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Abstract 

There are a large numkr of goodness-of-fit tests in the literature. The 

most cornmon used tests are Pearson's chi-squared tests and EDF 

(empirical distribution function) tests. such as Kolmogorov-Srnirnov, 

Cramer-von Mises and Anderson-Darling tests. The chi-squared tests are 

easy to use, but they are generally less powerful than EDF tests. 

A parameterization approach is proposed to construct a generai goodness- 

of-fit test for a specified distribution Fo. It includes traditionai EDF tests, 

as well as new likelihood-ratio tests, which are the analogues of the old 

tests in representation but are generally much more powerful. 

If Fo has some unknown parameters. we need to estimate the parameters 

first and then apply the tests. Thus, we can test the goodness of fit for a 

family of distributions. To test normality, for example, suppose Fo is a 

normal distribution with unknown mean and variance, we can estimate 

them by the sample mean and variance. Then the new tests can be applied 

to test the goodness of fit for normality. In such a case, they outperform 

the best tests of normaIity in the Iiteranire according to Our simulation. 



The rnethodolcigy developed for goodness-of-fit tests is applied to the 

general two-sarnpIe problems. Similarly, we can not only generate 

classical two-sarnple tests, but also produce new powerfil tests, which are 

sensitive to the difference in location, scde and shape between the 

distributions of the two-sampled populations. Conventional tests, however, 

are location-sensitive only. 

Besides, the new two-sample tests are generdized to multi-sample tests, 

and parailel results have been obtained. 

Since the exact sampling distributions of the EDF test statistics are 

intractable, a simple distribution family is introduced to approximate their 

sampling distributions in the end, 
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1. Introduction 

There are many kinds of goodnessof-fit tests in the literature. Some of them 

are special purpose tests, so that they are suitable and perform well only for sorne 

special situations. Others are omnibus tests that are applicable to general cases. 

The most common used omnibus tests are Pearson's chi-squared tests and the 

tests based on EDF (empirical distribution function), such as traditional Kolmogorov- 

Smirnov, Cramer-von Mises and Anderson-Darling tests. Chi-square tests are easy 

to use, but they are generally less powerful than EDF tests (DIAgostino and Stephens, 

1986). 

We now introduce a new method based on parameterkation, which c m  not only 

generate traditional EDF tests, but also produce new powerful omnibus tests. 

Let X be a continuous random variable with distribution function F ( x ) ,  and XI, 

-Y2, ...? .Y, be a random sample from X with order statistics X(l), X p ) ,  --., X(*)- 

We wish to test the nui1 hypothesis 

H : F ( x )  = &(x), 

against the general alternative 

ti- : F ( x )  # Fo(x), 

for al1 x E (-00, oo) 

for some x E (-CO, m) 

where Fo(x) is a hypothesized distribution function to be tested. Here we discuss 

only the basic situation where Fo(z) is completely known. For other cases, see 



Section 6 .  Note that 

with Ht : F ( t )  = Fo(t) and Ht : F ( t )  # Fo(t). Then testing H vs. H is equival ent 

to testing Ht vs. Rt for every t E (-XI, m). 

To test Ht vs. with t  fixed, we have a binary random sample based on the 

indicator function: ,Y,t = I ( X ï  5 t )  (i = 1,2, ..., n) satisfying P(X*t  = 1) = F( t )  

and P ( S i t  = 0) = 1 - F(t) .  

Note that F ( x )  is an unknonm distribution function arbitrary, while F ( t )  with 

t fked is nothing but a unknown parameter. Through introducing the new binary 

sample, the nonparametric test for H vs. H is simplified to a family of parametric 

tests for Ht vs. H ~ ,  t  E (-ca, oo). The simplification is a process of parame- 

terization, through which parametric approaches can be applied to nonparametric 

tests. 

For each fixed t E (-cm, w) and the corresponding random sample Xit, X2t, .-., Xnt, 

let Zt be a statistic for testing Ht vs. H~ such that its large values reject Ht.  Then 

two types of statistics for testing H vs. H can be defined by 

00 

= /__ zt and Z,, = SUP [ Ztw(t) ] , 
t€(-w, oc) 

(1-1) 

where w( t )  is sorne weight function and large values of Z or Z,, reject the nul1 

hypothesis W. 

The power of Z or Z,, depends on Zt and w(t) .  Two natural candidates for Zt 

are Pearson's chi-squared test statistic and the Iikelihood-ratio test statistic, which 



are respectively (after simplification) 

n[Fn(t) - FWI2 
X' = Fo (t) [i - FO (t)] 

and 

where F'(t) is the empirical distribution function of the original sample XI, X2,  ..., 

A large family of Zt which embeds X: and G: can be obtained by using the 

Cressie and Read (1984) family of divergence statistics 2nIA for testing the good- 

ness of fit of a multinomial distribution. In fact, for the above binary sample 

X l t ,  ..., Xnt with t fixed, the Cressie-Read farnily of divergence statistics 

for testing Ht vs. H t  is 

which includes Xf ( X = l )  and G: (X=O), as well as other important statistics (Cressie 

and Read 1984; Read and Cressie 1988). 

We focus on X: and G: because X: is associated with classical tests while G: is 

the best choice of Zt in (1.1) among the family (1.4) according to  our simulation. 

By choosing different weight functions, we \vil1 show in Sections 2-4 by simulation 

that (a) using X: as Zt generates traditional EDF test statistics; (b) using G: as Zt 

produces new EDF tests; (c) the new EDF tests are generally more powerful than  

traditional goodness-of-fi t tests. 

The sampling distributions of the new test statistics are intractable. Their em- 



pirical percentage points are given in Section 5. In Sections 6-7, we will consider 

the case when Fo has some parameters unknown. As a typical example, we discuss 

the goodness-of-fit test for normality, which is a fundamental issue in statistics and 

has always been a hot topic in the literature. Our simulation indicates that the new 

EDF tests outperform the best tests of normality in the literature. 

In Sections 9-11, the idea of parameterization for one-sample tests is developed 

and applied to the general two-sample problem. Similarly, we can not only generate 

traditional two-sample tests, but also produce new powerful distribution-free tests. 

Furthermore, the results for two-sample tests are generalized to k-sample tests (see 

Sections 12-15). Monte Carlo simulation shows that conventional multi-sample tests 

are sensitive to location difference among distributions, but are du11 to detect the 

variation in shape. However, the new tests are both location- and shape-sensitive. 

-4 simple distribution family is introduced in Section 16-19 to approximate the 

distribution functions of goodnessof-fit test statistics, but the approach is applicable 

to general continuous random variables. Some traditional EDF test statistics are 

used as illustrative examples. Finally, concluding remarks are given in Section 20. 

2. Traditional Goodness-of-Fit Tests Based on EDF 

Using X: in (1.2) as Zt in (1.1) but choosing different weight functions, we can 

derive traditional goodness-of-fit tests based on EDF. Below are three examples. 



Replacing Zr of statistic Z,, in (1.1) with X: in (1.2) generates 

where Ks is the Kolmogorov-Smirnov statistic, the most well-known statistic for 

goodness-of-fit tests (Kolmogorov, 1933; Smirnov, 1939; Massey, 1951; Stephens, 

1970, 1974; Conover, 1980; Pratt and Gibbons, 1981; D'Agostino and Stephens, 

1986; Gibbons, 1992; Cabana, 1996). 

Replacing Zt of statistic Z in (1.1) with X: in (1.2) generates the Anderson- 

Darling statistic 

2 "  = - - [(i - 0 . 5 ) 1 0 g F ~ ( X ( ~ ) )  + (n - i + 0-5)log[l - ~o(x(i,)]] - n , 
i = l  

one of the most powerful and important goodness-of-fit tests in the literature (An- 

derson and Darling, 1952, 1954; Stephens, 1970, 1974; D'Agostino and Stephens, 

1986; Sinclair and Spurr, 1988). The last equality here (as well as that below) can 

be obtained by evaiuating the associated integral. 

Replacing Zt of statistic Z in (1.1) with X: in (1.2) generates the famous Cramér- 

von Mises statistic (Crarnér, 1928; von Mises, 1931; Smirnov, 1936, 1937; Stephens, 

1970, 1974; Knott, 1974; Conover, 1980; D'Agostino and Stephens, 1986; Csorg6 



and Faraway: 1996; Spinelli and Stephens, 1997) 

3. New Powerful EDF Tests 

As a goodness-of-fit test for a multinomial distribution, the Pearson's chi-squared 

statistic is asymptotically equivalent to the li kelihood-ratio statistic. Therefore, 

under the nul1 hypothesis Ht in Section 1, the chi-squared statistic Xf in (1.2) and 

the likelihood- ratio statistic G: in (1.3) are equivalent in large sample situations, 

but they are different under the alternative H ~ .  We have seen in Section 2 that 

traditional tests can be generated by using X: as Zt in (1.1). In this section we 

shall use G: to produce new powerful tests by choosing proper weight functions. 

For any continuous hypothetical distribution function Fo, let U, = Fo(Xi)  (2-1, 

2, ..., n) so that U(,) = Fo(X(i))-  Note that XI, X2, .--, Xn are i.i.d. from Fo if and 

only if Ui, U;, ..., Un are i.i.d. from U(0,  l),  the standard uniform distribution. To 

test H vs. H, consider a statistic with form T = T(U1, Li2, . Un) ,  where T(- . -) is 

a given function independent of Fo. Since U, and 1 - Ui are identically distributed 

under Hl a reasonable T should satisfy 

In such a case, we say that T is distribution-symrnetric about the median. 

It is obvious that the traditional statistics Ks, IV2 and A2 in Section 2 are 



functions of Ul, U2, ..-, Un, and they are distribution-symmetric. In order to gen- 

erate new distribution-symmetric tests, we have to choose proper weight functions. 

Moreover, we sometimes need to make modifications to Fn(t) at its discontinuous 

points X(i) (i = 1 ,  2, ..., n) by defining Fn(X(i))  = (i - c ) / ( n  + l - 2c), where c 

is a constant between O and 1. The natural and intuitive choice of c is 0-5 so that 

Fn(X(q) = (i - 0.5)ln or [Fn(X(i) - 0) + Fn(X(il + 0 ) ] / 2 ,  which is a common way 

(something like continuity correction) to modifi the empirical distribution function. 

In fact, we can imagine that at point x = X(i), there are i - 0.5 or n - i + 0.5 

observations among XI, X2,  ..., X, which are less or greater than the x. Indeed, 

our simulation shows that c = 0.5 seems to be the best choice in terms of power. 

Finally, the traditional test statistics in Section 2 also suggest that Fn(X(i))  should 

be (i - 0.5)/n instead of i/n. 

When necessary, we always define F, ( X ( i ) )  = (i - 0-5)ln. Then new distri bu tion- 

symmetrïc tests can be generated by choosing proper weight functions as follows. 

Let X(o)  = -00 and X(n+l)  = m. Replacing Zt of statistic Z,, in (1.1) with 

G: in (1 -3) produces 

sup G: = max { sup G: } = m+x G ~ X ( ~ ,  , 
t€ ( -00 ,  w) O.liSn X ( i ) ~ t < X ( i + l )  l<rsn 

which is equivalent to 



Replacing Zt of statistic Z in (1.1) with G: in (1.3) produces 

which is equivalent to 

Replacing Zt of statistic Z in (1.1) with G: in (1.3) produces 

where C, is a constant and bi = i l o g ( i / n )  + (n - i ) l o g ( l  - i /n).  

Since bi-l - bi = l o g [ ( n  - 0 .5 ) / ( i  - 0.75) - 11, the above test statistic is approx- 

imately equivalent to 

The new statistics ZK, Za and Zc are distribution-symmetric. They look like 

traditional Ks, A* and CV2 respectively, but they are generally much more powerful. 

According to Our simuiation, they are sensitive not only to the location or scale, but 

also to the shape of the alternative distribution. 

4. Power Cornparison by Simulation 

In this section we will use the Monte Car10 approach to simulate the powers 

of the new statistics ZA, Zc, ZK and the traditional I~olrnogorov-Smirnov statistic 



Ks, Cramér-von Mises statistic W 2 ,  Anderson-Darling statistic A2 and Pearson's 

chi-squared statistic X2. For the chi-squared test, the sample observations need be 

grouped. Here we use the associated functioa in Splus with default values (See, 

e.g., S-PIUS 2000 Guide to Statistics, Volume 1, Data Analysis Products Division, 

MathSoft, Seattle, WA, p. 100). 

The simulation size is 10,000, and the significance 1weI or the probability of type 

1 error for testing goodness of fit is a = 0.05. For various situations about the null 

hypothesis H and the alternative H, dl simulated powers for the seven statistics 

are illustrated with graphs, where the powers are plotted against the sample size n 

for selected values of n=10, 20, 30, 50, 70, 100, 150, 200 and 300. 

E x a m p l e  4.1: 

lid H : X ,  . X U(0 ,  1) us. H : X I ,  ..., X,, Beta(p ,  q) 

Without loss of generality, ive can assume that the underlying distribution F 

is the standard uniform U(0, 1) under the null hypothesis H. Then the natural 

candidate for F under the alternative A is the beta distribution Beta(p, q) with 

parameters p and q ,  which includes the uniform U(0, 1) or Beta(1, 1). So, this 

esarnple is actually a parametric test for H : , q)  = (1, 1) us. H : (p, q) # (1, 1). 

For (p, q) = (0.6, O.8), (0.6, 0.6), (0.8, 0.8), (1.3, 1.3), (1.6, 1.6), (1.3, 1.6), the 

powers of Zs4, Zc, ZK, Ks, IV2, A2, X2 under A are plotted in Fig. 4.1 respectively. 

WC see that ZA or Zc fias the highest power in the cases where pl q > 1 or  pl q < 1 ,  

and they dorninate al1 others. Although ZK is not as powerful as ZA and Zc, it is 

still overwhelmingly pomerful compared to its analogue Ks. 



We also consider the power of the entropy-based test of uniformity proposed by 

Dudewicz and van der Meulen (1981). Their method involves choosing the best 

integer m which depends on the sarnple size n, but their power results in Table 3 are 

obtained from choosing the best m not only for different n but also for different alter- 

native distributions. Of course, different tests fit different models. However, when 

performing a nonparametric test, we have no idea about the alternative distribution. 

Therefore, if a fked m is used for the same n but different alternative distributions, 

the power of such a test is generally lower than that of Anderson-Darling test A*. 

iid H : Xi, ..., X, hl N ( p ,  cr2) US- H : Xi, -.., X,, %! t ( k )  

Because of the importance of the normal distribution, F is âssumed to be a 

normal distribution N ( p ,  02) under the nul1 hypothesis H. It  is interesting to 

consider that (a) F also has a symmetric distribution under the alternative H ,  say 

t ( k ) ,  the t distribution with k degrees of freedom; (b) both distributions have the 

same mean and variance, i.e. p = O and o2 = k/(k - 2). 

Since N(0 ,  1) = t(oo), testing H : F = N ( p ,  a*) us. H : F = t ( k )  is 

equivalent to testing H : k = co us. H : k # W. Fig. 4.2 compares the powers 

of the seven statistics &, ZC, ZK, Ks, IV2, A2, X2 for k=3, 5, 10. Obviously Zc 

is the best and ZA? Zc, ZK dominate the others (sometimes they are rnuch more 

powerful) . 

The Cauchy and logistic distributions are also typical examples of symmetnc 

distributions, which can be considered as the underlying distribution under H. The 



pourer cornparison for logistic distribution is just like that  for t ( 9 ) ,  while the Cauchy 

distribution is t (1 ) .  

In this example F is also assumed to  be N ( p ,  02) under H, but it has an 

asymmetric distribution under H ,  such as Gamma(r,  l ) ,  the gamma distribution 

with shape parameter r and scale parameter 1, which includes exponential and chi- 

squared distributions. We also assume that both distributions have the same mean 

and variance, i.e. p = r and o2 = T .  

Similarly, since the asymptotic distribution of Gamma(r, 1) is normal when 

r + oo, testing H : F = N ( p ,  02) US. H : F = Gamma(r, 1) is equivalent to  

testing H : r = w us. H : r # W. 

Simulated powers of the seven statistics for r=5, 10 and 20 are also plotted in 

Fig. 4.2, which shows that  (a) ZA, Zc, ZK dominate the others; (b) the powers of ZA 

and Zc are sometimes substantially higher than those of the traditional statistics. 

Other asymmetric distributions, such as the log-normal, Weibull, F and Beta 

were also considered as alternative distributions against the normal. These situations 

are similar t o  that of gamma. 

Example 4.4: 



In the last example, F is assumed to be normal under both H and ff. Without 

loss of generality, we need to consider only the test for H : F = N ( 0 ,  1) us. H : 
F = N ( p ,  a2), or equivalently, H : (pl 02) = (0, 1) us. H : (p ,  02) # (0, 1). 

Six cases are considered with alternatives (1) N(0.1, l), (2) N(0.4 ,  l ) ,  (3) 

N ( 0 ,  1.5), (4) N(0 ,  2), (5) N(0.1, 2) and (6 )  N(0.4, 1.5). Note that in cases 

1 and 2, the two distributions have the same variance but different means, and in 

cases 3 and 4, they have the same mean but different variances. In cases 5 and 6 ,  

means and variances are both different. 

For normal models, the distributions differ in mean and variance only. There 

is no shape difference in terms of skewness and kurtosis. For each case Fig. 4.3 

compares the powers of the seven tests, as well as the optimal parametric t- test and 

the X2-test for normal mean and variance. 

It is clear that for cases 1, 2, 6 where the major difference between the two dis- 

tributions arises from means rather than variances, there is no signifiant difference 

in poaer between the new tests and their analogues A2, CV2 and Ks. Conversely, for 

the other three cases, the advantage of the new tests is obvious. When the diflerence 

in distribution arises from means only, such as cases 1 and 2, the six tests are almost 

as powerful as  the optimal t-test. In cases 3 and 4 where the only difference cornes 

from variances, the power lost by using the new tests over the x2-test is much less 

than that  by using their analogues. Among A', Mi2 and Ks, A2 is almost the best 

in al1 cases, which is also true for other examples. 



Uniform vs. Beta(O.8.0.8) Uniform vs. Beta(1 .S. 1.3) 

Uniform vs. Beta(O.6.0.6) 

Uniform vs. Betac0.6.0-8) 

x i :  I 

n 

Uniform vs. Beta(l.6. 1.6) 

Uniforrn vs. Betafl.3. 1.61 

Fig. 4.1. Power cornparison when testing H : F = U(0 ,  1) us : F = Beta(p, q)  

at level a! = 0.05 



Normal vs. t (10 ) Normal vs. Gammat20.1 1 

Normal vs. t ( 5 ) 
0 1 

Normal vs. 1 ( 3  ) 

Normal vs. Gamma(l0. 1 ) 
1 

n 

Normal vs. Gamma( 5. 1 1 

Fig. 4.2. Power cornparison when testing (a) H : F = a2) vs H : F = t ( k )  

and (b) H : F = N ( p ,  02) US H : F = Gamma(r, 1) at level a = 0.05 



N(0. 1) vs. NCO. 1-51 

N(0. 1 )  vs. N(0.4. 1.5) 

O 50 100 150 200 250 300 

n 

Fig. 4.3. Power comparison when testing H : F = N(0 ,  1) us H : F = N ( p ,  02) 

at level û, = 0.05 



5.  The Distributions of ZA,  ZC and ZK 

Like the Anderson-Darling A2, Cramér-von Mises W2 and Kolmogorov- Smirnov 

Ks, the new statistics ZA, ZC and ZK are distribution- free. Our simulation on skew- 

ness and kurtosis shows that the sampling distributions of ZA, ZC and ZK converge 

very sIowly. Therefore, it is of limited practical value to study their asymptotic 

distributions. Just as for A2, W2 and Ks, it is difficult to find their exact nul1 

distributions for finite sample cases except for small sample sizes. 

Again Monte Car10 simulation is used to approximate the percentage points of 

ZA, Zc and ZK for some selected sample sizes. Tables 5.1-5.3 respectively give their 

approximate percentage points, which are based on a simulation of size one million. 

The pquantiles or percentage points of these tables are provided for use a t  p = 

0.001, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99, 0.999. 

The simulation error in Tables 5.1-5.3 can be estimated in terms of confidence 

intervals for the true percentage levels rather percentage points. For each simulated 

percentage point a t  level p, the 99.73% confidence interval for the true percentage 

level is p f 3\ lp( l  - p ) / N ,  where N=1,000,000 is the replicates of simulation. Thus, 

the 99.73% confidence intervals for the true percentage levels in Tables 5.1-5.3 are 

respectively 0.001 & 0.0001, 0.01 & 0.0003, 0.05 & 0.0007, 0.10 4z 0.0009, 0.20 & 

0.0012, 0.30~0.0014, 0.4f0.0015, 0.50~0.0015, 0.60k0.0015, 0.70+0.0014, 0.80+ 

0.0012, 0.90 z t  0.0009, 0.95 & 0.0007, 0.99 5 0.0003, 0.999 z t  0.0001. 





TABLE 5.1. (b) Percentage points for 10ZA - 32 (Upper Tail) 



TABLE 5.2. (a) Percentage points for Zc (Lower Tail) 



TABLE 5.2. (b) Percentage points for Zc (Upper Tail) 



TABLE 5.3. (a) Percentage points for ZK (Lower Tail) 



TABLE 5.3. (b) Percentage points for ZK (Upper Tail) 



6. Tests of Normality 

We discuss the goodness-of-fit tests for a specified distribution in Sections 1- 

5 where the underlying distribution function Fo(x) is assumed to be completely 

known. To discuss the goodness-of-fit tests for a family of distributions, Suppose 

now that Fo(x) has some unknown parameters. In such a case, we need to estimate 

the parameters first and then apply the test statistics ZK, ZC and Za in (3.1)-(3.3). 

However, the statistics are no Ionger distribution-free because we are testing the 

goodness of fit for a family of distributions instead of a specific one. For different 

farnilies, the sampling distributions of the statistics are different. 

Since normal distributions are the rnost important distributions in statistics, we 

now consider the normal distribution farnily N ( p ,  02) with mean p and variance 02. 

To test if X has a normal distribution N ( p ,  02) with p and 02 given, ZK, ZC and 

Ze4 can be used as goodness-of-fit test statistics with Fo(x) = @(y), where 0 ( x )  

denotes the distribution functiori of N(0,  l), the standard normal distribution. 

UsualIy, p and a > O are unknown parameters. Then tests based on ZK, Zc 

and are not applicable because Fo(x) is unknown. In such a case, we estimate 

p and o by the sarnple mean X = $ ZF, Xi and the sample standard deviation 

s = ,/A Cy==, (,Yi - X)* respectively and then apply the goodness-of-fit tests. It is 

recommended to always estimate the parameters no matter whether they are known 

or not. Estirnating the parameters from the data can improve the power of the tests 

when they are actually known (see the end of Section 7). 

Cornparison of the powers for testing normality will be given in the next sec- 



tion, where ZKr ZC and ZA are compared with the best existing test statistics, 

including the Shapiro-Wilk statistic W (Shapiro and Wilk, 1965, 1968), Anderson- 

Darling statistic A2 (Anderson and Darling, 1952, 1954) and D'Agostino7s statictic 

D (D7Agostino, 1971, 1973). 

The sarnpling distributions of ZA, ZC and ZK are intractable. Table 6.1, 6.2, 

and 6.3 respectively give their approximate percentage points for testing normality, 

which are based on Monte Cario simulation of size 1,000,000. The p-quantiles or 

percentage points in these tables are provided for use at p = 0.001, 0.01, 0.05, 0.10, 

0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99, 0.999. 

The simulation error in Tables 6.1-6.3 can be estimated in terms of confidence 

intervals for the true percentage levels rather percentage points. For each simulated 

percentage point a t  level p, the 99.73% confidence interval for the true percentage 

level is p f 3Jp( 1 - p ) / N ,  where N=1,000,000 is the replicates of simulation. Thus, 

the 99.73% confidence intervals for the true percentage levels in Tables 5.1-5.3 are 

respectively 0.001 & 0.13001, 0.01 & 0.0003, 0.05 31 0.0007, 0.10 I 0.0009, 0.20 & 



TABLE 6.1. (a) Percentage points for ZA when testing normality (Lower Tail) 



TABLE 6.1. (b) Percentage points for ZA when testing normality (Upper Tail) 



TABLE 6.2. (a) Percentage points for Zc when testing normality (Lower Tail) 



TABLE 6.2. (b) Percentage points for Zc when testing normality (Upper Tail) 



TABLE 6.3. (a) Percentage points for ZK when testing normality (Lower Tail) 



TABLE 6.3. (b) Percentage points for ZK when testing normality (Upper Tail) 



7. Cornparison of Power for Testing Normality 

There are a large number of tests for normality in the literature (e-g., D7Agostino 

and Stephens, 1986) since normal distributions are the most important ones in 

statistics. Sorne of these tests are only sensitive to certain kinds of departures from 

norrnality, such as directional tests based on skewness and kurtosis. Thus they are 

suitable and perform well only for some special situations. Others are omnibus tests, 

which are applicable to general cases. 

It is well known that the rnost powerful omnibus test of normality in the litera- 

ture is the Shapiro-Wilk statistic W (Shapiro and Wilk, 1965, 1968; Shapiro, Wilk 

and Chen, 1968), which is essentially the squared ratio of the best linear unbiased 

estimator for scale to the standard deviation. Unfortunately, W is applicable to 

small sarnple sizes only. In fact, FY is computable exactly up to n=SO, and valid a p  

proximations exist up to n=50. Therefore, various kinds of modifications to the W 

have been made, including the Shapiro and Francia's (1972) W' and the well-known 

D7Agostino's (1971, 1973) statistic D which we will discuss soon, but more or less 

they loose some powers (e.g., D'Agostino and Stephens, 1986). 

Another important omnibus test of normality is the Anderson-Darling statistic 

A2 (Anderson and Darling, 1952, 1954; Stephens, 1974; Sinclair and Spurr, 1988), 

which is slightly less powerful than W but is the best existing EDF test (D'Agostino 

and Stephens, 1986, p. 404). 

As general goodness-of-fit tests, the new EDF statistics Zfi ZC and ZA in Section 

3 are much more powerfui than traditional ones. When used as omnibus tests of 



normality, they are expected to  perform well. In the following, we will compare the 

powers of the s k  statistics ZK, ZC ZA, W ,  A2 and D for various kinds of situations 

about alternative distributions for testing normality. Monte Carlo approach is used 

with simulation size 10,000, and the significance level of the test is a = 0.05. For 

each situation, the simulated powers of the six statistics for n=10, 20, 30, 40, and 

50 are plotted for cornparison (the FV test requires n 5 50). 

Example 7.1: Normal vs Beta(p, q) 

In the first example of testing normality, the alternative distribution is the beta 

distribution Beta(p, q) with parameters p and q, which is symmetnc when p = q and 

includes the standard uniform distribution U(0, l)=Beta(l, 1) and an asymptoticly 

normal distribution, i.e, Beta(oo, m). 

The powers of ZK, ZC ZAl W, A* and D are plotted in Fig. 7.1 for (p, q)=(2, 

2), (2, l ) ,  (1, 1.5), (1, l ) ,  (0.5, 1) and (0.5, 0.5), which correspond to different beta 

distributions with various departures from normality. 

We can see that the performance of the DIAgotino's statistic D is extremely poor 

with its power almost equaling the significance level a = 0.05 for some cases. The 

differences in power among Zc, ZA and W are not so obvious for al1 cases. None 

of these three statistics is aIways the best, but overall, they are the best among the 

six statistics. It seems that A2 generally performs a little bit better than ZK (refer 

to other examples). 

Example 7.2: Normal vs t ( k )  



In the second example, the alternative distribution is t ( k ) ,  the t distribution with 

k degrees of freedom, which is symmetric and includes Cauchy distribution, Le., t(1) 

and the standard normal distribution N(0 ,  1) = t(oo). For different values of k, the 

powers of the six statistics are plotted in Fig. 7.2. In al1 cases, there is no major 

difference of powers among them with D being the best and W the worst. 

Example 7.3: Normal vs Gamma(a, b)  

In the third exarnple, the alternative distribution is Gamma(a, b), the gamma 

distribution with shape parameter a and scale parameter b, which includes exp- 

nential and chi-squared distributions. 

Since al1 six statistics ZK, ZC ZA, W, A* and D are invariant under any affine 

transformation Y = (X - c ) / d  with d > O, we need just consider Gamma(a, 1) 

without loss of generality, which is a non-symmetric distribution but is asyrnptoticly 

normal as a goes into infinity. 

The powers of these statistics for different values of a, Say 1, 3 and 7, are also 

e-xhibited in Fig. 7.2. It can be seen that ZA is the best and dominates the others. 

There is almost no difference in power between Zc and W, which are slightly less 

powerful than Z4. Also, there are no major differences between ZK and A*. Finally, 

D behaves poorIy and is dominated by the others. 

Example 7.4: Normal vs Weibull(a, b) 

In the  fourth example, the alternative distribution is Weibull(a, b ) ,  the Weibull 

distribution with shape parameter a and scale parameter b. 



-4s in Example 7.3, we just need t o  consider Weibull(a, 1) without loss of gen- 

erality. Fig. 7.3 compares the powers of the six statistics for different values of a. 

The results are much similar to those in Example 7.3, but the advantage of ZA is 

more obvious. 

Example 7.5: Normal vs Lognormal(p, a) 

In the last example, the alternative distribution is Lognormal(p, O) ,  the lognor- 

mal distribution with pararneters p and o. We just consider the case of Lognormal(0, o) 

since it has the same skewness and kurtosis as Lognormal(p, O ) .  

Powers of the six tests a t  different 0 are given in Fig. 7.3, which exhibits a clear 

pattern of domination with the following ranks: 

We can also consider other alternative distributions, such as logistic and F dis- 

tributions, but the situations are similar. It can be seen from al1 the examples that 

as omnibus tests of normality, 

(a) the new EDF test statistics Za, Zc and ZK are very powerful and robust for 

various kinds of departures from normality; 

(b) ZA and Zc are generally outperform IV and dominate A2 and ZK; 

(c) ZK is almost as powerful as A2, while its analogue, the Kolomorov-Smirnov 

statistic, is well known to be very poor for testing norrnality (e-g., D'Agostino 

and Stephens, 1986); 



(d) D is not a very good omnibus test statistic, but i t  performs very well in some 

situations. 

(e) (7.1) is also the overall ranks of the six statistics in terms of power performance. 

Finally, it is important that when applying EDF tests of nonnality, we had better 

estimate the parameters in Fo(x) = O(?) no matter whether they are known or 

not. Estimating the perameters from the data can significantly improve the power 

of the test when they are actually known. This phenomenon has been observed by 

Stephens (1974) and Dyer (1974), and it can also be demonstrated by the examples 

here together with those in Section 4. 



Normal vs. Beta( 2 .  2 ) Normal vs. Beta( 1 , 1 ) 

22 

Normal vs. Beta( 1 . 1.5) 

9 2 

Normal vs. Beta(O.5. 1 ) 

Normal vs. Beta(O.5.0.5) 

Fig. 7.1. Power cornparison when testing Normal vs Beta(p, q )  at level cr = 0.05 



Normal vs. 1 ( 5 ) Normal vs. Gamma( 7. 1 ) 

Normal vs. t ( 3 )  

Normal vs. t ( 1 ) 

n 

Normal vs. Gamma( 3. 1 ) 

Normal vs. Gamma( 1. 1 ) 

_ . ._ . . . .  fi- . / 

7' 

Fig. 7.2. Power cornparison when testing Normal vs t ( k )  and Normal vs Gamma(a, b) 

at level cr = 0.05 



Nonnal vs. Weibull( 2 . 1 ) Normal vs. Lognormal( O .0.2 ) 

n 

Nonnal vs. Weibufl(l.5. 1 ) 

Normal vs. Weibull( 1 . 1 ) 

Normal vs. Lognormal( O . 0.3 ) 

n 

Normal vs. Lognormal( O . 0.5 ) 

Fig. 7.3. Power comparison when testing Normal vs Weihll(a,  6 )  and Normal vs 

Lognormal(p, O*)  at level a = 0.05 



8. General Two-Sample Problem 

In this and next section, we will use the method of parameterization introduced 

in Section 1 to study the two-sample tests. 

Let Xi l ,  ,Yi2, ..., Xi,; be a random sarnple from a continuous population with 

distribution funct.ion F*(x) ( i= l ,  2), and let X I ,  X2, ..-, Xn (n  = ni + nz) be the 

pooled sarnple with order statistics X ( l ) ,  X(2) ,  ..., X(*)- Denote R, the rank of 

the j-th ordered observation Xib) in the pooled sample. We wish to test the nul1 

hypothesis 

H : F , ( x )  = F2(x) ,  for ail x E (-00, oo) 

against the alternative 

A :  F,(x) # F2(x), f o r  some x E (-CO, cm). 

Since 

where 

testing 

To 

Ht : F1 (t) = F2(t) and Rt : FI ( t )  # F2(t) 

H vs. H is equivalent to testing Ht vs. H~ for every t E (-00, w) .  

test Ht vs. H~ with t fixed, we define new samples based on index function: 

Xi,, = I ( X q  5 t )  (i = 1,2;  j = 1 ,  2, ..., ni) satisfying l'(Xijt = 1 )  = Fi(t)  and 

P ( X j j t  = 0) = 1 - Fï(t). 

For each fixed t E (-00, cm) and the corresponding random samples Xill, Xt2t, 

..., Xi,,, ( i = l ,  2 ) ,  let Zt be a statistic for testing Hl vs. H~ such that  large values 



reject Ht . Then two types of statistics for testing H vs. A can be defined by 

where w(t) is some weight function and the large value of Z or Z,, rejects the nul1 

hypothesis H .  

(8.1) is the same as (1.1) in the one-sample case, but the Pearson's chi- squared 

test statistic in (1.2) and the likelihood-ratio test statistic in (1.3) non, become (after 

simplification) 

and 

where p ( t )  and R(t)  are respectively the empincal distribution functions of the 

pooled sample and sub-sample Xi1, Xi2, ..., Xin, (i=l, 2)- 

9. New Powerful Two-Sample Tests 

Using (8.2) as Zt in (8.1) with proper weight function, we can derive traditional 

nonpararnetric two-sample tests. For example, with w(t) = I '(t)[l - ~ ( t ) ] ,  dw(t) = 

~ ( t ) [ i  - F(t)]dF(t)  and w ( t )  = F ( t )  respectively, the first or second statistic in 

(8.1 ) generates the two-sample Kolmogorov-Smirnov statistic Ks , Crarnér-von Mises 

statistic W2 and Anderson-Darling statistic A2 (Smirnov 1939; Massey 1951, 1952; 

Gnedenko 1954; Darling 1957; Hodges 1958; Anderson 1962; Burr 1963,1964; Pittitt 

1976; Cononver 1980; Epps and Singleton 1986; Scholz and Stephens 1987; Gibbons 

1992; Baumgartner et al. 1998; Ferger 2000). 



Using (8.3) as Zt, on the other hand, we can produce new types of omnibus 

two-sample tests as follows. Just as the one-sample case, modifications are made 

to  empiricai distribution functions when necessary,. For instance, modifications 

to F( t )  are made a t  its discontinuous points X(k) (k = 1, 2, ..., n) by defining 

F ( X , ~ , )  = (k  - 0.5) /n.  

Let X((]) = -m and X(,+,) = W. Replacing Zt of the second statistic in (8.1) 

with G: in (8.3) produces 

which is equivalent to 

max 
'K = i<k<n 

where Fk = F(x(I))  and = R(xck)) so that  Fk = (k - 0 . 5 ) l n  and Kk = 

( j  - 0.5) /ni  if k = fi, for some j ,  or Fik = j/ni if R, < k < Rijci ( = 

1, R i n i + 1  = n + l ). 

The large value of ZK rejects the nul1 hypothesis H .  

Replacing Zt of the first statistic in (8.1) with G: in (8.3) produces 

which is a decreasing function of 



Hence, the small value of ZA rejects the nul1 hypothesis H. 

Here F ( t )  is the common underlying distribution under the nul1 hypothesis H. 

Replacing Zt of the first statistic in (8.1) with G: in (8.3) produces 

where bk = k l o g ( k / n )  + (n - k)log(l  - k/n) and bij = j log(j /ni)  + (ni - j ) l o g ( l  - 

Since F ( X ( k ) )  x F(,Y(~)) = (k - 0.5)/n, F(XiO.)) = F ( x ~ ~ ) )  = (% - 0.5)/n 

and bi,-' - bij z l o g [ n i / ( j  - 0.5) - 11, the above statistic is (approximately) a 

decreasing function of 

the small value of which rejects the nul1 hypothesis H .  

The new statistics ZK, ZC and ZA in (9.1)-(9.3) are analogues of the traditional 

two-sample Kolmogorov-Smirnov statistic Ks, Cramér-von Mises Statistic W2 and 

.4nderson-Darling statistic .A2. The sampling distributions of Z K ,  ZC and Za will 

be discussed in Section 11, and power cornparisons between the new and old tests 

are given in Section 10. 

10. Power Cornparison for Two-Sample Tests 



In this section we NiIl compare the powers of new two-sample statistics ZK, ZC 

and Ztl with the traditional two-sample Kolmogorov-Smirnov statistic Ks, Cramér- 

von Mises Statistic LV2 and Anderson-Darling statistic -A2, as well as the parametric 

t- and F-tests which are optimal for detecting the differences of normal means and 

variances. 

Since the new tests are generated by the likelihood-ratio statistic G: in (9.2), they 

should generally be powerful. Unfortunately, it is difficult to  give a theoretical proof 

of some optimality for nonparametric tests with completely unknown distributions 

of the two samples. The general theory of (globally or  locally) optimal tests assumes 

that we know the densities or at least the types of the densities about the underling 

distributions (e-g., H5jek and Sidiik 1967, p.259 or Prat t  and Gibbons, 1981). 

Again Monte Car10 simulation is used to approximate the powers of associated 

tests. The approximations will approach the true values if the replicates of simula- 

tion can be sufficiently large. In the following examples, the replicates or simulation 

size is 10,000, and the significance level for rejecting H is a = 0.05. For various 

situations about the distributions for nul1 hypothesis H and the alternative A, the 

simulated powers are exhibited with graphs, where the powers are plotted against 

the pooled sample size n = nl + 722 for selected \values of (ni, nz): (10, IO)? (10, 201, 

(20, 20), (20, 50), (50, 50), (50, lOO), (100, lOO), (100, 200), (200, 200). 

Example 10.1: U(0, l )  vs. Beta(p, q) 

Without loss of generality, we assume that the underlying distribution Fi(x) 

of the first sample is a standard uniform U(0, 1). Then the natural candidate for 



F2 (x), the underlying distribution of the second sarnple, is Beta(p, q) which includes 

U(0, 1). So, the two-sarnple test for H : FI = F2 vs. H : FI # F2 is actually a 

parametric test for H : (p ,  q) = (1, 1) vs. : ( p ,  q) # (1, 1). 

For @, q)=(0.5, 0.5), (0.5, 0.7), (0.7, 0.7), (1.5, 1.5), (1.5, 2) and (2, 2), the 

powers of statistics Za, Zc, ZK, A2, W2, Ks, t and F under alternative H are 

plotted in Fig. 10.1 respectively. We can see that ZA and Zc have the highest 

powers and dominate al1 others. Although ZK is not as powerful as ZA and Zc, its 

power is still much higher than its analogue Ks. A* is the best among the three 

conventional nonparametric tests (this is a1so true for the next two examples). As 

anticipated, t-test can not detect the distribution difference in variances in the cases 

of ( p ,  q)=(0.5, O.5), (0.7, O.7), (1 -5, 1.5) and (2, 2). In fact, its power approximately 

equals the significance level a! = 0.05. 

Since the difference in distribution (in terms of mean, variance, skewness and 

kurtosis, for example) between U(0,  1) and Beta(0.7, 0.7) or between U(0,  1) and 

Beta(l.5, 1.5) is less than it is for the other four cases, the overall power of al1 

nonparametric statistics at @, q) =(0.5, 0.5) and (1.5, 1.5) is much lower compared 

to the other cases. Generally speaking, the larger the difference, the higher the 

p ower . 

Example 10.2: N(0,  1) vs. N ( p ,  02) 

Because of the importance of normal distribution, Fi(x) is assumed to be the 

standard normal distribution N(0 ,  1) and Fz(x) has a general normal distribution 

N p ,  a2). The twesample test in this case is equivaient to testing H : (p ,  a*) = 



(O, 1) vs- H : (p ,  cT2) # (O, 1). 

Under normal assumptions, the distributions differ in mean and variance only. 

There is no shape difference in terms of skewness and kurtosis. That is why t- and 

F-tests are optimal for mean and variance shift models. However, they can not 

detect other forms of differences between distributions. 

Fig. 10.2 compares the powers of the eight statistics a t  (p, oz) = (0.3, l), (0.6, 

1), (0, 2), (0, 3), (0.3, 3), (0.6, 2). It is obvious that when the main difference 

between FI and F2 arises from their means rather than variances, Say (p, (r2) = 

(0.3, 1 ,  (0.6, 1) or (0.6, 2), there is little difference in power between the new 

nonparametric tests and the old ones. Conversely, for the other three cases, the 

advantage of the new tests over the old ones is obvious. In fact, the traditional tests 

are sensitive only to the difference in location or mean, but are du11 to detect the 

variation in scale or shape (see also Examples 10.1 and 10.3). When the difference 

in distribution arises from locations only, such as the cases of (p, 02) = (0.3, 1) and 

(0.6, l ) ,  al1 the nonparametric tests are almost as  powerful as the optimal t-test. 

In the cases of (p, O*) = (0, 2) and (0, 3) when the only difference in distribution 

comes from scales, the power lost by using the new tests over the optimal F-test is 

mirch less than that by using the old ones. 

For cases N(0, 1) vs. N(0 ,  2) and N(0, 1) vs. N(0,  3), the difference between 

FI and F2 arises from their variances only. Since the former case has l e s  difference, 

it has lower power and lower speed of convergence for the al1 statistics except t. 

This is also true for cases N(0, 1) vs. N(0.3, 1) and N(0, 1) vs. N(0.6, 1) where 

the  difference between Fi and F2 cornes from their means only. For the other two 



cases, the difference between Fr and F2 arises from both their means and variances, 

so the power of the tests is higher and it converges faster. 

We can also consider a more generaI case where F2 has a symmetric distribution, 

such as  Cauchy, Iogistic and t distributions, but the results are similar. 

Example 10.3: N ( p ,  (r2) vs. Gamma(r, 1) 

In this example Fi (x) is also assumed to be the normal distribution N ( p ,  02), but 

F2(x) has an asymmetric distribution, Say Gamrna(r, l), the gamma distribution 

with shape parameter r and scale parameter 1. Six cases are considered: (1) N(3, 2) 

vs. Gamma(3, 1); (2) N(2 ,  3) vs. Gamrna(3, 1); (3) N(3 ,  3) vs. Gamrna(3, 1); 

(4) N(7, 5) vs. Ganma(7, 1); (5) N(5, 7) vs. Gamma(7, 1); ( 6 )  N(5,  5) vs. 

Gamrna(7, 1). Plots of the power using for the eight statistics are shown in Fig. 

10.3. Note that in cases 1 and 4, FI and F2 have the sarne mean but different 

variances, and in cases 2 and 5 ,  they have different means but the same variance. 

On the other hand, means and variances are the same in case 3 but both different 

in case 6 .  

Again, when the major difference between FI and F2 anses from their means, 

such as cases 5 and 6 ,  the difference in power between the new and old nonparametric 

tests is not so significant. Otherwise, the power irnprovernent of the new tests on the 

old ones is tremendous, especially for case 3, where the difference between FI and 

F2 cornes purely from the their shapes so that the improvement can be significant. 

Just as other examples, the t-test (F-test) fails to detect the difference in variances 

(means). Moreover, both t- and F-tests are failed in case 3. 



Note that case 1 has higher power for the al1 tests (excluding t-test) than case 

4 because it has larger difference in shape between FI and F2 in terms of variance, 

skewness and kurtosis. 

O ther asymmetric distributions, such as log-normal, Weibull, F and Beta, are 

also considered as the distribution of F.- The situations are rnuch similar to that of 

gamma. 

It can be seen from Examples 10.1-10.3 that the traditional two-sarnple tests 

are only sensitive to the digerence in locations or means between the underlying 

distributions of the two samples, but are du11 to detect the variation in their shapes. 

This fact is well known for conventional rank tests, such as the Wilcoxon test or 

Mann-Whitney test (see Conover, 1980; Pratt and Gibbons, 1981; Gibbons, 1992), 

but there is no a major breakthrough yet in finding an omnibus test which is very 

sensitive to  both location and shape differences. For exampie, a new test given by 

Baumgartner et al. (1998) is actually the Anderson-Darling test .4*, which is the best 

existing test but is still poor compared with ZA and Zc. Ferger (2000) introduced 

some new tow-sample tests based on the so-called change-point model. The tests are 

applicable to multivariate data, but the simiilation results reported (Ferger 2000, 

p.28-30) show that compared with the Kolmogorov-Smirnov test Ks, which is the 

least powerful among al1 tests we discussed, Ferger7s tests are less powerful when 

detccting Iocation difference even though they are more sensitive to scale variation. 

In this aspect, the new tests ZA, Zc and ZK make great contributions. In fact, 

if the two samples have the same shape but different locations or means, the new 

tests are as powerful as the old ones. Otherwise, they are much better in terms of 



power. 

ZK is not so powerful as Za and Zc, but it is much better than its analogue Ks. 

Finally, ZA and Zc are almost equivalent, but Zc is most recommended because it 

has a simple and elegant representation in (9.3). 



U(0, 1) vs. Oeta( 2 , 2 ) 

~ ( 0 .  1) vs. Beta( 2 . 1.5) 

Fig. 10.1. Power comparison for testing U(O,1) vs Beta(p ,  q)  at level cr = 0.05 



N(0, 1) vs. N( 0 . 3  ) 

n 

N(0. 1) vs. N(0.6.2 ) 

Fig. 10.2. Power cornparison for testing N(0, 1) vs N ( p ,  O*)  at level a = 0.05 



N(2.3) vs. Gamma(3, 1) 
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N(5.5) vs. Gamma(7,l) N(3.3) vs. Gamma(3. 1) 

Fig. 10.3. Power cornparison for testing N ( p ,  02) vs Gamma(r, 1) at level a = 0.05 
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11. The Distributions of Two-Sample ZA, ZC and ZK 

Like traditional two-sample test statistics A*, W2 and Ks, the statistics ZAY 

Zc and ZK are distribution-free. Their nul1 distributions are discrete and uniform. 

Therefore, they can be obtained by enurneration of al1 possible values of the statistics 

by considering the n!/(nl!np!) combinations of the ranks for the first sample. In 

fact, ZA, ZC and ZK are only the functions of R l l ,  R12, .-., Rh,. Under the nul1 

hypothesis H, every combination of nl integers from 1, 2, ..., n is equally iikely to  

be the ranks of the first sample. 

Since the number of values that each of the statistics can take on increases very 

rapidly with nl and na, it is not feasible to give the full distribution unless both nl 

and 722 are small. Moreover, extensive tables have to  be used for tabulating their 

percentage points with different nt and n2. Thus, the exact quantiles of W2 and 

A2 are available only for small sample sizes (see Anderson 1962; Burr 1963, 1964; 

Pettitt 1976). 

Instead of tabulating limited percentage points for the new statistics, we can 

use Monte Carlo approach to get their approximate p-values for the two- sample 

test. In fact, whenever we do a significance test, we do not need the exact p-value 

of the test (Actually, it is impossible to find the exact pvalue for a real test unless 

al1 assumptions about the mode1 are 100 percent true and there is no rounding 

error). An approximate but reasonably accurate pvalue is often sufficient for the 

purpose of statistical inference. With today's computing facilities and software, it is 

easy to approximate the p-value using Monte Carlo simulation with 5,000 or 10,000 



replicates. 

Cornputer programs in SpIus code (Programs 1-3) are given below to calculate 

each new statistic and its simulated pvalue for the two-sample test. In Program 1-3, 

N is simulation size, while XI and X2 are vectors of data for the first and second 

samples, Le., X1 = (xll, xi*, . .-, xi,, ) and X2 = ( x ~ ~ ,  222, . .., xlnz). 

Program 1. Calculating Zc and its pvalue (two-sample case) 

f <- function(Xl,X2,N) { 

ni <- length(X1) 

n2 <- length(X2) 

R <- rank(c(X1, X2)) 

n <- nl+n2 

S <- O 

g <- function(rn,r,M) sum(log(m/(1:m-.5)-1~*log(M/(r-.5)-l)) 

Zc <- (g(n1, sort (R Cl : n l l  ) , n) +g(n2, sort (RC (nl+1) : nl ) , n) ) /n 

for (j in 1:N) ( 

R <- sample(n) 

zc <- (g(n1, sort(R[l:nl]), n)+g(nS, sort(RC(nl+l):n]), n))/n 

S <- S + (zc < zc) 1 

p. value <- S/N 

return(Zc , p. value) > 



Program 2. Cdculating ZA and its pvalue (two-sample case) 

f <- function(Xl,X2,N) ( 

nl <- length(X1) 

n2 C- length(X2) 

R <- ceiling(rank(c(X1 ,X2)  1) 

a C- nl+n2 

w <- (1:n-.5)*(n:l--5) 

g <- function(m,r,M) ( 

d C- s o r t ( r )  

D <- c(l,d,M+l) 

p C- rep(O:m, D C 2 :  (m+2)]-DC1: (m+l)]) 

pcd] <- pCd--5 

p <- p/m 

m*(p*log(p+.00000000Ol)+(l-p)*log(l-p+.OOOOOOOOOl)) 1 

Za C- -sum((g(nl, R[l:ni3, n)+g(n2, R[(nl+l):n], n))/w) 

S c- O 

for (j in 1:N) ( 

R <- sample(n) 

za C- -sum((g(nl, RC1:nlI. n)+g(n2, R[(nl+l) :n] , n))/w) 

S <- S + (za < Za) ) 

p.value C- S/N 



Program 3. Calculating ZK and its pvalue (two-sample case) 

R <- ceiling(rank(c(X1 ,X2))) 

n <- nl+n2 

P <- (1:n-.5)/n 

w <- n* (P*log(P)+(l-P) *log(l-P) ) 

g <- function(m,r,M) ( 

d <- sort (r) 

D <- c(l,d,M+l) 

p <- rep(O:my DC2:(m+Z)]-D[l:(m+l)]) 

pCdl <- pCd1-.5 ; p <- p/m 

m*(p*log(p+.0000000001)+(1-p)*log(1-p+.0000000001)) ) 

Zk <- max( g(n1, RCl:nl], n) + g(n2, R[(nl+l):n], n) - w ) 

S <- O 

for (j in 1:N) C 

R <- sample(n) 

zk <- max( ghl, RCl:nl], n) + g(n2, R[(nl+l):nl, n) - w 



S <- S + (zk > Zk) 1 

p.value <- S/N 

returnc Zk, p.value) 3 

These programs are easy to run even on PC. Program 1 requires only two minutes 

to  run on PC (Pentium II-MMX CPU at 300MHz) for a 10,000-sized simulation of 

test Zc with nI=200 and n2=300. 

An Illustration 

Consider an example from an accelerated life test experirnent. The data from 

Table 11.1 (Nair 1984, p.824) are times to breakdown of an insulating fluid under 

two elevated voltage stresses of 32 Kv and 36 Kv. Hall and Padmanabhan (1997) 

use the data  as an illustrative example for the two-sample problern. We wish to test 

H: the two sampled populations have the same probability distribution. 

Using Prograrns 1-3, we apply the new two-sample tests of ZA, ZC and ZK to 

the da ta  respectively. We find that ZA=2.9048, Zc=2.6245 and ZK=4.4349 with 

corresponding p-values (simulated with 10,000 replicates): 0.0318, 0.0305, 0.0227. 

On the other hand, if we use the classical Kolmogorov-Smirnov two-sample test 

K'; (the associated function in Splus is ks-gof), we have Ks = 0.4667 with pvalue = 

0.0155. Obviously, the new tests give smaller p-values t o  reject the nul1 hypothesis 

H. 

Table 11.1. Times (in Minutes) to Breakdown of an Insulating Fluid 
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12. General k-Sample Problem 

We now generalize the powerful twwsample tests ZK, ZA and Zc in (9.1)-(9.3) 

into rnulti-sample cases. 

Let Xil, Xi*, .--, Xïni be a random sample from a continuous population with 

distribution function Fï(x), i=l, 2, ..., k (k 2 2), and let X I ,  X2,  ..., Xn (n = 

nl + - . . + nk) be the pooled sample with order statistics X(l), X(2) ,  ..., X(n) Denote 

R, the rank of the j-th ordered observation Xibl in the pooled sarnple. We wish to 

test the nul1 hypothesis 

H :  F , ( x )  = F 2 ( x )  = - - -  - - ( x ) ,  for al1 X E  (-00, oo) 

without specifying the common distribution function F (2). Since 

testing H is equivalent to testing Ht for every t E (-m, m). 

To test HL with t  fixed, we define new samples based on index function: XVt = 

X i  t )  ( = 1 2, ..., k; j = 1 ,  2 ,  ..., ni )  satisfying P(XQt  = 1 )  = F,( t )  and 

P ( X i j t  = O )  = 1 - Fï(t)- 



For each fixed t E (-00, oo) and the corresponding randorn sarnples Xilt, 

..., Xi,,, ( i= l ,  2, ..., k), let Z, be a statistic for testing Ht such that its large values 

reject Ht.  Similarly, two types of statistics for testing H can be defined (8.1), but 

the Pearson's chi-squared test statistic in (8.2) and the likelihood-ratio test statistic 

in (8.3) are generalized as 

and 

where F ( t )  and &(t) are respectively the empirical distribution functions of the 

pooled sample and sub-sample Xii7 Xi,, ..., Xi*; (i=l, 2, ..., k).  

Using the X: as Z, in (8.1) but choosing different weight functions, we can derive 

the following traditional k-sampie tests. 

Replacing Zt of the second statistic in (8.1) with X: generates 

which is a k-sample version of the traditional Kolmogorov-Smirnov statistic (Kiefer 

1959). For other k-sample versions of Kolmogorov-Smirnov tests, see Conover (1965, 

1980) and Wolf and Naus (1973). 

Replacing Zt of the first statistic in (8.1) with X: generates the k-sample Anderson- 
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Darling statistic (Scholz and Stephens 1987) 

Replacing Zt of the first statistic in (8.1) with X: generates the k-sample Cramér- 

von Mises Statistic (Kiefer, 1959) 

Next we will derive the new k-sample tests by using above G: as Zt in (8.1). 

13. New k-Sample Tests 

The new turo-sample tests in (9.1)-(9.3) can be generalized as follows. 

1. w(t) = 1 

Replacing Zt of the second statistic in (8.1) with G: in Section 12 produces 

sup G: = m a  G$(_> , 
-oo<t<oo 15rnln 

which is equivalent to 

f 

where Fm = F(X[,>) and F,, = R(x(,)) so that  Fm = (rn - 0 .5) ln  and F., = 

( j  - 0.5)/ni if m = R, for some j, or Fim = j / n i  if &.j < m < %+i ( = 

1, = n + 1 ). 



The large value of ZK rejects the null hypothesis H. 

Replacing Zt of the fint statistic in (8.1) with G: in Section 12 produces 

which is a decreasing function of 

because Fm = (m - 0.5)/n and CL, niFi, = nFm. 

Small values of ZA reject the null hypothesis H. 

Replacing Zt of the first statistic in (8.1) with G: in Section 12 produces 

where bm = m ï o g ( m / n )  + (n - m ) ï o g ( l  - m/n) and b, = j i o g ( j / n * )  + (ni - 

j ) l o g ( l  - j /n i ) -  

Since F(X[,)) zs F(X[,)) = (rn - 0.5)/n,  F(XiD-))  ̂: F(xib1) = (R, - 0.5)/n 

and bij-l - bij z l og[n i / ( j  - 0.5) - 11, the above statistic is (approximately) a 

decreasing function of 

small values of which reject the nul1 hypothesis H .  



14. Power Cornparison for k-Sample Tests 

For twceample tests (k=2), our simulation show that the powers of ZK, ZA and 

Zc in (9.1)-(9.3) are generally rnuch higher than those of the traditional tests, which 

are location-sensitive only. 

In this section we will give some examples of three-sarnple tests (k=3) ,  which, 

together with the examples of two-sarnple tests in Section 10, are illustrations for 

general k-sample tests. The powers of ZK, ZC and ZA in (13.1)-(13.3) are compared 

with the conventional k-sample tests Ks, A2 and W2 in (12.1)-(12.3), as well as the 

Kruskal-Wallis test KLv (Kruskal and Wallis, 1952), which is a common used non- 

parametric k- sarnple test. The asymptotic relative efficiency of Krv to the one-way 

F test is 3 /~=0 .955  under the condition of normality, but it is usually greater than 

one in the case of non-normality, Say 1.5 for exponential distributions (see Conover, 

1980; Gibbons, 1992). 

For the following situations about the underlying distributions under the nul1 and 

alternative hypotheses, the powers of the seven statistics are approximated by Monte 

Carlo simulation, where the number of replicates is 10,000, and the significance level 

for testing H is CI = 0.05. 

The simulated powers are plotted against the total sarnple size n = nl + n* + n3 

for selected values of (nl, 722, n3): (10, 10, IO), (10, 10, 20), (10, 20, 20), (20, 20, 

ZO), (20, 20, 50), (20, 50, 50), (50, 50, 50), (50, 50, lOO), (50, 100, 100), (100, 100, 

100). 



Example 14.1: Fl = U(0 ,  1) and Fi = Beta(pi, qi) (i=2, 3) 

Without loss of generality, we assume that the underlying distribution FI of the 

first sample is the standard uniform U(0 ,  1). Then the natural candidates for FÎ 

and f i ,  the underlying distributions of the second and third samples, belong to 

the family of beta distribution Beta@, q), which include the uniform one because 

of Beta(1,  1 )  = U(0,  1). Assuming F, = Beta(pi, pi )  (2=2, 3), we can see that 

the three-sample test for H : Fl = F2 = F3 is actually a parametric test for 

H : ( p i  ) = 1 1) (i=2, 3). 

For the following cases about the alternative hypothesis: 

( 1 )  FI = U(0 ,  l ) ,  F2 = Beta(O.7, 0.7) and F3 = Beta(0.5, 0.5) 

( 2 )  FI = U(0 ,  l ) ,  F2 = Beta( 1 , 0.7) and F3 = Beta(0.7, 0.5) 

(3) FI = U(0,  l ) ,  F2 = Beta( 1 , 0.7) and F3 = Beta(0.7, 1 ) 

(4) FI = U(0 ,  l ) ,  F2 = Beta( 1 , 1.5) and F3 = Beta(l .5,  1 ) 

( 5 )  FI = U(0 ,  l ) ,  F2 = Beta( 1 , 1.5) and f i  = Beta(l.5, 2 ) 

( 6 )  Fl = U(0 ,  1 ) ,  F2 = Beta(l.5, 1.5) and F3 = Beta( 2 , 2 ) 

the powers of ZA, ZC, ZK, A?, W 2 ,  KS and Kw are plotted in Fig. 14.1 respectively. 

We can see that ZA and Zc have the highest powers and dominate the others. Al- 

though not as powerful as Z A  and Zc, ZK i~ overwhelming compared to its analogue 

K s  Besides, arnong 4 2 ,  W2 and Ks, A2 is the best and Ks is the worst (this is 



also t m e  for other examples). Finally, in cases 1 or 6 where Fi (i=l,  2, 3) have 

the same location (mean) but different shapes, the new statistics are much powerful 

than the old ones. In such a case, the conventional Kruskal-Wallis test Kw totally 

fails because its power is almost equal to a = 0.05, the significance level of the  test. 

Example 14.2: FI = N(0, 1) and = N(pi,  a:) (i=2, 3) 

Because of the importance of normal distribution, Fi (i=l, 2, 3 )  are assumed to 

be normal distributions N ( p i ,  0:). We can assume that Fl = N(0, 1) without loss 

of generality. Then testing H : FI = F2 = F3 is equivalent to testing H : (b, O:) = 

(O, 1) (i=2, 3). 

Fig. 14.2 compares the powers of the seven statistics for the following situations 

about the alternative hypothesis: 

(1) FI = N(0, l), F2 = N (  O , 2 ) and F3 = N (  O , 4 ) 

(2) FI = N(0, l ) ,  F2 = N (  O , 2 ) and F3 = N (  O ,  0.5) 

(3) FI = N(0, l ) ,  F2 = N(0.3, 1 ) and F3 = N(0.6, 1 ) 

(4) Fl = N(0, l), F2 = N(0.6,  1 ) and F3 = N (  1 , 1 ) 

(5) FI = N(0, l), F2 = N(0.3, 0.5) and F3 = N(0.6, 2 ) 

(6) FI = N(0, l) ,  F2 = N(0.6, 0.5) and F3 = N(0.3, 2 ). 

I t  is obvious that in cases 3-4 where Fi ( i=l ,  2, 3) have different locations (means) 



but the same dispersion (variance), there is little difference of powers between the 

new statistics and the old ones. Conversely, in cases 1-2 where Fi have the same 

location but different dispersions, the power improvements of the new statistics on 

the old ones are tremendous. In such cases, the Kruskal-Wallis test Kw has almost 

'no power' (see also other examples). Finally, in cases 5-6 where Fi have different 

locations and dispersions, the advantage of the new statistics is still significant. 

We can also consider a more general case where Fl = N(0,  1) and ' ( i=2 ,  3) 

have symmetric distributions, such as Cauchy, logistic and t distributions, but the 

results are similar according to our simulation. 

Example 14.3: FI = N ( p ,  (r2) and Fi = Gamma(ai, bi) ( i=2 ,  3) 

In this example FI (x) is also assumed to be a normal distribution N ( p ,  a2),  but 

Fi(x) (i=2, 3) have non-symmetric distributions, Say Gamma(ai, bï), the gamma 

distributions with shape parameter ai and scale parameter bi- 

Six cases about the alternative hypothesis are considered as follows: 

(1) FI = N ( 3 ,  l ) ,  F2 = Gamma(3, 1) and 27' = Gamma( 6, 2 ) 

(2) FI = N(5,  1), F2 = Gamna(5, 1) and F3 = Gamma(i0, 2 ) 

(3) 4 = N(2, 3), F 2  = Gamna(3, 1) and F3 = Gamma( 5, 1.3) 

(4) Fl = N(6, 5), F2 = Gamma(5, 1) and F3 = Gamma(l0, 1.4) 

(5) FI = N ( 2 ,  2), F2 = Gamma(3, 1) and F3 = Gamma( 5, 2 ) 



( 6 )  FI = N(3, 3), F2 = Gamma(5,  1) and F3 = Gamma(  8 ,  2 ). 

Note that Fi (2=2, 2, 3) have the sarne mean but different variances in cases 1-2, 

different means but approximately the same variance in cases 3-4, different means 

and variances in cases 5-6. Power comparisons are given in Fig. 14.3, the results are 

almost the same as those in Example 14.2. 

Similar results can be obtained if we consider such cases where Fi = N ( 0 ,  1 )  and 

Fi ( i=2,  3 )  have other non-symmetrïc distributions, such as log- normal, Weibull 

and F distributions. 

Example 14.4: FI = N(0.5, C.?) and Fi = Beta(pi, qi) (i=2, 3) 

In the last example, FI = N(0.5, 0.1) but Fi = Beta(pi, qi) (i=2, 3), where F2 is 

symmetric (p2 = 92) while F3 is non-syrnmetric (p3 # q3). The following situations 

are considered: 

( 1 )  F1 = N(0.5, 0 - l ) ,  f i  = Beta( 2 , 2 ) and F3 = Beta( 2 , 2.5) 

(2) FI = N(0.5, 0.1), F2 = Beta( 2 , 2 ) and F3 = Beta( 2 , 1.5) 

(3) Fl = N(G-5, 0. l), F2 = Beta(l.5, 1.5) and F3 = Beta(l .5,  2 ) 

( 4 )  FI = N(0.5, 0 .  l), F2 = Beta(l.5, 1.5) and F3 = Beta(l .5,  1 ) 

(5) FI = N(0.5,  0 - l ) ,  F2 = Beta( 1 , 1 ) and F3 = Beta( 1 , 1.5) 

( 6 )  f i  = N(0.5, 0-l), F2 = Beta( 1 , 1 ) and F3 = Beta( 1 , 0.5). 



The powers of the seven statistics are exhibited in Fig. 14.4, which shows that the 

new statistics are much more powerful than the old ones. 

We can see from these examples that the traditional k-sample tests are sensitive 

to  location differences among Fi ( i= l ,  2, ..., k), but are du11 to  detect the variations 

of their shapes. As a result, it seems that 

(a) when the differences among Fi arrive from their locations or means only, the 

new statistics are as powerful as the traditional ones with ZA, ZC, A2 and Kiv 

being better; 

(b) when the differences among Fi come not only from their locations or means 

but also from their shapes (including dispersions), the new statistics are much 

more powerful than the old ones; In such a case, ZA and ZC dominate the 

others, ZK or A2 is the second best, and Kiv or Ks is the worst; 

(c) Zh' is ovenvhelmingIy powerful compared to its analogue Ks;  

(d) Among A2, W2 and Ks, the traditional k-sample tests based on EDF (empirical 

distribution function), A2 and Ks are respectively the best and worst in al1 

situations; 

(e) the Kruskal-Wallis test Kw fails to detect the difference in shapes among Fi. 

(f) ZA and Zc are almost equivalent, but Zc is the best because of its simple 

representation in (13.3). 



Fig. 14.1. Power cornparison for testing FI = U(0,  1) and Fi = Beta(pi, qi) (2=2, 

3) at level cr = 0.05 



Fig. 14.2. Power cornparison for testing Fi = N(0,  1) and F, = N ( b ,  O:) ( i=2,  3) 

at level a = 0.05 



Fig. 14.3. Power cornparison for testing FI = N ( p ,  O*)  and Fi = Garnna(ai, bi) 

( i=2 ,  3) at level CY = 0.05 



Fig. 14.4. Power cornparison for testing FI = N(0.5, 0.1) and Fi = Beta(pi, qi)  

( i=2 ,  3) at level a = 0.05 



15. The Distributions of k-Sarnple Za4, Zc and ZK 

As the two-sample case, the k-sample statistics ZA, ZC and ZK in (13.1)-(13.3) 

are distribution-free. Theîr nul1 distributions are uniformly discrete, and thus can 

be obtained by enurneration of al1 possible values of the statistics by considering 

n!/(nl!n2! - - nk!)  combinations of the ranks R, (i = 1, 2, ..., k; j = 1, 2, ..., ni). 

Note that ZA, ZC and ZK are functions of 4. Under the nul1 hypothesis H ,  every 

combination of 1, 2, ..., n into k groups of sizes 721, na ..., nk is equally likely to be 

the ranks of the k sarnples. 

Since the number of values that each of the statistics can take on increases very 

rapidly with ni and k, it is not feasible to give the full distribution unless and k 

are small. Moreover, extensive tables have to be used for tabulating their percentage 

points with different ni and k (even if they are small). 

Fortunately, with today's computing facilities and software, it is easy to get 

the approximate p-value of such a k-sample test by Monte Carlo simulation. The 

accuracy is good enough in practice if the number of replicates (N) is sufficiently 

large. In fact, the standard error of simulated pvalue is dP(l - p ) / N .  

Computer programs in Splus code (Program 1-3) are given below to calculate 

each new statistic and its simulated pvalue for the k-sample test. These programs 

are e s y  to run even on PC. For example, for a three-sample test with sizes nl=lOO 

and n2=n3=ZOO: Program 1 rzquires about three minutes to run on PC (Pentium 

II-MMX CPU at  300 MHz) for a 10,000-sized simulation. 



In Program 1-3, M is simulation size, n = (nl, n,, ..., nk) and X is the vector 

of data for the k samples, Le., 

Program 1. Cdculating Zc and its pvalue (k-sample case) 

f <- function(n, X, M) { 

N <- sum(n) 

r <- ceiling(rank(X1) 

P <- (1:N-.5)/N 

W <- N* (P*log(P) + (1-P) *log(l-P)) 

g <- function(n,r,N,W) ( 

u <- O 

k <- lengthh) 

m <- 0:k 

for (i in 1:k) ( 

mCi+i] <- s m ( n  Ci : il ) 

d <- (rnci] +1) :m[i+l] 

u <- u+sum(log(n[i]/(l:n[i]-.5)-l)*log(~/(sort(r[dI 1--5)-1)) 3 

return(u/N) 3 

Zc <- g(n,r,N,W) 

z <- O 

for (m in 1:M) z <- z + (g(n,rank(sample(N)),N,W) < Zc) 



p.value <- z/M 

returnczc , p. value) 1 

f( ~ (10, 20, 201, ninif(50), 100 ) 

Program 2. Calculating ZA and its pvalue (k-sample case) 

f <- function(n, X ,  M) ( 

N <- sum(n) 

r <- ceiling(rank(X)) 

P <- (1:N-.5)/N 

W <- N* (P*log(P) +(1-P) *log(l-P) ) 

g <- function(n,r,N,W) ( 

u <- rep(0,N) 

k <- length(n) 

m <- 0:k 

f o r  (i in 1:k) ( m[i+l] C- sum(n[l:i]) 

d <- (m[il+i) : m [ i + l ]  

d <- sort (r [dl ) 

D <- ~ ( 1 ,  d, N+I) 

p <- rep(O:n[i], DC2:(nCi]+2)]-D[i:(nCiJ+1)1) 

pCdl <- pcdl--5 

p <- p/nCil 



u <- u-n [il * (p*log(p+. 000000001) +(1-pl *log(l-p+ . 000000001) ) 3 

return( sum(u/(l:~-.s)/(N:I-.5)) ) 3 

Za <- g(n,r,N,W) 

z <- O 

for (m in l:M) z <- z + (g(n,rank(sample(N)),N,W) < Za) 

p .  value <- z/M 

return(Za, p. value) 1 

f( c(10, 20, 201, runif(50), 100 ) 

Program 3. Calculating ZK and its pvalue (k-sample case) 

f <-function(n, X ,  M) { 

N <- sum(n) 

r <- ceiling(rank(X)) 

P <- (1:N-.5)/N 

W <- N* (P*log(P) +(1-P) *log(l-P) ) 

g <- function(n,r,N,W) C 

u <- rep(0 ,NI 

k <- length(n1 

m <- 0:k 

for (i in 1:k) ( rn[i+l] c- sum(n[l:i]) 

d C- ( r n [ i ] + i )  : m [ i + l ]  



d <- sort (r [dl 

D <- c(1, d, N+1) 

p <- rep(O:nCi], D[2:(n[i1+2)1-DCl:(n~il+l)~) 

pCdl <- p k W . 5  

p <- phCi1 

u <- u+n[i]*(p*log(p+.000000001)+(1-p)*log(l-p+.000000001)) > 
returd max(u-W) ) 

Zk <- g(n,r,N,W) 

z <- O 

for (m in L M )  z <- z + (g(n,rank(sample(N)),N,W) > Zk) 

p .value <- z/M 

return(Zk, p.value) ) 

f( c(10, 20, 20), ninif(50), 100 ) 

16. Beta Approximation to the Distribution of Ks 

Although the sampling distributions of EDF tests are intractable, sometimes 

they can be approximated by a simple distribution family. As a simple example, we 

now consider the Kolmogorov-Smirnov statistic Ks in Section 2. 

The asymptotic distribution of Ks under nu11 hypothesis was derived by Kol- 

mogorov (1933), and Smirnov (1939) gave a simpler proof. However, the exact null 

distribution for finite-sample case is complicated to express. Kolmogorov (1933) 

and Massey (1950) established recursive formulas for calculating the null probabil- 

ity P ( K s  < k / n )  for integer values of k. Then Bimbaum (1952) tabulated these 



values for n=l ,  2, ..., 100 and k=l, 2, ..., 15. 

Since the exact nul1 distribution of Ks is only available a t  kln for limited integer 

values of k, approximate methods have been explored. For example, some critical 

values of Ks based on interpolation were given by Massey (1951) and Birnbaum 

(1952), and the most common-used approxirnate critical values in statistical tables 

and literature were from Miller (1956). However, the approximation is only valid 

for the upper tail of the distribution, since the cnticd values (with level a) are 

approxirnated by the exact ones (with level 4 2 )  for one-sided test. See Conover 

(1980) and Gibbons (1992). 

Research on the Kolmogorov-Smirnov statistics and their sampling distribu- 

tions remains very active. See, for instance, Cabaiia (1996), Cabaiia and CabaÏia 

(1994,1997), Friedrich and Schellhaas (1998), Justel, Peiïa and Zamar (1997), Kim 

(1999), Kulinskaya (EM) ,  Paramasamy (1992) and Rama(1993) among others. 

In the following we will show that the distribution of the Ks can be globally 

approximated by a general beta distribution. The approximation is very simple and 

reliable. Therefore, we may use a beta distribution to find the practical p-value of 

the Ks test. 

On the other hand, tradi tional methods of appro-ximating the p-value are more 

complicated and Iess accurate. For example, the current approximation method 

used in S-Plus is based on interpolation for small sample (n 550) or the limiting 

distribution for n > 50, which is not be accurate enough. 

Let Bp, , denote a random variable having standard beta distribution Beta@, q) 



with density 

and distribution function 

where B@, q)  is beta function with p, q > 0. 

Our simulation study shows that the distribution of Kolmogrov-Smirnov statistic 

Ks approximately equals that of a general beta variable aBpl , + b, where constants 

a, b, p, q are chosen such that Ks and aBpl , + b have the same first four moments, 

or equivalently have the same mean p, standard deviation o, skewness ri = &/a3 

and kurtosis r2 = ,iiq/o4, where denotes the k-th central moment. 

Let p,, a,, ml and rn:! be, respectively, the mean, standard deviation, skewness 

and kurtosis of Ks. It is easy to  prove that  Ks and aBpl , + b ( a  > O) have the same 

mean, standard deviation, skewness and kurtosis (or equivalent Iy have the same first 

four moments) if and only if 

Note that 

p + q = P(rnl, rn2) with P = P(z ,  y) = 6 ( ~  - xZ - 1)/(3x2 - 2~ + 6), 

p q = Q(rni, rn2) with Q(z, 9) = 4P2/[16 + x Z ( p  + 2)'/(P + 1)]- 



Hence, a, b, p, q (a > 0) are uniquely decided by 

Shen Ks and aB,, , + b have the exactly same first four moments, as well as 

the approximately same moments of higher order based on our simulation (see be- 

low). Therefore, they have approximately the same moment generating function or  

characteristic function, and thus they have approximately the same distribution. 

As a result, FKs(x) and fKs(x), the distribution and density functions of Ks, 

can be simply approximated by those of a%, , + b , i.e. 

where a, b, p, q are given by (16.1) and will be approximated by (16.3). 

Usually, having the same first four moments is not enough to guarantee a very 

good approximation, but (16.2) is a special case where the two distributions also 

have sufficiently close moments of higher orders and thus have approximately the 

sarne moment generating or characteristic function. For n=10, 100 and 1000, for 

example, the first ten standard moments of the two variables are listed in Table 

16.1, where the upper numbers in double entries are the moments of I(s  based on 

simulation with size of one million, and the lower nurnbers correspond to aBp, + b. 

The specific values of a, I ,  p, q are given in Table 16.2 below. 

It  can be seen from Table 16.1 that they do have the same first four moments 

and similar moments of higher orders. Unfortunately, the exact first four moments 



of Ks are not avaiIable to detemine a, 6, p, q, so we use Monte Carlo approach. 

For some selected values of n, Table 16.2 Iists the first four standard moments of f i  

obtained by a one-million-size simulation together with the corresponding values of 

a, 6 ,  p, q calculated from (16.1). 



TABLE 16.1. The first ten standard moments of Ks and aBP, , + b 

TABLE 16.2. The first four standard moments of Ks and corresponding a, b, p, q 

Since Ks is distribution-free, its moments depend only on n, so do a,  6 ,  p, q 

in (16.1). For simplicity, linear functions of n-' and nd (d is hed)  are used to 



approximate them. Of course, better approximations may be made by using more 

complicated functions at  the price of the simplicity. 

Directly fitting the data of a, b, p, q in Table 16.2 does not work weI1 and 

could destroy their structure in (16.1) which enable the approximate distribution to 

have correct first moments. Instead we fit the moments first. A linear regression 

model y = + ,üin-l + &nd is used to fit (by least squares approach) the data of 

p,,, on, rnll in2 (against n) in Table 16.2 respectively. For different values of d ,  we 

have different models to fit the data. We choose a d which roughly corresponds to 

the best fit by the following approach. One can choose any initial value of d, and 

then fit the model to the data. If the fit is satisfactory, stop. Othenvise, increase or 

decrease the value of d and fit the model again. Then choose the d which corresponds 

to a better fit. Repeat this pocess  until a satisfactory fit is obtained. In this way, 

the best d can be roughly reached within a few steps by our experience. The results 

are as follows: 

Then, using them u the mean, standard deviation, skewness and kurtosis of Ks, 

we can get a new set of data for a, b, p, q (against n) via (16.1). The new data is 

well fitted by 



I â = 0.003326 - 6.012/n + 5.52/n0-53 

b = -0.0004245 - 0.003397/n + 0 . 3 2 0 4 / n ~ - ~ ~  

p = 3.258 - 3.727/n + 4.607/nl-~ 

d = 25 - 161.2/n + 162.2/n'-~,  

which thus well keeps the original structure of (16.1). 

With a, b, p and q approximated by (16.3) the distribution of Kolmogorov- 

Smirnov statistic Ks can be simply approximated by a completely known beta 

distribution in (16.2). 

We now discuss the accuracy of the approximation. For n=10, 50, 100, 200 and 

500, Table 16.3 lists three sets of percentage points of Ks for comparison. The first 

line in multiple entries is obtained from (16.2) with a, b, p and q given in (16.3); the 

second line is based on a Monte Car10 simulation of size 100,000; the third line lists 

the most cornmon-used approximate values given by Miller (1956), which are only 

available for upper tail (asymptotic values are used if n > 100). See also Conover 

(1980) and Gibbons (1992). 



TABLE 16.3. Percentage points for Ks 

It can be seen from Table 16.3 that (a) compared with the simulation results, Our 

approximate values are very accurate in the whole region (lower, central and upper 

parts) of the distribution, and the higher the percentage level, the more accurate the 

approximation; (b) at  the upper tail they are consistent with Miller's approximate 

results for n a100 but are better than asymptotic values, which are always a little 

bit larger than real ones, especially when n 5200. 

The exact sampling distribution of Ks is complicated. Kolmogorov (1933) and 

Massey (1950) established recursive formulas for calculating the nul1 probability 



P(Ks < k / n )  for integer values of k. Note that the recursive formulas only apply to 

integer k. Birnbaum (1952) tabulated these values for n=l, 2, ..., 100 and k=l, 2, 

..., 15. We can use Birnbaum's tables to check the accuracy of Our approximation. 

Below are such exact values for n=40 compared with the values obtained by the 

beta approximation given by (16.2): 

It can be seen that the values corresponding to the same k are almost equal, espe- 

cially for large k. The situation is similar for other sample sizes. 

exact 

appr. 

We conclude from above that (16.2) gIobally gives very simple and accurate 

approximations to the distribution and density functions of KSI especially a t  the 

upper tail (the most important part). Hence, we can easily use a beta distribution 

to find the practical pvalue of the Kolmogorov-Smirnov test, which is simpler and 

more accurate than existing rnethods in the literature. For example, the current 

approximation method used in S-Plus is based on interpolation on limited values of 

exact distribution for small sample (n 550),  or the limiting distribution for n > 50, 

which has been shown in Table 16.3 that it may not give a good approximation to 

the true value if n < 200. 

-0345 -2182 .4808 .7016 -8471 -9295 ,9708 -9891 ,9964 .9989 

-0344 -2224 4 1 2  .7021 -8488 -9311 -9716 -9894 .9964 .9989 

17. A Simple Distribution Family 



In order to  generalize the approach in the previous section, we now consider a 

family of distributions V(u, b, p, q, c, d) generated by the random variable 

where 1. Y - Beta(p, g ) ,  a beta distribution with parameters p and q and pY = 

E(Y) ;  

2. a > O and b are constants; 

3. Z has the density defined by a simple step function 

with G, d > O as constants, i = 1,2,. . . ,1, satisfying ~ f = ,  y = I ;  

4. Y and Z are independent. 

For any function h(y), denote h(b)  - h(a)  by [ h ( y ) ] ~ t .  After some routine 

calculation, we can find the distribution function of V as follows . 

where t = (x - b)/a, ti  = pY + tdi  and B,, ,(y) is the distribution function of 

B W P ,  d- 

Suppose that a random variable X has complicated distribution but finite mo- 

ments pf = E ( X k ) ,  k=l ,  2, 3, 4. Let the skewness and kurtosis of X denoted by 

= p f / ( ~ f ) ~ / ~  and r$ = pf/(&x)2 respectively, where jif is the k-th central 

moment (about the mean). We wish to approximate the distribution function of X 

by a member of the family L'(a, b, p, q, c, d). We do this in two steps. 



We choose the constants a, b, p, and q such that  X has the same first four 

moments as those of V in (17.1). 

First, we let them have the same skewness and kurtosis, i.e. 

I/z 3/2 I / z 2  1/z r r = r l  = ~ f ( ~  ) and r2 =r2  =r$(cl, ) /p4 , 

where 

Since Y has beta distribution, we have the following: 

Substituting r r  and 7;  in (17.6) with rl and r 2  in (17.4), we can solve for p and q. 

Hence, 

with q > p  (q 5 p)  if rl > O  (rl 50). 

Second, we let X and V have the same mean and variance, which can be easily 

achieved by choosing 

where ji; = pq/(p + q ) 2 / ( p  + q + 1)- 
l 



Now we have already fked a, b, pl and q so that X and V in (17.1) have the 

same first four moments. We use (17.3) to approximate the distribution function of 

X. 

Generally speaking, having the same first four moments is still not sufficient to  

guarantee a very good approximation. Therefore, we use ci, i = 1 , 2 , .  . . ,1, and d of 

the step function (17.2) as tuning parameters for further improvement. 

The construction of (17.1) is based on the following: (1) beta distributions have 

different (but not arbit.rary) kinds of shapes so that Y plays a key role in controlling 

the basic shape (skewness and kurtosis) of the approximate distribution; (2) step 

functions can approach any density function so that Z works weil as an adjustment; 

(3) a and b are scale and lacation parameters. Besides, beta distributions have the 

excellent property (1 7.6), while using step functions as densities makes (1 7.3) and 

(17.5) simpIe. 

It is obvious that the iarger the nurnber of steps (1) we use, the more accurate 

the approximation can be made, but, on the other hand, the more difficult to tune 

the parameters. Also, small I makes both (17.3) and (17.5) simple. 

If higher order moments of X are known, we can choose the tuning parameters 

in (17.2) to  match the higher order moments of X with V ( a ,  6 ,  p, g, cl d ) .  If 

higher order moments are cot known, but some quantiles of X are available through 

simulation or other methods, we can determine the tuning parameters to match the 

quantiles. Examples are presented in Sections 18 and 19, where we fit a member 



of the family V ( a ,  b, p, q, c, d) to Cramér-von Mises and Waston's statistics for 

goodness of fit. 

18. Approximate distribution for Crarnér-von Mises Statistic 

The exact nul1 distribution of the classical Cramér-von Mises statistic W 2  in 

Section 2 is not known except for n = oo and n=1-7 (see, e-g., Anderson and Darling 

(1952)' Marshall (1958), and Knott (1974)). So, some approximate methods have 

been explored. 

Using the first four moments (about the mean) of W2,  

Pearson and Stephens (1962) obtained some approximate percentage points for n=5, 

10 and oo by fitting Johnson's SB curve, which can only give approximately the same 

first four moments but requires extensive computation. 

Tiku (1965) used a+ bx; to get a simple approximation by choosing a, b, and p to 

give the same first three moments as above. The method is easy to apply and gives 

good results a t  the upper tail of the distribution, but it fails at the lower tail. This 

is not surprising because the first three (or even four) moments are not sufficient to 

detennine a distribution. 



Stephens (1970) gave an empirical way to approximate the upper (lower) 100a% 

percentage point of W2 by Ua/(l + 1/n) + O.4/n - 0.6/n2 (L,/(l+ 0.5/n) + 0.03/n), 

where LI, (L,) is the corresponding point of W . .  This method works very well 

a t  both upper and lower tails. However, it is not suitable for the central part of 

the distribution. For instance, since U0.25=0.20939, the corresponding approximate 

value for W: is 0.22812, but the true value is 0.21087. 

The best known approximate results are given by Csorg6 and Faraway (1996). 

Using one-term linking approximation to the limiting distribution and combining 

many published results from literature, t hey found a sophisticated approximation 

with high accuracy for al1 (upper, lower and central) parts of the distribution. The 

only concern is the cornplesity of their formula. Moreover, it includes some special 

functions, such as Bessel functions. Therefore i t  is difficult to find the practical 

p-value of a goodness-of- fit ks t .  

In contrast, the method described in Section 16 is simple and can give a very ac- 

curate approximation to whichever part (upper, lower or central) of the distribution. 

We now discuss i t  in detail as below. 

Let W 2  be the random variable X in Section 17. Using its known first four 

moments in (18.1), we can easily find a, b, p, and q via (17.7) and (17.8) with 

, 1 2, . 1, and d fixed. Then W2 and V in (17.1) have the same first four 

moments, and thus (17.3) can be used to approximate the distribution of W2. 

In order to have a better approximation, we need the second step Le. the tuning 

procedure for ci, i = 1,2,. . . , I ,  and d. How to  choose the best tuning parameters 



is anther topic of undergoing research. Generally speaking, the objective of tuning 

parameters is to make the V and W2 have similar moments of higher orders. Unfor- 

tunately, here we do not have other moments except the first four in (18.1). Another 

way of tuning parameters is to  let the twa variables have approximately the same 

percentage points. Of course, the theoretical percentage points of W2 are unknown, 

so we use Monte Carlo approach to simulate their values which are almost the same 

as the approximations given by Csorgo and Faraway(l996). With simulated per- 

centage points of W2, we can perform the tuning process in the following. 

Since W2 has limiting distribution, we start with large sample size, Say n=1000. 

First, we use one-step function (I=1) to try. With q = 1 ,  i t  is easy to tune a single 

parameter d [just several times) so that V and W2 have close percentage points as 

possible. If the accuracy is not satisfactory, then use twestep function to try, but 

this time we only need to tune cl and d since c2 = 1 - cl. For this example, we 

finally use a four-step function with (cl, c2, CQ, c4) oc (29, 3, 1, 6 )  and d=0.84. This 

configuration of parameters also works well for n=500, 200, 100, 50 and 30. For 

n=20, 10, and 5, we keep using the same ci's but choose d=0.83, 0.80, and 0.72. For 

simplicity, we use the following parameters for general n. 

U'e spent about two hours to get this result which can be used forever. The turning 

process is just like tuning a machine or equipment to  fit different conditions. For 

different statistics we need different parameters. In fact, it is because of the turning 

parameters that make (17.1) suitable for general case. 

Since a,  b, p, and q have been decided by (17.7) and (17.8), by (18.2), we obtain 



a complete known formula (17.3) t o  approximate the distribution function of W2. 

Table 18.1 lists some of these values for n=10, 50, 200, 2000, and Table 18.2 gives 

the corresponding approximate percentage points (the upper numbers in double 

entries) obtained from (17.3) together with those (the lower numbers) obtained by 

Csorgo and Faraway (1996) for cornparison. 

We can see from Table 18.2 that the two sets of numerical results are very close. 

Therefore, the two approximate distributions are almost the same although they are 

obtained by using different methods, and thus have totally different mathematical 

expressions. 

Compared with Csorg6 and Faraway's approach, our method is much simpler 

without using any special function. Therefore it can be easily used to obtain practical 

pvalues of goodness-of-fit tests, instead of tabulating limited percentage points. 

Moreover, the approximate function in (17.3) is a real distribution function. Finally, 

our method is of generality and can be applied to approximate the distribution for 

a general continuous random variable with known finite first four moments. 

Remark: (18.2) is just a simple solution. It is not difficult to find a better config- 

uration of q and d if we let y Vary with n (like d ) .  Besides, increasing 1, the number 

of steps in (17.2), can absolutely raise the degree of accuracy of approximations, but 

our formulas will be more complicated. 



TABLE 18.1. Some values of a, 6, p, q 

TABLE 18.2. Some percentage points for W 2  

19. Approximate Results for Waston's Statistic 



The Waston's statistic 

is a modification to the Cramér-von Mises statistic IV2 so that it can test the good- 

ness of fit on a circle. 

Like Cramér-von Mises statistic, LJ2 is distribution-free. The exact distribution of 

U2 was given by Watson (1961) for n = m and by Stephens (1963, 1964) for n=l, 2, 

3, and 4. Approximate approaches based on moments or empirical estimation have 

been studied by Pearson and Stephens (1962), Tiku (1965) and Stephens (1970). 

The results are similar to those for W2 (see Section 17). Again, the best known 

approximate results were given by Csorgo and Faraway (1996). 

Nom, using the first four moments (about the mean) given by Stephens (1963): 

pi = 1/12 

P2 = (1 - l/n)/360 
(19.1) 

p. = (2  - 5/n + 3/n2)/7560 

jï4 = (19 - 70/n + 8ï/n2 - 36/n3)/302400 , 
we apply the method in Section 16 to u*, which has lower skewness and kurtosis 

than those of W 2 :  but this time ive just need a three-step function (17.2) (1=3).  

Results parallel to those of W2 in Section 18 are given below. We can see again 

from Table 19.2 that Our numerical results are very close to those given by Csorgo 

and Faraway (1996). 



TABLE 19.1. Some values of a, 6 ,  p, q 

TABLE 19.2. Some percentage points for U2 

20. Concluding Rernarks 

Through the parameterization introduced in Section 1, a nonparametric goodness- 
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of-fit test is simplified to a family of parametric tests. As a result, more general 

types of EDF tests for goodness of fit can be defined, which include traditional EDF 

tests, as well as new EDF tests Sased on the likelihood ratio. This rnethodology for 

goodness-of-fit tests in Sections 1-5 is sumrnarized in Zhang (2001a). 

Besides, instead of testing for a specific distribution, the new statistics can be 

applied t o  test the goodness of fit for a family of distributions, such as the families 

of normal, exponential, gamma, and Weibull distributions. For instance, the new 

tests outperform the best tests of normality in literature by simulation (see Sections 

5-6). Another interesting topic is to test multivariate normality. 

The methodology of goodness-of-fit tests has been developed and applied to  gen- 

eral two-sample and rnulti-sample problems, and parallel results have been obtained. 

The simulations in Sections 8-15 show that the new tests are sensitive to the dif- 

ference in location, scale and shape among distributions, while traditional tests are 

du11 to detect the variation in shape or scale. The major results of the two-sample 

tests in Sections 8-10 are given in Zhang (2001b). 

Since the exact sarnpling distributions of the EDF test statistics are intractable, 

we have to  investigate some approximate approaches. In Sections 16-19, a sim- 

ple distri but ion family is introduced to  approximate the distribution function for a 

general continuous randorn variable. When applied to  some EDF test statistics, it 

gives similar numerical results as the best known, but it is much sirnpler and can 

be directly used to o5tain prxtical p-values of goodness-of-fit tests (Zhang and Wu, 

2001a, 2001b). The key issue in using simple distribution family is choosing the 

tuning parameters involved. This is still an area of on-going research. 
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