Configurable Computing for Mainstream Software
Applications

William D. Bishop

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2003

(© William D. Bishop 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-82973-1
Our file Notre référence
ISBN: 0-612-82973-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

A configurable computer is a computing device that may be modified at run-time to provide
application-specific computer hardware to support the computation of a task. A coupled con-
figurable computer uses-a configurable coprocessor to provide specialized hardware to perform a
specific task while the remainder of the computer system works on other tasks. The fact that
the hardware functionality of a configurable coprocessor may be specialized at run-time allows
this coprocessor to effectively behave like a larger system of coprocessors. Previous research has
shown that configurable coprocessors can significantly enhance the performance of an application

and/or computer system on niche applications.

This thesis investigates the quantitative and qualitative impacts of configurable coprocessors
on the performance of a computer system. A transaction pair model of a configurable coprocessor
operation is introduced. This model enables the development of a complete performance model
that predicts the behaviour of a coupled configurable computer system. To quantify the parame-
ters used by this model, a series of experiments were conducted. These experiments demonstrate
that it is possible to transform an existing computer system into a coupled configurable computer
system without the knowledge of the end user. Furthermore, the performance model can be used
to predict when it is likely to be advantageous to use a configurable coprocessor to enhance an
application and a computer system. The experiments show that the major factors impacting per-
formance of an application are processing time, memory utilization delays, bus utilization delays,
and operating system behaviour delays. These findings suggest that a tightly-coupled configurable
computer architecture is better suited to mainstream software applications than a loosely-coupled

configurable computer architecture.

iv

Acknowledgements

I wish to thank my supervisor, Dr. Wayne Loucks, for his patience, his guidance, and his
insight. This research would not have been possible without his support and the support of his
family. 1 know Wayne had many sleepless nights throughout the duration of my thesis research.

T only hope that I did not contribute significantly to his insomnia.

I wish to thank all of the funding agencies and corporations that supported my research
through financial support and gifts-in-kind. In particular, I wish to thank the Natural Sciences
and Engineering Research Council (NSERC) of Canada, the Ontario Graduate Scholarship (OGS)
Program of the Province of Ontario, and Communications and Information Technology Ontario
(CITO), formerly the Information Technology Research Centre (ITRC). I also wish to thank Altera
Corporation, Mentor Graphics, Mesquite Software, and Nortel Networks for donating and/or

subsidizing hardware and software for the purpose of my research.

Of course, my friends deserve thanks as well. Over the past seven years, I have made many
new friendships that will last a lifetime. I particularly wish to thank all of the past and present

members of the Parallel and Distributed Systems Research Group at the University of Waterloo.

Most of all, I wish to thank my parents for giving me the support and encouragement that
I needed to successfully complete this degree. This thesis would not have been possible without

them.

Trademarks

SPARCstation is a trademark of SPARC International, Inc. and is licensed exclu-
sively to Sun Microsystems, Inc.. Sun and SunOS are registered trademarks of Sun
Microsystems, Inc..

Altera, MAX, MAX+PLUS, Quartus, FLEX, and SignalTap are registered trade-
marks of Altera Corporation. AHDL, MAX+PLUS 11, Quartus I, FLEX 10K,
EPF10K50, APEX. Mercury, Stratix, Cyclone, FastTrack, Megal.AB, Avalon, Nios,
RIPP-10, ARC-PCI, and Excalibur are trademarks of Altera Corporation.

Xilinx, XACT, XC4005, and XC3090 are registered trademarks of Xilinx. XC95108,
XC6264, XCB216, XC4025, XC4013, XC4010, XC4003, XC4002, XC3042, XC3030,
XC3020, X-BLOX, Configurable Logic Cell, LCA, and Logic Cell are trademarks of
Xilinx.

Synopsys and Synopsys VHDL Compiler are registered trademarks of Synopsys, Inc..
DC Expert, DC Professional, Design Analyzer, Design Compiler, FPGA Compiler,
Library Compiler, VHDL Compiler, Synopsys Graphical Environment, VHDL System
Simulator, VSS Expert, and VSS Professional are trademarks of Synopsys, Inc..

Hardware Object Technology, H.O.T., H.O.T. Works, HO.T. 1, HLO.T. 1L, and HO.T.
IIT are trademarks of Virtual Computer Corporation.

Configurable Array Logic, CAL and CAL1024 are trademarks of Algotronix.
PAL and PALASM are registered trademark of Advance Micro Devices, Inc..
ABEL is a trademark of Data I/O Corporation.

Tri-state is a registered trademark of National Semiconductor Corporation.
Verilog is a registered trademark of Cadence Design Systems, Inc..

X Windows System is a trademark of the Massachusetts Institute of Technology.
UNIX is a trademark of AT&T Technologies, Inc..

IBM and AT are registered trademarks of International Business Machines Corpo-
ration and PC/XT and PC/AT are trademarks of International Business Machines
Corporation.

Intel, Pentium, and 1486 are registered trademarks of Intel Corporation. VTune is a
trademark of Intel Corporation.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation and
MS-DOS, MS-Windows, Windows 95, Windows 98, Windows NT, Windows 2000,
Windows XP and Win32s are trademarks of Microsoft Corporation.

HP is a registered trademark of the Hewlett Packard Company.

vi

Contents

1 Introduction 1
1.1 Motivation Ll e 1
1.2 Configurable Computing Lo 3
1.3 Statement of Thesis L 5
1.4 Thesis Contributions L. 6
1.5 Outlineof the Thesis e e 7

2 Introduction to Configurable Computing 8
2.1 Programmable Logic Devices Lo 8

211 Overview. Lol e s e e e e 9
2.1.2 Programmable Logic Technologies 9
2.1.3 Statically, Dynamically, and Partially Programmable Logic Devices 11
2.1.4 SPLDs (Simple Programmable Logic Devices) 12
2.1.5 PIDs (Programmable Interconnect Devices) 15
2.1.6 HDPLDs (High-Density Programmable Logic Devices) 16
2.1.7 RPUs (Reconfigurable Processing Units) 22
2.2 Introduction to Modern Computer Architecture 24
2.2.1 von Neumann Computer Architecture 24
2.2.2 Personal Computer Architecture e e e e e 25
2.3 Configurable Computer Architectures 29
2.3.1 Types of Configurable Computers, 31
2.4 Configurable Computing Platforms 33
2.4.1 State-of-the-Art Configurable Computing Machines 33

vii

2.5 - Benefits of Configurable Computing 0000 35

2.6 Challenges of Configurable Computing 36
3 Models of Configurable Computing 38
3.1 " Introduction to Configurable Computer Models 38
3.2 The Transaction PairModel o oo oo 39
3.2.1 Comparison of Transaction Performance~ 43
3.2.2 Summary of the Transaction Pair Model 46

3.3 The Configurable Computer System Performance Model - 46
3.31 Configuration Delays oo Lo 51
3.3.2 Memory Utilization Delays L. 52
3.3.3 BusUtilization Delays L o oL 53
3.3.4 Operating System Behaviour Delays 54
3.35 Processing Timeso o 55
3.3.6- Evaluating the Net Performance Impact . . - 56

3.4 Performance Model Scenarios L oL oLl 58
341 General Comments Lo Lo 60

4 Configurable Computing Platforms 62
4.1 Platform I: PC 4+ ARC-PCIBoard 62
411 The ARC-PCIBoard. 63
4.1.2 ARC-PClDevelopment Kit, 67
4.1.3 Configurable Computer Architecture 69
4.1.4 Application Programming Interface« 000 69
415 Device Driver oL e 71
41.6 Controller Design-. o . oL 0L 75
4.1.7 UserDesigns« Lo 80
4.1.8 Comments on PCI Compliance 84
4.1.9 Comments on Performance 00 oL, 84

4.2 Platform II: Nios Embedded Processor Development Board 88
4.2.1 The Nios Embedded Processor Development Board 89
4.2.2 Nios Embedded Processor Development Kit 89
4.2.3 Configurable Computer Architecture 92

viii

4.2.4 Nios Embedded Processor 92

4.2.5 User Peripheral Designs oo 94
4.2.6 Other Peripherals L oo 94
4.3 Platform III: Sun Workstation oo .0 o000 94
4.4 Platform Comparison Lo Lo 95
Application 1: CSIM 97
5.1 Introduction to Discrete-Event Simulation 000 97
5.1.1 = Discrete-Event Simulation Terminology 98
5.1.2 Discrete-Event Simulation Tools and Libraries 99
5.1.3 Accelerating Discrete-Event Skmulation o oL 0L 99
5.2 The CSIM Discrete-Event Simulation Library 0.0 0. 100
521 TheChoiceof CSIM o 100
5.2.2 Modeling Systems with CSIMo .0 L. 101
5.2.3 Applicationsof CSIMo oL 102
5.2.4 Profiling the Performance of CSIM 102
53 Enbancing CSIM . © L e 104
5:3.1 Pseudo-Random Number Generationin CSIM 104
5.3.2 Interfacing with Platform I 105
5.3.3 * Performance Optimizations 105
54 Experimental Methodo 107
5.5 Platform I: Experimental Results 000, 107
551 Application Speedup L. Lo 108
5.5.2 Evaluation of System Impact L0 109
5.6 Interesting Observations Lo o oo 110
5.6.1 Performance Lo e 110
5.6.2 Impact of Optimizations 111
5.6.3 Transparency Ul e e e e e e e e e e e e e e 111
Application 2: Pseudo-Random Number Generation 112
6.1 Pseudo-Random Number Generation 112
6.1.1 Linear Congruential Generators 113
6.1.2 The Choice of Pseudo-Random Number Generation 114

6.2 - Enhancing Pseudo-Random Number Generation 114
6.2.1 Imterfacing with Platform To oo o000 115
6.2.2 Interfacing with Platforme 11 _ .0 oo oo oo 117
6.2.3 Performance Optimizations00 L. 117
6.2.4 . Platform I Performance Optimizations 118
6.2.5 Platform II Performance Optimizations 118

6.3 Experimental Method L o e 118

6.4 Platform I: Experimental Results00 0oL oo 118
6.41 Unbuffered Test Results o . o 119
6.4.2 Bufered Test Results00 e oo 119
6.4.3 Unbuffered Test Results on an Uncached System 120
6.4.4 Buffered Test Results on an Uncached System 120
6.4.5 Measuring the Impact of Caching.. 122

6.5 Platform II: Experimental Results 0L 122

6.6 Interesting Observations Lo e 123
6.6.1 BusUtilization Delays oL 123
6.6.2 Memory Utilization Delays0 ... 124
6.6.3 Relative Performance of Processors.. L. 124

Application 3: Minheap Management 125

7.1 Introduction to Minheap Management 125
7.1.1 The Choice of Minheap Management\ 126

7.2 Enhancing Minheap Management 000 126
7.2.1 Imterfacing with Platforma To o oL 128
7.2.2 Imterfacing with Platformm IT 128
7.2.3 Hardware Optimizations 128
7.2.4 Performance Optimizations 129

7.3 Experimental Method o oo 129

7.4 Platform I: Experimental Resultso oo, 129
7.4.1 Unbuffered Test Results, 130
7.4.2 Buffered Test Results 0 o 130
7.4.3 Unbuffered Test Results on an Uncached System 130

8

7.4.4 Buffered Test Results on an Uncached System 132

7.4.5 Measuring the Impact of Caching . . . - .. .~ 132
7.5 Platform II: Experimental Results . o0 oo 0oL o000 133
7.6 Imteresting Observations Ll e 133
7.6.1 Algorithm Complexity e 135
7.6.2 Memory Utilization Delays o o oo 135
7.6.3 Hardware Optimizations vs. Coprocessor Optimizations 135
Model Validation 137
81 Tuming Parameter Estimation o0 L oo 137
8.1.1 Assumptions el e e 138
8.1.2 Platform I Configuration Delays 139
8.1.3 Platform II Configuration Delays 140
8.1.4 Summary of Configuration Delayso L L. 141
8.1.5 Memory Utilization Observations 141
8.1.6 Platform I Memory Utilization Delays 142
8.1.7 Platform Il Memory Utilization Delays.. 144
8.1.8 Summary of Memory Utilization Delays 145
8.1.9 Bus Utilization and Operating System Behaviour Observations 145
8.1.10 Platform ILumped Delays 146
8.1.11 Platform II Lumped Delays IR 146
8.1.12 Summary of Lumped Delays oo Lo oL 146
8.1.13 Processing Time Observations. 146
8.1.14 Platform I Processing Times, 147
8.1.15 Platform Il Processing Times 148
8.1.16 Summary of Processing Times 148
8.1.17 Platform Comparison 148
8.2 Comparison of Theoretical Performance with Actual Performance 150
8.3 Observations e 151
8.3.1 Pre-Processing and Post-Processing 151
8.3.2 System Profiling o oo 151
833 Processing Times L e 152

xi

8.3.4 Application Impact vs. System Impact oL 152

8.3.5 Performance Model Suitability Lol 152

8.4 Application Implications L oLl e 153
8.4.1 Course Computation Granularityo o ... 153

8.4.2 . Opportunities to Exploit Parallelism00 153

84.3 Tramsaction I/O Lo oL 154

8.5 Architectural Implications Ll 154
8.5.1 Configuration Delays oL oo 154

8.5.2 Memory Utilization Delays o0 0. 154

853 LumpedDelays 155

854 Processing Times L o Lo oo 155

8.5.5 Summary of Implications oL oL Lo 156

9 Conclusions 157
9.1 Thesis Contributions Lo L 157
9.1.1 The Performance Model o Lo 158

9.1.2 Challenges of Developing Configurable Coprocessors 158

9.1.3 Mainstream Software Application Speedups 159

9.1.4 Mainstream Software Application Delays 160

9.1.5 Desirable Properties of Mainstream Software Applications 160

9.1.6 Desirable Features of Configurable Computer Architectures 161

9.1.7 Reference Design for the ARC-PCI Board 161

9.1.8 Configuration Delays L 161

9.2 Potential for Future Research o o0, 162
9.2.1 Profiling of Mainstream Software Applications 162

9.2.2 Analysis of the Impact of System Load 163

9.2.3 Platform FPGAsand RPUs o o o 163

9.2.4 Translation of Software Algorithms to Hardware Designs 164

9.3 Thesis Applicability 164
Bibliography 165
A Experimental Results for Transfer Rates 173

xil

A1 Platform I: Windows NT Results o . oo
A2 Platform I: Linux Results o . o e

B Experimental Results for Pseudo-Random Number Generation
Bl Platform I Results
B2 Platform IT Results o o
B3 PlatformIII Results 0. . o o e

C Experimental Results for Minheap Management
C1 PlatformTIResults 0 L
C.2 Platform IT Results o . o e
C3 Platform I Results

D CSIM M/M/1 Queue Simulation Model

xiil

176
176
178
180

181
181
182
185

186

List of Tables

2.1 Comparison of Programmable Logic Technologies 10
2.2 Comparison of Bus Throughput 28
2.3 Comparison of Device Throughput 29
2.4 Configurable Computer Taxonomy 0oL 33
2.5 Configurable Computing Systems, Boards, and Devices 34
3.1 Transaction Pair Model Timing Parameters 41
3.2 Performance Model Timing Parameters for System 1 48
3.3 Performance Model Timing Parameters for System 2 49
3.4 Timing Parameter Estimates for a Non-Coprocessed System ™. 58
3.5 Timing Parameter Estimates for a Coprocessed System 59
3.6 Estimated Impact of Timing Parameters 60
4.1 Summary of API Functions e 71
4.2 Summary of Supported Device Driver IOCTLs 73
4.3 Base Address Regions L 76
4.4 Altera FLEX 10K50 Device Configuration Timing 79
4:5 User Design Handshaking Signals-. 83
4.6 Windows Transfer Comparisons 85
4.7 Windows Transfer Times 87
4.8 Linux Transfer Times o .. o e 88
4.9 Altera APEX 20K200E Device Configuration Timing 91
4.10 Summary of Computing Platform Processors 95
4.11 Summary of Computing Platform Coprocessors 95

Xiv

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Al
A2

CSIM Object Classes v v v v i vt s e s 101

CSIM Profiling Results 0 .. . 103
CSIM M/M/1 Performance Results 107
CSIM M/M/1 Speedups - 108
System Profiling Raw Results o o 109
System Profiling Percentages Lo 110
Unbuffered Test Results oo 119
Buffered Test Resultso 120
Unbuffered Test Results on an Uncached System 121
Buffered Test Results on an Uncached System 121
Impact of Caching on Performance 122
Platform Il Test Results . . .« o . o 123
Unbuffered Test Results oL oo 130
Buffered Test Results .*. .o .. 0 o o 0 0L v o 131
Unbuffered Test Results on an Uncached System 131
Buffered Test Results on an Uncached System 132
Impact of Caching on Performance 133
Platform II Blocking Test Results 134
Platform IT Non-Blocking Test Results 134
Summary of Configuration Delays L0000 141
Summary of Memory Utilization Delays 145
Summary of Lumped Delays Lo Lo 147
Processing Time Summaryo e 148
Non-Coprocessed Timing Summary 149
Coprocessed Timing Summary 149
Estimated Bounds on System Speedups Lo 150
Actual Application Speedups. L Lo 150
Windows Device Driver Execution Times - Software Timed (WSPEEDIA) 173
Windows Device Driver Execution Times - Hardware Timed (WSPEEDIB) 174

XV

A.3 Windows Unbuffered Application Execution Times {WSPEED2) 174
A.4 Windows Buffered Application Execution Times (WSPEED3) 174
A.5 Linux Device Driver Execution Times (LSPEEDI) 175
A6 Linux Unbuffered Application Execution Times (LSPEED2) 175
A.7- Linux Buffered Application Execution Times (LSPEED3) 175
Bl PRANDI 177
B.2 PRAND2 e 177
B3 PRAND3 . . . e 177
B.4 PRANDINC o e 178
B.5 PRAND2NC . . . e 178
B.6 PRAND3NC 179
B.7 ERANDI. e 179
B.8 ERAND2 e 179
B.9 SRANDL e e 180
C.1 PMINI e 181
C.2 PMIN2 e 182
C.3 PMIN3 . . . 182
C4 PMININC e 183
C.5 PMIN2NC .« . 0 e e 183
C.6 PMINBNC 183
C7 EMINL . . o e 184
C.8 EMIN2 o e e e e 184
C.9 EMIN3 e 184
CIA0SMINI e 185

xXvi

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5

4.1

Classification of Computing Machineso ... oo o oL 4
Classification of Programmable Logic Devices 0.0 v o 000000 10
OQOutput Macrocell from a Philips P3222V10o 13
Architecture of a Philips P3Z22V10 oL oL o 14
A Portion of an Aptix FPIC AX1024R oo o oo o i 15
Actel ACT1 Series FPGA Architecture 18
Actel ACT1 Series FPGA Logic Module o0 19
Xilinx 4K Series FPGA Architecture oL oL 19
Xilinx 4K Series Combinational Logic Block 20
Xilinx 4K Series Input/Output Block oo 0oL 21
Altera Flex 10K Series CPLD Architecture 23
von Neumann Computer Architecture 25
Intel 80x86 Processor Family Personal Computer Architecture 26
Types of Configurable Computer Architectures 30
Types of Configuration Modes 0oL 31
Types of Configuration Contexts i .. 32
Transaction Pair Model oo 40
Transactions Without Parameters. 42
Transa;ctions Without Return Values o L. 43
Comparison of Transaction Performance, 45
Comparisons of Execution Times L. 50
Mustration of Platform I o . 64

xvii

4.2 Photograph of the ARC-PCI Board« 65

4.3 ARC-PCI Board Bus Architecture Lo 68
4.4 ARC-PCI Systemn Components v v v v ve e n s i 70
4.5 Configuration Tining for Altera FLEX 10K Series Devices. 78
4.6 ARC-PCI Board Configuration on a Windows NT Platform 81
4.7 ARC-PCI Board Configuration on a Linux Platforme - 82
4.8 Hardware Development Flow o . 83
4.9 Buffered vs. Unbuffered Transactions. 86
4.10 Iilustrationof Platform ¥1 oL 90
4.11 Nios Embedded Processor Development Board 91
4.12 Nios Embedded Processor System Components 93
5.1 Coprocessed CSIM Application 106
6.1 Pseudo-Random Number Generator Finite State Machine 116
7.1 Minheap Interface Finite State Machine 127

Xviil

Chapter 1

Introduction

This thesis investigates use of configurable computers for the purpose of enhancing mainstream
software applications. Previous research has shown that configurable computers can improve the
performance of niche applications. The goal of this research is to gnantify, model, and analyze the
performance of configurable computers with respect to mainstream software applications. This
research explores the feasibility of building a library of configurable hardware components to

enhance tasks commonly required by software applications.

1.1 Motivation

Recent advances in the programmable logic device industry have made new approaches to com-

puting feasible. These advances include the following:

Increased Gate Capacity — Modern CPLDs (Complex Programmable Logic Devices) and FP-
GAs (Field Programmable Gate Arrays) provide as many as 8,000,000 usable gates using
in excess of 100 million transistors. By comparison, the Pentium II processor introduced in

May of 1997 consisted of 7.5 million transistors [Int02].

Improved Performance - Devices have been shown to handle clock frequencies in excess of

250 MHz [Von97] and many devices are capable of achieving clock frequencies in excess of

CHAPTER 1. INTRODUCTION 2

66 MHz without the need for floorplanning®.

Reduced Cost — In large quantities, programmable logic devices cost about the same as a mod-
ern processor. Devices such as the Cyclone [Cor02a} [Cor02b} are significantly less expensive

than general-purpose processors.

Dynamic Configuration — Dynamic (run-time) configuration has increased the flexibility and

usefulness of programmable logic devices.

Partial Configuration — Partial configuration has enabled a portion of a logic device to be
configured while the remainder of the device continues normal operation, thus reducing the

mnpact of configuration delays.

Advanced CAD Tools — Innovations in CAD {(Computer-Aided Design) tools and the prolif-
eration of HDLs (Hardware Description Languages) have simplified the task of building

reusable, custom digital circuits.

In 1997, industry trends indicated that high-speed, partially configurable logic devices with
1,000,000 usable gates would be in production by 2001 [RH97]. This turned out to be a conser-
vative estimate. By the 2nd quarter of 2000, the first commercially available logic device with
1,000,000 usable gates was released. The availability of such devices has spurred interest in the
field of configurable computing. The study of configurable computing focuses on the design, imple-
mentation, and use of configurable computers. A configurable computer is a computing machine
that possesses the ability to adapt its hardware architecture in real-time to the computation at
hand. While configurable computers need not utilize programmable logic devices, the existence

of such devices has simplified the development of configurable computers.

Configurable computing is based on the principle that a custom computing machine is likely
to perform a particular computation more efficiently than a comparable general-purpose machine.
A configurable computer’s hardware may be customized for a particular computation to exploit
parallelism. Traditionally, researchers have focused on the use of configurable computers for bit-
serial algorithms exhibiting fine-grained parallelism. Research has shown that programmable logic

devices are capable of achieving orders of magnitude of performance improvements compared to

1Floorplanming is the manual assignment of logic resources and routing resources by a hardware designer. As
development tools have improved, the need for this low-level assignment of resources has diminished.

CHAPTER 1. INTRODUCTION 3

software implementations for certain applications including image processing [AA95], cryptog-
raphy [VBR196], and hardware emulation [DGJ*95]. These niche applications of configurable
computing are important to some computer users. However, the majority of computer users rarely

have a need for applications such as image processing and hardware emulation.

A few researchers have investigated configurable computing as a means of mainstream comput-
ing. The BRASS (Berkeley Reconfigurable Architectures, Systems, and Software) Research Group
has investigated the use of programmable logic devices as configurable microprocessors [Deh94].
The goal of the BRASS Research Group was to create one or more microprocessors within a single
configurable logic device and then customize the functional units within these microprocessors to
the instruction stream. This research has the potential to revolutionize mainstream computing
but the complexities of the approach have prevented it from becoming a mainstream computing
technique. The most significant problem with this approach is that existing technologies still do

not provide sufficient memory bandwidth to support the frequent dynamic configurations required.

Rather than focus on a niche application or struggle with the problems of rapid run-time con-
figuration, this research investigates the development of configurable coprocessors to accelerate
common software components. By choosing mainstream software tasks most suitable for acceler-
ation, it is possible to avoid the problem of frequent configuration. The underlying belief is that
the achievement of a modest speedup applicable to a broad range of software is more significant
to mainstream computing than the achievement of a large speedup applicable only to a single
sbftware program. For configurable computing to become a mainstream computing technique, it

must be shown that configurable computers are useful for more than just niche applications.

1.2 Configurable Computing

Configurable computing is not a new area of research. The field of configurable computing evolved
from research into the reprogrammable and restructurable computers of the 1950°s and 1960’s. In
the early 1960’s, Estrin pioneered the development of the first restructurable computer [EBTB63].
His belief was that hardware specialization could enhance the performance of software while
simplifying the task of programmers [EBTB63]. Modern configurable computing is based on

essentially the same principles although the technology has improved substantially.

CHAPTER 1. INTRODUCTION 4

The terms reprograrmmmable, restructurable, microprogrammable and configurable are not inter-
changeable. A reprogrammable computer may be programmed to perform different tasks using
software. Reprogrammable computers may use a fixed hardware architecture since programma-
bility is provided using software.. Virtually all modern computer architectures fall into this class
of computers.. A restructurable computer uses a network of datapaths to exploit multiple pro-
cessing units for faster execution of a particular software task. The datapaths of a restructurable
computer may be modified at run-time but the control logic elements (i.e., processing units) are
fixed. A microprogrammable computer may be programmed at a low-level to emulate a particular
instruction set. This provides some control logic flexibility. A configurable computer permits the
creation /replacement of one or more processing units as well as modification of the datapaths.

This class of computer permits both the configuring of datapaths and control logic at run-time.

Figure - 1.1 classifies computing machines into reprogrammable, restructurable, configurable,
and microprogrammable machines on the basis of datapath and control logic flexibility. It should

be noted that a particular computing machine may fall into two or more classifications.

Classification of Computing Machines

A
2
=>92 Restructurable Configurable
o Computers Computers
T
£
pree g
©
g Microprogrammable
] Computers
(]

Reprogrammable
Computers
Control Logic Flexibility g

Figure 1.1: Classification of Computing Machines

The term, configurable computer, is now most often applied to computing machines using

dynamically configurable logic. In other words, configurable computers are now synonymous

CHAPTER 1. INTRODUCTION 5

with a class of computing devices incorporating configurable logic devices that can be configured
in-system, often at run-time. This definition is consistent with the use of the term in recent

literature.

1.3 Statement of Thesis

It is my-thesis that programmable logic devices have the potential to enhance mainstream com-
puting platforms in ways previously unimagined. Programmable logic devices can be. integrated
into modern personal computers and workstations to provide a means of achieving the benefits
of specialized hardware without incurring the costs typically associated with dedicated hardware
accelerators. These devices open new possibilities for tasks or algorithms that can benefit from
specialized hardware.. Even tasks that only marginally benefit from hardware acceleration are

potentially suitable for acceleration using a configurable coprocessor.

Tasks comnmonly implemented in software can be replaced with equivalent configurable hard-
ware components. The tasks to be implemented as configurable hardware components can be
determined by profiling target applications. It is likely that tasks such as memory management,
queueing, and sorting are good candidates for replacement. Once developed, configurable hard-
ware components, in the form of bitstream files for a particular configurable logic device, may
be dynamically loaded into a configurable logic board or configurable logic devices mounted on
a customized motherboard. By tightly coupling a configurable coprocessor with the processor
of the host computer system, enhanced performance is possible. Software can take advantage of
the configurable computing engine by calling specialized functions which eommunicate with the

custom hardware.

In some respects, the approach and its objectives are similar to those of firmware [Opl67].
However, configurable computing is capable of much more than just the resequencing of a set of
instructions. Configurable logic permits an entire computer architecture, including the control
logic and datapaths, to be configured. Complete hardware specialization is possible. As a result,
configurable computing provides flexibility without the degradation of performance sometimes

associated with microprogramming-based approaches.

Even a modest improvement in performance may be justifiable for mainstream computing. It

CHAPTER 1. INTRODUCTION 6

is unreasonable to expect that this approach can achieve orders of magnitudes of performance
improvements for mainstream computing applications. ‘Rather than attempt to achieve a huge
improvement in' a small subset of applications, this research attempts to achieve a modest im-
provement in a broad range of applications. If configurable logic is ever to enter into mainstream

computing, this will be the path required.

1.4 Thesis Contributions

This thesis makes the following contributions to the existing body of literature on configurable

computing for mainstream software applications:
1. introduces, explains, and validates a novel configurable computing performance model that
predicts both application performance and system performance,
2. illustrates several of the challenges associated with developing configurable coprocessors,

3. provides experimental results demonstrating speedups for two mainstream software applica-
tions (pseudo-random number generation and minheap management) executing on a tightly-

coupled configurable computer,

4. quantifies memory utilization delays, bus utilization delays, and operating system behaviour

delays for a mainstream software application (CSIM),

5. summarizes several desirable properties of mainstream software applications for configurable

coprocessing,

6. identifies desirable features of configurable computer architectures to ensure adequate per-

formance,

7. describes a reference design for an ARC-PCI Board with hardware support for dynamic

configuration and high-speed I/0, and

8. shows that configuration delays are not the most significant source of delay for computationally-

intensive applications.

CHAPTER 1. INTRODUCTION 7

1.5 QOutline of the Thesis

Chapter 2 introduces the subject of configurable computing by presenting a discussion of the
devices, tools, and configurable computing platforms that are commonly used. This chapter also
describes some of the challenges of configurable computing. Chapter 3 describes the need for
a model of configurable computers. A novel performance model of configurable computing is
introduced and described in detail. Chapter 4 describes the test platforms used to obtain the
experimental results presented in this thesis. The development process for each configurable
computing platform is presented. Chapter b, Chapter 6, and Chapter 7 describe experiments
conducted on mainstream software applications. The first application, CSIM, is a discrete-event
simulation library. The second application presented is pseudo-random number generation. The
third and final application studied is minheap management, a task not normally implemented in
hardware. Chapter 8 validates the performance model using the experimental results. This chap-
ter also notes several interesting observations. Chapter 9 concludes the thesis with a discussion

of the thesis contributions and interesting possibilities for future research.

Chapter 2

Introduction to Configurable

Computing

A configurable computer is a computing device that provides hardware that may be modified at
run-time to efficiently compute a set of tasks. Research has indicated price-performance improve-
ments of a factor of 1,000 can be achieved using configurable computing techniques for computation
intensive applications [Xil97]. Configurable computing is a relatively new area of research, despite
the fact that programmable logic devices have been in existence for several decades. Technological
advances now make it possible to exploit the dynamic nature of programmable logic devices. This
chapter introduces the technology behind configurable computing and the terminology associated

with this new area of research.

2.1 Programmable Logic Devices

The recent interest in configurable computing is largely. due to the existence of high-speed, high-
density programmable logic devices. The programmable logic device is the basic building block
of a modern configurable computer. It provides the ability to modify both the control logic
and datapaths of a portion of a computer in real-time. Since modern programmable logic devices

evolved from earlier forms of programimable logic devices, no discussion of configurable computing

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 9

would be complete without a thorough introduction to programmable logic devices.

2.1.1 Overview

A PLD (Programmable Logic Device) is an integrated circuit that implements a digital circuit
designed and programmed by a user. The first programmable logic devices became popular in the
1970°s as a replacement for SSI (Small-Scale Integration) and MSI (Medium-Scale Integration)
logic [BR96]. These early devices were ideal for implementing interface (also known as “glue”)
logic and other simple circuits. As programmable logic technology advanced, new forms of PLDs
were introduced. The most important of these devices, FPGAs (Field Programmable Gate Arrays)
and CPLDs (Complex Programmable Logic Devices), provided the size, performance, and ease of

use necessary for experiments in configurable computing.

Several classifications of PLDs have been proposed [BR96] [Alt96] [Jen94] [Tri94]. Building
upon these classifications, the one shown in Figure 2.1 is proposed. This classification enhances
previous ones through the addition of a class for RPUs (Reconfigurable Processing Units). In
addition, some new part names recently proposed (Platform FPGAs, and PSIDs) are included in

the classification. Each class of PLD is discussed in detail later in this chapter.

2.1.2 Programmable Logic Technologies

Not all programmable logic devices are created equal. The characteristics of a programmable logic
device are largely determined by the technology used to construct the programmable logic.. Among
the technologies used for building a programmable logic device are PROM (Programmable Read-
Only Memory), EPROM (Erasable Programmable Read-Only Memory), EEPROM (Electrically
Erasable Programmable Read-Only Memory), PLICE (Programmable Low-Impedance Circuit
Element) Antifuse, ViaLink Antifuse, Flash SRAM (Static Random Access Memory) and SRAM.
These technologies are discussed in detail in the book, “Principles of CMOS VLSI Design: A
Systems Perspective” [WE93]. Table 2.1 provides a brief comparison of the features of these

technologies.

Of these technologies, only SRAM-based devices with unlimited programming lifetimes are

suitable for use in a configurable computing system. All other programmable logic device tech-

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Programmabile Logic Device (PLD) Families

Simple Programmable Logic Devices

PAL
GAL
PLA
PEEL
EPLD
EEPLD

Programmabie Array Logic
Generic Array Logic
Programmable Logic Array

Erasable Programmable Logic Device

Foy PR TR

Prog ble Electically-Erasable Logic

Y P ble L.ogic Device

High Density ngmmmabie Logic Deviees

Compl "'efobg’mmbie'jLagwMim
Fleld-Programmable Gate Artay
Platform Field Peogrammable Gate Array
Reconfigurable Processiog Unit

ngrammab!a Interconnect Devices

Fiold-Progtammable Interconnect Component

Field-Programmabls leterconnect Device

Programmabie Switching and Interconnect Device

Figure 2.1: Classification of Programmable Logic Devices

. Programming . od
Technology Volatile Method | Lifetime in Cycles | Density Spe

PLICE Antifuse No External 1 High High

ViaLink Antifuse No External 1 High High

PROM No External 1 High High

EPROM No External 10,000 Typical High High
EEPROM No External 1 10,000 Typical Moderate | Moderate
Flash SRAM No In-System 10,000 Typical Moderate | Moderate
SRAM Yes In-System Unlimited Low Moderate

T Some EEPROM devices can support in-system reprogramming if the circuit is supplied a
programming voltage in addition to the normal supply voltage.

Table 2.1: Comparison of Programmable Logic Technologies

10

CHAPTER 2. INTRODUCTION TQ CONFIGURABLE COMPUTING 11

nologies lack the ability to be reprogrammed an unlimited’ number of times. Any PLD that can

be reprogrammed an unlimited number of times is considered to be a configurable logic device.

2.1.3 Statically, Dynamically, and Partially Programmable Logic De-

vices

Tt is sometimes useful to classify PLDs based on the reconfiguration methods the devices support.
PLDs are commonly classified into the following three categories: statically-programmable (one-

time programmable), dynamically-configurable, and partially-configurable logic devices.

Statically-programmable logic devices may be configured a finite number of times (e.g., 1,000-
10,000 times). Although these devices are not suitable for use in a configurable computing system
due to their limited lifetime, these devices can be used for computing systems that do not require
dynamic (run-time) configuration. Devices based on EEPROM and Flash SRAM technology are
examples of statically-progranunable logic devices. These devices are suitable for applications
such as rapid prototyping and hardware emulation. -Although each prototype of the system
requires a configuration cycle, it is unlikely that the number of prototypes tested over the usable
lifetime of the part will exceed the number of configuration cycles supported by the device. A
statically-programmable device is unsuitable for the implementation of a system requiring run-

time configuration.

Dynamically-configurable devices may be fully-configured-an unlimited number of times. These
devices permit the implementation of systems that require configuration at run-time. All dynamically-
configurable devices incorporate SRAM technology. A dynamically-configurable device may be

used to implement a system that requires frequent configuration.

Partially-configurable devices refer to a subset of dynamically-configurable devices that may
be configured one portion at a time. While a subset of the device is configured, the rest of
the device continues normal operation. Partially-configurable devices can be used to reduce the
amount of time spent waiting for the completion of the configuration of a device at run-time.

Partial configuration helps to reduce the delays associated with the configuration of a device.

18trictly speaking, the lifetime of a device is limited since all devices eventually fail. A configurable logic device
is simply a device whose lifetime is independent of the number of configuration cycles.

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 12

This capability is an extremely useful feature for configurable computing.

2.1.4 SPLDs (Simple Programmable Logic Devices)

The term, SPLD, is frequently used to refer to the simplest class of PLDs. The two basic types of
SPLDs are PLAs (Programmable Logic Array) and PALs (Programmable Array Logic). The PLA
was the first PLD to be manufactured commercially [BR96]. The first PLAs were introduced in
the early 1970’s but due to high manufacturing costs and poor performance, these devices did not
become popular. PLAs are composed of a programmable AND-plane and a programmable OR-
plane. These planes provide the equivalent of AND and OR gates using wired logic. Combinations
of AND and OR gates may be used to implement any small digital logic circuit within a PLA

[Man91}.

PALs, the second type of SPLD, are also referred to as GALs (Generic Array Logic) or PEELs
(Programmable Electrically Erasable Logic), depending upon the manufacturer of the devices.
The basic building block of a PAL is called a macrocell. PALs are composed of a set of macrocells
connected to an AND-plane. The set of macrocells is sometimes referred to as a fixed OR-plane
since each input to a macrocell must pass through an OR gate. PALSs are less complex than PLAs
yet provide nearly as much flexibility. A PAL may be configured to compute combinatorial and/or
registered functions of a small number of inputs. The exact number of inputs varies by part. The
number of macrocells in a device often corresponds with the mumber of outputs leaving the device.

An example of an output macrocell from a Philips P3Z22V10 [Phi97] is shown in Figure 2.2.

PALs typically incorporate EPROM or EEPROM technology for performance reasons. EPROM
and EEPROM technology are often capable of supporting higher clock frequencies than SRAM
technology. A few SPLDs based on SRAM technology exist. A common PAL is the 22V10. This
device consists of 10 output macrocells and is therefore capable of generating up to 10 output
signals. The architecture of a Philips P3Z22V10 [Phi97], a modern version of an EEPROM-based
22V10, is shown in Figure 2.3.

Due to the use of wide programmable planes (i.e., the AND plane in Figure 2.3), SPLDs are
limited in the number of macrocells that can be used effectively. This architecture restricts the

size of circuits that can be implemented in a single SPLD. Although SRAM-based SPLDs can

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

0 = Unprogrammed Fuse

Registered/Active-High/Macroceil Feedback
Combinatorial/Active-Low/Pin Feedback
Combinatorial/Active-High/Pin Feedback

1 = Programmed Fuse

Figure 2.2: Qutput Macrocell from a Philips P37222V10

13

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Bidirectional /O Pins
{Used As Inputs) Dedicated Input Pins

} Eo 12
Pin 1
1

Programmable AND Plane
44 x 132)

ORI SR EY SN

l Output Macrocells l

L

Bidirectional /O Pins
{Used As Qutputs)

Figure 2.3: Architecture of a Philips P3222V10

14

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 15

be used for small configurable logic designs, they are unsuitable for configurable computing tasks

requiring a substantial amount of programmable logic.

2.1.5 PIDs (Programmable Interconnect Devices)

PIDs are a class of PLD specifically designed for switching and routing signals. Although these
devices use programmable logic technology, they do not have the capability to compute combina-
torial or sequential functions of inputs. Their sole purpose is to route signals from input pins to

one or more output pins.

The two best examples of PIDs are FPICs (Field Programmable Interconnect Components)
and FPIDs (Field Programmable Interconnect Devices). FPICs are trademarks of Aptix [Apt93]
and FPIDs are trademarks of I-Cube [I-C94]. Functionally, FPICs and FPIDs are identical. FPICs
and FPIDs use a non-blocking switch matrix based on SRAM technology to route signals from
input pins to the appropriate output pins. A portion of an Aptix FPIC architecture is shown in

Figure 2.4. These devices use segmented channel routing to connect one or more I/0 pads.

CHITHIEES
CHAT S
[EHH L

/O Pad /O Track

‘ Programmable Element

—— Segmented Routing Track

Figure 2.4: A Portion of an Aptix FPIC AX1024R

The performance of PIDs has typically been limited to clock frequencies less than 20 MHz
[Apt95]. To address this limitation, I-Cube introduced a device known as a PSID (Programmable
Switching and Interconnect Device) [I-C97]. PSIDs target applications that require high-speed

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 16

switching. PSIDs support frequencies up to 233 MHz {I-C97] through the use of a non-blocking

switch matrix and design enhancements that simplify the routing of high-speed busses.

Although PIDs have obvious uses for networking applications, they are also useful for config-
urable computing. With a PID, it is possible to create a programmable circuit board that allows
the routing of signals on the board to be user-defined. Aptix FPCBs (Field Programmable Circuit
Boards) [Apt95] are examples of programmable circuit boards. These FPCBs are extremely useful
for the rapid prototyping of systems involving multiple PLDs. Since PIDs are based on SRAM
technology, the signal routing on the circuit board may be configured as often as required. Given
this property, designers of PLD circuits need not fix pin locations for a prototype circuit board

early in the design process. This approach simplifies and expedites the prototyping process.

2.1.6 HDPLDs (High-Density Programmable Logic Devices)

As the density of PLD devices increased, new HDPLD (High-Density Programmable Logic Device)
architectures were adopted to permit more efficient placement and routing of macrocells. These
advanced HDPLD (High-Density Programmable Logic Device) architectures include devices more
commonly referred to as FPGAs (Field Programmable Gate Arrays) and CPLDs (Complex Pro-
grammable Logic Devices). Although FPGA and CPLD architectures can be quite different, both

devices target similar applications (large-scale programmable digital circuits).

Gate arrays and FPGAs (Field Programmable Gate Arrays) are integrated circuits based on
the use of a regular array of gates connected by user-defined routing. In the case of an ordinary
gate array, the designer is only responsible for creating the masks for the gate array routing (i.e.,
the metalization layers). This approach reduces the NRE (Non-Recurring Engineering) costs
associated with the fabrication of an ASIC device. FPGAs further reduce NRE costs by allowing
the designer to route {program) the FPGA after fabrication. FPGAs are generic gate array devices
that may be programmed in the field.

FPGAs can be classified by programming technology and by cell topology. The program-
ming technology impacts device density, performance, and reprogrammability. The cell topology
impacts device density, performance, and routability. The four FPGA cell topologies are row-

oriented, structured array, hierarchical, and sea-of-gate topologies.

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 17

The Actel ACT1 Series FPGA, shown in Figure 2.5, is an example of a row-oriented topology.
This device consists of horizontal rows of logic modules. The general-purpose logic module shown
in Figure 2.6 may be used to implement simple combinational and sequential logic gates. Between
each row, a channel of routing segments is used to route internal signals horizontally. Vertical
routing segments (not shown in Figure 2.5 unless used to make a connection) permit the connection
of logic modules with horizontal routing segments. The perimeter of a row-oriented device is
surromnded by input/output modules connecting internal signals to the 1/O pins of the device via

buffers.

Row-oriented topologies are often used to implement PLDs based on Antifuse technology. The
use of Antifuse technology permits the vertical interconnect to run directly through logic modules.
An example of a logic module is shown in Figure 2.6. The ability to run vertical interconnect
results in space-efficient, high-performance devices. However, recall that Antifuse technology is

not suitable for configurable computing.

The Xilinx 4K Series FPGA, shown in Figure 2.7, is an example of a structured array topology.
The basic building block of this type of array is a CLB (Combinational Logic Block} shown in
Figure 2.8. In this architecture, CLBs consisting of LUTs (Look-Up Tables) and flip-flops are
arranged in a matrix. This FPGA architecture is sometimes called island-style since each CLB
is surrounded by horizontal and vertical routing channels. At the perimeter of the device, IOBs
(I/O Blocks) are placed to connect internal signals to the I/O pins. An example of an IOB is

shown in Figure 2.9.

Island-style FPGA topologies are common. FPGAs based on structured array topologies are
simple to understand and easily expandable. The trade-off between density and routability may be
adjusted by simply adding or removing routing segments. Similarly, device size may be increased

by simply adding new rows and/or columns of CLBs along with the appropriate routing segments.

CPLDs (Complex Programmable Logic Devices) are an example of a hierarchical PLD. Most,
but not all, CPLDs consist of a hierarchy of smaller PLDs. For example, a hierarchy of 22V.10
devices may be connected to form a CPLD. Devices such as the Altera MAX 7000 Series are an
example of this type of CPLD. However, CPLDs also include devices that might otherwise be
classified as FPGAs. An example of a CPLD architecture is shown in Figure 2.10. The Altera

Flex10K architecture resembles that of an island-style FPGA. This device is considered to be a

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Horizontal Routing Segments

~ Row of Logic Modules
Programmed Antifuse

O Bufters
/O Buffers

Program / Test Diabnostics

Figure 2.5: Actel ACT1 Series FPGA Architecture

18

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

ouTt

Figure 2.6: Actel ACT1 Series FPGA Logic Module

00 00 06 0o

00 00 00 00
O]0)0]0] s Eee
NG
) [|$ 22 oo m
ollo|o|o||s

00 00 00 00

Figure 2.7: Xilinx 4K Series FPGA Architecture

19

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

G4 —1
G3 —1 4input <)
G2 —{ LUT
Gl —1
L4 3-Input D
N IS 2 b
Y
F4 —
F2 —. - LUT- P
Fi— :
K
{Clock)
This symbol denotes a multiplexer controlled by the configuration program
The configuration signals are implied and not shown here.

Figure 2.8: Xilinx 4K Series Combinational Logic Block

20

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Slew Rate Passive
Control Pull-Up /
; Pull-Down

Out Output
Buffer ‘ Pad i
Output]
Clock

<

input ——_‘

1]

1

3

3

H

1

!

t

Buffer E !
3

¥

i

t

Pl i
— 1

I

]

¥

1

1

input
Clock

1 This symbol denotes a multiplexer controlied by the configuration program
The configuration signals are implied and not shown here.

Figure 2.9: Xilinx 4K Series Input/Output Block

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 22

CPLD for the following reasons:

1. It consists of a hierarchy of LABs (Logic Array Blocks) that resemble SPLDs.

2. The ratio of flip-flops to combinational logic gates is not nearly as high as the ratio found

in a typical FPGA.
3. Tt directly supports functions of a large number of inputs.

4. The performance of the device is more predictable than the performance of a typical FPGA

due to its non-segmented routing.

The sea-of-gates topology was popular in the late 1980’s prior to the merger of Algotronix and
Xilinx. The Algotronix CAL1024 device is an example of a sea-of-gates device. It is no longer
commercially produced. As device densities increased, the sea-of-gates topology was phased out
of development. The routing of a sea-of-gates device posed a difficult problem for modern CAD
tools due to the amount of flexibility provided by the architecture. More restrictive topologies

were found to be much easier to place-and-route.

Regardless of the topology, FPGAs and CPLDs are the highest density PLDs on the market
with gate counts approaching 8,000,000 usable gates. Very complex devices incorporating built-in
functional units and high-speed serial I/O have been introduced. These technological advances
further improve the density and performance of devices. SRAM-based HDPLDs are the building

blocks of modern configurable computers.

2.1.7 RPUs (Reconfigurable Processing Units)

The term RPU was first proposed by Steve Casselman of Virtual Computing Corporation [Cas96].
This class of PLD includes FPGAs and CPLDs with special enhancements to support partially
configurable computing. These devices provide mechanisms for high-speed partial configuration.
Hardware compon.ents may be swapped into and out of a single device in real-time. In addition,
these devices provide built-in functional units to improve the performance of common operations
such as addition and bit-shifting. Instead of building upon arrays of combinational logic blocks
and logic elements, RPUs often build upon arrays of simple processing units. Over 20 different

variations of RPUs have been documented [Har01].

23

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

(501 ez Off -

(8v3a) yooig Aeuy peppequi

J08ULODIBI] |BOOT
(371 wetwsiz oBo

(gy1) ool Aeuty o160

__ losuuodie|

uwne)

Figure 2.10: Altera Flex 10K Series CPLD Architecture

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 24

The DPGA (Dynamic Programmable Gate Array) [Deh94] proposed by André Dehon at MIT
was one of the first RPU designs. This chip included a small on-chip instriction memory to assist
with context-switching. Based on this device, the TSFPGA Time-Switched Field Programmable
Gate Array [Deh96] and the MATRIX [MD96] RPUs were developed. The Colt device developed
by Peter Athanas is another example of an RPU. It tackles the problem of context-switching using

a technique known as Wormhole Run-Thine Reconfiguration [BAM96).

The Xilinx XC6200 Series devices are the only commercial devices on the market that may
be classified as RPUs. These devices support partial configuration and provide dedicated logic
for the implementation of important functions. The Xilinx XC6200 Series devices are also the
first commercial devices to have a public-domain bitstream format. All other PLDs use propri-
etary bitstream formats for device programming. For this reason, these devices have been widely
adopted for research into configurable computing. Research conducted by Xilinx in August 1997
indicated that more than 100 research institutions around the world had acquired Xilinx XC6200

Series devices for research [Xil97].

2.2 Introduction to Modern Computer Architecture

Modern computer architecture has evolved since the early days of computing. Technological
advances have permitted the development of complex computer architectures. However, the fun-
damentals of computer architecture remain the same. All computers consist of processing units,
storage devices, input/output devices, and interconnection structures. The number of processing
units and storage devices supported, the types of processing units and storage devices supported,
and the interconnections among processing units and storage devices may differ but the building

blocks remain the same.

2.2.1 von Neumann Computer Architecture

John von Neumann introduced a fundamental model of computation in 1945 when he drafted a
report [vN45] on the EDVAC (Electronic Discrete Variable Automatic Computer). The von Neu-
mann Computer Architecture [God93a] has become the foundation of modern computer architec-

ture. The von Neumann Computer Architecture consists of a Central Control [Unit], a Central

CHAPTER 2. INFRODUCTION TO CONFIGURABLE COMPUTING 25

von Neumann Computer Architecture

I
i
|
f
§
i
t
i
!
i
i
i
§
i
i
t
]
i
]
]
!
f
i
!
1

N e e v oaY . e vy 2 7

Central Processing Unit

Agg:'rg:éc ' input / Om;mt ;

o e

Figure 2.11: von Neumann Computer Architecture

Arithmetic [Unit], a Memory, and Input / Output [Devices| as shown in Figure 2.11 [God93b].
The Central Control [Unit] and the Central Arithmetic [Unit] combine to form a CPU (Central
Processing Unit). The von Neumann Computer Architecture is based on the stored program con-
cept. A program is a sequence of instructions to be executed. Prior to execution, the Memory is
loaded with a program. Upon execution, the Central Control [Unit] reads an instruction in Mem-
ory, decodes the instruction, and performs the tasks associated with each instruction. Although
simple in concept and design, the von Neumann Computer Architecture provides the flexibil-
ity necessary to build a general-purpose computer capable of performing a complex sequence of

computations.

2.2.2 Personal Computer Architecture

Personal computers based on the Intel 80x86 Processor Family have dominated the computer
marketplace for the past two decades. Personal computer architecture has evolved from an archi-
tecture quite similar to the von Newmann Computer Architecture into the complex architecture
shown in Figure 2.12. Enhancements and technological innovations have been incorporated into

the architecture while maintaining backward compatibility with legacy devices.

One key difference between the von Neumann Computer Architecture and the Intel 80x86
Processor Family Personal Computer Architecture is that the CPU does not connect directly with

all other functional units and devices. A hierarchy of busses and bridges allow the interconnection

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 26

Intel 80x86 Processor Family Personal Computer Architecture

Central
Processing Unit

and
L1 Cache

L2 Cache Bus

Systemn Bus

AGP Bus Memory Bus

Accelerated : :
Graphics --
- Port

T R

s

=20

Figure 2.12: Intel 80x86 Processor Family Personal Computer Architecture

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 27

of both high-speed devices and legacy devices. This hierarchy provides more opportunities for the
CPU to work on one task while devices work independently on other tasks. This architectural
feature is an example of low-level parallelism. The CPU operates on a single instruction stream
but the completion of an instruction may cause a device to start performing a task while the CPU

continues executing its instruction stream.

This noticeable change in computer architecture results from a desire for high system perfor-
mance while maintaining backwards compatibility with legacy devices. The bus hierarchy allows
slower, legacy devices to connect to a high-speed processor without significantly reducing the
performance of the CPU on other tasks. The CPU, the busses, and the devices often operate
at different clock frequencies. The CPU may eventually be forced to wait for a slow device to
complete an operation. However, if the CPU is capable of executing instructions while waiting

for a slow device to respond to. a request, overall system performance improves.

Clearly, the introduction of independence between functional units and devices within a com-
puter blurs the line between sequential and parallel processing. Personal computers are capable
of computing several tasks in parallel. However, this low-level parallelism does not change the
sequential nature of the instruction stream. All of the low-level parallelism may be hidden from

2. For this reason, modern computer architectures are considered to be examples

the end user
of sequential computers. The term parallel computer is commonly associated with computing

machines that expose the existence of two or more processing units.

Performance Limitations in Personal Computers

There are limits to the performance benefits that can be achieved by adding more devices and
busses to a computer architecture. A bus hierarchy introduces synchronization points. When
two busses wish to share information, synchronization between the busses is necessary. Bridges
attempt to alleviate synchronization bottlenecks by scheduling bus transactions and buffering
responses to reduce the impact of synchronization. Bridges effectively tradeoff bus latency for
increased throughput. By using the time spent waiting for a slower bus to respond to a request

effectively, it is possible to improve overall system performance.

20perating systems often expose some of the parallelism through the use of kernel functions and application
libraries to allow programmers to exploit the hardware more aggressively.

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 28

Comparison of Bus Throughput

System Bus
AGP Bus (4X)
BPCI Bus

Firewire Bus

ATA/100 Bus 5
SCSI-3 Bus 4
USB 2.0 Bus 1 480 480 3
ISA Bus 16 10 160 1

Table 2.2: Comparison of Bus Throughput

As devices and busses are added, the control logic increases in complexity. This additional
complexity can restrict performance. Personal computer architectures have traditionally sacrificed
performance for backwards compatibility and flexibility. For example, support for the 16-bit ISA
(Industry Standard Architecture) Bus still exists in many personal computers. The throughput
of the ISA Bus is approximately three orders of magnitude less than that of a modern CPU. The
issue rate for a CPU can be two 32-bit instructions per clock cycle at a clock rate of 2 GHz. This
is effectively a rate of 32-bits per 250 ps. Legacy ISA Cards operate on 16-bit instructions per bus
cycle at a bus rate of 8 MHz3. This is effectively a rate of 32-bits per 250 ns. Therefore, a modern
CPU issues instructions approximately 1000 times faster than the ISA Bus. This throughput
difference can result in significant delays when synchronization between two busses occurs. The
bridges connecting busses in the bus hierarchy attempt to minimize these delays by buffering and
reordering bus transactions. However, these delays can never be eliminated. For example, a PCI
bus transaction always impacts the system bus. A comparison of the throughput of busses is

provided in Table 2.2 and a comparison of the throughput of devices is provided in Table 2.3.

3Strictly speaking, the clock frequency of an ISA card can range from 6 MHz to 10 MHz, depending upon the
CPU clock frequency

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 29

Comparison of Device Throughput

CD-ROM (52X)

Table 2.3;: Comparison of Device Throughput

2.3 Configurable Computer Architectures

Configurable computers use configurable hardware structures to provide a level of hardware flexi-
bility not found in ordinary computer architectures. Configurable computer architectures typically
consist of a fixed, general-purpose hardware component and a confignrable, application-specific
hardware component. The general-purpose hardware component may be a processor core or a
complete general-purpose computer system. The application-specific hardware component is typ-
ically one or more HDPLDs configured for a particular task. The two components may be coupled
at the instruction level, the system bus level, or the peripheral bus level as shown in Figure 2.13.
A computer that uses configurable hardware at the instruction-level is referred to as a reconfig-
urable processor unit. A computer that couples configurable hardware with a CPU at the system
bus level is referred to as a tightly-coupled configurable computer. A computer that couples pro-
grammable hardware with a CPU at the peripheral bus level is referred to as a loosely-coupled

configurable computer.

Loosely-coupled and tightly-coupled configurable computer architectures are prevalent. These
coupled configurable computer architectures can be built by integrating off-the-shelf components.
The configurable hardware is often referred to as a configurable coprocessor. A configurable
coprocessor may be treated as just another device in the system. Alternatively, a configurable
coprocessor may be treated as another, arguably less powerful, processor. Regardless, the intro-
duction of & configurable coprocessor presents opportunities for increased parallel computation

and increased throughput.

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Types of Configurable Computer Architectures

Reconfigurable Processor Unit
{instruction Level Coupiing)

L2 CacheBus I | SystemBos

Configurable
Hardware
Component

Tightly-Coupled Configurable Computer
ghty (Sys‘:em Bus Levegl Coupling) P

Central |
Processing Unit

a L2 Cache Bus: | SystemBus
11 Cache

Configurable
Hardware
Component

Loosely-Coupled Configurable Computer
(Peripheral Bus Level Coupling)

Central
Processing Unit
~ and
L1 Cache

L2 Cache Bus System Bus

Configurable
Hardware
Component

Figure 2.13: Types of Configurable Computer Architectures

30

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 31

Types of Configuration Modes

Full Configuration

Initial Configuration Futl Configuration Data Final Configuration

Partial Configuration

initiat Configuration Partial Configuration Data Final Configuration

Figure 2.14: Types of Configuration Modes
2.3.1 Types of Configurable Computers

It is possible to classify configurable computers using configuration modes and configuration con-
texts. A configuration mode refers to the method used to store a new or modified design into the
configurable hardware. A configuration context refers to the storage of one or more active designs

within the configurable hardware.

Two types of configuration modes exist. Configurable devices may be either fully-configured or
partially configured. Full configuration requires that the entire configurable device be configured at
one time. Partial configuration permits a portion of a configurable device to be configured without
the need to configure the entire device. Partial configuration requires much more sophisticated

development tools and devices. The two configuration modes are illustrated in Figure 2.14.

Three types of configuration contexts exist. Configurable devices may be classified as single
context, multiple context, or pipeline context. Single context devices can only hold a single design
that is either in a state of configuration or active use. Multiple context and pipeline context devices

support an active design as well as several inactive designs, one of which may be in a state of

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 32

Types of Configuration Contexts

Single Context

Cor Data

B Conﬁgurati’on

Multiple Context

Executing
C guration

Configuration Data

Executing
Configuration

Figure 2.15: Types of Configuration Contexts

configuration. In a multiple context device, any inactive design can be switched with the active
design. In a pipeline context device, the first design in the pipeline is always the active design.

The three configuration contexts are illustrated in Figure 2.15.

Using the configuration modes and contexts to classify configurable hardware devices, it is
possible to develop a taxonomy for configurable computers. This taxonomy is shéwn in Table 2.4.
It should be noted that a partially configurable, pipelined device does not yet exist. Such a device
would be very complex and it would require an equally complex toolset to support the design

and configuration of the device. However, it is theoretically possible that such a device will be

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 33

Configurable Computer Taxonomy

‘able 2.4: Configurable Computer Taxonomy

mtroduced as toolsets improve.

2.4 Configurable Computing Platforms

The variety of programmmable logic devices available has led to a variety of approaches to con-
figurable computing. There are three approaches to configurable computing that have become
popular. The first approach is to use a programmable logic device to implement one or more
simple processors within a computer system. The second approach is to build an entire computer
system out of programmable logic devices. The last, and by far most popular, approach is to

build a programmable logic board and then use it as a custom hardware-based accelerator.

The use of programinable logic devices as hardware-based accelerators has resulted in the de-
velopment of a number of custom computing machines. Table 2.5 categorizes some interesting
configurable ecomputing machines. . The majority of the machines listed are examples of pro-

grammable logic boards suitable for coupled configurable computing,.

2.4.1 State-of-the-Art Configurable Computing Machines

State-of-the-art configurable computing machines share the following characteristics:

1. support for multiple programmable devices (FPGAs, CPLDs, or RPUs),
2. high usable gate capacity,

3. high-speed bus interface (e.g., SBus, PCI, or custom),

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING

Configurable Maximmm
Computing Year Citation Approach Device Counfiguration Purpose
Systems / Boards / Devices Capacity Context | Mode
APS X-84 1096 [Ass06] ISA Board 1-XC 2020 Single Full Education
Anyboard 1893 {\’MT+92] ISA Board 5-XC3042 Single Full Research
ARC-PCL 1997 {AlLY7a] PCI Board 3-EFPF10Ks50 Single Full Research
BORG 1992 {Chad4) ISA Board 2-XC3030 + 2-XC3042 Single Full Education
BORG-IT 1094 [{Chao4] 1SA Board 2-XC4003 + 2-KC4002 Single Full Education
Chameleon 1902 {HPu2} System 7-CAL1024 Single Full Rescarch
CHAMP 1604 [Bax24] VME Board 16-XC4013 Siugle Full Research
CM-2X 1993 icres) System 16-XCa00% Single Full Research
EVCH 1945 {CTS95] SBus Board 1-XC4013 Single Full Commercial
Nios Development Board 1099 {Cor02c} System 1-EPF20K200E Single Fuli Commercial
Ganglion 1592 YME Board 24.XC3004 Single Full Research
H.O.T. 1 1996 f 51 PC1 Board 1 XC6216 + 1 XC-4013 Single Partial Commercial
H.O.T. 11 19898 Veeoest PCI Board 1 XCS40-3 + 1 XCY5108-15 Single Partial Commoercial
H.O.T. IL-XL 1998 [VCCos] PC1 Board 1 XC4062XLT-1 + 1 XCT95108-15 Single Partial Commercial
MORPH-ISA 1952 1SA Board 6-XC4025 Single Full Research
Nano Processor 1904 IWHGY4) ISA Board 2-XC30980 Single Fuli Commercial
PCT Pamette V1 1996 {VBR+ a6] PCI Board 5-XC4013 Single Full Research
FPeRLe-0 1989 BRV&Y} VME Board 25-XC3020 Single Full Research
PeRLe-1 19938 DEC Board 24-XC3090 Single Full Research
PRISM 1991 [\\’AL+ 931 System 4-XC3090 Single EFull Research
PRISM-I1 1003 waL+ es; System 68-XC4010 Single Full Research
P-Series Virtnal Computer 31903 [Cas03] Systerm 52-XC4013 Single Full Commercial
Rasa 1993 {TAS9Y} ISA Board 3-XC4010 Single Fulj Research
RIPP-10 1993 [Ar04d] ISA Board 8-EPF81188 4 1-EPF8452 Single Ful} Research
R”RPM 1995 (DGJT 98] SCSI Device 83-XC4013 Single Fal Resecarch
SPACE 1993 IMCMBO3] Systemn 16-CAL1024 Single Full Research
SPACE 2 1996 {Mi106] System 8-XCB8264 Single Partial Research
Spectram 1996 {Cuorde] Systern 32-XC4013 4 2-XC4010 Single Full Cominercial
Splash 1989 [GHK T 91} VME Board 32-XC3000 Single Full Research
Splash 2 1992 {ABDO2] SBus Board 16-XC4010 Single Full Research
Spysder 1992 {1s93] VME Board 5-XC4003 + 2-A1280 Single Full Rescarch
Stratix Development Board 2003 {Micu2j Systemn 1-EPS125 Single Full Commercial
Teramac 1995 [ACC‘*" 95} SCS1 Device 108-PLASMAs Single Full Research
Transmogrifier-1 1994 !GKC"}" 94) 4.XC401¢ Single Full Research
Transmogrifier-2 1997 [LG\'"‘L 07] 32-EPF10K50 Single Full Research
UP 1 Education Board 1997 [ALOTH] 1-EPF10K20 4+ 1-EPM71288 Single Full Education
Virtex-11 Pro Prototype Platform 2002 [Xilo2] 1-XC2VPaG Single Full Commercial
X840 1997 {X E9T] System 1-XC4010 Single Fuil Education
X835 1997 [Cor9T] System 1-XCY5108 Single Full Education

Table 2.5:

Configurable Computing Systems, Boards, and Devices

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 35

4. partial configurability, and

5. availability of tools to assist with development and debugging.

Some configurable computers that have these characteristies include VCC’s H.O.T. (Hardware
Object Technology) II Development Systemn [VCC98], Altera’s ARC-PCI Board [Alt97al, the
University of Toronto’s Transmogrifier II [LGv*97] and the Giga Operations Spectrum System
[Cor96]. All of these development systems are well-suited for advanced research into configurable

computing.

2.5 Benefits of Configurable Computing

Configurable computers have the rather unique property that they provide a means of exploiting
fine-grain parallelism without sacrificing the ability to support other forms of parallelism. Bit-wise
parallel algorithms and other algorithms that exhibit fine-grain parallelism are ideally suited for
implementation in programmable logic devices. However, programmable logic devices are equally
adept at exploiting medium or large-grain parallelism. Configurable computers can adapt to the

problem at hand.

A programmable logic device can be programmed to operate like a SIMD (Single-Instruction,
Multiple Data) parallel computer, or a MIMD (Multiple-Instruction, Multiple Data) parallel com-
puter. With the advent of dynamically programmable logic, it is even possible to interchange from
a SIMD architecture to a MIMD architecture in real-time. This is unlike any SIMD/MIMD hybrid

architecture ever proposed [Dun90].

Configurable computers also present an opportunity for a significant savings in terms of cost. It
is possible to envision a single configurable computing device replacing a set of dedicated hardware
components. Similarly, common software tasks can be accelerated using a single programmable
logic device. Software tasks that are used infrequently by the general population might be suitable

for coprocessing using configurable computing technigues.

It is unknown whether the full benefits of configurable computing will ever be realized. While
configurable computing has the potential revolutionize computing, the challenges of configurable

computing are complex. These challenges must be addressed for configurable computing to become

CHAPTER 2. INTRODUCTION TO CONFIGURABLE COMPUTING 36

a viable technique.

2.6 Challenges of Configurable Computing

Configurable computing is a new paradigm for computing. There are a number of challenges faced
by designers of configurable computer architectures and applications. The challenges are a direct

result of the parallelism inherent in hardware.

The challenges of configurable computing are similar to those faced by designers of parallel
computing systems. The reason for this is simple. Systems of digital logic are inherently paral-
lel. Unless a designer uses a mechanism, such as a finite state machine, to foree a sequencing of
operations, all hardware operations occur in parallel. Because of this fact, the most significant
challenge of configurable computing is the effective exploitation of the parallelism of the config-
urable hardware. The translation of a sequential algorithm to a concurrent algorithm is a very

difficult task.

Designs of configurable hardware components must tackle some difficult issues related to syn-
chronization, communication, hardware limitations, and software interfacing. These hardware
/ software codesign issues have been resolved by hardware designers with some success [KS02]
[BL97] [KL95] [BTA93] for certain applications. These issues still remain a significant design
challenge for mainstream computing. While CAD (Computer Aided Design) tools may eventually
address hardware limitations effectively [RH97}, synchronization and communication will always
be imiportant issues to consider. As long as HDLs (Hardware Description Languages) permit
the expression of parallelism, synchronization and communication will be issues for designers to

resolve.

Dynamically configurable computing presents an additional challenge to designers in the form
of time partitioning. Not only must configurable hardware components be partitioned to fit in the
available space in the programmable logic devices, the components must also be partitioned with
respect to time. In a dynamically configurable computer, hardware components may be swapped
in and out of the programmable logic devices when deemed appropriate. This process is not unlike
the operation of virtual memory. However, the problem is much more difficult since swapping of

a hardware component physically changes the computer itself. The problem of time partitioning

CHAPTER. 2. INTRODUCTION TO CONFIGURABLE COMPUTING 37

is a popular area of configurable computing research [BAMO96] [Deh96] [PB99].

All forms of computing pose challenges. While the complications associated with configurable
computing are significant, it is possible that the benefits of this new computing paradigm outweigh
the costs in certain situations. To predict when this may occur, an accurate model of configurable

computing is necessary.

Chapter 3

Models of Configurable
Computing

To analyze the performance of a coupled configurable computer, it is useful to model the system
as a heterogeneous mmiltiprocessor using techniques applicable to parallel and distributed systems.
The increased opportunities for parallel computation should be taken into account when evaluating
the performance of a configurable computer. These new opportunities for parallelism permit
application-specific configurable hardware to deliver additional processing resources to the system.
By permitting a host computer to focus on other operations, configurable hardware can enhance
system performance, even if the configurable hardware is fundamentally slower than the computer

that hosts it.

3.1 Introduction to Configurable Computer Models

A configurable coprocessor is an fndependent processing unit within a computer system. Due to
their reliance on SRAM technology, configurable coprocessors execute at slow clock frequencies
compared to modern processors. However, configurable coprocessors provide application-specific
circuitry that often allows them to outperform a general-purpose processor. This performance

benefit is particularly true for niche applications.

38

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 39

It is important to understand that it is possible to accelerate a processor by adding another
processor, regardless of the relative speeds of the two processors if synchronization is not an
issue. When a slow processor is added to a system with a fast processor, more tasks can be
performed provided that synchronization between the processors is not a bottleneck. - As long as
the processors can compute in parallel, speedup is possible. Using this reasoning, it is possible
for a configurable coprocessor to accelerate a host computer system with a fast processor. To
investigate the realities of such an approach, a detailed model of a coupled configurable computer

system is needed.

A model of configurable coprocessing has aiready been proposed [CMQO02]. However, this
model does not explicitly address the impact of memory utilization delays, bus utilization delays,
and operating system behaviour delays. Therefore, a more detailed model is necessary to analyze

these aspects of the performance of a coupled configurable computer system.

3.2 The Transaction Pair Model

It is possible to model a program executing on a loosely-coupled or tightly-coupled configurable
computer system as a sequence of transactions between a host computer and a configurable
coprocessor. In the context of a coupled configurable computing system, transactions represent
atomic, coprocessor operations. The use of a transaction model is common in the field of parallel

and distributed systems, particularly for systems that require high reliability [Jal94] [Tan95].

Transactions require synchronization between the processor and the coprocessor twice during
every transaction. The processor first communicates parameters to the coprocessor. After com-
puting results, the coprocessor then communicates the results back to the processor. Both of these
communications require synchronization between the processor and the coprocessor. The transac-
tion concept [Gra81] may be enhanced by developing a model that focuses on the synchronization
between the processor and the coprocessor. The advantage of such a model is that it provides
a mechanism to support long transactions without introducing a large performance bottleneck.
Rather than model a program as a sequence of transactions, a sequence of transaction pairs is
vsed. The transaction pairs represent synchronization points between the processor and the co-

processor. This model, referred to as the transaction pair model for the purpose of this thesis,

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 40

Transaction Pair Model

General-Purpose Application-Specific
Hardware Hardware
{Processor) {Coprocessor)

EE R E-R-R-y TR R R X FOR NS R L oE NUE mmwumummummto
tPREA

tPREB

ter

tEXEB tTP

tEXEA

tPOSTB

tPOSTA

AEEEEN ARy TS

Processor A Processor B

Figure 3.1: Transaction Pair Model

accounts for pre-processing, communication of parameters, parallel execution, communication of

results, and post-processing.

Figure 3.1 illustrates the transaction pair model. It should be noted that Figure 3.1 is just one
possible view of a transaction pair. The processor is assumed to be the master of the transaction
pair and the coprocessor is assumed to be the slave. Some operations may require more processing
time from one of the two processing units. If the processor requires more processing time, the
coprocessor may only utilize a portion of tprrp and tpogrp. If the coprocessor requires more

processing time, the processor might only be able to utilize a portion of tpxga-

Table 3.1 defines the timing parameters used by the transaction pair model. The processor is

referred to as Processor A and the configurable coprocessor is referred to as Processor B. For all

CHAPTER 3. ‘MODELS OF CONFIGURABLE COMPUTING 41

timing parameters, the subscripts A and B have been used to denote timing parameters specific

to each processor.

| Timing Parameter | Definition |

iPREA This is the time required by Processor A to produce parameters for the
transaction to Processor B.

tep This is the time required by Processor A to send parameters for the
transaction to Processor B.

tEXEA This is the time available to Processor A to exccute mstructions while
waiting for a response from Processor B.

ter This is the time required by Processor A to receive return values for the
transaction from Processor B.

tPOSTA This is the time required by Processor A to consume return values for
the transaction from Processor B.

tPREB This is the time available to Processor B to execute instructions while
waiting for the start of a new transaction from Processor A.

tEXEB This is the time required by Processor B to execute a transaction imiti-
ated by Processor A.

tPOSTE This is the time available to Processor B to execute instructions while
waiting for the conclusion of the current transaction from Processor B.

trp This is the total time required for the execution of a transaction pair.
This is simply the sum of tprea, tcpr, tExEA, tCR, and tposTa:

o This is the start time of the transaction pair.

to +trp This is the end time of the transaction pair.

Table 3.1: Transaction Pair Model Timing Parameters

The transaction pair model provides a starting point for further analysis of the performance
of coupled configurable computer systems. Each transaction pair represents the execution of a
single operation on a configurable coprocessor. An operation may be very simple (e.g., a single
instruction) or very complex (e.g., a complete algorithm). It is possible to model any application
as a sequence of transaction pairs. Therefore, the transaction pair model can be applied to any

application program.

For operations that do not require the communication of parameters from the processor to the
configurable coprocessor, the transaction pair model reduces to the model shown in Figure 3.2.
The first communication step and pre-processing are not required. In practice, this situation is
unlikely to occur since synchronization is often required at the start of a coprocessor operation.

However, it is important to show that this situation can be handled by this model.

For operations that do not require the communication of return values from the configurable

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 42

Transactions Without Parameters

General-Purpose Application-Specific
Hardware Hardware
{Processor) (Coprocessor}

tEXEB

BN SR S MDA MY B

tEXEA

tCR tTP

tPOSTB

tPOSTA

Processor A Processor B

Figure 3.2: Transactions Without Parameters

coprocessor to the processor, the transaction pair model reduces to the model shown in Figure 3.3.
The second communication step and post-processing are not required. In practice, this situation
is unlikely to occur since synchronization is often required at the conclusion of a coprocessor

operation. However, it is important to show that this situation can be handled by this model.

For some operations, it may be necessary to initiate several data transfers between the pro-
cessor and the coprocessor. It should be noted that the transaction pair model supports the
communication of large amounts of data. The timing parameter, {cp, can represent the time
required to communicate a single parameter or multiple parameters. Similarly, the timing pa-
rameter, tcpr, can represent the time required to communicate a single return value or multiple

return values.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 43

Transactions Without Return Values

General-Purpose Application-Specific
Hardware Hardware
{Processor) {Coprocessor)
W N OSEERY SNY BY SRS W Y SIS BV ONT 8 I R B NS e SR ae mmmmmmﬁwmwwto

tPREA

ter te

texen

tEXEB

Processor A Processor B

Figure 3.3: Transactions Without Return Values
3.2.1 Comparison of Transaction Performance

The transaction pair model can be used to compare the performance of a multiprocessor system
with the performance of a configurable coprocessor system. Using the transaction pair model,
an application is simply a sequence of transaction pairs. Assume that an application exists that
requires t4pp to process all transaction pairs on a computer with a single processor. Since the
transaction pairs execute on a single processor, no time is required to communicate transaction

parameters and return values. Hence, the total execution time is tapp.

Now, consider a multiprocessor system with two processors identical to the processor in the
single processor computer. If the computations associated with the transaction pairs are dis-
tributed to the processors equally, the execution time of the application becomes 1/‘—2’—’, neglecting
the time required to communicate transaction parameters and return values. Application and
system speedup are limited to a factor of 2, neglecting secondary effects such as changes in cache

coherency and operating system behaviour.

Next, consider a configurable coprocessor system that consists of a single processor and a

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 44

configurable coprocessor. Assume that the processor is identical to the processor in the single
processor computer. Further assume that the coprocessor is a factor of Fpx g times faster than
the processor at executing operations associated with transactions. If the computation associated
with the transaction pairs is distributed to the processor and the coprocessor on the basis of
relative processing capability, the execution time of the application becomes ?EL%IJFT) neglecting
the time required to communicate transaction parameters and return values. Application and

system speedup are limited to a factor of Fpxp + 1, neglecting secondary effects such as changes

in cache coherency and operating system behaviour.

For -the purpose of this exarple, the time required to communicate transaction parameters
and return values has been assumed to be negligible. The analysis presented may still be valid
if this assumption is not true. If the times required to communicate transaction parameters and
return values are approximately equal for both systems, the communication overhead reduces
application performance by a fixed amount on both systems. Even if more time is required to
communicate transaction parameters and return values by the configurable coprocessor system,
it is unlikely that the communication overhead is sufficient to cause the multiprocessor system to

outperform a fast, configurable coprocessor system.

Figure 3.4 illustrates the performance comparison between a multiprocessor system and a
configurable coprocessor system. The configurable coprocessor system has the potential to out-
perform the multiprocessor system if X is greater than 1. If this is the case, it is possible for the

coproeessor to process transactions faster than the processor.

This comparison only considers the relative processing power of the systems. The comparison is
simply performed to illustrate the limitations of multiprocessor systems. The speedup associated
with a multiprocessor system is limited to the number of processors in the system since the
processors are identical.! This is not the case for a configurable coprocessor system. A fast,

configurable coprocessor may speedup a system to a much greater degree.

Igtrictly speaking, the speedup can exceed the number of processors if the influence of secondary effects is
positive. For example, additional cache memory in a multiprocessor system may result in better cache coherency
and thus, better system performance.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING

Comparison of Transaction Performance

Multiprocessor System
with 2 identical Processors

T Jewn mos wen ww

tep

tarp

texea

Processor A Processor B

Configurable Coprocessor System

tapp
Fexe + 1

Processor A Processor B

Figure 3.4: Comparison of Transaction Performance

45

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 46

3.2.2 Summary of the Transaction Pair Model

A transaction pair provides a model of a single operation. ‘A transaction pair sequence provides &
model of an entire application. However, extensions to the transaction pair model are necessary
to model the performance of an entire configurable computer system. A change in the behaviour
of an application changes the behaviour of the system and other applications executing on the
system. These secondary effects must be considered if an accurate model of an entire configurable

computer system is desired.

3.3 The Configurable Computer System Performance Model

A performance model of a configurable computer system must account for changes in the behaviour
of the system that result from the use of a configurable coprocessor by an application. The use of
a configurable coprocessor introduces opportunities for parallel computation and additional delays
associated with hardware use and configuration. Coprocessor use impacts memory utilization, bus
utilization and operating system behaviour. The cumulative impact may be positive or negative.
In fact; for a multi-tasking computer system, it is possible for a coprocessor to have a positive
impact on the performance of an application and a negative impact on the performance of the
system. The opposite can also be true. Thus, it is important to have a mode! capable of predicting
the performance a coprocessed application and the impact of the coprocessed application on the

entire system.

By extending the transaction pair model, it is possible to develop a performance model of
a configurable computer system. This extended model is a function of the execution time of
an application and the changes in the behaviour of the system. To simplify the model, system
execution times are divided into a fixed time component and several time components that vary
based on system changes. The fixed time component represents the execution time required in
the ideal scenario. The variable time components represent the execution time variations due to
changes in specific aspects of the behaviour of the system. This extended model can be used to
investigate both application performance and system performance. For the purpose of this thesis,

this extended model is referred to as the performance model.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 47

The goal of the performance model is to predict when application and / or system speedups are
achievable using configurable coprocessing. It is not meant to accurately predict the execution
time of an application after coprocessing. It is simply meant to give an indication of whether

speedup is possible or highly unlikely.

Several timing parameters are defined to model the constant time and variable time compo-
nents of system execution time. For a non-coprocessed system, the thning parameters introduced
in Table 3.2. are used to model the system. For a coprocessed system, the timing parameters
introduced in Table 3.3 are used to model the system. For the purpose of this thesis, the non-
coprocessed system is referred to as System I and the coprocessed system is referred to as System 2.
Accordingly, timing parameters specific to System 1 are denoted by the subscript 1 and timing
parameters specific to System 2 are denoted by the subscript 2. Similarly, for System 2, timing
parameters specific to Processor A are denoted by the subscript A and timing parameters specific

to Processor B are denoted by the subscript B.

For the purpose of using the performance model, worst case times should be used for all timing
parameters. Worst case estimates can be used to determine a conservative estimate of speedup.
Best case estimates can be used to determine an optimistic estimate of speedup. There exists
a possibility that the average and the best case values for these timing parameters may not be
directly proportional to the worst case values. If the distribution of values is skewed by a large
amount, the performance model may predict the incorrect outcome. For the purpose of this
model, the probability of this scenario is assumed to be very small. This assumption is not bad

since the accuracy of any model in the presence of large statistical variations is likely very poor.

Figure 3.5 compares system execution times in a non-coprocessed computer system to those
in a coupled configurable computer system. This figure uses the timing parameters introduced in
Table 3.2 and Table 3.3. It is clear from Figure 3.5 that the configurable computer system performs
more tasks than a non-coprocessed computer system. Configuration delays, pre-processing, and
post-processing are not performed in a non-coprocessed computer system. Despite this overhead,
system speedup is possible due to the availability of additional processing resources provided by

the coprocessor.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING

Timing Parameter I

Definition

tMEMI

This is the total difference between the typical time required by all ap-
plications executing in System 1 for memory accesses and the ideal time
required by all applications executing in System 1 for memory accesses.
The ideal time is the minimum time required to perform all memory
accesses assuming ideal memory utilization. The actual time and ideal
time differ due to changes in memory utilization. Some examples of
these changes include additional memory accesses, reduced cache sys-
tem performance, and increased virtual memory system paging.

tpus:

This is the total difference between the typical time required by all appli-
cations executing in System 1 for system bus transactions and the ideal
time required by all applications executing in System 1 for system bus
transactions. The ideal time is the mintmum time required to perform
all system bus transactions assuming ideal bus utilization. The actual
time and ideal time differ due to changes in bus utilization. Some exam-
ples of these changes include additional bus transactions, increased bus
latency, and reduced bus availability.

tos:

This is the total difference between the typical time requxred by all ap-
plications executing in System 1 for operating system kernel operations
and the ideal time required by all applications executing in System 1
for operating system kernel operations. The ideal time is the minimum
time required to perform all operating system kernel operations assum-
ing ideal operating system behaviour. The actual time and ideal time
differ due to changes in operating system behaviour. Some examples of
these changes include additional context switching, additional interrupt
servicing, and additional kernel operations.

tExE1

This is the total processing time required by all applications executing
in System 1 neglecting time included in typreain, teus:, and tos:.

tsysa

This is the total system execution time required by all applications exe-
cuting in System 1. This is simply the sum of tpmem1, tBUs:, tosi, and
tExE1-

48

Table 3.2: Performance Model Timing Parameters for System 1

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING

! Timing Parameter f

Definition B

tcrcaz

This is the total configuration time delay experienced by Processor A as
a vesult of all configurations of Processor B in System 2.

tarEM2

This is the total difference between the typical time required by all ap-
plications executing in System 2 for memory accesses and the ideal time
required by all applications executing in System 1 for memory accesses.
The ideal time is the minimum time required to perform all memory
accesses assuming ideal memory utilization. The actual time and ideal
time differ due to changes to the memory systein to support Processor B.

tpus2

This is. the total difference between the typical time required by all appli-
cations executing in System 2 for system bus transactions and the ideal
time reguired by all applications executing in System 1 for system bus
transactions. The ideal time is the minimum time required to perform
all system bus transactions assuming ideal bus utilization. The actual
time and ideal time differ due to changes to the bus system to support
Processor B.

tos2

This is the total difference between the typical time required by all ap-
plications executing in System 2 for operating system kernel operations
and the ideal time required by all applications executing in System 1
for operating system kernel operations. The ideal time is the minimum
time required to perform all operating system kernel operations assuming
ideal operating system behaviour. The actual time and ideal time differ
due to changes in operating system behaviour to support Processor B.

tprREAZ

This is the total pre-processing time of all applications executing on
Processor A in System 2.

tExEA2

This is the total processing time of all applications executing on Pro-
cessor A in System 2 neglecting pre-processing (lprra2) and post-
processing (tpos:rAz) as well as neglecting tcrgaz, tMEM2, tBUS2, and
tosa. Unlike tgx pa in the transaction pair model discussed previousty,
this time is the actual processing time rather than the time available for
processing.

tPosT A2

This is the total post-processing time of all applications executing on
Processor A in System 2.

49

tPREB2

This is the total pre-processing time of all applications executing on
Processor B in System 2. Unlike tprep in the transaction pair model
discussed previously, this time is the actual pre-processing time rather
than the time available for pre-processing.

texEB2

This is the total processing time of all applications executing on Pro-
cessor B in System 2 neglecting pre-processing (tprgaz) and post-
processing (tposTA2).

tposTe2

This is the total post-processing time of all applications executing on
Processor B in System 2. Unlike tposrp in the transaction pair model
discussed previously, this time is the actual post-processing time rather
than the time available for post-processing.

tcraB2

This is the total configuration time delay experienced by Processor B as
a result of all configurations of Processor B in System 2.

tExE2

This is the total processing time required by all applications executing in
System 2 neglecting time included in tpypm2, tBuS?2, tose, and tcrgaz.

tsy sz

This is the total system execution time required by all applications ex-
ecuting in System 1. This is simply the sum of tcrgaz, tMEM2, tBUS2,
tosz, and tpx pa. It is assumed that Processor A waits for the comple-
tion of transactions and configuration by Processor B if necessary.

Table 3.3:

Performance Model Timing Parameters for System 2

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING

System 1
Processor System

tMEM‘I

tBUS1

tos:

tSY51

tEXE1

Comparison of System Execution Times

System 2

Configurable Computer System

Processor A Processor B
Processor Coprocessor
tCFGA2

tMEMZ

tBUS2
ItSYSZ

tos:

tPREAZ

tEXEAZ

tPOSTAZ

ltCFGBZ

tPREB2

tEXEB2

tPOSTBZ

Figure 3.5: Comparisons of Execution Times

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 51

3.3.1 Configuration Delays

Configuration delays result from the time required to prepare a configurable coprocessor for pro-
cessing. The configuration delays model the time required to configure the programmable logic
devices within the system. These delays are specific to a configurable computer system. However,
each delay impacts the processor and the coprocessor in different ways. For this reason, two
configuration delay parameters exist in the performance model. The first delay, tcrc a2, models
the delay experienced by Processor A. The second delay, t¢pgp2, models the delay experienced
by Processor B. The configuration delays do not take into account the time and effort required
to develop, synthesize, and map hardware designs onto the configurable coprocessor. The time
required to produce configurable coprocessors is a form of non-recurring delay. It does not impact

the execution time of an application so it is beyond the scope of the performance model.

Configuration delays can be negligible or significant. If configuration can be performed without
impeding the operation of the system, then the delay is negligible. This is true if configuration
ocecurs frequently and the system contains a configurable logic device that supports multiple
contexts or if configuration does not occur frequently. Using a configurable logic device that
supports multiple contexts, an unused context can be configured while the active context performs
tasks. Such a device allows fast context switching if the context is already loaded. but requires
approximately the same amount of time as a single-context device if the context must be loaded.
If the configuration process disrupts the operation of the system, the configuration delay can be

significant.

The architecture of a configurable coprocessor has a tremendous impact upon the significance
of configuration delays. The architecture can facilitate configuration in parallel with computation
or it can hinder it. The architecture also defines the number of simultaneous coprocessor designs

that may be in use as well as the time required to configure the hardware with a new design.

The operating system executing on the processor is in the best position to determine the
coprocessor design necessary for pending computations. It may be desirable for the processor
to initiate the configuration of the coprocessor hardware. To do this, a scheduler is required to
determine the next hardware design to be configured and used. This scheduler is analogous to
a process scheduler in a multitasking operating system. The key difference is that the scheduler

configures a hardware design instead of swapping processes. The choice of scheduler has a signifi-

CHAPTER 3.. MODELS OF CONFIGURABLE COMPUTING 52

cant impact upon the probability of a configuration being available and thus, the performance of

a configurable coprocessor system.

A detailed discussion of scheduling strategies is beyond the scope of this thesis. However,
it is worthy of future research. It may be the case that process scheduling strategies work well
for scheduling hardware configurations. Alternatively, it may be the case that a new scheduling
strategy is required for efficient configurable computing. Regardless of the scheduling strategy.
it is possible to model the performance of the system provided an estimate of the configuration

delays can be determined and the frequency of configuration can be estimated.

3.3.2 Memory Utilization Delays

The time required for memory operations varies based on the state of the system. In a heavily
loaded system, an application may have to spend more time on memory operations due to high
memory utilization and poor eache performance. Memory utilization delays express the excess
time required to perform memory operations over and above the ideal amount of time required for
all memory operations in an ideal situation. In other words, memory utilization delays represent
the variable portion of time devoted to memory operations. All non-ideal applications have non-

zero memory utilization delays.

Although the total memory required by a configurable coprocessor system may actually be
larger than a non-coprocessed system due to the additional state information that must be stored,
there is usually more total memory to exploit in a counfigurable coprocessor system. Both the
Processor A and Processor B typically have local memory available. The efficient distribution of
memory accesses across multiple memory systems can improve the performance of the system.
Cache performance on Processor A may improve or degrade based on changes in locality. Also,
it may be possible to write applications that avoid unnecessary paging of the virtual memory

system. Thus, changes in memory utilization can result in performance gains and losses.

1t is difficult to estimate the magnitude of the impact of memory utilization delays on the
performance of a system. The impact depends on the relative bandwidths of the memory systems
in use. For example, Processor A’s memory hierarchy is likely to be much faster than Processor

B’s memory hierarchy if there is 5 cache present in Processor A but not present in Processor

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 53

B. The impact of memory utilization changes, denoted as {prgar, can be measured as shown in
Equation 3.1. I tp g is positive, the impact of distributing memory is positive. If tarpar is

negative, the impact of distributing memory is negative.

tmEM = tmemi —tueu? (3.1)

There is not much that can be done to improve the impact of memory utilization. It is a
characteristic of the application and the hardware/software partitioning. It may be possible to
more effectively distribute memory accesses by repartitioning the application into hardware and

software components. Further research on this issue is necessary to determine if this is practical.

3.3.3 Bus Utilization Delays

The time required for bus operations varies based on the state of the system. Bus operations
are necessary to communicate with hardware devices, external interfaces, and main memory. In
a heavily-loaded system, an application may have to spend more time on bus operations due
to high bus utilization and poor cache performance. Bus utilization delays express the excess
time required to perform bus operations at all levels of the bus hierarchy. This is the time over
and above the amount of time required for all bus operations in an ideal situation. In other
words, bus utilization delays represent the variable portion of time devoted to bus operations. All

applications executing in a multitasking environment have non-zero bus utilization delays.

The use of a configurable coprocessor may require more or less extensive use of communication
over the bus hierarchy. This need can cause the overall performance of the system to decrease
or increase. Other bus transactions may be delayed or accelerated by the use of the coprocessor.
One bus transaction at the top-level of the bus hierarchy may cause delays at other levels of the
bus hierarchy. A single change may introduce a signficant amount of bus latency in the system.
The impact of this change in bus latency must be considered by the model. Given the timing
parameters in the performance model, it is possible to express the impact of this change as shown
in Equation 3.2. tpyg denotes the impact of changes in bus utilization within the system. A

positive value indicates a positive impact.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 54

tpus = tpusi —tBUs2 (3.2)

Improving the impact of bus utilization is difficalt. A positive impact can only occur if bus
utilization is reduced by the partitioning of applications between Processor A and Processor B.
A positive impact can be accomplished by selecting operations to coprocess that already use the
bus hierarchy heavily. In other words, the use of an external hardware device is replaced with the

use of a configurable coprocessor. Partitioning of the system is key to improving performance.

3.3.4 Operating System Behaviour Delays

The time required for kernel operations varies based on the state of the system. In a heavily loaded
system, an application may have to spend more time on kernel operations due to increased countext
switching, resource blocking, and other operating system scheduling issues. Operating system
behaviour delays express the excess time required to perform kernel operations over and above the
amount of time required for all kernel operations in an ideal situation. In other words, operating
system behaviour delays represent the variable portion of time devoted to kernel operations. All
non-ideal applications executing in a multitasking environment have non-zero operating system

behaviour delays.

The impact of processing scheduling and context switching on a systemn is extremnely difficult to
predict. However, it is clearly something to be considered. The probability of the operating system
initiating a context switch increases with the use of any additional hardware device. Both MS
Windows N'T and Linux require a kernel call to access an external hardware device. The execution
of this kernel call is likely to result in a context switch. For a non-coprocessed application that does
not normally require a context switch, the addition of a configurable coprocessor results in context
switches that are “unnecessary”. Since context switches can take a significant amount of time,
this change in operating system behaviour can have a severe negative impact upon performance.

This impact can be quantified as shown in Equation 3.3.

tos = tos1 —tose (3.3)

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 55

Cominunication with a configurable coprocessor is likely to result in a context switch by the
operating system. It is common for an operating system to start performing other tasks after
initiating communication with a hardware resource such as a configurable coprocessor. For this
reason, configurable coprocessors should only be used for computations that normally require
context switches during execution. Otherwise, the delay associated with context switching signif-
icantly limits the performance of the system. Furthermore, if it is assumed that context switches
always occur during communication with a hardware resource, it is possible to provide an upper

bound on the acceptable level of change in operating system behaviour.

3.3.5 Processing Times

Ideally, a coprocessed system is capable of processing operations quicker than a non-coprocessed
system. The processing impact, tgx g, can be quantified as shown in Equation 3.4. This impact
depends upon the relative speeds of the processors and the complexity of the coprocessor hardware.
Clock frequency is not the sole determining factor in processing times. Application execution time
is a function of the clock frequency (or propagation delay in the case of asynchronous designs)
as well as the number of cycles per instruction {or operations). While a configurable coprocessor
may have a slower clock frequency, it may be capable of executing more complex instructions
or many instructions at one time to provide greater processing capability and effectively reduce

processing times.

texeE = tExpEr — tEXE2 (3.4)

Equation 3.4 uses absolute processing times to determine the impact of coprocessing. Given
the time required to execute an application on System 1 ({gx 1) and the time required to execute
an application on System 2 (tpxg2), the impact is simply the difference. This time difference
represents the improvement {or degradation) in processing time that results from the addition of
a configurable coprocessor. It can only be determined if the processing times on both systems are

known or can be accurately estimated.

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 56

3.3.6 Ewvaluating the Net Performance Impact

Equation 3.5 expresses the system execution time for a non-coprocessed system (System 1). This
time is a function of memory utilization delays (i gar1), bus utilization delays (t gy g1), operating
system behaviour delays (£0s2), and processing times ((gxgn). All of the quantities in this ex-
pression are strictly positive. The fixed portion of system execution time for this non-coprocessed

system is included in tpx ;-

tsysi = tumem +iepus: +tos1 +tExE: (3.5)

Equation 3.6 expresses the Processor A component of the system execution time for a copro-
cessed system (System 2). This time is a function of configuration time (!crga2), memory utiliza-
tion delays (tapEa2), bus utilization delays (£pyg2), operating system behaviour delays (tosz),
pre-processing time (tprEaz), processing time (tgx pa2), and post-processing time (tposraz). It
is important to note that tpreae, tpuse, and toge may be negative quantities since they are ex-
pressed relative to System 1. The remaining quantities (tprea2, tEXEA2, tPOST A2, a0d toFG a2

are strictly positive.

tas = tprEa2 +tExXEA2 ttPosTA2 +tos2 T tBuse +imEMe +IoFGA2 (3.6)

Equation 3.7 expresses the Processor B component of the system execution time for a co-
processed system (System 2). This time is a function of pre-processing time, execution time,
post-processing time and configuration time. Memory utilization delays, bus utilization delays,
and operating system behaviour delays are not included in the expression for the Processor B
component of the system execution time. Processor A is assumed to be the master of Proces-
sor B. Processor A is responsible for initiating transaction pairs (when appropriate) and is also
responsible for ensuring the completion of transaction pairs. Hence, memory utilization delays
bus utilization delays, and operating system behaviour delays are not included in the expression

for the Processor B component of the system execution time.

tps = tprep2 +tExeB2 +trosTn2 +toreB2 (3.7)

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 57

Equation 3.8 expresses the svstem execution time for a coprocessed system (System 2) using
the knowledge that ¢ 42 > . This relationship must be true. Otherwise, Processor A overruns
Processor B. If this was not known, the system execution time would need to be expressed as the

maximum of the two processor component execution times.

tsysz = taz (3.8)

Equation 3.9 represents the speedup {or slowdown) of the system that occurs when a config-
urable coprocessor is introduced. This equation is based on the performance model of a coupled
configurable coprocessor system. I tgygo is less than fgy g1, the configurable coprocessor im-
proves the performance of the system (Speedup > 1). If tgy s is less than tgy g2, the configurable
coprocessor degrades the performance of the system (Speedup < 1). I tgy g2 equals tsysi, the

configurable coprocessor does not have an impact on the performance of the system (Speedup = 1).

tsys:

Speedup = Po—

(3.9)

Given Equation 3.9, it is possible to solve for any one of the timing parameters necessary to
achieve speedup given the other timing parameters. For example, the processing time of System 2
necessary to obtain a speedup of 2 can be calculated using Equation 3.10. This equation can be
derived from Equation 3.6, Equation 3.8, and Equation 3.9 using the fact that tgx go is the sum

of tprEa2, tEXEA2, and tposT A2

_ lsysi

texpz = —5— (tosz +tBuse + tmem2 + torae) (3.10)

Alternatively, it is possible to express the absolute impact of coprocessing in terms of the
impact expressions previously developed. The total impact, trorar of coprocessing is given by
Equation 3.11. A positive t7oraz indicates a positive impact upon the system. The impact is

expressed as the time saved by coprocessing the application.

trorar = tmem +tos+itpus +texe — fcrcaz (3.11)

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 58

3.4 Performance Model Scenarios

Although every application system is slightly different, it is possible to substitute reasonable
estimates of the timing parameters to predict the performance of a system using the performance
model. This permits an examination of the impact of each timing parameter on the performance of
the system. For example, consider the four identical sets of timing parameters given in Table 3.4.
For the purpose of this example, assume these timing parameters correspond with a mainstream

software application running on a non-coprocessed system.

Timing Loosely Coupled Tightly Coupled
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
(in s) {(in s) (in s) (in s)
tMEM 300 300 300 300
tpus1 100 100 160 160
tos1 100 100 100 100
texEl 500 500 500 500
tsys1 1000 1000 1000 1000

Table 3.4: Timing Parameter Estimates for a Non-Coprocessed System

Consider the following four scenarios:

Scenario 1:

Loosely-coupled coprocessor system.

Memory utilization delays do not vary with coprocessing.

e Bus utilization delays increase by a factor of 4 due to coprocessing.

Operating system behaviour delays increase by a factor of 4 due to coprocessing.

Coprocessor computes application results 20% faster than a general-purpose processor

Scenario 2:

e This is the same as Scenario 1 with the exception that the coprocessor computes application

results 80% faster than a general-purpose processor

Scenario 3:

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 59

Tightly-coupled coprocessor system.

Memory utilization delays do not vary with coprocessing.

Bus utilization delays increase by a factor of 2 due to coprocessing.
e Operating system behaviour delays increase by a factor of 2 due to coprocessing.

e Coprocessor computes application results 20% faster than a general-purpose processor

Scenario 4:

¢ This is the same as Scenario 3 with the exception that the coprocessor computes application

results 80% faster than a general-purpose processor

The timing parameters presented in Table 3.5 for a coprocessed system correspond with the
four scenarios described. For the purpose of this example, memory utilization delays have re-
mained constant. Also, it should be noted that the bus utilization delays and the operating
system behaviour delays are often related to the coupling of the system. For the loosely-coupled
scenarios, the same timing parameters are used for both bus utilization delays and operating

system behaviour delays. The same is true for the tightly-coupled scenarios.

Timing Loosely Coupled Tightly Coupled
Parameter | Scenario 1 | Scenario 2 | Scenaric 3 | Scenario 4

(in s) (in s) (in s) (in s)
tecrcaz 0.01 0.01 0.01 0.01
toree2 0.01 0.01 0.01 0.01
trmEM2 300 300 300 300
tgus2 400 400 200 200
tosz 400 400 200 200
tExXE2 400 100 400 100
tsy 52 1500 1200 1100 800

Table 3.5: Timing Parameter Estimates for a Coprocessed System

Using the timing parameter estimates presented in Table 3.4 and Table 3.5, it is possible to
estimate the impact of the sources of delays. Table 3.6 shows the impact of the delays quite
clearly. Negative values represent performance degradations (i.e., increased delays) and positive

values represent performance improvements (i.e., decreased delays).

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 60

Timing Loosely Coupled Tightly Coupled
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4

{in s) (in s) {in s) (in s)
tMeM 0 0 0 1]
tpus -300 -300 -100 -100
tos -300 -300 -100 -100
texe 100 400 100 400
trorar -500 -200 -100 200

Table 3.6: Estimated Impact of Timing Parameters

It should be noted that if tgys; is known and trorar is known, it is possible to calculate
tsyse using Equation 3.12. This expression uses the fact that the impacts are relative to the

original (non-coprocessed) system. Hence, the system execution times are related.

tsyse = tsysi1 —IToTAL (3.12)

Based on the timing parameter estimates presented and the calculated impact of these timing
parameter estimates, the tightly-coupled systems outperform the loosely-coupled systems. This
is due to the fact that smaller bus utilization delays and operating system behaviour delays were
estimated for the tightly-coupled systems. The timing parameter estimates are examined in more

detail later in this thesis.

3.4.1 General Comments

For the purpose of this example, each scenario is assumed to represent a single application with
one type of operation being coprocessed. The system execution time is assumed to be 1000s
prior to the introduction of a coprocessor. Since it is assumed that the system is only running
a single application, the system execution time is also the application execution time. After the
introduction of the coprocessor, the application execution time (tgys2) may be calculated by
subtracting tcreaz, tMEM, tBUS, tos, and tgx g from the application execution time (tsys;) of

the non-coprocessed system.

The timing parameters in Table 3.5 assume that the hardware is ready for configuration and use

at the start of the application’s execution. Furthermore, only one configuration of the hardware

CHAPTER 3. MODELS OF CONFIGURABLE COMPUTING 61

is assumed. This results in small configuration times estimated to be 0.01s and rounded down
to Os for the calculation of the system execution time. It is possible for configuration delays to
dominate the execution timeof the coprocessed application and it is also possible for configuration

delays to be negligible. For the purpose of this example, the configuration delays are negligible.

For loosely-coupled systems, bus utilization delays ({pyg) can have a large negative impact
upon the system. Even if the bus is used sparingly, the performance impact on the entire bus
hierarchy can be substantial. The reason for this influence is that the coprocessor in the loosely-
coupled system is attached to a peripheral bus rather than the system bus. In other words,
the coprocessor lies near the bottom of the bus hierarchy. A change in the utilization of the
peripheral bus indirectly impacts a large portion of the bus hierarchy and hence, can have a large
negative impact upon bus utilization delays. The increase in bus utilization delays also impacts
the operating system behaviour delays (tos). The impact of memory utilization delays (tarEn) is
application dependent. The impact of memory utilization delays has been ignored for the purpose

of this example. Memory utilization delays are considered later in this thesis.

For tightly-coupled systems, bus utilization delays (tpys) can have a small negative impact.
Less of the bus hierarchy is impacted by an increase in bus transactions since the coprocessor
is tightly-coupled to the processor. Similarly, operating system behaviour delays (tog) can have
a small negative impact for tightly-coupled systems. Memory utilization delays ({ypga) are

application dependent. They have been ignored for the purpose of this example.

Clearly, it is possible to construct scenarios for the performance model that predict both pos-
itive and negative performance impacts. The next step in the development of the performance
model is to determine estimates for real-world timing parameters. These estimates can be ob-
tained by profiling the execution of configurable coprocessor systems on rnainstream software
applications. Given real-world timing parameters, it is possible to use the performance model
to predict when the impact of a configurable coprocessor is positive or negative for a particular

application.

Chapter 4

Configurable Computing

Platforms

Two types of configurable computing platforms are investigated in this thesis. The first platform is
an example of a loosely-coupled configurable computer. This platform consists of a PC (Personal
Computer) and a configurable coprocessor mounted on a peripheral board. For the purpose of
this thesis, this platform is referred to as Platform I The second platform is an example of
a tightly-coupled configurable computer. This platform consists of a Nios Embedded Processor
Development Board [Cor02c] configured with a Nios processor connected directly to a coprocessor.
For the purpose of this thesis, this platform is referred to as Platform II. A non-configurable
platform is also investigated for the purpose of comparison. This platform consists of a Sun

Workstation. For the purpose of this thesis, this platform is referred to as Platform IIL

4.1 Platform I: PC + ARC-PCI Board

Platform I consists of a development workstation and a test workstation. The test workstation
is a PC with an Inte] Pentium 111 with a 450 MHz processor, 512 MB (MegaBytes) of SDRAM
(Synchronous Dynamic Random Access Memory), and 1 GB (GigaByte) of swap space. This
workstation runs Windows NT 4.0 with Service Pack 4. An ARC-PCI (Altera Reconfigurable

62

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 63

Computer - Peripheral Component Interconnect) Board connects to this workstation via a PCI
(Peripheral Component Interconnect) Bus and a serial port connection. The ARC-PCI board
provides the configurable hardware necessary for experiments into configurable computing. A
second PC serves as a development platform. This PC consists of an Intel Pentium I with a
300 MHz processor, 512MB of SDRAM, and 1GB of swap space. This workstation runs Win-
dows NT 4.0 with Service Pack 4, the hardware development tool (MAX+PLUS II), and the
software development tools (Visual C++ 5.0, Windows Software Development Kit, and Windows
Driver Development Kit). The use of a separate development workstation is essential for device
driver development since a bug in a device driver can corrupt the file system of the test worksta-
tion. The test and development workstations are connected using ethernet and serial connections

as shown in Figure 4.1.

4.1.1 The ARC-PCI Board

The ARC-PCI (Altera Reconfigurable Computer - Peripheral Component Interconnect) Board is a
peripheral board designed by Altera Corporation to serve as a research platform for experiments in
configurable computing. This board may be used as a configurable coprocessor in any computing
platform that provides an empty PCI bus slot. The ARC-PCI Board incorporates Altera FLEX
(Flexible Logic Element matriX) 10K Series devices, SRAM (Static Random Access Memory)
modules, a 32-bit PCI bus interface and an external interface. This combination of programmable
hardware, memory, and high-speed interfaces makes the board suitable for use in a wide variety

of computing and interfacing tasks. Figure 4.2 shows a photograph of an ARC-PCI Board.

Programmable Logic

The ARC-PCI Board incorporates three Altera EPF10K50RC240-3 devices [Alt96]. One device
serves as a controller device and the remaining two devices serve as user devices. A portion
of the controller device implements the PCI bus interface. The remainder of the controller de-
vice manages the user devices and performs application-specific computations. The user devices
provide the configurable hardware to enable the implementation of complex application-specific

COPTroCcessors.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

Test
Workstation

Development
Workstation

lflustration of Platform |

ARC-PCI
Board

Hardware:
intel Pentium i} PCl Bus
450 MHz and Serial
512 MB SDRAM Connections
1 GB Swap % >
Software:
Windows NT 4.0
MAX+PLUS 11 10.12
10 Base TX Ethernet

and Serial Connections

Hardware:
Intel Pentium i
300 MHz
512 MiB SDRAM
1 GB Swap

Software:
Windows NT 4.0
Windows SDK
Windows DDK
Visual C++ 5.0
MAX+PLUS 11 10.12

Note:

This PC workstation ensures

a stable platform for hardware
and software development. This
platform also facilitates
debugging of device drivers

via the serial port connection.

64

Figure 4.1: 1llustration of Platform I

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 65

Photograph of an ARC-PCI Board

peapEian e

B s

Figure 4.2: Photograph of the ARC-PCI Board

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 66

The EPF10K50RC240-3 is a 240 pin device in a RQFP (poweR. Quad Flat Pack) package. This
device is an example of a HDPLD. This device uses configurable SRAM LEs (Logic Elements)
that support ICR (In-Circuit Reconfiguration) to provide dynamically configurable hardware.
This device provides 36,000 logic gates', 20,480 RAM bits, and 189 usable I/O pins. This device
provides the equivalent of 116,000 usable logic gates if all embedded RAM bits are fully utilized
for logic. Altera estimates this device provides the equivalent of 50,000 usable logic gates for

typical applications.

In total, the ARC-PCI Board provides 8,640 LEs (Logic Flements). Approximately 1,100
LEs are required to implement the PCI bus interface using an Altera PCI/MT32 MegaFunction
[A1t98a]. This amounts to less than 13% of the LEs available on the board. The remaining 87%

of the LEs may be used for application-specific hardware designs.

Memory Modules

The ARC-PCI Board provides 4 SIMM slots for memory devices. Two of the SIMM slots are used
for memory that is shared by the 3 devices. The remaining two slots are used for cache memory.
Each user device connects to a single cache memory slot. Each SIMM slot accommodates standard,
72-pin static SIMMs with support for memory modules as large as 1M x 32 bits (4 MB). The
cache memory devices are typically used for data caching by a particular user device while the
shared memory devices are typically used for the centralized storage of configuration data and

interface data.

ARC-PCI Bus Architecture

The programmable hardware devices and memory devices are connected by a complex network
of busses. These busses are illustrated in Figure 4.3. The Clock Bus distributes a low-skew clock
signal to the dedicated clock pins on each of the devices on the ARC-PCI Board. The PCI Bus
provides access to a subset of the full PCI bus connections supplied by the host computer. The

Fast Bus consists of unidirectional signals that can be used by the controller device to signal the

1 As indicated in Chapter 2, logic gate estimates are only rough estimations of the actual logic capacity of a
programmable logic device. The logic capacity of a programmable logic device depends upon the application, the
quality of the development tools, the utilization of embedded memory blocks, the type of logic elements used, and
the quality of the design.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 67

start of a transaction. The Memory Busses provide access to the shared memory devices. These
busses can also be used to transfer data between the 3 devices. The Cache Busses provide access
to the cache memory devices. These busses can also be used to communicate via the external

mterface provided by the I/O connector.

4.1.2 ARC-PCI Development Kit

Altera provides a development kit for the ARC-PCI Board that includes all of the hardware and
software components required to start designing configurable computing systems using the board.

The ARC-PCI Development Kit consists of the following items:

ARC-PCI Board with 2 Integrated Deviece Technology TMP4060 128 K x 32 SRAM Modules
e License to use MAX4+PLUS II

e License to use a PCI MegaFunction (either the Altera PCIT1 32-Bit PCI target interface
or the Altera PCI/MT32 32-Bit PCI master/target controller)

e ARC-PCI Board schematics and documentation

e Sample AHDL (Altera Hardware Description Language) designs for the controller and user

devices
e Generic device driver for Windows 95, Windows 98, and Windows NT
e Sample C language application code

e TTF2MAPP executable for translating TTF (Tabular Text Files) to MAPP (MAssively

Parallel Programming) files

This development kit provides a satisfactory starting point for developing simple designs.
However, the kit lacks the flexibility and performance necessary for developing complex designs.
The sample AHDL code is well-written but difficult to understand and modify due to the use
of proprietary AHDL code. The supplied device driver is not very useful in practice. It is a
generic PCI device driver based upon a 3rd party DLL (Dynamic Link Library). The use of a

3rd party DLL makes the driver difficult to modify. The driver also performs poorly on dyramic

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

ARC-PCI Board Bus Architecture

RILe; Cnnctr

{110 Connector)

Cache Bus 2
BAR4 e

ALTERA
FLEX 10K50

User
Devi

BAR3

- ALTERA
FLEX 10K50

Controller |
Device |

Clock Bus |
PCI Bus _

Figure 4.3: ARC-PCI Board Bus Architecture

68

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 69

configuration since the configuration data is not buffered on the ARC-PCI Board. Configuration
times typically exceed 1s due to PCI bus latencies and operating system behaviour. Custom
device drivers and controller designs are necessary to obtain 33 MHz performance and correct

system behaviour.

4.1.3 Configurable Computer Architecture

The combination of an ARC-PCI Board with a PC results in a loosely-coupled configurable
computer architecture. Custom hardware and software components transform this computer
architecture into a powerful computing system. The primary components of a complete system
are the application software, the device driver, the controller design, and the user designs as
illustrated in Figure 4.4. The application software communicates with the device driver using
an API (Application Programming Interface) that translates library calls into IOCTLs (Input /
Output Control Codes). The device driver communicates with the controller design on the ARC-
PCI Board via the HAL (Hardware Abstraction Layer) provided by the operating system. The
HAL translates commands into PCI bus transactions. The controller design communicates with

the user designs using simple memory-mapped I/0 (Input / Output).

Tt is common for transactions to be initiated by the application software. Applications request
a transaction by calling a library function from the API. If required, the device driver initiates
one or more PCI bus transactions to transfer data to or from the controller design. The controller
design may respond to the PCI bus transactions directly or initiate communication with the
user designs via memory-mapped I/O. The precise behaviour of the system depends upon the

transaction and the custom hardware components utilized.

4.1.4 Application Programming Interface

Application software typically uses an API (Application Programming Interface) to communicate
with a device driver. An API provides a set of library functions that simplify the task of interfacing
with the device driver and the associated hardware device. The API for the ARC-PCI Board
provides functions that read and write the memory-mapped I/O regions corresponding to the

ARC-PCI Board. There are nine essential API functions. These API functions are summarized

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

ARC-PCIl System Components
Custom
Software
Components
Application
Software
IOCTL
Device
Driver
HAL
Custom gTTEEET TITEETRY ST EEREE :
Hardware PCI !
Components !
(3
! Controller :
' Design 8
‘] B
&
E Memory :
] : 5
3 T %
3 L
FOEARER e o
1 ARC-PCI
s Board :I:
B
E Memory
¥
: User User
: Design #1 Design #2
;
8
]
S T ——— o5 on @ em.6D P T P 59 45 5 A0 A 05 U0 M W@ W M W M W P

Figure 4.4: ARC-PCI System Components

70

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 71

in Table 4.1. The API developed for the ARC-PCT is the same for beth the Windows and Linux
operating systems. This API allows the development of portable software applications that utilize

an ARC-PCI Board.

l APT Function ! Description }

arcpeiopen() Establishes a connection to the ARC-PCI device driver
arcpei-close{) Terminates a connection to the ARC-PCI device driver

arcpci_initialize{) Initializes the ARC-PCI Board

arcpci.settings() Determines the features supported by the ARC-PCI Board

arcpci_store MAPP() Stores a MAPP mode configuration file in the SRAM on the ARC-PCI
Board
arcpci_read_bar() Reads 32 bits from a BAR (Base Address Region)

arcpci-write_bar{) Writes 32 bits to a BAR (Base Address Region)
arcpei_block read_bar() | Reads a block of data (of maximum size 32 x 32 bits) from a BAR (Base
Address Region)
arcpci_block_write_bar() | Writes a block of data {of maximum size 32 x 32 bits) to a BAR (Base
Address Region)

Table 4.1: Summary of API Functions

4.1.5 Device Driver

A device driver facilitates communication between application software executing within an op-
erating system and a hardware device. A device driver can be considered an extension to an
operating system to support peripheral devices. For Platform I, the device driver permits appli-
cation software executing on a host PC to communicate with custom hardware executing on an

ARC-PCI Board.

It is a complex task to design a device driver for an ARC-PCI Board. This board incorporates
a PCI bus interface that supports plug and play operation. PCI devices provide a configuration
space that permits the control of I/O regions, memory regions and interrupt vectors. This con-
figuration space is set during a process referred to as PCI bus enumeration. All PCI-compliant
devices are probed and configured by PCI bus enumeration. Provided that hardware configura- -
tions remain constant over time, PCI bus enumeration prevents hardware conflicts from occurring.
However, configurable computing boards such as the ARC-PCI Board may change their hardware
configuration over time. This unique issue must be considered carefully during device driver

development.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 72

The controller device on the ARC-PCI Board must be configured properly prior to the start
of the device driver. The configuration of the controller device may be performed using a PROM
(Programmable Read-Only Memory) or using MAX+PLUS 1I to drive signals onto the JTAG
(Joint Test Action Group) port of the board via a serial connection. If the controller device has
not yet heen configured, the board is not detected by the operating system. If the controller
device has been configured but is subsequently configured after the start of the device driver, the
configuration space is not set appropriately for the most recently configured controller device.
This scenario likely results in a fature of the operating system unless PCI bus emuneration is

performed again and the device driver is stopped and restarted.

Device drivers may be started at boot time or dvnamically as applications require them. It is
often simpler to design a device driver that starts at boot time. However, for configurable com-
puting, it is more practical to develop device drivers that start and stop dynamically. Otherwise,
a reboot of ‘the operating system is required whenever the hardware configuration of the board
changes. A system reboot is undesirable so the ability to start and stop device drivers dynamically

is essential.

Windows NT 4.0 Device Driver

A kernel mode device driver for Windows NT 4.0 [DN99| [VM99] was developed for the ARC-PCI
Board. This device driver supports dynamic starting and stopping. The application software
starts and stops the device driver via the SCM (Service Control Manager) only when required.
The device driver initiates PCI bus enumeration on startup ensuring that the device driver con-
figuration matches with the most recent hardware configuration of the controller device on the
ARC-PCI Board. However, it also means that the startup of the device driver is quite time con-
suming. Depending upon the hardware configuration of the PC, several seconds may be required

for PC1 bus enumeration.

10CTLs {(Input / Output Control Codes) are a mechanism used to communicate data between
an application and a hardware device. The ARC-PCI device driver supports a large set of generic

IOCTLs that permit the transfer of data. These [OCTLs are described in Table 4.2.

The device driver is written entirely in the C language [KR88]. C++ language [Str94] device

driver development is not fully supported for the Windows NT 4.0 operating system. In total,

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

[IOCTL | Description
0x0A00 | Initializes the ARC-PCI Board
0x0A01 | Determines the features supported by the ARC-PCI Board
0x0A10 | Reads from BARy - the controller interface
0x0A11 | Writes from BARy — the controller interface
0x0A12 | Block reads BARg — the controller interface
0x0A13 | Block writes BARg — the controller interface
0x0A20 | Reads BAR; — memory bus 1
0x0A21 | Writes BAR; ~ memory bus 1
0x0A22 | Block reads BAR; — memory bus 1
0x0A23 | Block writes BAR; — memory bus 1
0x0A30 | Reads BAR; ~ memory bus 2
0x0A31 | Writes BAR2 —~ memory bus 2
0x0A32 | Block reads BAR; — memory bus 2
0x0A33 | Block writes BAR> — memory bus 2
0x0A40 | Writes a MAPP mode configuration to SRAM on the ARC-PCI Board
0x0A60 | Reads BAR3 — user design 1 interface
0x0A61 | Writes BARs — user design 1 interface
0x0A62 | Block reads BARs — user design 1 interface
0x0A63 | Block writes BARs — user design 1 interface
0x0A64 | Reads BAR, — user design 2 interface
0x0A65 | Writes BAR4 —~ user design 2 interface
0x0A66 | Block reads BAR, — user design 2 interface
0x0A67 | Block writes BARy — user design 2 interface
Others | Undefined and/or application-specific IOCTLs

Table 4.2: Summary of Supported Device Driver IOCTLs

73

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 74

the device driver consists of approximately 1,000 commented lnes of code. The device driver may
be customized to provide application-specific IOCTLs. However, this is unnecessary. The device
driver provides all the IOCTLs required to build a fully-functional configurable computing system

using an ARC-PCI Board.

The device driver incorporates advanced features including fast I/O dispatching, file 1/0,
and event logging. Fast 1/O dispatching reduces the latency associated with device driver calls.
File I/O allows the device driver to read a MAPP mode configuration file directly off the file
system. Event logging allows a softwafe designer to trace the execution of the device driver.

These advanced features result in a device driver that is both efficient and easy to use.

Linux Device Driver for v2.4 Series Kernels

The Windows Driver Model [One99] and the Linux Driver Model [Rub98] are not identical. Dif-
ferences in PCI bus enumeration, file I/0, and device driver loading / unloading complicate the
task of porting a device driver from Windows to Linux. In 2001, the ARC-PCI device driver was

successfully ported to Linux for v2.4 series kernels [Gra01].

Linux v2.4 series kernels enumerate PCI devices once, at boot time?. ‘The kernel builds a
linked list of all PCI devices in the system at this time. If the controller device on the ARC-PCI
Board has been configured prior to booting, the ARC-PCI Board is detected. Otherwise, the
board is ignored by the system. The device driver may be loaded at boot time or it may be
loaded dynamically. However, it can only be loaded if the device has been successfully detected

at boot time.

Boot time PCI bus enumeration poses a significant challenge for the ARC-PCI Board. The
simplest solution involves ensuring that the controller device on the board is configured prior to
booting Linux. The user devices can be configured after the device driver has been loaded and
started. However, a configuration of the controller device will result in a kernel panic. For this
reason, it is very important to have a reference controller design that can be used to communicate
with a wide variety of user designs. This reference controller design can be programmed into a

PROM so that the ARC-PCI Board is detected at boot time. This approach solves the PCI bus

236me Linux v2.5 series kernels support hot-swappable PCI devices. Using these kernels. bus enumeration is
not limited to once at boot time.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 75

enumeration problem provided the configuration space of the controller design is not modified by

a subsequent hardware configuration.

Due to security considerations; only certain classes of device drivers are allowed to directly
access the file system. For this reason, the device driver may not read MAPP mode configuration
files directly from the file system. These files are instead read by an application and transferred
to the device driver via a memory transfer. This simplifies the design of the device driver but
complicates the design of the application. However, it also allows the device driver to support

MAPP mode configuration without the need for direct access to the file system.

In Linux, dynamic loading and unloading of device drivers is accomplished through the use of
kernel modules. Since the dynamic loading and unloading of kernel modules does not solve the
problem of PCI bus enumeration under Linux, there is no value to supporting this feature. The
complexity of implementing the device driver as a loadable kernel module could not be justified

and was not supported.

4.1.6 Controller Design

The controller device of the ARC-PCI Board is the only device on the board hardwired to the
PCI bus interface. It acts as a bridge between the user devices and the PCI bus controller. It is
responsible for monitoring the PCI bus and responding to PCI bus requests. All communication
between the host computer and the ARC-PCI Board routes through the controller device. It is
also responsible for managing the use of the memory busses to ensure that bus contention does not
occur. A reference controller design provides the essential controller functionality. This design
exceeds the 33MHz PCI bus speed requirement and simplifies the task of building a working

systermn.

The Reference Controller Design

The reference controller design incorporates a PCI bus interface, a configuration control circuit,
and a small set of control and status registers. The controller design consists of a top-level
graphical design file that connects control logic written in VHDL [Ins93] to an Altera PCI/MT32
MegaFunction [Alt98a). This controller design synthesizes using MAX+PLUS II and exceeds the

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 76

performance requirements of the PCI bus. The design is sufficient for many applications and it

provides a good starting point. for more advanced controller designs.

The Altera PCI/MT32 MegaFunction [Alt98b] provides a 32-bit master/target PCI interface
suitable for use with the ARC-PCI Board. The PCI/MT32 supplies an interface that is com-
patible® with several PCI bus controllers. This core uses memory-mapped I/O to communicate
with the PCI bus controller. Each distinct memory-mapped 1/O region corresponds to a BAR. A

maximum of six BARs may be supported by this core.

For the purpose of the reference controller design, the Altera PCI/MT32 MegaFunction creates
five BARs with two mapping to the shared memory devices via the memory busses, two mapping
to the user devices via the memory busses, and one mapping directly to the controller device.
The primary function of the control logic is bridging requests between the PCI bus and the
devices. The use of five BARs simplifies the address decode logic within the controller design.
This substantially improves the overall performance of the controller design. A summary of the

five BARs is provided in Table 4.3.

[BAR [Description I Size [
0 Accesses control/status registers in the controller design 1KB
i Redirects access to SRAM on memory bus 1 512KB
2 Redirects access to SRAM on memory bus 2 512KB
3 Redirects access to user design 1 1KB
4 Redirects access to user design 2 1KB

Table 4.3: Base Address Regions

The control logic is responsible for responding to PCI bus transactions, managing the operation
of the busses on the ARC-PCI Board, and configuring the user devices. The control logic uses
one finite-state machine to respond to PCI bus transactions and another finite-state machine to
configure the user devices. The control logic is split into two FSMs to reduce the number of
state bits required to encode states. This optimization is required to permit the operation of the

controller at the desired clock frequency of 33 MHz.

All functions of the controller interface are accessed by the software via a set of control and

status registers. The reference controller design implements a 32-bit control register named G P Rg

3Compatibility and compliance are not equivalent. The ARC-PCI Board is not PCl-compliant but it is com-
patible with many PCI bus controllers.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 7

that corresponds with address 02000 of BARg. Bit 0 of this register enables MAPP (MAssively
Parallel Programming) mode configuration of the user devices. Bit 1 of this register enables the
configuration of user device 1. Bit 2 of this register enables the configuration of user device 2.
The remaining bits of GPRy may be used for temporary storage. The reference controller design
also implements a 32-bit address register named GPR; that corresponds with address 0z004 of
BARg. All 32 bits are automatically loaded directly from the address lines during a transfer to

BAR;y. Hence, GPR; may not be used for temporary storage.

Dynamic Configuration

MAPP mode configuration is a high-speed configuration protocol developed by Altera for use
with the Altera 10K50 devices on the ARC-PCI Board. The inner workings of MAPP mode
configuration have not been published by Altera but the following details have been revealed

about the protocol:
1. TTF (Tabular Text Files) may be converted to MAPP programming files using the TTF2MAPP
program supplied by Altera with the ARC-PCI Board.
2. Configuration words for Altera 10K50 devices are 44 bits wide.
3. Configuration files for Altera 10K50 devices consist of 30552 configuration words.
4. Configuration files contain a device ID but no other form of error-checking.
5. Multiple devices on the ARC-PCI Board can be configured identically at the same time.
6. MAPP mode configuration timing is similar to the timing used by passive serial configuration

protocol.

A timing diagram for configuration of Altera FLEX 10K series devices is shown in Figure 4.5.
This timing diagram is similar to the one provided in Altera’s Application Note 116 [{Cor99]. This
timing diagram can be used for passive serial configuration, passive parallel configuration, and

MAPP mode configuration of Altera FLEX 10K50 devices.

Passive serial configuration programs a device by transmitting configuration files as a series

of bits. Passive parallel configuration uses a 8 bit configuration word that is clocked in serially.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

78

Configuration Timing
for ALTERA FLEX 10K50 Series Devices

,tcsttog tsmtus ;
Moy ey

nSTATUS T | f
tcfg—hi g““tcstu
nCONFIG 7} |
tezed, | | tst2ek
CONF_DONE . f
terek § Lo 3 teazum
CFG_CLOCK IEECISE, e 00 e B s 1 o Iy U
tdsu‘tdlrr
CFG_DATA[43..0} XEelg D)

Total Time Required = {1otal

Figure 4.5: Configuration Timing for Altera FLEX 10K Series Devices

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 79

MAPP mode configuration uses a 44 bit configuration word to program the device. The timing
parameters associated with these configuration modes are shown in Table 4.4. In theory, MAPP

mode configuration is approximately 20 times faster than passive serial configuration.

Altera FLEX 10K50 Device Configuration Timing

teracp

t crasto 200 200
Ecrasty 4, 000 4,000
tere 2,000 2,000
tsrarus 1,000 1,000
tcrack 5,000 5,000
tsrack 1,000 1,000
tpsu 10 10
tDH 4] (]
teork 60 15
tcpzum 600 600

N cre . 621,240 77,655

Table 4.4: Altera FLEX 10K50 Device Configuration Timing

In practice, it is impossible to implement a controller design on the ARC-PCI Board that can
write 44 bits of configuration data every 60ns. The configuration pins are connected to memory
bus 2 on the ARC-PCI Board. The memory connected to memory bus 2 cannot be accessed
during a configuration without disrupting the configuration process. This restriction means that
all configuration data must be stored in the memory connected to memory bus 1. Several wait
states must be introduced to read the configuration data from memory, allow for the setup time
on the configuration signals, and transmit the configuration word. A clock period of 180 ns is used
instead of 60 ns for tor . Experimentation also revealed that it is possible to reduce tcr2ckx by
almost 50%. These timing differences limit the best possible MAPP mode configuration time to
approximately 5.5 ms. This configuration timing has been successfully tested on three ARC-PCI

Boards.

Caution must be exercised when experimenting with MAPP mode configuration. It is possible
to damage the device if MAPP mode configuration fails since checksums are not used to validate

the configuration information. MAPP mode configuration does not provide the same level of

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 80

safety as other configuration modes.

The reference controller design implements a finite-state machine that manages MAPP mode
configuration. Hardware control of configuration substantially improves configuration perfor-
mance.- As manv as seven user-designs may be stored in memory on the ARC-PCI Board. These
user designs may be swapped into a user device in just 5.5ms. This is an extremely important
feature of the reference controller design. This feature distinguishes this controller design from

the one supplied by Altera in the ARC-PCI development kit.

Figures 4.6 and Figures 4.7 illustrate a significant difference between the way configuration is
handled using 2 Windows NT Platform and the Linux Platform. Under Windows NT, the device
driver may directly access the filesystem. As a result, only one IOCTL is required to initiate the
configuration of a user device as depicted in Figure 4.6. Under Linux, the device driver must
receive its data via IOCTLs. As a result, many IOCTLs are required to transfer the MAPP mode
configuration data to the ARC-PCI Board.

4.1.7 User Designs

The configuration of the user devices with user designs is optional. If the application-specific
design circuitry is simple, it is sometimes possible to fit this circuitry in the controller design. For
more complex applications, user designs are required to implement the circuitry. The hardware

development flow for a user design is illustrated in Figure 4.8.

User designs communicate with the controller design using the memory busses. The fast bus,
the clock bus, and the memory bus of the ARC-PCI Board are used to signal memory bus activity
to user designs. Figure 4.3 illustrates the bus hierarchy. In total, nine handshaking signals are

used. These signals are shown in Table 4.5

The system_clock signal controls the timing of transactions. Transactions start on the rising-
edge of the system_clock. The address bus and data bus enable signals allow user designs to
assume mastership of the memory busses when the controller design is not using them. This
feature is particularly useful if a user design needs to access the memory devices connected to the
shared memory busses. Separate handshaking signals are provided for each of the user designs so

that the designs may operate independently.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 81

ARC-PCI Board Configuration
ona
Windows NT Platform

MAPP SRAM
File Object File

L 1
Application 10OCTL i
) Device
Programming Function Driver
Interface Call

Controlier
Design

User
Design 1

Legend

semedp ASCHI MAPP Mode Configuration Data "\ Design 2
=i Binary MAPP Mode Configuration Data
-—-} SOF Configuration Data

mesmp- JOCTL Request

Figure 4.6: ARC-PCI Board Configuration on a Windows NT Platform

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 82

ARC-PCI Board Configuration
on a
Linux Platform

MAPP SRAM JAM
File Object File File

%%{M%%f%ﬂ&'% |

Application
Programming
interface

I0CTL
Function
Calls

Device

b JAM
Driver

Programmer

Contr_oller User

Design 1

e

Legend

wessdi- ASCI MAPP Mode Configuration Data Design 2

; Binary MAPP Mode Configuration Data
--) SOF Configuration Data
JAM Configuration Data

--) IOCTL Request

Figure 4.7: ARC-PCI Board Configuration on a Linux Platform

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

83

Design Flow
Overview

Design Concept

Netlist
Representation

A i
L

Simulation

Hardware

Hardware Development Flow

Design
Files

P VHDL, Veriiog, AHDL,
_ BDF EDIF

" SOF, POF, JAM

Compilation

‘Simulation

Development
Stages

Design Entry

_ Elaboration

Logic Synthesis

Plasement and Routing

Timing Analysis

Funclional Simuiation

Timing Simulation

Tool
Fiow

Leonardo
Spectrum

Max+Plus li
Quartus 1l

Figure 4.8: Hardware Development Flow

rARC—PCI Board Signal |

Description

system.clock

33 MHz clock signal used by the controller for transaction timing

busl _pldimion

Active-low read enable for user design 1

busi_pld2 mion

Active-low read enable for user design 2

busi_pldi fastn

Active-low address enable for user design 1

busi_pld2 fastn

Active-low address enable for user design 2

bus2 pldi.mion

Active-low write enable for user design 1

bus2_pld2 mion

Active-low write enable for user design 2

bus2.pldi fastn

Active-low data bus enable for user design 1

bus2 pld2 fastn

Active-low data bus enable for user design 2

Table 4.5: User Design Handshaking Signals

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 84

User designs must continuously monitor the handshaking signals to determine when it is
appropriate to read or write data on the memory busses. User designs are expected to respond
to these signals within one clock cycle. Wait states are not permitted. The performance of user

designs is not constrained in any other way.

4.1.8 Comments on PCI Compliance

The ARC-PCI board is not PCl-compliant. Information on PCI-compliant boards can be found
in the book, PCI System Architecture [SA95]. The ARC-PCI Board can be connected to a PCI

bus but there is no guarantee it works with all PCI bus controllers for the following reasons:

1. The Altera FLEX 10K series devices do not support PCI 1/0 signaling levels.

2. The ARC-PCI Board uses a PLL to reduce skew on the clock traces. The use of a PLL does
not conform to the original PCI Specification. A signal driven by a PLL does not operate
correctly when the PCI clock is single-stepped. In practice, the use of a PLL does not
introduce any significant incompatibilities. In fact, recent updates to the PCI Specification

permit the use of PLLs.

3. The ARC-PCI Board has a separate power connection to supply the devices with power. The
peak power consumption of the ARC-PCI Board exceeds the power that can be delivered
by the PCI bus. The use of independent supply voltages can result in problems.

4.1.9 Comments on Performance

The Altera FLEX 10K series devices can be clocked at 33 MHz but great care must be taken to
successfully build designs to achieve this clock frequency. The pinouts of the devices on the ARC-
PCI Board are fixed. The pinout constraints limit the flexibility and performance of hardware
designs. It is often necessary to limit the complexity of the controller design and the user designs

to successfully meet all timing requirements.

Software timing results were obtained to analyze the performance of the API, the device
driver and the reference controller design. First, an experiment was conducted to verify that time

estimates reported by Windows accurately reflect the elapsed time of a sequence of operations

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 85

as observed by the ARC-PCI Board. A simple user design that implemented a hardware timer
was developed. A comparison of the software timing and hardware timing results is presented in
Table 4.6. These results show that the software time estimates reported by software timer routines
provided by Windows are reasonably accurate. Software timing is used for all experimental results

presented later in this thesis.

Controller Design Read
Controller Design Write
Memory Read

Memory Write

User Design Read

User Design Write

Table 4.6: Windows Transfer Comparisons

A series of experiments were conducted to examine the average time required to perform a
single transaction using the reference design on the ARC-PCI Board. Each transaction represents a
read or write operation to a device on the ARC-PCI Board. The three classes of devices of interest
are the controller interface, the shared memory devices, and the user designs. A simple user design
that implements a single general-purpose register was created for use in these experiments. An
application program was written to execute a sequence of transactions and report the execution

time.

Three types of transactions were evaluated during each experiment. Device driver transaction
times report the time required by the device driver to perform a read or a write. Buffered
transaction times report the time required by the application to perform 16 reads or 16 writes
as a block? of data buffered in the the device driver. Unbuffered transaction times report the
time required by the application to perform a read or a write. Figure 4.9 illustrates the difference
between buffered and unbuffered transactions. Each type of transaction was repeated 10,000,000

times during each experiment. The average transaction times were recorded. The complete set of

4 Although not presented in this thesis, experimentation with different block sizes was performed. A block size
of 16 was chosen to balance memory usage with performance. Larger block sizes did not substantially improve
transaction performance.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 86

transfer rate test results is provided in Appendix A

Buffered vs. Unbuffered Transactions

Buffered Transactions

1
Application I0CTL Device 16 Controller
Programming Function Driver PCI Bus Design
Interface Call Transactions

16 Wor } Call 1 Word ansaction

Unbuffered Transactions

16
Application JIOCTL Device 16 Controller
Programming Function Driver PCi Bl!S Design
Interface Calls Transactions

1 ord ! Call k| Wor I ansaction

Figure 4.9: Buffered vs. Unbuffered Transactions

Table 4.7 shows the average transaction times using Windows for 32-bit transfers initiated by
a device driver, buffered transfers initiated by an application, and unbuffered transfers initiated
by an application. Buffering significantly reduces the average transaction time experienced by an
application. The grouping of transactions into blocks consisting of 16 words reduces the number
of IOCTLs executed. This effectively reduces the number of context switches initiated by the
operating system. Assuming that every IOCTL results in a context switch, the IOCT“L overhead
represents the time required for a context switch in Windows. This figure is approximately 2000 ns,

regardless of the transaction type.

It is useful to compare the observed performance with the theoretical performance expected.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 87

Windows Transacﬁon Times

Controller Design Read

Memor v Read

Memory Write
lUser Design Read

Uger Pesign Write

Table 4.7: Windows Transfer Times

Using the PCI/MT32 MegaFunction, each PCI bus read transaction requires at least 8 clock cycles
or 240ns. The reference design performs buffered read transactions in approximately 580 ns.
Using the PCI/MT32 MegaFunction, each PCI bus write transaction requires at least 9 clock
cycles or 270ns. The reference design performs buffered write transactions in approximately
300ns. Synchronization delays have less of an impact upon the performance of PCI bus write
transactions. The observed performance of the reference design is very close to the theoretical

performance of the hardware.

Using the transaction times shown in Table 4.7, it is possible to calculate the amount of time
required to transmit a MAPP mode configuration file to memory on the ARC-PCI Board. A
MAPP mode configuration file requires the transmission of 30,552 configuration words. Each
configuration word is 44-bits wide. The transmission of a configuration word requires two 32-bit
PCI bus write transactions. In total, the equivalent of 61,104 transactions are necessary. The
MAPP mode configuration file is read directly by the device driver under Windows. The time per
buffered write transaction for a device driver is approximately 221 ns. Therefore, the transmission
of a MAPP mode configuration file to the ARC-PCI Board requires approximately 13.5ms. This
assumes that the file is cached in memory. In practice, additional delays are encountered as the
file is read from the file system. These delays are difficult to estimate since the delays depend

upon the state of the computer system and its workload.

Table 4.8 shows the average transaction times using Linux for 32-bit transfers initiated by
a device driver, buffered transfers initiated by an application, and unbuffered transfers initiated

by an application. The results are similar to those observed for Windows. However, the IOCTL

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 88

overhead is smaller for Linux on average. Assuming that this overhead represents the time required
for a context switch, Linux has a context switch tine of approximately 1800 ns. It is worth noting
that there is a slight difference between the overhead experienced by read and write transactions.

Read transactions experience an additional delay of approximately 135 ns.

Controller Design Read
Coentroller Design Write
Memory Read

Memory Write

User Design kead

User Design Write

Table 4.8: Linux Transfer Times

Subtle timing differences have been observed between the Windows and Linux implementations
as illustrated in Table 4.7 and Table 4.8. The Windows transfer times are slightly slower than
those observed for Linux. The observed difference is relatively small. It could be related to the
relative performance of the operating systems or it could be related to the load on the operating
systems at the time of testing. Windows is used for all experimental results presented later in

this thesis.

4.2 Platform II: Nios Embedded Processor Development
Board

Platform II consists of a development workstation and a test workstation. The test worksta-
tion is a Nios Embedded Processor Development Board [Cor02¢] configured with a 33 MHz Nios
processor [Cor02d], 256 KB of SRAM, and no swap space. No operating system is run on this
workstation. Application software directly accesses the hardware devices using memory-mapped
I/O (Input/Output). This board provides sufficient programmable logic resources to permit the
development and use of configurable coprocessors. A PC serves as a development platform. This

PC consists of an Intel Pentium III with a 450 MHz processor, 512MB of SDRAM, and 1 GB

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 89

of swap space. This workstation runs Windows 2000, the hardware development tools (Quar-
tus IT and the Nios Embedded Processor Development Kit), and the software development tools
(GnuPro Toolkit and the Nios Embedded Processor Development Kit). The test and development

workstations are connected using parallel and serial connections as shown in Figure 4.10.

4.2.1 The Nios Embedded Processor Development Board

The Nios Embedded Processor Development Board [Cor02¢] is a standalone platform for embedded
system development using a Nios processor. This board may be used as a configurable computing
platform although it is most typically used to prototype embedded systems. As a configurable
computing platform, it serves as a tightly-coupled configurable computer formed by connecting a
soft core Nios processor to one or more configurable coprocessors. Figure 4.11 shows a photograph

of a Nios Embedded Processor Development Board.

Programmable Logic

The Nios Embedded Processor Development Board uses an Altera APEX 20K200EFC484-2X
device to implement an embedded system. This device provides 8,320 LEs and 104 KB of SRAM.
Tt is not known whether this device supports MAPP mode configuration. However, it does support
passive serial mode configuration. The configuration timing shown in Table 4.9 applies to APEX
20KE series devices. A total of 35ms is required to configure the APEX 20KE series device on

the Nios Embedded Processor Development Board.

4.2.2 Nios Embedded Processor Development Kit

It is beyond the scope of this thesis to document the entire Nios Embedded Processor Development
Kit. 'This kit is very well documented [Cor02¢c] [Cor02d] [Cor02e] [Alt02a] [AltO2c] [AltO2b].
It provides all of the hardware, cores, software libraries, and tools necessary to build complex

embedded systems based on the Nios processor.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

Test
Workstation

Development
Workstation

Hllustration of Platform li

Nios Embedded
Processor
Development Board

£ Nios SDK

Parallel
and Serial Connections

Hardware:

Intel Pentium i
450 MHz

512 MB SDRAM
1 GB Swap

Note:

This PC workstation provides
a stable platform for
cross-platform hardware and
software development. This
platform also facilitates
hardware debugging via the
serial port connection.

Software:
Windows 2000

GnuPro ToolSet
Quartus 0 2.1

90

Figure 4.10: IHustration of Platform II

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

Nios Embedded Processor Development Board

Figure 4.11: Nios Embedded Processor Development Board

Altera APEX 20K200E Device Configuration Timing

Tiredng i’#ﬁmﬁét /

tcraco 200
terasto 200
tepasm 1,000
tere 8,000
lSTATUS 10,000
t crack 40,000
fs1ack 1,000
10

Q

18

2,000

1,968,016

| 34,450 280

Table 4.9: Altera APEX 20K200E Device Configuration Timing

91

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 92

4.2.3 Configurable Computer Architecture

The Nios Embedded Processor System consists of application software, a Nios processor, and a
set of peripherals as shown in Figure 4.12. Application software communicates with the Nios
embedded processor using API functions that are translated into one or more memory-mapped
1/0 transactions. The Nios embedded processor communicates with peripherals via a proprietary
Avalon bus. This bus is a 32-bit bus that clocks at the same frequency as the processor: The

clock frequency is nominally 33 MHz for a Nios processor.

It is possible to create a tightly-coupled configurable computer by defining one or more user
peripherals that attach directly to the Avalon Bus of the Nios processor. However, such a system
differs from a more traditional configurable computer system with respect to dynamic configura-
tion. Since the Nios processor is implemented using the same programmable logic device as the
user peripherals, the processor cannot initiate a dynamic configuration of the user peripherals.

As a result, the user peripherals are fixed for the duration of the system®.

4.2.4 Nios Embedded Processor

Nios embedded processors can be optimized for performance or area. A 32-bit Nios processor
optimized for performance is used for all experimental results presented in this thesis pertaining
to Platform II. The processor clocks at 33 MHz, the nominal clock frequency for a processor
on the Nios Embedded Processor Development Board. Hardware multiplication and all other
performance optimizations are enabled. These optimizations are discussed in greater detail in

Chapters 6 and 7.

For the purpose of this thesis, the Nios embedded processor is the Avalon bus master. Bus mas-
tering peripherals are not used. This avoids the delays associated with bus arbitration. However,

it also forces all peripherals to be slaves to the processor.

5This would not necessarily be the case if partial configuration was supported by the programmable logic
device. Also, this limitation could be avoided by adding another programmable logic device to the Nios Embedded
Processor Development Board

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS

Nios Embedded Processor System Components

Software
Components
Application
Software
API
Hardware
Components Memory
Nios
Embedded
Processor
Avalon
I Avalon l Avalon
User Other
Peripheral Peripherals

Design

Figure 4.12: Nios Embedded Processor System Components

93

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 94

4.2.5 User Peripheral Designs

Altera provides a wizard to simplify the development of custom peripherals that attach to the
Avalon bus of the Nios processor. Using the wizard, each peripheral is assigned a unique memory-
mapped I/O region within the address space of the processor. Optionally, peripherals may support
interrupts. The timing of the interface is flexible. Wait states can be inserted to allow extra time
for peripherals to respond to requests. If wait states are not used, peripherals must be capable of

responding to a bus transaction once every clock period.

User peripheral designs can implement any hardware device that fits in the available pro-
grammable logic resources provided that the device meets the timing requirements of the Avalon
bus. These constraints are very weak given the large amount of programmable logic resources
available within the device and the flexibility of the bus interface. The Altera APEX 20K200E

device is a powerful platform for the development of complex user designs.

4.2.6 Other Peripherals

For the purpose of the experimental results presented in this thesis, a system configuration similar
to the one documented in the Nios Tutorial [Cor02e] is used. A standard set of peripheral interfaces
must be instantiated to build a complete system. RAM, ROM and UARTS are required to run
application software on the embedded system. Other peripherals such as pushbutton inputs, LED

outputs, and timers are used to simplify the task of testing and debugging the system.

4.3 Platform III: Sun Workstation

Platform III consists of a Sun Ultra 1 with a 167 MHz processor, 128 MB of RAM, and 1GB of
swap space. This platform does not provide any programmable logic resources. It is investigated
to verify that the PC platform results are consistent with those found in modern workstations.

The Solaris 2.6 Operating System is installed on this workstation.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 95
4.4 Platform Comparison

Table 4.10 summarizes the key features of the processors of each platform discussed in this thesis
and Table 4.11 summarizes the key features of the coprocessors of each platform discussed in this
thesis. Platforms I and II are very similar in terms of quantity of programmable logic resources
and RAM. However, there is a substantial difference in the quality of the programmable logic
resources and RAM provided. The LEs available in an Altera APEX series device are more
powerful than those found in an Altera FLEX series device. They are faster and can compute
more complex functions of inputs. Similarly, the RAM available in an Altera APEX series device

is much faster than the RAM available in an Altera FLEX series device.

[Feature [Platform 1 | Platform II | Platform III |
Processor Type 450 MHz Pentium I 33 MHz Nios 167 MHz Ultra 1
On-Chip (Cache) Memory Capacity 512KB SRAM N/A 512KB SDRAM
On-Chip (Cache) Memory Latency 4.4ns N/A 12ns
Off-Chip Memory Capacity 512MB SDRAM 256 KB SRAM | 128 MB SDRAM
Off-Chip Memory Latency 70ns 20ns 60 ns
Virtual Memory Capacity 1GB N/A 1GB

Table 4.10: Summary of Computing Platform Processors

[Feature [Platform 1 ‘ Platform II I Platform III f
Coprocessor Type FLEX 10K50 APEX 20K200E N/A
Coprocessor Logic Resources 8,640 LEs 8,320 LEs N/A
Off-Chip Memory Capacity 1MB SRAM N/A N/A
Off-Chip Memory Latency 20 ns N/A N/A
On-Chip Memory Capacity 60 KB SRAM 104 KB SRAM N/A
On-Chip Memory Latency 17ns 4.2ns N/A
Coprocessor Bus 32-Bit PCI Bus 32-Bit Avalon Bus N/A
Coprocessor Bus Bandwidth | 100 MBytes / second | 133 MBytes / second N/A

Table 4.11: Summary of Computing Platform Coprocessors

Another significant difference between Platforms I and I is the speed of the processor. The
soft core Nios processor used in Platform II runs at a much slower clock frequency than the
Pentium III processor used in Platform I. This clock frequency difference means that the difference
in bandwidth between the processor and the bus in Platform I is much higher than the difference

in Platform II.

CHAPTER 4. CONFIGURABLE COMPUTING PLATFORMS 96

Platform I1I differs from both Platforms I and II quite significantly. Platform I1I is simply
included in this research to allow comparisons between the performance of a PC and a Sun
workstation. These comparisons establish that it does not make a significant difference whether a
PC or a Sun workstation is used for configurable computing research. The two platforms deliver

similar application performance.

Chapter 5

Application 1: CSIM

This chapter describes the first of three sets of experiments into configurable computing applica-
tions. The goals of this experiment were to identify and quantify the major factors influencing
the performance of a loosely-coupled configurable computer on a mainstream software applica-
tion. CSIM, a discrete-event simulation library, was chosen as the mainstream software applica-
tion: The execution of CSIM was profiled using a FIFO queue as a simulation benchmark. Using
the results of this analysis, a configurable coprocessor for CSIM was developed for the purpose
of generating pseudo-random numbers. This coprocessor reproduces the exact algorithm used
for pseudo-random number generation within CSIM. A series of experiments were conducted on
Platform I using this configurable coprocessor. The experimental results demonstrate the dif-
ficulties associated with accelerating a mainstream software application using a loosely-coupled

configurable computer.

5.1 Introduction to Discrete-Event Simulation

Discrete-event simulation is a computational technique for predicting the dynamic behaviour of
a complex system. Common applications of discrete-event simulation include the simulation of
assembly lines, military operations, supply chains [SP00], air traffic, computer architectures, and

wireless communication systems. In a discrete-event simulation, the state of the system is updated

97

CHAPTER 5. APPLICATION 1: CSIM 98

only when events of interest occur. Unlike continuous simulation, only the portions of the system
state related to events of interest are updated. All discrete systems and many continuous systems

can be simulated accurately using discrete-event simulation.

5.1.1 Discrete-Event Simulation Terminology

A number of terms have a specific meaning within the context of discrete-event siimulation. For the
purpose of this thesis, systems, models, and discrete-events are defined in the following subsections.

These terms are used throughout this chapter.

System

The system. is the physical system to be simulated. The system represents a real-world process
or problem to be studied. Typically, simulation is used when it is impossible, impractical, or
inappropriate to study a problem using an experimental or analytical method. For example,
simulation is used to study chemical reactions since it is often impractical to conduct repeated

experiments using expensive materials. A chemical reaction is an example of a system.

Model

The model is a computational representation of the behaviour of a system. A model is typi-
cally written as a set of communicating logical processes. These processes predict the dynamic
behaviour of the active entities of the system. As these processes compute, they generate a se-
quence of events in time. These events may represent the production / consumption of resources,
communication of information, or other events of interest within the system. An accurate model

investigates all events of interest.

Discrete-Event

A discrete-event is a time-stamped event that represents some activity within the system. As
discrete-events are generated by processes, they are placed in an event queue. During each cycle

of a discrete-event simulation, one event is removed from the event queue and processed. As

CHAPTER 5. APPLICATION 1: CSIM 99

each event is processed, the current simulation time is updated based on the time-stamp of the
most recently processed event. The amount of time required to simulate a system is directly

proportional to the number of events processed.

5.1.2 Discrete-Event Simulation Tools and Libraries

Discrete-event simulation tools and libraries aid in the development of complex discrete-event sim-
ulations. Discrete-event simulation tools and libraries differ in their approach towards achieving
the goal of modeling and predicting the behaviour of a system. Tools provide a way of describing
a system graphically and simulating its behaviour. Libraries provide a set of data structures and
methods that permit describing a system textually and simulating its behaviour. Tools offer ease

of use while libraries offer flexibility and performance.

Discrete-event simulation tools assist with the graphical construction and evaluation of a
model. Discrete-event simulation tools provide a graphical user interface that enables the de-
velopment of complex models using a graphical modeling language. Knowledge of a program-
ming language is not required to use a discrete-event simulation tool. Examples of tools include

SIMULS [HP02] and Powersim [Pow01].

Discrete-event simulation libraries assist with the textual comstruction and evaluation of a
model. Discrete-event simulation libraries provide functions that enable the development of com-
plex models using a programming language. Examples of discrete-event simulation libraries in-

clude CSIM [Mes98a] [Mes98b], Parsimony [PW99], Maisie [Bag91] [BL94], and Parsec [BMT98].

5.1.3 Accelerating Discrete-Event Simulation

PDES (Parallel Discrete-Event Simulation) [Fuj90] and DDES (Distributed Discrete-Event Sim-
ulation) [Fuj93] are two popular techniques for accelerating discrete-event simulations. A parallel
discrete-event simulator uses a parallel computer to compute portions of the entire simulation in
parallel. A distributed discrete-event simulator uses a distributed computing platform such as a

network of workstations to compute portions of the entire simulation in parallel.

Exploiting parallelism in discrete-event simulation is not a trivial task. If a single event queue

is used to manage all events, a communication bottleneck results when a logical process tries to

CHAPTER 5. APPLICATION 1: CS5IM 100

access the event queue. If each logical process is associated with a distinct event queue, time

synchronization across logical processes poses a communication bottleneck.

Researchers have investigated more aggressive techniques for exploiting parallelism and min-
imizing communication bottlenecks [PML92]. It is possible to build a parallel or distributed
discrete-event simulator that does not attempt to process events in-order. Such simulators op-
timistically process events and if it turns out that an event should not have been executed, the

simulator rolls back the change to the system state.

5.2 The CSIM Discrete-Event Simulation Library

CSIM is a discrete-event simulation library that permits the rapid development of process-oriented
simulations using the C [KR88] and C++ [Str94] programming languages. CSIM began as a
research project [Sch86] at the University of Texas at Austin in 1986. Since then, the CSIM
discrete-event simulation library has matured into a commercial software package. Today, CSIM

is used worldwide by programmers faced with the challenge of simulating complex systems.

5.2.1 The Choice of CSIM

The source code for CSIM v18 was obtained under a non-disclosure agreement. CSIM was chosen
for this research for the following reasons:

1. CSIM is an example of a mainstream software application.

2. CSIM is a computationally-intensive application.

3. CSIM is a commercial software package.

4. CSIM is widely used in both industry and academia.

5. CSIM is a mature software package.

6. CSIM is well-documented.

CHAPTER 5. APPLICATION 1: CSIM 101

Other applications could have been studied. Several simulation libraries, mathematical k-
braries, and other software packages were considered. CSIM was chosen based primarily on

availability and familiarity.

5.2.2 Modeling Systems with CSIM

Using CSIM, systems are modeled as a-set of processes that communicate and interact at discrete
points in time. Version 18 of the CSIM C++ Library [Mes98a] [Mes98b] provides a set of classes
and member functions that permit the creation, use, and destruction of CSIM objects. These
objects form the basic building blocks for a simulation program. Table 5.1 describes the object

classes that CSIM provides.

CSIM Object Classes [Description J

Processes CSIM processes encapsulate the active entities in the discrete-event sim-
ulation model. A process manager is responsible for scheduling the exe-
cution of processes and restoring their context. The four states of process
execution are actively computing, ready to start computing, holding un-
til a specified simulation time, or waiting for an event to occur. Several
instances of a process may exist simultaneously.

Facilities CSIM facilities model resources in a simulated system. A facility is a
combination of a request queue and one or more servers that service
the request queue. When a process requests service from a facility, the
request is added to the request queue. The ordering of requests in the
queue can vary but typically requests are sorted by process priority.
Once the servicing of a request is complete, the process releases the
facility. Statistics on the utilization of facilities are automatically main-
tained by the object class.

Storages CSIM storages represent resources that can be partially allocated to a
requesting process. Storages consist of a request queue and a counter.
The counter keeps track of the amount of available storage.

Events Synchronize process activities

Mailboxes Facilitate a primitive form of interprocess communication

Table Structures Collect statistical data during the execution of a simulation

Process Classes Calculate and report statistics on the execution of a simulation

Streams Generate streams and statistical distributions of pseudo-random num-
bers

Table 5.1: CSIM Object Classes

CHAPTER 5. APPLICATION 1: CSIM 102

5.2.3 Applications of CSIM

CSIM permits designers of simulations to use native C++ objects and methods to model the
behaviour of complex systems. The use of native C++ objects and methods permits CSIM to
simulate systems quickly and accurately. CSIM has been successfully used to model Application
Specific Integrated Circunit (ASIC) designs, communication systems, transportation systems, and

other complex systems.

5.2.4 Profiling the Performance of CSIM

The performance of CSIM was investigated using VTune, a profiling tool developed by Intel.
VTune monitors the execution of an application using a set of dedicated hardware registers present
in Intel Pentium II1 processors. VTune can perform both intrusive and non-intrusive tests. Non-
intrusive tests were used to sample function execution. For the purpose of analysis, functions were

grouped into the following categories:
Process Management - Process management includes all functions related to the creation, schedul-
ing, and completion of processes.

Streams and Distribution Generation - Streams and distribution generation cousists of functions

to generate pseudo-random numbers and statistical distributions of pseudo-random numbers.

Event Management - Event management functions focus on the creation, scheduling, and com-

pletion of events including interprocess communication.

Statistics Generation - Statistics generation includes all functions related to the statistical anal-

ysis of the behaviour of simulation runs.

Storage Management - Storage management functions provide a means of allocating, managing,

and releasing all resources.

Miscellaneous Activites - Miscellaneous activities includes functions that cannot easily be cate-

gorized above:

A simulation model of a simple M/M/1 queue [LK91] with a service time of 2 and an interarrival

time of 2 was profiled using VTune. This M/M/1 queue model is provided in Appendix D. This

CHAPTER 5. APPLICATION 1: CSIM 103

M/M/1 queue model served as a stress test for the simulation library. By adjusting the total
number of arrivals, it was possible to adjust the number of processes, events, and pseudo-random
numbers used during the simulation. For the purpose of profiling, a simulation with 1,000,000

arrivals was run three times. Table 5.2 shows a summary of the average results of the profiling

analysis.
Percentage
Functionality of Total
Execution Time

Process Management 46.43%
Streams and Distributions Generation 25.06%
Event Management 11.25%
Statistics Generation 9.74%
Storage Management 5.34%
Miscellaneous Activities 2.18%

Table 5.2: CSIM Profiling Results

For this simulation, CSIM spent 46% of its execution time scheduling and managing its pro-
cesses. Although process management accounts for a large percentage of the total execution time,
each process management task consumes very little time. Process management involves the use
of highly-optimized function calls, assembly language routines, and direct register manipulation.

As a result, process management is not a good candidate for coprocessing.

Streams and distribution generation was chosen as a candidate for coprocessing. Strcams
and distribution generation represents approximately 25% of the execution time of CSIM on the
simulation investigated. The generation of pseudo-random numbers was targeted for coprocess-

ing. CSIM’s pseudo-random number generator is not an ideal algorithm for coprocessing for the

following reasons:
1. The algorithm is simple. Pseudo-random number generation is easily implemented on a
CISC (Complex Instruction Set Computer) processor so speedup is unlikely.

2. The algorithm uses double-precision floating point arithmetic. While it is possible to im-

plement double-precision floating point arithmetic using a configurable logic device, the

difficulty of accomplishing this task is high.

3. The algorithm requires very little execution time. It is not clear whether a configurable logic

CHAPTER 5. APPLICATION 1: CSIM 104
device is capable of computing the result faster than a general-purpose processor.

However, CSIM’s pseudo-random number generator was a suitable candidate for coprocessing

for the following reasons:

1. The algorithm is used often during simulations.
2. The algorithm is easy to understand.

3. The algorithm is self-contained.

Event management was also considered as a possible candidate for coprocessing. It was not
chosen due to the fact that it would require substantial modifications to the CSIM library. Ap-
proximately 15% of the total lines of source code for CSIM would be directly impacted by the
coprocessing of event management functions. The complexity of the event management code
also made it a poor candidate for coprocessing. The ARC-PCI Board does not provide suffi-
cient programmable logic resources to implement a large subset of the CSIM event management

functions.

5.3 Enhancing CSIM

Pseudo-random number generators are often implemented in hardware. VHDL designs of pseudo-
random number generators are publically available on the internet. However, the use of a publi-
cally available pseudo-random number generator is unsuitable for the purpose of enhancing CSIM.
It is desirable to show that it is possible to obtain the same results with a coprocessed version
of CSIM. For this reason, the software algorithm used by CSIM was translated into a hardware

implementation specified in VHDL.

5.3.1 Pseudo-Random Number Generation in CSIM

CSIM uses several different pseudo-random number generators of varying complexity. The sim-
plest pseudo-random number generator used by CSIM is a Mixed Linear Congruential Genera-

tor [Leh51]. The pseudo-random number generator produces a double precision floating point

CHAPTER 5. APPLICATION 1: CSIM 105

value in the range U(0,1). The details of its implementation are not described due to the non-

disclosure agreement.

5.3.2 Interfacing with Platform I

A VHDL implementation of CSIM’s pseudo-random number generator was designed and tested
using MAX+PLUS II. This algorithm was then modified to interface with the reference controller
design described in the previous chapter. The device driver and the API for the ARC-PCI
Board were modified to add & new function named arcpci_get_random{). This function initiates
the computation and retrieval of a double precision floating point value from the configurable

COProcessor.

Additional hardware and software components are necessary to utilize a configurable coproces-
sor. A non-coprocessed CSIM application consists of C++ software components. A coprocessed
CSIM application consists of C++ software, C software, and VHDL specified hardware compo-

nents as illustrated in Figure 5.1.

5.3.3 Performance Optimizations

Coprocessor optimizations were investigated to improve the performance of the configurable co-
processor. The coprocessor design for the pseudo-random number generator exploits the fact that
pseudo-random numbers are predictable. Rather than generate the pseudo-random number when
requested to do so, the number is pre-calculated by the coprocessor and stored in a temporary
register. This optimization permits the pseudo-random number to be returned without the need
for wait states. Due to the latency associated with PCI bus cycles, there is always sufficient time
to calculate the next pseudo-random number prior to receiving the next request. The use of a
status register and a tight polling loop is unnecessary. This pre-calculation saves three PCI bus
cycles since each random number takes three clock cycles to generate. Using this optimization,

performance improves by a factor of 1.375.

Device driver optimizations were also investigated. Two versions of the arcpci_get random
function were implemented. The unoptimized version retrieved a single pseudo-random number

from the coprocessor. The optimized version retrieved a block of pseudo-random numbers from

CHAPTER 5. APPLICATION.1: CSIM 106

Coprocessed CSIM Application

User CSIM
Software Apptication
Non-Coprocessed CSIM Application

Coprocessed CSIM Application

I ARCLIB Legend:

[C++ Software

C Software

l ARCPCLSYS @ VHDL Hardware
_ Selection of /Component
Controller Reference ,
Device Controller Design

Programming Files

_User PRNG Minheap
Devices Coprocessor | Coprocessor

User Device #1 - _ User Device #2 e

L------------l--

Figure 5.1: Coprocessed CSIM Application

CHAPTER 5. APPLICATION 1: CSIM 107

the coprocessor and buffered them accordingly. The optimized version also included support for

fast 1/0 dispatching.

5.4 Experimental Method

A series of experiments were conducted to examine the average time required to simulate the
M/M/1 queue model. Three different implementations of the CSIM library were tested. The first
implementation used CSIM without any enhancements or modifications. The second implementa-
tion used CSIM with an unoptimized configurable coprocessor system for pseudo-random number
generation. The third implementation used CSIM with an optimized configurable coprocessor
system for pseudo-random number generation. The optimized configurable coprocessor system
provided support for fast 1/O dispatching and the buffering of transactions. Each version was

tested on simulations of varying sizes.

5.5 Platform I: Experimental Results

During testing, the test workstation was isolated from the network and configured as a standalone
workstation. The load on the workstation did not vary due to external factors. Small deviations
in the execution times of the routines were observed. These deviations were due to variations in
the performance of the L1 and L2 caches over time. The average results of the experiments are

shown in Table 5.3.

Normal Unoptimized Optimized
Number Random CSIM Coprocessed CSIM | Coprocessed CSIM
of Numbers | Execution Execution Execution
Arrivals | Generated Time Time Time
(in s) (in s) (in s)
1 2 0.010 0.932 0.221
10,000 20,000 0.140 0.952 0.370
100,000 200,000 1.352 6.139 1.893
1,000,000 2,000,000 13.410 57.993 17.305

Table 5.3: CSIM M/M/1 Performance Results

CHAPTER 5. APPLICATION }: CSIM 108

The results for the coprocessed versions of CSIM presented in Table 5.3 include the time
required to load, start, stop, and unload the device driver. For small simulation runs, the time
required to startup and shutdown the device driver dominates the execution time. For large
simulation runs, the time to startup and shutdown the device driver is insignificant. Using the
result for the smallest simulation run, it is possible to quantify the time required to startup and

shutdown the device driver. Approximately 0.2s is consumed by this activity.

Device driver optimizations improve performance by a factor of 3.35. This substantial im-
provement shows that bus and operating system delays are significant’. The computation time
is constant for both the unoptimized and optimized versions. The computation time represents a

small percentage of the total execution time.

5.5.1 Application Speedup

Using the experimental results presented in Table 5.3, it is possible to calculate the application
speedups associated with the coprocessed versions of CSIM. For the coprocessed versions of CSIM,
the fractional application speedups represent a degradation in performance. These degradations

in performance are shown in Table 5.4.

Number Random Normal Unoptimized Optimized
of Numbers CSIM Coprocessed CSIM | Coprocessed CSIM
Arrivals | Generated | Speedup Speedup Speedup
1 2 1.000 0.011 0.045
10,000 20,000 1.000 0.147 0.378
100,000 200,000 1.000 0.220 0.714
1,000,000 2,000,000 1.000 0.231 0.773

Table 5.4: CSIM M/M/1 Speedups

Although the performance degradations decrease as the size of the simulation run increases,
there is no reason to believe that an application speedup in excess of 1 is possible. In fact, it can
be easily shown that application speedup is impossible using this configurable coprocessor. Using
the results of Table 4.7, the time required to perform two buffered 32-bit read transactions can

be calculated to be approximately 1,160ns on average. A quick test of the CSIM pseudo-random

1The impact of fast 1/O dispatching upon performance was not quantified. In practice, fast 1/O dispatching
would always be used by a device driver to minimize IOCTL overhead.

CHAPTER 5. APPLICATION 1: CSIM 109

number generation algorithm indicates that random numbers can be produced in substantially
less than 1,160 ns on average?. Based on these observations, application speedup is impossible in

this case.

5.5.2 Evaluation of System Impact

An evaluation of the system impact was performed using VTune. The execution of all processes
was noted and recorded. VTune reported every function call and kernel primitive observed execut-
ing during the test runs. The function calls were grouped into CSIM application calls, Windows
NT kernel calls, and other application calls to study the system. The raw results of this profiling

for the three implementations of CSIM are shown in Table 5.5.

Clock Ticks of Clock Ticks of Clock Ticks of
Process Normal Unoptimized Coprocessed | Optimized Coprocessed
CSIM Execution Time CSIM Execution Time CSIM Execution Time
CSIM Application 13,774 13,550 13,672
Windows NT Kernel 285 3,490 3,076
Other Applications 63 259 177
[Totals | 14,122 | 17,299 | 16,925

Table 5.5: System Profiling Raw Results

Table 5.6 shows the results of system profiling as percentages.: It is interesting to note that
kernel primitives account for a much larger percentage of clock cycles for the coprocessed systems.
The CSIM application consumes more than 75% of all clock cycles available to the system. Thus,

this system is referred to as a lightly-loaded system.

These results show that as CSIM spends more time communicating with the configurable
coprocessor, the amount of time dedicated to other applications in the system increases. This
increase is actually quite substantial considering the fact that the other applications in the system
are running in the background. Overall system performance depends upon the mix of active

applications. Other applications may benefit indirectly from the coprocessing of an application.

2The exact figure has been left out of this thesis to avoid disclosing the details of the. algorithm used by
CSIM. For purposes of comparison, the pseudo-random number generator presented in the next chapter requires
approximately 22.5ns on average.

CHAPTER 5. APPLICATION 1: CSIM 110

Percentage of Percentage of Percentage of
Process Normal Unoptimized Coprocessed | Optimized Coprocessed
CSIM Execution Time CSIM Execution Time CSIM Execution Time
CSIM Application 97.54% 78.33% 80.78%
Windows NT Kernel 2.02% 20.17% 18.17%
Other Applications 0.45% 1.50% 1.05%

Table 5.6: System Profiling Percentages
5.6 Interesting Observations

There are three interesting observations that can be made with respect to this application system
and the experimental results obtained. The performance of the application degrades but it is
unclear whether the performance of the system improves or degrades. Software optimizations
have a greater impact upon the performance of the application than hardware optimizations.
Finally, a configurable coprocessor can be used transparently. These observations provide some

insight into the complexity of loosely-coupled configurable computing.

5.6.1 Performance

Despite the fact that the application experiences performance degradation, it is unclear whether
the host computer experiences an overall performance degradation or not. The use of a config-
urable coprocessor causes the host computer to perform additional transactions that were not
previously required. However, the computations performed by the coprocessor are no longer
performed by the host computer. If the time required by the host computer to perform addi-
tional transactions is less than the time originally required to perform the computations, the
host computer experiences a performance improvement. More computing power is delivered to
other applications executing on the host computer as it waits for the coprocessor to perforn its
computations. The fact that the execution time of the application increases does not necessarily
mean that the performance of the entire system degrades. The application may spend more time
waiting for the completion of memory and bus transactions but at the same time, other processes

in the system may be able to execute.

CHAPTER 5. APPLICATION 1: CSIM 111

5.6.2 Impact of Optimizations

The software optimizations performed had a greater impact on performance than hardware op-
timizations performed. The computation of a pseudo-random number sequence is a simple task.
Communication of the result to the host computer is much more complicated. Two I/0 operations
are required to retrieve a pseudo-random number from the coprocessor. The ratio of communica-
tion to computation in this application is very high. By introducing device driver optimizations
such as buffering and fast 1/0Q dispatching, performance improved by a factor of 3.35. Coprocessor
optimizations only improved performance by a factor of 1.375. This observation regarding the im-
pact of optimizations can likely be extended to other simple calculations with high communication

to computation ratios.

5.6.3 Transparency

It is also important to note that the introduction of the configurable coprocessor was completely
transparent to the end user. The application source code for the simulation model was the same
for all implementations of CSIM tested. The changes to the system were hidden within the CSIM
library. All tests produced identical simulation results. Only the performance of the three CSIM
implementations differed. This application demonstrated that it is possible to successfully replace
a software algorithm with a configurable coprocessor. In addition, this application demonstrated

that an end user need not know when a configurable coprocessor is used.

Chapter 6

Application 2: Pseudo-Random

Number Generation

This chapter describes the second of three sets of experiments into configurable computing ap-
plications. The goal of this experiment was to compare the performance of a simple mainstream
software application on loosely-coupled and tightly-coupled configurable computers. A config-
urable coprocessor for a pseudo-random number generator similar to the one used in CSIM was
designed and tested. A series of experiments were conducted on Platforms 1 and II using this
coprocessor. Experimental results illustrate the large performance gap between a loosely-coupled
and a tightly-coupled configurable computer system. The coprocessor design degrades the appli-

cation performance for Platform I but enhances the application performance for Platform IL

6.1 Pseudo-Random Number Generation

Pseudo-Random Number Generators (PRNGs) are algorithms for efficiently obtaining a repro-
ducible sequence of numbers that are distributed uniformly on the interval [0,1]. By definition,
it is impossible for any deterministic algorithm to generate a sequence of truly random numbers.
The goal of an effective pseudo-random number generator is to produce a sequence of numbers

that approximate a realization of Independent and Identically Distributed (IID) U{0, 1) random

112

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 113

variables. Given such a sequence, it is possible to construct non-uniform distributions and ap-
proximations of random processes. Uniform distributions, non-uniform distributions, and random
processes are essential to the numerical modeling of complex systems. For this reason, pseudo-
random number generators are an essential component of any discrete-event simulation tool or

library.

Perhaps sequences of psendo-random numbers were best defined by D. H. Lehmer in 1949

when he described them as the following:

«...a vague notion embodying the idea of a sequence in which each term is unpre-
dictable to the uninitiated and whose digits pass a certain number of tests traditional
with statisticians and depending somewhat on the use to which the sequence is to be

put.”

6.1.1 Linear Congruential Generators

Linear Congruential Generators (LCGs) are a popular type of psendo-random number generator.
Introduced by D. H. Lehmer in 1949, LCGs {Leh51] are based on the iterative equation shown in
Equation 6.1.

Z; = (aZ;—1 + ¢)(mod m) (6.1)

The choice of constants m, a, ¢, and Zy impact the effectiveness of the algorithm. Typically,
m is set to 2° where b is the number of bits in the integer representation. If a and ¢ are chosen
judiciously, it is possible to ensure the LCG has a full period. This property means every value
between 0 and m — 1 occurs exactly once in the first m iterations of the LCG. In 1964, Hull and

Dobell [HD62] proved Theorem 1 that provides constraints on appropriate choices of a and c.

Theorem 1 (Hull and Dobell) The LCG defined in Equation 6.1 has a full period if and only
if the following three conditions hold:

1. The only positive integer that (exactly) divides both m and c 15 1.

2. If q is a prime number (divisible by only itself and 1) that divides m, then q divides a — 1.

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 114

8. If 4 divides m, then 4 divides a — 1.

If the increment ¢ is non-zero, the LCG is referred to as a Mixed Linear Congruential Generator.
Mixed LCGs can have a full period since ¢ is non-zero. If the increment ¢ is 0, the LCG is
referred to as a Multiplicative Linear Congruential Generator. Multiplicative LCGs have reduced

computational requirements since the addition of ¢ is not required.

6.1.2 The Choice of Pseudo-Random Number Generation

Pseudo-random number generation was chosen as an application for this research for the following

reasons:

1. Pseudo-random number generation is an algorithm used by many mainstream software ap-
plications including web browsers, spreadsheet packages, database managers, simulators,

and operating systems.
2. Pseudo-random number generation is easy to understand.

3. Pseudo-random number generation can be performed successfully using the programmable

logic devices available on the target platforms

Pseudo-random number generation is not an ideal application for configurable coprocessing.
Although well suited to implementation in programmable hardware, the ratio of communication to
computation required is high. Results must be communicated frequently between the coprocessor
and the host computer. If the communication latency is large, it is impossible to improve the

performance of an application.

6.2 - Enhancing Pseudo-Random Number Generation

The pseudo-random number generator used in this application differed from the one used in the
CSIM tests. A Mixed Linear Congruential Generator was implemented to produce a signed 32-bit

pseudo-random number. This generator used the following constants:

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 115

m = 2% (6.2)
a = 1103515245 (6.3)
c = 12345 (6.4)
Zo = -—2075277215 (6.5)

The Mixed Linear Congruential Generator coprocessor implemented for the CSIM tests was
reused to reduce the amount of thine required to develop the coprocessor hardware. The design
used in the CSIM experiments was modified to use the constants shown above. Also, the hardware
to convert the result to a double precision floating point representation was removed. The modified

design was specified in a subset of VHDL suitable for synthesis for both target platforms.

The VHDL design uses a single finite state machine to interface with the processor (via the
PCI bus for Platform I and via the Avalon bus for Platform 1I) and precalculate pseudo-random
numbers one at a time. The finite state machine activates when the interface of the coprocessor
is read. At the end of each transaction, the finite state machine waits for the read signal to
become deasserted. The finite state machine for the pseudo-random number generator is shown

in Figure 6.1.

6.2.1 Interfacing with Platform I

For Platform I, the configurable coprocessor did not require any special modifications to interface
with the host computer via the reference controller design. The coprocessor design was very
similar to the design used for the CSIM experiments. However, unlike the previous design, this
design only required a single 32-bit register to store the pseudo-random number. The number
is stored as an unsigned 32-bit value rather than a double-precision floating point value. This
meant that the address did not need to be fully decoded. All interface reads resulted in the same

function being performed.

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 116

Pseudo Random Number Generator
Finite State Machine

Start of Transaction

Read

Calculate Seed 1

Caiculate Seed 2

Write Next Seed

End of Transaction

Figure 6.1: Pseudo-Random Number Generator Finite State Machine

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 117

6.2.2 Interfacing with Platform 11

For Platform II, several hardware modifications to the configurable coprocessor were necessary.
First, the pins weré renamed to work with the Avalon bus of the Nios processor. Next, several pins
were deleted from the coprocessor design since the Avalon bus is simpler than the bus hierarchy
provided on the ARC-PCI Board of Platform I. Finally, the read signal used to indicate the start
of a coprocessor transaction for Platform I was replaced with equivalent handshaking signals for

Platform I1.

From a software standpoint, each API function call used in Platform I was replaced with a
memory-mapped I/O transaction to a control/status register for Platform II. These modifications
were straightforward. The API used for Platform I could have been ported to Platform II. This
was not deemed necessary since the software modifications required to accommodate the Avalon

bus were simple.

Testing revealed some subtle timing issues. These timing problems were debugged using the
built-in logic analyzer support provided by Quartus II. In several cases, flip-flop triggering was
changed to falling-edge triggering from rising-edge triggering to satisfy the timing constraints of
the Avalon bus. The use of both clock edges effectively halves the permissible clock period. The
use of both clock edges was possible since the programmable logic device used in Platform II is

significantly faster than the devices used in Platform L

The interfacing differences between Platform I and Platform II were relatively small since both
platforms use memory-mapped I/O. The differences might have been much more noticeable if the
reference controller design of Platform II did not use memory-mapped 1/0. The complications
of PCI bus interfacing were hidden by the reference controller design used in Platform 1. The
handshaking signals provided by the reference controller design used in Platform I were easily

mapped onto equivalent signals on the Avalon bus used in Platform II. This was a coincidence.

6.2.3 Performance Optimizations

The coprocessor design consists of a simple finite state machine that reads the current seed,
calculates the next seed, and stores the next seed. Pseudo-random numbers are precalculated to

save clock cycles. Approximately 4 clock cycles are saved by precalculating results since 4 clock

CHAPTER 6. APPLICATION 2: PSEUDQO-RANDOM NUMBER GENERATION 118

cycles are consumed by calculating the next seed and storing it. This optimization allowed the
coprocessor to respond to transactions within 2 clock cycles. This optimization was applied on

both platforms.

6.2.4 Platform I Performance Optimizations

For Platform I, transactions were buffered to improve performance. A new function had to be
added to the API to support buffering. This function, arcpci_get_random2(), retrieves the next
pseudo-random number in the sequence from a local buffer in memory. If the local memory is

empty, the function requests the next 16 pseudo-random numbers using one buffered transaction.

6.2.5 Platform II Performance Optimizations

Due to the simplicity of the system, no Platform II specific optimizations were performed on
the coprocessor design. Each call to the coprocessor required only a single line of C code. The

coprocessor design was already optimized.

6.3 Experimental Method

A series of experiments were conducted to examine the average time required to generate pseudo-
random numbers on Platform I and Platform II. For Platform I, the impacts of caching and
buffering upon application performance were also investigated. For Platform II, caching and
buffering were not applicable since the platform did not incorporate a cache or an operating

system.

6.4 Platform I: Experimental Results

The following experimental results represent averages of five test runs of the application system
on Platform 1. For the entire set of test results, refer to Appendix B. Unless otherwise noted,

results shown in gray represent estimates of performance rather than actual performance results.

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 119

Estimates are provided for stmulation runs that could not be performed due to excessive execution
times. These estimates were obtained by doing a linear regression based on the data points
available. The Microsoft Excel FORECAST function was used to perform this regression when

necessary.

6.4.1 Unbuffered Test Results

Table 6.1 summarizes the average time required to generate a set of pseudo-random numbers on
Platform I without the use of buffering. For pseudo-random number generation, buffering would
always be used to reduce average latency. However, buffering is not possible for all applications

so it is interesting to examine the impact of buffering on the performance of the application.

PC RAND Test Results/ With Caching

500000 . 0.010
1000000 0. 0.009
2500000 0. 0.009
5000000 0. 0.009

10000000 0. 0.0609
25000000 0. 0.009
50000000 1.125 127.015 0.009
100000000 2.257 254.041 0.009
250000000 5.628 635.093 0.009
500000000 11.270 1270.060 0.009

Table 6.1;: Unbuffered Test Results

6.4.2 Buffered Test Results

Table 6.2 summarizes the average time required to generate a set of pseudo-random numbers on
Platform I with the use of buffering. This buffering effectively reduces the average transaction

time by reducing the number of context switches performed by the operating system.

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 120

PC RAND Test Results With Caching
: ; _ b i Buf?;ergd' !
Speadup

500000 0.013 G.046
10600000 0.023 0.040
2500000 0.057 0.038
5000000 0.113 0.039

10000000 0.224 0.038
25000000 0.561 0.038
50000000 1.125 29.122 0.039
100000000 2.257 58.236 0.03¢9
250000000 5.628 145.58% G.039
500000000 11.270 291.167 3.0389

Table 6.2: Buffered Test Resulis

6.4.3 Unbuffered Test Results on an Uncached System

Table 6.3 summarizes the average time required to generate a set of pseudo-random numbers on
Platform I without the use of buffering and without the use of L1 and L2 caches. This table can
be compared with Table 6.1 to determine the impact of caching upon this system. In practice,
caching is always desirable. However, these results provide some insight into the significance of the
effect of caching. The disabling of the cache also reduces the memory bandwidth available to the
processor so that it is more comparable to the memory bandwidth available to the coprocessor.
These results can be used to quantify the difference between the memory bandwidth available to

the processor and the memory bandwidth available to the coprocessor.

6.4.4 Buffered Test Results on an Uncached System

Table 6.4 summarizes the average time required to generate a set of pseudo-random numbers on
Platform I with the use of buffering and without the use of L1 and L2 caches. This table can be

compared with Table 6.2 to determine the impact of caching upon this system.

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 121

500000 143.913
1000000 5.822 283.289
2500000 14.654 706.378
5000000 30.076 1412.521

10000000 59.308 2825.106

25000000 148.500

50000000 295.722

100000000 574.249]

250000000 1428.407

500000000 2856.381

141270362

Table 6.3: Unbuffered Test Results on an Uncached System

ching
Buftered

Speedup
PRANDINC |

PC RAND Test Results Wityhout, Ca

500000

0.

1000000 5.822 0.503
2500000 14.654 0.435
5000000 30.076 0.515
10000000 59.308 0.505
25000000 148.500 0.507
50000000 295.722 0.504
100000000 574.249 0.490
250000000 1428.407 0.487
500000000 2856.381 0.487

Table 6.4: Buffered Test Results on an Uncached System

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 122

500000 0. 0.
1000000 0. 0.589
2500000 0. 1.456
5000000 0. 2.912

10000000 0. 5.820
25000000 0. 14.559
50000000 1. 29.122
100560000 2.257 254 .468] pHak2 f45 1172.632 58.236
250000000 5.628 253.789] 70634 414 2931.880 145.589
500000000 2856.381 11.270 263.457] 141270 382 5861.775 291.167

. 946
.658
S31)
. 085
-185
.136
.141
L1386
.138
.132

Table 6.5: Impact of Caching on Performance

6.4.5 Measuring the Impact of Caching

Table 6.5 compares the application execution times observed on Platform I. This table quantifies

the impact of caching upon each of the application systems.

It should be noted that caching plays a more significant role in an application systemn that
does not use a configurable coprocessor. The use of a configurable coprocessor partitions the
application data into two different memory spaces. Only a portion of the application data can be
cached. Overall, the caching of application data is less effective. Also, systems with a configurable
coprocessor spend less time accessing local memory and more time performing I/O operations.

Caching plays a smaller role in the overall performance of a system with a configurable coprocessor.

6.5 Platform II: Experimental Results

The experimental results in Table 6.6 represent averages of five test runs of the application system
on Platform II. For the entire set of test results, refer to Appendix B. The lock-step tests perform
the generation of one pseudo-random number at a time. The next computation does not start

until the previous calculation has concluded. Barrier synchronization is used by the software.

These experimental results show that a speedup of 2.691 is obtained for pseudo-random number

generation on Platform II. This speedup does not vary from one run to the next. The constant

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 123

Excalibur RAND Test ResuH;s \

5060000 1.382

10000060 2.763 2.6921
2500000 6.509 2.691
5000000 13.817 2.691
100000600 27.634 2.691
25000000 69.086 2.691
50000000 138.173 2.691
100000000 276.345 102.686 2.691
250000000 690.862 256.714 2.691
500000000 1381.724 513.428 2.691

Table 6.6: Platform II Test Results

speedup results from the fact that this platform only runs a single program at a time and caches

are not used. There is no reason for the performance to vary from one run to the next.

6.6 Interesting Observations

There are three interesting observations that can be made with respect to this application system
and the experimental results obtained. Bus utilization delays, memory utilization delays, and
the relative performance of processors are factors that play a significant role in determining the
performance of a coprocessed application. For a loosely-coupled configurable system, it is difficult
if not impossible to overcome all of these factors, particularly for a simple application. For a
tightly-coupled configurable system, the impact of these factors is less and speedup of a simple

application is possible.

6.6.1 Bus Utilization Delays

Platform I has a high communication latency and Platform II has a low communication latency.

The communication latency is proportional to the strength of the coupling between the host

CHAPTER 6. APPLICATION 2: PSEUDO-RANDOM NUMBER GENERATION 124

computer and the configurable coprocessor board. For simple coprocessed algorithms, a high
communication latency dominates the execution time. Platforms with a low communication la-
tency are suitable for coprocessing simple algorithms. Platforms with a high communication
latency are unsuitable for coprocessing simple algorithms. Higher communication latency leads

to higher bus utilization delays.

6.6.2 Memory Utilization Delays

Caching plays a major role in the performance of applications. Platform I provides a processor
cache that is an order of magnitude faster than the memory available to the coprocessor. This
difference in memory bandwidth is very significant. A comparison of the experimental results
with caching disabled to those with caching enabled provides an indication of the magnitude of
this difference. Platform II lacked a processor cache but registers gave the equivalent of cache
performance. Effectively, the bandwidth available to the coprocessor was approximately 5 times
that available to the processor. Memory bandwidth gaps between the processor and the coproces-
sor must be offset by an equivalent performance improvement resulting from increased hardware

specialization and increased parallelism.

6.6.3 Relative Performance of Processors

The relative performance of the processor to the configurable coprocessor is also a significant
factor in determining application performance. The clock rate of the processor in Platform I is an
order of magnitude faster than the clock rate of the configurable coprocessor design. Unless the
configurable coprocessor design uses fewer than one tenth the clock cycles required by the processor
to compute the same result, a performance gap exists between the processor and the configurable
coprocessor. A performance gap between the processor and the configurable coprocessor must
be offset by an equivalent performance improvement resulting from increased parallelism and/or
other sources of performance improvements. For Platform II, the processm; and the configurable
coprocessor clock at the same frequency. The configurable coprocessor outperforms the processor
if it can compute the same result in fewer clock cycles without introducing other sources of delays.

The configurable coprocessor is more likely to outperform the processor on Platform II.

Chapter 7

Application 3: Minheap

Management

This chapter describes the third of three sets of experiments into configurable computing appli-
cations. The goal of this experiment was to compare the performance of a complex mainstream
software application executing on a loosely-coupled and a tightly-coupled configurable computer.
A configurable coprocessor for minheap management was designed and tested. This coprocessor
provides the capability to insert an item into a minheap and remove the minimum item from
the minheap. A series of experiments were conducted on Platforms I and II using this copro-
cessor. Experimental results illustrate the large performance gap between loosely-coupled and
tightly-coupled configurable computer systems. The results also indicate that the complex task of
minheap management can potentially benefit substantially from configurable coprocessing. The
coprocessor design degrades the application performance of Platform I under most. circumstances

but significantly enhances the application performance of Platform II.

7.1 Introduction to Minheap Management

A minheap [Pre99] is a data structure that can be used to maintain a partially ordered list of

items. The data structure is a special form of a binary tree that always stores the item with the

125

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 126

smallest key value at the root of the tree. Unlike a linked list, a minheap performs a balancing
step upon insertion so that the item with the smallest key value can be retrieved in constant time.
After each retrieval, the minheap must perform a balancing step. The worst-case performance
of a balancing step is logarithmic. Minheaps are often used in mainstream software applications.
Minheaps can be used to create event queues, sort lists of items, schedule processes, and store

data efficiently.

A special class of minheap is the binary minheap. A binary minheap is a heap-ordered binary
tree that always forms a complete tree. This class of minheap can be implemented using an array.
A binary minheap uses memory resources as efficiently as possible. For the purpose of this thesis,

the term minheap will be used to refer to a binary minheap.

7.1.1 The Choice of Minheap Management

Minheap management was chosen as an application for this research for the following reasons:

1. Minheaps are data structures used by many mainstream software applications including
spreadsheet packages, word processors, database managers, simulators, and operating sys-

tems.
2. Minheaps use memory resources efficiently

3. Minheaps are relatively complex to manage

7.2 Enhancing Minheap Management

Successfully implementing a configurable coprocessor design for minheap management was a sig-
nificant challenge. The VHDL design required approximately twelve months of effort to produce
a design that was suitable for both target platforms. Platform I posed the biggest challenge. A
functionally correct design was created in a few days. However, this design did not meet the
timing requirements of the PCI bus. The fixed pinouts of the ARC-PCI Board make it difficult to
obtain 33 MHz performance for user designs. After several attempts, a set of optimizations was

found that enabled the development of a working design for Platform I. This design consisted of

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 127

three interacting finite state machines. The top-level finite state machine interfaced the minheap

management functions to the processor. This finite state machine is shown in Figure 7.1.

Minheap Interface Finite State Machine

Start of Transaction

Write, Read,

Address = {

Address = 1

. InsertData1 " DeleteKeyt Delete Data 1

Insert Data 2. . Delete Key 2 Deiete Data 2

End of Transaction

Address =0

Figure 7.1: Minheap Interface Finite State Machine

Two minheap management functions were implemented. Each one was associated with a finite
state machine. The insertion finite state machine consisted of 14 states. The deletion finite state
machine consisted of 20 states. These finite state machines were developed by translating a C
implementation of minheap insertion and deletion algorithms into a sequence of atomic actions.
Each action was assigned to a state. A dataflow approach was then used to merge as many states

as possible.

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 128

7.2.1 Interfacing with Platform I

The minheap coprocessor was designed to interface with Platform I. The reference controller
design simplified this task. Two control / status registers were implemented in the user desigu.
The first register mapped onto the key of the heap entry and the second register mapped onto
the data of the heap entry. During an insertion, the key is written to the first control register.
Then, the data is written to the second control register and the insertion process automatically
starts. During a deletion the key is read from the first status register. Then the data is read from
the second control register and the deletion process automatically starts. The deletion process
ensures that the next entry to delete is stored in the control registers at the conclusion of the

deletion process.

7.2.2 Interfacing with Platform II

One very important hardware change to the coprocessor interface was necessary. During testing,
it became apparent that the Nios processor was capable of generating requests to insert and delete
minheap entries faster than the coprocessor could process the requests. A status register had to
be added to the design to allow the Nios processor to check if the previous request had been
processed successfully. Also, it was necessary to ensure that the software delayed for 1 clock cycle
after initiating a request. If the status register was polled immediately following the generation of
a request, it was possible for the Nios processor to assume that the previous request had completed

successfully. This timing problem was extremely difficult to debug.

7.2.3 Hardware Optimizations

The most significant hardware optimization was the use of three communicating finite state ma-
chines rather than a single monolithic finite state machine. Without this hardware optimization, it
would have been impossible to achieve 33 MHz performance on Platform 1. Despite this significant
optimization, hand coding of the state assignments was necessary to ensure adequate performance
from one compilation to the next. One-hot state assignments did not deliver adequate perfor-
mance. Several hand coded assignments had to be compiled and tested before a suitable set of

assignments was found. This hand coding was tedious.

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 129

7.2.4 Performance Optimizations

Parallelism was exploited through two simple optimizations. The insertion process completes the
bus write prior to the actual completion of the insertion process. Effectively, much of the work
associated with the transaction is handled by post-processing (tposrp2). The minheap is balanced
after the bus write completes. This permits the software to resume its computations (tgxg A1)
while the coprocessor continues its computations. Similarly, the deletion process completes the
bus read prior to the actual completion of the deletion process. The minheap is balanced in
a post-processing step (tposrpz) after the bus read completes. This permits the software to

compute in parallel (tpxgEa1) with the coprocessor.

7.3 Experimental Method

A series of experiments were conducted to examine the average time required to insert and delete
heap entries on Platform 1 and Platform II. For Platform I, the impacts of caching and buffering
upon application performance were investigated. For Platform II, caching and buffering were not

applicable since the platform did not incorporate a cache or an operating system.

Insertion and deletion were not investigated separately. Instead, the minheap management
functions were tested in conjunction to simplify the repeated testing of the system. Entries were
inserted into the minheap until a specified maximum number of entries was reached. Then, all of
the entries were deleted and the process was repeated. In total, this sequence of insertions and
deletions was performed a total of 5,000,000 times to produce execution times in a reasonable

range.

7.4 Platform I: Experimental Results

The following experimental results represent an average of five test runs of the application system.
For the entire set of test results, refer to Appendix C. Unless otherwise noted, results shown in
gray represent estimates of performance rather than actual performance results. Estimates are

provided for simulation runs that could not be performed due to insuflicient memory.

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 130

\PC MIN Test Results With Caching

Table 7.1: Unbuffered Test Results
7.4.1 Unbuffered Test Results

Table 7.1 sumimarizes the average time required to execute the test application on Platform I

without the use of buffering.

7.4.2 Buffered Test Results

Table 7.2 summarizes the average time required to execute the test application on Platform I with
the use of buffering. This buffering effectively reduces the average transaction time by reducing

the number of context switches performed by the operating system.

7.4.3 Unbuffered Test Results on an Uncached System

Table 7.3 summarizes the average time required to execute the test application on Platform 1
without the use of buffering and without the use of L1 and L2 caches. This table can be compared

with Table 7.1 to determine the impact of caching upon this system.

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 131

Table 7.2: Buffered Test Results

6994 . 966}
13989, 874]
27979 490
69949138
139898,218)

5000 6858.937
10000 14583.783
25000 39241.845
50000 84881.336]

Table 7.3: Unbuffered Test Results on an Uncached System

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 132

PC MIN Test Results Without Caching
. PMINING | PMININC | Buffered
{ng :

Table 7.4: Buffered Test Results on an Uncached System
7.4.4 Buffered Test Results on an Uncached System

Table 7.4 summarizes the average time required to execute the test application on Platform I with
the use of buffering and without the use of L1 and L2 caches. This table can be compared with

Table 7.2 to determine the impact of caching upon this system.

7.4.5 Measuring the Impact of Caching

Table 6.5 compares the application execution times observed on Platform I. This table quantifies
the impact of caching upon each of the application systems. Caching improves the performance
of the non-coprocessed system by a factor of 209 for the 1000 maximum entries test. Caching
impacts the optimized coprocessed system by a factor of 8 for the 1000 maximum entries test.

Caching plays a much more significant role in the performance of a non-coprocessed application.

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 133

&89
13988 874f
27978 690
69449 138
139898 218]

5000 5858.937 33.981 201.847
10000 14583 .783 74.878 194.768
25000 39241.845 211.602 185.451
50000 84881.336 462.583 183.494

Table 7.5: Impact of Caching on Performance

7.5 Platform II: Experimental Results

The experimental results in Table 7.6 represent averages of five test runs of the application system
on Platform II using an unoptimized application. For the entire set of test results, refer to

Appendix C.

These experimental results show that a speedup of slightly more than an order of magnitude

was achieved for large minheaps. This speedup depends upon the size of the minheap tested.

The experimental results in Table 7.7 represent averages of five test runs of the application
system on Platform II using an optimized application. This application exploited parallelism
aggressively by computing the next heap entry prior to verifying the completion of the previous

coprocessor transaction.

The exploitation of parallelism resulted in a substantial improvement in performance. A
performance improvement of approximately 40% was obtained. This permitted a speedup by a

factor of almost 14 for large minheaps.

7.6 Interesting Observations

Three interesting observations can be made with respect to this application system and the exper-

imental results obtained. The algorithm complexity, memory utilization delays, and optimizations

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 134

Excalibur MIN Test, Results

32.133
250 88.767
500 150.644

1000 407.414
2500 1105.596
5000 2342.113

10000 4944.313

25000 13224 .603 1022.279
50000} 27025 .086 6.329

Table 7.6: Platform 1I Blocking Test Results

12 938
13 207

alibur‘MlN Te‘st\Results
e e

Table 7.7: Platform Il Non-Blocking Test Results

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 135

play a significant role in determining the performance of a coprocessed application. For a more
complex application such as minheap management, both loosely-coupled and tightly-coupled con-

figurable computers are potentially suitable.

7.6.1 Algorithm Complexity

As the algorithm complexity increases, the benefit of a configurable coprocessor increases provided
that the processor can continue to compute in parallel with the coprocessor. Insertions and
deletions on large minheaps require more computations than insertions and deletions on small
minheaps. As the size of the minheap increases, so does the benefit of the configurable coprocessor.
It is unclear if this benefit eventually diminishes due to other factors. Very large minheaps would
need to be tested to see if the performance improvements eventually reach a limit. Larger minheaps

could not be tested due to insufficient memory on the target platforms.

7.6.2 Memory Utilization Delays

Caching plays a major role in the performance of applications. When the cache is disabled, the
configurable coprocessor can actually provide a speedup on Platform I. This was unexpected.
Part of the reason for this performance improvement is the fact that the processor thrashes. The
processor performs additional operations that would be unnecessary if caching had been enabled.
However, there is another reason for this performance improvement. The disabling of the L1 and
L2 cache effectively equates the memory bandwidth of the processor with the memory bandwidth
associated with the coprocessor. Given similar memory bandwidth, memory utilization delays
do not significantly impact the performance of the coprocessor. With caching enabled, memory

utilization delays play a significant role in the performance of the coprocessed system.

7.6.3 Hardware Optimizations vs. Coprocessor Optimizations

Hardware optimizations are often made out of necessity.. The design must be optimized at the
hardware level to provide an adequate level of performance. These optimizations actually have
little impact upon the overall performance of the system. However, coprocessor optimizations

can have a profound impact upon the overall performance of the system. A small improvement

CHAPTER 7. APPLICATION 3: MINHEAP MANAGEMENT 136

to the software portion of the system can result in a significant performance improvement. This
difference is demonstrated by the 40% performance improvement achieved on Platform II simply

by reordering the instruction sequence.

Chapter 8

Model Validation

Using the experimental results presented in the previous chapters, it is possible to estimate suitable
values for the performance model timing parameters introduced in Chapter 3. These estimates
permit the validation of the performance model. The strengths and weaknesses of the performance
model are revealed by the validation process. Using the validated model, it is possible to assess

the desired features of coupled configurable coprocessors.

8.1 Timing Parameter Estimation

The execution time of an application is rarely fixed. Caching, multitasking, input data, and user
interaction are some of the events that lead to changes in the behaviour of an application. The
performance model introduces a set of timing parameters to estimate the execution time of an
application. In particular, this model permits the evaluation of the benefit of coprocessing on
a particular application. The timing parameters depend on the application being studied, the
state of other applications in the system, and the state of the system. Estimates can be made
for minimum, maximum and typical values for a particular application. These estimates provide

insight into the execution of the coprocessed application and its impact upon the system.

137

CHAPTER 8. MODEL VALIDATION 138

8.1.1 Assumptions

For the purpose of estimating the parameters for the performance model, the following assump-

tions are made:

1. A non-coprocessed application requires 1000s of system execution time (tsys;). This in-
cludes the lumped effects of memory utilization delays, bus utilization delays, and operating

system behaviour delays.

2. Configuration delays are fixed: The complexity of the coprocessor does not impact the time

required to configure the coprocessor.

3. The lumped effects of memory utilization delays, bus utilization delays, and operating system
behaviour delays account for approximately 160s of the system execution time, with the

following breakdown:

o Memory utilization delays account for more time than bus utilization delays and operat-

ing system behaviour delays since the computer system is assumed to be lightly-loaded.
e Memory utilization delays (targa) account for 100 s of the system execution time.
e Bus utilization delays (tpyg1) account for 30s of the system execution time.

e Operating system behaviour delays (tos1) account for 30s of the system execution

tine.

4. Coprocessors may compute results faster or slower than a processor. A coprocessor may
be an order of magnitude slower (tgys2 >> tsyg1) or faster (tsys2 << tsysy), depending

upon the application.

The choice of 1000 s for system execution time is arbitrary. If a smaller or larger value is chosen,
the delays assumed for memory utilization, bus utilization, and operating system behaviour must
be scaled appropriately. The choice of iﬁOs for the lumped effects of memory utilization delays,
bus utilization delays, and operating system behaviour delays is based on the system profiling
results obtained for CSIM as indicated in Table 5.6. This table shows the introduction of a

coprocessor increases kernel usage by 16% on a lightly-loaded computer. Therefore, it has been

CHAPTER 8. MODEL VALIDATION 139

assumed that these lumped delays account for approximately 16% of the system execution time.

This percentage does vary from one application to ancther.

To account for variations in system performance, the validation of the performance model
considers minimum, maximum, and typical values for all timing parameters. . A large range of
minimum and maximum values are presented to show the impact of the large variability associated
with application performance. Alternatively, variables could have been used for the purpose of this
validation. However, the use of variables would make it more difficult to illustrate how predicted

results compare with actual results.

It should be noted that since the system is assumed to be lightly-loaded, the system execution
time is effectively equal to the application execution time. The system overhead is extremely small.
The lightly-loaded assumption seems reasonably given the system profiling results presented in
Table 5.6. These results show that the non-coprocessed CSIM system spends 98% of all clock

cycles on application related activities.

8.1.2 Platform I Configuration Delays

For Platform I, the configuration delays experienced by the processor and the coprocessor are
different. ‘As indicated in Table 4.4, a programmable logic device on the ARC-PCI Board requires
5.5ms to be configured. This duration is the typical configuration delay experienced by the copro-
cessor (tcrap2). Assuming that the configuration data is already stored on the ARC-PCI Board,
the typical delay experienced by the processor is simply the time required to initiate and complete
a configuration cycle. Initiation of a configuration cycle requires a single memory write transac-
tion to set the configuration bit in the interface control register. Completion of a configuration
cycle requires a single memory write transaction to clear the configuration bit in the interface
control register after waiting for a fixed configuration delay. Since memory write transactions
typical require 300 ns as indicated in Table 4.7, initiation and completion of a configuration cycle
typically requires 600 ns of processor time (tcrgaz). If acknowledgment of the completion of the
configuration is necessary, additional time is required to poll the controller design to determine
the status of the coprocessor. It is assumed that acknowledgment of a successful configuration is

not required.

CHAPTER 8. MODEL VALIDATION 140

Configuration of a device may not always be required. If configuration of a device is not
required, the minimum configuration delay for Platform 1 is effectively 0s. This case is true for
both the processor {tcraa2) and the coprocessor (topepz), provided that the processor does not
need to check if the device has already been configured. For example, a system that only utilizes
a single coprocessor design does not require dynamic configuration. It can be assumed that the

boot time coufiguration is appropriate.

The maximum configuration delay is dependent upon the system load and application be-
haviour. However, a reasonable estimate of the maximum configsuration delay experienced by the
coprocessor is the time required to transfer a configuration file to the ARC-PCI Board plus the
time required to configure one of the devices. As indicated in Chapter 4, the transfer of a MAPP
mode configuration file requires a minimum of 13.5 ms and the configuration of a FLEX 10K50 de-
vice requires approximately 5.5 ms resulting in a total configuration delay of approximately 19 ms.
This value is an estimate of the maximum configuration delay for the coprocessor (tcrgp2).! The
processor only experiences delays resulting from the transfer of a configuration file, the initiation
of a configuration cycle, and the completion of a configuration cycle. Therefore, the maximum

configuration delay experienced by the processor {tcrgaz) is approximately 13.5 ms.

8.1.3 Platform Il Configuration Delays

For Platform I, the processor and the coprocessor are implemented using the same programmable
logic device. As a result, the configuration delays experienced by the processor (fcrgaz) and the
coprocessor {tcrap2) are identical. The time required to configure a device on the Nios Embedded
Processor Development Board is approximately 34.5ms as indicated in Table 4.9. This value
serves as an estimate of the typical configuration delay experienced by both the processor and the

coprocessor for Platform II.

Like Platform I, the device used in Platform II may not require dynamic configuration. There-
fore, the minimum time required for configuration is effectively 0s. This value serves as an esti-

mate of the minimum configuration delay experienced by both the processor (tcrgaz) and the

1The maximum configuration delay is unbounded. It is possible for the delay to be larger if the PCI bus is heavily
utilized or if the operating system is heavily-loaded. The estimate provided is reasonable given the assumption of
a lightly-loaded system.

CHAPTER 8. MODEL VALIDATION 141

coprocessor {topap2)-

Unlike Platform 1. the configuration files for. Platform I are not transferred to the coproces-
sor prior to use. As a result, the maximum configuration delays are equivalent to the typical
configuration delays for Platform II. A value of 34.5ms is used as an estimate for the maximum

configuration delays experienced by both the processor (tcraaz2) and the coprocessor (tcrasz)-

8.1.4 Summary of Configuration Delays

Table 8.1 summarizes the estimates of minimum, maximum, and typical values for configuration
delays experienced by the processor (tcrcaz) and the coprocessor (fcrpgpz). Estimates of the
total time required to configure a coprocessor are shown for both Platform I and Platform II.
These estimates are used in the validation of the performance model. The validation assumes
that devices only need to be configured once per application. This assumption is fair if sufficient
contexts are available. If this is not the case, the estimates shown should be multiplied by the

frequency of configurations required.

Timing Platform 1 Platform II
Parameter | Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) (in s) (in s} (in s) (in s) {in s)
lergA2 0 0.0135 | 0.0000006 0 0.0345 0.0345
tcraB2 0 0.019 0.0055 0 0.0345 0.0345

Table 8.1: Summary of Configuration Delays

8.1.5 Memory Utilization Observations

Based on the experimental results obtained throughout the course of this research, it is clear
that memory bandwidth and memory utilization can play a significant role in the performance
of an application. The impact is particularly large for mainstream software applications that
use memory extensively. For example, sorting algorithms read data items at least once and
perhaps many times during execution.

Changes to the distribution and accessibility of data

impact algorithm performance.

When an algorithm is coprocessed, application data can be distributed across additional mem-

CHAPTER 8 MODEL VALIDATION 142

ory systems. The presence of additional memory systems effectively increases the available mem-
ory bandwidth in the system. This increased bandwidth may lead to performance improvements
in the system. However, the use of additional memory systems introduces overhead associated
with data transfer and data duplication. Also. the distribution of memory across additional mem-
ory systems can cause changes in the performance of cache subsystems. Additional memory offers
more locations to cache data. However, changes in the distribution of application data can in-
fluence the locality of reference. These changes may increase or decrease the benefit of caching
application data. Clearly, changes in memory utilization patterns and data distribution due to

coprocessing can positively or negatively impact the performance of an application.

8.1.6 Platform I Memory Utilization Delays

The impact of caching upon an application can be quantified. This impact serves as a worst case
estimate of memory utilization delays upon a coprocessed system. Based on the experimental
results obtained for pseudo-random number generation on Platform I, it is possible to estimate
the impact of caching upon the performance of the system. Table 6.5 shows the performance gain
of caching for the non-coprocessed system and the coprocessed system. For the largest test run
(5,000,000 PRNG iterations), the non-coprocessed system demonstrates a performance improve-
ment of 262 with caching enabled. For the same test, the coprocessed system demonstrates a
performance improvement of 20 with caching enabled. The ratio of these performance improve-
ments indicates that the distribution of memory negatively impacts the system by a factor of

13.

Based on the experimental results obtained for minheap management on Platform I, it is
possible to determine a second estimate of the impact of caching upon the performance of the
system. Table 7.5 shows the performance gain of caching for the non-coprocessed system and
the coprocessed system. For the largest test (1,000 entries maximum), the non-coprocessed sys-
tem demonstrates a performance improvement of 209 with caching enabled while the coprocessed
system demonstrates a performance improvement of 8 with caching enabled. The ratio of these
performance improvements indicates that the distribution of memory negatively impacts the sys-

tem by a factor of 26.

Clearly, a large negative impact can result from the distribution of application memory across

CHAPTER 8. MODEL VALIDATION 143

memory subsystems. However, it must be noted that Platform I lacks a cache subsystem on the
ARC-PCI Board. If the ARC-PCI Board possessed a cache subsystem comparable to the PC's
L1 and L2 caches, the impact of memory distribution would be quite different. The impact of
caching would not be the dominant component of memory utilization delays in this case. This
might mean that the impact of memory utilization delays would actually be positive rather than

negative if Platform I possessed a cache subsystem on the ARC-PCI Board.

It is not a surprise that caching has more impact upon the performance of minheap manage-
ment in a loosely-coupled configurable computer system. Minheap insertion and deletion algo-
rithms access large amounts of application data frequently. A large cache can significantly improve
the performance of minheap insertion and deletion algorithms. On the other hand, pseudo-random
number generators require very little storage for application data. All of the application data re-
quired by a pseudo-random number generator can be stored in registers within a coprocessor. As

a result, caching plays a small role in the performance of a pseudo-random number generator.

Using the peak performance improvement figures, it is estimated that memory utilization
delays negatively impact application performance by a factor (Fasgar) of 10 to 30 times for main-
stream software applications coprocessed using Platform I. This factor allows for the performance
impacts associated with pseudo-random number generation (Fagp = 13) and minheap man-
agement (Fprgp = 26). Both the use of slower memory devices and the distribution of data

contribute to this loss of performance.

To estimate the timing parameters for the performance model, it is important to establish how
much time is spent by an application on memory transactions. Once this is known, it is possible
to calculate minimum, maximum, and typical values for memory utilization delays. Based on
the assumption that a non-coprocessed application spends approximately 100s of its execution
time on memory utilization delays?, it is possible to estimate the memory utilization delays for a
coprocessed application. Using the factor Fiy g to estimate the changes in these delays, memory
utilization delays (tpEp2) are estimated to account for a minimum of 1000s and a maximum of
3000s in a coprocessed application. To estimate the typical value, the average value of 2000s is

used.

21t is difficult to estimate the delays associated with memory utilization. These delays depend upon the state
of the system. The estimate that 10% of the execution time is related to these delays is partially based on results
of CSIM profiling. However, this figure could be much smaller or larger for other applications.

CHAPTER 8. MODEL VALIDATION 144

8.1.7 Platform Il Memory Utilization Delays

For tightly-coupled configurable computer systeins, changes in data distribution and memory uti-
lization can positively impact the performance of a system. The delays associated with data
transfers are much smaller in a tightly-coupled configurable computer system. The benefit of
data distribution can exceed the cost of data transfer and data duplication. This effect is an im-
portant difference between a tightly-coupled configurable computer system and a loosely-coupled

configurable computer system.

For Platform II, the memory access times associated with the processor are 20 ns as indicated
in Table 4.10 while the memory access times associated with the coprocessor are 4.2 ns as indicated
in Table 4.11. In other words, the memory associated with the coprocessor is approximately 5
times faster than the memory associated with the processor. The use of the coprocessor on this
platform increases the available memory bandwidth by a substantial amount. More memory is
available for use and the additional memory is faster. A factor (Fargas) of 0.2 should be used
to take into account the relative speeds of the memory systems for the purpose of estimating the

memory utilization delays for the performance model.

However, the memory utilization delays (tasga1) are 0s for the non-coprocessed application
since caching is not an issue and the platform does not have an operating system to influence
application behaviour. The lack of an operating system means that a multiplying factor cannot
be used to establish an estimate of fp;gare. Clearly, the value of tppao is a negative value
indicating that the memory utilization delays impact is positive. An upper bound on the impact
of memory utilization delays can be established using the results of the pseudo-random number
generation experiments. These results demonstrate a speedup of 2.691 as indicated in Table 6.6.
A portion of this speedup results from the impact of memory utilization delays and the remainder
results from a reduction in processing times. Given the simplicity of the pseudo-random number
generation algorithm, it can be argued that most, if not all, of the speedup recorded for this
application results from the impact of the faster memory on the system. If the system execution
time is reduced by a factor of 2.691, this translates to a reduction of approximately 630s. Thus,
a value of -630s is used as the estimate of the minimum value of memory utilization delays. The
maximum value of memory utilization delays is estimated to be 0's since in the worst case, external

memory is used for all memory accesses. The average of the two values is used as the typical value

CHAPTER 8 MODEL VALIDATION 145

for memory utilization delays.

8.1.8 Summary of Memory Utilization Delays

Table 8.2 summarizes the estimates of minimum, maximum, and typical values for memory uti-
lization timing experienced by the processor and the coprocessor. Estimates are shown for both
Platform I and Platform 11. It should be noted that the factor (Fiasgar) used to estimate memory

utilization delays depends upon whether the platform is loosely-coupled or tightly-coupled.

Timing Platform 1 Platform II
Parameter Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) (in s) (in s) (in s) {in s) (in s)
tMEMI 160 100 100 0 0
Multiplying Factor (Fayea) 10 30 20 N/A N/A
frmeM2 =tMem X PuMem 1000 3000 2000 -630 0
tyerm = tumemt — EMEM2 -900 -2900 -1900 630 0

Table 8.2: Summary of Memory Utilization Delays

8.1.9 Bus Utilization and Operating System Behaviour Observations

Bus utilization delays and operating system behaviour delays are a small component of the exe-
cution time of a non-coprocessed mainstream application. This observation is particularly true if
the system is lightly-loaded. The use of a coprocessor introduces new bus transactions that must
be performed. These additional bus transactions increase bus utilization and thus, the delays
that result from bus transactions. The use of a coprocessor also changes the way processes are
scheduled in a multitasking operating system. This change is small, but significant, particularly
if additional context switches are required by the operating system. For the purpose of this vali-
dation, the bus utilization delays and the operating system behaviour delays are lumped together
since they are closely related. These delays are referred to as the lumped delays of bus utilization

and operating system behaviour.

Using the results of the CSIM system profiling analysis provided in Table 5.6, it is observed
that kernel usage increases dramatically with the introduction of a coprocessor. Kernel usage

increase by a factor between 9 and 10. This large increase is partly due to the large number of

CHAPTER 8. MODEL VALIDATION 146

bus transactions that must be performed in a coprocessed system and partly due to changes in

operating system behaviour.

8.1.10 Platform I Lumped Delays

It is possible to estimate the minimum, maximum, and typical timing parameters for bus utiliza-
tion delays and operating system behaviour delays for Platform I. Using a factor (Fryap) that
ranges from 9 to 10 and the assumption that 60s of non-coprocessed system execution time cor-
responds with the lumped delays (¢Lumpr = teus: +tos1), it is possible to estimate the lumped
delays (tpuap2 = tpuss + tosa) for a coprocessed application. The coprocessed application ex-
periences lumped delays (t1yp2) ranging from 5405 to 600s. An average of 570s is used as the

estimate for the typical lumped delays.

8.1.11 Platform II Lumped Delays

Platform 11 is unusual in the sense that it does not run an operating system. Also, the number of
bus cycles required by Platform I1 is fixed since the external memory and the coprocessor reside
on the same bus. As a result, bus utilization delays and operating system behaviour delays do
not occur. The minimum, maximum, and typical timing parameters estimated for these lnmped

delays are Os in all cases for Platform IL

8.1.12 Summary of Lumped Delays

Table 8.3 summarizes the estimates of minimum, maximum, and typical values for the lumped
delays experienced by the processor and the coprocessor. Estimates are shown for both Platform I
and Platform II. Since the lumped delays associated with Platform II are 0s in all cases, the factor

(Frump) is not applicable (N/A) for this platform.

8.1.13 Processing Time Observations

The time required to process transactions by a processor is different than the time required to

process transactions by a coprocessor. Typically, the application-specific nature of the coprocessor

CHAPTER 8. MODEL VALIDATION 147
Timing Platform I Platform II
Parameter Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) (in s) (in s) (in s) (in 8) {in s)
trumpi 30 30 30 0 0 1]
Multiplying Factor (Frump) 9 10 9.5 N/A N/A N/A
trumpz = trumpr X Frump 540 600 570 0 3 0
tromp = trumper — tLLumpe -510 -570 -540 G o ¢

Table 8.3: Summary of Lumped Delays

permits it to process transactions faster than the general-purpose processor. For the purpose of
this discussion, processing time refers to the maximum total time required for pre-processing,
execution, and post-processing by either the processor or coprocessor. The separation of pre-

processing, execution, and post-processing times is beyond the scope of this validation.

8.1.14 Platform I Processing Times

For the purpose of this analysis, it is assumed that a coprocessor can improve performance by a
factor (Fgx) ranging from 0.1 to 10, depending upon the relative speeds of the processor and the
coprocessor.® A factor of 0.1 represents a full order of magnitude of performance improvement.
A factor of 10 represents a full order of magnitude of performance degradation. The values in
Table 8.4 show estimates of the raw processing time for both coprocessor platforms. For the typical
values, it is assumed that the application-specific coprocessor can outperform the processor on the
application-specific task by a factor of 2. Hence, a factor (Fgxg) of 0.5 is used for the estimation

of the typical processing time values.

For a non-coprocessed application, the processing times equal the application execution times
less the memory utilization delays and the lumped delays. The non-coprocessed application pro-
cessing times (tpx g1) for Platform I are 8405 in all cases. Therefore, the coprocessed application
processing times ({gx g2) range from 84s to 8400s for Platform I. Based on the assumption that
the coprocessor processes transactions faster, a value of 420 s is used as the estimaée of the typical

processing time values for Platform 1.

3S0me coprocessors can achieve several orders of magnitude of improvement. The value of ten is conservative.

CHAPTER 8. MODEL VALIDATION 148

8.1.15 Platform Il Processing Times

Since the lumped delays associated with Platform II are 0s in all cases, processing times represent
a larger fraction of system execution time on Platform II. The non-coprocessed application pro-
cessing times (tpx) for Platform 11 are 900's in all cases. Therefore, the coprocessed application
processing times (tpx p2) range from 90s to 9000 s for Platform II. Based on the assumption that
the coprocessor processes transactions faster, a value of 450 s is used as the estimate of the typical

processing time values for Platform I1.

8.1.16 Summary of Processing Times

Table 8.4 summarizes the estimates of minimum, maximum, and typical values for the processing
times experienced by the processor and the coprocessor. Estimates are shown for both Platform I

and Platform II.

Timing Platform I Platform II
Parameter Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) {in s) (in s) (in s) (in s) (in s)
tEXE 840 840 840 900 900 900
Multiplying Factor (Fexg) 0.1 10 0.5 0.1 10 0.5
texes = texe1 X Fexp 84 8400 420 90 9000 450
texe =texE1 —lEXE? 756 -7560 420 810 -8100

Table 8.4: Processing Time Summary

8.1.17 Platform Comparison

Table 8.5 summarizes the timing estimates for a non-coprocessed application given the assump-
tions made previously. Regardless of the platform, the system execution time (tgyg3) is assumed
to be 1000s. This permits a comparison of the two platforins with respect to the benefits of
coprocessing. It should be noted that lumped delays are not applicable to Platform IL. Hence, the

behaviour of the application on Platform II is slightly more predictable.

Table 8.6 summarizes the estimates of minimum, maximum, and typical system execution

times for Platforms I and II. The estimates show that for Platform I, an example of a loosely-

CHAPTER 8. MODEL VALIDATION

Timing Platform I Platform 11
Parameter | Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) (in s) {in s) {(in s) (in s) (in s)
Lri BRI 100 100 100 100 100 100
tLusMP1 60 60 60 0 0 1]
tExEl 840 840 840 900 900 900
tsy 51 1000 1000 1000 1000 1000 1000

Table 8.5: Non-Coprocessed Timing Summary

149

coupled configurable computing platform, performance gains for the application are theoretically
impossible. The minimumn system execution time is greater than 1000s. However, for Platform II,
an example of a tightly-coupled configurable computing platform, performance gains are theoret-

ically possible. The minimum system execution time is less than 1000s.

Timing Platform 1 Platform II
Parameter | Minimum | Maximum | Typical | Minimum | Maximum | Typical
(in s) (in s) (in s) (in s) (in s) (in s)
teraaz 0 0.0135 | 0.0000006 0 0.0345 0.0345
tcFGB2 0 0.019 0.0055 0 0.0345 0.0345
taMEM2 1600 3000 2000 -630 0 -315
tLump2 540 600 570 0 0 0
tExXE2 84 8400 420 90 9000 435
tsys2 1624 12000 2990 -540% 9000 120

iUsing the minimum estimates, the model indicates a speedup greater than oo for Platform II. This
anomaly is easily explained. The minimurm estimates for typeare and tex g2 never happen at the same
time. An application is either memory bound or computation bound.

Table 8.6: Coprocessed Timing Summary

It is important to note that the configuration delays are negligible compared to the other delays
in the system. The coprocessor ¢ould be configured thousands of times without impacting overall
system performance significantly. The configuration delays become significant as the granularity
of the transactions approaches the time required to configure the device. Also, as the frequency
of configuration increases, the significance of configuration delays increases. For any application

that is computationally-intensive, configuration delays are negligible.

CHAPTER 8. MODEL VALIDATION 150

8.2 Comparison of Theoretical Performance with Actual

Performance

Table 8.7 provides a summary of the estimated bounds on system speedups based on the perfor-
mance model. The speedups for Platform I range from a low of 0.083 to a high of 0.616. In other
words, Platform I is not predicted to accelerate a system under any circumstances. Note that
this does not mean that loosely-coupled configurable computing is hopeless. It simply means that
the ARC-PCI Board is unlikely to provide any speedup on a mainstream software application
given the architecture of the board. The speedups for Platform II range from a low of 0.111 to
a high of cc. Platform Il is typically capable of accelerating an application. The tightly-coupled

architecture of Platform Tl is more suitable for configurable coprocessing.

Platform | Minimum | Maximum | Typical
Speedup Speedup Speedup

Platform 1 0.083 0.616 0.334

Platform 1 0.111 o0 8.333

Table 8.7: Estimated Bounds on System Speedups

Table 8.8 summarizes the actual system speedups obtained for the three application systems
described in this thesis. System speedups could not be obtained for Application 1 (CSIM) on

Platform I since the application code is not portable to this platform.

Platform 1 Platform II
Application Minimum | Maximum | Minimum | Maximum
Speedup Speedup Speedup Speedup
Application 1 (CSIM) 0.231 0.773 N/A N/A
Application 2 (RAND) 0.009 0.039 2.691 2.691
Application 3 (MIN) 0.092 0.133 10.054 13.673

Table 8.8: Actual Application Speedups

CHAPTER 8. MODEL VALIDATION 151
8.3 Observations

Comparing the estimated’ application speedups shown in Table 8.7 with the actual application
speedups shown in Table 8.8, it appears that the performance model correctly predicts that Plat-
form II outperforms Platform I. The performance model predictions can account for all test results
with the exception of the Application 2 (RAND) tests on Platform I. The order of magnitude
slowdown for processing times is simply too optimistic in this case. Pseudo-random number gen-
eration is not a complex computation. The processor inside the PC is capable of generating
pseudo-random numbers much faster than the coprocessor (approximately 50 times faster). Also,
it is possible that the lumped delays are not large enough for Platform 1. More profiling is recom-
mended to refine the timing parameters for Platform 1. This profiling would improve the accuracy

of the model.

8.3.1 Pre-Processing and Post-Processing

Although pre-processing and post-processing are not explicitly validated, it is an important part
of the performance model.. An indepth investigation of the effects of pre-processing and post-
processing would be an interesting topic for future research. Pre-processing and post-processing
allows the processor and the coprocessor to compute in parallel. As shown in Chapter 7, the
reordering of computations can lead to a significant performance improvement (approximately
40% for Application 3). Given this result, the order of magnitude of performance improvement
estimated for processing times may be a bit conservative. Further research of the effects of pre-

processing and post-processing is recommended.

8.3.2 System Profiling

Some of the differences between the predicted performance and the actual performance result from
the fact that the validation uses the profiling of Application 1 (CSIM) to estimate the factors for
the other applications. While these factors may be suitable for Application 1, they may not be
suitable for modeling the other applications. Profiling of Application 2 (RAND) and Application 3
(MIN) might produce a different range of predictions. This profiling can be done in future research

to determine if this is a significant source of errors.

CHAPTER 8. MODEL VALIDATION 152

8.3.3 Processing Times

The estimates of processing times assume a fixed range of speedups associated with coprocessing.
This range is based on the fact that an order of magnitude of performance increase is common
for niche applications of configurable computing. The value of one order of magnitude is a very
conservative estimate for niche applications. It'is unclear whether performance improvements
in excess of an order of magnitude are realistic for mainstream software applications. Future
research into the characterization of the processing times of mainstream software applications is

recommended.

Also, the performance model predicts the impact of a coprocessor on the performance of the
system, assuming a lightly-loaded system. For a heavily-loaded system, the application represents
a smaller fraction of the processing in the entire system. It would not be possible to use the same
factors presented to predict processing times for a heavily-loaded system. Either the model would
need to be modified to isolate application processing times from system processing times or the

factors would need to be adjusted according to Amdahl’s Law [HP90].

8.3.4 Application Impact vs. System Impact

The performance model predicts the impact of a coprocessor on the performance of the system.
The application impact might differ from the system impact in some situations. Using a subset
of the performance model, it is possible to predict the application impact. Future research into
when the application impact is likely to differ from the system impact is recommended. This is
particularly important for heavily-loaded systems. The study of heavily-loaded systems is beyond

the scope of this thesis.

8.3.5 Performance Model Suitability

It appears that the performance model is a rough model of system performance. It is a good
starting point for future research into more advanced models of configurable computing. As
currently specified, the performance model could be used to predict whether configurable copro-

cessing is a viable technique for accelerating a mainstream software application. It is not suitable

CHAPTER 8. MODEL VALIDATION 153

for accurately predicting the exact speedup obtained using configurable coprocessing. However,
it provides a way of evaluating whether there exists potential for speedup or whether a speedup

is unlikely.

8.4 Application Implications

It is possible to use the performance model to predict the benefit of coprocessing on a particular

application. Based on the performance model, an ideal application has the following properties:

e course computation granularity,
e opportunities to exploit parallelism, and

e limited I/O per transaction.

8.4.1 Course Computation Granularity

Course computation granularity is important to justify the overhead associated with configuration
delays. Course computation granularity reduces the need for frequent configuration cycles. Also,
applications with course computation granularity are more likely to benefit from application-
specific hardware. Simple computations such as pseudo-random number generation do not benefit
from coprocessing. The time required by an application to start a transaction and receive a

response exceeds the time required to compute the computation.

8.4.2 Opportunities to Exploit Parallelism

Opportunities to exploit parallelism are important. Large performance gains are possible using
pre-processing and post-processing. The speedup of an application (and thus, the system) is
limited if pre-processing and post-processing is impossible. Pre-processing and post-processing
permit a slow application-specific coprocessor to accelerate a computation. Without opportuni-
ties to exploit parallelism, the coprocessor must compute its results significantly faster than the

processor to permit speedup.

CHAPTER 8. MODEL VALIDATION 154

8.4.3 Transaction I/O

Transactions that require the communication of large amounts of data are not good candidates for
coprocessing. Transactions require use of the bus hierarchy. As the amount of data communicated
between the processor and the coprocessor increases, so does the amount of bus traffic. Since bus
transactions tend to be slower than memory accesses, the impact of this bus traffic can be dramatic.

Applications that can be divided into transactions requiring little, if any, I/O are preferable.

8.5 Architectural Implications

It is interesting to observe the implications of the performance model on the architecture of a co-
processing system. Clearly, tightly-coupled configurable computing platforms have the potential
to deliver high performance. The tight integration offered by such a platform mitigates the com-
munication and synchronization bottlenecks. The use of a loosely-coupled configurable computing

platform is unlikely to deliver any performance benefits.

8.5.1 Configuration Delays

It should be noted that configuration delays are not a determining factor in the performance
of a coprocessed application that is computationally-intensive. Many configuration cycles are
necessary for configuration delays to become a significant factor in the overall performance of a
computationally-intensive application. However, for applications with extremely small execution
times and systems that require frequent configuration, the configuration delays may be significant.
Efforts should always be made to minimize the impact of configuration delays by reducing the

number of configuration cycles if possible.

8.5.2 Memory Utilization Delays

It is apparent that memory utilization delays are a determining factor in the performance of a
coprocessed application. Thus, every effort should be made to reduce memory latency and to

ensure that the coprocessor has sufficient bandwidth to memory. A slow memory device can

CHAPTER 8. MODEL VALIDATION 155

influence the performance of a coprocessor significantly. Ideally, coprocessors should have access
to memory bandwidth at least equivalent to that associated with processors. In a tightly-coupled
configurable coprocessing system. it is likely that the memory bandwidth available to the processor
will be close to that available to the coprocessor. The tight coupling indirectly ensures similar
bus speeds and memory access speeds since it is very difficult to tightly couple processing units
that execute at dramatically different speeds. However, the sharing of a memory system can lead
to bus utilization and operating system behaviour delays so the coprocessor should have a local,

dedicated memory for storage, if possible.

8.5.3 Lumped Delays

In a loosely-coupled system, the loose coupling between the processor and the coprocessor in-
evitably introduces synchronization delays. The busses that connect the processor to the copro-
cessor will be impacted by these synchronization delays. Also, these delays contribute to changes
in operating system behaviour. A tightly-coupled coprocessing architecture reduces these delays.
For some tightly-coupled platforms, such as Platform II, these lumped delays may be negligible.
Tightly-coupled platforms offer increased system predictability. There is no compelling reason for
choosing a loosely-coupled architecture over a tightly-coupled architecture. If feasible, a tightly-

coupled architecture should be used.

8.5.4 Processing Times

The dominant factor in the success or failure of any coprocessing system is the increased perfor-
mance of a coprocessor due to its application-specific design. The application to be coprocessed
must be suitable for coprocessing. It must be possible to implement the necessary transactions in
configurable hardware. This is not an easy task in some cases. For example, complex algorithms,
such as minheap deletion, can be very difficult to design, build, and test. Also, it is very important
to remember that although processing time is the dominant component of a non—coprO(.:essed ap-
plication, this may not be true for a coprocessed application. This observation is a very significant

implication of the performance model.

CHAPTER 8. MODEL VALIDATION 156

8.5.5 Summary of Implications

Clearly, #f enhanced performance of an application is desired, a tightly-coupled configurable copro-
cessor architecture is necessary. A balanced approach is best for application performance. Unless
all sources of delay are considered during the design of a coprocessed application, the performance
of the coprocessed application will be less than desirable. A small component of the execution
time of a non-coprocessed application can become the dominant component of the execution time

of a coprocessed application.

Chapter 9

Conclusions

Configurable computers offer increased control logic flexibility and datapath flexibility. Application-
specific coprocessors may be built for mainstream software applications using configurable logic
devices. It is possible to accelerate common data structures and algorithms using a configurable
coprocessor. These data structures and algorithms can benefit a wide range of mainstream soft-

ware applications, given a suitable configurable computer architecture.

9.1 Thesis Contributions

The thesis presents an empirical study of configurable coprocessing based on experimental re-
sults obtained using three mainstream software applications. The applications include two simple
pseudo-random number generation algorithms and a complex minheap insertion and deletion
algorithm. The results of this empirical study provide some insight into the complexity of con-
ficurable computing. This thesis lays a foundation for future research by making the following

contributions:

e introduces, explains, and validates a novel configurable computing performance model that

predicts both application performance and system performance,

e illustrates several of the challenges associated with developing configurable coprocessors,

157

CHAPTER 9. CONCLUSIONS 158

e provides experimental results demonstrating speedups for two mainstream software applica-
tions (pseudo-random nuinber generation and minheap management) executing on a tightly-

coupled configurable computer,

¢ quantifies memory utilization delays, bus utilization delays, and operating system behaviour

delays for a mainstream software application (CSIM),

e summarizes several desirable properties of mainstream software applications for configurable

coprocessing,

e identifies desirable features of configurable computer architectures to ensure adequate per-

formance,

e describes a reference design for an ARC-PCI Board with hardware support for dynamic

configuration and high-speed 1/0, and

e shows that configuration delays are not the most significant source of delay for computationally-

intensive applications.

9.1.1 The Performance Model

The performance model introduced in Chapter 3 and validated in Chapter 8 expands upon previous
research into the modeling of configurable computer systems. The performance model attempts
to quantify the impact of memory utilization delays, bus utilization delays, and operating system
behaviour delays by placing bounds on the delays. Previously published models of configurable
computer systems have not attempted to quantify these sources of delays. In addition, the perfor-
mance model provides insight into the performance of the application as well as the performance

of the system.

9.1.2 Challenges of Developing Configurable Coprocessors

As indicated in Chapter 5, Chapter 6, and Chapter 7, the development of configurable coprocessors
is a difficult and time-consuming task. Any application that can be written as a finite state

machine can be implemented in a configurable coprocessor provided that sufficient resources (e.g.,

CHAPTER 9. CONCLUSIONS 159

memory bits, logic elements, etc.) are available. However, if resources are limited, hardware
development can be difficult if not impossible. The process of translating software algorithms
into hardware designs requires both skill and intuition. The most obvious difference between
hardware and software designs is that software designs do not need to meet the strict minbmum

clock frequency requirements of hardware designs.

It is important to note that the hardware / software interface plays a significant role in the
performance of a configurable coprocessor. This is demoustrated by the performance gains that are
achieved through the use of buffering, pre-processing, post-processing, and fast I/O dispatching.
These performance enhancements make a significant difference in the overall performance of the
system. Special care must be taken to ensure that the hardware /software interface is tailored for
the application. Hardware / software codesign techniques help with this process but more tools
are needed to assist with exploring interface alternatives. Hand-coded interfaces and reference

designs are a good way to ensure adequate performance at the interface.

9.1.3 Mainstream Software Application Speedups

This research has shown that tightly-coupled configurable computers are suitable for coprocess-
ing mainstream software applications. On the tightly-coupled configurable computer studied, the
coprocessed pseudo-random number generator outperforms the non-coprocessed algorithm by a
factor of 2.6. For minheap insertion and deletion, speedups approaching a factor of 14 can be
achieved on a tightly-coupled configurable computer. These speedups are noticeable improve-

ments.

Furthermore, it has been shown that coprocessing may be done transparently, without any
impact upon the quality of the results. This was shown by coprocessing CSIM, a commercial
discrete-event simulation library. Although performance improvements were not achieved in this
experiment, this was mostly due to the use of a loosely-coupled configurable computer architecture.
Such architectures are not likely to be suitable for coprocessing mainstream software applications
although they are potentially suitable for niche applications. In particular, this research has
shown that Platform I is unlikely to produce any significant speedup on a mainstream software

application.

CHAPTER 9. CONCLUSIONS 160

9.1.4 Mainstream Software Application Delays

Memory utilization delays, bus utilization delays, and operating system delays are significant
factors influencing the performance of coupled configurable computer systems. The act of copro-
cessing transactions causes application data to be distributed and perhaps duplicated for local
access. This distribution of data impacts the performance of caching and introduces additional
synchronization delays. It also causes new bus transactions to be performed to facilitate com-
munication between the processor and the coprocessor. This additional overhead changes the
behaviour of the operating system further impacting both application performance and system

performance.

Of course, no performance improvement is possible if the coprocessor is unable to compute its
results efficiently. Thus, the ratio of the processing power of the coprocessor to the processor is
an important consideration. A balanced approach that attempts to minimize all sources of delays
and distribute computations on the basis of processing resources appears to be best. Based on
the model, it is clear that minimizing one source of delay does not maximize the performance of

the system.

9.1.5 Desirable Properties of Mainstream Software Applications

Configurable coprocessing is most effective if the mainstream software application exhibits the

following properties:

e course computation granularity,

e opportunities to exploit parallelism, and

e limited I/O per transaction.

While speedup is possible for applications that do not exhibit all three of these properties,
speedup is more probable for applications that do exhibit these properties. It should also be
noted that some niche applications have become mainstream software applications. For example,

cryptography is now commonly used by a wide variety of software applications. Security is a

major consideration in any application that utilizes confidential data. The use of a configurable

CHAPTER 9. CONCLUSIONS 161

coprocessor for cryptographic applications could result in a significant performance improvement

in such mainstream software applications.

9.1.6 Desirable Features of Configurable Computer Architectures

It is clear that tight coupling of a processor with a coprocessor is beneficial to the performance
of an application. Loosely-coupled systems suffer from large communication latencies for bus
traffic. Mainstream software applications manipulate large quantities of data. If the coupling is
loose, many new bus transactions are often required to communicate data and time is not used
most effectively. Tight coupling is particularly important for simple computations. Very complex
computations can overcome large communication latencies. One way to reduce communication
latency is to use a platform without an operating system. The use of an operating system in-
troduces additional delays that may be unnecessary. Uunless required by the application or other

applications in the system, operating systems should be avoided.

9.1.7 Reference Design for the ARC-PCI Board

Chapter 4 describes a reference design for the ARC-PCI Board. This reference design consists
of an application programming interface, a device driver, and a reference controller design. This

reference design provides the following features that make it unique:

e built-in hardware management of MAPP mode configuration,

¢ simple memory-mapped 1/O interface for user designs,

near optimal I/0 performance,

clear separation of the controller logic from the user logic, and

platform support for Windows NT and Linux.

9.1.8 Configuration Delays

Previous research into configurable computing has focused on the overhead of configuration delays.

While configuration delays can be significant, this research has shown that for computationally-

CHAPTER 9. CONCLUSIONS 162

intensive applications, configuration delays are negligible compared to other sources of delays.
It is possible to configure a coprocessor thousands of times without significantly impacting the
performance of the application or the system. Furthermore, a good configurable computer archi-
tecture can help to minimize the overhead associated with configuration. Storing configuration
data Iocally can reduce configuration times and bus utilization delays that result from transferring

configuration data over the bus hierarchy.

9.2 Potential for Future Research

This work has revealed the need for future research into the following areas:

e profiling of other mainstream software applications executing on configurable computer sys-

tems,
e analysis of the impact of system load on configurable computer performance,

e investigation of platform FPGA architectures that incorporate both general-purpose pro-

cessors and configurable logic elements,

e study of other types of configurable computer architectures for inclusion in the performance

model, and

e translating software algorithms into hardware designs that exploit parallelism.

9.2.1 Profiling of Mainstream Software Applications

For the purpose of this research, three applications were studied. Research into other applications
is necessary to ensure that the performance model is an adequate representation of the perfor-
mance of mainstream software applications. In particular, system level profiling could reveal more
information about the nature of memory utilization delays, bus utilization delays, and operating
system behaviour delays. A thorough understanding of these delays should help in the refinement

of the performance model.

CHAPTER 9. CONCLUSIONS 163

9.2.2 Analysis of the Impact of System Load

For the purpose of this research, the system was lightly-loaded for all tests. This effectively meant
that system execution time was equivalent to application execution time. In a heavily-loaded
system, this assumption is invalid. As system load increases, configurable coprocessors should
theoretically have less impact upon the performance of an application. It is unclear if system
performance benefits more or less from a configurable coprocessor if the system is heavily-loaded.
An investigation of the impact of system load on the performance of a configurable coprocessor

is recommended.

9.2.3 Platform FPGAs and RPUs

Alternative hardware architectures for configurable computing should be studied. Both Platform
FPGAs and RPUs offer very tight coupling between the processor and the coprocessor. Such
devices might be capable of achieving performance speedups otherwise unattainable. It is quite

possible that these devices may yield good performance for mainstream software applications.

Platform FPGAs, such as the Xilinx Virtex II Pro devices, incorporate general-purpose pro-
cessors and configurable logic elements. These devices provide a very tight coupling between
the processor and the coprocessor. Two (or more) processing units share a common system bus.
These devices represent the next generation of configurable coprocessors. They are likely to be

suitable for high-end embedded systeins.

RPUs (Reconfigurable Processor Units) for configurable computing are also worth investigat-
ing. The latest version of the Nios processor supports the creation of custom instructions using
VHDL. Effectively, the Nios processor is a form of RPU. These devices effectively merge the
processor and the coprocessor into a single design. As a starting point for future research, it is
recommended that Application 2 (RAND) be implemented as a custom instruction for the Nios
processor. Application 2 is the simplest of the applications presented in this thesis. It is also the
one most suitable for implementation as a custom instruction. The other two applications would

require the implementation of several custom instructions.

CHAPTER 9. CONCLUSIONS 164

9.2.4 'Translation of Software Algorithms to Hardware Designs

During the developinent of the hardware designs for the three applications studied in this research,
it became apparent that the translation of a software algorithm into a hardware design is a
difficult, error-prone, and time-consuming process. Simple algorithms, such as pseudo-random
number generation, can beé implemented using combinational logic and a few registers. More
complex algorithms, such as minheap insertion and deletion, are much more difficult to translate
from “software implementations to hardware implementations. While it is true that all finite
sequential algorithms can be implemented using a finite state machine, this is not necessarily
ideal for all software algorithms. This technique worked reasonably well for the minheap insertion
and deletion algorithms studied but it would not have been feasible for more complex algorithms
due to problems associated with state bit encoding for large state machines. Further research into
automated techniques for translating software algorithms to hardware designs is recommended.

Also, a study of hardware design techniques for complex, sequential logic should be performed.

9.3 Thesis Applicability

The research presented in this thesis has industrial applications. The cost of building and utilizing
a configurable comiputer architecture could be justified for software applications that demand high
performance. Also, the techniques presented in this thesis for enhancing mainstream software
applications could be used to enhance embedded software systems and real-time systems. Finally,
although the performance model is discussed in the context of configurable computing, it could

be used to model multiprocessors and other types of coprocessing systems.

Bibliography

[AA95]

[ABD92]

Peter M. Athanas and A. Lynn Abbott. Addressing the Computational Requirements
of Image Processing with a Custom Computing Machine: An Overview. In Proceed-
ings of the Ninth Internaiional Parallel Processing Symposium Special Workshop on
Reconfigurable Architectures and Algorithms, Santa Barbara, California, April 1995.

Jeffrey M. Arnold, Duncan A. Buell, and E. G. Davis. Splash 2. In Proceedings of the
4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 316-324,
June 1992.

[ACC*95] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and G. Snider. Teramac-

[Alt94]

[Alt96]

[Alt97a]

[Alto7D]

[Alt98a]

[AIt98b]

[Alt02a)

[AIt02b]

Configurable Custom Computing. In Duncan A. Buell and Kenneth L. Pocek, editors,
Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages
32-38, Napa Valley, California, April 1995.

Altera Corporation, San Jose, California. Reconfigurable Interconnect Peripheral Pro-
cessor (RIPP10) Users Manual, May 1994.

Altera Corporation, San Jose, California. 1996 Data Book, June 1996.

Altera Programmable Hardware Development Program. World Wide Web Document,
January 1997.
http://www.altera.com/html/programs/phd.html.

Altera Corporation, San Jose, California. University Program Design Laboratory Pack-
age User Guide, August 1997.

Altera Corporation, San Jose, California. PCI MegaCore Function User Guide, Novem-
ber 1998.

Altera Corporation, San Jose, California. pcitl PCI Target MegaCore Function, July
1998.

Altera Corporation, San Jose, California. Nios Embedded Processor 32-Bit Program-
mer’s Reference Manual, April 2002.

Altera Corporation, San Jose, California. Nios Embedded Processor Peripherals Refer-
ence Manual, September 2002.

165

BIBLIOGRAPHY 166

[Alt02c]
[Apt93]
[Apt95]

[Ass96]

{Bag91]

[BAMOYS]

[BL94)

(BLY7]

Altera Corporation, San Jose, California. Nios Embedded Processor Software Develop-
ment Reference Manual, July 2002.

Aptix Corporation, San Jose, California. Programmable Interconnect System Data Book,
1993.

Aptix Corporation, San Jose, California. FPCB Development System User’s Manual,
1995.

APS-X84 Development Kit Documentation. World Wide Web Document, December
1996.

http://www.associatedpro.com/aps/x84 . .html.

Rajive L. Bagrodia. Designing Efficient Simulations Using Maisie. In Proceedings of the
1991 Winter Simulation Conference, pages 243-247, Phoenix, Arizona, December 1991.

Ray A. Bittner Jr., Peter M. Athanas, and Mark D. Musgrove. Colt: An Experiment
in Wormhole Run-Time Reconfiguration. In Proceedings of the 1996 SPIE Photonics
East Conference, Boston, Massachussetts, November 1996.

Rajive L. Bagrodia and Wen-Toh Liac. A Language for the Design of Efficient Discrete-
Event Simulations. IEEE Transactions on Software Engineering, 20(4):225-238, April
1994.

William D. Bishop and Wayne M. Loucks. A Heterogeneous Environment for Hard-
ware/Software Cosimulation. In Proceedings of the 30th Annual Simulation Symposium,
pages 14-22, Atlanta, Georgia, April 1997.

[BMT*98] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park, and H. Song.

[Box94}

[BRO6]

[BRV8Y]

[BTA93]

[Cas93]

A Parallel Simulation Environment for Complex Systems. IEEE Computer, 31(10):77-
85, October 1998.

Brian Box. Field-Programmable Gate Array Based Reconfigurable Preprocessor. In
Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, pages 40-48, Napa Valley, California, April
1994.

Stephen D. Brown and Jonathon Rose. FPGA and CPLD Architectures: A Tutorial.
IEEE Design & Test of Computers, 13(2):42-57, 1996.

Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to Programmable
Active Memories. Technical Report PRL Research Report #3, DEC Paris Research
Laboratory, Paris, France, 1989.

J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Overcoming Pin Limitations in
FPGA-Based Logic Emulators. In Duncan A. Buell and Kenneth L. Pocek, editors,
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines, pages
142-151, Napa Valley, California, April 1993.

Steve Casselman. Virtual Computing and the Virtual Computer. In Duncan A. Buell
and Kenneth L. Pocek, editors, Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, pages 43-48, Napa Valley, California, April 1993.

BIBLIOGRAPHY 167

[Cas96]

(CBY2]

[Cha94]

[CMQO2]

[Cor96}

[Cor97]

[Cor99]

[Cor02a]
[Cor02b]
[Cor02¢]
[Cor02d]
[Cor02e]

[CR93]

[CTS95]

[CTS96]

Steve Casselman. Reconfigurable Processing Units (RPUs). Newsgroup Posting, 1996.
news:comp.arch.{pga.

C. E. Cox and W. E. Blanz. GANGLION-A Fast Field-Programmable Gate Array
Implementation of a Connectionist Classifier. - IEEE Journal of Solid-State Circuits,
27(3):288-299, March 1992.

Pak K. Chan. A Field-Programmable Prototyping Board: XC4000 BORG User’s Guide.
Technical Report UCSC-CRIL-94-18, Board of Studies in Computer Engineering, Uni-
versity of California, Santa Cruz, Santa Cruz, California, April 1994.

Stephen Charlwood, Jonathan Mangnall, and Steven Quigley. System-Level Modelling
for Performance Estimation of Reconfigurable Coprocessors. In Proceedings of the 12th
International Conference Field Programmable Logic 2002, Montpellier, France, Septem-
ber 2002.

Giga Operations Corporation. Spectrum Reconfigurable Computing Developers. World
Wide Web Document, December 1996.
http://wuw.reconfig.com/giga/spectrc.htm.

X Engineering Software Systems Corporation. XS95 Board. World Wide Web Docu-
ment, January 1997.
http://www.xess.com/FPGA/ho02001 . html.

Altera Corporation. Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices. Ap-
plication Note A-AN-116-01, Altera Corporation, San Jose, California, August 1999.

Altera Corporation. Cyclone Product Backgrounder. Product Backgrounder, Altera
Corporation, San Jose, California, November 2002.

Altera Corporation. Delivering RISC Processors in an FPGA for $2.00. White Paper,
Altera Corporation, San Jose, California, November 2002.

Altera Corporation. Nios Embedded Processor Development Board Data Sheet. Data
Sheet DS-NIOSDEVBD-2.1, Altera Corporation, San Jose, California, April 2002.

Altera Corporation. Nios Embedded Processor Getting Started User Guide. User Guide
UG-NIOSGSG-2.2, Altera Corporation, San Jose, California, September 2002.

Altera Corporation. Nios Tutorial. Tutorial TU-NIOSTTRL-1.1, Altera Corporation,
San Jose, California, April 2002.

Steven A. Cuccaro and Craig F. Reese. The CM-2X: A Hybrid CM-2/Xilinx Prototype.
In Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, pages 121-130, April 1993.

Steve Casselman, Michael Thornburg, and John Schewel. Hardware Object Program-
ming on the EVC1-A Reconfigurable Computer. In Proceedings of the 1995 SPIE
Photonics East Conference, Philadelphia, Pennsylvania, October 1995,

Steve Casselman, Michael Thornburg, and John Schewel. H.O.T. Works Development
System. World Wide Web Document, December 1996.
http://www.vce.com/products/pci6200. html.

BIBLIOGRAPHY 168

[Deh94] André Dehon. DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st
Century. In Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the IFEE
Workshop on FPGAs for Custom Computing Machines, pages 31-39, April 1994.

[Deh96] André Dehon. Reconfigurable Architectures for General-Purpose Computing. Ph.D. Dis-
sertation, Massachussetts Institute of Technology, Cambridge, Massachussetts, October
1996.

[DGJIt95] Michel Dubois, Alain Gefflaut, Jacheon Jeong, Adrian Moga, and Koray Oner. Mul-
tiprocessor Emulation with RPM: Early Experience. Technical Report CENG95-23,
University of Southern California, Los Angeles, California, December 1995.

[DN99] Edward N. Dekker and Joseph M. Newcomer. Developing Windows NT Device Drivers.
AddisonWesley Publishing Company, Reading, Massachussetts, first edition, 1999.

[Dun90] Ralph Duncan. A Survey of Parallel Computer Architectures. IEEE Computer, Febru-
ary 1990.

[EBTB63] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel Processing in a Restructurable
Computer System. IEEE Transactions on Electronic Computers, 12:747-755, December
1963.

[Fuj90] Richard M. Fujimoto. Parallel Discrete Event Simulation. Commaunications of the ACM,
33(10):31-53, October 1990.

[Fuj93] Richard M. Fujimoto. Parallel and Distributed Discrete Event Simulation. In Proceed-
ings of the Winter Simulation Conference, pages 106-114, 1993.

[GHK*91] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D. Lopresti.
Building and Using a Highly Parallel Programmable Logic Array. IEEE Computer,
24(1):81-89, January 1991.

[GKC*94] David Galloway, David Karchmer, Paul Chow, David Lewis, and Jonathan Rose. The
Transmogrifier: The University of Toronto Field-Programmable System. Technical Re-
port CSRI-306, Computer Systems Research Institute, University of Toronto, Toronto,
Ontario, Canada, June 1994.

[God93a] Michael Godfrey. Introduction to “The First Draft Report on the EDVAC”. IFEE
Annals of the History of Computing, 15(4):27-75, 1993.

[God93b] Michael Godfrey. The Computer as von Neumann Planned It. IEEE Annals of the
History of Computing, 15(1):11-21, 1993.

[Gra81] Jim Gray. The Transaction Concept, Virtues and Limitations. In Proceedings of the
Seventh International Conference on Very Large Databases, pages 144-151, Cannes,
France, Septernber 1981.

[Gra0l] David Grant. An ARC-PCI Board Device Driver for the Linux V2.4 Series Kernel. URA
Report, University of Waterloo, Waterloo, Ontario, Canada, December 2001.

[Har01] Reiner Hartenstein. A Decade of Reconfigurable Computing: A Visionary Retrospective.
In Proceedings of Design, Automation, and Test in Europe (DATE ‘01), pages 642-649,
Munich, Germany, March 2001.

BIBLIOGRAPHY 169

[HD62] T. E. Hull and A. R. Dobell. Random Number Generators. SIAM Review, 4:230-254,
1962.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., Palo Alto, California, 1990.

[HP92] B. Heeb and C. Pfister. Chameleon: A Workstation of a Different Colour. In Field-
Programmable Gate Arrays: Architectures and Tools for Rapid Prototyping. Second
International Workshop on Field- Programmable Logic and Applications, pages 152-161,
Vienna, Austria, August 1992

[HP02] = Jaret W. Hauge and Kerrie N. Paige. Learning SIMUL8: The Complete Guide. Plain
Vu Publishers, March 2002.

[}-C94] I-Cube, Inc., Santa Clara, California. The FPID Family Data Sheet, February 1994.

[I-C97] Digital Crosspoint Switching Solutions. Online Technical Seminar
(ftp://ftp.icube.com/pub/icubePDF/Technology/DigitalCrosspointSwitching.pdf),
September 1997.

Ins93] Institute of Electrical and Electronics Engineers, New York, New York. JEEFE Std 1076-
1983, IEEFE Standard VHDL Language Reference Manual, 1993.

{Int02] Intel Microprocessor Quick Reference Guide. World Wide Web Document, December
2002.
http://www.intel.com/pressroom/kits/quickreffam.htm.

[IS93] Christian Iseli and Eduardo Sanchez. Spyder: A Reconfigurable VLIW Processor Using
FPGAs. In Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, pages 17-24, Napa Valley, Cal-
ifornia, April 1993.

[Jal94] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1994.

[Jen94] Jesse H. Jenkins. Designing with FPGAs and CPLDs. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1994.

[KL95] Asawaree Kalavade and Edward A. Lee. Hardware/Software Codesign Using Ptolemy.
In Jerzy Rozenblit and Klaus Buchenrieder, editors, Codesign: Computer-Aided Soft-
ware/Hardware Engineering, chapter 19, pages 397-413. IEEE Press, New York, New
York, 1995.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 2nd edition, 1988.

[KS02] Kenneth B. Kent and Micaela Serra. Context Switching in a Hardware/Software Co-
Design of the Java Virtual Machine. In Proceedings of Design Automation and Test in
Europe, March 2002,

BIBLIOGRAPHY 170

[Leh51)

Derrick Henry Lehmer. Mathematical Methods in Large-Scale Computing Units. In
Proceedings of the Second Symposium on Large-Scale Digital Computing Machinery,
1949, vohume 26, pages 141-146, Cambridge, Massachusetts, 1951. Harvard University
Press.

[ILGv'97] David M. Lewis, David R. Galloway, Marcus van Ierssel, Jonathon Rose, and Paul

[LK91]

[Man91}

Chow. The Transmogrifier-2: A 1 Million Gate Rapid Prototyping System. In Pro-
ceedings of the 1997 ACM Fifth International Symposium on Field-Programmable Gate
Arrays, pages 53—-61, Monterey, California, February 1997.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, Inc.,
New York, New York, second edition, 1991.

M. Morris Mano. Digital Design. Prentice Hall, Inc., Englewood Cliffs, New Jersey,
second edition, 1991.

IMCMB93] George Milne, P. Cockshott, G McCaskill, and P. Barrie. Realizing Massively Con-

[MDO6]

[Mes98a)
[Mes98b)
[Mic02}
[Milo6]
[One99)]
[Opl67]

[PB99]

[Phio7]

current Systems on the SPACE Machine. In Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, pages 2632, Napa Valley, California, April
1993.

E. Mirsky and André Dehon. MATRIX: A Reconfigurable Computing Architecture
with Configurable Instruction Distribution and Deployable Resources. In J. M. Arnold
and K. L. Pocek, editors, Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, pages 157-166, Napa Valley, California, April 1996.

Mesquite Software, Inc., Austin, Texas. Geiting Started: CSIM18 Simulation Engine
(C++ Version), 1998.

Mesquite Software, Inc., Austin, Texas. User’s Guide: CSIM18 Simulation FEngine,
1998.

Stratix EP1S25 Development Kit. Preliminary Product Specification, December 2002.

George Milne. SPACE 2 Reconfigurable Computing Platform. World Wide Web Doc-
ument, December 1996.
http://www.cis.unisa.edu.aun/acrc/projects/space2.html.

Walter Oney. Programming the Microsoft Windows Driver Model - Microsoft Press,
Redmond, Washington, first edition, 1999.

Ascher Opler. Fourth-Generation Software. Datamation, 13(1):22-24, January 1967.

Gajjala Purna and Dinesh Bhatia. Temporal Partitioning and Scheduling Data Flow
Graphs for Reconfigurable Computers. IEEE Transactions on Computers, 48(6):579-
590, June 1999.

Philips Semiconductors, Sunnyvale, California. P38Z22V10 Data Sheet - Preliminary
Specification, March 1997.

BIBLIOGRAPHY 171

[PML92] Bruno R. Preiss, Ian D. MacIntyre, and Wayne M. Loucks. On the Trade-off between

[Pow(1}

[Pre99]

[PW99)

[RHY7]

[Rub9s]
[SA95]
[Sch86]
[SPOO]
[Str94]
[Tan95|
[TAS93]

[Tri94]

Time and Space in Optimistic Parallel Discrete-Event Stmulation. In Proceedings of the
6th Workshop on Pagallel and Distributed Simulation (PADS-92), pages 33-42, Newport
Beach, California, January 1992.

Powersim Corporation. Features in Powersim Studio 2001. White Paper, Powersim
Corporation, December 2001.
http://www.powersim.com/common/pdf/studio_2001_info.pdf.

Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns
in C++. John Wiley & Sons, Inc., New York, New York, first edition, 1999.

Bruno R. Preiss and K. W. Carey Wan. The Parsimony Project: A Distributed Simu-
lation Testbed in Java. In Proceedings of the 1999 International Conference On Web-
Based Modelling & Simulation, San Francisco, California, January 1999.

Jonathon Rose and Dwight Hill. Architectural and Physical Design Challenges for One-
Million Gate FPGAs and Beyond. In-Proceedings of the 1997 ACM Fifth International
Symposium on Field-Programmable Gate Arrays, pages 129-132, Monterey, California,
February 1997.

Alessandro Rubini. Linux Dewvice Drivers. Of’{eilly, Sebastopol, California, first edition,
February 1998.

Tom Shanley and Don Anderson. PCI System Architecture. AddisonWesley Publishing
Company, Reading, Massachussetts, third edition, September 1995.

Herbert D. Schwetman. CSIM: A C-Based, Process-Oriented Simulation Language. In
Proceedings of the 1986 Winter Simulation Conference, pages 387-396, December 1986.

Daniel Schunk and Beth Plott. Using Simulation to Analyze Supply Chains. In Pro-
ceedings of the 2000 Winter Simulation Conference, Orlando, Florida, December 2000.

Bjarne Stroustrup: The C++ Programming Language. AddisonWesley Publishing Com-
pany, Reading, Massachussetts, second edition, 1994.

Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1995.

Donald E. Thomas, Jay K. Adams, and Herman Schmit. A Model and Methodology
for Hardware-Software Codesign. IEEE Design & Test of Computers, 10(3):6-15, 1993.

Stephen M. Trimberger, editor. Field-Programmable Gate Array Technology. Kluwer
Academic Publishers, Norwell, Massachussetts, 1994.

[VBR*96] Jean E. Vuillemin, Patric Bertin, Didier Roncin, Mark Shand, Hervé H. Touati, and

[VCCo8)

Philippe Boucard. Programmable Active Memories: Reconfigurable Systems Come of
Age. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(1):56-69,
March 1996.

Virtual Computer Corporation. H.O.T. II Development System. Data Sheet, Virtual
Computer Corporation, Reseda, California, 1998.
http://www.vce.com/Papers/Hotii DS.PDF.

BIBLIOGRAPHY 172

[VMY9]

Peter G. Viscarola and W. Amthony Mason. Windows NT Device Driver Development.
MacMillan Technical Publishing, Indianapolis, Indiana, first edition, 1999.

[VMT+92] David E. Van Den Bout, Joseph N. Morris, Douglas Thomae, Scott Labrozzi, Scot

fvIN45]

[Von97]

Wingo, and Dean Hallman. AnvBoard: An FPGA-Based Reconfigurable System. IEEE
Design & Test of Computers, 9(3):21-30, 1992.

John von Neumann. First Draft of a Report on the EDVAC. Technical Report W-
6700RD-492, Moore School of Electrical Engineering; University of Pennsylvannia, June
1945.

Brian Von Herzen. Signal Processing at 260 MHz using High-Performance FPGA’s. In
Proceedings of the 1997 ACM Fifth International Symposium on Field-Programmable
Gate Arrays, pages 62-68, Monterey, California, February 1997.

[WAL*93] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, and

[WE93]

S. Ghosh. PRISM-II Compiler and Architecture. In Duncan A. Buell and Kenneth L.
Pocek, editors, Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines, pages 9-16, Napa Valley, California, April 1993.

Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design: A
Systems Perspective. AddisonWesley Publishing Company, Reading, Massachussetts,
second edition, 1993.

[WHG94] Michael J. Wirthlin, Brad L. Hutchings, and Kent L. Gilson. The Nano Processor: A

(X E97]

(Xil97]

[Xi102]

Low Resource Reconfigurable Processor. In Duncan A. Buell-and Kenneth L. Pocek, ed-
itors, Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,
pages 23-30, Napa Valley, California, April 1994.

X540 Board. World Wide Web Document, January 1997.
http://www.xess. com/FPGA/ho02002. html.

Xilinx University Program Internet Seminar. Online Internet Seminar, July 1997.
http://wwu.enen.com/.

Xilinx, Inc., San Jose, California. Virtez-II Pro Prototype Platform User Guide, October
2002.

Appendix A

Experimental Results for Transfer
Rates

This appendix provides the complete set of experiment results for the transfer rates experiments
summarized in Chapter 4. Each experiment consisted of 10,000,000 consecutive transfers. Exper-
iments were run five times. The total execution time for each experimental run is shown. The
average execution time and standard deviation are also shown.

A.1 Platform I: Windows NT Results

Table A.1 shows the device driver execution times observed on Platform I running Windows NT.
Software timing was used.

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Table A.1: Windows Device Driver Execution Times - Software Timed (WSPEED1A)

Table A.2 shows the device driver execution times observed on Platform I running Windows
NT. Hardware timing was used.

Table A.3 shows the unbuffered application execution times observed on Platform I running
‘Windows NT. Software timing was used.

173

APPENDIX A. EXPERIMENTAL RESULTS FOR TRANSFER RATES 174

W'ndows Devsce Dnver Execuhon Tlmes’ Hardware Timed (WSPEED1B

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Interface Read
Interface Write
Memory Read
Memory ‘Write
PLD Read

PLD Write

Table A.3: Windows Unbuffered Application Execution Times (WSPEED2)

Table A.4 shows the buffered application execution times observed on Platform I running
Windows NT. Software timing was used.

pllcatlon Executlon Tlmes

Wndows Buﬁered A

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Table A.4: Windows Buffered Application Execution Times (WSPEED3)

A.2 Platform I: Linux Results

Table A.5 shows the device driver execution times observed on Platform I running Linux. Software
timing was used. These results were obtained by David Grant [Gra01]. They have been provided
for the purpose of comparison.

Table A.6 shows the unbuffered application execution times observed on Platform I running
Linux. Software timing was used. These results were obtained by David Grant {Gra01]. They

APPENDIX A. EXPERIMENTAL RESULTS FOR TRANSFER RATES 175

Lmux Devrce Dnver Executlon T'mes LSPEED1

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Table A.5: Linux Device Driver Execution Times (LSPEEDI)

have been provided for the purpose of comparison.

Lmux Unbuffered App llcahon Executlon Tlmes LSPEEDZ

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Table A.6: Linux Unbuffered Application Execution Times (LSPEED?2)

Table A.7 shows the buffered application execution times observed on Platform I running
Linux. Software timing was used. These results were obtained by David Grant [Gra01]. They

have been provided for the purpose of comparison.

Linux Buffered App_lylcanon Executlon Tlmes (LSPEED3V

Interface Read
Interface Write
Memory Read
Memory Write
PLD Read

PLD Write

Table A.7: Linux Buffered Application Execution Times (LSPEED3)

Appendix B

Experimental Results for
Pseudo-Random Number
Generation

This appendix provides the complete set of experiment results for the pseudo-random number
generation experiments summarized in Chapter 6. Each experiment performed a specific number
of pseudo-random number generation iterations on the test platform. Each iteration calculates
one pseudo-random number. Experiments were run five times. The total execution time for each
experimental run is shown. The average execution time and standard deviation are also shown.

B.1 Platform I Results

Table B.1 shows the application execution times observed on Platform I running Windows NT.
Software timing was used. A configurable coprocessor was not used to obtain these results. The
results serve a baseline for comparison.

Table B.2 shows the application execution times observed on Platform I running Windows NT.
Software timing was used. The unoptimized configurable coprocessor system was used to obtain
these results.

Table B.3 shows the application execution times observed on Platform I running Windows NT.
Software timing was used. The optimized configurable coprocessor system was used to obtain these
results. .

Table B.4 shows the application execution times observed on Platform I running Windows NT
with L1 and L2 caching disabled. Software timing was used. A configurable coprocessor was not
used to obtain these results. The results serve a baseline for comparison of experimental results
with the L1 and L2 cache disabled.

Table B.5 shows the application execution times observed on Platform I running Windows

176

APPENDIX B. EXPERIMENTAL RESULTS FOR PSEUDO-RANDOM NUMBER

GENERATION

PC Software RAND Tests PRAND1

500000

1000000 0.020 ©.020 0.023 0.006

2500000 0.051 0.060 0.057 0.006

5000000 0.110 G.1240 0.113 0.006
10000000 0.222 0.230 0.224 0.006
25000000 0.571 0.561 D.561 0.001
50000000 1.132 1,121 1:125 0.006
100000000 2.243 2.253 2.257 0.006
250000000 5.618 5.658 5.628 0.001
500000000 11.246 131.266 11.270 0.015

Table B.1: PRAND1

500000
1000000
2500000
5004000

i PC Hardware RAND Tesis PRANDZ

2.543
6.350
12.699

2.544
6.349
12.688

10000000 25.386 25.397
25000000 €3.451 63.561 63.491 63.571 63.517
50000000 127.013 127.033 126.973 127.033 127.015
100000000 254 .005 254.095 253.986 254.045 254.041 0.046
250000000 635,093 635,073 635.134 635.183 634.983 635.093 0.075
500000000 1270.116 1270.087 1269.976 1270.086 1270.036 1270.060 0.055
Table B.2: PRAND?2

PC Hardware RAND Tests JPRAND3\]

500000 i)
1000000 0.581 0.581 0.580 0.581 0.589 0.013
2500000 1.452 1.452 1.452 1.462 1.458 0.006
5000000 2.914 2.914 2.904 2.9%15 2.912 0.005

10000000 5.818 5.818 5.818 5.819 5.820 0.005

25000000 14.560 14,5581 14.551 14.581 14.559 0,013

50000000 29.142 29.112 29%.102 29.112 29.122 0.019

100000000 58.263 58.224 58.204 58.203 58.284 58.236 0.036

250000000 145.600 145.559 145.599 145.590 145.559 145.589 0.017

500000000 291.159 291.128 291.249 291.109 291.188 291.167 0.055
Table B.3: PRAND3

177

APPENDIX B. EXPERIMENTAL RESULTS FOR PSEUDO-RANDOM NUMBER
GENERATION 178

500000 . .
1000000 5. 0.241
2500000 14.411 14.761 14.791 14.812 14.491 14,654 0.211
5000000 31.174 29.964 25.091 29.252 29:303 30.076 1.046

100600000 58.894 60.938 58.093 58.505 58.634 59.308 1.467
25000000 148.1585 149.234 147.112 149.635 148.704 148.500 1.203
50000000 297.488 297.808 291.870 292.240 293,772 285.722 3.340
1000090000 578.662 572.043 572.042 571.993 565.565 574.24% 3.822
250000000 1428.544 1428.134 1428.544 1429.796 1426.581 1428.407 0.237
500000000 2856.,708 2856.237 2856.197 2856.888 2858.270 2856381 0.284

Table B.4: PRANDINC

10000000
25000000
50000000

100600000

250000000

500000000

8265 343
70673 841
141354 671

28738,
70593 667
141200787

28222 0951
70601 235
121300.045

Table B.5: PRAND2NC

NT with L1 and L2 caching disabled. Software timing was used. The unoptimized configurable
coprocessor system was used to obtain these results. Results shown in gray are estimates based
on linear projections.

Table B.6 shows the application execution times observed on Platform I running Windows
NT with L1 and L2 caching disabled. Software timing was used. The optimized configurable
coprocessor system was used to obtain these results.

B.2 Platform II Results

Table B.7 shows the application execution times observed on Platform II. Software timing was
used. A configurable coprocessor was not used to obtain these results. The results serve a baseline
for comparison.

Table B.8 shows the application execution times observed on Platform I1. Software timing was
used. A configurable coprocessor system was used to obtain these results.

APPENDIX B. EXPERIMENTAL RESULTS FOR PSEUDO-RANDOM NUMBER

GENERATION

PC Hardware RAND Tests (PRANDSNC)

i | o | e |
Herations ns) :

500000
1000000
2500000
5006000

10000000
25000000
50000000
100060000
250000000
500000000

5.658
11.476
28.222
58.834

118.110
292.640
585.842
1172.817
2932.507
5862.450

11

117
293
586

1172,
2930.
.221

5863

.BCY

L8637
31.
59.
.57¢
.542
.423

045
276

336
844

5.988
X1.777
29.382
58.233

117.098
293.142
586.854
1173.8657
2831.395
5862.690

118
282

1172
2933

.320
L7811
587.
L4486
.368
5861.

024

138

5.979
11.687
28.842
57.883

116.308
293.652
586.503
1171.805
2931.28%5
5859.375

11.575
29.597
58.434
117.483
293.153
586.537
1172.632
2931.880
5861.775

Table B.6: PRAND3NC

500000
1000000
2500000
5000000

10000000

25000000

56000000

100000000
250000000
500000000

1.381
2.764
6.509

13.818
27.634
69.086

138.173

276.345

690.862

1381.724

1
2

138
276

.382
.763
6.5909
13.817
27.
€9.
.172
.345
690.
1381 .

635
087

862
725

138.173

276.345
690.862

1381.724

13

138

630

Excallbur Software RAND Tests JERAND‘I

.764
.909
.817
27.
69.
L1172
276.
-863
1381.

635
086

345

724

1.382
2,763
6.908
13:818
27.634
€9.086
138.172
276.345
690.862
1381.725

2.763
6.909
13.817
27.634
€3.086
138.173
276.345
€90.862
1381.724

1.382

Table B.7: ERANDI1

500000
1000000
2500000
5000000

10000000
25000000
50000000

100000000

250000000

500000000

102.686
256.714

513.428

Excallbur Hardware RAND Tests ERANDZ

X.
.567
.134
.268
.672

51.
102.
256.
.429

2

10
25

513

027

343
685
714

0.514
1.627
2.567
5.134

10.269
25.871
51.342

102.686

256.714

513.428

i.
.567
5.
.268
25.
.343
102.
.714
.428

2

10

51

256
513

027

135

671

685

1.027
2.568
5.134
10.269
25.672
51.343
102.686
256.714
513.428

51.343
102.686
256.714

513.428

Table B.8&: ERAND?2

179

APPENDIX B. EXPERIMENTAL RESULTS FOR PSEUDO-RANDOM NUMBER
GENERATION 180

Sun Soﬂwgre RAND Tests {SRAND1

 Teatz Teula Avorage

£ i fing) | st} ins) g 1 oy atio

500000 0. 0.148 0.145 0.146 0.146 0.146 0.

1600000 0.293 0.292 0.287 0.290 §.299 0.291 0.

2500000 0.723 ©.731 0.733 0.736 0.733 0.729 0.

5000000 1.465 1.474 1.470 1.482 1.455 1.470 0.
100000060 2.949 2.927, 2.549 2.991 3.022 2.942 0.
25000000 7.344 7.216 7.391 7.326 7.3%9 7.350 0.
50000000 14.685 14.650 14.747 14 .758 14.742 14.6%4 0.
100000000 29.825 29.538 29.475 29.505 29.3771 29.613 0.
250000000 73.518 73.630 74.265 77.960 73.524 73.804 0.403
500000000 148.181 147.057 147.115 151.683 147.349 147.451 0.633

Table B.9: SRAND1

B.3 Platform III Results

Table B.9 shows the application execution times observed on Platform III running Solaris. Soft-
ware timing was used. A configurable coprocessor was not used to obtain these results. The results
serve a baseline for comparison. These results show that the PC platform performs comparably
with other workstations.

Appendix C

Experimental Results for Minheap

Management

This appendix provides the complete set of experiment results for the minheap management
experiments summarized in Chapter 7. Each experiment performed a total of 5,000,000 sequences
of insertions and deletions to a specified minheap size. Experiments were run five times. The
total execution time for each experimental run is shown. The average execution time and standard
deviation are also shown.

C.1 Platform I Results

Table C.1 shows the application execution times observed on Platform I running Windows NT.
Software timing was used. A configurable coprocessor was not used to obtain these results. The

results serve a baseline for comparison.

50
100
250
500

1000
2500
5000
10000
25000
50000

15

462

MmN - o o

.191
.420
.182
.584
.558
.432

33.

74.
211.

998
308
604

.625

[C I I)

15

462

33.
74.
211.

PC Software MIN Tests /PMIN1

.

.200 0

L4111 0
.181 1
.574 2
.568 5
.432 15
998 33
888 74
624 211
.586 462

L1390
.411
.182
-594
-558
433
.969
.908
.575
.615

211

.624
462 .

515

-i80

411
181

.574
.558
.502
.968
.838
.584
.575%

462

-192
-415
.184
-580
.562
.448
.98Y1
.878
-6902
.583

o o o 0 0 o o 0 o ol

.030

Table C.1: PMIN1

181

APPENDIX C. EXPERIMENTAL RESULTS FOR-MINHEAP MANAGEMENT 182

PC Hardware MIN Tests (PMIN2
;| Tald | |

Table C.3: PMIN3

Table C.2 shows the application execution times observed on Platform I running Windows
NT. Software timing was used. The unoptimized configurable coprocessor system was used to
obtain these results.

Table C.3 shows the application execution times cbserved on Platform I running Windows N'T.
Software timing was used. The optimized configurable coprocessor system was used to obtain these
results.

Table C.4 shows the application execution times observed on Platform I running Windows NT
with L1 and L2 caching disabled. Software timing was used. A configurable coprocessor was not
used to obtain these results. The results serve a baseline for comparison of experimental results
with the L1 and L2 cache disabled.

Table C.5 shows the application execution times observed on Platform I running Windows
NT with L1 and L2 caching disabled. Software timing was used. The unoptimized configurable
coprocessor system was used to obtain these results. Results shown in gray are estimates based
on linear projections.

Table C.6 shows the application execution times observed on Platform I running Windows
NT with L1 and L2 caching disabled. Software timing was used. The optimized configurable
coprocessor system was used to obtain these results.

C.2 Platform II Results

Table C.7 shows the application execution times observed on Platform II. Software timing was
used. A configurable coprocessor was not used to obtain these results. The results serve a baseline

APPENDIX C. EXPERIMENTAL RESULTS FOR MINHEAP MANAGEMENT

1Y
100
250
500
1000
2500
50600
10000
25000
50000

Trigll
{in 8)
38.766
89.418
247.186
537.773
1165.706
3207.041
6844.522
14674 .581
39313.069
93103.627

PG Software MIN Tests (PMININC

Trial 2 L o Triat 4
I imgy o _fmg ,
43089 39.507 38.876 39.147 35.477 0.945
86.514 86.605 89.398 86.405 87.668 1.590
248 .377 247 .606 246.634 247.535 247.468 0.637
537.152 539.786 545.645 542.580 540.587 3.533
1162.922] 1164.435) 1161.480} 1166.187] 1164.146 1.955
3238.336] 3231.538) 3203.646] 3200.763] 3216.345 17.445
6839.284f 6848.648] 6853.474] 6908.755] 6858.927 28.335
14563.912] 14563.311) 14562.911) 14554.198) 14583 .783 50,915
39353.117] 39261.355] 39257.199) 39024.482] 39241845 127.785
52763.308] 82923.5690 82768.660] 82847.518] 8a881.336) 4596.868

Table C.4: PMININC

ests
 Frlat
tin

Table C.5: PMIN2NC

Table C.6: PMIN3NC

183

APPENDIX C. EXPERIMENTAL RESULTS FOR MINHEAP MANAGEMENT 184

N Tests (EMIN
. Triatd B

$ 5 el

14.765 14.766 14.765 0.001

32.133 32.133 32.133 0.000

B8B.767 8B.767 88.76% 0.000

150.644 150:.644 180.644 0.000

1000 207 .424 407.415 407.414 407.415 407.414 407.414 0.001

2500 1105.996 1105.996 1105.996 1105.996 1105.996 1105.996 0.000

5000 2342.114 2342.113 2342.113 2342.114 2342.113 2342.113 0.001

10000 4944 .313 4944.313 4944 .313 4944 .313 4944 .313 4944 .313 0.000
250600 13224.603 13224.603 13224 .603 13224.603 13224.603 13224.603 0.000

Table C.7: EMIN1

Excalibur Hardware MIN Tests (EMI
“Seais | em e B

Table C.8: EMIN2

for comparison.

Table C.8 shows the application execution times observed on Platform II. Software timing
was used. A configurable coprocessor system was used to obtain these results. An unoptimized
version of the application was used to obtain these results. This version did not exploit parallelism
aggressively.

Table C.9 shows the application execution times observed on Platform II. Software timing was
used. A configurable coprocessor system was used to obtain these results. An optimized version
of the application was used to obtain these results. This version exploited parallelism aggressively.

dware MIN Tests (EMIN3

Table C.9: EMIN3

APPENDIX C. EXPERIMENTAL RESULTS FOR MINHEAP MANAGEMENT

2500 28.400 28.427 28.709
5000 51.202 61.534 61.327
10000 136.992 132.959 132.3%4
25000 361.670 366.322 361.842
50000 868.258 793.701 798.169

29.
-325
L427
372.
.263

61
132

794

859

521

710

72
.328
134.
367.
810.

328
013
168

W
0

noN o o o o o ol

-620

127

.387
.244
.523

Table C.10: SMIN1

C.3 Platform IITI Results

185

Table C.10 shows the application execution times observed on Platform III running Solaris. Soft-
ware timing was used. A configurable coprocessor was not used to obtain these results. The results
serve a baseline for comparison. These results show that the PC platform performs comparably

with other workstations.

Appendix D

CSIM M /M /1 Queue Simulation

Model

The M/M/1 queue simulation model used for the purpose of this research is a slightly modified
version of the CSIM M/M/1 queue simulation model (Ex2cpp.cpp) to permit larger simulation

runs. The modified version is shown below:

// C++/CSIM Model of M/M/1 Queue
/7

// mml.cpp (Based on Ex2cpp.cpp)
1/

// Modified by Bill Bishop

#include "cpp.h"
#include <stdio.h>

#define NARS 1000000
#define IAR_TM 2.0
#define SRV_TM 2.0

event done("dome");
facility £("facility");
table tbl("resp tms");

ghistogram qtbl("num in sys", 101);
int cnt;
FILE *fp;

void customer();
void theory();

extern "C" void sim(int, char **);

void sim(int argc, char *axgv[l)

//

//
s
//

/f
//
/7
/!

/7

CSIM class definitions

Number of arrivals
Interarrival time
Service time

Event named done

Facility named f

Table of response times
ghistogram of number in system
Count of remaining customers
Filehandle named fp

186

APPENDIX D. CSIM M/M/1 QUEUE SIMULATION MODEL

{
max_processes(1000000); /7
fp = fopen{ “"csim.out", "w"); //
set_output_file(fp); //
set_model_name{ "M/M/1 Queue"); 7/
create("sim"); /7
cnt = NARS; //
for(imt i = 1; i <= NARS; i++)
{
hold(expntl(IAR_TM)); //
customer (); //
}
done.wait(); //
report(); //
theory(}; //
mdlstat(); //
}
void customer() //
{
double ti;
create("cust"); //
t1 = clock; //
gtbl.note_entry(); //
f.reserve(); //
hold(expntl(SRV_TM)); //
f.release(): //
tbl.record(clock ~ t1); //
qtbl.note_exit(); //
if(=-cnt == 0)
{
done.set(); //
¥
}

void theory() 7/

{

double rho, nbar, rtime, tput;
printf("\n\n\n\t\t\tM/M/1 Theoretical

tput = 1.0 / IAR_TM;

187

Set the process limit to 1,000,000

Create an output file
Instruct CSIM to use output file

Name the simulation model
Create a process named sim

Set the customer count

interarrival interval
next customer

Wait for
Generate
Wait for last customer to depart
Generate

Generate
Generate

a model report
theoretical results
statistics on the model

Model an arriving customer
Create a process named cust

Record start time
Note arrival

Reserve facility
Service interval

Release facility

Record response time
Note departure

If last customer, set done

Print theoretical results

Results\n");

APPENDIX D. CSIM M/M/1 QUEUE SIMULATION MODEL 188

rho = tput * SRV_TH;
nbar = rvho / (1.0 - rho);
rtime = SRV_TM / (1.0 = rho);

printf{ "\n\n "};
printf{ "\t\tInterarrival time = }10.3f\n", IAR_TM);

printf{ "\t\tService time = %10.3f\n", SRV_TM);
printf("\t\tUtilization = %10.3f\n", tho);

printf{ "\t\tThroughput rate = %10.3f\a", tput);

printf ("\t\tMn nbr at queue ='%10.3f\n", nbar);

printf("\t\tMn queue length = %10.3f\n", nbar-rho);
printf("\t\tRespomse time = %10.3f\n", rtime);

printf("\t\tTime in queue = %10.3f\n", rtime - SRV_.TM);

