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A Volumetric Approach to Segmentation and Texture 
Characterisation of Ultrasound Images 

Visual interpretation of noisy images is not an easy problem. This is certainly 

apparent with ultrasound images. Due to the noise inherent in the images it is often 

the case that discrepancies as to ~ocatioh of object boundaries and detection of 

different tissues arise even among highly trained physicians. The relatively low cost 

and short image acquisition time, however, make ultrasound an attractive imaging 

modality. 

Currently, diagnostic evaluation of ultrasound images is performed on two- 

dimensional (2D) cross-sections of the object of interest. No depth information 

is available and there is no way of viewing the outer surface of the object. The only 

way for a physician to visualise the entire object is by mentally reconstructing the 

object based on a series of a 2D images as well as prior expectations of the biology of 

the object. In the case of abnormal or diseased growth, the physician's expectations 

often do not correspond to the actual biology of the object. However, the use of 

three-dimensional (3D) data acquisition and visualisation can be used to overcome 

these problems. 

The present work addresses a number of difficulties in processing 3D ultrasound 

data. This includes special treatment of the volumetric ultrasound data obtained 

from a 3D probe, determination of 3D features of the different tissue types present in 

the ultrasound data and identification and localisation of objects (segmentation) in 

the volumetric ultrasound data. Experimental results obtained from synt hesised and 

real ultrasound data demonstrate that the present work contributes significantly to 

the use of ultrasound imaging as a sound diagnostic tool. .4s well, the work proposed 

can be applied to different imaging modalities or different applications areas, thus 

proving to be beneficial to the area of biomedical image processing, in general. 
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Abstract 

Visual interpretation of noisy images i s  not an easy problem. This  2s certainly 

apparent with ultmsound images. Due to the noise inherent in the images, i t  2s 

o f f e n  the case that discrepancies as to  location of object boundaries and detection of 

different tissues arise even among highly trained physicians. T h e  relatively low cost 

and short image acquisition time, however, make ultrasound a n  attractive imaging 

modalzt y. 

Currently, diagnostic evaluation of ultrasound images 2s performed o n  two- 

dimensional (2D) cross-sections of the object of interest. No depth information is 

available and there i s  no way of viewing the outer surface of the object. The  only way 

for a physician to visualise the entire object is by mentally reconstructing the object 

based o n  a series of a 2 0  images as well as  prior ezpectations of the morpholoogy of 

the object. In the case of abnormal or  diseased growth, the physician's expectations 

often do not correspond to the actual morphology o j  the object. However, the use of 

three-dimensional (30) data acquisition and visualisation may  be used to overcome 

these problems. 

The  present work addresses a number of dificulties in processing 30  ultrasound 

data. This  includes special treatment of the volumetric ultrasound data obtained 

from a 30 probe, determination of 3D features of the different tissue types present 

in the ultrasound data and identification and localisation of objects (segmentation) 

in the volumetric ultrasound data. Experimental results obtained from synthesised 

and real ultrasound data demonstrate that the present work contributes significantly 

to  the use of ultrasound imaging as a diagnostic tool. A s  well, the present work can 

be applied to diflerent imaging modalities or different applications areas and is thus 

beneficial to the area of biomedical image processing, in general. 
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Chapter 1 

Introduction 

Visual interpretation of ultrasound images is not an easy problem. Even among 

highly trained physicians, discrepancies as to location of object boundaries and de- 

tection of different tissues arise due to the noise inherent in the images. Also. since 

evaluation is performed visually, the interpretation is quite subjective and influenced 

by such factors as prior knowledge of the object being imaged, the physician's train- 

ing, as well as the quality of the ultrasound imaging device. -4dvances in ultrasound 

technology have resulted in much improved images. The cost and short acquisition 

time of ultrasound imaging, as compared with other modalities such as computed to- 

mography (CT) and magnetic resonance imaging (MRI), makes ultrasound imaging 

very attractive. However, these modalities have advantages over ultrasound due to 

their higher quality images and computer-based post processing of the raw data. To 

enhance the capabilities of ultrasound imaging as a diagnostic tool, it is necessary 

to develop advanced software for post processing of the data so that the resulting 

output has little subjective variability. Even more desirable is the capability of the 

software to extract information from the ultrasound data including the presence of 

turnours, probability of tissue types, and accurate localisation of objects of interest. 

Currently, diagnostic evaluation of ultrasound images is performed on two- 

dimensional (2D) cross sections of the object of interest. No depth information 

is available and there is no way of viewing the outer surface of the object. The 

only way for an operator to visualise the entire object is by mentally reconstructing 

the object based on a series of 2D images. Prior expectations of the morphology of 



the object may influence interpretation and confound the operator's recognition of 

abnormal or diseased growth. However, the use of three-dimensional (3D) visualisa- 

tion techniques, based on the 2D images, may be used to overcome these problems. 

By reconstructing a 3D model of the object it is possible to rotate the viewing an- 

gle, perform surface and volume measurements, and to make arbitraq portions of 

the object% outside surface transparent so that the details inside the object can be 

etduated. 

The increased success of 3D visualisation of CT and MRI data has resulted in 

the application of similar visualisat ion techniques to  ultrasound data by researchers 

and physicians. However, because of the noise inherent in ultrasound images due to 

speckle and various artifacts, an accurate 3D representation of the object of interest 

is difficult [95]. Recently, a new approach to 3D modelling of objects in ultrasound 

images, based on a series of cross-sectional images has been demonstrated [77, 79,801. 

This approach uses the texture in ultrasound images to characterise different types 

of tissue present in the images. The characterisation provides an ability to produce 

a more accurate 3D model of the object being imaged. The main limitation of 

this approach is that it processes individual 2D images without consideration to the 

relationship among the images. Thus, the information in the third dimension (axial 

direction) is not used in characterising the different tissue types nor in determining 

a 3D model of the object. By processing 3D, rather than 2D, ultrasound data 

the potential increase in accurate characterisation and 3D modelling of ultrasound 

images will be substantial. 

1.1 Motivation 

There are a number of difficulties to  overcome in order to process 3D ultrasound 

data. First, serial acquisition of the data must be modified so that motion of the 

patient and the ultrasound probe introduce as little alignment error as  possible. 

This error can be reduced with the use of a motorised probe. By spinning the probe 

about an axis a 3D sector scan can be obtained. If the scan can be completed fast 



enough. then the alignment error introduced by patient movement can be minimised. 

Development of the 3D ultrasound probe is beyond the scope of this thesis. As a 

result, access to the volume data is limited. However, computer simulations of 

the probe are performed (see Appendis A) to obtain quantitative measurements of 

alignment error. Some e.xperimentation is performed on a sample ultrasound volume 

dataset as well. 

The resulting volume data produced by a 3D sector scan requires special treat- 

ment. Due to the rotation about an axis: points close to the axis nil1 be oversampled 

while points further from the axis will be undersampIed. The volume exists in a non- 

isometric "cylindrical" coordinate system. A met hod is presented in this thesis to 

transform the data to an isometric (equal resolution in each dimension) represen- 

tation to simplify the task of processing. -4 3D Cartesian coordinate system is a 

convenient isometric representation. The transformation must be performed such 

that any error in supersampling or interpolation is less than the resolution of the 

ultrasound transducer. 

hnot her difficulty to  overcome in processing 3D ultrasound data is charact erising 

tissue. Most (if not all) approaches [80, 77, 82, 42, 14, 60, 137, 64, 63, 65, 66. 42. 

103, 291 developed for tissue characterisation are based on 2D data. The use of 3D 

ultrasound data requires that segmentat ion (identification of objects) be performed 

in 3D. There are currently only a few 3D segmentation algorithms described in the 

literature [107, 108, 122, 46. 591. Based on these reports, it is apparent that a new 

approach is required to accurately segment 3D ultrasound data. The difficulties in 

processing 3D ultrasound data described above are the motivation for the present 

work. 

1.2 Goal of Thesis 

Previous research demonstrates that 3D reconstruction of ovarian follicles in vitro is 

possible using a series of 2D ultrasound images [77]. In performing the reconstruc- 

tion, it is assumed that each 2D image is perfectly aligned along the scanning axis. 



For this assumption to be valid, mechanical placement of the ultrasound transducer 

is used to ensure proper alignment and orientation of the transducer. In most clini- 

cal situations (especially in gynaecology), however? precise control of the transducer 

orientation is difficult due to movement of the patient. One way to minimise the 

alignment error is to motorise the scanning method so that the series of 2D images 

can be obtained with little error. In effect, a 3D image of a region is produced. If 

3D scanning can be performed fast enough, movement of the patient and operator 

will not introduce significant error into the images. 

The main goal of this thesis is to determine methods for objective evaluation 

and visualisation of volume data. To satisfy this goal, the following tasks have been 

identified: 

1. design a software system such that  it  can be applied to different types of images 

(other than ultrasound), 

2. determine methods for analysing and representing the 3D structure of texture, 

3. determine met hods for characterising tissues in the ultrasound data, 

4. using the information obtained in characterising tissues, determine a met hod 

for segmenting the ultrasound volume data, 

5. determine a data structure for representing the ultrasound volume data which 

is appropriate for efficient processing, 

6. determine methods for visualising the processed ultrasound data which provide 

a simple, meaningful representation of the object being imaged, 

7. implement the above methods in software and evaluate their success/failure. 

1.3 Overall System Design 

The proposed software system: which is a realisation of the thesis goal, is comprised 

of five modules: the Tissue Characterisation module, the 3D Segmentation mod- 
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ule, the Visualisation module, the Resampling module and the Ultrasound Imaging 

module. 

Figure 1.1 illustrates the overall view of the modules that comprise the pro- 

posed software system. The function of the modules is summarised in the following 

paragraphs. 

The purpose of the Tissue Characterisation module is to determine the param- 

eters of representative samples of v a ~ n g  tissue types. h r e p o s i t o ~  is used to store 

the tissue (texture) parameters which are calculated from training samples. These 

parameters are used by the 3D segmentation module to identify the tissue type of a 

block of pixels during segmentation of the volume data. As well, the Tissue Char- 

acterisation module can recall these parameters when performing classification of 

unknown patterns. This ability allows the system to have a more general applica- 

tion as classification can be performed on patterns independent of their source (i.e.? 

the patterns can come from a source other than the ultrasound probe). 

The representative samples are in the form of volume data which must be fur- 

ther processed to determine the tissue parameters. This processing involves the 

calculation of feature measures, based on the texture present in the data. The fea- 



tures provide a compact. vector representation of the volume data ( training data ) 

from which tissue parameters can be determined. Previous research used an ad hoe 

approach in analysing the features to determine the most effective parametric repre- 

sentation of the tissues [77, 78, 811. Although good results were demonstrated for a 

small number of classes, the approach was not able to characterise tissue t s e s  which 

were very similar in appearance (as is the case with some tissues in ultrasound data). 

-4s a result, the Tissue Characterisation module uses a statistical pattern recogni- 

tion approach in determining the tissue parameters. An advantage of this approach 

is that the theory behind statistical pattern recognition is well established. -4s well. 

the approach provides greater power in differentiating tissue types. Chapters 3 and 

4 describe the details of the Tissue Characterisation module. 

The purpose of the 3D Segmentation module is to identif?. objects in the ultra- 

sound volume data. Objects are identified based on their tissue composition which 

is represented by texture patterns in the ultrasound data. The characteristics of dif- 

ferent tissues are represented in the tissue parameters which are determined by the 

Tissue Characterisation module. The Multiresolution Texture Segmentation (MTS) 

algorithm [77, 81, 82? 781 demonstrated that a series of 2D ultrasound images could 

be segmented with good results. Since the ultrasound data is 3D, however, the MTS 

algorithm must be modified. The 3D MTS algorithm is presented as a method of 

segmenting ultrasound volume data. I t  has a number of advantages over the origi- 

nal MTS algorithm including the ability to segment isometric 3D data. Chapter 5 

describes the 3D MTS algorithm in detail. 

The purpose of the Visualisation module is to provide the ability to display both 

the segmentation results as well as the tissue parameters The main purpose of this 

module is to  allow the user to manipulate the data (through rotations, lighting 

effects, surface selection, etc.) so that visual analysis can be performed. Standard 

techniques (see Section 2.4) are employed in the Visualisation module to display the 

data. The publicly available software environment Khoros [147] provides enough 

functionality to meet the visualisation requirements of this research. 

Both the 3D Segmentation and Tissue Characterisation modules require isomet- 



Axis of Rotation 

(b) 

Figure 1.2: (a) Ultrasound data obtained as a volumetric sector scan using a 3D 
probe. (b) Non-isometric cylindrical coordinate system where d is the axial distance 
from the probe, r is the radial distance from the axis of rotation and 0 is the angular 
increment between successive 2D images (slices). 

ric data for efficient processing. The use of isometric data allows pixel values to be 

treated in the same manner, independent of their location within the volume. This 

has significant implications on the volumetric ultrasound data obtained from the U1- 

trasound Imaging module (see Section 2.1 for background on ultrasound imaging). 

Figure 1.2(a) shows how volumetric data is obtained from a motorised ultrasound 

probe which is rotated 180" about an axis at equal increments. By rotating the 

probe about an axis of rotation, a cylindrical volume is swept out. This design is 

attractive because of its simplicity and its relatively low cost. Steen and Olstad [119] 

also use this type of probe to obtain volumetric fetal scans during regular clinical 

examinat ions. 

There are other scanning methods in which a conventional 2D ultrasound probe 

can be adapted to obtain volume data. A linear scan may be obtained by fixing 

the probe at a particular orientation and then translating it along a scanning axis 

parallel to the surface of the object. Since the orientation of the transducer is fixed. 

the slices are aligned and an isometric volume is swept out. The linear translation of 

the probe limits its use to primarily in vitro applications. Sakas et al. [107] obtain 



volumetric data with the use of a 2D probe which mechanically swivels about an 

axis. This is commonly referred to as a curvilinear scan and resembles a "donut- 

like" shape when rotated through 360". The scanning technique is called curvilinear 

because it resembles a linear scan in which the translation of the probe is around 

the circumference of a circle. Gilja et al. [36] use a transducer controlled by a 

stepping motor to  obtain volume scans of the abdominal organs. The transducer is 

tilted by the stepping motor through an angular displacement of up to 5 3 O .  Larger 

displacements result in increased error as the deviation of the transducer's beam 

increases. 

There are a number of issues to consider when processing the volume data ob- 

tained from the Ultrasound Imaging module. It is usually assumed that the wobble 

about the axis of rotation is negligible (or alternatively, that the orientation of each 

slice can be registered) during image acquisition. It is also assumed that the motor 

does not induce any movement of the transducer when a slice is being obtained. 

Points close to the axis of rotation will be oversampled while points further from the 

axis will be undersampled. The rotation angle increment determines the sampling 

rate and effectively the amount of error introduced into the volumetric sector scan. 

If the angle is small enough, then the error introduced will be insignificant compared 

to the resolution of the ultrasound probe. Development of the Ultrasound Imaging 

module is beyond the scope of this thesis, however, experimentation is performed 

with the data obtained from the 3D ultrasound probe. Simulation of a 3D probe is 

also performed (see Appendix A). 

Figure 1.2(b) shows the volumetric ultrasound data represented in a "cylindri- 

cal" coordinate system where d is the axial distance from the probe, r is the radial 

distance from the axis of rotation and 0 is the angular increment between successive 

2D images (slices). The purpose of the Resampling module is to transform the data 

to an isometric representation. A 3D Cartesian coordinate system is an appropriate 

target. It is vital that the transformation be performed without introducing signifi- 

cant sampling artifacts. Appendix A describes the details of the Resampling Module. 

Simulations of the ultrasound probe used in the Ultrasound Imaging module are also 



presented. Chapter 6 ties all the system modules together by demonstrating their 

application on a volumetric ultrasound dataset obtained with a 3D rotational probe. 

The design of the system contributes new approaches for segmenting and clas- 

sifying data. The most significant of these contributions is the explicit connection 

between classification and segmentation which are typically treated independently. 

In the system, segmentation is viewed as way of "classifving on the fly''. That is, the 

3D Segmentation module uses the class information obtained by the Tissue Charac- 

terisation module to determine the identity of different regions within the volume. 

The emphasis of the segmentation algorithm is on determining the appropriate re- 

gions (location and size) within the volume that are to be 'klassified" using the a 

pn'on' class knowledge. In previous work (80: 79, 771, segmentation was based on an 

ad hoc characterisation of the classes, rather than using classification. 

The success at  which modelling of 3D objects is obtained using this approach 

is demonstrated on two applications: linearly scanned, bovine ultrasound volume 

data, and fetal ultrasound volume data obtained n t h  an experimental, 3D rota- 

tional probe. The results from the bovine data are especially significant. Based 

on 3D texture analysis, three tissues types, corpus luteum, stroma and fluid were 

distinguished and modelled successfully. In previous work (80, 79; 771, it was not 

possible to  distinguish corpus luteum from stroma, based on 2D texture analysis. 

As these tissues are visually very similar, differentiating between them represents a 

significant improvement in modelling objects in ultrasound volume data. 

A number of original contributions are made by the work in this thesis. These 

contributions are surnrnarised as follows: 

0 the design, implementation, and testing of a software system for characterising, 

classifying, and segmenting volumetric data, 

0 a unified multiresolution framework for segmentation and classification of (ul- 

trasound) data in which segmentation is viewed as a way of "classifymg on the 

fly" , 

a new statistical decision rule: Inck (Incomplete Knoxledge)? for use as a 



criterion function in feature selection and a decision rule in classification of 

unknown patterns, 

the addition of a robust statistical parameter estimator. bIVE, in the design 

of a classifier, 

the multiresolution design of a classifier, 

a new 3D segmentation algorithm, the 3D MTS algorithm, which provides the 

ability to segment noisy, isometric, ultrasound volume data, 

a the development of the 3D cooccurrence matriu, 

the visualisation of ultrasound volume data obtained from a 3D ultrasound 

probe is made possible. 

Many of the contributions listed above are independent of the type of data being 

processed. That is, the application of the system to data other than ultrasound is 

possible, provided that the textural informat ion present is suitable for analping the 

data. 

1.4 Organisation of Thesis 

The organisation of this thesis is as follows. Background material is provided in 

Chapter 2. This includes an overview of ultrasonic imaging, a survey of the different 

models and techniques used to characterise ultrasound tissues, a discussion of 2D 

and 3D segmentation methods as a way of identifying objects in 3D datasets, and 

finally, a description of techniques for visualising both segmented and unprocessed 

data. The details of the system modules are provided in Chapters 3 - 5. Chapters 

3 and 4 describe the details of the Tissue Characterisation module. This includes a 

detailed description of main processes comprising the module as well as experimental 

evaluation of the module using both synthesised and real data. Chapter 5 presents 

the details of the 3D Segmentation module. Experimental evaluation of the 3D MTS 



algorithm and existing methods is provided. Chapter 6 demonst rates the  application 

of the system to  a volumetric ultrasound dataset of a 12 week old fetus. Chapter 7 

provides a summary of the thesis as well as its contributions to the areas of image 

processing, pattern recognition and medical imaging. Future work for continued 

research of the thesis topic is also discussed. Appendix -4 describes the details of 

Resampling Module. Appendix B provides definitions for the probabilistic distance 

measures evaluated in the thesis. A glossary of terms is provided in Appendix C. 



Chapter 2 

Background 

2.1 Ult rasonographic Imaging 

In order to  interpret the contents of an ultrasound image, it is necessary to under- 

stand how the interaction of a sound wave with physical structures (such as tissue) 

can be converted into an image. This section describes the organisation of a basic 

ultrasound scanner, how an image is formed from a sound wave, and the use of 

ultrasound images for diagnostic purposes. 

2.1.1 The Ultrasonographic Scanner 

This section describes the basic ultrasonographic scanner at  a functional block level. 

A detailed description of each component is available in the literature [89, 10,95,21]. 

Ultrasonographic scanners in medical imaging produce a pulse with a frequency 

in the range of 3.5 to 10 MHz [77]. Eetter resolution can be achieved with a higher 

frequency, but the pulse can not penetrate as deeply into the tissue. Smaller struc- 

tures which are closer to the surface are usually scanned with a high frequency while 

larger, deeper structures are scanned at a lower frequency. The ultrasound pulse 

rate is limited by the speed at  which sound travels through tissue. Pulse rates of 

lOOHz to 1000's Hz are physically possible. 

Figure 2.1 illustrates a basic ultrasonographic scanner. The directed arrows 

indicate the flow of information among the components in the scanner. Ultrasound 

pulses are transmitted and received by the transducer. The transducer emits a 
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Figure 2.1: Block diagram of a typical ultrasonographic scanner. 

constant rate of ultrasound pulses under the control of a clock and the beam angle 

control and sensing circuitry. The beam angle control circuitry tells the transducer 

where to aim the beam of ultrasound pulses. The sensing portion of this circuitc 

determines the angle a t  which the beam is directed and passes this information on to 

the scan converter (891. Depth signals received by the transducer are also passed on 

to the scan converter, through the receiver. Since the depth signals are analog, they 

must pass through an analog to digital converter before reaching the scan converter. 

The scan converter uses the information it gets from the beam angle control and 

sensing circuitry to  cdculate the appropriate pixel address for the intensity value 

based on the transducer depth signal. Once the address calculations are performed, 

the intensity values can be displayed on a video display (CRT) and stored in memory 

for further processing. 

The scan converter controls placement of each ultrasound echo to its appropriate 

pixel location in memory (or video display). Most scan converters locate pixel 

intensities on a 512x512 grid. The resolution of the pixel intensity ranges from 5 

to 8 or more bits. In real time sector scanning the transducer consists of an array 

of elements which are electronically controlled to sweep the beam along the array. 

Each sweep produces a 512x512 image. As the transducer is moved along the object, 

a series of serial cross sections or images is produced. 

The main purpose of the receiver is to amplify the incoming electrical signals 



Figure 2.2: Simplified block diagram of the receiver. 

from the transducer. In order to minimise the effects of attenuation of the sound 

n7ave, most ultrasound machines use time gain compensation (TGC) to increase 

the signal strength of farther echoes and decrease the strength of near-field echoes. 

Figure 2.2 shows a simplified block diagram of the receiver. Returning echoes are 

received by the transducer T and the force exerted upon the transducer is converted 

into an electrical signal. The electrical signal is passed to the radio frequency (RF) 

amplifier R (an RF amplifier is used since the input frequency range is within the RF 

spectrum) a t  which a signal gain determined by the TGC is achieved. The RF signal 

at the output of the RF amplifier represents the output signal for the corresponding 

received echoes. The TGC can be set such that echoes close to the transducer are 

amplified slightly while echoes farther from the transducer are amplified more. Note 

that the use of the TGC is to scale all electrical signals from the transducer so that 

variations in amplitude are independent of attenuation. Also, the TGC can be used 

t o  reduce the input dynamic range to the RF amplifier. This is desirable as an 

attenuated sound wave can have a corresponding dynamic range of up to 100 db. -4 

typical linear RF amplifier only has a dynamic range of around 50 db. The TGC 

can prevent saturation of the RF signal by reducing the input dynamic range. The 

TGC is set manually by observing the intensity variations (from top to  bottom) in 

the resulting ultrasound image. An ultrasound machine divides the image into a 

number of bands from top to bottom and the TGC setting for each band can be 

adjusted individually. Figure 2.3 shows how the TGC can be set to  increase the 

intensity of the display for lower bands corresponding to deeper echoes. 
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the image. An ultrasound machine will provide the user with the ability to adjust 
the gain for each band. 

2.1.2 Image Formation 

In order to interpret the contents of an ultrasonographic image. it is necessary to 

understand how a sound wave interacts with physical structures (such as tissue) and 

how the interaction can be converted into an image. This subsection describes how a 

sound wave is created, controlled and measured to  produce a two-dimensional (2D) 

ultrasound image. 

A complete discussion of acoustic wave theory is available in the literature [76, 

93, 211. Powis and Powis provide a high level summary of wave theory as applied 

to ultrasonographic imaging [95]. Background of discussions in this paper can be 

obtained from these sources. 

Ultrasonic imaging is based on the process of echo-ranging [El. In echo-ranging, 

a source (transducer) transmits a burst of energy (sound wave) into a medium. It 

is assumed that the velocity at which the sound wave travels through the medium 

is constant. Using this assumption, it is possible to determine the distance of the 

sound wave from the transducer at a particular time using the formula d = ut where 

d is the distance, t is the elapsed time from the transmission of the sound wave, 

and v is the velocity of sound in the medium (v = 1500m/s in soft tissue). Since 

echo-ranging determines the location of interfaces by detecting the reflected echoes 

(of the sound wave) a t  the transducer, the time t represents the round trip time for 
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Figure 2.4: Propagation of echoes through tissue interfaces Il and I?. Signal ampli- 
tude is proportional to echo strength at the transducer. 

the sound wave to travel to an interface and for its echo to return to the transducer. 

Therefore, the actual distance of the interface to  the transducer is $. Note that in 

calculating this distance it is implicitly assumed that the sound wave travels in a 

straight line between the transducer and the interface. 

Now consider the process when a portion of the sound wave is reflected and a 

portion continues. Figure 2.4 shows the propagation of the echoes a t  successive 

time increments. At time TI the  incident sound wave intercepts interface Il and is 

split into two components: the reflected echo (specular reflection) and the travelling 

(possibly diffracted) wave. .4t time T2 the reflected echo is detected at the trans- 

ducer, resulting in an output signal with amplitude proportional to the strength of 

the echo. Also at T2, the continuing sound wave intercepts interface I2 resulting in 

a second echo. At time T3 the second echo reaches Il and, at time T4, the second 

echo is detected at the transducer producing an output with amplitude proportional 

to the strength of the echo. 

-4 number of factors greatly complicate this simple model. First, if the angle 

of the incident wave is not perpendicular to the interface then the echo will strike 

the transducer near its edge or will miss the transducer all together. The resulting 

output signal will be smaller in amplitude or non-existent. Thus, the orientation of 

the transducer with the interface has an effect on the resulting output signal. Figure 

2.5 illustrates these cases. 

Figure 2.6 illustrates the effects of diffraction and multiple specular reflections. 

Two interfaces cause successively smaller portions of the sound wave to be contin- 



Figure 2.5: Echoes detected a t  the transducer are dependent on the orientation of 
the transducer with the interface. 
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Figure 2.6: Effects of diffraction and multiple specular reflections. The presence of 
two reflective interfaces causes extra pulses to appear in the output signal. 

ually reflected within the interfaces resulting in multiple echoes. Because the inter- 

faces diffract the continuing portion of the sound wave, not all the echoes return to 

the transducer- It is also possible for some of the diffracted waves to return even- 

tually to the transducer. Since it is assumed that all the waves travel in a straight 

line, these late arriving diffracted waves may be interpreted as echoes from a distant 

interface when they actually are not. &o, the diffracted waves may have little 

energy but their effect is to increase the noise in the image as their contributions 

are integrated into the output signal. 

Another factor complicating the transmission of sound waves is that the medium 

itself attenuates the waves. -4ttenuation is the process of energy loss from a wave 

for any reason [95]. For a homogeneous soft tissue a common rate of attenuation 

assumed is I db/cm/MHz. By representing attenuation in this form it can be seen 

that attenuation is dependent on the frequency of the sound wave. -4s the frequency 

increases, the sound wave is increasingly attenuated. Also, the farther the sound 

wave travels, the more it is attenuated. For example, a sound wave with a frequency 



of 5 kIHz will be attenuated by 5 db/cm. If the sound wave has an initial amplitude 

of 100 db  then it can travel 20 cm before it has no energy left. This implies that 

interfaces at a distance of up to 10 cm from the transducer can be detected. It 

should be noted that this rate of attenuation will vary slightly: depending on the 

t-ype of tissue through which the sound wave travels. 

2.1.3 Diagnostic Imaging 

One of the biggest challenges in ultrasonogaphic imaging is to present the acoustic 

data in a form which provides insight as to the structure of the tissues (objects) being 

imaged. It is also necessary for this presentation to be an accurate representation of 

the objects. The most common approach in achieving this is to represent the acoustic 

data as an image which can be visually (and subjectively) evaluated for diagnostic 

purposes. This section describes the various imaging modes used in ultrasonographic 

imaging. It also discusses some of the problems that can arise due to various artifacts 

in the image. 

Imaging Modes 

Christensen [21] provides a good review of the different types of imaging modes. 

The ---Mode or "amplitude" mode is a one-dimensional mapping of the tissue in- 

terfaces encountered along the line of propagation of the ultrasound beam. Figure 

2.7(a) shows an example of an A-Mode scan. Each peak in the output represents 

an interface. The distance between the peaks indicates the distance between the 

interfaces. An advantage of the A-Mode is that it provides positional information 

quickly without requiring a significant amount of electronics and processing. 

The B-mode or "brightness" mode is different from the A-Mode in that instead 

of displaying the echo strength as a vertical amplitude, the brightness of the output 

line is used to indicate the strength of the echoes along the line of beam propagation. 

Figure 2.7(b) shows an example of a B-mode scan for the equivalent A-mode scan of 

Figure 2.7(a). A real time B-mode image is simply the 2D arrangement of a lateral 



Figure 2.7: Various imaging modes; (a) &Mode scan, (b) equivalent B-mode scan, 
(c) relationship between B-mode and M-mode. 

set of B-mode scans. By combining the positional information of the transducer 

with the RF data (the 08 data is produced by sweeping the ultrasound beam over 

an angle 8) a ZD, red time B-mode ultrasound image is produced. Figures 2.10 and 

2.11 provide examples of real time B-mode images. The real time B-mode is the 

most commonly used mode for diagnostic purposes. 

The EvI-Mode or "motion" mode is used for examining the motion of the struc- 

tures being imaged. Figure 2.7(c) shows the relationship between the B-mode and 

M-mode. An M-mode scan can be achieved by rotating the display of the B-mode 

scan by 90° and producing successive Bmode scans (with the same beam orienta- 

tion). The M-mode scan will display the movement of tissue structures, with respect 

to a tixed point, over time. .4n M-mode scan is especially useful for studying the 

motion of structures such as the heart valves. 

-4nother imaging mode that most modem ultrasonographic scanners provide 

is duplex imaging [101, 140, 10, 95, 211. In the duplex mode, both the B-mode 

and Doppler information are combined in one image. The B-mode display is used 

to locate a desired region for Doppler interrogation. -4 line extending from the 

top to the bottom of the B-mode display is used to select the axial projection 

along which the Doppler pulse is to  be transmitted. A cursor is used to select the 



depth along the line at which the sampling gate is to be positioned. Based on 

this positioning, the frequency shifted echoes from the reflected Doppler pulse are 

displayed. usually underneath or beside the B-mode display. This display shows the 

frequency spectrum of the echoes as a function of time. The direction of flow is 

indicated by the sign of the displayed frequencies; when the frequencies are positive. 

the blood flow is towards the transducer, while negative frequencies indicate that 

the flow is away from the transducer. 

Another variant to displaying the Doppler information is to overlay the esti- 

mated flow velocities directly where they occur on the B-mode display. This is 

known as Bow imaging [loll. -4 colouring scheme is used to indicate the direction 

of flow. Usually, red indicates flow in one direction while blue indicates flow in the 

opposite direction. Varying shades (scales) of each colour are used to portray differ- 

ent frequencies (velocities). This display provides the ability to visualise the blood 

flow characteristics within a region of tissue and thus can be quite useful for tissue 

characterisation (see Section 2.2). 

Art ifacts 

Artifacts are undesirable effects in ultrasound images which can lead to erroneous 

diagnosis of the physiological structures being imaged. Furthermore, any automated 

processing of ultrasound images will be susceptible to artifacts. It is therefore nec- 

essary to identify the artifacts which occur in ultrasound images so that their effect 

can be minimised or eliminated. 

The formation of an ultrasound image is based on the assumptions that the sound 

beam travels in a linear path and that the beam is infinitely thin. The resulting 

image will contain artifacts when these assumptions do not hold [40]. This section 

discusses the types of artifacts that can occur in an ultrasound image when these 

assumptions are violated. 

Five categories of artifacts are discussed in [95]. These categories are: 

displaying of non-structural echo signals, 



Figure 2.8: Formation of a non-structural artifact. Reverberation between the trans- 
ducer, T, and a strongly reflecting surface, I, results in the appropriate output signal. 
S, but also the recurring echoes R; from Powis and Powis [95]. 

removal of real structural echo signals, 

displacement of echo signals, 

0 distortion of the echo signal, and 

distortion of the organ dynamics. 

Non-structural echo signals appear in an ultrasound image when reverberating 

echoes are incorrectly displayed as successive tissue interfaces. An ultrasound image 

displays the travel time of an echo as a distance from the transducer. Any reverber- 

ating echoes will appear as  non-structural echoes over the distance of the display 

Since these echoes do not represent actual tissue structures, they are undesirable. 

Figure 2.8 illustrates how a non-structural artifact is formed. -4 strongly reflecting 

surface near the transducer will cause repeated reflections (reverberation) between 

the transducer and the reflector. -A similar effect will occur if the reverberation 

occurs between two highly reflective tissue interfaces as shown in Figure 2.9. These 

reflections will be interpreted as successive tissue interfaces along the axial direction 

of the ultrasound beam as shown in Figure 2.10. In this image a highly reflective 

interface close to the transducer causes reverberation resulting in a repeated pat tern 

of high intensity reflections (indicated by the arrow). 

Removal of real structural echo signals in the ultrasound image is primarily the 

result of acoustical shadowing. Shadowing occurs when the ultrasound beam can 



Figure 2.9: Formation of a non-structural artifact. Reverberation between two 
highly reflecting surfaces, 1 and 2, results in the appropriate output signals. S1 and 
S2, but also the recurring echoes RS; from Powis and Powis [95]. 

Figure 2.10: Non-structural echoes in a B-mode ultrasound image; from Powis and 
Ponis [95]. 
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Figure 2.11: Acoustical shadowing in a Bmode ultrasound image; from Ponis and 
Powis [95]. 

not penetrate beyond a certain tissue layer. -4s a result, tissue structures deeper 

than this tissue layer produce small or no echoes. The inability of the ultrasound 

beam to penetrate beyond a certain tissue layer is due to the presence of a strong 

reflector which reflects most of the ultrasound beam energy, to highly attenuating 

intervening layers which decrease the ultrasound energy, or to strongly scattering 

structures which disperse the ultrasound energy. Figure 2.11 shows an example 

of shadowing in which a highly attenuating structure results in the loss of echoes 

beyond the attenuating structure (area directly above the arrow). 

Displacement of echo signals in the ultrasound image from their actual orien- 

tation is mainly due to the width (and shape) of the ultrasound beam. Since the 

beam is not infinitely thin, all information within the width of the beam will be in- 

corporated into a single line of sight. Figure 2.12 illustrates how single point sources 

contribute to the echo amplitude as the ultrasound beam travels from left to right. 

It can be seen that the resulting echo produced for each point is dependent on the 

spatial resolution of the points and the width of the ultrasound beam. 

-4 number of factors will cause distortion of the echo signal in the ultrasound 

image. If the TGC curve is set incorrectly then the amplitude of echoes at certain 

depths will be exaggerated or diminished in the resulting image. Readjusting the 

TGC curve may eliminate the distortion of the echo signal. 

Distortion of the echo signal can also be caused by acoustical enhancement (oppo- 



Figure 2.12: Displacement of echo signals. The echo from source, S, will be inte- 
grated into the signal, A, as long as S is within the width of the beam, B, produced 
by the transducer, T; born Powis and Powis [95]. 

site of acoustical shadowing). Acoustical enhancement occurs when the ult mound 

beam passes through a low attenuating medium (such as fluid). This causes distor- 

tion of the echo signal as structures deeper than the low attenuating medium will 

have a higher than normal echo amplitude. 

.knother factor causing distortion of the echo signal is the orientation of the 

ultrasound beam with a tissue interface. When the ultrasound beam intercepts a 

tissue interface at an orientation other than 90°, the axial resolution d l  be decreased 

due to the width of the beam. Figure 2.13 shows how the axial resolution is affected 

by the orientation and width of the ultrasound beam. Note that the resulting echo 

corresponds to an increase in the width of the tissue interface (decrease in axial 

resolution) as the orientation of the beam strays farther from 90". 

Distortion of organ dynamics occurs in an ultrasound image when the structures 

being imaged move during formation of the image. It takes a finite amount of time 

to  collect all the echoes which form the ultrasound image, therefore, any movement 

is sampled at  a particular instant. If the movement is not sampled fast enough (i.e.: 

the frame rate is too slow) the resulting image may be blurred. -41~0, motion aliasing 

could result if the sampling rate is less than twice the highest frequency of motion. 

For example, if a heart, beating at  60 beats per minute, is sampled at  the same 

frequency (1Hz) and in phase then in the ultrasound images, it will appear that the 

heart is not beating at all. 



Figure 2.13: Effects of beam width and orientation on axial resolution. The signal. S 7  
is wider for beam orientations other than 90" with surface, R. The artifact disappears 
when the transducer, T, orients the beam a t  90' with R; from Powis and Powis [95]. 

Another type of artifact not covered in the above categorisation is speckle. Wag- 

ner et at. describe speckle in the ultrasound image as the fluctuation of the gray 

scale intensity about the mean for a given area [136]. The fluctuation is due to the 

accumulation of random scatterings whose phase components vary randomly from 0 

to 2n. Powis and Powis describe speckle as the result of phase sensitive interference 

patterns of echoes arrive a t  the transducer at the same time as the primary echoes 

from tissue interfaces and scattering bodies [95]. Burckhardt describes speckle as 

an undesirable property of the ultrasound image which masks small differences in 

the g a y  scale intensities [ll]. Based on these descriptions, it can be concluded 

that speckle is an undesirable property which contributes to the amount of noise 

present in the ultrasound image. Because of the inherent random scattering that 

occurs during formation of the ultrasound image, it is impossible to prevent speckle. 

However, by removing the system effects of the ultrasound machine (such as with a 

calibration spectrum [64, 65, 661) from the ultrasound data, it is possible to reduce 

the effects of speckle. 

Kling et al. [51] suggest a dual frequency method for reducing the speckle. 

This approach is based on the idea that random echoes produced by small scatters 

are frequency dependent while reflected echoes from flat boundaries are frequency 

independent. Scanning the same region at two different frequencies ( 5  MHz and 



7.5 MHz) results in a pair of images which have different speckle patterns. Taking 

the difference between these images (several ways for calculating the difference are 

used) results in an image which contains only the pixel intensities due to differences 

in the speckle. Echoes from fiat boundaries appear as dark regions within the 

difference image. Experimental results demonstrate that the approach is adequate at 

removing reverberation type echoes, however, there are some problems. First. since 

the specular echoes do not appear in the difference image, the task of identifying 

tissue interfaces (boundaries) will be made more difficult. Second, the difference 

operation (possibly) results in variation of the speckle pattern and a loss in signal- 

to-noise ratio. Kling et al. are not sure of the effect of this. Finally, the acquisition 

time of dual frequency images is longer than for a conventional scan. This increases 

the potential for alignment error of the images due to movement of the patient and 

transducer. 

Texture of Tissue 

Texture in an ultrasound image can be described as the pattern of intensity varia- 

tions for a corresponding region of tissue. The ultrasound texture can be charac- 

terised by the shape, separation, and intensity variations in the image [95]. These 

characteristics vary depending on the following factors: 

1. the physical properties of the tissue such as size and separation of scattering 

bodies, 

2. the type of signal processing applied to the ultrasound signal prior to image 

formation (or scan conversion), 

3. the extent to which spatial interference patterns (speckle) contribute to the 

detected signal at the transducer, and 

4. the extent to which forces from the ultrasound beam modifv the architecture 

of the scattering bodies comprising the tissue. 
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Figure 2.14: Inconsistency of texture a t  different depths. Intervening tissue layer 2 
results in different textures for upper and lower portions of tissue 1. 

It is desirable that the texture in an ultrasound image to have a consistent 

appearance for the same tissue. If the texture of the homogeneous tissue varies 

within the image, it is necessary to determine the factors which contribute to the 

variation of the texture. Once these factors are determined, it is possible to adjust 

the ultrasound image so that the texture is consistent for a homogeneous tissue over 

the entire image. 

The biggest problem with texture in ultrasound images is its dependence on 

depth. The textural presentation is not the same from the top to the bottom of an 

image for the same tissue [95]. The main reason for the texwral inconsistency is 

the intervening tissue layers between the transducer and the tissue layer of interest. 

Consider the tissue structures as shown in Figure 2.14. Since the ultrasound image 

is formed by the echoes of a transmitted ultrasound beam, the received echoes from 

the top portion of tissue 1 are not attenuated by any other tissue layers. Howeverl 

the top portion of tissue 1 will attenuate echoes returned from deeper structures 

(tissue 2 and bottom portion of tissue 1). For this spatial arrangement, the te-ture 

of tissue 1 will appear different for the top and bottom portions. The intervention of 

tissue 1 causes the texture of tissue 2 to appear different than it would if the echoes 

were solely from tissue 2. Also, since the strength of the attenuated ultrasound 

signal decreases with depth, the returning echoes further from the transducer will 

be weaker than those closer to the transducer. Thus, the echoes from the bottom 

portion of tissue 1 may be too weak to be detected by the time they return to the 



transducer resulting in the loss of the original testure for tissue 1. 

Despite the degradation of the ultrasound images caused by intervening tissue 

layers: it is possible to correct for some of the distortion. Carpenter et al. [13] 

suggest a forward-propagation technique in which refraction of the echoes at a fat- 

muscle interface can be compensated for by adjusting the focus and steering of the 

ultrasound beam. Experimental results obtained from phantom and clinical data 

demonstrate that gross artifacts and texture inconsistencies can be corrected. The 

major disadvantage of this approach is that it requires a pn'ori knowledge of the 

geometry of the tissue layers in order to perform the correction. Furthermore. this 

knowledge is obtained from manual examination of the original distorted image. 

2.2 Tissue Characterisation 

The purpose of tissue characterisation is to estimate physical tissue characteristics by 

measuring features obtained from the ultrasound data. If the tissue characteristics 

can be estimated accurately then it is possible to identify tissues. The measured 

features can also provide the ability to differentiate among the tissues present in 

an ultrasound image. This makes it possible to segment the ultrasound image into 

homogeneous regions which are useful for subsequent 3D modelling of ultrasound 

images [77]. 

The usual approach taken in ultrasound tissue characterisat ion is to estimate a 

number of parameters based on the ultrasound data. This includes estimation of 

attenuation [42, 1.1, 60: 1371, backscatter coefficients [53, 1341, scatter sizes [64, 63. 

65,  66, 42, 103, 291, and other effects such as machine characteristics [145, 1331 and 

speckle [136, 111. These estimations are then compared to known tissue parameters 

to determine the tissue type. -4 survey of these model-based approaches is provided 

in Section 2.2.2. An alternative approach to tissue characterisation is to evaluate 

the texture present in the ultrasound images. The next subsection describes this 

approach. 



2.2.1 Image-Based Features 

Testure in an ultrasound image can be characterised by the dot size, shape. separa- 

tion and intensity variations in the image [95]. If the tes3ure in an ultrasound image 

is unique for each different tissue, then it is possible to identify each tissue based 

on its texture in the ultrasound image. Previous work has used this approach to 

characterise [78, 811: segment [80, 791 and subsequently model [77] ovarian follicles 

using ultrasound images. .4 multiresolution framework is used in characterising a set 

of texture classes. Any number of features can be used to characterise each testure. 

The goal of the framework is to evaluate the performance of the features in char- 

acterising each texture as well as to provide a Yeature table" which parameterises 

each texture according to the features used. Feature performance is evaluated using 

robust statistics and other criteria such as the class coverage and the outlier value. 

There are a number of advantages with this approach: 

the multiresolut ion approach characterises textures from small (4 x 4 pixels) to 

large resolutions enabling a subsequent segmentation step to adapt to various 

levels of detail in the image, 

the framework provides the ability to evaluate any number of features, 

the framework can determine the minimal set of features required to uniquely 

characterise each texture class, 

it is possible to characterise a large number of texture classes. 

Wu et al. [144] also use texture features in classifving ultrasound images of liver. 

In their approach a common set of texture features (Laws' energv, Cooccurrence, 

statistical, Fourier power spectrum based features) are used to classify three types 

of liver tissues. They also propose a new set of multiresolution fractal features to 

detect diseased liver tissues faster and more accurately than the above mentioned 

features. The Bayes classifier and Hotelling trace criteria are used to evaluate the 

performance of the features in classifying the three types of liver tissues. The main 



problem with this approach is that it classifies a given set of homogeneously test ured 

images rather than characterising each of the given te-xtures. This is an important 

distinction when further processing of the ultrasound images is desired. For exam- 

ple, the approach used in previous work [78, 81, 77, 821 builds a table of features 

characterising each texture. This table can then be used to classify a given set of 

homogeneously textured images or can be used in a segmentation step to segment 

any ultrasound image containing the characterised textures. 

Another problem with this approach is that it is sensitive to the selection of the 

regions containing the homogeneous liver tissue. Unlike the approach in previous 

work which is robust to  inconsistencies (i.e., outlier data values), any inconsistencies 

(such as blood vessels) contained in the homogeneous structure of the regions will 

result in a decrease of classification accuracy. 

The advantage of the image-based approaches is that they can be applied to 

different types of textures and images. Characterisation and classification are not 

limited to those textures in ultrasound images because the features used do not 

depend on the physical process involved in forming the ultrasound image. It is 

possible for the image-based approaches to be applied to different imaging modalities 

such as CT scans or MRI (although the effectiveness demonstrated for ultrasound 

images may not be the same for other imaging modalities). 

The general applicability of the image-based approaches can also be a weakness. 

By considering the relationships among tissue structures: the ultrasound process. 

and the resulting ultrasound images, it is possible to gain more information for use 

in characterising tissue. Since the image-based approaches use only the B-mode 

image, this e.utra information is not available. For example, a more effective and 

precise set of features may be determined by accounting for imaging artifacts, such 

as acoustical shadowing and enhancement or by knowing the relationship between 

scattering bodies and their corresponding backscattered echoes. By modelling these 

interactions, a set of ultrasound-specific features can be determined. The ne-xt sub- 

section describes features based on models of the ultrasound process. 



2-2.2 Model-Based Features 

A model of the ultrasound beam-tissue interaction is used to predict the contri- 

bution of various tissue characteristics to the resulting ultrasound data. Based on 

the model, features can be identified which are useful in uniquely identifving the 

tissue in the ultrasound data. Some features, which have been extensively used in 

the literature, are the backscatter and attenuation coefficients [53, 134, 104). The 

backscatter coefficient is a measure of the effect in which a tissue structure reflects 

the ultrasound beam. Scattering body size and separation are tissue characteristics 

which directly affect the backscatter coefficient. The attenuation coefficient is a 

measure of the effect in which a tissue structure modulates the ultrasound beam in 

both frequency and amplitude. Tissue density will directly affect the attenuation 

coefficient. 

Models and their corresponding features are either time-based [143: 137, 1161 or 

frequency-based [64, 63, 65, 66, 29, 281. Time-based models typically use the ampli- 

tude and pulse separation of the RF data in estimating tissue features. Frequency- 

based models use the frequency spectrum to estimate appropriate features. An 

excellent review of spectrum analysis as applied to ultrasound R F  data is provided 

by Lizzi et a[. [28]. Basically the time dependent RF data is transformed into the 

frequency domain using a Fourier transformation which decomposes the signal into 

a spectrum (or "tissue signature") of differing frequency sine waves, each of which 

has a specific amplitude and phase. The main advantage in using the frequency 

spectrum of the ELF data is that system effects can be minimised with the use of 

a calibration spectrum. The calibration spectrum represents only the effects of ul- 

trasound instrument. Normalisat ion of the original spectrum with the calibration 

spectrum leaves only those components which are a result of the tissue-ultrasound 

beam interaction. 

Lizzi et  al. [64, 65, 66, 281 have done extensive research in tissue characterisation 

using spectral analysis. A detailed analytical model is used which relates the spec- 

trum of the RF signals to tissue microstructure. blong with the model, calibration 



techniques are described which are useful for reducing system effects arising from 

the transducer and other machine components. Based on the model. a number of re- 

lationships between tissue microstructure and parameters of the frequency spectrum 

are determined. The slope and intercept parameters of the spectrum can be used 

t o  predict characteristics of the tissue microstructure including size, concentrat ions, 

and impedance of the elements comprising the tissue. The results predicted by the 

model are compared to a database of clinical data and a fairly high correlation is 

found. 

The advantage of Lizzi et al.'s approach is that it minimises the effects of the 

ultrasound machine by using a calibration spectrum to normalise the spectrum of 

the RF data. Also, access to a large database of clinical data allows for accurate 

verification of the model. The disadvantage of this approach lies in the use of the 

spectral slope for characterising the tissue structure. The slope is estimated from 

the spectrum of RF data and is sensitive to the method used. Also, if there is 

high variability in the amplitude of the spectral components (as is evident from 

the experimental results obtained by Lizzi et aL) there will be significant error in 

estimating the slope. The slope is also used to predict the spectral intercept, the 

value of which is also subject to  error. Thus, the relationship between the spectral 

parameters (features) and the tissue microstructure predicted by the model will 

have a high degree of variability. The variability may be high enough to limit the 

effectiveness of the spectral features in uniquely characterising similar tissues. 

The approach used by Shmulewitz et al. [137, 1161 in characterising tissue is 

to  estimate attenuation using time domain analysis of the echo amplitude. It is 

assumed that variations in attenuation reff ect variations in the homogeneity of the 

medium. Thus, tissues having different structures should have different attenuation 

coefficients. 

-4 simple exponential model of the echo signal is used in estimating the attenua- 

tion coefficient. By examining a small region of interest and assuming the region is 

homogeneous, the model can be simplified into an over-determined system of equa- 

tions. An estimate for the average attenuation of the region can then be calculated 



such that a certain error measure is rninimised. 

The unique characteristic of this approach is that  an attenuation map is created 

to display the local attenuation estimate for each pixel in the Bmode image. The 

attenuation map is an alternative to the traditional B-mode image for displaying 

ultrasound data. Its purpose is to provide useful diagnostic information which can 

lead to the differentiation of diseased tissues. Unfortunately, experimental results 

show that displaying the attenuation estimates do not increase the detect ability of 

the diseased tissue types. 

There are a few more disadvantages with Shmulewitz et ai. 's approach. A fairly 

large data window (e.g. 17x65 pixels corresponding to  17 RF lines each of 65 points) 

is required to achieve reliable estimates of the attenuation. Using a large window 

reduces the amount of detail that can be achieved in the resulting attenuation map. 

The model of the echo signal does not account for the frequency dependency of 

attenuation. -4s a result, incident waves of differing frequency reflected by the same 

tissue structure wiU have different attenuation estimates. This makes it impossible 

to consistently identify the same tissue using attenuation. 

Yao et al. [I451 characterise tissue using the backscatter and the attenuation 

coefficients. In this method a reference phantom is used in estimating the coeffi- 

cients. Using a time domain technique, frequency and depth dependent ratios are 

obtained between the echo data from a homogeneous sample and the echo data from 

the phantom whose backscatter and attenuation coefficients are know.  From these 

ratios the backscatter and attenuation coefficients are estimated. 

The advantage of this approach is that it requires no explicit knowledge of the 

transducer beam pattern or the instrument dependent factors in estimating the 

attenuation and backxatter coefficients. -41~0, since calculations are performed in 

the time domain as opposed to the frequency domain, coefficient estimation can 

be done in real time. A disadvantage of this approach is that it depends on the 

accuracy in which the backscatter and the attenuation coefficients of phantom are 

known. If the phantom construction does not adhere to  its given coefficients then 

error will result in the estimated backscatter and attenuation coefficients. Also. the 



accuracy of the coefficient estimates are sensitive to the data window size used. If 

the window is too small. significant error in estimation will result. 

Insana et al. [42, 741 use pattern recognition techniques to determine a set of 

ultrasound tissue features which are effective in classifving normal and diseased 

liver tissues. They categorise tissue based on structure into three main classes 

and determine a set of four features that they claim are effective in completely 

characterising tissues in each of the classes. The features are based on first and 

second order statistics of the backscattered intensity as well as the attenuation 

coefficient. These features are obtained from various tissue models which are based 

on spectral analysis of the RF data. Results show that there is information present 

in the second order statistical features which is not present in the ultrasound B-mode 

image. 

The advantage of this approach is that a number of different models can be eval- 

uated to determine how effective each model's features are in classifving a common 

set of tissues. The disadvantage of this approach is common to all classification 

approaches. Insana et aL7s approach does not retain the tissue signatures obtained 

during the classification process. This makes it difficult to segment an ultrasound 

image into homogeneous regions, based on tissue type, in an unsupervised manner. 

Romijn et al. (1041 also evaluate a number model-based features in differentiating 

among a number of intraocular melanomas. The attenuation and the backscatter c* 

efficients as well as a set of image-based features are evaluated. Six different models 

are used to  estimate the attenuation coefficient. These models are based on spec- 

trum analysis and on time domain analysis of the ultrasound signal amplitude. The 

features are calculated from simulated data, actual data from clinical examinations, 

as well as data obtained from a tissue mimicking phantom. 

Each feature is calculated from a number of samples of each type of melanoma. 

Evaluation of six different attenuation features is performed to determine which 

model is the most effective in estimating the attenuation coefficient. Evaluation of 

all features is performed to determine which features are effective in differentiating 

among the different melanomas. 



There are a number of advantages with this approach: 

diffraction correction is applied to the ultrasound data to minimise effects of 

the ultrasound beam profile, 

a preprocessing step is used to automatically select a homogeneous region of 

interest. 

an objective evaluation of a number of features is performed using a common 

set of ultrasound data. 

A disadvantage of this approach is that the accuracy of feature estimates is greatly 

reduced by inhomogeneities in the selected region of interest. This implies that a 

significant amount of confidence must be placed in the preprocessing step to  choose 

a homogeneous region for feature estimation. 

2.2.3 Problems 

The general applicability of the image-based approaches can be a weakness. By 

considering the relationships among tissue structures, the ultrasound process. and 

the resulting ultrasound images, it is possible to gain more information for use 

in characterising tissue. Since the image-based approaches use only the B-mode 

image, this extra information is not available. For example, a more effective and 

precise set of features may be determined by accounting for imaging artifacts such 

as acoustical shadowing and enhancement or by knowing the relationship between 

scattering bodies and their corresponding backscattered echoes. By modelling these 

interactions, a set of ultrasound-specific features can be determined. 

It is obvious that the model-based features described above can only be used for 

specific applications (i.e., ultrasound). -41~0, a major problem with the model-based 

features is that most, if not all of the approaches require the RF data as input. The 

reluctance of ultrasound vendors to disclose any information about internal data 

formats and other processing techniques applied to the RF data makes it apparent 

that a model-based approach is not feasible in this thesis research. 



2.3 Image Segment at ion 

The goal of image segmentation is to identify homogeneous regions in an image. 

The homogeneity of regions can be based on a number of factors including, texture. 

colour, or distribution of pixel intensities. Most of the research in image segmenta- 

tion has focused on segmenting 2D images. The result of the segmentation is either 

an image of labelled pixels (each pixel in a homogeneous region having the same 

label) or a set of contours describing region boundaries. If the data to be segmented 

is 3D, such as the data obtained from a series of cross-sectional ultrasound, CTI 

or MRI images, typically, each 2D image is segmented to obtain a set of regions or 

contours. Then each of these contours is "stacked" together to form a 3D repre- 

sentation of the homogeneous regions. Interpolation and surface fitting algorithms 

are then used to estimate the boundaries of the homogeneous regions. Recently. a 

few approaches have been proposed to segment 3D data by incorporating the third 

dimension. Thus, rather than segmenting one 2D image (slice) at a time, the en- 

tire volume of data is segmented. The resulting segmented data from this type of 

approach should have less error since surface interpolation in the third dimension 

is incorporated into the segmentation process, rather than being performed after 

segmentat ion. 

The next two sections describe some of the approaches to 2D and 3D image 

segmentation. Section 2.3.1 highlights some of the approaches to 2D image seg- 

mentation. As well, previous work in 2D image segmentation is briefly described. 

Section 2.3.2 describes some of the approaches to 3D image segmentation. Problems 

associated with segmentation algorithms are discussed in Section 2.3.3. 

2.3.1 2D Segmentation 

Numerous approaches to 2D image segmentation have been proposed in the litera- 

ture. This includes methods based on texture [BO, 79, 77, 15, 22, 23, 141, 68, 109: 

118, 146, 50, 1231, mathematical morphology [124, 471, neural networks [126, 681. 

stochastic relaxation [34, 541, region growing [9, 43, 48, 1221, and intensity* extrema 



Figure 2.15: Quadtree structure. 

[%I- Surveys of segmentation approaches can be found in [loo, 901. Two approaches 

to segmentation are described in this subsection. They are described because of their 

similarities as well as their inherent ability to be extended to 3D segmentation. The 

success of previous work in 2D segmentation is also motivation for a description of 

the second approach. 

-4 split, merge and group (SMG) approach is proposed by Strasters and Ger- 

brands [122]. In this approach, an 1M x M, M = 2", image is represented by a 

quadtree structure in which each leaf node corresponds to a block of pixels in the 

image [B, 110, 111: 112, 38, 41, 94, 3, 73, 12). Figure 2.15 depicts a quadtree rooted 

at level 0. The quadtree is expanded to an initial level, s, in which each leaf node 

represents pixel blocks of size 2"-' x 2"-' where 0 < s 5 n. Next, a merging phase 

is performed in which nodes at level sf, 0 5 sf 5 s - 1, are esamined. If the node's 

children at  level s are homogeneous, then the children are removed from the tree 



and the node a t  level s' becomes a leaf node. The merging phase is repeated for 

each node at each level s'. 

After merging, the splitting phase is performed. The inhomogeneous nodes at 

level s are split into 4 children at level sf 1. Then, all the leaf nodes at level s + 1 are 

examined and any inhomogeneous nodes are again split into 4 children. This process 

continues until no more splitting occurs or until level n (a single pixel) is reached. 

A grouping phase is next performed to group homogeneous nodes which are not 

direct descendants in the quadtree. Quadtree operations such as ADJ, REFLECT. 

and DIRECT [110, 111, 1121 are used to determine nodes which are adjacent in the 

image and can be grouped into the same region. 

There are a number of problems with this approach. First, it is apparent from 

the above description that the initial level, s, a t  which the quadtree is initialised 

influences the final segmented result. If s is too low then detail may be missed in 

the image. If s is too high then small regions will be produced. This is especially 

a problem for larger regions which contain a repetitive texture and appear to be 

homogeneous at larger resolution. 

Another problem with this approach is that it is possible to get stuck in a local 

minimum solution. This is due to the rigid manner in which merging and splitting 

are performed. Also, since there is no probabilistic model used in controlling the 

merging and splitting of nodes, the order in which decisions for splitting or merging 

are made will have an effect on the resulting segmented image. 

Finally, the homogeneity criteria used in determining the splitting or merging of 

nodes does not depend on the size (resolution) of the block of pixels. It was found in 

previous work that the resolution at which pixel blocks are examined has an effect 

on determining the homogeneity of the block [77, 81, 781. This again emphasises the 

importance of selecting an appropriate initial level in the quadtree to initiate the 

segmentation process in the approach of Strasters and Gerbrands [122]. 

A similar approach to 2D image segmentation is the MTS algorithm proposed in 

previous work [80, 79, 771. In the MTS algorithm, the image is stored in a quadtree 

structure. A split and merge (no grouping is required) approach is used to determine 



the most appropriate size (resolution) for a homogeneous block of pixels. based on 

a measure of the testure present in the block. -1 block is split if its 4 children 

produce a stronger measure than its own. A block is merged with its 3 neighbours 

if its parent produces a stronger measure than its own and its 3 neighbours. The 

best texture feature to be used a t  a given resolution is stored in a feature table. the 

design and construction of which is described in [77]. 

The MTS algorithm uses simulated annealing [131: 96, 1, 311 to control splitting 

and merging of blocks. Simulated annealing is a technique used for large scale o p  

timisation problems. Typically, these problems involve combinatorial minimisation. 

There is an objective function (energy configuration) to minimise and the space in 

which the solution is obtained is a large, discrete configuration space such as all the 

possible allocations of labels to pixel blocks in an image. Image segmentation can 

be viewed as a combinatorial problem in which pixels or blocks of pixels are to be 

grouped into one of possibly many regions. This grouping is minimised when each 

region contains pixels having the same texture. 

In the MTS algorithm, the energy for a configuration in the system is a function 

of the quadtree structure, x. Note that the structure of x is different for each new 

configuration due to the splitting and merging of nodes. 

The energy for a configuration in the system is represented as 

where 

x is the quadtree structure 

C is a leaf node in the quadtree 

S, is the set of leaf nodes in x. 

@,(C) measures how well the current block fits the texture region in the image. 

If the current block is too small or too Large (based on measures of the texture)? 

then it must be split or merged. In this case, a&) = 0 and the energy in U 

remains the same. When the current block is split or merged independent of its 



texture measures (due to a random state change imposed by the simulated annealing 

approach): a&) = 1 and the e n e r n  in U is increased. When node C is not split 

or merged, @,(C) = -1 and the energy in U is decreased. The minimum energy in 

U occurs when no splitting or merging takes place for every leaf node in S,. 

Based on Equation (2.1) and the simulated annealing framework, the MTS algo- 

rithm performs a segmentation of an image by iterating until no more splitting and 

merging of nodes in the quadtree takes place or some maximum number of iterations 

is reached. In the first case the minimum energy state is reached. In the second 

case an approximation to the solution results. It is possible that this approximation 

does not provide a reliable estimate, but the approximation can decrease the time 

it takes to produce an initial segmentation. 

Since blocks are labelled as they are examined, when iteration completes. all 

blocks should be labelled. In some cases (terminating the segmentation process at a 

maximum number of solutions, for example) it is possible that some unknown blocks 

(blocks having no texture class label) may exist. The identity of these blocks is de- 

termined by assigning each block to the texture class with the closest characteristics 

to the block. 

The major difference between the MTS approach and the SMG approach is that 

MTS uses simulated annealing to control splitting and merging of blocks. Unlike 

the SMG approach, the decision to split or merge a block is performed dynamically. 

Also, the use of simulated annealing allows blocks to be examined numerous times 

and allows for random splitting and merging to occur. This minimises the chance 

of getting stuck in a local minimum solution. 

Another important difference between the two approaches is that the MTS al- 

gorithm uses a texture characterisation component [77, 81, 82, 781 to determine the 

characteristics of the different types of homogeneous regions (texture classes) present 

in the image. This characterisation is dependent on the resolution of the blocks ex- 

amined during the segmentation process. As well, numerous features are used in 

producing the characterisation: but only the most appropriate set of features for a 

particular resolution are used by the segmentation algorithm in deciding to split or 



merge a block of pixels. The characterisation of texture classes also provides the 

ability to identifv (label) regions during the segmentation process. 

In contrast, the SMG approach uses measures (or criteria) of homogeneity which 

do not take into account the resolution of the pixel block being esamined. Also. since 

the SMG approach does not incorporate a testure characterisation component. it is 

quite difficult to determine the representative characteristics of the regions in the 

image. Thus, it is difficult to determine the values of the parameters required in 

the homogeneity criteria. It is also difficult to determine the identity of the regions 

during the splitting and merging process. Thus, the grouping phase is used in a 

"region growing manner to determine the region identities. 

2.3.2 3D Segmentation 

Due to the increasing popularity of data visualisation (see Sect ion 2.4), segmentation 

of 3D datasets is becoming more important. There are currently a few approaches 

to 3D segmentation reported in the literature [lo?, 108, 122,46. 591. This subsection 

describes some of these approaches. 

The computationally easiest method for performing 3D segmentation is to use 

an "interactive" method. In this approach, a knowledgeable user must manually 

segment the data into regions based on their knowledge of the objects in the image 

as well as their ability to visually interpret the images. Sakas et al. [107] claim that 

the current segmentation methods offered by the image processing and computer 

vision communities "lack generality or require massive computational effort." Thus. 

these methods can not be practically used in any clinical system. They propose 

several met hods for segment a t  ion which basically clip regions within the volume. 

The methods differ in how the user must select the regions which are to be rendered 

or discarded. The big drawback of interactive segmentation is the effort required 

from the user. Each time the dataset is changed the user must perform the tasks 

required to segment the data. Reproducibility is also a concern. Diagnosis of clinical 

2D ultrasound images is already subject to variability among physicians. Certainly, 



any segmentation results based on this subjective evaluation will suffer the same 

inconsistencies. Sakas and Walter [108] acknowledge these problems and propose a 

segment a t  ion met hod, BLTP (binarize, low pass, threshold and propagate) which 

isolates a "region-of-interest" in the volume data. This met hod uses multiresolution 

filtering and a mathematical morphology like operation to produce a mask which 

identifies points in the original volume which are to be rendered. Since the mask 

can be computed fairly quickly (under one minute) it is possible to use the approach 

in (near) real time. However, the method does still require interaction on behalf of 

the user for selecting parameters such as threshold values and filter sizes. 

Strasters and Gerbrands I1221 extend the SMG approach to segment 3D images. 

2D segmentation using the quadtree extended to 3D using an octree approach. With 

the octree (see Section 5.1 for more details), pixel blocks of size N x N x A- (as 

opposed to blocks of size N x N with the quadtree) are examined. The split. 

merge, and grouping phases are performed in basically the same manner as in the 

2D approach. The biggest difference between the 2D and 3D versions is that in the 

latter the homogeneity criteria must be modified so as to incorporate the additional 

data in the third dimension. 

Note the restriction on the size of the third dimension in the 3D version of the 

SMG approach. By the definition of the octree structure, the block of pixels (size 

N x N x N) examined is isometric. This implies that data being segmented should 

also be isometric (same resolution in each dimension). For data obtained as a series 

of cross-sectional images, it is often the case that the number of cross sections is less 

than the size of each cross section. It is therefore necessary to use interpolation so 

that the resolution along the avial direction (third dimension) is the same as that of 

cross sections. Alternatively, each cross section can be sub-sampled but a significant 

amount of data is lost. 

Joliot and Mazoyer [46] propose a method for segmenting 3D MRI data of the 

brain. Segmentation of the 3D image is used to  identifp two different regions (gray 

matter, GM, and white matter, WM) and is performed in a series of steps. The 

first step involves selecting thresholds which can be used to identify Ghl and WM. 



This is accomplished by manually sampling regions (from individual slices) within 

the 3D image to determine the range of intensity values for WhI and GM. Once the 

thresholds are determined, they are used to create two new 3D images (one for G l I  

and one for WM) from the original. The next step is to segment the Whl image 

using a 3D connectivity algorithm. Basically7 this involves selecting seed points 

within the volume and growing regions using connected voxels. The GM image is 

segmented in the same manner. Finally, both images are combined into a single 3D 

image. Mathematical morphology is used to perform interpolation between slices, 

prior to rendering. 

The major problem with this approach is the first step used in selecting thresh- 

olds. Since threshold selection is based only on the average intensity within a desired 

region (GM and dWM in this case): the process is very susceptible to noise. As well. 

the thresholds have to be determined for each new 3D dataset. Thus, if the level of 

noise in the image is high (as is the case with ultrasound images), it is very likely 

that the first step (and subsequently the remaining steps as well) of the segmentation 

process will fail. 

Liou and Jain propose a parallel 3D segmentation algorithm which uses a- 

partitioning and volume filtering to identify regions in which the variation of in- 

tensities can be described by a regression model (591. The use of a-partitioning 

eliminates the need to use region growing as a method for identifying homogeneous 

regions (volumes). The purpose of a-partitioning is to generate volume hypotheses 

based on the gradient information present in the image. Each of these hypotheses 

are then verified through volume filtering and invalid hypotheses are rejected. In- 

valid hypotheses are those which include volumes containing intensities from 2 or 

more distinct regions. 

The biggest problem nrith this approach is that only the gradient information 

is used in determining possible volume hypotheses. Thus, the approach is only 

appropriate for images which have strong boundaries between regions. Also. in the 

presence of noise or regions having a highly varying texture (as is the case with 

ultrasound images), it is likely that a-partitioning will produce many small volumes 



and the resulting segmentat ion will be highly fragmented. 

2.3.3 Problems 

There are a number of problems associated with image segmentation approaches in 

the context of segmenting 3D datasets. With 2D segmentation, the potential increase 

in information which is available in the third dimension is not used since typical 

processing involves segmenting each 2D image and then combining the resulting 

segmented images in some manner. This also implies that the third dimension is 

not treated in the same manner as 2D images. Finally, when the 2D segmented 

images are "stacked" toget her, interpolation is used to determine the 3D surface 

representation of the segmented region (object). Since the interpolation is performed 

from the segmented images, there is no knowledge of corresponding points between 

successive images. Thus, error is introduced during interpolation. 

The biggest problem in 3D segmentation is determining how the data in the third 

dimension can be effectively used. For segmentation approaches based on testure. 

such as the proposed 3D MTS algorithm in Section 5.1, the biggest challenge is to  

determine 3D texture features which can be used to characterise texture in 3D data. 

One of the contributions of the Ph.D. work is to  determination of these 3D features. 

2.4 Data Visualisat ion 

The goal of data visualisat ion is to represent pictorially the relationships among 

variables within multidimensional datasets. Currently, visualisation of 3D datasets. 

especially those obtained by different imaging modalities (e.g., CT, TvlFU, and ul- 

trasound) in the field of medical imaging, is achieving significant attention from 

researchers. Data visualisation is used as a tool by researchers and physicians to 

discover relationships within the data that previously could not be obtained by ex- 

amining the data values themselves or by displaying 2D images (as in the case of 

medical imaging). 



This section describes techniques for visualising data as well as some problems 

associated with these techniques. 

2.4.1 Rendering 

Rendering is the process of creating a visual representation of a scene based on 

a description of the scene. Typically. a 2D image is rendered from a 3D scene 

description. The scene can be described by mathematical equations or by data 

points distributed within a volume. Topics such as hidden surface removal, shading 

models, surface properties and shadowing are important for producing a rendered 

image which corresponds to our expectations of how the scene should appear. 

Rendering techniques can be classified into two general categories: 

SUT-u ce rendering techniques, 

0 volume rendering techniques. 

In surface rendering [138. 127, 33, 123, 18, 128, 77, 1391, a geometrical representa- 

tion of the data such as edges (contours), mesh [113], polygons, triangles, pixels or 

voxels ( 3D representation of a pixel) is used to model the object or structure to 

be visualised. When a 3D dataset of voxels (assuming the dataset is an isometric 

grid of cubic voxels) is used. the surface is typically modelled as a thin shell" with 

voxels either belonging to the surface (totally opaque) or not (totally transparent). 

A segmentation algorithm is used to classify each voxel and a surface representation 

is obtained using a surface fitting algorithm such as the marching cubes [139, 1381. 

Surface normals (which indicate the orientation of a local surface patch) are usually 

calculated from the geometric primitives representing the surface and in some meth- 

ods the image gradient is also used [128]. The image gradient is an estimate of the 

change in surface orientation from one patch to another. It is calculated from the 

pixel intensities where a change in pixel intensity is assumed to  represent a change 

in the surface orientation. 

Volume rendering techniques [55, 85, 35: 56, 87, 84, 102: 5, 83, 30, 1391 use the 

original data, rather than a geometrical representation based on the original data. 



for rendering. The entire volume of data is assumed to be semi-transparent and each 

voxel in the volume is assigned an opac~ty and colour value based on the intensity 

values of the data. This is commonly referred to as classification. The surface 

normals are estimated from the local image gradient since there is no geometric 

representation of the surface(s) to be rendered. 

The selection of the mapping function from intensity to opacity has a profound 

influence on the appearance of surfaces in the rendered image. A single surface 

(isosurface) is obtained by selecting thresholds for the mapping function such that 

only intensity values within the specified range have an associated opacity value. 

-411 other intensities are classified as being totally transparent and do not contribute 

to the rendered image. 

Renderings obtained directly from raw ultrasound data are typically noisy. To 

minimise the effects of noise a preprocessing step is commonly performed on the 

raw data prior to  rendering. Filtering [108, 107, 49: 1191 is commonly employed as 

a means of reducing the noise present in the raw data. There is a tradeoff between 

the amount of noise that is reduced and the amount of detail that is lost when 

filtering. Steen and Olstad (1191 apply a Gaussian-like filter at different scales to 

smooth noise and small details in ultrasound volume data. They further process 

the data by performing a convolution operation to detect features (image gradients) 

from the filtered data. The resulting "feature map" is subsequently rendered using 

several volume rendering techniques. 

Sakas and Walter [108] use a multiresolution approach to filter the opacity values 

subsequent to the mapping of the intensity values. The purpose of the (low pass) fil- 

tering is to  suppress the effects of noise inherent in 3D ultrasound data. By applying 

the filtering at multiple resolutions, persistent regions in the data are determined. 

These regions are then used to create a "region-of-interest" (ROI) mask. The mask 

constrains the location of the isosurface to be within the ROI. 

Karaman et al. [49] propose a filter which reduces the amount of speckle (un- 

desirable noise degrading image quality) in ultrasound images. The filter adapts to 

localised regions based on the statistics collected within the region. h smoothing 



operation (mean or median) is performed within each region to reduce the speckle. 

Parameter selection is critical in order to maintain detail in the resulting filtered 

image. 

Subsequent to identification of the surface(s) of interest and its associated nor- 

mals, both surface and volume rendering techniques use a common method for ren- 

dering a 2D projection of the 3D dataset. The surface normal: colour and opacity 

values are used in conjunction with a shading model to produce the 2D projection. 

Typically, orthographic projection and the Phong shading model [30] are used. A 

procedure known a s  cornpositing incorporates the shading information and the opac- 

ity and colour values along each ray in the orthographic projection to calculate the 

intensity for each pixel in the vienring plane as follows: 

where cr(x),  0 5 a ( x )  5 1, is the assigned opacity value for voxel x, I, is the intensity 

of outgoing light, Ii is the intensity of light entering voxel x from the previous vosel 

along the ray (see Figure 2.16) and C ( x )  is the intensity (colour) of voxeel x calculated 

using the Phong shading model: 

where 

I[ - intensity of light I ,  

Ll - unit normal for direction of light I, 

L +V HI = L 2 - unit normal for direction of maximum specular highlight for light 1 

and viewing position represented by the unit normal V, 

N ( x )  - surface normal for voxel x, 

d(x) - distance of voxel x from the viewing plane, 
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Figure 2.16: -4 single ray encounters a number of voxels as it passes through the 
volume on its way to the viewing plane. 

n - exponent for approximating specular highlight, 

ka, kdr ks - ambient, diffuse and specular coefficients, respectively, 

kl, k2 - constants approximating depth cueing. 

It can be seen from Equation (2.2) that the contribution of the incoming light, I iy  

entering voxel x depends on the transparency of the voxel (1 - a ( x ) ) .  I, represents 

the value of the pixel on the viewing plane once all voxels along the ra.y have been 

processed. Figure 2.16 illustrates the case of a single ray encountering a number of 

voxels as it passes through the volume. The final I, value represents the pixel value 

on the viewing plane. Note that compositing can be performed by projecting rays 

from the viewing plane into the volume (ray-casting) or by projecting rays though 

the volume onto the viewing plane (voxel-projection). In the latter case, it is possible 

that more than one pixel in the viewing plane is covered by the projection of a ray 

-4n alternative to the spatial domain volume rendering techniques described 

above is a frequency domain method proposed by Malzbender [69]. The advantages 

of frequency domain based volume rendering is a significant reduction in computa- 

tional cost as well a s  additional assurances of image accuracy. The basic approach is 

to transform the 3D dataset into the frequency domain (using a Fourier or Hartley 



transform) in which all operations (e.g.. filtering, 2D projection. etc.) are per- 

formed. An inverse 2D transform is applied to the 2D projection of the dataset onto 

the viewing plane in order to render an  image for display. The major limitation of 

this approach is that the projection is order independent along the line of projec- 

tion, and therefore, all depth information (hidden surface information) is lost. The 

resulting 2D images have a transparent look which resemble X-ray images. 

2.4.2 Problems 

There are a number of problems associated with the surface and volume rendering 

techniques. Surface rendering techniques require that a decision be made on whether 

or not each  oxe el (or pixel in the 2D case) in the dataset belongs to the object. This 

segmentation process is non-trivial and often small details are lost or artifacts are 

incorporated into the object. The presence of noise in the data severely affects the 

quality of the segmentation. Although volume rendering techniques do not require 

a binary classification of the data, it is precisely relaxation of this requirement that 

imposes a major problem in selecting a surface to be rendered. Since the identity 

of each voxel can only be determined from its intensity, the mapping function from 

intensity to opacity is crucial. Currently, ad hoc methods are used to determine 

this function. Furthermore, since most mapping functions are not based on any 

model (this is especially true for ultrasound data), the rendered images can vary 

significantly from physician to physician (or researcher to researcher). Noise in the 

dataset will also affect the quality of the rendered image since surface normals are 

estimated from the image gradient. 

-4 problem common to both surface and volume rendering techniques is the com- 

putational expense and storage requirements. Since typical datasets are in the order 

of 30MB or greater, the expense of rendering methods makes interactive rendering 

difficult on current workstations. Although it is not the goal of this thesis to ren- 

der ultrasound images a t  interactive rates (it is desirable, however), the issue of 

interactive rendering is quite important in the visualisation community. Of course. 



increasing the a~ailable resources (number of processors. speed of processors and 

memory) can substantially increase the rate of rendering. Alternat i v e l ~  met hods 

such as adaptive refinement [56], incremental rendering [87. 35. 127, 1281, frequency 

domain rendering [69] and shell rendering [128] are ways of reducing the compu- 

tational and storage requirements so that inexpensive workstations can approach 

interactive rates. 

Another problem common to both rendering techniques involves resampling the 

original data. Often, the dataset to be visualised does not conform to the isometric 

3D grid of voxels that is required by the rendering techniques (see the discussion 

of the 3D ultrasound probe in Section 1.3). Thus, when transforming the dataset 

to an isometric representation either data points are ignored or interpolation is 

required to ;%11 in" missing data values. Also, when the viewing plane is oriented at 

different locations with respect to the dataset, the orthographic projection is subject 

to sampling error due to the discretisation of the dataset. 



Chapter 3 

Tissue C haract erisat ion 

The purpose of this chapter is to describe the details of the Tissue Characterisation 

module. Previous research in characterising tissue in ultrasound images used an ad 

hoc approach in analysing the features to determine the most effective parametric 

representation of the tissues [77, 78, 811. This approach provides good results for 

a small number of somewhat distinct tissue types. However, in this thesis it is de- 

sired to characterise tissues whose corresponding texture in the ultrasound data is 

quite similar. This requirement exceeds the capabilities of the previous research so 

a new approach is necessary. It is proposed that a statistical pattern recognition 

based approach be used to characterise (and classify) these types of tissues. This 

approach has a number of advantages. One advantage is that statistical pattern 

recognition is well established and thus provides a solid foundation on which tis- 

sue characterisat ion can be accomplished. As well, the improvements suggested in 

this chapter to a classical statistical approach provide the ability to combine both 

classification and segmentation in a unified, multiresolution framework. This is a 

significant contribution as classification and segmentation are almost always treated 

independently in the literature. 

Pattern classification [67, 88, 52, 105, 25, 148, 32, 44, 6, 2: 1321 is a well studied 

problem in which the identity of an unknown pattern is determined to be one of 

M classes. These b1 classes are either determined a pn'ori or are determined by 

analysing the "clustering" of patterns within the pattern space. When classes are 

determined a prion', certain assumptions are necessary for unknown patterns to 



be identified accurately. First, the M classes span the entire pattern space. That 

is, the identity of each pattern must be one of the 11 classes. It is also usually 

assumed that there is no computational expense in obtaining the pattern space 

itself. For example, a sensor bank produces D dimensional patterns as output of a 

monitoring process. When any of these assumptions are violated, the accuracy and 

computational efficiency of the pattern classifier are reduced. 

In statistical pattern recognition it is assumed that the classes can be described 

by a set of distributions. Once the distributions are determined, it is possible to use 

a statistical decision rule to determine the class to which a pattern belongs. It is 

usually the case that the actual parameters of the class distributions are not known. 

so the pattern space must be representatively sampled in order to estimate the 

parameters. When this sampling process is contaminated with outlier patterns, due 

to some sort of sampling error, the resulting parameter estimates will be biased and 

subsequent classifications based on these parameters will be inadequate. Recently. 

robust statistics [106, 17, 82, 81, 77) have been used to minimise the effects of 

outliers in parameter estimation. The minimum volume ellipsoid estimator (MVE ) 

proposed by Rousseeuw and Leroy [I061 can tolerate up to 50% contamination of 

the data and still provide an unbiased, affine equivariant estimate (in the case of 

a multivariate normal distribution, the mean and associated covariance matris) 

describing a class distribution. 

To increase the classifier's tolerance to outlier data, it is proposed that the MVE 

estimator be used to estimate the class distribution parameters. For distributions 

which exhibit elliptical symmetry, such as the multivariate normal distribution, the 

MVE estimator provides unbiased parameter estimation in the presence of up to 

50% outliers. It is also shown experimentally that reasonable parameter estimates 

are possible for distributions which do not exhibit elliptical symmetry, provided 

that the sample size is large enough. Experiments are presented which examine the 

effects of dimension, sample size, outlier data and class distribution assumptions on 

the ability of MVE to provide unbiased parameter estimates. 

Dubuisson and Masson (261 extended a statistical decision rule for M classes with 



a reject option, originally proposed by Chow (201: by redefining rejection with two 

options, arnbzgvity reject and distance reject, which relax the assumption that a11 

patterns belong to one of M classes. This assumption must be relased when the 

a priori knowledge about the classes is incomplete. The ambiguity reject option 

reduces the probability of erroneously classifving a pattern into one of the M classes 

with the use of an ambiguous class. This class identifies those patterns which are 

classified as belonging to two or more classes with (near) equal probability. The 

distance reject option also reduces the probability of erroneous classification by 

removing the restriction that a pattern must be classified into one of the M classes. 

-4 distance reject class identifies those patterns which have little or no similarity to 

each of the prototypical representation of the M classes. Once patterns are classified 

into one of the reject classes, it remains that the true class identity of these patterns 

be determined. 

When there is a computational expense associated with producing patterns, it is 

desirable to reduce the dimensionality of the patterns such that the computational 

overhead is minimised, while still maintaining accurate classification results. One 

common way to achieve this is to use feature selection to reduce the patterns from 

D to d dimensions. In doing so, only the most useful d dimensions need to be calcu- 

lated and subsequently evaluated by the classifier. There are numerous algorithms 

for selecting features for the reduced feature space [25, 148, 32, 44, 98, 72? 1301. 

Each algorithm involves the evaluation of a criterion function to determine which is 

the best subset of d features. The choice for a criterion function depends on how 

separation among the classes is measured. Ideally, the value of the criterion func- 

tion will be maximum when the separation among the classes is large and minimum 

when the separation among the classes is small. i\ theoretically ideal criterion is 

the Bayes error which indicates the probability in erroneously misclassifying pat- 

terns. -4s noted in the literature [25], calculation of the Bayes error is difficult as 

the intersection of the M class distributions in multi-dimensional space is required 

to determine the error probability. Determining the multi-dimensional intersection 

is a computationally complex operation. 



-4 new criterion function: the Inck (Incomplete knowldege) criterion function. 

is proposed which approximates the error probability when the >I classes do not 

span the entire pattern space. This criterion is based on the probabilistic measures 

obtained from a modified version of Dubuisson and Masson's statistical decision 

rule with reject. The error probability, or conversely the probability of correct 

classification, can be determined without having complete knowledge about the 

class distributions. The attractiveness of this criterion is that it is highly correlated 

with the statistical decision rule (with reject) which can be used by the classifier. 

Thus, the criterion provides a good indication of the classifier performance that can 

be expected with the reduced feature space. The modified version of Dubuisson 

and Masson's rule treats the distance reject class differently than that  originally 

proposed. In its original form, the distance reject threshold has no direct relationship 

to the cIass distributions. This is especially problematic for the case of multivariate 

normal distributions with different covariances. In order to maintain an unbiased 

decision it is required that a reject threshold be chosen for each different covariance. 

The threshold selection is made difficult as each threshold must not add bias to 

the decision rule. The modified version of the rule relates the probability in which 

patterns are identified as belonging to the distance reject class to a reject threshold 

for each different covariance. That is, the threshold values are determined by fising 

the probability in which patterns are classified as belonging to the distance reject 

class. This is equivalent to selecting a confidence interval a t  which patterns are 

classified into one of the M classes. 

Finally. a classifier design is presented which incorporates the new criterion func- 

tion. -4s well, it is described how the rejection classes of the statistical decision rule 

with reject can be used in a multiresolution classifier design to determine the class 

identity of patterns which can not be determined at  a given resolution. 

The organisation of this chapter is as follows. Section 3.1 describes the robust 

MVE estimator. Section 3.2 describes the statistical decision rule with reject pro- 

posed by Dubuisson and Masson. Section 3.3 describes how this rule can be modified 

which result in an improvement in rejection threshold selection. It is also described 



how this method can be used as a criterion function for feature selection. Section 

3.4 describes various feature selection methods. Section 3.5 discusses classifier de- 

sign and how the MVE estimator and the statistical decision rule with reject can 

be incorporated. Experimental objectives, procedures, and results are presented in 

Section 3.6. Section 3.7 provides a summary of the chapter. 

3.1 Robust Parameter Fitting 

When the decision has been made to use supervised training in the design of a 

classifier, it is necessary to obtain representative samples of each of the Ad classes 

on which the training is performed. This requires control over the sampling process 

such that when a pattern is obtained, its identity is known a priori. It is often 

assumed that control over the sampling process is adequate so that the identification 

is accomplished with a minimal amount error. However, if the sampling process is 

subject to error this assumption is violated. The performance of the classifier will 

certainly be degraded. One way to  reduce the chances of this is to accept that 

sampling error exists. The sampling error results in patterns which do not represent 

the class to which they are assumed to belong. If these patterns could be "removed" 

from the training data then the performance of the classifier should be independent 

of the error in the sampling process. 

Errors in the training data have a direct effect on how well the class parameters 

can be estimated. For example, the existence of one "outlier" pattern can severely 

bias the estimate of the sample mean for a class. An outlier is a pattern which is 

substantially different from the majority of the patterns belonging to  the given class. 

The use of robust statistics [57: 120: 106, 17, 82, 81, 771 in parameter estimation is 

one way to  minimise the effects of outliers. In the multivariate case, outlier detection 

can be difficult. Rousseeuw and Leroy [106] focus on robust methods for estimating 

the parameters of a multivariate point cloud which describe the centre of the cloud 

as well as the 

is assumed to 

dispersion of the points about the centre. When the point cloud 

have a multivariate normal distribution, these parameters are the 



multivariate mean. p,  and covariance, C .  The minimum volume ellipsoid estimator 

(MVE) is one method which estimates N ( p .  C )  by fitting an ellipsoid to at least 

half. h ( h  = n / 2 ) ,  of the data points of X .  The centre of the ellipsoid provides the 

estimate for p while the ellipsoid itself provides an estimate of C .  

A brute force method to calculate the smallest volume ellipsoid is to consider 

all combinations of half the data points and calculate the volume of the ellipsoid 

surrounding each "half". This method is computationally infeasible, however, for 

any reasonable size n as the number of halves is large (C: halves). It is possible to 

reduce the computational expense in two ways: 

reduce the number of ellipsoids that have to be calculated, and 

reduce the computation in calculating each ellipsoid. 

Both of these are accomplished in the MVE. 

Given a data set, X, containing n, pdimensional vectors xi, 1 5 i 5 n: a 

subsample, J ,  of ( p  + 1) vectors are d r a m  from X, 1 5 p < n. It is assumed that 

( p +  1) 5 h and that there are a t  least h non-outlier data points. From J ,  the sample 

mean, m ~ ,  and covariance matrix. CJ, are calculated. The ellipsoid corresponding 

to r n ~  and CJ must then be inflated or deflated to contain exactly h points. This is 

accomplished by considering the squared distance of each point, xi) 1 5 i 5 n, from 

the centre of the ellipsoid: 

Half (h)  of the population is above 4 and half below, where 

Every xi whose corresponding $ 5 6 is closer to  the centre of the ellipsoid than 

those xi whose corresponding $ > 6. Scaling the ellipsoid to fit these h points 

corresponds to scaling CJ by 62,. Figure 3.1 illustrates the fitting process for p = 2. 

The original ellipse is enlarged to include half the data points. 



Figure 3.1: Fitting ellipsoid to h data points. 



The volume of the ellipsoid, I;. is proportional to the determinant of the scaled 

covariance matrix 

Rather than computing Equation (3.3) for every possible 

(3.3) 

C;+, subsample. s 

subsamples are d r a m  and the one minimising Equation (3.3) determines which 

r n ~  = m(X) and which CJ = C(X). m(X) and C ( X )  are the mean and covariance 

parameter estimates for X. Note that CJ must be corrected by the factor 

since X is multivariate normal. The choice for the number of subsamples, s. is 

determined by the probability that a t  least one of the subsamples consists of no 

outliers: 

E = 1 - (I - (1 - E ) P + ~ ) =  (3.4) 

where E is the percentage of outliers assumed to exist in the data. To ensure that 

there is good chance of selecting an uncorrupted subsample E is chosen to be some 

value close to 1 (0.95 or 0.99 for example). Rearranging the terms in Equation (3.4): 

the number of subsamples, m, is 

The MVE parameter estimates can be used directly or they can be used as an 

initial solution for a refined version of the MVE. The reweighted MVE applies a 

weight to each xi in X. The weight, wi, is determined by the distance between the 

point, xi, and m(X) as follows: 



where c is the maximum distance a point can be from m(X) without being considered 

an outlier. The choice for c depends on how tight a fit is desired. For example. 

includes 99% of the "good" data surrounding m(X). Thus, Equation = Xp,0.99 

(3.3) acts as a filter for removing outliers from X. The estimates m(X) and C (X) 

can be recalculated in the classical way using all the xi in S with a corresponding 

Wi > 0. 

The complexity of the MVE estimate is dependent on the calculation of the 

p x p matrix inversion (in Equation (3.1)) and calculation of the median from the 

n squared residuals (in Equation (3.2)). Each of these calculations is performed 

s times. The complexity of a single matriv inversion, in general, is Q(p3) .  The 

complexity of the median calculation is 0 ( n 2 ) .  Note that as p increases linearly. s 

increases exponentially (c.f. Equation (3.1)). -4 limit must be placed on the size of 

s for even moderate values of p. 

3.2 Statistical Decision Rule With Reject 

Given M classes, 

probability P(wi). 

Rd, belongs to ui 

is associated with 

i J i ,  1 5 i 5 M, each with a known distribution and a priori 

P(ui) = 1, a vector, x, in d dimensional pattern (vector) space. 
i= 1 

with probability f (xlwi)- Using the usual Bayes rule [32, 251, x 

the class 1 

probability in classifying x 

which minimises the conditional error probability (error 

into w i )  Ci(x), 

This optimal error probability is 



Figure 3.2: Using the statistical decision rule with both ambiguity and distance 
reject options results in the pattern space being partitioned into M+2 regions. 

Chow [20] introduced an additional reject class, ;JO: to which x is assigned when 

the probability of x belonging to 2 or more of the M classes is (near) equal. This 

results in a decision rule with an ambiguity reject (as termed by Dubuisson and 

Masson [26]) option 

where C, is the ambiguity reject threshold and 0 5 Ca < in order for the reject 

option to exist. 

The distance reject option proposed by Dubuisson and Masson decreases the 

probability of erroneously classifying x into one of the M classes when it is "far 

from" the prototypical representation of each of the M classes. This situation arises 

when the M classes do not actually span the entire pattern space and x comes from 

a region which is not spanned by the classes. Thus, the pattern space, Rd, is divided 

into M+2 regions as illustrated in figure 3.2. The following relationships hold among 



Figure 3.3: Mixture density for 2 classes with different variances. 

the regions: 

The reject regions for ambiguity and distance are Ro and OD, respectively. 

Using the distance reject option in its original form, x is distance rejected if 

where f (x) is the mixture density and Cd is the distance reject threshold. Wote 

that Cd is related to the mixture density and not directly to the class distributions. 

This is problematic when the distributions are parameterised with different values 

or different parameters. Figure 3.3 illustrates the mixture density for two classes 

having normal distributions with different means and variances. For Cd = 0.025. 

Equation (3.9) results in a bias favouring the distribution on the left (class 1). That 



is, the proportion of area in the tails of the distributions indicate that the probability 

of x being distance rejected when it belongs to the distribution on the right (class 

2) is greater than the probability for class 1. 

3.3 Modified Decision Rule 

It is possible to modify the distance reject option so that there is no bias in the 

resulting decision rule. In this thesis multiple distance reject thresholds, rather than 

a single threshold, are used in determining the distance reject region in pattern space. 

In this modified decision rule, Inck, a distance reject threshold is chosen for each 

different class distribution. These thresholds are chosen according to the parameters 

of each class distribution. In Figure 3.3, two thresholds, C1 and C2. are chosen such 

t.hat the area in each tail of the distributions is the same (y, which results in a 

distance reject probability of 0.023 = Cd for each class). By fixing the area in the 

tails of each class distribution, an upper bound for the probability of distance reject 

for the mixture density, PL': is 

The upper bound in Equation (3.10) results when there is no overlap among 

the classes ( i-e. Ro = 8) or when there is total overlap among the classes ( i-e. 

A lower bound for the probability of distance reject for the mixture density, P ; ~ ,  

can also be determined when each of the P(wi)  = 1lh.I and there is overlap among 

the tails of each of the M class distributions as shown in Figure 3.4. In this case only 

the two outermost classes each have a tail which does not overlap with any other 

class. The resulting probability is 

In this modified decision rule there is now a direct relationship between Cd and the 



Figure 3.4: Overlapping multi-class distributions resulting in a lower bound for 
probability of distance reject. 

probability of distance reject. The upper and lower bounds for the probability of 

distance reject are determined by the value of Cd. 

In order to determine the values for Ci, 1 5 i 5 M, it is necessary to consider 

the parametric representation of each class. For the sake of simplicity it is assumed 

that each class has a multivariate normal distribution, N(pi7 Xi). The distance 

between Ci and pi has a x2 (chi-square) distribution with d degrees of freedom. By 

letting Cd represent the confidence level it  is possible to determine a single value. 

x2 (d, 1 - Cd)7 which can be used for each class as a rejection threshold. Thus, rather 

than calculating each Ci in terms of the mixture density, the distance between x and 

each class mean pi is calculated and compared to X2(d, 1 - Cd). This is equivalent to 

selecting a confidence interval around each class and patterns outside this interval 

will be distance rejected. Specifically, x is distance rejected if for all 2 ,  1 9 i 5 M, 

where c = x2(d, 1 - Cd).  Note that the 1.h.s. of the inequality in Equation (3.12) 



is calculated in determining f(x) so no estra computational cost is incurred. If 

this does not hold then the pattern is classified according t o  Equation (3.7) and 

Equation (3.8). Also, the spatial relationship among the classes does not have an 

effect on the modified rule. This is different than the approach taken by Dubuisson 

and Masson in which the spatial relationship among the classes has to be considered 

in determining how the ambiguity reject and distance reject options are applied. In 

Section 3.6.2 simulations using Inck are presented which verifv the results originally 

obtained by Dubuisson and blasson as well as show the advantages of the distance 

reject option. 

The reject options in Inck allow patterns to be classified into M classes even if a 

complete representatior of the classes is not known prior to training the classifier. 

Further, the reject options minimise the probability of misclassification error, PE. 

This probability (as well as the probability of correct classification, PC) is quantified 

as follows: 

PC (C,, Cd) = 1 - PE (Ca, Cd) - PRA(CaI Cd) - Pm (Cd) correct classification (3.13) 
hi1 

PE(Ca, Cd) = PEi (Car Cd) misclassification error (3.11) 
i= 1 

4- 

pRA (Cot Cd) = / f (x) dx ambiguity reject 
no 

These probabilities are the same as that presented by Dubuisson and Masson [26] 

except for the regions of integration in Equation (3.15) and Equation (3.16). The 

differences are due to  the reasons explained above. It can be seen from Equation 

(3.13) that PC decreases as PRA or PRD increase. However, when patterns are 

rejected they can not be classified into one of the bf classes and so PE decreases 

which results in an increase in PC. Thus, a tradeoff must be made between the 



classifier's ability to minimise classification error and maximise correct classification. 

For example, when there is high risk associated with misclassifying patterns it is 

desirable to choose C, and Cd such that PE is minirnised. 

To facilitate the selection of C, and Cd an algorithm is presented which provides 

an intuitive method for selecting the parameters. The algorithm determines the 

value for Ca based on a given classification error tolerance. C, at  a given confidence 

level, Cd. The algorithm determines the value of C, which maximises PC while 

keeping PE 5 C. Cd is the given confidence level (t-ypically .O5 or .01) at which PC 

is rnaximised. 

Based on the relationships among the probabilities in Equation (3.13): PC is 

maximum when PRrlr PRD and PE are minimum. The reject probabilities are easily 

minirnised by setting Cd = 0 and C, > (1b.I- l)/M This will result in Pru = 0 and 

PRD = 0. In this case, however, PE will almost certainly not be minimum as any 

class overlap or data outliers Rill result in an increase in PE. Alternatively? PE can 

be minimised by expanding the reject regions so that no error occurs. Cd = 1 and 

C, = 0 will produce the desired effect. Obviously, these are not good parameter 

choices as all points are classified into one of the reject regions. However, if the 

restriction that PE 5 e is enforced then it is possible to formulate a criterion for 

maximising PC: 

Choose C, s.t. PM is minimum and PE 5 E .  (3.19) 

With bounds placed on Cd (and thus PRD) and PE (0 5 PE 5 E ) ,  all that remains 

is to select the value for C, from the range [0, (hf - l)/il.I] which satisfies Equation 

(3.19). Since PE is a monotoilically increasing function over this range (simulations 

are presented in Section 3.6.2 that verify this) a numerical method similar to root 

finding [97] can be used to find the value of C, at which PE = C. Given the confi- 

dence level, Cd, and the maximum classification error tolerance, c, the algorithm is 

formulated as follows: 



1. Ca + ( 1  - 1 ) .  u t (d - l)/dl. I t 0. done t false 

Repeat steps 2 - 4 while not done 

2. classify training data  with C. and Cd to obtain PEt PR4: Pm: PC 

3. compare PE with E 

(a) if IPE - el < A then done t true (A a small number) 

(b) if PE < E and C, = (M - 1)/M then done t true 

(c) if PE < E then 1 t C a  
(d) i fPE  > E then u t Ca 

4. if not done then Ca t (u - 1 ) / 2  

The resulting PC will be a maximum for the calculated C,, the given confidence 

in t end  and error tolerance. 

Since both PC and PE provide a good indication of the performance that can be 

expected with a classifier using the proposed decision rule it is natural to extend the 

use of the rule to the evaluation of feature sets. In feature selection a subset of d 

features is chosen from the D available features. There are numerous algorithms for 

determining the "optimal" set of d features [25, 148, 32, 4, 98, 72, 1301 and each 

algorithm must evaluate some criterion in which optimality can be quantitatively 

measured. Both PC and PE provide measures of optirnality. The benefit of using 

either of these probabilities as a selection criterion is that they indicate the expected 

accuracy of the classifier using the feature subset. The subset of d features which 

maximises PC or minimises PE is then the most appropriate choice for the reduced 

feature set. 

A potential problem in using Inck as a selection criterion is the expense of cal- 

culating a d-dimensional integral over the pattern space to determine the various 

probabilities in Equations (3.13) - (3.17). As d increases linearly, the complexity of 

the integral increases exponentially. Even the use of methods to  approximate the 

integral [97] can not decrease the complexity to the point where evaluation of the 

criteria can be feasibly calculated. The dimensional explosion further exasperates 



the situation as the criterion must be evaluated many times during feature set eval- 

uation. In fact. the complexity of the feature selection algorithm itself can grow 

exponentially (32, 14, 26: 1481. 

In order to  use the proposed rule as a feature selection criterion, it is necessary to 

reduce the effort spent in performing integration. One way to accomplish this is to 

approximate the probabilities in Equations (3.13) - (3.17) using N patterns sampled 

from the pattern space (training set). Rather than integrating over the entire pattern 

space the mixture density, f (x) ,  can be approximated from these samples. Since it 

is usually the case that a training set, S, S = {xj) c R ~ ,  1 5 j 5 3: is used to 

calculate the class densities, f (x) can be evaluated a t  each xj. The probabilities in 

Equations (3.13) - (3.17) can then be approximated using Equations 3.7, 3.8 and 

3.12 as follows: 

where D n i l n E = f l a n d D u A u E = S -  

The error in approximating the above probabilities is dependent on the number 

of samples, N ,  the dimension of the pattern space, d, and the accuracy in estimating 

the class distribution parameters. Blayo et al. [7] suggest that a sample size which 

is exponentially proportional to d be used to estimate the class (normal) distribu- 

tion parameters. This requires a huge sample size for even a modest value of d. 

Contrary to this, Rousseeuw and Leroy (1061 suggest a robust method for parameter 

estimation in which the sample size grows linearly with d. Research by Wacker and 

El-Sheikh [135]: Fukunaga and Hayes [33] and Aberhard et al. [4] also support the 



idea of using a sample size which is linearly related to the dimension of the pat- 

tern space (N = k * d for some constant k 2 1). Both analytical and experimental 

evidence indicate that the choice for k depends on the decision rule used by the clas- 

sifier. For a linear decision rule (the "equal variance" case), a fked k can be used. 

For a quadratic decision rule (non-equal class variances), k should increase with d 

in order to maintain classifier accuracy. In Section 3.6.2 experimental evidence is 

provided that supports the use of a training set of N patterns for approximating the 

probabilities of Inck. 

3.4 Feature Selection 

An important decision that must be made when designing a classifier is whether or 

not to incorporate feature selection. The purpose of feature selection is to reduce 

the patterns from D to d dimensions. In doing so, only the best d features need 

to be calculated and subsequently evaluated by the classifier. The use of feature 

selection is appropriate in a number of cases: 

0 there is a cost in obtaining the patterns, 

redundant information among dimensions, 

irrelevant information in dimensions. 

In the proposed system, the first case is certainly a major concern. The generation 

of patterns is performed at the time of classification. Both the pattern generation 

and classification tasks are competing for the same computational resources. Using 

a smaller dimensional pattern space significantly decreases the resource demands. 

Fewer calculations are required as fewer features have to be computed. .-\lso less 

features have to be processed during classification. The last cases are of concern 

in any classification task. The presence of redundant or irrelevant information may 

only degrade the performance of the classifier. 

There are numerous algorithms for selecting features for the reduced feature 

space [25, 148. 32, 44; 98, 72. 1301. Devijver and Kittler [25] and Fukunaga [32] pro- 



vide an excellent relien- of feature selection algorithms. The choice for a particular 

algorithm depends on the complexity of the criterion function. the dimension of the 

pattern space, the complexity of the algorithm itself. and the required performance 

of the classifier using the reduced pattern space. It is often the case the feature 

selection algorithm used will vary for each different application. Four different fea- 

ture selection algorithms are evaluated in this thesis: branch and bound (BB), best 

features (BF) , sequential forward selection (SFS) and sequential backward selection 

(SBS). The BB algorithm is optimal in the sense that all Cf subsets have the possi- 

bility of being evaluated in determining which is the best feature subset. The search 

is accomplished without performing an eshaustive search of every possible subset. 

The BF, SFS and SBS algorithms are all suboptimal algorithms in that they do not 

evaluate every possible feature subset. The BF algorithm is the simplest (and most 

unreliable) of these algorithms. The feature subset is constructed by choosing the d 

individually best features. This requires only D evaluations of the criterion function. 

However, this algorithm is not guaranteed to produce the best feature subset, even 

if the features are st  at istically independent. 

The SFS and SBS algorithms are ranked between the BB and BF algorithms in 

terms of reliability and complexity. The SFS algorithm is a bottom-up approach that 

constructs the d feature subset starting with k features and increment ally adding 

features until d features are obtained. At each increment, the subset is evaluated 

r ~ i t h  each of the remaining D - k features (thus, D - k, subsets of k + 1 features are 

evaluated). The subset producing the maximum value for criterion function becomes 

the new subset. The SBS algorithm is a top-down approach in which D - k features 

compose the subset. Features are incrementally removed from the subset until d 

features remain. At each increment all combinations (D - k) of D - k - 1 features 

are evaluated. .4gain, the subset producing the maximum value for the criterion 

becomes the new subset. The main difference between SFS and SBS is that the SFS 

is less computationally expensive as the criterion function is always evaluated on 

subsets of dimension < d and for SBS is evaluated on subsets of dimension 2 d. 



The common ground which all feature selection algorithms share is the use of a 

criterion function, J ( D ) ,  in evaluating the various subsets of d features. The subset 

that is chosen is the one which masimises J ( D )  and ideally minimises the probability 

of classification error when using the selected feature space. The criterion function 

provides a measure of the separability among classes. The classification error is 

minimum when the separability among classes is maximum. The best indicator of 

class separability is the Bayes error [25], however, its calculation is often difficult so 

other measures are used. In this thesis two categories of class separability measures 

are evaluated: interclass distance and probabilistic distance. 

Interclass distance measures are based on the average pairwise distance between 

patterns of different classes. The higher the average distance, the greater class 

separation. The advantage of this type of measure is that  no knowledge of class 

distributions is required as the measure can be calculated directly from the training 

data. 

Probabilistic distance measures are based on the separation of the class condi- 

tional distributions, rat her the individual patterns themselves. The proposed crite- 

rion function Inck described in Section 3.3 falls under this category. Probabilistic 

distance measures require knowledge about how each class is distributed in the pat- 

tern space as well as the a priori probability of each class. The training patterns are 

used to estimate the parameters of the class distributions. The estimated parameters 

are then used to calculate the class separability measures. The advantage of prob- 

abilistic distance measures is that they provide a true indication of the separability 

among the classes but the additional information is required. 

3.5 Mult iresolut ion Classifier Design 

There are numerous factors to consider when designing a classifier. Of utmost 

importance is the decision to base the classifier on a pn'on' information. This requires 

assumed knowledge of the pattern distributions which are to be studied by the 

classifier. It is often the case that a fixed number of classes are assumed to esist 



and all patterns esamined by the classifier belong to one of these classes. Csing 

supervised training, samples from each of A1 classes are selected and evaluated by 

the classifier. The results of the training are a decision for the feature space to be 

used in evaluating unknown pat terns (unsupervised classification), the estimation 

of the parameters which define the assumed M classes, and the refinement of the 

decision rule used in determining the identifv of unknown patterns. If the actual 

identity of an unknown pattern is not one of the M classes, then the a priori class 

assumption is violated and classification of the pattern will be incorrect. However, 

if the proposed decision rule is incorporated into the design of the classifier. it is 

possible that violation of the M class assumption will not have a severe effect on 

classifier accuracy. 

When an unknown pattern does not actually belong to one of the assumed bI 

classes, classification using the proposed decision rule will result in one of three 

possibilities: 

I. the unknown pattern is erroneously classified into one of the M classes, 

2. the unknown pattern is classified into the ambiguous class, 

3. the unknown pattern is classified into the distance reject class. 

For case 1, the only recourse is to re-train the classifier so that the misclassi- 

fication error can be reduced. This requires either selecting a new feature space 

to represent the classes and/or expanding the assumption of !\.I classes to il.I + 1 

classes. Assuming the existence of another class requires re-training the classifier 

with the addition of known patterns belonging to the new class. 

For cases 2 and 3, an unknown sample is "correctly" identified as belonging 

to none of the M known classes. Two alternatives are possible to determine the 

actual identity of the pattern: re-train the classifier as in case 1 or re-calculate the 

representation of the pattern itself. Re-calculation of the pattern is achieved by 

considering the sampling process in which the patterns are produced. For example, 

in a typical image classification problem, pat terns are created by calculating features 



within a fixed window size in the image. If the identity of the pattern can not be 

determined to be one of the H classes then features can be re-calculated using a 

different window size. This results in the formation of a different pattern which may 

possibly belong to one of the M classes. Of course, i t  is necessary for the classifier 

to have been trained using samples from the M classes calculated in this way. Thus, 

a multiresolution approach to classification is achieved in which the identity of an 

unknown sample is determined when the appropriate resolution is selected such that 

the membership of the sample is one of the M classes. If a different classifier, di is 

determined for each different resolution, pi, 1 5 i 5 r ,  then the #i that classifies an 

unknown pattern into one of the M classes determines the resolution at which the 

pattern can be identified. 

In this multiresolution approach it is possible that  some of the EvI classes may 

not be represented at  certain pi. As well, more than one & may classify an unknown 

pattern into one class and these classes may be different for each 4i. In these cases 

it is necessary to choose some criteria such that the 4i maximising the criteria 

determines the most appropriate resolution a t  which the identity of an unknown 

pattern is uniquely determined. If there is no 4i which classifies an unknown pattern 

into one of the 1VI classes then some alternative decision must be made. Re-training 

with additional a priori information is again an option. This is certainly necessary 

for those patterns that are distance rejected as they do not bear any similarity to 

the patterns classified into the known classes. Dubuisson and Masson [26] suggest 

that for an ambiguity rejected pattern, the patterns before and after this pattern be 

considered. If these patterns are classified into one of the M classes then it is most 

likely that the ambiguity rejected pattern belongs to the same class. 

3.6 Experiments 

Numerous experiments were performed to study the various parts of the Tissue 

Characterisation module described in this chapter. Both synthetic and real data is 

used in the esperiments. The synthetic data is described and used in Sections 3.6.1 



Table 3.1: 2D feature measures evaluated in esperiments. 

and 3.6.2 for quantitative analysis of the Inck decision rule and the MVE estimator. 

Subsequent analysis in the chapter is based on real ultrasound data. 

features 
.ISM, COX, COR, ENT, CS, CP. IN. LH 
-4Sbf, CON, COR, ENT, CS, CP7 IX, LH 
ASM, CON, CORY ENT, CS. CPI IN. LH 
ASM, CON, COR, ENTt CS, CP, IN: LH 
.4SM, CON, COR, ENT. CS: CP, IN, LH 
ASMI CON, COR, ENT, CS, CP. IN, LH 
ASM, CON, COR, ENT, CS. CP, IN, LH 
ASM, CON, COR, ENT, CS. CP. IN, LH 
ASM, CON, COR, ENT, CS, CP; IN, LH 
ASM, CON, COR, ENT, CS: CP, IN: LH 
i\SM, CON, COR, ENT, CS, CP, IN, LH 
ASM, CON, COR, ENT, CS, CP: IN, LH 
MEAN, ADEV, SDEV 

Seven real datasets are evaluated in the experiments. The first dataset, 2C.2d. 

d 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

num 
0-7 
8-15 
16-23 
24-31 
32-39 
40-47 
48-55 
56-63 
6471 
72-79 
80-87 

consists of d = 99, 2D feature measures collected from 2D samples of bovine ultra- 

sound ovary data. Table 3.1 lists these features (see Chapter 4 for description of 

88-95 
96-98 

G 
8 
8 
8 
8 

64 
64 
64 
64 
32 
32 
32 

these features). The bovine data was obtained in vztro as a series of 72, 2D cross- 

8 
0 

135 
45 
90 

O 
135 
45 
90 

0 
135 
45 

sectional images (slices). The size of each image is 640 x 480 pixels with an inter-slice 

32 

distance of 0.5 mm. Interpolation between slices was required to make the volume 

isometric as the resolution of a pisel in an image is 0.08 mm. The resulting volume 

90 

had a size of 640 x 480 x 450 points. 

1 

The bovine ovary data consists predominantly of three different structures; cor- 

pus luteum, stroma and fluid. Figure 3.5 illustrates a cross-sectional view of the 

structures in the bovine ovary data. 

The corpus luteum (follicle) is roughly outlined in the figure. It has an ovular 

3D shape. The stroma surrounds the corpus luteum which, in turn, is surrounded 

by fluid (dark region). Note that smaller follicles are also present (to the left of the 

large follicle) in this dataset. Some of these follicles are at  an earlier developmental 



Figure 3.5: Cross-sectional view of major structures in bovine ovary data. 



stage and filled with fluid. These follicles appear as dark regions. surrounded by 

stroma. 

There are subtle testural difference between the corpus luteum and the stroma 

which are difficult to see with the untrained eye. Differentiation between these struc- 

tures is even more difficult in the absence of the geometrical relationships described 

above (information on the geometry of the structures is not used in this thesis). 

Samples were collected for two different classes: C1: corpus luteum, C2, stroma. 

Class C3, fluid, was not included in this dataset as it is significantly different from 

C1 and C2. Classes C1 and C2 are visually very similar and provided a significant 

challenge in the experiments. Actually, it was not possible to distinguish between the 

corpus luteum and stroma in previous work [80, 79, 771. The exclusion of C3 reduced 

the processing requirements during the experiments. Based on expert knowledge of 

each class in the ultrasound data, 2D rectangular regions of 16 x 16 pixels were 

manually "cropped7' out from various locations in the data. It is assumed that each 

region represents tissue from only one class. From these regions. 2D features were 

collected and subsequently used as training data. 

The remaining datasets, 2C, 2C.cooc, 3C.4, 3C.8, 3C.16, and 3C.32 consist of 3D 

feature measures collected from 3D samples of the bovine ovary ultrasound volume 

data. Table 3.2 lists these features (see Chapter 4 for description of these features). 

Since the interpolated volume data is isometric, 3D blocks of size 1 6 ~  points for 

datasets 2C and 2C.cooc were obtained by manually cropping out regions from 

series of consecutive 2D cross sections. Blocks of size 43, 83, 1 6 ~  and 323 points were 

used for the 3C.z datasets. The difficulty in selecting the 3D blocks was that the 

3D boundaries of a block had to be determined by analysing the 2D texture in the 

cross sections. This inevitably lead to  some sampling error. Subsequently, d = 99: 

3D feature measures were calculated and used as training data. 

As with the 2C.2d dataset, datasets 2C and 2C.cooc contain samples from classes 

C1 and C2. Dataset 2C.cooc is a subset of 2C and contains d = 24 selected cooccur- 

rence feature measures (ENT and LH for all parameters. see Table 3.2). The 3C.x 

datasets contain d = 99 features measures from all three classes. For all datasets, 



Table 3.2: 3D feature measures evaluated in experiments (d  = -1 indicates pixel 
distance) . 

I num I G 

lV = 1100 points per class were used. 

One major difficulty with the ultrasound data is the lack of normalisation among 

different scans. Various device-dependent parameters such as time-gain compensa- 

tion and the zoom factor varied from scan to scan. With no calibration data avail- 

able, the task of normalising the data from different scans was difficult. As a result. 

scans were chosen which appeared visually similar a s  far as the device-dependent 

parameters were concerned. Both the 2D and 3D datasets were obtained from these 

scans. 

The experiments are presented as follows. Section 3.6.1 describes the goals, 

experimental environment and results obtained in evaluating the MVE estimator. 

Section 3.6.2 describes the evaluation of the Inck decision rule through the use of 

experiments and simulation- Section 3.6.3 describes the objectives, experimental 

environment and results obtained in evaluating various feature selection methods. 

-4s well the use of the Inck decision rule as a feature selection criterion is evalu- 

ated. Finally, Section 3.6.4 presents some experimental results obtained using the 

mu1 t iresolu tion classifier. 

8 
45 
45 
90 
45 
45 
90 
45 
45 
90 
45 
45 
90 

d 
-1 
1 
1 

-1 
1 
1 
-1 
1 
1 
-1 
1 
1 

features 
ASM, CON, COR, ENT: CSI CP, IN, LH 
ASM, CON, COR, ENTI CSt CP, IX, LH 
ASM, CON, COR, ENT, CS? CP, IN, LH 
ASPUI, CON, COR, ENT, CS, CP, IN,  LH 
-4Sh1, CON, COR, ENT, CS, CP? IN, LH 
ASPvI, CON, COR, ENT, CS, CP: IN, LH 
ASM, CON, COR, ENT, CS, CP, IN, LH 
ASM, CON: COR, ENT, CS, CP, IN, LH 
-4Sh1, CON, COR: ENT, CS, CP, IK, LH 
ASM, CON, COR, ENT, CS, CP, IN, LH 
ASM, CON, COR, ENT, CS, CP, IN, LH 
ASM, CON, COR, ENT, CS, CP: IN, LH 

( MEAN, ADEV, SDEV 



3.6.1 Parameter Fitting Using The MVE Estimator 

The purpose of the esperiments on the MVE estimator is to determine if it is 

successful at estimating the class distribution parameters in the presence of noise. 

Comparisons between the h N E  estimator and the classical method of parameter 

estimation are performed. The assumption that every class distribution can be 

represented by a normal distribution with the parameters ( p ,  E) is also studied. p 

is the mean (vector) and E is the covariance matrix All experiments were performed 

on a 3-processor DEC Alphaserver 2100 4/200 with 256M of memory running OSF/1 

V3.2. Timing information was obtained using the Univ "time" command. All times 

are given in CPC' seconds. 

For 2D and 3D data, it is possible to plot the points comprising a given class 

distribution. As well, the confidence inte-s for a given parameter estimate can 

also be plotted. This provides the ability to visualise the fit of the parameters to 

the data. Some results obtained from the experiments using synthesised data are 

presented in this form. Quantitative analysis is also necessary in order to evaluate 

the performance of the MVE estimator. To accomplish this, a given class distribution 

is corrupted with the addition of outliers. The ability of the MVE estimator to reject 

these outliers is ascertained by comparing the number of outliers added to the data 

to the number of outliers rejected while estimating the class parameters. Outliers 

are identified as those points which are beyond the given confidence interval for the 

parameter estimates. When using the reweighted MVE, the value of c in Equation 

(3.3) determines the given confidence interval. Typically, a value of c = X&,, ( p  is 

the dimension of the data distribution) is chosen for a 99% confidence interval. 

Data Sets 

Numerous experiments are performed with synthesised data. The synthesised 

data is created from different distributions with wrying distribution parameters. 

Table 3.3 lists the distributions and their associated parameters, used in the exper- 

iments. Different distributions (normal and non-normal) are used to determine the 



Table 3.3: Data distributions and associated parameters used in creating synt hesised 
datasets. 

I Class I Distribution 1 Parameters 1 
I C1 I 

I 

normal I mean (0,0), unit variance 1 
I C2 [ normal I mean (4:8): unit variance I 
I C3 1 normal I mean (0,0,0), unit variance 1 
I C4 I normal I mean 648.4). unit variance I 

I CIO i exionential i offset ( q j ,  unit variance 1 

C5 
C6 
C7 
C8 
C9 

1 C11 1 uniform 1 min(1,5),max(7,11) 1 

effect that the normal distribution assumption has on parameter estimation. 2D 

and 3D distributions are used to facilitate ease of visualisation. For each dataset. 

one of the eleven classes, consisting of 500 data points, is selected as the class for 

which the (normal) distribution parameters are to be estimated. A second class is 

then selected as a source for outlier data. The percentage of outliers points added to 

the dataset is increased from 0% (0 points) to 50% (500 points) of the total number 

of points in the dataset to determine the breakdown point of the ILl\iE estimator. 

In all experiments on the synthesised data, the reweighted M E  estimator is used. 

normal 
rayleigh 
rayleigh 
rayleigh 

exponential 

Results 

mean (4&8), unit variance 
offset (0,0), unit variance 
offset (4,8), unit variance 

offset (0,0,0), unit variance 
offset (0,0), unit variance 

Figures 3.6 - 3.11 show the results obtained for parameter estimation using the 

MVE and classical methods. Various data source and outlier source combinations 

are presented. Figures 3.6(a), 3.7(a), 3.8(a), 3.9(a), 3.10(a) and 3.1 1(a) show the 2D 

datasets evaluated. In each of these figures, all 500 of the outlier points are shown 

(indicated by 'k"). Figures 3.6(b), 3.?(b), 3.8(b), 3.9(b), 3.10(b) and 3.11(b) each 

show the corresponding 99% confidence interval ellipses for the classical parameter 

estimates with 0%, lo%, 2096, 30%, 40% and 50% outliers. With 0% outliers added, 

the parameter estimates result in a 99% confidence interval ellipse which fits tightly 



around the (non-outlier) class data. As the percentage of outliers increase. the 

confidence interval ellipse increases in size due to the accommodation of the outliers 

in the parameter estimation. 

Figures 3.6(c), 3.7(c), 3.8(c), 3.9(c), 3.10(c) and 3.11(c) each show the resulting 

99% confidence interval ellipses for the MVE parameter estimates with O%, 10%. 

20%, 30%, 40% and 30% outliers. In all cases, independent of the distributions. 

the corresponding 99% confidence ellipses fit tightly around the non-outlier data 

except when 50% outliers are added. This seems to verify the theoretical maximum 

tolerance of up to 50% outliers for MVE parameter estimation. 

The above results obtained from the 2D datasets seems to support the conclusion 

that the MVE parameter estimator can tolerate the theoretical maximum of up to 

50% outliers, independent of the type distribution from which the parameters are 

estimated- 3D datasets were evaluated to  determine if this conclusion could be 

further supported. The results from two, 3D datasets are shorn in Figures 3.12 and 

3.13. The first dataset consisted of data from class C3 with outliers added from class 

C4. Experiments were performed with 0%, lo%, 20%, 30%, 40% and 50% outliers 

added to  the dataset. 

Figure 3.12(a) shows the dataset as well as  the corresponding 99% confidence 

interval ellipsoids for the MVE and classical parameter estimates with 30% outliers 

in the dataset. There is a significant difference between the two ellipsoids. The 

figure shows that the ellipsoid for the MVE parameter estimates does not include 

outlier data while the ellipsoid for the classical parameter estimates includes all the 

outlier data. Figure 3.12(b) illustrates the same data from a different perspective 

(including a cut-away view of the ellipsoid for classical parameter estimates). With 

the addition of 50% outliers (not shown), the 99% confidence interval ellipsoids for 

both the MVE and the classical parameter estimates included the outliers points. 

This follows the results obtained for the 2D datasets. 

Figure 3.13(a) shows the second dataset as well as the corresponding 99% con- 

fidence interval ellipsoids for the MVE and classical parameter estimates with 30% 

outliers in the dataset. The results seems to follow those obtained for the first 
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(a) data with outliers 
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(b) classical CI ellipses 
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(c) MVE CI ellipses 

Figure 3.6: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C1, outlier source is C2. 
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(a) data with outliers 
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(c) MVE CI ellipses 

Figure 3.7: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C1, outlier source is C6. 
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(a) data with outliers (b) classical CI ellipses 

(c) MVE CI ellipses 

Figure 3.8: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C5, outlier source is C2. 
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(a) data with outliers (b) classical CI ellipses 

(c) MVE CI ellipses 

Figure 3.9: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C5, outlier source is C6. 
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(c) MVE CI ellipses 

Figure 3.10: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C1, outlier source is C10. 
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(b) classical CI ellipses 
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(c) MVE CI ellipses 

Figure 3.11: Data distributions and 99% confidence intervals (CI) for varying per- 
centage of outliers; data source is C8, outlier source is C9. 



(a) bIVE (small) and classical (large) ellip 
soids 

(b) different perspective 

Figure 3.12: 99% confidence interval ellipsoids for 30% outliers; data source is C3, 
outlier source is C4. 

dataset. However, Figures 3.13(b) and 3.13(c) show that with the addition of 40% 

outliers, the confidence ellipsoid for the MVE parameter estimates is approsimately 

the same size as the confidence interval ellipsoid for the classical parameter esti- 

mates. This suggests the MVE estimator can not estimate the parameters of this 

dataset with 40% or more outlier points. This result contradicts those obtained in 

previous experiments. In the 2D case, the type of data distribution did not seem 

to affect the MVE estimator. In the 3D case, there is a difference in the results be- 

tween the first dataset and this dataset. This difference is attributed to the different 

distributions of the non-outlier data comprising the datasets. 

Because of this result, it was necessary to examine in more detail the relationship 

between the percentage of outliers added vs. the percentage of non-outlier data from 

which the MVE parameters are calculated (conversely, the percentage of outliers 

added vs. the percentage of outliers removed by the MVE estimator when calculating 

the parameters) . 



(a) CIS for 30% outliers (b) CIS for 40% outliers 
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(c) MVE CIs for 30% and 40% outliers 

Figure 3.13: 99% confidence interval (CI) ellipsoids for various outlier percentages; 
data source is C'i, outlier source is C4. 
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Figure 3.14: Plots of percentage of outliers added vs. percentage of outliers removed 
for various data source and outlier source combinations. 



The graphs in Figure 3.14 show the percentage of outliers added vs. the percent- 

age of outliers removed using the LIVE parameter estimates, for various class data 

source and outlier source combinations. The PVIW estimator fails to tolerate outliers 

when the percentage of outliers removed is significantly lower than the percentage 

of outliers added. It can be seen from these graphs that the estimator is tolerant to 

varying percentages of outliers. 

From these results, the differences in outlier tolerance can be attributed to two 

factors: the data dimension and the number of samples used in MVE parameter 

estimation. For the 2D dataset in Figure 3.14(a), up to 48% outliers are tolerated 

before the parameter estimation fails. This is near the theoretical maximum of 50%. 

For the remaining 3D datasets in Figures 3.14(b) - 3.14(d), the outlier tolerance is 

less. 41% outliers are tolerated in Figure 3.14(b), 46% in Figure 3.14(c) and 36% 

in Figure 3.14(d). The two dips in Figure 3.14(d), a t  33% and 35% outliers added, 

are attributed to random sampling error in selecting the s subsamples for kIVE 

parameter estimation (see Section 3.1). This sampling error also contributes to 

the decrease in outlier tolerance as the dimension increases. Although s increases 

with the dimension, the number of subsamples does not increase enough to provide 

a subsample which is representative of the non-outlier data. Note that when the 

distributions are normal (Figures 3. M(a) - 3.14(c)), a higher percentage of outliers 

are tolerated. -4s well, as the outlier data is moved farther from the non-outlier data 

(Figure 3.14(c)), the percentage of outliers tolerated is higher. 

The graphs in Figure 3.15 show the resulting times for MVE and classical pa- 

rameter estimation for various class data source and outlier source combinations. It 

can be seen from these graphs that time required for the MVE parameter estima- 

tion is significantly greater than for the classical parameter estimation. -4s well, the 

time required for MVE parameter estimation increases as  the sample size increases. 

Both of these results are attributed to the matrix inversions and median calculations 

required in computing the MVE parameter estimates. The number of times these 

calculations are performed is dependant on s, the number of subsamples evaluated 

in estimating the parameters. s has an exponential distribution which is dependent 



0 4 I I I I 1 
0 I 0  xo 10 a0 M 

X out  l l r r r  odded 

3 1 
0 1 I 1 I I 

0 10 20 30 .O sa 
X ou, 1 To r a  added 

(a) data: C1, outliers: C2 

0 I I I I I 
0 10 20 SO 4 0  so 

X out 8 l r r s  addrd 

(c) data: C3, outliers: C5 

(b) data: C3, outliers: C4 

0 10 xo so a0 w 
X out 8 1  r r s  addod 

(d) data: CS, outliers: C4 

Figure 3.15: Plots of percentage of outliers added vs. time for parameter estimation 
for various data source and outlier source combinations. 



on the dimension of the data so it follows that the time required for MVE parameter 

estimation has a similar distribution. In fact, to constrain the time for parameter 

estimation, a limit must be placed on s as the dimension of data gets large. This has 

an effect on the quality of the estimates as the probability of selecting a subsample 

with no outliers is reduced. 

In order to examine, in more detail, the effect an increase in dimension has on 

the MVE parameter estimates, a final set of experiments was performed using 4D. 

unit variance normal distributions. The source for the non-outlier data consisted of 

500 points having a mean of (0,0,0,0) and the source for the outlier data consisted 

of 500 points having a mean of (4,8,8,8). The percentage of outliers added n-as 

varied from 25% (250) to 50% (500) of the total number of points. As well, ct which 

is based on the confidence interval a t  which outliers are rejected (c.f. Equation 

(3.5)), was set for the 9996, 95% and 90% confidence intervals. The effect of this 

was to increase the number of outliers detected as well as decrease the number of 

non-outliers represented by the parameter estimates. 

The graphs in Figure 3.16 show the results obtained for this set of esperiments 

using the MVE estimator. Figure 3.16(a) plots the percentage of outliers added vs. 

the percentage of outliers removed. It can be seen that decreasing the confidence 

interval had little effect on increasing the outlier tolerance. The only noticeable 

effect was that more non-outlier data points were removed. 

Figure 3.16(b) shows the percentage of outliers added vs. the time required 

for MVE parameter estimation. The time required for MVE parameter estimation 

is over double the time required for the 3D datasets in Figure 3.15. This seems 

to support the conclusion that as the data dimension increases linearly, the time 

required for MVE parameter estimation increases exponentially. The time required 

for classical parameter estimation of the 4D dataset is provided as a reference. For 

this method, the time required for parameter estimation was not influenced by the 

dimension or sample sizes evaluated in dl the experiments described in this section. 
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Figure 3.16: Plots of time required for MVE parameter estimation and outliers 
removed for 4D, unit variance, normal distribution and varying c; data source has 
mean (0,0,0,0) and outliers source has mean (4,8,8,8). 



3.6.2 Inck Decision Rule 

There are two main goals in evaluating the lnck decision rule: 

wrifY the original results obtained by Dubuisson and Masson [26]. 

determine if the modifications to the decision rule result in a t  least the same 

or better performance than the original version. 

In order to  satis@ the first goal, the original decision rule with reject was 

implemented as an extension to a software application called TOOLDL4G [99]. 

TOOLDIAG provides a set of tools for performing statistical pattern recognition. 

The Inck decision rule was also implemented as an extension to the software. All 

the simulations performed by Dubuisson and Masson [26] were recreated (as close 

as possible) and run using both the original and Inck decision rule. To satisfv the 

second goal, additional simulations were run. -4s well, experiments were performed 

using both synthetic and real data (see Section 3.6.3). All the simulations and ex- 

periments were performed on a %processor DEC Alphaserver 2100 4/200 with 256M 

of memory running OSF/l V3.2. 

Simulations 

A substantial analysis of the original decision rule with reject was performed by 

Dubuisson and Masson [26]. Their assumption of two ( M  = 2), normally distributed, 

univariate classes with means ml and r n p  and standard deviations al and c2 are 

inherited, without loss of generality. For most of the simulations it is assumed 

that a1 = Q = 0. When this is not the case, the class standard deviations are 

characterised by the ratio sdr = al /u2. The two classes are separated by a distance, 

d = (ml - mn)/a. The parameters varied are C,, Cd,d and sdr. The results of 

each simulation are the probabilities PC, PE, PRD and Pm. The probabilities are 

calculated using the integrals in Equation (3.15) - Equation (3.18) in the range 

(Rl, Ru) where RI zz -00 and Ru z: CQ. In the simulations, R1 = ml - 60 and 

Ru = m2 + 60. The integrals are approximated by summations of the mixture 



Figure 3.17: htegration regions for various probabilities. 

density sampled at discrete, weighted grid points in the region (in the simulations, 

all weights are assumed equal). 

Figure 3.17 depicts the integration regions for the various probabilities for a mix- 

ture density based on two, bivariate, normal classes with unit standard deviations 

in each dimension. Each sample point is evaluated and its probability contributes to 

either PRA (dark middle strip separating the two classes), PE (two adjacent lighter 

strips), PC (circular white regions) or PRD (grey surrounding dots). 

Results For Varying Distance 

Figures 3.18 and 3.19 show the resulting probabilities, for given values of Cd, 

when C. = 0.01 and the between class distance, d, is varied from [O, 9.51. The 

results obtained for the original decision rule, shown in Figures 3.18(b), 3.18(d), 

3. N(b) and 3.19(d), closely resemble those originally obtained by Dubuisson and 

Ilfasson [26]: thus, verifying their results. There are similarities, but, also noticeable 

differences between these results and those obtained for the Inck decision rule in 



Prd wtth Ca = 0 . 0 1  Prd w l t h  C a  = 0.01 

u 
0.0 1.0 4 - 0  6 .0  8.0 0 . )  

distance ( m l - m 2 ) / s d  

Pcc with Co = 0.01 

0.0 2.0 1.0 S.0 a.o 0.5 
distoncs ( m l - m Z ) / ~ d  

(b) original 

Pcc w i t h  Ca = 0-01  

(d) original 

Figure 3.18: Probability of distance reject (Prd) and correct classification (Pcc) for 
varying between class distance, C,, = 0.01 and given values of Cd. 
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Figure 3.19: Probability of ambiguity reject (Pra) and error (Pre) for varying be- 
tween class distance, C. = 0.01 and given values of Cd. 



sho~vn in Figures 3.18(a), 3.18(c). 3.19(a) and 3.19(c). 

The major difference between the rules is the probability of distance reject. PRD. 

It can be seen from Figures 3.18(a) and 3.18(b) that the distribution of PRD is 

quite different between the rules. For the Inck rule, PRD = Cd initially. decreases 

to PRD = Cd/2, and then increases back to PRD = Cd. This is predicted in theory. 

For the original rule, PRD monotonically increases as the distance between classes 

increases. There is no obvious relationship between Cd and PRD except that Pm is 

larger for larger values of Cd. -4s well, PRD is larger than i t  is for the Inck rule. 

The difference between Pm for the original and Inck rules influences the prob- 

ability of correct classification, PC. Figures 3.18(c) and 3. 18(d) show the difference 

between PC for the two rules. The maximum achievable PC is significantly lower 

for the original rule, for larger values of Cd. ...SO: as Cd increases, PC decreases 

significantly for the original rule. For the Inck rule, PC only decreases by the value 

of Cd. The probability of ambiguity reject, PRl, and probability classification error, 

PE, for the rules are shown in Figure 3.19. The differences between the Inck and 

original rules is not very significant. 

For a &xed C, (5 (M - l)/ilfj, the following conclusions can be drawn from the 

above results: 

for both rules, as the distance between classes increases, the probability of cor- 

rect classification increases and the probability of ambiguity reject decreases, 

the differences between the Inck and original decision rules are significant 

for the probability of distance reject and correct classification and are not 

significant for the probability of ambiguity reject and classification error: and 

the probability of classification error is 0 when the classes are far enough apart. 

Results For Different Variances 

To further exemplify the differences between the Inck and original decision rules: 

simulations were performed in which the ratio between the class standard deviations, 



S d r  

(c) Inck 

(b) original 

Pee 

(d) original 

Figure 3.20: Probability of distance reject (Prd) and correct classification (Pcc) for 
varying class standard deviation ratios (Sdr), Ca = 0.1 and given value of Cd. 



sdr, was varied from [ L O ,  10.51. That is, a2 was decreased in size while a, was held 

constant. Results for C, = 0.1 and given values of Cd are shown in Figure 3.20. 

The distance between classes is large enough such that there is no overlap between 

the classes. It is obvious from these results that the probability of distance reject 

and correct classification are influenced by the rule used in calculating the probabil- 

ities. Further, it can be seen for the lnck decision rule that these probabilities are 

independent of the ratio between the class standard deviations. As well, the value 

of Cd indicates the probability of distance rejection. For the original decision rule, 

the probability of distance reject increases substantially as sdr increases. This is 

certainly undesirable when classifymg data from varying size standard deviations. 

For the remainder of the simulations and experiments the Inck decision rule is 

used. 

Results for Varying Ca 

These simulations were performed to determine the effect that Ca has on the 

various probabilities. For a fixed Cd and distance between classes, simulations were 

run for v a ~ n g  C, in the range [0.0, (M-1) /M = 0.51. Figure 3.2 1 shows the resulting 

probability of correct classification, PC, classification error, PE, and ambiguity reject. 

Pm for Cd = 0.01 and given between class distances. From Figure 3.21(a) it can 

be seen that PC = 0 when Ca = 0 and PC is rnasimum when C, = (M - 1)/M 

The rate at which PC (monotonically) approaches its maximum value depends on 

the distance between class means. As the distance increases, the rate at which PC 

approaches its maximum increases. This implies that for larger distances, a smaller 

value of C. can be used to maintain a high probability of correct classification, while 

guarding against ambiguous decisions. Figure 3.21(c) confirms this as the probability 

of ambiguity rejection (monotonically) decreases rapidly for larger between class 

distances. It can also be noted from this figure that PM = 1 when C, = 0 (no 

class decision allowed) and Plu = 0 when Ca = (M - l ) /M (uncertainty allowed 

in class decision). Figure 3.21(b) shows the probability of classification error. As 

expected. the maximum classification error occurs when C. = ( M  - 1)/K It is 
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Figure 3.21: Probability of correct classification (pcc), classification error (pe) and 
ambiguity reject (pra) for varying Ca, Cd = 0.01 and given between class distances. 
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Figure 3.22: Probabilities of correct classification (pcc), classification error (pe), 1 
- pe and ambiguity reject (pra) for varying Ca, Cd = 0.01 and given between class 
distances, d. 



intuitive that the most errors occur for this value of C, since the most uncertainty 

in a class decision is allowed. 

Figure 3.22 displays the same probabilities in a different manner. The proba- 

bilities are displayed in the same graph, for a given distance between class means. 

These graphs illustrate the tradeoff between PC and PE when selecting a value for 

C,. For example, it can be seen from Figure 3.22(c) that selecting a larger value for 

C, results in a greater PC, but also results in a greater PE. The rate at which these 

probabilities increase, with increasing C,, is quite dependent on the between class 

distance. For example, in Figure 3.22(d): PE increases very little over a wide range 

of C, while PC increases substantially. Thus, when the distance between classes is 

large, it is appropriate to choose Ca = (M - l ) /M as this results the largest prob- 

ability of correct classification while keeping the probability of classification error 

low. 

Results for Varying Sample Size 

These experiments were performed to determine the effect that the number of train- 

ing samples had on the performance of the Inck decision rule. As well, estimation 

of the probabilities, given in Equations (3.20) - (3.25), were compared to the ac- 

tual calculation based on the mixture density integrals, using Equations (3.13) - 

(3.17). This was done to determine if the probability estimates were a sufficient 

approximation of the actual probabilities. 

Numerous experiments were performed. The results for two different synthetic 

datasets are presented. The first dataset consists of two normally distributed classes 

with means (0,O) and (2,Z) and unit variance. Each class contains N = 100 points. 

Figure 3.23(a) depicts these class distributions. The training data was split into 

two sets: one used for estimating the class parameters, the other for estimating the 

class probabilities. The size of the parameter estimation set varied from 5% to 95% 

of N while the remaining points were used to  estimate the class probabilities. Ten 

iterations at  each size were performed and the results averaged. An equal number of 

samples from each class was drawn at random, for each iteration. The probabilities 



(a) class data 

Pcc 

(c) correct classification 

(b) ciassifkation error 

P r d  

(d) distance reject 

Figure 3.23: Estimated vs. actual probabilities for two normally distributed classes 
using varying size training data, Cd = 0.01 and C, = 0.4. 



of classification error, correct classification. and distance reject are shown in Figures 

3.23(b) - 3.23(d), respectively. In each of these graphs, a large divergence between 

the estimated and actual probabilities is present for up to 25% (slightly higher for the 

probability of classification error) of the points used in class parameter estimation. 

I s  well, the probabilities remain fairly constant when over 40% of the points are used 

for class parameter estimation. Variations are attributed to random sampling and 

the fact that when the size of the class parameter estimation set is large (relative to 

N), the number of samples for probability estimation is small. Thus, the variability 

in the probability estimates is higher. 

The results suggest that for (2D) normally distributed data, approximately 25 - 
50 points are required for the accurate approximation of the class probabilities using 

the Inck decision rule. The number of data points mainly influences the estimation 

of the class parameters from which the probabilities are based. The results also 

suggest that the probability estimates given in Equations (3.13) - (3.17) are suitable 

approximations of the cIass probabilities. 

The second dataset consists of one rayleigh distributed class with unit variance 

and one normally distributed class with mean (4,4) and unit variance. Each class 

contains N = 1000 points. Figure 3.24(a) depicts these class distributions. The 

training data was split into two sets in the same manner as for the first dataset. 

The same procedure was also used to obtain the averaged class probabilities. 

The probabilities of classification error, correct classification, and distance reject 

are shown in Figures 3.24(b) - 3.24(d): respectively. In each of these graphs the 

probabilities remain fairly constant over the entire range of training set sizes used 

for parameter estimation. The (assumed normal) estimation of the class parameters 

for the rayleigh distributed class do not seem to be affected when the number of 

points used for the estimation is 5% (50) or greater. These results support those 

obtained for the first dataset. 
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Figure 3.24: Estimated vs. actual probabilities for a rayleigh and normally dis- 
tributed class using varying size training data, Cd = 0.01 and C, = 0.4. 



Figure 3.25: 2 class distributions (extreme clusters) with outlier (middle cluster) 
source (middle cluster) and associated 99 %confidence interval ellipses for LIVE and 
classical parameter estimation, Cd = 0.01. 

Results Using The MVE Estimator 

These experiments were performed to determine the classification results when the 

MVE estimator is used in conjunction with the Inck decision rule. Two datasets 

were analysed. The first dataset consists of two normally distributed, bivariate 

classes. Each class contains 2500 points with an independent, unit variance in 

each dimension. The first class has a mean of (0,O) while the second class has a 

mean of (4,8). To each class, 625 (20% of total class population) outlier points were 

added. The outlier points were randomly selected fiom a third, normally distributed, 

bivariate class with an independent, unit variance in each dimension and a mean of 

(2,4). Figure 3.25 shows this dataset along with the corresponding 99% confidence 

interval ellipses for the MVE and classical parameter estimates of each class. In 

the figure, the MVE ellipses have a tighter fit around the non-outlier data than the 

ellipses for the classical parameter estimates. This implies that the MVE parameter 

estimates represent fewer of the outliers than the classical parameter estimates. 

The Inck decision rule was used to classify the two classes. The a pn'ori probabil- 



Table 3 -4: Various probabilities using blVE and classical parameter estimates with 
e = 1.0: 0.05,0.02(*0.01). 

ities of each class were assumed to be equal (0.5). The distance reject threshold was 

set to Cd = 0.01. The choice for C, was determined using the algorithm presented 

in Section 3.3. -4 holdout method of training the classifier was used with 70% of the 

data used for parameter estimation and 30% of the data used for testing the Inck 

decision rule with the estimated parameters. Both the MVE and classical parameter 

estimates were used. The training process n.as repeated ten times for each estimator 

and the resulting probabilities averaged. 

Table 3.4 shows the resulting probabilities and values of C, for c = 1.0. 0.05. 

and 0.02 using both the MVE and classical parameter estimates. When E = 1.0. 

C, = 0.5 and there is no ambiguity reject region (Pm = 0.0). The remaining prob- 

abilities are different between the MVE and classical parameter estimators. For the 

probabilities resulting from the MVE parameter estimates, the different values of 6 

have no real effect. However, the probabilities resulting from the classical parame- 

ter estimates are affected as e is decreased. Both estimators have approximately the 

same probability of correct classification (PC) and same probability of classification 

error (PE)  when E = 0.02. There is a significant difference in the reject probabilities. 

however. PRD = 0.168 and PRA = 0.000 for the MVE estimator while PRD = 0.003 

and PIM = 0.141 for the classical estimator. 

From these results, a tradeoff between the MVE and classical estimators is iden- 

tified. The use of the PvlVE estimator results in an increase in PRD and a decrease 

in PR;I while the classical estimator results in a decrease in PRD and an increase 



(a) blVE parameter estimation (b) classical parameter estimation 

Figure 3.26: 2 class distributions each containing 20% outliers and associated 99 
%confidence intewal ellipses, Cd = 0.01. 

in Pru For this dataset, approximately the same correct classification and classifi- 

cation error probabilities are obtained for either estimator. Another tradeoff is the 

additional time required in estimating the MVE parameters (see Section 3.6.1). 

The second dataset consists of two normally distributed, bivariate classes. Each 

class contains 2500 points with an independent, unit variance in each dimension. 

The first class also has a mean of (0,O) while the second class has a mean of (2,4). 

To each class, 625 (20% of total class population) outlier points were added. The 

outlier points were randomly selected from a third, normally distributed, bivariate 

class with an independent, unit variance in each dimension and mean (4,B). Figure 

3.26 shows this dataset along with the corresponding 99% confidence interval ellipses 

for the MVE and classical parameter estimates of each class. It can be seen from 

Figure 3.26(a) that the MVE ellipses have a tighter fit around the non-outlier data 

than the ellipses for the classical parameter estimates shown in Figure 3.26(b). In 

fact? for the first class, the ellipse for the classical estimator is quite large. It is 



Table 3.5: Various probabilities using MVE and classical parameter estimates with 
€ = 1.0.0.02,0.01(* 0.01). 

obvious from these graphs that the MVE parameter estimates represent fewer of the 

outliers than the classical parameter estimates. 

Table 3.5 shows the resulting probabilities and values of C, for E = 1.0, 0.02, and 

0.01 using both the MVE and classical parameter estimates. When E = 1.0, (7, = 0.5 

and there is no ambiguity reject region (Pa = 0.0). The correct classification 

probabilities (PC) are similar for both estimators but the classification error (PE) and 

distance reject (Pm) probabilities are almost opposite. When c is small (c 5 0.02). 

there is a dramatic effect on the probabilities. For the classical estimator, PC drops 

from 0.863 to 0.429, PELl increases from 0.0 to 0.504 and PE decreases from 0.132 to 

0.024. The probabilities resulting from the use of the MVE estimator are affected 

substantially less. The biggest result to note is that when PE is approximately the 

same for either estimator, is much larger for the bIVE estimator than for the 

classical estimator. This is mainly attributed to the fact that PILl is much larger for 

the classical estimator, which results in a smaller PC. For this dat aset: it seems that 

there is an advantage in using MVE estimator, despite the additional time required 

for parameter estimation. 

The results from both datasets suggest that the decision to use MVE parameter 

estimation should be weighed against the expected presence of outliers. If the data 

is considerably corrupted with outliers, then the added (time) expense of the MVE 

estimator will be justified with an increase in correct classification. 

E = 1.0 
MVE 

C. 1 0.5 
ciassicd 
0.5 

€ = 0.02 
MVE 
0.5 

E = 0.01 
classicai 
0.234 

1 
0.250 

classical 
0.250 



Table 3 -6: Feature selection algorithms evaluated in esperiments. 

Branch and Bound (BB) 
Best features (BF) 

Sequential Fonvard Selection (SFS) 
Sequential Backward Selection (SBS) 

3 -6.3 Feature Select ion Methods using Ultrasound Volume 

Data 

There are a number of objectives in performing the feature selection experiments: 

determine a feature selection algorithm which selects a reduced feature space 

that accurately represents the ultrasound data, . 
determine if the Inck criterion function is appropriate for use in a feature 

selection algorithm, 

determine if the robust estimation of parameters using the MVE estimator 

outweighs its computational complexity when used in a feature selection algo- 

rithm, 

compare the performance achieved with the Inck criterion function to other 

functions, when used by a feature selection algorithm. 

In order to satisfv these goals, a number of experiments are performed using real 

ultrasound data with various combinations of feature selection algorithms, criterion 

functions and parameter estimation met hods. 

Table 3.6 lists the feature selection algorithms evaluated in the experiments. For 

each algorithm, a number of criterion functions are evaluated as well as the inck 

criterion function. These functions are listed in Table 3.7. Appendix B provides 

definitions for the probabilistic distance measures. Both probabilistic distance mea- 

sures and interclass distance measures are used. Evaluation of the various feature 

selection, criterion function combinations is accomplished by comparing the classifi- 

cation accuracy achieved for a given set of training data. The classification accuracy 



Table 3 -7: Class distance measures evaluated in experiments. 

I Bhattacharwa distance I Citv block I 

Probabilistic Distance 
Chernoff 

I Matusita distance I Euclidean distance I 

Interclass Distance 
Minkowski 

I I Divergence I Chebvchev I 

is determined using the same method as described in Section 3.6.2. The training 

data is split into two sets: one used for estimating the class parameters, the other 

for estimating the class probabilities. The classification accuracy is determined from 

both the probability of correct classification and the probability of classification er- 

ror using the Inck decision rule. The classification accuracy is analysed as a function 

of the size of the feature space (number of selected features). That is, for a dataset 

consisting of D features, the feature space is evaluated with d, 1 5 d < D, fea- 

tures for each feature selection, criterion function combination. The 2C, 2C.2d, and 

2C.cooc datasets created from the bovine ultrasound data (see Section 3.6) were 

evaluated in the experiments. 

- 
Mahalanobis distance 

Patrick-Fisher 
Inck 

Results Using Distance Based Criteria 

Nonlinear 

The large dimension of the the 2C and 2C.2d datasets placed a significant demand on 

the computing resources. As a result, the SBS and BB feature selection algorithms 

could not produce results in a reasonable time frame to be evaluated in conjunction 

with the BF and SF'S algorithms. The results presented in this section are based on 

the analysis of the BF and SFS algorithms. It should also be noted that the Interclass 

distance measures are also cornputationally expensive. Since the complexity of these 

measures is dependent on the number of class samples, N, as N increases, the 

time required to compute the measures increases rapidly. For the given sample 

size in these experiments, N = 1100, the Interclass distance measures could not be 



computed in a reasonable time frame to be evaluated along with the probabilistic 

distance measures. 

Figure 3.2i(a) shows the probability of correct classification achieved by the BF 

feature selection algorithm with the various probabilistic criterion functions using 

both the 2C and 2C.M datasets. Figures 3.27(a) and 3.27(b) show the probabilit? 

of correct classification when E = 1.0 while 3.27(c) and 3.27(d) show the probabil- 

ity of correct classification when E = 0.05. In all the graphs, the probabilities are 

plotted as a function of the dimension, d, of the feature space. For e = 1.0: the 

various functions attain approximately the same probability (80%) at  d = 10 for 

both the 2C and 2C.2d datasets. The exception is the Divergence function. It has 

consistently the highest probability of correct classification (over 90%) of all the 

functions, independent of d. For dataset 2C, this probability is a maximum (96%) 

when d = 10. The Patrick-Fisher criterion function has the lowest resulting prob- 

abilities. When e = 0.05, there is a significant difference between the probabilities 

attained for the 2C and 2C.2d datasets. For the 2C.2d dataset, the probabilities 

(in general) are minimum at d = 2, attain a maximum at d = 3, and then decrease 

as d increases. The probabilities are also lower for E = 0.05 as compared to the 

probabilities when 6 = 1.0. This decrease in the probability of correct classification 

suggests that there is a significant amount of ambiguity in classif?iing the 2C2d 

data using resulting feature spaces (recall from Section 3.6.2 that as c decreases. 

the probability of ambiguity reject increases while the probability of correct classi- 

fication decreases). For the 2C dataset, the probabilities are relatively less affected 

when E = 0.05. The probabilities for all the criterion functions decrease, however, 

the Divergence function again attains its maximum probability (96%) when d = 10. 

Figure 3.28(a) shows the probability of correct classification achieved by the SFS 

feature selection algorithm with the various probabilistic criterion functions using 

both the 2C and 2C.2d datasets. Figures 3.28(a) and 3.28(b) show the probability of 

correct classification 

correct classification 

as a function of the 

when E = 1.0 while 3.28(c) and 3.28(d) show the probability of 

when c = 0.05. In all the graphs, the probabilities are plotted 

dimension, d, of the feature space. For e = 1.0, the various 



(a) dataset 2C, c = 1.0 

(c) dataset 2C, E = 0.05 

(b) dataset 2C.2d.c = 1.0 

(d) dataset 2C.2d, E = 0.05 

Figure 3.27: Probability of correct classification estimated for indicated c using the 
BF feature selection algorithm and given criterion functions. 



functions attain approximately the same probability (80%) at d = 10. for the '2C 

dataset, but not for the 2C.2d dataset. As with the BF algorithm. the Divergence 

function has consistently the highest probability of correct classification of all the 

functions, independent of d. Again, the Patrick-Fisher criterion function has the 

lowest resulting probabilities. When E = 0.05, there is a drastic decrease (20% - 
40%) in all the probabilities achieved by the functions, except for the Divergence 

criterion function based on the 2C dataset. This decrease in the probability of correct 

classification suggests that there is a significant amount of ambiguity in classifying 

the data using the resulting feature spaces determined from the SFS algorithm. 

-411 subsequent experiments evaluate the probability of correct classification with 

E = 0.05. 

The next section describes the performance of the Inck criterion function when 

used in conjunction with the BF and SFS feature selection algorithms. 

Results Using the In& Criterion Function 

In order to objectively compare the performance of the Inck criterion function with 

the performance of the probabilistic distance functions, both the BF and SFS algo- 

rithms were used to select feature spaces up to d = 10 dimensions from the 2C and 

2C.2d datasets. 

Figure 3.29 shows the probability of correct classification using the Inck criterion 

function with the BF and SF'S algorithms. Figure 3.29(a) shows the probabilities 

for the 2C and 2C.2d datasets using the BF algorithm. Figure 3.29(b) shows the 

probabilities for the 2C and 2C.2d datasets using the SFS algorithm. It can be 

seen from these graphs that the correct classification probabilities obtained from 

the 2C dataset are higher than those obtained from the 2C.2d dataset, independent 

of the feature selection algorithm used. Also, the feature spaces determined from 

the SFS algorithm result in a higher probability of correct classification than for the 

BF algorithm. Finally, the probabilities obtained using the Inck criterion function 

are in the same range as those achieved for the Divergence criterion function above, 

suggesting that the Inck criterion function is appropriate for use in a feature selection 
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Figure 3.28: Probability of correct classification estimated for indicated e using the 
SFS feature selection algorithm and given criterion functions. 



(b) SFS 

Figure 3.29: Probability of correct classification for given feature selection algorithm 
and dataset using the Inck criterion function. 

Table 3.8: Resulting feature space using dataset 2C and the Inck criterion function. 

I I Dimension 

algorithm. 

Table 3.8 shows the features comprising the feature spaces (up to d = 10 di- 

mensions) for the 2C dataset. Refer to Table 3.2 for an index of the features. The 

majority of selected features are the local homogeneity. LH, cooccurrence features 

(with various parameter valnes). In fact, the feature spaces determined with the 

SFS algorithm consist exclusively of the LH feature for d <= 7. Note that the 

statistical feature measures are not selected by either algorithm. 

Table 3.9 shows the features comprising the feature spaces (up to d = 10 dimen- 

sions) for the 2C.2d dataset. Refer to Table 3.1 for an index of the features. Again: 



Table 3.9: Resulting feature space using dataset 2C.2d and the Inck criterion func- 
tion. 

I 11 Dimension I 

note that the statistical feature measures are not selected by either algorithm. 

rllgorzthrn 
BF 
SFS 

Results Using MVE Parameter Estimation 

The purpose of this set of experiments is to determine if there is any advantage in 

using MVE parameter estimation to estimate the class parameters of the ultrasound 

data. Since the MVE estimator is computationally intensive: a subset of the features 

were selected from dataset 2C to  construct the 2C.cooc dataset. The 2C.cooc dataset 

consists of 24 cooccurrence features (the I2 LH and 12 ENT features) which were 

most commonly selected to  the feature spaces in previous experiments. The analysis 

of the MVE estimator was further constrained by limiting the size of the feature 

space to d = 5. 

Figure 3.30 shows the CPU seconds required to determine the feature space 

using the BF algorithm with various criterion functions. Figure 3.30(a) shows the 

time required using the hlVE estimator while Figure 3.30(b) shows the time required 

using classical parameter estimation. Since the BF algorithm only needs to  calculate 

the class parameters in one dimension when creating the feature space, the times 

are relatively constant, independent of the dimension. The time required to select 

the feature spaces using the MVE estimator was approximately five times greater 

than that required using classical parameter estimation. 

Figure 3.31 shows the CPU seconds required to  determine the feature space using 

the SFS algorithm with various criterion functions. Figure 3.31 (a) shows the time 

required using the MVE 

using classical parameter 
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estimator while Figure 3.31(b) shows the time required 
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Figure 3.30: Time for determining feature space for given criterion functions using 
the BF algorithm with MVE and classical parameter estimation. 



amount of time required to select the feature spaces using the I K E  and classical 

parameter estimates. As the dimension of the feature space increases, the dimension 

of the class parameters also increase. The time required to compute the higher 

dimension parameters using the MVE estimator also increases significantly. In fact. 

for d = 5 the MVE estimates were not obtained after the amount of time shown. In 

comparison, the time required to select the feature spaces using classical parameter 

estimation increase linearly with the dimension and is a t  least an order of magnitude 

faster than using MVE parameter estimation. 

Figure 3.32 shows the probability of correct classification achieved using bIVE 

parameter estimation. Figure 3.32(a) shows the probability achieved with the BF 

feature selection algorithm using various criterion functions. Figure 3 -32 (b) shows 

the probability achieved with the SFS feature selection algorithm using the same 

functions. For the BF algorithm, the Inck criterion function performs poorly because 

the criterion is affected by the order in which features are added. This is in contrast 

with results obtained using classical parameter estimation. For the SFS algorithm. 

all the functions achieve a maximum probability of classification when d = 3. This. 

again, is in contrast with the results obtained using classical parameter estimation. 

Based on these results i t  was decided that there was no benefit in using MVE 

parameter estimation in classifying the bovine ultrasound data. The reason for this 

is the absence of outliers in the ultrasound data so the MVE parameter estimates 

are quite similar to the classical parameter estimates. The added computational 

expense did not increase the performance of the feature selection algorithm used. 

3.6 -4 Mult iresolution Classifier using Ultrasound Volume 

Data 

The purpose of this set of experiments is to determine a multiresolution representa- 

tion of the bovine ultrasound data. Four resolutions are evaluated: = 4, & = 8: 

p4 = 16 and pj = 32. In previous experiments it 

based on the 3D features resulted in consistentlj 

was found that the feature spaces 

higher correct classification prob- 
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Figure 3.31: Time for determining feature space for given criterion functions using 
the SFS algorithm with MVE and classical parameter estimation. Convergence of a 
solution for dimension 5 was not obtained using the MVE estimator. 
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Figure 3.32: Probability of correct classification for given feature selection algo- 
rithms and criterion functions using MVE parameter estimation. 



abilities as compared with those achieved for 2D features. Thus. the 3D based 

datasets 3C.x are used (see Section 3.6). Previous esperiments also revealed that 

the feature selection algorithms using the Inck criterion function produced feature 

spaces with a high probability of correct classification. The Inck criterion function. 

along with the Divergence criterion function are used in conjunction with the SFS 

feature select ion algorithm. 

Results 

Figure 3.33 shows the CPU seconds required to obtain the feature spaces using the 

Inck and Divergence criteria. Since the number of samples and classes for each of 

the datasets is the same, the time required to compute the feature space is the same 

for each pi. The difference in times between the Inck and Divergence criteria is due 

to the way in which the Inck criterion is calculated. The criterion is estimated by 

randomly choosing a percentage of the data points for training and then classifying 

the remaining points to estimate the various probabilities required for computation 

of the criterion. In the experiments, this process was repeated 5 times and the 

results averaged. Thus, every time a feature is evaluated with the Inck criterion. 5 

times the amount of computation is performed, as compared with the Divergence 

criterion . 

Figure 3.34 shows the resulting probability of correct classification for the given 

resolutions. Figure 3.34(a) shows the probabilities for the Inck criterion function 

and Figure 3.34(b) shows the probabilities for the Divergence criterion function. It 

can be seen that as the pi decreases, the probability of correct classification also 

decreases. This is due to the fact that as the resolution decreases, there are fewer 

points from which the feature measures are calculated from. As well, the within class 

variability increases resulting in higher probabilities of classification error, ambiguity 

and distance rejection. The graphs also show that the feature spaces based on 

the Inck criterion function result in higher probabilities of correct classification as 

compared with those obtained for the Divergence criterion. The dip in the curve for 

g8 in Figure 3.34(a) is attributed to random sampling error. 
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Figure 3.33: Time Required to  obtain feature space of given dimension using the 
Inck and Divergence criteria. 
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Figure 3.34: Probability of correct classification of feature space a t  a given resolution 
pi using SFS feature selection algorithm and indicated criterion function. 

Table 3.10: Resulting feature space for given resolution Pi using SFS feature selection 
algorithm and the Inck criterion function. 

I I Dimension I 

Table 3.10 shows the feature spaces for resolutions &, P3, a and 13j using the 

Inck criterion function. Table 3.11 shows the feature spaces for resolutions P2, P3? 
p4 and p5 using the Divergence criterion function. 

The above results suggest that a low dimension (d = 2) feature space can be used 

to classify the bovine ultrasound data with a high level of accuracy for resolutions 

= 16 and fls = 32. The advantage of this is that the 3D MTS algorithm, which 

uses this multiresolution information, does not have to  perform a large number of 



Table 3.11: Resulting feature space for given resolution & using SFS feature selection 
algorit hrn and the Divergence criterion function. 

I Dimension I 

calculations in segmenting the volume data. However, for resolutions L13 = 8 and 

= 4, the probability of correct classification is lower (even if a higher dimension 

feature space is used). It can be expected that segmentation results based on this 

multiresolu tion classification will contain greater probabilities of classification error. 

distance and ambiguity reject when smaller details of the volume data are segmented. 

Summary 

The purpose of this chapter was to describe the details of the Tissue Characterisa- 

tion module. It is based on a statistical pattern recognition approach which provides 

a solid foundation on which tissue characterisation can be accomplished. The a p  

proach used in the Tissue Characterisation module provides the ability to combine 

both classification and segmentation in a unified, rnultiresolution framework. This 

is significant as the topics are almost always treated independently in the literature. 

A new criterion function, the Inck (Incomplete knowledge) criterion function. 

was presented which approximates the error probability when M classes do not 

span the entire pattern space. This criterion is based on the probabilistic measures 

obtained from a modified version of Dubuisson and Masson's [26] statistical decision 

rule with reject. The error probability, or conversely the probability of correct 

classification, can be determined without having complete knowledge about the 

class distributions. The attractiveness of this criterion is that it is highly correlated 

with the statistical decision rule (with reject) which can be used by the classifier. 



Thus. the criterion provides a good indication of the classifier performance that can 

be expected with the reduced feature space. 

It was also described how the robust statistical minimum volume ellipsoid esti- 

mator (MVE) proposed by Rousseeuw and Leroy [106] could be used to increase the 

classifier's tolerance to outlier data. The MVE estimator can theoretically provide 

an unbiased parameter estimation (in the case of a multivariate normal distribution. 

the mean and associated covariance matrix) describing a class distribution in the 

presence of up to 50% outlier data points. 

A classifier design was presented which incorporates the new Inck criterion func- 

tion. As well, it was described how the rejection classes of the modified statistical 

decision rule with reject could be used in a multiresolution classifier design to deter- 

mine the class identity of patterns which can not be determined at a given resolution. 

Numerous experiments were performed using both synthetic and real ultrasound 

volume data. Results obtained from these experiments were: 

The theoretical tolerance of up to 50% outliers using the M\;E estimator could 

not be obtained in all esperiments and was found to be dependent on the data 

dimension and the distribution of the data. 

The decision to use hIVE parameter estimation should be weighed against 

the expected presence of outliers. If the data is considerably corrupted nith 

outliers, then the added (time) expense of the MVE estimator will be justified 

with an increase in correct classification. 

Using a large dimensional pattern space (D = 99), the SBS and BB feature 

selection algorithms could not produce results in a reasonable time frame to 

be evaluated in conjunction n i th  the BF and SFS algorithms. 

For the given sample size in the experiments, N = 1100, the Interclass distance 

measures could not be computed in a reasonable time frame to be evaluated 

along with the probabilistic distance measures and the Inck criterion function. 

The LH (local homogeneity) measures based on the 3D cooccurrence matrix 



(with various parameter settings) were consistently selected as the top fear ures 

in discriminating among the corpus Iuteum ((21). strorna (C2) and fluid (C3) 

tissue classes in the bovine ultrasound volume data. 

0 The feature spaces based on the Inck criterion function resulted in higher 

probabilities of correct classification as compared with those obtained using 

probabilistic distance measures. 

For classification at a larger resolution , a low dimension (d = 2) feature space 

could be used to classifv the bovine ultrasound volume data with a high level 

of accuracy 

For classification at a smaller resolution, the probability of classification error. 

distance and ambiguity reject is high suggesting that segmentation of smaller 

details in the bovine ultrasound voIume data, based on the classification data. 

will not be exceptional. 



Chapter 4 

3D Texture Features 

This chapter describes the 3D texture features used in the Tissue Characterisat ion 

module of the system. Numerous feature measures have been proposed to represent 

texture [El, 115, 142, 143, 114: 71, 27, 129, 149, 92, 4, 70, 62, 45, 19: 861 in an 

image. -4 review of texture feature measures can be found in 177, 86, 19). -411 

of these features are based on the 2D grey level pattern present within a window 

or region of interest in the image. The processing of volume data by the Tissue 

Characterisation and 3D Segmentation modules of the proposed system necessitates 

the need for new texture feature measures which can provide measures of texture in 

3D. Two classes of texture features are evaluated in this thesis: cooccurrence matrix 

based features and statistical features. Cooccurrence features are used because they 

have been found to consistently perform well in various texture analysis applications. 

Section 4.1 describes the cooccurrence matrix, its proposed definition in 3D, and the 

measures that are calculated from the matrix Statistical features are used because 

of their simplicity and their common use in many classification applications. Section 

4.2 describes the statistical feature measures. 

4.1 3D Cooccurrence Matrix 

One class of texture features which has been evaluated extensively are the cooccur- 

rence matrix based features [39, 92, 37, 24, 86, 191. Originally proposed by Haralick 

et al. [39], these features measure characteristics of the grey level (pixel) spatial 



dependencies. The cooccurrence matrix represents the frequencies at which pairs 

of pixels having grey levels i and j, 0 5 i. j < G are separated by a distance d. 

The distance is usually quantised to discrete values of d and specific orientations 0 

(6 = 0": 45". 90". 135"). Thus, each matris is parameterised by (G? d, 8). where G is 

the maximum gray level. Note that this pararneterisation only allows frequencies 

to be gathered for points on a plane. In order to measure texture in a 3D volume 

the cooccurrence matrix must be redefined. The next two subsections define the 3D 

cooccurrence matrix as well as some feature measures based on the matris. 

4.1.1 Calculating the Matrix 

Given an hl x iV image, I, with pixel intensities in the range [0, G- I] the intensity of 

a pixel a t  location (m, n) is f (m, n). -4ssuming the pizel distance d oriented at angle 

19 is represented by the vector (Ax, l y )  the classical definition of a cooccurrence 

matrix, P, is given as follows: 

1 
p(i, j )  = - C C-  b( f (m, n) = i and f (m + Az, n + Ay) = j) (1.1) 

2R ,=l .=I 

where R = ( M  - ilz)(Y - l y )  and 0 5 i , j  < G. P is a G x G matris of 

probabilit.ies which is symmetric about the diagonal. Typically, 0 is quantised to 

45" angles resulting in the following relationships between (d, 8 )  and (Ax, Ay): 

Note that when Ax < 0 or A y  < 0 the range of the summations in Equation (1.1) 

must be shifted so that the image boundaries are not exceeded. 

Each combination of (d ,  0) results in a new cooccurrence matrix, Pio. r2ls0, each 

matris is orientation dependent which is not desirable in the intended application. 



Figure 4.1: Neighbourhood of pixel po for pixel distance d and B = 45". 

In this thesis the orientation dependency is removed by combining all matrices cal- 

culated for a given d into one matrix Pd 

Pd can be normalised by dividing its entries by the number of (dl 0 )  combinations 

over which the summation in Equation (4.2) occurs. 

An alternative method of calculating Pd is to calculate it directly from the input 

image, I. Consider a point pe = (m, n)  in the image. Assuming a pixel distance 

d and 0 quantised at 45" intervals, po has 8 neighbouring pixels, p l . .  .p8.  each d 

pixels away from PO.  Figure 4.1 illustrates the neighbourhood for po. Comparing po 

to each of its neighbor provides 8 different pixel pairs from which Pd can be updated. 

Considering all such neighbourhoods in the image, Pd is calculated as folloivs: 

where 
I -  N-l 8 

The term pk E I accounts for incomplete neighbourhoods at  the borders of I by 

determining if pk is within the boundaries of the image. 



The definition of the cooccurrence matrix in Equation (1.3) provides the ability 

to consider many possible neighbourhood configurations. The dependence of the 

neighbourhood on 6' is implicit in Equation (1.3). It is beneficial to explicitl~~ state 

this dependence as follows: 

where 

and 0 denotes the incremental angle between neighbours, rather than a specific 

orientation. Given the discrete locations of pixels in the image and the unit of 

distance measure, pixels, 0 must be a multiple of 45", 45 5 0 5 360. This limits the 

number of possible neighbourhood configurations. This limitation can be overcome 

by selecting a different unit of measure which is not based on discrete units. The 

distance between po and any of its neighbours can be parameterised by the radial 

distance, r .  With this new parameterisation of the cooccurrence matriv , PrPe, many 

more neighbourhood configurations are possible. This provides the ability to collect 

more information about the frequency distributions in the image. When calculating 

the neighbourhood for a given (r, 8) it is possible that one or more locations may 

not fall at  discrete grid intervals. The intensity of the points at  these locations is 

(linearly) interpolated. 

The added flexibility of the new parameterisation of the cooccurrence matrix 

comes a t  a cost. First, the location of neighbourhood points is performed using 

floating point operations rather than integer operations. Some savings can be ac- 

complished by computing the pixel offsets from the centre of the neighbourhood 

for a given (r, 6). Second, interpolating pixel values incurs additional floating point 

operations. Interpolation also introduces data which is not in the original image. 

Finally, the symmetry that exists in a cooccurrence matrix using the pixel distance 



(a) pixel distance, 8 = 45" (b) radial distance, 8 = 45" (c) radial distance, 8 = 60' 

Figure 4.2: Neighbourhoods for po. 

is not guaranteed to exist in Prs That is? 

in general, since oeighbourhood points (other than po)  can exist anywhere within 

the boundaries of the image. 

Figure 4.2 shows some different neighbourhoods using both the pixel distance 

and the radial distance. Note the difference between Figure 4.2(a) using the pixel 

distance and Figure 4.2(b) using the radial distance. The neighbourhood using the 

radial distance requires interpolation while the other does not . 

Based on the formulation of the cooccurrence matrix in Equation (4.4), calcu- 

lating the 3D cooccurrence matrix is straightforward. Given an 111 x N x L volume. 

V ,  with pixel locations (m, n, 1) the definition of the 3D cooccurrence matrix is as 

follo~vs: 



Figure 4.3: Neighbourhoods for po with 0 = 90' and d = 1 (pisel distance). 

where 

and R is the normalising constant and p k ,  b is the kth neighbourhood point on plane 

b. Figure 4.3 illustrates the geometry for this type of neighbourhood. In the 2D 

case, as shown in figure 4.3(a), all neighbourhood points lie on the S Y  plane, b l .  

In order to determine the remaining neighbourhood points, the plane is rotated by 

an angle 0 about the axis intersecting point po and parallel to the Y axis. The new 

plane, b2, will have the same number of neighbourhood points as b l  in the same 

orientation within the plane, but the locations of the points in 3D will be different. 

The exception is the points which lie on the axis of rotation which always remain at 

the same 3D location. 

Figure 4.3(b) illustrates the neighbourhood of p, for 9 = 90" and d = 1 (pixel 



distance). There are a total of 6 unique points in the neighbourhood (pz,? and p2., 

are duplicate on-axis points). For 0 = 45", the neighbourhood consists of 4 planes 

with 8 points on each. Accounting for the duplicate on-rotational asis points, the 

number of neighbourhood points is 8+3* (8-2) = 26. As with the 2D case. Equation 

(4.5) can be modified to  use the radial distance rather than the pixel distance 

where 

and pk, b is a t  a radial distance r from po. 

4.1.2 Cooccurrence Features 

Once the cooccurrence matrix has been calculated from 3D data, it remains to 

determine feature measures from the matrix. Since the matriv is of the same form as 

the classical cooccurrence matrix (except containing more information), it is possible 

to use the usual cooccurrence features proposed in the literature [39, 92, 37, 24). 

Ohanian and Dubes [86] suggest that a small subset of Haralick's cooccurrence 

features is sufficient for characterising many types of textures. The suggested fea- 

tures are the angular second moment (ASM) which measures the homogeneity of 

an image, the contrast feature (CON) which measures the contrast in an image, 

the correlation feature (COR) which measures the linear dependency in an image, 

and the entropy feature (ENT) which measures the complexity of an image. The 

definition of these measures is given as follows: 



where 
G-1 G-1 G-L G-1 

Peckin paugh [92] suggests additional features which are commonly calculated 

from the cooccurrence matrix. These features are cluster shade (CS), cluster promi- 

nence (CP), Inertia (IN) and local homogeneity (LH). The definition of these mea- 

sures is given as follows: 

4.2 Statistical Features 

Statistical features are simple measures of texture that provide an indication of 

the actual gray levels and their variation. Unlike the cooccurrence based features. 

statistical features do not consider the spatial relationship among the gray levels. 



The usual statistical features are the mean and standard deviation. Since the spatial 

relationship of the grey levels is not an issue? calculating the mean and standard 

deviation in 3D is not more difficult than calculating them in 2D. The complesity 

does increase, however, as the number of operations required increases with the 

dimension. 

The three statistical features used are the mean (MEAN) which measures the 

average pixel intensity in the image, the standard deviation (SDEV) and the av- 

erage deviation (ADEV). The last two features measure the variation of the pixeel 

intensities, pij, with respect to the average pixel intensity. The ADEV feature is 

defined as 
-I 

which is basically an approximation of the usual standard deviation. 

4.3 Experiments 

It has been found in the experiments on ultrasound volume data in Chapter 3 that 

the measures based on the 3D cooccurrence matrix resulted in feature spaces with 

higher probability of correct classification than those based on the 2D cooccurrence 

matrix. Rather than reiterate these results, it is the purpose of these experiments 

to analyse the form of the cooccurrence matrix itself to understand the effect of the 

cooccurrence parameters. In doing so, it is possible to determine if the measurement 

of the neighbourhood frequencies using the radial distance has any advantage over 

the measurement using the pixel distance. 

Both 2D and 3D regions from the bovine ultrasound data, as described in Section 

3.6, were used in the experiments. The 2D regions were 16 x 16 pixels and the 3D 

regions were 16 x 16 x 16 pixels. From these regions the cooccurrence matrices were 

constructed and the cooccurrence measures calculated. Timing information n-as 

obtained by calculating 2436 cooccurrence matrices (and the corresponding mea- 

surements) from randomly selected regions. The total CPU time was then divided 



(a)  d = l (b) r = 1 

Figure 4.1: 3D Cooccurrence matrix obtained with G = 128: 0 = 90 and given 
distance pixel distance d, and radial distance T .  

by this number to  give the average number of CPU seconds required to  compute 

the matrix along with its measures. All matrices are normalised to the range [0,255] 

and size 128 x 128 for display. 

4.3.1 Results 

Figures 4.4 - 4.6 show the resulting 3D cooccurrence matrices for various combina- 

tions of the parameters G, 8, and T (d). All matrices were constructed from the same 

3D region in a corpus luteum (Cl) sample volume. Figures 4.4(a) and 4 4 b )  show 

the matrices for G = 128, 0 = 45 with d = 1 and r = 1, respectively Figures 4.5(a). 

4.3(b) and 4.5(c) show the matrices for 0 = 90, r = 1, with G = 32, G = 64 and 

G = 128, respectively. Figures 4.6(a) and 4.6(b) show the matrices for G = 128, 

r = 1, with 0 = 45 and 8 = 90, respectively. From these figures it can be seen 

that there is not much difference among the matrices in their normalised form. The 

exception is Figure 4.5 in which G is varied. Since the matrices are normalised, the 

matrices calculated with G = 32 and G = 64 appear blocky. This indicates that as 

G increases, more detailed information is available about the frequency distribution 

of intensities. Note, however, that the computational expense also increases. 

Figure 4.7 shows the average number of CPU seconds required to compute the 3D 

cooccurrence matrix and the 8 feature measures for the given combination of 0 and 



(a) G = 32 (b) G = 64 (c) G = 128 

Figure 4.5: 3D Cooccurrence matrix obtained with r = 1, 0 = 90 and given values 
of G. 

(a) e = 45 (b) 0 = 90 

Figure 4.6: 3D Cooccurrence matrix obtained with G = 128, r = 1 and given values 
of 8. 



Figure 4.7: Time to  compute cooccurrence matriv for given 0 and type of distance 
measurement. 

distance measurement. A1 t hough there ~vas little difference among the matrices in 

the above figures, it is apparent from Figure 4.7 that the computational requirements 

to construct the matrices and their associated measurements are quite different. 

The 2D cooccurrence matrices constructed from various combinations of the GI 

0 and d parameters are shown in Figures 4.8 and 4.9. It is apparent that there is 

much less information available in these matrices as compared to the 3D matrices. 

Figures 4.10 and 4.11 show the resulting 2D and 3D matrices, respectively, ob- 

tained from the corpus luteum (CI), stroma (C2), and fluid (C3) volume samples. 

For the 3D cooccurrence matrices, there are obvious differences among the classes. 

The matrix in Figure 4.11(c) is significantly different from those in Figures 4.11(a) 

and 4.11(b). For the 2D cooccurrence matrices, there are also differences among the 

classes. I t  seems from these figures that either the 2D or 3D cooccurrence features 

could be used to effectively represent each of the three classes. However, esperi- 



(a) 0 = 0 (b) 8 = 45 (c) 0 = 90 (d) 8 = 135 

Figure 4.8: 2D Cooccurrence matrix obtained with G = 128, d = 1 and given values 
of 0. 

(a) G = 32 (b) G = 64 (c) G = 128 

Figure 4.9: 2D Cooccurrence matrix obtained with d = 1, 0 = 0 and given values of 



Figure 4.10: Cooccurrence matrix obtained from the given class with d = 1, 0 = 90 
and G = 128. 

Figure 4.11: 2D Cooccurrence matrix obtained from the given class with d = 1. 
8 = 0 and G = 64. 

mental results in Section 3.6 revealed that the 3D cooccurrence measures provided 

better representations of the classes than the 2D cooccurrence measures. 

4.4 Summary 

In this chapter two classes of 3D texture features have been described: cooccurrence 

matrix based features and statistical features. Since it is desired to calculate the 

cooccurrence matriv from volume data it is necessary to redefine the matrix. Sec- 

tion 4.1.1 derived the new definition in 3D. This definition provides the ability to 

represent the texture in the volume in 3D, rather than in a collection of 2D matrices 



as has been done in the past. The definition also makes it possible to calculate 

measures from the cooccurrence matris that are independent of the orientation of 

the testure in the volume. Traditionally. the cooccurrence matris has always been 

dependent on the texture orientation. Experiments were performed to analyse var- 

ious characteristics of the 3D and 2D cooccurrence matrices. The results showed 

that there was not a significant difference in the information content of 3 0  matri- 

ces constructed with different parameter combinations of 6 and r ( d ) .  There is an 

increase in information when G is increased. The results also showed that there is 

significantly more information present in the 3D cooccurrence matrix as compared 

to the 2D cooccurrence matrix. Finally, the results showed that there is a differ- 

ence in the amount of time required to construct the 3D cooccurrence matrix as 0 

decreases or the radial distance, r ,  is used instead of the pixel distance, d. 

It was found in the experiments on bovine ultrasound volume data in Chap- 

ter 3 that the measures based on the 3D cooccurrence matrix resulted in feature 

spaces with a higher probability of correct classification than those based on the 

2D cooccurrence matrix. In Chapter 5 ,  it is described how these 3D cooccurrence 

based feature spaces are used by the Segmentation module to segment the bovine 

data. The use of these feature spaces provides the ability to successfully segment 

the corpus luteum and stroma: two visually very similar tissues. This is significant 

as differentiation of these tissues was not possible using 2D cooccurrence measures 

of texture in previous work [80, 79, 771. 



Chapter 5 

3D Segmentation 

Due to the increasing popularity of data visualisation, segmentation of 3D datasets 

is becoming more important. Many approaches rely heavily on the selection of a 

threshold (zsosurfoce rendering) or mapping function (volume rendering) in deter- 

mining which points in the volume should contribute to the visualised surface(s) of 

interest. The amount of noise in the data has a significant effect on the quality of 

the rendered image. 

Using 2D segmentation techniques on 3D data, the potential increase in informa- 

tion that is available in the third dimension is not used because typical processing 

involves segmenting each 2D image and then combining the resulting segmented 

images in some manner. This also implies that the third dimension is not treated in 

the same manner in which the 2D images are. Another problem with 2D segmenta- 

tion is the orientation in which the planes of the volume are examined. Figure 5.1 

illustrates two perspectives of a simple volume composed of alternating black and 

white planes. In the left image the volume seems to be composed of planes having a 

"striped" texture. In the right image the volume appears to be composed of uniform 

Figure 5.1: Two different perspectives of the same volume. The volume is composed 
of alternating black and white planes along the Z axis. 



planes. However, by examining the entire volume? rather than a single plane at  a 

time: this ambiguity would not arise, thus, the motivation for 3D segmentation. 

MTS 

The 3D Segmentation module of the proposed system must have the ability to  

segment isometric volume data. It must also be able to achieve good segmentation 

results when noise is present in the volume data. Finally. the 3D Segmentation mod- 

ule should use appropriate measures of homogeneity (such as texture measures) in 

performing segmentation. It is hypot hesised that the 3D Segmentation module must 

possess these features in order to achieve accurate segmentation of the ultrasound 

volume data. One approach to segmentation which possesses these features is the 

hlultiresolution Texture Segmentation (MTS) algorithm [77, 81: 82, 781. Previous 

research demonstrated that a series of 2D ultrasound images could be segmented 

with good results. The following are a number of desirable characteristics of the 

MTS algorithm: 

examines texture at multiple resolutions, 

0 robust in the presence of noise, and 

similarity measure configurable to application. 

It is important that these characteristics be maintained in the 3D Segmentation 

module of the proposed system. 

Although the MTS algorithm has demonstrated success in segmenting noisy 2D 

images, it has some weaknesses that limit its use in the proposed 3D application: 

0 makes no use of third dimension in evaluating testure, 

uses an ad hoc similarity measure. 

The 3D MTS algorithm is proposed to overcome the weaknesses of the original MTS 

algorithm. 



Figure 5.2: Octree structure. 

The MTS algorithm is based on the quadtree structure (see Figure 2.13) which 

is inherently 2D. The use of an octree structure makes it possible to represent the 

3D data. Using an octree, a block of LV x LV x N, rather than an N x N .  pixels is the 

unit of measure. This provides the ability to treat all three dimensions in an equal 

manner. Of course, this implies that the ability of the 3D MTS algorithm to segment 

volume data is dependent on how well the 3D pixel blocks can be characterised. 

Figure 5.2 depicts the structure of an octree. .4n octree is a tree data structure 

in which each parent node has 8 child nodes. Each leaf node in the tree represents 

a block within the volume. For example, a single node octree represents the entire 

volume. As the tree is expanded down from the root, smaller blocks in the volume 

are represented by the leaf nodes. For an M3 volume, the size of a block for a 

corresponding leaf node at level 1 is (2(n-1))37 where 0 5 I 5 n and M = 2". 

The basic mechanism of splitting and merging blocks in the MTS algorithm is 

inherited in the 3D MTS. A simulated annealing framework controls the manner in 

which this occurs. A block is split if its 8 children are not similar (see Section 51.1 



for a discussion of the similarity measure). -4 neighbourhood of 8 similar blocks is 

merged into the parent block. The parameter a determines the cooling schedule. 

At an initial temperature, T, random splitting and merging of blocks are allowed to 

occur. T is decreased according to the prescribed cooling schedule and the number of 

random configurations decreases. The steady state is reached when T drops below a 

threshold at which no more random configurations occur. Since T is a monotonically 

decreasing function of a, smaller values of a result in a faster cooling schedule, thus 

decreasing the number of random splits and merges. An instant cooling schedule is 

achieved by not allowing any random configurations (a = 0). 

At every temperature interval, a total of R splits and merges are allowed. For 

high temperatures, the percentage of random splits and merges will be higher than 

the percentage of random splits and merges a t  low temperatures. When T is low 

enough, only those splits and merges which satisf?. the similarity measure occur. The 

resulting state of the octree after iteration completes represents the final segmented 

volume. 

The above describes the mechanics of how blocks are examined within a vol- 

ume; however, it is yet to be described how blocks are determined to be similar or 

not similar. As well, it has not been mentioned how the identity of each block is 

determined. The next section discusses these issues. 

5.1.1 Similarity Measure 

The biggest weakness of the MTS algorithm lies in the similarity measure used 

to  determine the homogeneity of regions. Recall from Equation (2.1) that @,(C) 

measures how well the current block fits the texture region in the image. The main 

contributing factor to 9,(C) is the similarity measure, dc(P): 

where 

P is either the parent of the leaf node C (merging) or is C itself (splitting), 



Figure 5.3: Distinct classes with overlap along the projected axis. 

i is the number of child nodes of P, since the quadtree structure is used. i=4. 

and 

0 T(Cj)  indicates the class of child block C,. 

Equation (5.1) defines the number of children with a class different from the class 

of the majority of the children. For example, if the classes for the four children of 

P are represented as {1,1,2,3) then the class of the majority is 1 and the number of 

children with a different class is two, dc(P) = 2. 

The problem lies in the calculation of a block's class using T(Cj)-  In the MTS 

algorithm, ad hoc rules are used in determining the similarity between block texture 

measures and the class parameters (determined a pn'ori). The most limiting factor is 

that the similarity is based on one-dimensional projections of the measures (feature 

space). Figure 5.3 shows two classes which are distinct in a 2D feature space yet their 

projections result in overlap. In general, classes which are linearly separable (either 

by a line. plane, hyperplane, etc.) are not always separable along axial projections. 



To overcome this deficiency in the 3D MTS algorithm. the ad hoc determination 

of a block's class using T(Cj) is replaced by the Inck decision rule described in 

Section 3.2. The main advantage in using the modified decision rule is that it 

is based on well established theory in statistical pattern recognition. With this 

approach there is now a direct relationship between classification and segmentation 

which have traditionally been treated as separate topics. 

Identifying the class membership of blocks within a volume using the 3D MTS 

algorithm is like performing ''classification on the fly''. The use of a multiresolution 

classifier, d, as described in Section 3.5, is used to classify blocks at different reso- 

lutions. By replacing T(Cj)  in Equation (5.1) with d, the similarity measure used 

in the 3D MTS algorithm becomes 

Note that both the classifier, 4, and the block (or pattern), Cj ,  are resolution de- 

pendent. Also note that use of the octree structure requires i = 8. 

Using a multiresolution classifier based on the modified decision rule requires the 

a pr ior i  class probabilities. These probabilities can be determined in a number of 

ways: 

assume probabilities are equal for each class, 

0 use probabilities obtained while determining class distribution parameters 

(training), 

allow probabilities to  be defined based on knowledge of application. 

The easiest way is to assume the probabilities are equal. However, this prevents 

making use of any biases that may exist due to classes that are more or less likely 

than other classes. The second way is equally as easy but there is no basis to support 

the assumption that the a pn'ori class probabilities in training are the same as that 

during segmentation. The final way is the most desirable, as additional knowledge 



about the data being segmented is made available to the classifier. However. if the 

knowledge is inaccurate then the performance of the classifier will be reduced. 

5.1.2 Outputs 

There are three types of output available from the 3D MTS. These outputs represent 

different characteristics of resulting segmentation. The first output type is the class 

probability distributions. This output is similar to the type of output produced 

by Momenan et al. [75] in which 2D ultrasound scans are "stained with different 

colours indicating the probability of which a region belongs to a given reference 

class. 

Figure 5.lO(b) shows (2D) examples of the class probability output type. Each 

point in the volume represents a probability of belonging to a given class. A vector. 

P. a t  each point contains these a posteriori probabilities such that 

where C is the number of classes determined prior to segmentation. The vector P 

contains two additional elements, P[C+ 11, representing membership in the distance 

reject classes, and P[C + 21. representing membership in the ambiguity reject class. 

These classes result from the use of the modified decision rule (see Section 3.3). 

When P[C + 11 > 0: the a posteriori probabilities are meaningless as the point is 

distant from all C classes. When P[C + 21 > 0, the membership of the point is 

ambiguous among two or more of the C classes. 

This output type contains the most information about the class probabilities and 

is most readily visualised using a volume rendering technique. 

The second type of output is the class labels. Figure 5.4 shows an example of the 

this type of output. For the class labels a decision is made as to the most probable 

class to which the point belongs. The decision is made by selecting the largest P[z] 

at each point and assigning the corresponding class number as the output value. 

The class labels output type is a simpler form of the class probability distributions 



Figure 6.4: Output type 2: class labels. 

as each point contains a single value indicating its class identity. This output type 

is most readily visualised using an isosurface rendering technique. 

The final type of output is the block size distributions. Figure 3.5 shows an 

example of this type of output. Each point in the volume is assigned a value indi- 

cating its size (c.f. the point's level in the octree). This output type is most useful 

for analysing the performance of the 3D MTS. The distribution of the various block 

sizes throughout the volume indicates where boundaries and detailed regions occur. 

There are two interpretations of detailed regions. One is that the volume has small 

details which the algorithm is trying to determine. The second interpretation is 

that the algorithm could not determine the identity of certain regions in the vol- 

ume. Successive splitting of the region resulted in small blocks whose identity are 

not known. This results in longer processing time and a decrease in segmentation 

accuracy. This output type is most readily visualised using an isosurface rendering 

technique. 

5.2 Experiments 

Experiments were performed to evaluate the effectiveness of the proposed 3D b1TS 

algorithm in segmenting volume data. The following sections describe the experi- 

ments performed using spnthesised (Section 6.2.1) and real (Section 5.2.2) data. 



(a) 2' x 2' x 2' pixels (b) 2' x 2' x 2' pixels (c) 22 x 2* x z2 pixels 

(d) 23 x 23 x Z3 pixels (e) 24 x Z4 x 24 pixels (f) Z5 x 25 x 25 pixels 

Figure 5.5: Output type 3: block size distribution. Each image depicts all blocks of 
a given size in the volume. A cut plane is used to allow visualisation of the interior 
of the object. 



5.2.1 Synthesised Data 

The goal of these experiments was to determine the accuracy in which segmentation 

of synthesised volume data could be achieved using the 3D SITS algorithm. Em- 

phasis was placed on studying the effects of the iV x N x N block size so a simple 

homogeneity criteria (mean gray level) was used. Hundreds of esperiments were per- 

formed on data sets which were spnthesised by sampling analytic functions (sphere. 

ellipse, cube, and toroids) at discrete, isometric points in the Cartesian coordinate 

system. Each sample point within the boundaries of the function was assigned the 

value 200 while the other points were assigned the value 100. Gaussian noise (with 

varying c) was added to the images to determine how robust the 3D MTS algorithm 

would be to a degradation in image quality. Volumes of size 643 pixels and 1 2 8 ~  

pixels were segmented. All the experiments were performed on a Sun Microsystems 

SP.4RCstation 10 with 64M of memory running SunOS 4.1.3. All timings are given 

in real time. 

Two other segmentation algorithms were evaluated to provide a basis for com- 

parison with the 3D MTS algorithm. A simple thresholding algorithm was used 

because it is currently a popular method for rendering an isosurface within a vol- 

ume. The 2D MTS algorithm was also used because of its similarity to the 3D &ITS 

algorithm. The 2D LITS algorithm was applied to each plane along the Z asis of 

the volume and the resulting segmented planes were combined into a single volume. 

The accuracy of each segmentation was determined by calculating the percentage of 

mislabelled pixels. 

Results 

Figure 5.6 shows some sample segmentation results obtained by thresholding, the 

2D MTS, and the 3D MTS algorithms. Figures 5.6(a), 5.6(e) and 5.6(i) show the 

original test volume (128~ pixels) containing additive Gaussian noise with o = 0, 

0 = 40 and (T = 60, respectively. The segmentation results are shown in Figures 

3..6(b), 5.6(f),5.6(j) (thresholding),5.6(~). 5.6(g),5.6(k) (2D MTS), 5.6(d), 5.6(h) and 



(a) original (b) Thresholding: 
6 = 0, accuracy: 

(c) 2D MTS, a = 
O,CY = 0, accuracy: 
99.5% 

(d) 3D hITS, a = 
0, CL = 0, accuracy: 
100% 

(e) original (f) Thresholding, a = 
40, accuracy: 89.3% 

(g) 2D MTS, o = 
40, a! = 0, accuracy: 

(h) 3D &ITS, a = 
40,a = 0, accuracy: 
99% 

(i) original (j) Thresholding, a = 
60, accuracy: 78.2% 

(k) 2D MTS, 0 = 
60, a = 0, accuracy: 
98.5% 

(1) 3D MTS, o = 
60, a = 0, accuracy: 
98.5% 

(m) 3D MTS, a = 
40, CL = 0.3, accuracy: 
99.1% 

(n) 3D MTS, a = 
40, CL = 0.5, accuracy: 
98.8% 

(0)  3D MTS, a = 
60, a = 0.1, accuracy: 
98.5% 

(p) 3D MTS, a = 
60, a = 0.3, accuracy: 
97.9% 

Figure 6.6: Segmentation results for sphere with given values of a and a. 



5.6(1) (3D BITS). When there is no noise present (0 = 0). each algorithm segments 

the volume almost perfectly. However, as the level of noise increases. the accuracy 

of the segmentations using thresholding decreases significantIy while the accuracy 

of the segmentations obtained using the 2D and 3D LITS algorithms remains high. 

Figures 5.6(m)-5.6(p) show some results obtained by the 3D MTS algorithm with 

different cooling schedules. The results seem to suggest that there is no advantage in 

slowing the cooling schedule (increasing the coefficient a) as there is no improvement 

in the accuracy of the segmentation. This is in agreement with the findings of Liu 

and Yang [6 11 . 
The 3D MTS algorithm required, on average, approximately twice the amount 

of time to segment the test images as compared to the 2D MTS algorithm (147 sec. 

vs. 70 sec.). As well, the segmentation times for both the 2D and 3D algorithms 

increased as the cooling schedule coefficient a was increased. 

5.2.2 Real Data 

The goal of these experiments was to determine the accuracy (qualitatively) in which 

segmentation of real volume data could be achieved using the 3D MTS algorithm. 

Data sets from two different applications were evaluated. The first data set consists 

of a linear scan of a fetus while the data sets from the second application consist of 

linear scans of bovine ovaries. 

Fetal Volume Data 

-4s with the synthesised data, a simple homogeneity criteria (mean gray level) n.as 

used in segmenting the fetal data. The volume data consists of 232 parallel slices 

from an in vztro linear scan of a fetus obtained using a 5-9 MHz ultrasound trans- 

ducer. The inter-slice distance is 0.25 mm and the resolution of each image is 

640x480 pixels (0.25 mmfpixel). -4 volume of size 2 5 6 x 2 5 6 ~  128 was extracted 

from the original data and used for all the experiments. To facilitate faster process- 

ing and lower resource requirements, the volume was segmented as four, 128~ pixel 



Figure 5.7: Segmentation results for original ultrasound data of a human fetus: (a) 
Thresholding, (b) 2D MTS, (c) and (d) 3D MTS (different perspectives). Results 
with additive noise, o = 40: (e) Thresholding and (f) 3D MTS. 

volumes independently. The resulting segmentations were combined to achieve the 

final segmentation results for the entire volume. 

Results 

Figure 5.7 shows some sample segmentation results obtained by thresholding, t 

2D MTS, and the 3D MTS algorithms. Figures 5.?(a)-(d) show the results obtained 

for the different segmentation algorithms on the original volume data. Figure 5.7(e) 

shows the resulting segmentation produced by thresholding with noise (a = 40) 

added to a 128~ pixel volume within the original data. Figure 5.7(f) shows the 

resulting segmentation produced by the 3D MTS algorithm for the same noisy data. 

The results shown for both the 2D and 3D MTS algorithms were obtained using an 

instant cooling schedule (a = 0). 



It can be seen from these results that each algorithm segmented the original 

volume data with roughly the same quality. However, nhen noise is added to the 

data, thresholding produces poor results while the 3D MTS algorithm maintains its 

quality. It can be argued that the addition of noise to the original data produces a 

contrived example which only serves to exaggerate the capabilities of the 3D MTS 

algorithm. However, in an zn vivo environment, there is a significant increase in the 

amount of noise present in the data. These results demonstrate that the 3D MTS 

algorithm should produce better segmentations than thresholding for noisy data. 

The 3D MTS algorithm segmented the original data in approximately 348 sec- 

onds while the 2D MTS algorithm required approximately 709 seconds. Similar 

times (relative) resulted for slower cooling schedules (i.e. cr increasing). This is a 

direct contrast with the segmentation times obtained for the synthesised data in 

which the 3D MTS algorithm required twice the amount of time as compared to the 

2D MTS algorithm. This can be attributed to the quadtree (octree) representation 

of the data. For the 2D MTS algorithm, there are more leaves in total in the 128 

quadtrees than the 1 octree representation used by the 3D hlTS algorithm. The 

number of leaves depends on the homogeneity of the data. Thus, the time required 

to produce a segmentation using either algorithm is fairly data dependent. 

Bovine Volume Data 

The bovine data, as describe in Section 3.6, was used to determine the accuracy 

(qualitatively) in which segmentation could be achieved using the 3D MTS algo- 

rithm. A volume of size 400x300 x4OO points was extracted from the interpolated 

data and used for all the experiments. 

The multiresolution classification obtained for the bovine volume data using the 

Tissue Characterisation module in Section 3.6.4 was used as a basis for segmenting 

the bovine data. That is, the feature spaces (and associated class parameters) for 

resolutions ,02 = 4, = 8, P4 = 16 and P5 = 32 were used by the 3D MTS algorithm. 

To simplify processing, small (two dimensional) features spaces were chosen from 

the (up to) ten dimensional feature spaces, listed in Table 3.10, determined from 



the 3C dataset. The decision to use small feature spaces was based on the necessity 

for minimal computational requirements as well as a good probability of correct 

classification. To further simplify processing, these feature spaces were modified 

so that for each resolution, the feature space (31,95) was used. Note that both 

of these features are measures of local homogeneity based on the 3D cooccurrence 

matrix. -4s a precursor to segmentation, classification was performed with this 

feature space to  confirm that the probability of correct classification remained high. 

For all segmentations, an instant cooling schedule (a = 0) was employed. 

For comparison purposes, a convolution method [120, 16, 72, 121, 1191 was used. 

This method was chosen because it is commonly used to segment images. -4 window 

of size 16 x 16 x 16 was convolved with the ultrasound volume at intemais of 8 

pixels. At each location, a feature vector containing the 3D cooccurrence based 

features was calculated and evaluated using the Inck decision rule. The resulting 

output a t  each location was a vector containing the a posteriori class probabilities 

for each of the three classes present in the ultrasound data. The class associated with 

the highest probability in the vector rvas determined to be the class label assigned 

at  the location. for both the 3D MTS and convolution methods, the class a prior 

probabilities were assumed to be equal (0.333). 

Results 

Figure 5.8 shows the results obtained when the 3D MTS algorithm is applied 

to the class sample regions, of size 323 points, used in determining the feature 

measures for the 3C dataset. Recall that the 3C dataset contains 3D samples of 

each of the three classes present in the bovine ultrasound volume data. Since it was 

assumed that each of the regions represented only one class, segmentation of each 

of the regions should be homogeneous. This is the case for class C3 (light gray) 

in Figure 5.8(c). In Figures 5.8(a) and 5.8(b), however, the segmented output for 

C1 (gray) and C2 (black) is not homogeneous. This suggests that there is some 

sampling error in the 3C dataset as the sample regions do not represent one class 

exclusively. Note, also, that the erroneously identified regions are based on measures 



Figure 5.8: Segmentation error in class samples. 

at a small resolution ,& = 4. This confirms the hypothesis, described in Section 3.7, 

that segmentation based on the classification results a t  smaller resolutions results 

in higher probabilities of error. 

Figure 5.9 shows corresponding 2D slices selected from the original (Figure 

5.9(a)) and segmented volumes based on values of s = 0.05 (Figure 5.9(b)) and 

c = 1.0 (Figure 5.9(c)). Since the probability of ambiguity reject increases as E 

decreases, the resulting segmentation with E = 0.05 should contain more ambiguity 

rejected points than the segmentation with e = 1.0. It can b e  seen that this is the 

case. In Figure 5.9(b), the majority of points are identified as ambiguous (mostly 

between classes C1 and C2) while in Figure 5.9(c), many of the same points are 

identified as either C1 or C2, with a much higher probability of error. 

Figure 5.10 shows the class probability distributions resulting from the convo- 

lution method with e = 1.0 (no ambiguity reject region). Figure 5.10(a) illustrates 

the a posteriori probability of points belonging to class C1 (corpus luteum), Figure 

5.lO(b), the a posteriori probability of class C2 (stroma) and Figure 3.10(c), the a 

posteriori probability of class C3 (fluid). Points displayed as white have a high prob- 

ability of class membership while points displayed as black have a low probability 

of class membership. Red indicates those points which have been distance rejected. 

It can be seen from these images that fluid is quite prominently distinguished from 



(a) original (b) E = 0.05 (c) E = 1.0. 

Figure 5.9: Segmentation results for different values of e ('e = 0.5 for resolution 
P1 = 2); light green - ambiguity rejected, blue - distance rejected, green - C1, purple 
- C2, pink - C3. 

(a) Probability of C1, slices 0, 34, 67, 83, 101 

(b) Probability of C2, slices 0, 34, 67, 83, 101 

(c) Probability of C3, slices 0, 3467,  83, 101 

Figure 5.10: Probability of given class for selected slices from volume; red indicates 
point is distance rejected, black to white is probability 0.0 to 1.0. 
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the corpus luteum and stroma. -4s well, the corpus luteum is discriminated from 

the stroma with a high probability of correct classification. As there is a transition 

from one homogeneous region to the nest. a "band" of distance rejected points is 

identified. This is intuitive as the 1 6 ~  window overlaps more than one region, thus 

producing a feature vector which is statistically different from either of the class 

parameters- 

Figure 5-11 shows different perspectives of the corpus luteum in the segmented 

volume using the convolution method. Identification of the corpus luteum was de- 

termined from the points with a class probability 2 0.95 for C1. Figure 5.12 shows 

different perspectives of the stroma in the segmented volume using the convolution 

method. Identification of the stroma was determined from the points with a class 

probability 2 0.95 for C2. Finally, Figure 5.13 shows different perspectives of the 

fluid in the segmented volume. Note the clear distinction among the corpus luteum. 

stroma and surrounding fluid. Although it is not totally apparent in the depictions 

of these structures, the segmentation is subjectively determined to be quite good. 

Figures 5.14 - 5.16 show different perspectives of the regions identified as corpus 

luteum, stroma and fluid, respectively. using the 3D MTS algorithm with E = 1.0. 

Since the 3D MTS algorithm requires the volume data to have dimensions which 

are an even power of 2, the 384 x 256 x 384 sub-volume originating a t  the origin of 

the original volume was segmented. 

Comparison of the resulting segmentations obtained by the 3D MTS algorithm 

in Figures 5.14 and 5.15 to those obtained by the convolution method reveal that 

the corpus luteum and stroma are poorly distinguished. It is apparent that a num- 

ber of blocks have been erroneously segmented. Since there is no ambiguity reject 

region, there is more uncertainty when a decision is made in classifying a block. 

Further, many of the blocks are classified a t  a smaller resolution, pz = 4. -4s stated 

above, at  this resolution there is a much less chance of correctly classifying a block. 

Examination of the block distributions for the 3D MTS segmentations revealed that 

over 90% of the blocks in the volume were being classified a t  this resolution. Since 

a high probability of correct classification is not possible at this resolution, it was 



Figure 5.11: Bovine ovary animation of corpus luteum (C1) using convolution. Per- 
spectives shown for 40" rotational increments about the y axis. 



Figure 5.12: Bovine ovary animation of stroma (C2) using convolution. Perspectives 
shown for 40" rotational increments about the y axis. 



Figure 5.13: Bovine ovary animation of fluid (C3) using convolution. Perspectives 
shown for 40" rotational increments about the y axis. 



Figure 5.14: Bovine ovary animation of corpus luteum (Cl) using the 3D hITS 
algorithm. Perspectives shown for 40" rotational increments about the y axis. 

necessary to modify how features were calculated for these small blocks. 

Figures 5.17 - 5.19 show different perspectives of the corpus luteum, stroma 

and fluid, respectively, identified using the 3D MTS algorithm with E = 0.05. By 

decreasing E ,  a safeguard against classification error was achieved. However, many 

blocks a t  resolution ,& = 4 and = 8 were identified as ambiguous. Instead of leav- 

ing these blocks labelled as ambiguous, a one step refinement was made to the 3D 

MTS algorithm. -411 ambiguous blocks at resolution b3 = 8 (the smallest resolution 



Figure 5.15: Bovine ovary animation of stroma (C2) using the 3D MTS algorithm. 
Perspectives shown for 40" rotational increments about the y axis. 



Figure 5.16: Bovine ovary animation of fluid (C3) using the 3D MTS algorithm. 
Perspectives shown for 40" rotational increments about the y axis. 



was limited to & = 8) had their feature measures calculated at  a larger resolution. 

,& = 16, in a "one-time only" fashion (just as in the convolution method). The 

resulting probabilities were then used to  determine the identity of the block. Figure 

3.20 shows the distance rejected blocks remaining in the final segmentation. It can 

be seen from Figures 5.17 - 5.19 that this small refinement to  the 3D .\.ITS algo- 

rithm resulted in identification of the major structures in the bovine ovary with as 

much accuracy as those shown in Figures 3.14 - 3.16, obtained with the convolu- 

tion method. The major advantage in using the modified version of the 3D &ITS 

algorithm is that much less computational effort is required. The multiresolution 

capability allows the 3D MTS algorithm to adjust to varying levels of detail in the 

volume. That is, for large, homogeneous regions, features can be calculated from 

blocks a t  large resolutions. For the convolution method, the same resolution is used 

independent of the size of the homogeneous regions in the volume. Thus, for large 

homogeneous regions, features from a number of (smaller) blocks must be calculated. 

The dominating operation in both methods is the calculation of the feature vec- 

tors from 1 6 ~  blocks in the volume. For a 128~ volume, the convolution method 

required 1096 operations. The real-time required to calculate the features was a p  

- proximately 8000 seconds. For the refinement step of the 3D MTS algorithm. the 

number of operations averaged 71% of the number of operations required by the 

convolution method. The average time to complete the operations was approxi- 

mately 4595 seconds. Additional overhead was required by the 3D MTS algorithm 

to produce the initial segmentation. On average, approximately 443 seconds were 

required to produce the initial segmentation. 

5.3 Summary 

This chapter described the details of the 3D Segmentation module. It was de- 

termined that the segmentation approach used must have the ability to segment 

isometric volume data, be able to achieve good segmentation results when noise is 

present in the volume data and should use appropriate measures of homogeneity 



Figure 5.17: Bovine ovary animation of corpus luteum (Cl) using the modified 3D 
MTS algorithm. Perspectives shown for 40" rotational increments about the y axis. 



Figure 5.18: Bovine ovary animation of stroma (C2) using the modified 3D MTS 
algorithm. Perspectives shown for 40" rotational increments about the y axis. 



Figure 5.19: Bovine ovary animation of fluid (C3) using the modified 3D MTS 
algorithm. Perspectives shorn for 40" rotational increments about the y axis. 



Figure 5.20: Bovine ovary animation of distance rejected points using the modified 
3D MTS algorithm. Perspectives shown for 40" rotational increments about the y 
axis. 



(such as t esture measures) in performing the segmentat ion. One previous approach 

that possesses these features is the Multiresolution Texture Segmentation (IITS) 

algorithm [77: 81: 82, 781. However, its inability to makes use of the third dimension 

in evaluating texture as well as its ad hoc similarity- measure require that a new 

approach be determined. The 3D MTS algorithm wvas proposed as a new approach 

to be used in the 3D Segmentation module. 

The 3D MTS algorithm is based on an octree structure which provides the abil- 

ity to treat all three dimensions in the volume in an equal manner. The basic 

mechanism of splitting and merging blocks is controlled by a simulated annealing 

framework. The identity of blocks in the volume are determined using the Inck 

decision rule. An advantage in using this modified decision rule is that it is based 

on well established theory in statistical pattern recognition. Another advantage in 

using the Inck decision rule is that a direct relationship between classification and 

segmentation has been established. This provides the ability use a multiresolution 

classifier to  determine the class parameters at each resolution. These parameters 

can then be used by the 3D MTS algorithm to determine the identity of unknown 

blocks in the volume using the Inck decision rule. 

Numerous experiments were performed to evaluate the 3D MTS algorithm. For 

comparison purposes, the 2D MTS algorithm and a thresholding algorithm were 

also evaluated. The results obtained from the synthesised data suggest that both 

the original and 3D MTS algorithms are superior to  the thresholding algorithm for 

segmenting noisy volume data. The results obtained from the ultrasound fetal data 

also support this conclusion. 

The 3D MTS algorithm and a convolution method were used to segment bovine 

ultrasound data. For both methods, the texture was analysed using features based on 

the 3D cooccurrence matrix. The segmentation results from the convolution method 

showed a clear distinction among the corpus luteum, strorna and surrounding fluid. 

This is a significant result as the texture of the corpus luteum and stroma are 

visually very similar. When the 3D MTS algorithm was applied to the bovine data 

with E = 1-0 ( no ambiguity reject) there was no clear distinction between the corpus 



luteum and the stroma. By setting c = 0.06 (thus. providing ambiguity reject) and 

refining the way small blocks are identified in the 3D UTS algorithm, the corpus 

luteurn and strorna were clearly distinguished. The advantage of the modified version 

of the 3D MTS algorithm over the convolution method is that it required less time 

and computational effort to segment the bovine ultrasound volume data than the 

convolution met hod. 



Chapter 6 

3D Ultrasound Application 

In order to demonstrate the functionality of the proposed system it is necessary to 

apply the system to a real problem. Throughout this thesis the system modules 

have been described and evaluated using 3D ultrasound data, yet, the entire process 

from start to end has not been demonstrated. It is the purpose of this chapter to 

demonstrate that the application of the proposed system to ultrasound volume data 

obtained from a 3D probe is possible. 

6.1 Experiments 

TWO sets of ultrasound volume data are used for experimental evaluation. Both 

data sets, one a linear scan, the other a rotational scan, represent approximately 

the same "real life" volume. The objective of the experiments is to demonstrate that 

the proposed system can identify and model objects in ultrasound volume data. In 

determining the level of success/failure the system obtains, comparison of results 

from the linear and rotational data sets are continually made to determine if the 3D 

rotational ultrasound probe is a feasible method of image acquisition. 

6.1.1 Data Acquisition 

The state of the 3D ultrasound probe prototype placed a severe restriction on the 

availability of data for experimental evaluation. -4s a result only one data set from 

the probe was available. A linear scan of approximately the same volume was 



performed to provide a reference data set. -411 images were obtained with an ATL 

Mark 10 ultrasound device. 

A 12 week old human embryo mas immobilised in a tank filled with gel. The tank 

was placed on a translational stage so that a linear scan could be performed. The 

3D rotational probe was &xed perpendicular to the fetus with the tip of the probe 

immersed in the gel. Acquisition of the linear scan was obtained by translating 

the tank (and fetus) underneath the probe from one end of the fetus to the other 

at 0.25mm increments. At each increment, a 2D slice was obtained resulting in a 

sequence of 163 images. 

Acquisition of the rotational scan was obtained with the probe aligned over the 

middle of the fetus. The beam angle was chosen such that the entire fetus would 

be included in the sampled volume. The probe was rotated at 2" intervals through 

a 360" sampling range, thus sampling the entire volume twice. Only the first 91 (0" 

to 180") images were used since, in the clinical environment, this is the maximum 

number of images that will be available. 

Each 640 x 480, bbit  ultrasound image was output to a frame grabber in a PC 

via an NTSC signal. It was then digitized and stored on disk for off-line processing. 

Note that in this configuration the ultrasound image undergoes a D/.4 (NTSC) and 

A/D (digitize) conversion. It is assumed that this does not introduce a significant 

amount of error. 

In order to process the rotational volume data, it was first necessary to transform 

it from its cylindrical coordinate system representation to an isometric representa- 

tion in the Cartesian coordinate system. A 350 x 185 pixel region surrounding the 

embryo was cropped from each image (same [x,y] offset for all images). Since no 

calibration data was available, the volume data was transformed using the mapping 

function G(pr) without any additional processing. The transformation resulted in 

a 350 x 350 x 185 isometric volume. A 256 x 256 region surrounding the fetus 

was also cropped from each image in the linear scan volume data resulting in an 

256 x 256 x 163 isometric volume. 



6.1.2 Results 

Figure 6.1 shows the resulting segmented fetal volume obtained from the linear 

scan. A thresholding algorithm was used to distinguish fetal, from non-fetal tissue. 

Different perspectives of the segmented volume are shown as the volume is rotated 

through 360' at  20' intervals about the p ads. A fair amount of detail is present in 

the segmentation. There is also noise present in the segmented volume which is to 

due to echos received from the bottom of the tank. 

Figure 6.2 shows the resulting segmented fetal volume obtained from the rota- 

tional scan. The same thresholding algorithm was used to distinguish fetal, from 

non-fetal tissue. Different perspectives of the segmented volume are shown as the 

volume is rotated about the x and y axes. I t  is obvious from these perspectives that 

a greater amount of noise is present in the rotational scan. The area around the feet 

of the fetus is especially corrupted with noise. -41~0 note the circular pattern of the 

noise in this area. This indicates that the noise is present in the periphery of each 

of the images as the probe is rotated. Much of the noise can be attributed to echos 

from the tank floor. -4s well, some error is introduced in the sampling process. 

Figure 6.1.2 illustrates the presence of sampling error in the resulting volume. 

There is a discontinuity across the middle horizon of the image. This discontinuity 

occurs precisely where the rotational scan starts and stops, indicating that the probe 

has a wobble about its rotational axis. The slice, selected perpendicular to the 

rotational scanning axis, shown in Figure 6.4 confirms the presence of the probe 

wobble. 

Figure 6.5 shows the resulting segmented fetal volume obtained from the rota- 

tional scan using the 3D MTS algorithm. A rnultiresolution classification of the fetal 

data was performed by collecting 3D, representative samples of fetal and non-fetal 

tissue a t  resolutions = (2,4,8,16,32). Using the SFS algorithm and the Inck cri- 

terion function, it was found that a ID feature space using only the mean (MEAN) 

could achieve a high probability of correct classification across all resolutions. With 

E = 0.05, the probability of correct classification averaged approximately 90% across 



Figure 6.1: Animation of linear scanned fetal volume using thresholding. Perspec- 
tives shown for rotations about the y axis. 



Figure 6.2: -4nirnation of rotationally scanned fetal volume using thresholding. Per- 
spectives shown for rotations about the r and y axis. 



Figure 6.3: Rendering showing distortion of resulting segmentation due to probe 
wobble. 

Figure 6.4: Perpendicular slice illustrating presence of probe wobble. 
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Figure 6.5: Animation of rotationally scanned fetal volume using the 3D MTS al- 
gorithm. Perspectives shown for rotations about the y axis. 

all resolutions. The results from the multiresolution classification were used by the 

3D MTS algorithm to segment the rotational volume. A volume of 256 x 256 x 128 

was cropped from the original 350 x 350 x 185 volume and segmented. It can be seen 

from 6.5 that the results obtained by the 3D MTS algorithm are as good as those 

obtained using thresholding, as shown in Figure 6.2. A detailed analysis and classifi- 

cation of the noise in the fetal volume data would produce even better segmentation 

results, using the 3D MTS algorithm. 



Summary 

The purpose of this chapter was to demonstrate that the application of the proposed 

system to ultrasound volume data obtained from a 3D probe is possible. Since the 

limitations of the 3D ultrasound probe prototype placed severe restrictions on the 

availability of data, only one data set was available for experimental evaluation. 

Acquisition of the rotational scan was obtained with the 3D probe aligned over the 

middle of a 12 week fetus immobilised in a tank filled with gel. The volume data 

was transformed into the Cartesian coordinate system from which a 256 x 256 x 183 

isometric volume surrounding the fetus was subsequently processed. For comparison 

purposes, the same fetus was scanned linearly producing a 256 x 236 x 163 point 

volume. 

.4 thresholding algorithm was used to segment both linear and rotationally 

scanned data  into fetal and non-fetal tissue. Different perspectives of the result- 

ing segmentations were rendered and used as a basis for subjective evaluation of 

the quality of the segmentations. For both datasets, an adequate level of detail of 

the fetus were visible. However, a substantial amount of noise was produced from 

the bottom of the tank and interfered with visualisation. For the data from the 30  

ultrasound probe, the noise prevented clear visualisation of the region around the 

feet of the fetus. A misalignment error was also present in the segmented volume 

suggesting that the probe had a wobble when the data was acquired. 

The ultrasound volume data obtained from the 3D probe was also processed 

using the proposed system. First, the Tissue Characterisation module was used to 

build a multiresolution classification of the fetal data based on 3D, representative 

samples of fetal and non-fetal tissue. It was found that a 1D feature space based 

on the mean (MEAN) could used at all resolutions to  accurately represent the fetal 

and non-fetal tissues present in the volume data. The results of the multiresolution 

classification in the Tissue Characterisation module where supplied to the 3D Seg- 

mentation module to  be used in segmenting the fetal volume. Using the 3D MTS 

algorithm, the segmentation results were as good (subjectively) as those obtained 



using thresholding. -4 detailed analysis and classification of the noise in the fetal 

volume data would produce even better segmentation results using the 3D NTS 

algorithm. 



Chapter 7 

Conclusions 

This chapter provides a summary of the thesis. The original contributions of this 

thesis are also presented. Finally, future work resulting from this thesis is discussed. 

Summary 

In Chapter 1 the main goal of the thesis and the tasks necessary to satisfy the goal 

were presented. -4n overview of the system was provided which is a realisation of 

the thesis goal. Five modules comprising the system were identified: the Tissue 

Characterisation module, the 3D Segmentation module, the Visualisation module. 

the Resampling module and the Ultrasound Imaging module. It was determined 

that standard techniques (see Section 2.4) could be employed in the Visualisation 

module to display the data. The publicly available software environment Khoros 

[147] provides enough functionality to meet the visualisation requirements of this 

research. 

In Chapter 2 background material was provided. An overview of ultrasonic imag- 

ing was described in Section 2.1. This included a discussion of the main components 

of the ultrasound process as well as the characteristics of the resulting ultrasound 

images. A survey of the different models and techniques used to characterise ultra- 

sound tissues was provided in Section 2.2. In Section 2.3, 2D and 3D segmentation 

methods were discussed as a way of identifying objects in 3D datasets. In Section 

2.4 techniques for visualising both segmented and unprocessed data were described. 



In Chapter 3 details of the Tissue Characterisation module were presented. The 

model is based on a statistical pattern recognition approach which provides a solid 

foundation on which tissue characterisation can be accomplished. 

-4 new criterion function: the Inck (Incomplete knowledge) criterion function, 

was presented which approximates the error probability when M classes do not 

span the entire pattern space. This criterion is based on the probabilistic measures 

obtained from a modified version of Dubuisson and Masson's [26] statistical decision 

rule with reject. The enor probability, or conversely the probability of correct 

classification, can be determined without having complete knowledge about the 

class distributions. The attractiveness of this criterion is that it is highly correlated 

with the statistical decision rule (with reject) which can be used by the classifier. 

Thus, the criterion provides a good indication of the classifier performance that can 

be expected with the reduced feature space. 

It was also described how the robust statistical minimum volume ellipsoid esti- 

mator (MVE) proposed by Rousseeuw and Leroy [I061 could be used to increase the 

classifier's tolerance to outlier data. The MVE estimator can theoretically provide 

an unbiased parameter estimation (in the case of a multivariate normal distribution, 

the mean and associated covariance matrix) describing a class distribution in the 

presence of up to 50% outlier data points. 

A classifier design was presented which incorporates the new Inck criterion func- 

tion. -4s well, it was described how the rejection classes of the modified statistical 

decision rule with reject could be used in a multiresolution classifier design to deter- 

mine the class identity of patterns which can not be determined at  a given resolution. 

Numerous experiments were performed using both synthetic and real ultrasound 

volume data. The results obtained from the experiments showed that feature spaces 

based on the Inck criterion function resulted in higher probabilities of correct clas- 

sification as compared with those obtained using probabilistic distance measures. 

Also, the decision to use MVE parameter estimation should be weighed against the 

expected presence of outliers. Finally, for smaller resolution classification, the prob- 

ability of classification error, distance and ambiguity reject was high suggesting that 



segmentation of smaller details in the bovine ultrasound volume data. based on the 

ciassification data, will not be exceptional. 

In Chapter 4 the 3D texture features used in the Tissue Characterisation module 

were described. Two classes of 3D texture features were described: cooccurrence 

matrix based features and statistical features. Since it is desired to calculate the 

cooccurrence matrix from volume data it is necessary to redefine the matrix A new 

3D definition of the matris was presented which provides the ability to represent the 

texture in the volume in 3D, rather than in a collection of 2D matrices as has been 

done in the past. The definition also makes it possible to calculate measures from 

the cooccurrence matrix which are independent of the orientation of the texture in 

the volume. Traditionally, the cooccurrence matrix has always been dependent on 

the texture orientation. 

Experiments were performed t o  analyse various characteristics of the 3D cooc- 

currence matrices. The results showed that there was not a significant difference in 

the information content of 3D matrices constructed with different parameter corn- 

binations of 0 and r (d). There is an increase in information when G is increased. 

The results also showed that there is significantly more information present in the 

3D cooccurrence matrix as compared to the 2D cooccurrence matriu. Finally, the 

results showed that there is a difference in the amount of time required to construct 

the 3D cooccurrence matrix as 0 decreases or the radial distance, T ,  is used instead 

of the pixel distance, d. 

In Chapter 5 details of the 3D Segmentation module were presented. It was 

determined that the segmentation approach used must have the ability to segment 

isometric volume data, be able to  achieve good segmentation results when noise 

is present in the volume data and should use appropriate measures of homogeneity 

(such as texture measures) in performing the segmentation. The 3D MTS algorithm 

was proposed as a new approach to  be used in the 3D Segmentation module. 

The 3D MTS algorithm is based on an octree structure which provides the ability 

to treat all three dimensions in the volume in an equal manner. The basic mechanism 

of splitting and merging blocks is controlled by a simulated annealing framework. 



The identity of blocks in the volume are determined using the Inck decision rule. 

An advantage in using this modified decision rule is that it is based on well estab- 

lished theory in statistical pattern recognition. Another advantage in using the Inck 

decision rule is that a direct relationship between classification and segmentation 

has been established. This provides the ability to  use a multiresolution classifier 

to determine the class parameters at each resolution. These parameters can then 

be used by the 3D MTS algorithm to determine the identity of unknown blocks in 

the volume using the Inck decision rule. Numerous experiments were performed to 

evaluate the 3D MTS algorithm. For comparison purposes, the 2D MTS algorithm 

and a thresholding algorithm were also evaluated. The results obtained from the 

synthesised data suggest that both the original and 3D MTS algorithms are supe- 

rior to the thresholding algorithm for segmenting noisy volume data. The results 

obtained from the ultrasound fetal data also support this conclusion. 

The 3D MTS algorithm and a convolution method were used to segment bovine 

ultrasound volume data. For both methods, the texture was analysed using features 

based on the 3D cooccurrence matrix. The segmentation results from the convo- 

lution method showed a clear distinction among the corpus luteum, stroma and 

surrounding fluid. This is a significant result as the texture of the corpus luteum 

and stroma are visually very similar. When the 3D MTS algorithm was applied to 

the bovine data with e = 1.0 (no ambiguity reject), there was no clear distinction 

between the corpus luteum and the stroma. By setting e = 0.05 (thus, providing 

ambiguity reject) and refining the way small blocks are identified in the 3D MTS 

algorithm, the corpus luteum and stroma were clearly distinguished. The advantage 

of the modified version of the 3D MTS algorithm over the convolution method is 

that it required less time and computational effort to segment the bovine ultrasound 

volume data than the convolution method. 

In Chapter 6 the application of the proposed system to ultrasound volume data 

obtained from a 3D probe was demonstrated. Since the limitations of the 3D ul- 

trasound probe prototype placed severe restrictions on the availability of data, only 

one data set was available for experimental evaluation. Acquisition of the rotational 



scan was obtained with the 3D probe aligned over the middle of a 12 reek fetus 

immobilised in a tank filled with gel. The volume data n.as transformed into the 

Cartesian coordinate system from which a 256 x 256 x 185 isometric volume sur- 

rounding the fetus was subsequently processed. For comparison purposes, the same 

fetus was scanned linearly producing a 256 x 256 x 163 point volume. .A thresh- 

olding algorithm was used to segment both linear and rotationally scanned data 

into fetal and non-fetal tissue. Different perspectives of the resulting segmentations 

were rendered and used as a basis for subjective evaluation of the quality of the 

segmentations. For both datasets, an  adequate level of detail of the fetus were visi- 

ble. However, a substantial amount of noise was produced from the bottom of the 

tank and interfered with visualisation. For the data from the 3D ultrasound probe. 

the noise prevented clear visualisation of the region around the feet of the fetus. h 

misalignment error was also present in the segmented volume suggesting that the 

probe had a wobble when the data was acquired. 

The ultrasound volume data obtained from the 3D probe was also processed 

using the proposed system. First, the Tissue Characterisation module was used to 

build a rnultiresolution classification of the fetal data based on 3D, representative 

samples of fetal and non-fetal tissue. It was found that a 1D feature space based 

on the mean (MEAN) could used a t  all resolutions to  accurately represent the fetal 

and non-fetal tissues present in the volume data. The results of the rnultiresolution 

classification in the Tissue Characterisation module where supplied to the 3D Seg- 

mentation module to  be used in segmenting the fetal volume. Using the 3D MTS 

algorithm, the segmentation results were as good (subjectively) as those obtained 

using thresholding. A detailed analysis and classification of the noise in the fetal 

volume data would produce even better segmentation results using the 3D MTS 

algorithm. 

Details of the sampling process used in the Resampling module are presented in 

Appendix -4. -4 simulation of the 3D probe was performed to quantise some of the 

errors that can result when performing a rotational volume scan and transforming 

it into an isometric 3D volume in the Cartesian coordinate system. A number of 



synthesised datasets were used in the simulations. The results of the simulations 

suggest that a probe wobble of up to d: = 0.1' can be tolerated without introducing 

a significant amount of alignment error in the resulting volume. 

Contributions 

The first contribution of this thesis is the design, implementation, and testing of 

a software system for characterising, classi&ing, and segmenting volumetric ultra- 

sound data. The system produces various outputs which can be visualised using 

standard rendering software. In the system, segmentation is viewed as way of "clas- 

sifying on the fly". That is, the 3D Segmentation module uses the class information 

obtained by the Tissue Characterisation module to determine the identity of differ- 

ent regions within the volume. The emphasis of the segmentation algorithm is on 

determining the appropriate regions (location and size) within the volume that are 

to  be "classified" using the a priori class knowledge. 

The second contribution of this thesis is a unified multiresolution framework for 

segmentation and classification of (ultrasound) data. This contribution is significant 

as it ties together the topics of segmentation and classification which are traditionally 

treated independently. To the author's knowledge, this is one of the first attempts 

a t  unifying these topics in a common framework. 

The third contribution is new statistical decision rule, Inck, for use as a criterion 

function in feature selection and a decision rule in classification of unknown patterns. 

Along with the Inck decision rule is contributed an algorithm for automating the 

selection of the parameters which determine how the rule is applied. 

The fourth contribution of the thesis is the addition of a robust statistical pa- 

rameter estimator, MVE, in the design of a classifier. -Although the MVE algorithm 

has been used in prior applications [106], it has not been used in the context of 

"filtering out7' outlier samples in training a classifier. 

The fifth contribution of the thesis is the multiresolution design of a classifier. 

It is typical in the literature to neglect the importance of the dependence between 



the features used to classify patterns and the resolution at which the features are 

calculated. In previous research [Ti, 81, 82, 781. this dependence was demonstrated 

in segmenting ultrasound data of ovarian follicles. In this thesis. this concept was 

applied to the design of a classifier. This contribution is significant as it provides 

the ability to  unifv classifier design nit  h a multiresolution segmentation algorithm. 

the 3D MTS algorithm. 

The sixth contribution is a new 3D segmentation algorithm, the 3D MTS algo- 

rit hm, which provides the ability to segment noisy, isometric, ultrasound volume 

data. The algorithm uses a priori  knowledge, collected from a statistical pattern 

recognition classifier. in identifying homogeneous regions within the volume. This 

knowledge increases the likelihood of accurately segmenting noisy ultrasound data 

as compared with traditionally used segmentation approaches such as thresholding. 

The seventh contribution of the thesis is the development of the 3D cooccurrence 

matrix. The matrix has two main advantages over the usual cooccurrence matris. 

First, it provides the ability to represent the 3D texture in isometric volume data. 

Second, the definition of the 3D cooccurrence matrix makes it possible to calculate 

measures from the cooccurrence matrix which are independent of the orientation of 

the texture in the volume. Traditionally, the cooccurrence matrix has always been 

dependent on the texture orientation. 

Finally, the eighth contribution of the thesis is that it makes possible the visu- 

alisation of ultrasound volume data obtained from a 3D ultrasound probe. .As well. 

experimental evaluation and simulation of a 3D ultrasound probe are performed. 

7.3 Future Work 

The research presented in this thesis provides ample opportunity for future work in 

different areas. First, it would be desirable to obtain substantially more test data 

from the 3D ultrasound probe. This would provide the ability for extensive evalu- 

ation of the proposed system on the intended application of volumetric ultrasound 

data. Volumetric data from other imaging modalities (e-g. blRI1 PET) should also 



be evaluated to verify the general applicability of the proposed system. 

Further examination of 3D texture features would certainly benefit the system's 

ability to represent and identify tissues in ultrasound volume data. Most notabl!-. 

the use of model-based features seem promising. However; their use depends on 

the availability of the ultrasound RF data. Given the reluctance of today's vendors 

to disclose RF data, the use of model-based features is likely not possible in an 

academic environment. 

One way to improve the segmentation results achieved by the 3D MTS algorithm 

is to increase the a prion' knowledge used when segmenting ultrasound volume data. 

In addition to the tissue characterisation of each class, information based on the 

anatomy of the object being segmented can be used. Sonka et al. [Ill] use various 

heuristics based on the biology of coronary arteries to help guide a border detection 

algorit hrn. The intravascular ultrasound data of coronary arteries exhibits charac- 

teristic artifacts for biologically significant structures within the arterial wall. By 

studying the these artifacts and knowing the anatomical relationships of the various 

structures in the coronary artery heuristics are formulated to guide the identifica- 

tion of the structures in the artery. Parvin et al. 1911 use a model-guided approach 

in segmenting volumetric structures from MR images of the brain. The model is 

represented by a set of constraints which are based on the anatomical features of the 

brain. These constraints help guide the segmentation by ruling out various region 

configurations which are biologically implausible. 

Another area that requires future work is in selecting representative, 3D samples 

of classes for use in training by the Tissue Characterisation module. It is necessary 

to have expert knowledge of the classes in order to obtain the class samples. Further, 

since 3D samples are desired, it is necessary to have some means of visualising the 

raw ultrasound data in 3D so that samples can be selected. Perhaps the best way 

to achieve this is to control the imaging environment so that samples of only one 

tissue type at a time are obtained. This would alleviate the need for an expert to 

evaluate the resulting volume data to select appropriate samples. 

The direct calculation of the 3D cooccurrence measures as presented in this thesis 



are computationally espensir-e. Peckinpaugh 1921 suggests some optirnisations which 

provide a substantial decrease in the computational complexity of the measures. 

These optimisations could be implemented to provide a significant decrease in the 

time required to segment volume data. 

Normalisation of the lrolurnetric ultrasound data is essential in achieving con- 

sistent results among datasets. Such parameters as the zoom factor, time gain 

compensation, and other machine dependent factors must be set in such a way that 

consistency is obtained. In this thesis, normalisation of the ultrasound data was 

difficult to obtain as this fell beyond the scope of the research. Future versions of 

the Ultrasound Imaging module of the proposed system must provide the means for 

norxnalising the data which is subsequently processed by the remaining modules in 

the system. 
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Appendix A 

3D Ultrasound Probe Simulation 

Since the development of a 3D ultrasound probe is beyond the scope of this thesis, 

it is somewhat difficult to determine the accuracy of the data obtained from the 

probe. Further, little experimental data is currently available from the probe, so it 

is necessary to make a number of assumptions about the acquisition process. The 

weakest of these assumptions is that there is little or no alignment error introduced 

by the mechanical rotation of the probe. If this assumption is violated the resulting 

reconstruction will be distorted. It is also assumed that the motor does not induce 

any movement (chatter) of the transducer when a single image is being obtained. 

If this assumption is violated the image will contain motions artifacts which will be 

impossible to remove. Preliminary results obtained from the 3D ultrasound probe 

indicate that this assumption is valid (at least in the experimental environment). 

However, it is not apparent that perfect alignment of the slices can be assumed. 

Since calibration data is currently not available, it is necessary to determine how 

much of an effect misalignment of the slices has on the reconstruction of the volume 

data. .A computer simulation of the 3D ultrasound probe provides the ability to 

study alignment errors to determine the effect on resulting volume data. 

Figure -4.1 illustrates the layout for a typical 3D ultrasound scan. The probe is 

oriented perpendicularly to the volume a t  the centre of the XI' plane. A scanning 

plane perpendicular to the XY plane defines a slice within the volume which is 

acquired by the probe. As the probe is rotated successive slices are sampled from 

the volume. Due to mechanical misalignment within the probe, the scanning plane 

does not remain perpendicular to the XY plane as it is rotated. 



0 Transducer 

I 
I Rotational Axis 

Figure -4.1: Layout for a typical 3D ultrasound scan. 

pitch 

Figure -4.2: Model simulating probe wobble during scan. 



Figure -4.2 depicts the type of alignment errors modelled in the simulation. The 

simulation model assumes three degrees of freedom in the scanning process: 

0 - angular increment between successive scans. 

4 - pitch, angular displacement from vertical, 

y - roll, angular displacement from horizontal. 

Ideally, q5 and y are small and do not introduce a significant error. relative to 

the resolution of the ultrasound probe. These two angles characterise a 'ivobble" as 

the transducer is rotated. In the model, it is assumed that these angles are constant 

during the entire scan. As well, translational errors are not modelled. 

The wobble of the transducer is characterised by a matrix W that displaces the 

scanning plane from true vertical and horizontal as follows: 

I 
- 

cos (7 ) O -sin($ 

w = sin(q5)sin(y) cos(@) sin(#)cos(r) 

cos(#) sin (7) -sin(d) cos(4) cos(7) d 

(A. 1) 

The scanning plane is incrementally rotated through the volume a t  increments 

of 8". This rotation is achieved with the following matrix S: 

(-4.2) 

where a = SO, 0 < s 5 180/8, and s is the number of slices sampled in the volume. 

The product of W and S yields the final rotational matrix R 

Since s is incrernented throughout the simulation S and R must be recalculated 

a t  every sampling interval. 

Figure A.3(a) shows the orientation of the scanning planes through 180' for 

0 = 45" which results in s = 5 slices sampled within the volume. Figures X.3(b) 



(a) q5=0°,y=00 (b) @ = 1°,y = lo (c) f$ = lo, y = lo0 

(d) 4 = 10°,r = lo (e) 4 = 10°, 7 = 10" 

Figure -4.3: Scan plane orientation with 8 = 45". 

- A.3(e) show the orientation of the scanning planes for various values of # and 7. 

Note that as the wobble intensifies the first and last slices are no longer coplanar. 

In the real environment it assumed that the wobble about the rotational axis is 

negligible, thus, W x I (the identity matrix). The sampled points can be mapped 

directly into a cylindrical coordinate system. To model this in the simulation, all 

sampled points are also mapped into a cylindrical coordinate system, ignoring the 

effect CV has on the location of the scanning planes. This assumption is represented 

by relaxing the equality sign in Equation (-4.3) 



The extent to which 1.1- varies from I will determine how much error is introduced. 

A point p, p = [x, y, t], on a scan plane in the original volume is mapped to 

the point p'. p' = [Of, r. z] in the cylindrical coordinate system using the mapping 

function F (p) 

P' = F ( P )  (A. 5) 

where r = xcos(Bt) + ysin(Ot), 0' = SO, and x and y are offsets from the centre of 

the XY plane at which the asis of rotation intersects. Points are mapped back to 

the Cartesian coordinate system using the inverse mapping function, G(pf)  

where x = rcos(br) and y = rsin(Ot). Due to. the discrete sampling of the volume 

(controlled by 8 )  and the approximation in Equation (-4.4) the forward and inverse 

mappings do not necessarily result in points p having the same value, i-e., 

There are three main objectives of the simulation: 

determine how the sampling interval B affects the accuracy of the volume data, 

0 determine methods for reducing aliasing in the volume data, 

determine the extent to which transducer wobble introduces artifacts in the 

volume data. 

The following sections describe each of these objectives in detail as well as the 

volume data used in the simulations. 

A.l  Data Sets 

-4 number of data sets were synthesised and used in the simulation of the 3D ul- 

trasound probe. Figure A.4 depicts renderings of the volume data used in evaluating 



(a) sine wave - 643 (b) sphere - 643 (c) cube - 643 

(d) superellipsoid - 12g3 (e) supertoroids - 128~ 

Figure A.4: Data sets used in simulating the 3D ultrasound probe. 



Figure A.5: Geometry of sampling process. 

the probe wobble as well as the sampling interval. Figures .4.4(a) - A.rl(c) consist 

of a volume of 643 pixel while Figures A.4(d) and A.4(e) are 1 2 8 ~  pixels. The sine 

wave data set was used because it has pixel variations throughout the entire volume. 

As well, any distortions incurred in the sampling process are visually apparent as 

edges are either curved or contain aliasing effects. The dataset was generated using 

the function 

I(x, y, z )  = sin(xn/180), 

where I ( x ,  y , z) represents the intensity of the point at (I, y, z )  . 

The remainder of the data sets were chosen because of their various shapes. 

-4s well, larger volumes (128~) were used because sampling error increases as the 

distance from the transducer increases. 

A.2 Sampling Interval 

The first objective of the simulation is to determine the effect that the sampling 

interval has on the resulting volume data. Without loss of generality, the 2D case can 

be considered where a plane in the positive quadrant is sampled at  radial increments 



(a) original (b) 8 = 1 (d) 8 = 5 

(e)  0 = 1 (f) 8 = 2 (g) 8 = 5 

Figure X.6: Original, sampled and difference images at varying sampling intervals. 

from the origin (c.f. Equation (-4.5) and Equation (A.6) where the sampling process 

is independent of the z axis). Figure -4.5 illustrates the geometry of the sampling 

process (sampling in the other quadrants is obtained by symmetry). The sampling 

interval 0 determines the number of radials that are sampled along in the quadrant. 

Note that the region close to the origin is sampled more densely while sampling is 

sparse as the distance from the origin approaches R. From Figure -4.5 the following 

relations can be derived: 

In order to minimise the sampling error in the periphery of the region it is nec- 

essary to have b small. This requires 8 to be small as well. However, as B decreases, 

the time required to sample the region increases as more samples are collected. To 



minimise patient /transducer movement sampling must be accomplished in real time. 

It has been determined that up to 3 seconds can be tolerated without introducing 

significant error. Acquisition of a single ultrasound image with one focal zone re- 

quires approximately 1/30th of a second. Given the 3 second maximum sampling 

time and a 180" sampling arc, the minimum angle for B is 2". When the ultrasound 

image is acquired using three focal zones the rate drops to approximately 17 images 

per second. This requires 0 2 3.5' in order to sample the region in under 3 seconds. 

Assuming a single focal zone and using Equation (1.8) the distance between two 

sampled points a t  a radial distance R is b = 0.0% R. For a typical ultrasound scan. 

R = 320 and the distance between the points is b = 11.2. This distance is substan- 

tial as small details are lost in the sampling process. The point along the radial 

sampling axis at which a unit distance exists between equidistant radial samples 

occurs a t  a = 1. Using Equation (-4.9): r = 28.6. Thus, points only within 29 pivels 

of the origin do not incur any error due to undersampling of the region. 

Simulations were conducted using a 64 x 61 pixel image of a sine wave shown in 

Figure A.6(a). The sampling origin is at the top left comer of the image with R = 64. 

The sampling interval was varied from 0 = 1 to B = 45. Points were sampled from 

the original image into the cylindrical coordinate system using Equation (-4.5) and 

then back t o  the Cartesian coordinate system using Equation (-4.6). Points whose 

coordinates do not fall at discrete locations are approximated to the nearest discrete 

locations (Section A.3 describes alternatives t o  this method). 

The resulting images for B = 1 , 2  and 5 are shown in in Figures A.6(b) - .4.6(d). 

By comparing these images to the original image in Figure A.6(a), it can be observed 

that for even a small sampling interval, error is introduced. The amount of error 

that is introduced in the sampling process can be visualised by taking the pointwise 

difference between the original image and a sampled image. The magnitude of the 

difference at each pixel forms a difference image whose intensities are proportional 

to the magnitude. In Figures .4.6(e) - A.6(g) the difference images are shown for 

the corresponding sampled images with 0 = 1 , 2  and 5. It can be concluded that 

a large number of pixels have their original value modified due to sampling. For 



Pixel D i f f e r e n c e  
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s a m p l i n g  i n t e r v a l  

Figure A.7: Percentage of the total number of pixels in which there is a difference 
between the original and sampled images. 



(a) 8 = 2 (b) 8 = 5 (c) 8 = 10 (d) 8 = 20 

Figure -4.8: Supertoroids volume data at v a ~ n g  sampling intervals. 

0 = 1, b -- 1 so no points are undersampled. The error is due to the discretisation 

of point locations during the sampling process. For &J 5 2, points in the peripher; 

of the sampling range begin to be undersampled so additional error is incurred. 

Figure -4.7 shows the percentage of the total number of pixels in which there is a 

difference between the original and sampled images as a function of the sampling 

interval. As expected, the error increases as increases (except for the minimum at 

0). The results in the graph are biased as a number of points in the original image 

are beyond the radial sampling range (points in the bottom right corner). This bias 

only has an effect when making absolute comparisons of pixel differences for a given 

6. It can be removed by scaling each value by the percentage of points within the 

radial sampling range. For the sine wave example, 79% of the points are within the 

sampling range (since sampling range is over 90" = 7~14). This results in a difference 

range of [5O.8", 83. la]. 

An example of sampling volume data is shown in Figure -4.8. Depicted in each 

image is the portion of the supertoroids falling on the sampling planes in calculating 

F ( p ) .  It is apparent that for 0 2 5 the shape information lost in sampling to the 

cylindrical coordinate system is significant. For example, the bottom supertoroid 

in Figure ..\.8(b) is sampled much less than the middle supertoroid. The result is 

that the bottom supertoroid will be deformed when sampled back to the Cartesian 

coordinate system. 



Based on the limited sampling time and the results obtained from the above 

simulation, a sampling interval of 0 = 2 is used for the remainder of the simulations. 

A.3 Anti-Aliasing 

The sampled images of the sine wave in Figure A.6 all contain jagged edges (aliasing) 

due to the discrete nature of the sampling process. It is possible to reduce this effect 

by applying an anti-aliasing technique during sampling. One basic way is to use 

interpolation. In the 2D case, bilinear interpolation is used to determine a point's 

value by taking a weighted average of its four nearest neighbours lying at  discrete 

locations. In the 3D case, trilinear interpolation takes the information from the 8 

neighbouring points. 

Since the purpose of F(p) is to model the way in which the ultrasound probe 

acquires data it is justifiable to use interpolation during sampling. Consideration of 

the characteristics of a single ultrasound image indicates that a pisel's intensity is 

representative of an echo caused by a reflector in a given region. Since the ultrasound 

beam has a limited resolution (0.25mm), the echo, and correspondingly the pixel. 

is a sum of the reflected echos from multiple reflectors in the region. Admittedly: 

this process is complex and most likely not modelled with simple interpolation but 

is adequate for the purposes of the simulation. Use of interpolation in calculating 

G(p') is not as readily justifiable. However, if the aliasing effect can be reduced 

while minimising any increases in error then interpolation is deemed justifiable. 

Figure A.9 shows the resulting sampled and difference images for the sine wave 

(Figure A.6(a)). Interpolation was used in both F(p)  and G(p') in Figure A.9(d). 

Qualitatively, this image has the least amount of aliasing. The corresponding dif- 

ference image in Figure A.9(h) also seems to indicate that the use of interpolation 

in both F@) and G ( p f )  results in the least amount of difference between the Sam- 

pled and original images (the darker the difference image, the smaller the pointwise 

differences). 

Figure A.lO(a) shows the relationship between the size of the sampling interval, 



(a) none 

(e) none 

Figure A.9: Interpolation used while calculating F(p) and G(p'), 0 = 2 for sampled 
image and resulting difference image. 



(a) Percentage of pixels in sampled im- 
age difFerent from original image (unlabelled 
used no interpolation) 
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(b) Sum of pointwise difference between 
sampled and original images with and with- 
out interpolation. 

Figure A.10: Results obtained with interpolation (F@) is "For", G(p') is Rev) and 
without interpolation. 



8,  and the percentage of pivels different between the original and sampled images 

for differing use of interpolation. Two pivels are different if their intensity values 

are not equal and they are located at the same corresponding locations in two 

different images. When interpolation is used the percentage of different pivels is 

approximately constant, independent of 8. Removing the bias in calculating the 

percentage of different pixels (as discussed in Section -4.2) reveals that almost every 

original pixel within the radial sampling range has a different corresponding value 

in the sampled image. When compared to the results without interpolation for F ( p )  

it seems that using interpolation significantly increases the error in the sampled 

image. However, counting the number of different pixels is certainly not favourable 

to interpolation as every pixel is a function of its neighbours. Only those points 

which lie at discrete locations in either coordinate system will maintain their original 

value. 

In order to get a better measure of the error in the sampled images the sum of 

the pointwise differences is used. Figure A.lO(b) shows that for smaller sampling 

intervals, the use of interpolation (for both F ( p )  and G(p')) results in a smaller 

pointwise difference sum than for sampling without interpolation. Based on this 

and the qualitative analysis above, it is concluded that the use of interpolation in 

the sampling process is justifiable. 

A.4 Probe Wobble 

The simulations described in the previous sections have assumed perfect alignment 

about the axis of rotation. The objective of these simulations is to determine the 

amount of sampling error introduced when there is not perfect alignment. This 

misalignment is characterised by a wobble about the rotational axis which is pa- 

rameterised by the matrix W (see Section A). By varying W born I, the identity 

matriu, it is possible to simulate varying degrees of transducer wobble. Since the 

underlying assumption for all simulations is that i.V zz I, the use of Equation (-4.3) 

in sampling with F ( p )  will result in an increase in error when G(pf)  is applied to 



map the points back to Cartesian coordinate system. 

In order to simulate a realistic level of transducer wobble, a wide range of values 

for and y, the parameters of W ,  were evaluated. Both 4 and took on values in 

the range [O-00001,10]. It is assumed that an angle less than 0.00001" will produce 

a negligible amount of wobble. It is also assumed that the probe can be engineered 

with enough accuracy to keep the wobble under 10" for both q5 and y. 

Figure 5.6 shows results for some of the simulations using the sine wave, sphere, 

cube, supertoroids, and superellipsoid volume data sets. All simulations were per- 

formed with a sampling interval of 0 = 2". -4s @ and y increase: the distortion of 

the object in the sampled image increases. There is a noticeable distortion in the 

supertoroids in Figure A.l l (e )  for # = 1 and y = 1. This gets much worse for larger 

values as shown in Figures -4.ll(f) - .-\.ll(h) and A.ll(j). 

The graphs in Figure -4.12 display the relationship between the amount of trans- 

ducer wobble and the percentage of difference pixels. In this contest, the percentage 

of difference pixels is calculated between a sampled volume and an established base- 

line volume, rather than the original volume. The baseline is established by sampling 

the original volume without any transducer wobble (i.e.4 = 0, = 0). From the 

graphs, it is concluded that a transducer wobble of up to 0.001" for d and 7 can be 

tolerated without affecting the sampling process as the amount of sampling error 

introduced is insignificant. 

Further analysis of the simulation results is possible by examining the graphs in 

Figure A.13. These graphs display the relationship between the amount of trans- 

ducer wobble and the sum of the pointwise differences. The pointwise differences 

are calculated from a difference volume obtained from the established baseline with 

no wobble and the sampled volumes with varying degrees of wobble. The pointwise 

difference is calculated as follows: 

(A. 10) 

where B is the baseline volume, V is the sampled volume with wobble, and (I. y: z )  

range over the size of the volume (both B and I: are the same size). These graphs 



(a) Sine wave - 
@=O, r=O 

(b) Sphere - 
@ = O ,  -y=O 

(c) Cube - 4 = (d) Supertoroids - 
0, r = O  # = O ,  r=O 

(e) Supertoroids - 
@ = l ,  r=1  

(f) Supertoroids - 
4=1, y = l O  

(g) Supertoroids - (h) Supertoroids - 
@ = l o ,  r = 1  4 = lo? y = 10 

(i) Superellipsoid 
- @=O, r=O 

(j) Superellipsoid 
- t$ = 10, 7 = 10 

Fieure A N :  Sampled volumes with 0 = 2. 



(a) Sphere 

(c) Supertoroids 

Figure -4.12: Percentage of pixels different for varying degree of wobble, 0 = 2. 



(a) Sphere me wave (b) S' 

(c) Supertoroids 

Figure -4.13: Sum of pointwise differences for varying degree of wobble, 0 = 2. 



are typical of the simulation results obtained for other data sets. It can be seen 

from the graphs that PCVD remains constant: near O1 for 4,-y 5 0.1. It can be 

concluded that although points in the sampled volume are different from the baseline 

for 0.001 < @,-/ 5 0.1 the amount they differ by is minimal. This suggests that a 

larger amount of transducer wobble can be tolerated without introducing significant 

sampling error. 

The remaining figures in this section illustrate the effect a transducer wobble can 

have on sampled data if the transducer is not calibrated to account for the wobble. 

Figure A 1 4  shows the supertoroids volume for 9 = 1" and 7 = 1": Figure -4.13 

shows the supertoroids volume for Q = 10" and y = 10" and Figure A.16 show the 

superellipsoid volume for q5 = 10" and y = 10". 



Figure A.14: Supertoroids animation, 4 = lo, y = lo. Perspectives shown for 20" 
rotational increments about the x axis. 



Figure -4.15: Supertoroids animation, 4 = lo0, 7 = 10'. Perspectives shown for 20" 
rotational increments about the x axis. 



Figure A.16: Superellipsoid animation, t$ = loo, y = 10". Perspectives shown for 
20" rotational increments about the x axis. 



Appendix B 

Probabilistic Distance Measures 

For hl normally distributed classes with multivariate mean, pi, and covariance, Zi, 
1 < i, j 5 M, the feature selection criterion function [25] is defined as 

where P(wi) is the a priori probability of class i and J(i, j) is the probabilistic 
distance measure between classes i and j using one of the probabilistic measures 
given below: 
Chernoff 

Bhattacharyya 

Divergence 

I is the identity matrix: 

Mahalanobis (when Cj = Xi = C) 





Appendix C 

Glossary 

affine equivariant estimate -4n approximation of the true value which commutes 
with a linear transformation of the space from which the true value exists [106]. 

attenuation The process of energy loss horn a wave for any reason [95]. 

Cartesian coordinate system -4 parameterisation of the space in which each di- 
mension is perpendicular to all other dimensions. -4 3D Cartesian coordinate 
system is often denoted as (x, y, z) .  

characterisation The representation of all members of a class with a set of stan- 
dard attributes (texture features). 

classification The determination of the identity (class) of an unknown pattern. 

Cylindrical coordinate system A parameterisation of the space in which a plane 
is rotated about an axis. A cylindrical coordinate system is often denoted as 
(r, 6 ,  z), where B describes angle of rotation of the plane. 

feature space The space defined by the feature vectors [25]. 

Inck Incomplete Knowledge; a new statistical decision rule, proposed in this thesis. 
for use as a criterion function in feature selection and as a decision rule in 
classification of unknown patterns. 

isometric Equal scale in all dimensions. 

lateral translation Perpendicular movement of the scanning plane along the scan- 
ning axis. 

minimum volume ellipsoid estimator -4 robust statistical met hod in which the 
smallest ellipsoid containing at least h of N points is used to  determine the 
parameters of the data. 

mixture density A probability density function which is the sum of all class prob- 
ability density functions. 



MTS Multiresolution Testure Segmentation [go]. 

multiresolution Examination of a region at varying levels of granularity. 

multivariate point cloud The existence of points in mult i-dimensional space. 

MW3 Minimum Volume Ellipsoid [1061. 

noise The undesirable component of a signal which is added to the original signal 
due to a known or unknown process. 

outliers Points in a dataset which are "far" from the majority of points. 

probabilistic measures Values based on the probability distribution of a class. 

reduced feature space -4 subspace of the original feature space. 

reference phantom A composition of graphite material in oil which is used to 
emulate the acoustical properties of soft tissue. 

Resampling Module The system module which transforms volume data from a 
non-isometric representation to an isometric representation. 

RE' signal -4 signal in the radio frequency range. 

robust statistics Methods for describing the majority of points in a dataset in the 
presence of out hers. 

scatter The dispersion of a sound wave by a tissue in a characteristic pattern. 

sector scan A pie shaped scanning profile resulting from a curved array transducer. 

segmentation The identification of homogeneous regions in an image. 

speckle Undesirable phase sensitive interference patterns caused by echoes arriving 
at  the transducer at the same time as the primary echoes from tissue interfaces 
and scattering bodies [95]. 

supervised training The use of known patterns to  establish prototypical repro 
sentations of a class(es). 

texture The recurring pattern of the variations of feature values a t  a given resolu- 
tion. 

texture feature -4 number, calculated from region in an image, which is a compact 
representation of the variation in grey level intensities within the region. 

unbiased The mean of the estimates is the same as the value of the parameter 
estimated. 




