let w( t ,x )  = u( t ,x)  -Be-'. 

Then 



Therefore w is a lower solution of the parabolic equation 

together with Dirichlet boundaty conditions and an initial condition which domi- 

nate those of W. By the cornparison theorem, we have 

It follows from Friedman (1964, p.158 Theorem 1) that liml+, v(t, x )  = O uni- 

formly in 0. Consequently, limsup,,, w(t ,  r) < limt,, u(t, r) = O. This corn- 

pletes the proof. 

Subsequently, one has the following convergence theorem whose proof will be 

carried out using the monotone method which is originally used by Sattinger (1972) 

for reaction difision equations (without time delay). Of course, a modification is 

needed to apply this method to the time delayed reaction diffusion equations. 

THEOREM 5.2. Suppose 1 < B < e. Then the solutions of (2.1)-(2.2) con- 

verge to the positive solution of (2.4). 

PROOF. Lemma 5.1 implies that for sufnciently large t ,  O < u(t, x )  5 1 

for ail x E 12. On the other hand, since the function u * ue-u is increasing for 

O 5 u 2 1, the monotone method can be applied. Consider the eigenvalue problem 

LOO 



which has a positive solution (A*, 4') since (B - l)r > dXi. Then for E s m d  

enough such that e-€4' > 1 - ̂L e4* is a lower solution of (2.4). Let ~ ( t ,  x) be B r  ' 

the solution of (2.1)-(2.2) with initial condition É@. clai&: 2 3 O. Consider the 

set S = {t  1 0 : 2 O, vz E 0). Clei~1~1y, O E S since 

Mie will show (O, 1) C S. For t E (0, l), let wh(t,x) = zt(t + h,x) - ~ ( t ,  x), where 

h is sdciently s m d  such that t + h E (O, 11 and ~ ( h ,  2) - ~ ( 0 :  x) 2 O. Then we 

have 

and 

au The maximum principle implies that w&, x )  2 O and hence 2 O. Therefore 

[O, 1) C S holds. Moreover since S is a closed set, [O, 11 c S holds as well. 

Noting that the nonlinear term (delay term) is a monotone increasing function for 
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O < u 5 l, we obtain by induction that [O, n] c S for any integer n 2 O. Hence 

[O,oo) = S, that is 2 O for & t 2 0. Therefore g(t,z) 4 d(s)  as t + oc. 

Similady, we can show that = 1 is an upper solution of (2.4). Let ü(t, z) be the 

solution of (2.1)-(2.2) with initial data $. Then we use the same approach as above, 

with a slight modification if necessary, to obtain $$ 5 O. Hence ü(t, x) + 4(s)  as 
I 

t + m. This completes the proof. 

Next, we will consider the case e 5 p < e2. To prove the convergence theorem 

in this case, we propose a new approach. We expect that this new method is 

applicable to 0th- non-monotone Dirichlet boundary psoblems as weU. Our idea 

is as follows. 

First we decompose the space Cl into two parts, Le., 

where +(x) is the positive solution of (2.4). Let u(t, x )  be a positive solution 

of (2.1)-(2.2). We will prove that u(t,  x) -t +(x) for x E (x E a, 4 ( x )  5 1) . 

This can be done by the monotone method together with an extension tri& (see 

Lemma 5.6). As for x E (x E $2, 4(z) > 13, we will show that the dinerence 

u( t ,  x) - $(x) is either a deaeasing oscillating function dominated by the boundary 

value of the function itself (see Lemma 5.10 and Corollary 5.11) or an eventually 

positive (negative) fiuiction (see Lemmas 5.7 and 5.9). In either case, it follows 
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that u(t ,x)  + 4(x). Based on Lemma 5.5, Lemma 5.8 is an auxiliary result to 

Lemmas 5.9 and 5.10. Also, Lemma 5.4 is used in the proofs of Lemma 5.7 and 

5.9. Combination of Lemmas 5.4-5.11 gives rise to the following global attractivity 

result . 

TBEOREM 5 -3. Suppose e < ,O < e2. Then the solutions of (2.1)-(2.2) con- 

verge to the positive solution of (2.4). 

PROOF. The proof wil l  be carried out in a number of lemmas. 

where c > O ,  y(t)  2 0,and r ( t )  2 O .  Suppose r ( t )  -t O as t -t m. Then y(t) + O as 

t -, m. 

PROOF. The proof is straightforwatd. 

Lemma 5.4 aad the following Lemma 5.5 are helpfd in the proof of Lemmas 

5.7-5.9. They axe &O the bases of our approach to spatial decomposition. 

LEMMA 5.5.  Assume e < P 5 e2. Let u(t,  x) k a solvtion of (2.1)-(2.2) 

and let QI be an open sdse t  of 0 satisfying 5 i; C. Suppose that there ez- 
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Note that g(0)  = B 2 ë 1  - eBe-' > O for e < ,6 < e2. Then there exists €1 > O, such 

that g ( ~ )  2 0 for all O 5 E 5 €1. Hence, 

,6 (Pe- '+~)e - (P~- '+ ' )> l+~ ,  - f o r O < c < ~ 1 .  

New for any O < E 5 €1, by Lemma 5.1, there exisusts Ti 2 To , such that 

u(t - 1,x) < B e - ' + € ,  for dt 2 Tl and x 

To complete our proof, we divide our discussion into three parts. 

Part A. Suppose that for any given t 2 Ti, c(t) > t - 1- Then, we have 

g(c(t), q( t ) )  O and Au(c(t), ~ ( t ) )  2 0. By ( 2 4 ,  this implies 

We will complete Part A by discussing the following two cases. 

Case 1. There exists Tz 2 Tl such that u(C(T2) - 1 ,  r)(T2)) 2 1. Since u * ue-' 



is decreasing for u 2 1, we use (5.2) and (5.3) to get 

Case 2. u(((t) - 1, t)(t)) < 1 for d t 2 Ti. Denote 

Then by (5.3) we have 

for aJl t 2 Tl. Next we show that the function m(t) is monotone increasing for 

t 2 Tl. For s 2 Tl,  suppose that t - 1 < s 5 t .  Firstly, if t - i < { ( s )  and e(t)  s, 

then cleasly m ( s )  = m(t). Secondly, if s - 1 < f(s) 5 t - 1 and t - 1 < E(t) 5 s, 

one concludes that m(s) < m(t) since u(e(s), ~ ( s ) )  is the minimum of u(C, x) on 
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[ s - l y s ]  x z  ~ h i r d l ~ , i f s  < ~ ( t )  _<t, then s - 1  < f ( t )  -1 5 t -1 5 s and hence 

On the other hand, suppose Tl 5 s < t - 1. Then there exists an integer 1 > 1  

such that s E [t - 1 - 1, t - I l ,  so that we have 

Therefore we conclude that m(t) is monotone increasing for t 2 Ti . Let 



This hpEes emo > P and hence mo > 1 since P > e. Theiefixe, there exists 

Tz > TI such that m(T2) 2 1. Then one condudes that, by repeating Case 1, 

u(t, x) 2 1 for d (t ,  s) E [T2, m) x K. This completes the proof of Part A. 

Part B. Suppose that for any given t 2 Ti, t(t)  = t - 1. Let m(t) be 

defined as in Part A. Clearly, m(t) is monotone increasing for t 1 Ti. Now, for 

O < Ihl < 1, we have 

and 

for -1 < h < 0. 

T her efore 

where D-,  D-, D+, D+ are the Dini derivatives. Note that monotone function is 

Merentiable hast everywhere. Therefore, we have 



Next, we will show that for any O < c < q, there exists a sequence {tk) satisfying 

th 1 Ti, O < 4+i -tic < 1, for d k 2 1; 

t k + m ,  wk-bm; and 

for all  k 2 1. 

If thisris not the case, then one can fmd O < 5 €1, and a sequence of intenals 

k + oo, and moreover, 141 2 1. Therefore, for any k > 1, we have 

This contradicts the boundedness of the function m(t). Hence the aforementioned 

sequence {tk) exists. Now, for k 2 1, since u(tr,q(tk + 1)) is the minimum of 

u(& z) on [tk, t k  + 11 x and q(tk + 1) E Olt  we use (2.1) and (5.4) to get, 

Using (5.5) and (5.6) instead of (5.3), one can follow in a similar manner to the 

proof of Part A to complete the proof of Part B. 

Part C. This is the complement of Parts A and B. Suppose that there 

exists an increasing sequence ( tk } ,  where t k  2 Ti for ai l  k 2 1 and t k  -t oc as 

n -t m, such that E(tk) > t k  - 1 and t)(tk) E RI.  Therefore, we have 



Without loss of generaiity, we assume trti - 4 > 1. 

Claim: There exists 2"' > ti , su& that 7 - 4 8 )  2 1. 

Using the arguments similar to Case 1 of Part A, one can show that, if there 

exists ko 2 1, sati-g u(c(th) - l i ~ ( t k 0 ) )  2 1, then m ( t k o )  > 1. Thezefore, the 

c l a h  is true for this case. 

ru'ext, we assume that m(t) < 1 for aU t 2 ti, and that u(c(tr) - 1, q ( t k ) )  < 1 

for d k 1 1- W e  show that (m(tk)}& is a monotone hcreasbg sequence. For 

any k 2 1, we choose aninteged 2 2, such that tt E [tk+i - 2 ,  t k f l  - Z + 11. 
According to (5.7), we have 

We now consider [tr+l - 2, tt+l - 11 x Clearly, if f(tt+1 - 1) = tk+l - 2, we 

have 

On the other hand, suppose 6(tr+i - 1) > tk+i - 2. According to (5.7), we have 

Clearly, u ( 5 ( t k + l - l ) - 1 ,  ~ ( t k + ~  -1)) < 1. Otherwise, we can get m(tk+l -1) > 1 by 

following the same azguments as Case 1 of Part A. This contradicts our assumption. 
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Now, using the same discussion a .  Case 2 of Part A, we obtain (5.9) as well. 

Invoking the above arguments ( I  - 2) times, we eventudy get 

Subclaim: m(tk+c+l - 1 + 1) 2 m(ti) .  

[ tk+l - 2, t t ] .  Now we consider the case where f(twi - 1 + 1 )  > t r .  According to 

(5.7), we have 

Obviously, u(c(tk+l - 1 + 1 )  - 1,  ~ ( t ~ + ~  - 2 + 1 ) )  < 1. Othenvise we use the same 

discussion as Case 1 of Part A to get m(tk+l - 1 + 1)  > 1. This contradicts our 

Since u H ue-O is monotone increasing for u 5 1, we use (5 .11)  and (5.12) to 

obtain 

W k + l  - 2 + 1) 
2 pu(c(tt+l - 1 + 1 )  - 1, i)(tk+l - 2 + l))e-~(~(tk+l-'+l)-l,s(rk+l-t+l)) 

> - pm(tk)e-m(tk) 

1 pe-'m(tk) 2 m(tk). 



Hence, the subdaim holds. 

Now we combine (5.8), (5.10), and (5.13) to get rn(tk+l) 2 m(tt ) ,  and 

moreover 

Then we take the limit a s  k + w to obtain 

where mo := limk,, m(ta) > O. Hence ma > 1 since > e. Therefore, there 

exists ko 2 1, such that m(tk,) 2 1. Again, this contradicts our assumption. The 

proof of the Claim is complete. 

Findy, one can easily show u (t, t) 2 1 for (t ,  z) E [T2, cm) x K. For that 

we just need to consider [T2 T2 + 11 x ni- Obviously, if ((T2 + 1) = Tz , we have 

m(T2 + 1) 2 m(T2) 2 1. On the 0th- hand, if c(Tz + 1) > Tz, then we use the 

same discussion as Case 1 of Part A to get m(T2 + 1) > 1. This completes the 

proof of Part C. 

LVe introduce the following notations 



If p = e, it foUows from Remask 2.5 that a& is empty. Therefore, for this 

case, the global attractivity of the positive steady state can be concluded by the 

following lemma. 

LEMMA 5.6. Let u ( t ,  z) be a solution of (2.1)-(2.2). Then, for z E RL, 

u( t , x )  + + ( x )  (pointWise) as t -t W. 

PROOF. Without loss of generality, we assume that uo(O, x )  > O for all x E 52 

and 6 E [-1, O]. We also assume that %la* < O for alla E [-1, O], and that u(t, x) 

satisfies (2.7) for aU t 2 0.  Let ~ ( t ,  x) be the solution of (2.1)-(2.2) with the initial 

condition E#*(x) ,  where E is chosen s m d  enough such that uo(9, x )  2 €4' (x) for 

all x E a and 0 E [- 1, O], and 4' (2) is defined as Theorem 5.2. Then one can 

use the same arguments as the proof of Theorern 6.2 to show ~ ( t ,  z) < 4 ( x )  and 

- 2 2 O for all s E nt, and t > O. Therefore, we have that 

Let û( t ,  x) be the solution of (2.1)-(2.2) with the initial condition C4(x) ,  where 

C > 1 is large enough so that C ~ ( X )  2 uo (8 ,  x) for a l l  x E a and û E [- 1,  O ] .  Let 

As before, we can show that 5 O for all x E O'l and hence 

iim ~ ( t ,  x) = 4 ( x ) ,  for x E 521,. 
t+oo 



It is easy to see that, according to (2.7) and the (homogeneous) Dirichlet boundary 

conditions, 0; (u) is a nonempty open set. Moreover, (U ) n Cl& is nonempty and 
t 

u ( ~ , z )  h ( t , ~ )  for ail x E Q~(u) nnm. Hence 

h i n f u ( t , x )  2 lim u ( t , x )  = 4 ( x ) ,  for allx &(u) nSlk. 
t+oo t 4 0 0  - 

On the other hand, for x E Q ~ ( u )  n n QL,, one has ù(t, X )  2 u(t ,  2) .  This leads 

Therefore, 

- 
Next , we extend the region of convergence to the entire R L .  We denote 

Suppose So S Stk. Let Re be an open subset of R& such that 



For any given 6 > O, we define a subset of 5 as follows: 

where dist(z, aQ) means the distance fkom x to the bou~daxy of a. Let 6 be chosen 

s m d  enaugh such that Ss(Xl) 5 S, It is clear that Ss(aSZ) > aQ. We denote 

- 
K = m a x m ,  - K =  a-lin 

tac XEE\S~ (an) 

- 
Clearly, O < K < K < 1. Now for m y  given O < c < 1 - K, one can use the 

- 
compactness of R, := So\Ss(aQ) and the continuity of 4 ( x )  to fhd Tl 2 O, only 

depending on c, such that 

Indeed, since limi+, u(t ,  x) = #(s) for all x E s, we conclude that, for the above 

chosen c and any 55 E O,, there exists f(2, c) 2 O, such that 

K E  
lu(t, Z.) - @)l < 3' for au t 2 f(5, €1 

Moreover, since #(x) is continuous and since u(t,  3) satisfies (2.7), we c m  find an 

open neighborhood N(z,  E )  of 2 such that 



and 

for ail x E A@, c), where $3, the jth cornPonent of q, is an intermediate value 

between x(3 and ~ ( j ) -  Since (J i , ,  N(3, c) > Q, and that R, is compact, there 

exist N(iFiy~)y i = 1,2,=-• $ 1  < oo, such that u:==,N(I~ ,E)  > as, andforeach 

w 

Z j ,  i =  1 , 2 , - - -  , 1 ,  (5.15)-(5.17) hold. Thenforanyx €na,  thereexïsts 15 io 5 

2 such that x E J ( I , ,  E ) .  Let 

Then, for al l  t 2 Tl, we have 

4tY 4 - 4 ( 4  

< lu(tt 5 )  - ~ ( t ,  & O )  l + [ ~ ( t ,  Z i O  - 4 ( i i o  ) l + I+(Iio) - +(XI 1 

I K€* 

Note < + ( x )  for x E R,. This implies (5.14). 

For B. := 651. n (OL \So), we can follow the same discussion as above to 

choose finite number of open b d s ,  B(IkTa) ,  k = 1,2, , I f ,  satisfjring 



Clearly, So 5 Si. Ftuthermore, for d t 1 Ti and z E Si\&, we have 

- 
Noting that O < E < 1 - K and that 4 ( x )  < 1 for 3 E Si, we get 

u(t,x) s v ( x )  5 1, forallt E [Tl,Ti+l],and 

dAu(x) - rv(z) + prv (z )ëv (" )  < - O. 

By redefining ù(t, x )  with the initial function v ( z )  for t E [Ti, Ti + 11, we can show 

as before that lim*,, u(t, z) = &x) for ail x E Si. We can keep repeating the 

above extension to obtain a sequence of open sets {Sk), k = 1,2, - - - , satisfying 

Obviously, hk+, Sk = QA. Therefore, we have hi-, u(t, x) = + ( x )  for all 
- 

x E Qg. The convergence of u( t ,  x )  to # ( x )  on 520 follows immediately from the 

continuity of u (t, x) and +(x). This completes the proof. 

LEMMA 5.7. Suppose e < P 5 e2. If eventvally u(t, x) 2 b ( x )  for x E AL, 

then u(t,x) -+ 4 ( x )  in L2(Q) us t -t m. 
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PROOF. RecaU that 

Multiplying (5.18) by (u - 4)  and taking integral over 52, we get 

Therefore, 

Then we apply Lemma 5.4 to get the conclusion. This completes the proof. 

The following lemma implies that for any given r > O, there exists f such 

that u (t ,  x), a solution of (2.1)-(2.2), is bounded below fiom 1 - E for d t > 
- 

and z E fi&. 



LEMMA 5.8. Suppose e < P e2 and let u(t ,  x) is a solution of (2.1)-(2.2). 

Then 

and 

Clearly, if there exists To > 1 such that 

- 
for aU t 2 To, then, by Lemma 5.5, we have u( t , x )  1 1 for alI x E Ok and ail 

sufEciently large t .  Hence, (5.19) holds. Next, we consider the case where there 

exists an increasing sequence { t  sati-g 

l ~ t k < t k + l ,  f o r d k > 1 ;  

t k  -) 00, a s k - m ~ ;  

m( tk )  = ma( tk) ,  for alI k _> 1. 

By Lemma 5.6, iimt+,u(t,z) = #(2) = 1 for a l l  x E &&. Hence, for any 
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su6ciently s m d  c > O, there exists ko 2 1 such that 

me(t) > 1-E,  for allt 2 t k o .  

Claim: For any integer 1 2 1, we have 

Proof of the Claim. Clearly, (5.21) holds if rn(tko + 1) = m a ( t  ko + 2). Now suppose 

m(tko + 1) < m s ( t k o  + 1). On [tko + t - 1, tko + 11 x fikt if the minimum of U(E, 3) 

is obtained at t ko  + 2 - 1, then, rn(tko + 1) 2 m ( t k o  + 2 - 1). On the other hand, 

suppose the minimum of u ( t ,  z) is obtained in ( t k o  + I - 1,  tko + 11 x 8k. We foUow 

the proof of Part A of Lemma 5.5 to obtain 

Note that m(tko) = ma(tko). W e  get (5.21) &er invoking the same procedure as 

above for at most ( 2  - 1) times. This completes the proof of the Claim. 

Forany t 2 th, we h d  aninteger 12 1 such that tko + I -  15 t 5 th  + l .  

From (5.20) and (5.21), we get 



- 
uniformly for x E fi&,. Since c is axbitraxy, (5.19) foilows. This completes the 

With the help of Lemma 5.8, we are ready to prove the following lemma. 

PROOF. Using the calculation similm to the proof of Lemma 5.7, we have 

Noticing that fiom Lemma 5.8, lim idt+, u(t, 3) 2 1 uniformly for z E fik, and 
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that u( t ,  x )  satisfies (2.7), we have 

Xow we apply Lemma 5.4 to obtain the conclusion. The proof is complete. 

LEMMA 5.10.  Suppose e < ,û 5 e2 and there ezLPt To 2 1, co > O svch that 

where ( t o ,  zo)  E [t - 1, t] x fi& and t 2 To. Then, there ezists Tl 2 To svch that 

M(t) is monotone decreosing for t 2 Tl. 

PROOF. Accordkg to Lemma 5.8, for any given O < c < 3, we c m  find 

- 
Tl 2 To, such that u(t - 1, z) + e 2 1 for d t 2 TI and x E 6 ~ .  In the rest of the 

- - 
proof, we assume t > Si. We consider [t - 1, t] x QL. Clearly, if the maximum of 

lu({: x )  - + ( x )  1 is obtained at t - 1, then we have 

On the other hand, suppose (toi zO) E (t - 1, t] x 6&. We wiii show (5.32) still 

holds. Suppose 



is the positive maximum in ( t  - i,t] x dk, where to E ( t  - 1 4  and zo E fik. 

Then, we have 9 2 O and dA(u - 4 )  < O at (to , to ) . By (5.18), this leads to 

Cleasiy, u(t0 - 1, xO) < ~ ( x o ) .  Otherwise, since x H ze-= is decreasing for x 2 1 
r 

we have 

which is a contradiction. Moreover, there exists E [u(to - 1, zo), #(zo)] such 

= (1 - e ) ë E  (u(t0 - 1, XO) - ~ ( x o ) )  

< ë2 (~(xo) - u(to - 190)) - 

Substituting (5.24) into (5.23) gives rise to 

M ( t )  = u(t09 %O) - &O) 

5 W 2 ( 4 ( x o )  - u(to - 1, xo)) 

5 p e - * ~ ( t  - 1 )  < M(t - 1 ) .  

On the other hand, suppose 

i.e. u (toi xo ) - +(xo) is the negative minimum in ( t  - 1 ,  t ]  x fi&, where to E ( t  - 1 ,  t ]  

and xo E fi&. We divide our discussion into two cases. 
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case 1. ~ ( t o  - 1, xo) > ~ ( x o ) .  We use the same arguments as above to get 

~ ( t o ,  20) - ~ ( x o )  2 - p ë 2  ( u ( h  - 1, X O )  - &-O)) . (5.26) 

Case 2. u(b - 1, zo) < ~(xo). Note that u(to - 1, xo)  + E  2 1. Therefore we obtain 

We combine (5.26)-(5.27) to obtain 

and 

whkh imply M(t)  5 M(s) .  If t o  4 (s - 1, s] or tl e ( s  - 1, $1, then ( t o  - 1) E ( s  - 1, s]  

or ( t l  - 1) E (s - 1, s], we s t U  get the same conclusion. Now if Ti < s < (t - l), 
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then there exïsts a positive integer 1 2 1 such that s E [t - I - 1, t - 11. According 

to (5-20), (525), and (5.28), we have 

M(s)  > M(t  - k) 2 M(t) .  

This completes the proof. 

COROLLARY 5.11. Suppose e < P < e2. If u(t, x) - 4(x) oscillates for x E 

and 

Ma ( t )  : = max lu(& 4 - 4(4  1- 
( ~ , t . ) ~ [ t - l , t ]  xaliL 

Claim: For any sufficiently s m d  E > O, there exists t,  such that 

Proof of the Claim. Suppose the Claim fa&, Le. there exist €0 > O and > 1 

such that 



We will show that there exists an inaeasing sequence {tr)g, satisfying 

TO < t k  5 tk+i? for d k 2 1; 

t k  + 00, as k -t m; and 

M(tr) = Ma(tk), for all k 2 1. 

Indeed, if this is not the case, Le. for dl t 2 To, the maximum of lu(c, x) - 4(x)l 

on [t - It t ]  x fi&, is obtôined in [t - 1, t ]  x fi&, then, according to Lemma 5.10, 

M(t )  is monotone decreasing for t 2 Ti. We denote Mo := limt+, M(t) .  We will 

dismss two cases to show Mo = 0. 

Case 1. Suppose that c(t) = t - 1 and q(t) E &, for ail t 2 Ti. For any 

O < c < min(r(1- ,8e-*)eo7 a}: we use the arguments similar to Part B of the 

proof of Lemma 5.5 to find a sequence {t;F)& such that 

fk ?Tl, O dk+, -&  < 1, for all k 3 1; 

for al l  k 2 1. 

For any k > 1, we consider 

e u(&, il(& + 1)) - q5(?(& + 1)) is the positive maximum. Without loss of 

generality7 we may assume, by using the continuity of u(t, x) and + ( x ) ,  that there 

"sts a sequence {h j)gi9 satisfying O < 1 hi ( < 1 and hi -t O as j + m, such that 



Now we foUow Part B of the proof of Lemma 5.5 to obtain 

On the other hand, suppose 

i-e- u ( 6 ,  q(& + 1)) - 4(q(G + 1)) is the negative minim~~i. Proceeding as before, 

we get 

Using (5.30)-(5.32) and following a similar argument as in the proof of Lemma 

5.10, we obtain 

~ ~ ( i k  + f )  5 e f T,&-*M(&), 

Therefore, we take the Limit as k + w to get 

that is 

This implies Mo = O since E can be arbitrarily small. 
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Case 2. Next we assume that there exists an inaeasing sequence, still denoted by 
- 

{fk)& such that on [fk, Zk + L] x Rk, we have c(& + 1) > & and T(& + 1) E f&, . 

In this case, we follow the proof of Lemma 5.10 to get 

Then we take the limit as k -+ CCI to obtain 

Mo fle-2ib10, 

which implies Mo = O since Be-* < 1. 

Therefore, the aforementioned sequence { t c )  exists. B y Lemma 5 -6, 

lim u(t, x) = (b(x), for z E 36;. 
t-roo 

Hence, for any O < E < €0, there exists ko 2 1 such that 

Next, we show 

Clearly, (5.35) is tme if M(tk, + 1) = Ms(tko + 1). Now suppose M(tko + 1) > 

Ma(tko fl). On [ t k o ,  tko +1] x fis, ift(tk, +1) = tko, then, iv1(tk, +1) 5 Ma(tko). 

On the other hand, suppose c(tko + 1) > tko. We follow the proof of Lemma 5.10 
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to obtain M(tko + 1) 5 M(tc,,) = Ma(tko). Thedore (5.35) is tme. We combine 

(5.34) and (5.35) to get M(tko + 1) 5 c < m. This contradicts (5.29) as well. The 

proof of the Claim is cornplete. 

Xow that the claim holds, we condude limt+, u(t, x )  = 4(x) according to 

the local asymptotic stability of the positive steady state (Theorem 4.2). This 

completes the proof. 

So far, we have shown the global attractivity in the sense a Next, we 

c l a b  that the convergence theorems can be enhanced by using an a priori estimate 

and an interpolation inequality. More precisely, we have the following theorem. 

THEOREM 5.12. Let u(t ,  x) Le a solution of (2.1)-(2.2) and U(x) be the 

comesponding steady state, Le. the zero solution or the po~itive steady state 4(x). 

Then, there e&ts a corntant K,  independent of tirne t ,  such that 

where O < a < 1 is a constant deczded by (5.41). 

PROOF. Throughout the proof, we use K to denote various constants inde- 

pendent of t .  For any n < p < m, let operator A : D(A) + D'(Cl) be defined as in 

section 2. Clearly, A-' is bounded in P(f2). Therefore we have 



for some positive constant K. Now since u(t, z) is a solution of (2.1)-(2.2) with 

u(0, a )  E P(Q) we have u(t,  -) E Wvp(f2) n W;'*(Q) for t > 1. Ushg (5.36) and 

an a priori estimate (cf. Pay (1983, p.242)), we get, for t > 1, 

FoUowing an argument similar to that in section 2, we have 

Hence cornbining (5.37) and (5.38), we obta.in 

where p > n, O < a < 1, and moreover, p and a satisfy 

Substituting (5.39) into (5.40) gives Bse to our conchsion. This completes the 

proof. 
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REMARK. AS we mentioned, the s a m e  approach with a slight modification can 

be applied to our general type of delayed reaction diffusion equations. Oscillation 

analysis can be camed out by following the very similar procedure as  in Chapter 

3. Unfortunately, Hopf bifurcation analysis for the Dirichlet boundary problem is 

far fkom easy and computer aid may be required. We will discuss this in a separate 

chapter. 



CHAPTER V 

NUMERLCAL INVESTIGATION AND HOPF BIFURCATION 

We continue studying Dirichlet boundary problems of the dfis ive Nichol- 

son's bIovdiies equation. For sirnplicity, we confine the spatial variable to be in 

one dimension. More precisely, we will consider the modifled equation as follows: 

au(t ,x)  a2u 
= d-(t, X )  -  TU(^, X) + P ~ u ( t  - 1, x)e  -u(t-1,x) 

dt dx2 

where x E (0, l), t > 0, and B E [-Il O]. Then the steady state of this system 

will be the two-point boundary problan 

d#== - T# + /3rbe-" O, 

d(o) = 4(1) = o. 

As we have shown in chapter 4, the boundary value problem (1.3) bas a unique 

positive solution if and only if 



where Xi is the principle eigendue of -& with a (homogeneous) two-point 

boundary condition. One also observes that 5 Inp for any positive solution 

4 of (1.3). 

Our motivation to 

bhcation. Recall that 

steady state is 

study (1.3) numerically derives from the studies of Hopf 

the linearized equation of (1.1)-(1.2) about the positive 

The coriesponding eigenvalue problem is 

Numerical investigation of Hopf bifurcation requires us to compute the steady 

state fist. 

Throughout this chapter, we assume inequality (1.4). Under such assump- 

tion, systern (1.3) has two solutions. There are several papers concerning the 

numerical solutions to nonlinear two-point boundary value problems with multi- 

ple solutions. Jin's (1992) paper is the only one that can be found with such a 

title. One should also mention Wgower (1975), and Allgower and McCormidc 

(1978) in this subject. 

IR this chapter, we propose a new approach which proves to be applicable 

to system (1.3). We will not compare our approach with others, even though we 
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had tried with other methods to solve our problem. 

The rest of this chapter is organked as follows. IR section 2, we present 

the numerical methods applied to equations (1.3). Based on this approach, some 

numericd simulations are provided in section 3. FoIlowing in section 4 is the out- 

Iined idea of proving the existence of pure imaginary eigenvalues of the eigendue 

problem (1.6). Necessary conditions axe &O obtained in this sedion. 

In this section we will describe the approach as follows. Note that d(z) 

is a smooth function and that +(O) = $(l) = O, there exists at Ieast one point 

xo E (0 , l )  such that #'(xo) = O and m := $(zo) = rnaxz~[o4i #(x). klultiplying 

-& in (1.3) and then integrating, we obtain 

Evaluate the integrals to get 

Rewrite (2.1) into 



Let us suppose xo is a maximal point such that positive sign is chosen in (2.2) for 

x E [O, x0) -  Define 

7 
f(w) := 2 [w2 + 2P(w + l)e-w] . 

Then, solving (2.2) over [O, zo], we have 
* 

d ( 4  1 
dw = x. 

J f ( w ) - f ( m )  

Now let x = xo and note that +(xo) = rn we have from (2.4) 

Making the substitution w = mt we then write the above equation as 

I 

JO d m -  
dt = x0,  

where, 

Next, we will show that the steady state # has only one maximal point. In fact, 

let us consider the fiuiction F(s)  defined by 



Note that 

and that by Taylor% expansion 

where, 

Clearly, for O 5 t 5 1 and O s 5 In& we have 

where, h; = )e-' + h , B ( l n D  + 1). Hence, for any O < so < ho, there exists 

a constant K, depending on so, such that < K for d t E [O, 11 and O < 
s 5 so. Therefore, the improper integral S,' - l d t  is d o d y  convergent for Jm 
O 5 s < so. This implies that the function F(s)  is continuous for O 5 s < Inp. 

8 g  O t 

By the s a m e  token, we can show that the improper integral 1,' dt is also d m -  
uniformly convergent for O s 5 so, where again, so E [O: ln $'). Hence by Leibniz's 

rule, 



Moreover , we have the following. 

PROPOSITION 2.1. Let g(s, t )  be defmed 6y (2.6). Then 

for any t E [O, 11. 

PROOF. In fadl by direct calculation one has 

where T(s,  t )  := [-(si! + 1)2 - I] ërt f [(s + 1)2 f L] e-s. So it is sdcient to 

aT(s t )  
show that T(s, t )  5 O for any t E [O, Il. Note that T(s,  1) = O and that + = 

~ ~ t * e - ~ '  2 O7 and so we have T(sl t )  2 O for t E [O, 11. The proof is complete. 

Thus, F ( s )  is an increasing and continuously dinerentiable function. Fur- 

themore, one can show the following. 

THEOREM 2.2. Let F ( s )  be defined by (2.7). Then F ( s )  is increasing and 

cont inuovsly difetentiable for s E [O, ln p). Moremer, 

PROOF. We just need to show that (2.11) holcls. In practice, for any M > 0, 

we choose 



where, Kz = d$d'8+2+28(Ki+(inp)'). 1 
Let 6 = 1 - 2(/3ëS1 - 1). Then, O 5 sl < 

Inp and O < 6 < 1. NOW for any SI 5 s < hp, since F(s) is monotone increasing, 

we obtain by using (2.8)-(2.10) 

Therefore F(s) + +oc as s -t Inp. This completes the proof. 

The above theorem together with equation (2.5) d e s  out that the steady 

state has more than one maximal point. If on the contraty, there are two maximal 

points, say so and 11, then it is easy to show that ~ ( X O )  = ~(ZI) 

is impossible according to equations (2.5) and (2.11). Therefore, 

following corollary. 

= ln& This 

we have the 

COROLLARY 2.3. The steadrj state has only one maximal point. 

So far, we have made it clear that there is a unique maximum satisfying 

1 equation (2.5). Let us still denote by xo the unique maximal point. Then, xo = 5 

(cf. Allgower (1975)). Therefore according to equation (2 .9 ,  one can solve F(s)  = 

$ for the maximum value m. Newton iteration is applied here and the convergence 
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of this method is guaranteed since F(s )  is monotone increasing for O 5 s < Inp. 

AR initial guess is chosen slightly less than Inp. Note that InB cannot be aa initial 

guess. 

Since the expression of F(s) is an integration, one needs to evaluate the 

integral before engaging in Newton iteration. Note that g(s, 1) = O and hence 

* 

t = 1 is a singular point for the integration. Therefore we choose a formula of 

Gauss type (cf. Davis and Rabinowitz (1984), p.179): 

Here, O 5 5 1, XI. = 1 - G is the kth positive zero of the Legendre 

pol~~~omial P2n (2) and whn is the weight corresponding to & in the nile G2n9 Le. 

a 2n-point interpolation by Gauss d e  (c.f. Davis and Rabinowitz (1984), p.97). 

To apply this formula we need to rewrite F(s)  into (2.8). By using the same 

scheme a s  above, one can also compute 

where, 

is finite for O 5 s < lnp. 

Now for any x E (O, xo), let a = #(x). Viewed as a funetion of a with iked 
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rn, equation (2.4) can be rewritten as 

One can also show that for O < a < rn, C'(a) > O. Therefore again, Newton 

iteration wiU be applied. ù, order to get an ideal initial guess of a, we usually , 

start -nrith x < zo  near xo and hence a is closer to m. On the 0th- hand, since 

cr < m, the integrd has no singular point for t E [O, il. Thus we choose Simpson's 

formula (cf. Davis and Rabinowitz (1984), p.57-p.58) to eduate the integral. 

5.3 NUMIiCRICAL RESULTS 

We have proposed an approach to solve two-point boundary problem (1.3). 

Although there are many numerical methods in treating two-point boundq  prob- 

lems together with a well-developed cornputer solver (see for instance, Ailgower 

and McCormick (1978), Cash (1986, 1988), Cash and Wright (1990, 1991, 1995), 

Duvallet (IWO), Jacobs (1990), Jankowski (1991), Kalaba and Spingarn (l977), 

Watson and Scott (1987)), however, very few of them are successfüi in solving 

our problems. The difEculties lie in that two solutions (the zero solution and the 

positive solution) exist in equation (1.3). We had tried solver TWPBVP, which is 

a Fortran program based on the mono-implicit Runge-Kutta formula and an adap- 

tive mesh rehement for solving two-point boundary problems (see Cash (1986, 
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1988), Cash and Wright (1990, 1991, 1995), and the references therein for details). 

Udortunately, when applied to our equation, this software always ends up wïth 

the zero solution, no matter what ranges of parameters are chosen. We also ap- 

plied other methods, for example more straightforward methods like a diffaence 

scheme, but the results are still unsatisfactory. Surprisingly, the proposed methods 

in section 2 dways work. One should mention the well-known shooting method, 

which is expected to be applicable to our problem. It might be a good idea to 

compare the shooting method with the proposed methods in section 2. But for 

the time being, we just present some nuxnerical examples based on our methods 

without comparing with any other methods. Fig 5.1 and Fig 5.2 illustrate that, 

for lârger P and T, the top of the c w e s  looks like a flat roof. As f l  and r decrease, 

the flat roof gradudy disappears (see Fig 5.3 and Fig 5.4). Nevertheless, in each 

of the figures, there is only one maximum contained within the interval. 



0.2 0 . 4  0.6 0.8 1 
Fig 5-1 

-0.51 F i g  5.3  -0.51 Fig 5 . 4  



5.4 DISCUSSION ON HOPF BIFURCATION 

As we mentioned in section 1, our motivation to study the numerical simu- 

lation of a positive steady state is that we desise to determine periodic solutions 

bifurcating f h m  that positive steady state. There are very few papers dealing with 

the Hopf bifurcation analysis for Dirichlet boundary problems. For the diffusive 

Hutchinson equation with Dirichlet boundary conditions, Busenberg and Huang 

(1996) prove the existence of a Hopf bifurcation by using perturbation methods 

together with the implicit function theorem. Uafortunately, their approach can 

not be applied to our case. In what follows, a new idea is presented to solve the 

eigendue problem. 

R e c d  equations (l.6), the characteristic equation of the linearized equation 

about a positive steady state is, 

-+,, + (T + x - p ~ e - $ ( ~ ) ( ~  - +(z))e-') <p = O, 

+(O) = $(1) = 0. 

For any X E C, let G ( x ,  y, A) be deftied by 

The function G is bnom as Green's fimction of equations (4.1) (see Coddington 

and Levinson (1955), p.192) and equations (4.1) can be rewritten as 



We are interested in finding non-zero $ ( x )  with $(O) = $(1) = O, such that (4.3) 

possesses pure imaginary eigenvalue h = bi, where b E Bf. Let's consider (4.3) 

together with the constraint 

P 

We intend to look for b and rl> such that (b ,$)  # O, i.e. b # O and O # y5 E 

Hi (O, 1) n H2 (O, 1). Here is the idea. Let 

Choose $0 E Uo, and then fhd E [:, r], such that +i E vo7 where gji is defined 

by (4.317 

FoUowing this procedure, one can produce sequences {$,) and {b,) ,  where +, E 

U> and b, E [f, r] for each nonnegative integer n. Applying the weak compact 

theorem of bounded sequence in reflexive Banach space (see Zeidler (1990), p.235), 

we can pi& up convergent subsequences and still use ($n) and {b,)  for simplicity, 

such that $, -t q5 weakly and b, -+ b for some $ E Uo and b E [$, n]. Moreover in 

our case, one can show that this weak convergence results in strong convergence. 

Therefore (b,  +) is the nontrivial solution to (4.3). Obviously, the key step of 

realizing this idea is to prove the existence of (b,) .  We WU accomplish this task 

in the near future. 



Before we end o u .  discussion, let's derive necessary conditions for the exis- 

tence of non-zero solutions of equations (4.3)-(4.4). That is equhdent to hding 

necessary conditions for non-zero solutions of 

for iI E 61; (RI)  n H2(0, 1)- Notice that 1 I&llia(o,il L Xi I IlC>I I&,q = XI-  Then 

equation (4.6) implies 

On the other hand, equation (4.5) gives, 

b 
sin b 

where, O? := {z E (O, l), 4(s) < 1) and fi? is the complement of RF in (O, 1). 

Therefore we have 

1 b  
r 2 -- 

pe-2 sin b * 



A combination of (4.7) and (4.8) gives 

I b  -- 5 T 5 -bcot b - dXi. 
sin b 

Here we perceive that & > O and that cot b < O (see chapter 4 for detail). Now 

we can conclude following. 
t 

THEOREM 4.1. Necessary conditions in order that epuation (4.9) has non- 

trivial solutions are that > i and r 2 r,, where, 

and bc is  the unique solution of 

b 
= 4 ~ 0 t  b - dAi 

pe-* sin b for a E [;,r) 

PROOF . Let's consider two hctions 

and 

g(b) := -b  CO^ b - dAi. 

Both functions are monotone increasing for b E [g, n). Notice that 

1 b 
h(b) := f ( b )  - g ( b )  = (pé, + cosb) Y-& +dXi. 



The existence of nontrivial solutions of (4.3) implies there exists b E [g, rr), such 

that f (b )  < g(b) .  This implies -& + cos b  < O .  In other words, ,ûe-* > 1. Conse- 

quently, there always exists b, E [ f , x )  , such that f (b,  ) - g (b ,  ) = O, because 

and 

lim ( f  ( b )  - g(b ) )  = -m. 
6-n- 

Moreover, we can show that b, is the unique root of h(b) = O in [$, n). In fact, 

without loss of generaliQ we suppose b, is the smallest one of the zeros of h(b)  in 

[g, ir), that is, if there is another bi, such that h ( b l )  = O ,  then b, 5 bl .  Now, since 

h(b,) = O, we have 

Claim: h(b )  is monotone decreasing for b E [ir - arccos n). Ln fact, since 

1 +Co,..b<~and sinb-bcosb 
,Be;Z sin2 6 > O for b E [r - arccos &, r), we have, 

hf(b)  = -b + sinb-bcosb ) sin2 b 
< o. 

Therefore, h(b)  < O for b E [b,, n). This implies that 6 ,  is the unique zero of h(b) 

in [F, ?T) and also f (b)  < g(b) for b E [b,, r) . Furthemore, since bath f (b )  and g(b)  
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are increasing, (4.8) implies that 

This completes the proof. 

REMARK. This section gives a brief description of solving eigendue problems. 

Our idea also provides a procedure for a computer to search for pure imaginazy 

eigenvalues. HopefUtly, with aid of a computer, one can investigate Hopf bifurca- 

tions. Fortran program BIFDD developed by Hassard (1986) might be applicable 

to locate Hopf bifurcation points and to analyze theh stabilities, provided that 

relatively accurate parameters, such as r and bi are amilable to run the program. 
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APPENDIX 

SUlMlMARY OF NICHOLSON'S EXPERIMENTS AND MODELS 

A.l NICHOLSON'S BLOWFLIES EXPERIMENTS 

In this section, we will summarize Nicholson's experiments on the Australian 

sheep blowfly Lucifia cuprina (see Nicholson (1954) for details). 

EXPERIMENT ONE: Intraspecific Cornpetition 

The details of this experiment are described in Nicholson (1948). in the fol- 

lowing, we sketch the general ideas and conclusions. In this experiment, Nicholson 

uses a number of glas tubes, each of whidi contains a different number of freshly 

hatched Lucilia cuprina larvae, with one gram of homogenized bdock's brain as 

food. Such series of cultures are replicated many times. The number of emerging 

adults is then plotted against the number of lame fiom which they have been 

derived. Let us now look at the figure ( Fig A.1) adopted fkom Nicholson (1954). 

This figure shows that, above a certain criticd density, a futther increase 

in l d  density causes not ody an increase in the percentage mortality but ais0 

an actual reduction in the number of addts produced from the gram of food 
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Frc A. 1. Graph fiom Nicholson (1954, p.18) 

consumed. This is because increasing quantities of food are consumed by the in- 

creasing number of larvae which fail to mature. Sta,rting at a low density, the 

tendency is for a population to grow progressively as long as the percentage of 

offspring destroyed by competition equals the percentage which is surplus to that 

necessaq for the replacement of mature a,nimals when they die. Consequently, the 

greater the power of increase (Le. the ratio of offspring to parents in the absence 

of competition effects) the smder is the number of adults produced from a given 

quantity of food at equilibrium. This is clearly shown in the figure, in wbch the 

points indicated by number preceded by the multiplication sign show the equilib- 

rium levels of 1- and adults at each power of increase represented by these 

numbers. Inspection shows that any departure of density fkom the equiiibnum 
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level for any given power of increase (which is assumed to remain constant) leads 

to an oscillation about this level; d e s s  the power of increase is less than 2 (in the 

example given), when an asymptotic approach to this level results. 

This experiment demonstrates the important part played by the wide scatter 

in the properties of &ah upon the îeactîon of populations to depletion of their 
. 

requisites. Weze there no su& scatter of properties and opportunities, increasing 

density would produce no mortatity until the point is passed at which the amount 

of food obtained by each individual f& beIow that necessary for the production 

of viable pupae. 

EXPERIRlENT TWO: Mechanism of Balance 

In this experiment, a population is maintained under as nearly constant 

conditions as possible. The culture room is held at 25OC, water and sugar for 

the adults, and also l a r d  food (to which the adults does not have access), being 

provided in excess of requirements at all times. The goveming requisite is ground 

liver, which is available to the adults alone, and each day 0.5g of this is placed in 

the breeding cage. The results of the experiment are graphed (Fig A.2) as foilows. 

From this figure, rads that the outstanding characteristic of the 

culture is the maintenance of violent and fairly regular oscillations in the density of 

the adult population. It is also observed that sigdicmt egg generation occurs only 

when the adult population is very low. At higher densities cornpetition amongs t 
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FIG A.2. Graph fiom Nicholson (1954, p.21) 

the adults for the ground liver is so severe that few or no individuah secure suf- 

ficient food to enable them to develop eggs. Normal mortality, therefore, cause 

the population to dwindle until the consequent reduced severity of competition 

permits some individuals to secure adequate b e r  and so to lay eggs. The eggs 

then generated in due time give rise to new adults, which lead to a rapid increase 

in the adult population, and the resultant overcrowding causes virtual cessation 

of egg production. A new cycle of oscillation then begins. 

The system of balance is often highly oscillatory, simply because animals 

commonly take a sigdicant time to grow up, so causing a tirne lag between stim- 

ulus and reaction. During this lag period the stimulus continues to generate more 

and more reaction, and this continues to come into operation for a similar lag pe- 

riod aRer reaction has removed the stimulus. As Nicholson explains, if increased 

acquisition of food are to cause W y  mature adults to come into being immediately 

(instead of merely initiating the subsequent production of eggs and the still later 
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development of aduits ) this prompt reaction will cause the system to be non- 

oscillatory. This is because reaction wiU cause the population first to approach. 

and then to maintain the equilibrium density of the species under the prevailing 

conditions, this being the density at which production of offspring precisely corn- 

pensates for the loss of adults by death; for any departure from this level would 

immediately bring compensating reaction into play, and this will cease as soon as 

the equilibrium density is attained again. This is the bdancing mechanism which 

holds population density in general relation to the prevailing conditions. 

To show that the general density level has relation to the environment, 

Nicholson does many other experiments. By adjusting supplies of ground liver, 

he hds  that average density is h o s t  precisely proportional to the supply of the 

governing requisite. Furthemore, by a series of experiments testing other gov- 

erning factors, Nicholson concludes that the governing reaction does not merely 

operate to oppose any departmes of population fiom its equilibrium density, but 

also enables populations to adjust themselves to withstand very great environmen- 

ta1 stresses (particularly when their inherent reproductive capacity is high), and 

to maintain themselves in a state of balance under widely different environmental 

conditions. Moreover, the reduction in density which adverse factors produced as 

a primary d e c t  is always opposed by compensatory reaction, being lessened, or 

even converted into an increase in density, when the population adjusts itself to 

the continuecl operation of the adverse factor. 
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A.2 BLOWFLIES MODELLING 

Based on Nicholson's experimental data, several models have been proposed 

so as to fit these data. For example, May (1976) simulate one of Nicholson's 

experiments using a form of the Nicholson-Bailey equation with time delay, 

(see also Readshaw and Cuff (1980) for an alternative modelling). Here, we are only 

interested in presenting the mathematical model developed by Gitmey, Blythe, and 

Nisbet (1980). Their model agrees with Nicholson's data better than that of May 

(1976) and Readshaw and Cuff (1980). They start with the Malthusian law 

where R is the rate of recmitment to the adult population and D the total adult 

death rate. Usudy, D = 6N where 6 is a constant independent of N. Before 

depicting R Wher, they assume the following. 

The rate at which eggs are produced depends only on the current size of the 

adult population. 

All eggs which develop into sexually mature adults take exactly Td time units  

to do so. 

The probability of a given egg maturing into a viable adult depends only on 

the nwnber of cornpetitors of the same age. 
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These assumptions imply that the rate of remvitment at t h e  t can only be a 

fuaction of the size of the adult population at tirne t - Td, i.e. 

Moreover, they explain the appropriate choice of an algebsaic forrn of R ( N ) .  Ac- 

cording to Nicholson's experiments, egg to adult swival may reasonably be ex- 

pected to be density independent, so that the rate of adult redtment  at time t 

will be directly proportional to the rate at whicb eggs were being laid at t h e  t -T'. 

Secondly, it seems to suppose that, in the presence of excess food, the total rate at 

which eggs axe produced by a population of N adults will be directly proportional 

to N .  However, when food is siipplied at a limited rate, intraspecSc cornpetition 

will clearly act to reduce the average per capital f e c d t y  of the members of large 

populations to well below its physiological saturation value. Therefore, any plau- 

sible funetionai fonn for R ( N )  must go to zero as N becomes either very large or 

very smd.  In addition, it seems likely that most recruitment curves wiU display 

a single maximum (see Fig A. 1) at an intermediate population whose size is de- 

termined by the available resources. They therefore chose to represent R ( N )  by a 

simple function which displays aU these properties 

where, P is the maximum possible per capita egg production rate (corrected for 

egg to addt survival) and No is the population size at which the population as a 
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whole achieves maximum reproductive success . 

Equation (A.2.1) therefore becomes into 

This model is in fact conceds a wealth of complexity as weU as provides a cleax un- 

derstanding of Nicholson's observation. Comparing the following graph (Fig A.3) 

based on the numerical simulation of the equation (A.2.2) with the experimental 

results (Fig A.2), one sees that this model ~rovides a s a t i w g  qualitative fit to 

Nicholson's blowfiies data, 

A.3 COLLECTION OF MATHEMATICAL RESULTS 

In this section, we will collect, to the extent of availability, those mathemat- 

ical resulta about the Nicholson's blowfiies equation in the form of 

k ( t ) = - 6 N ( t ) + P N ( t - r ) ë a N ( ' - ' ) ,  for t>O, 
(A.3.1) 

N(e)  = for û E [-r, O]. 

There are three categories of theoretical results in this equation: attractivity (or 

stability); oscillation; and periodicity. It is well-known that periodic solutions of 

delayed differential equation are well considered by mathematicians in the studies 

of dynamical systems, but there are no specific contribution to (A.3.1). Kulenovic 

and Ladas (1987) give a sufncient condition for which the solutions of (A.3.1) 



FIG A.3. Graph from Gurney e t  al (1980, p.21). 

oscillate. More precisely, they obtain the foUowing. 

THEOREM A.3.1. Assume that 

and that 



Then the solution N ( t )  of (A.9.1) oscillates about i ts  positive equilibiium stute 

N* := $ ln (5). Furthemon, If (A.9.2) I1 replaced l y the condition 

then N ( t )  oscillates about N* if and only if  (A.3.3) holds. 
* 

Global attractivities of the nonnegative equilibria have been at tracting more 

researehers who provide varieties of conditions when this simple global dynamics 

takes place. The following theorem is due to So and Yu (1994, giving a condition 

under which the zero solution is a global attractor. 

THEOREM A.3 -2. Assume 

then the solution N ( t )  of (A.9.1) tends to zero as t + m. 

As So and Yu (1994) point out, when 

then the zero solution no longer attracts any nontrivial solution. Instead, the 

positive equilibrium should be considered. 

THEOREM A.3.3. Assume that (A.9.6) holds and that 



Let No E C([-TOI; IRf) with No(0) > O and let N( t )  be the unique solution of 

equation (A. 9.1). Then N( t )  = N*. 

THEOREM A.3.4. Assume that (A.9.6) ho& und that 

Then any non-trivial solution N ( t )  of (A.% 1)  satisjies limr-+= N ( t )  = N* . 

Theorem A.3.3 is due to Kulenovic, Ladas, and Sficas (1992), while Theorem 

X.3.4 is one of the contributions fkom So and Yu (1994) . Evidently, condition 

P (A.3.8) is an improvement over condition (A.3.7) since ln (5 )  < $ - 1 for + > 1. 

Along the same vein, further progress is made recentIy by Li (1996). 

THEOREM A.3.3. Assume that (A.S.6) holds and that one of the following 

three conditions is satiified : 

1 
( - 1) h ( )  < 1 + - and aN* 2 

6 - 1  
aNf  2 '  

1 
( - 1) h ( )  5 1 + - and aN* > - 1 

aN* ' 3 (A.3.10) 

Then, the positive equilibrium N* of (A.3.I) is a glokl attmctor. 

For these three theorems of attractivity, the general idea of the proofs is 

similar. Disthguished fkom this approach, geometrical (or topological) methods 

and monotone method provide us different way. Using the limiting equation theory, 

Karakostas, Philos, and Sficas (1992) obtain the following theorem. 
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THEOREM A.3.6. If the condition 

is satisjied, then N* is uniformly stable. Also, if 

then N* LP uniformly asymptotically stable. 

More than that, Kuang (1992) claims that the following conclusion. 

THEOREM A.3.7. Assume that (A.3.11) holds. Then the unique positive 

steady state of (A.3.1) i s  absolutely globally asymptotically stable. 

As we know in the case of (A.3.12), equation (A.3.1) is a monotone dynamical 

system. Smith (1995) therefore concludes as follows: 

THEOREM A.3.8. If $ < 1, then the trivial solution O/ (A.S.1) attracts al1 

other solutions. I f  1 < $ 5 e ,  the nontrivial equilibrium N* attmcts al1 nontrivial 

solutions of (A.3.1). 

In the case of (A.3.2), however, the system (A.3.1) is not quasimonotone any 

longer. Exponential ordering is introduced by Smith and Thieme (1990). Along 

this approach, another criterion is followed (aee Smith (1995) for the proof). 

THEOREM A.3.9. If (A.9.2), P r  < e2 and P r  < el+", then the positive 

equilibràurn attracts all nontrivial solutions of (A. 3.1) . 

167 



REMARK. We have presented all the results related to the Nicholson's blowfiies 

equation, fkom Nicholson's creative qeriments to the m o d e k g  equation by Gur- 

ney et  al, and then to the mathematical analysis of this equation for the varieties 

of dynamics by msny researchers. Mathematically, the above listed theore- con- 

clude that the zero solution and the positive equilibrium are global attractors in 
* 

the cases of (A.3.5) and (A.3.11) respectively, without any restriction imposed on 

the time delay. In the case of (A.3.4), one may ask what is the sharpest condition 

for r such that global attractivity of the positive equilibrium is guaranteed? This 

condition should exist. In fact, it fobws fkom Thmrem A.3.3, for example, that 

the positive steady state is a global attractor at least for srnall time delay T. On 

the other hand, one can claim stable periodic solutions for large r, foIlowing a sim- 

ilar procedure as in chapteï 3 in this thesis. Therefore, the positive equilibrium 

loses its attractivity and hence there exists a cntical condition for r which drives 

the positive equilibrium to change from global attractivity to local stability or to 

instability (and then stable periodic solutions mise). 




