A Performance Evaluation of Dynamic Replication
In

Mobile Ad-hoc Networks

by

Wenbo Jiang

A thesis submitted to the School of Computing
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario Canada

September, 2006

Copyright © Wenbo Jiang, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-18746-3
Our file Notre référence
ISBN: 978-0-494-18746-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Much research has been done in mobile ad-hoc networks (MANETS), which are
multi-hop mobile wireless networks. Providing data services in MANETS, however, is not
as well-studied. The advantages of MANETs are limited without data services. Data
replication provides an effective way to improve data access performance and enhance
data availability in MANETs. Data replication, however, faces significant challenges in
MANETSs because of their lack of an infrastructure and their dynamic network topologies.
Furthermore, node mobility causes frequent network partitioning and maintaining replica
consistency becomes extremely difficult in MANETs. It is imperative that data is
distributed intelligently to achieve better performance and availability in such a dynamic

environment.

In this thesis, we study the data access performance, data availability, data
consistency and energy consumption of replication algorithms in MANETs. We conduct
simulations on two dynamic replication algorithms, namely FDRM and ARAM, and a
static algorithm, namely SDRM, and MFDRM, which is our extension of FDRM and
ARAM. Simulation results demonstrate that current replication algorithms are not
adequate for MANETs. Based on our simulation results, we make several suggestions

on the design of replication systems in MANETSs

Keywords: Data Replication, Mobile ad-hoc networks (MANETs), Read-One-Write-All
(ROWA), Network Simulator Version 2 (NS-2) and Ad-hoc On-Demand Distance Vector

Routing (AODV)

Acknowledgements

The past three years at Queen’s have been the most challenging and exciting in
my life and | have learned so much. | would like to express my sincere thanks to my
supervisors Dr. Hossam Hassanein and Dr. Patrick Martin for their guidance, advice
and support during my study at Queen's University. They are excellent advisors and
gave me tremendous help in my research and thesis writing. | truly believe this thesis

could not have been finished without their help.

Thanks to everyone in the Telecommunications Research Lab and the Database
Research Lab for their friendship, advice, and encouragement during my study. Special
thanks are given to the School of Computing and Information Science at Queen's
University for giving me the opportunity to pursue my graduate studies. i also thank CITO

for providing financial support.

Finally, | would like to thank my wife Sally Han for her encouragement, support
and sacrifices during my study. Special thanks are also given to my mother-in-law
Yunnan Wang for taking care of my son Christopher Jiang who was born during my

studies.

ii

Table of Contents

ADSEIIACE ... e e e e e e er e e e reareneans i

ACKkNOWIEAQEmMENLES ... e e e e e eaaaane ii

Table Of CONENLScoo et iii

(IES] o) B o 111 T SRR vi

LiSt Of TADIES ... e e viii

GIOSSAry Of ACTONYMScooiiiiieeeeieeeeeeeeitieeteetteene i a e nareeeeesseeeseesassesasesssnnnsnnnns iX

Chapter 1 INtrodUCHONcooiieeeeeee e e e e e e e e e s 1

1.1 MOtIVAtION ...t reer e ee e e eeesee e e e e eanes 1

T2 ODJECHIVE ...ttt te e e e s e res e e e e e e e s e e e nnenanes 5

1.3 0rganizationceeeieiieeriiiiicceriirre e e r e e e e e e e 6

Chapter 2 Background and Related WOrkKcccoeiiiicccceieeeeee e 7

D21 =Y 25T o) [[or=] i o] o NN 7

2.1.1 Replication Model ... e e 8

2.1.2 Replica CONSISIENCYcoocmeiiiiiiieiie ettt reee e renaeeree s 11

2.1.3 Replica Managementcccccceiieiiieieenineecreeeeee s s e 15

2.2 Mobile Ad-hoC NetWOIKSc....covciiiriiirieei e 17

2.2.1 Characteristics of MANETSccccciiiiiiveiieeeecee e, 18

2.2.2 Routing Protocols in MANETScccooooiiiiecciiiccc e, 20

2.3 Data Replication in Wireless Mobile Networks..........c.ccceveveereennennn.. 25
2.3.1 Data Repilication in Infrastructure-Based Wireless

Mobile NEtWOTKS..........o et 25

2.3.2 Data Replication in MANETSccccooiiiiiinieecceen e 27

111

2.4 Summaryooeeeveeenecieneene
Chapter 3 Dynamic Replication Algorithms
3.1 Assumptions and Definitions

3.2 The FDRM Algorithm

3.2.1 Replica Allocation in FDRMcoooreciiii e eeees

3.2.2 Interval of Replica Allocation
3.2.3 Details of FDRM
3.3 The ARAM Algorithm

3.3.1 The Cost Model

3.3.2 Replica Allocation in ARAMoooriiiiicceee e

3.3.3 Details of ARAM
3.4 The MFDRM Algorithm
3.4.1 The Cost Model

3.4.2 Replica Allocation in MFDRMooooiiiieeeecccreeeee,

3.4.3 An lllustration of MFDRM

3.5Summaryccceeceeeeinnnnn.

Chapter 4 Performance Evaluation

4.1 Simulation Model
4.1.1 Mobility Model
4.1.2 Energy Model............
4.1.3 Workload Model
4.1.4 Network Model

4.2 Performance Metrics and Factors

4.2.1 Performance Metrics

30
32
32
33
34
35
35
39
40
42
44
45
45
46
47
50
52
52
53
53
54
54
55
55

v

4.2.2 Factors Affect PerformancCe ..o eeeeeeeeeeeeeereraans 56

4.3 Simulation Results and Analysiscccccoeeviiieiiricinecnreeee e, 57

4.3.1 The Effects of Read to Write Ratiocccoeeeoiiiiiiiicciinicnns 58

4.3.2 The Effects of Pause Timec.ccccoiririiiiiicieieceeee e 65

4.3.3 The Effects of Packet Sending Rateccccceeeeiiiiiiiiiicinnnnn. 72

4.3.4 The Effect of Network Sizeccccveeiiiiereeeeeeeee 76

4.4 SUMMANY...cciiiiiieiienrreeneeeeee st iesseeessreeereeeresessssreesassesseseesasssseesesenens 82
Chapter 5 Conclusions and Future Work..........ccoooiiiicee, 86
5.1 CONCIUSIONSeeiiiiiiitiii et s ase e sse e 86

5.2 FULUIE WOTK ...ttt 88
REFERENGCESoooieeieeiee et sere s seeseree e see e e s sesesae s snessne s sennaens 90
APPENDIX A-FDRM ALGORITHM.......ooiiiiiiiiir ettt 97
APPENDIX B - ARAM ALGORITHM.......ooiiiiiceen et 106
APPENDIX C - FDRM ALGORITHM........ouiiiiiiiiriieece e 112

LIST OF FIGURES

Figure1.1 Infrastructure-based wireless networkscccoeeeiiicccciiennccienenn. 2
Figure1.2 Mobile Ad-hoC NEtWOrKS ... 3
Figure 2.1 Master-slave replication modelcciiriiiiccee e 9
Figure 2.2 Client-server replication modelcccooroirii e 10
Figure 2.3 Peer-to-peer replication modelcccooiiiiiiiiiinicceeeeeee, 11
Figure 2.4 A MANET with three mobile nodes ..o 20
Figure 2.5 An AODV route discovery SeSSIONcoeeiveeeeeciiieieiieeeeeeeeeeeeceeeeeens 25
Figure 3.1 States of replica allocation phase in FDRMcccoooiriiiiiiiinnnnne. 39
Figure 3.2 Replica access iN ARAM ... 41
Figure 3.3 An illustration of adding a replica in ARAMccoiiiiiiiieccees 43
Figure 3.4 An illustration of deleting a replica in ARAMccooireriiiccciinnneen. 44
Figure 3.5 Replica placements in MFDRM before allocation 48
Figure 4.1 Effects of read-write ratio on the number of replicas 59
Figure 4.2 Effects of read-write ratio on read response timecccccueeeeennne. 60
Figure 4.3 Effects of read-write ratio on read fail ratio e 60
Figure 4.4 Effects of read-write ratio on write propagation delay 60
Figure 4.5 Effects of read-write ratio on write fail ratioc.cccccceevricnnennneen. 61
Figure 4.6 Effects of read-write ratio on average energy consumption.............. 61
Figure 4.7 Effects of pause time on the number of replicasccccceececureeennnn. 66
Figure 4.8 Effects of pause time on read response timecccccvvvevvuecnneennn. 67
Figure 4.9 Effects of pause time on read fail ratiocccooeveeeiiiiicciieennene. 67
Figure 4.10 Effects of pause time on write propagation delayccccccceeeeenns 67
Figure 4.11 Effects of pause time on write fail ratiocccccimmnineiiiieneennns 68

vi

Figure 4.12 Effects of pause time on average energy consumption.................. 68

Figure 4.13 Effects of packet sending rate on the number of replicas 73
Figure 4.14 Effects of packet sending rate on read response time 73
Figure 4.15 Effects of packet sending rate on read fail ratio...........c...cccceeernnnnee. 73
Figure 4.16 Effects of packet sending on write propagation delay..................... 74
Figure 4.17 Effects of packet sending rate on write fail ratiocccceeennn. 74

Figure 4.18 Effects of packet sending rate on average energy consumption..... 74

Figure 4.19 Effects of network size on the number of replicas............cccuveeenneenee 77
Figure 4.20 Effects of network size on read response timecccccoeveeeeeecnneee 78
Figure 4.21 Effects of network size on read fail ratio..............coeeoviiiireceiinieennenn, 78
Figure 4.22 Effects of network size on write propagation delay......................... 78
Figure 4.23 Effects of network size on write fail ratiocoeoooeeeeeee. 79
Figure 4.24 Effects of network size on average energy consumption................ 79

vii

List of Tables

Table 3-1 Notation iINn FDRM ...ttt rveee e e s sran e 34
Table 3-2 Notation in ARAM ... et ettt 40
Table 3-3 Variables used for adding replicas in ARAM ..o, 42
Table 3-4 Variables used for deleting and switching replicas in ARAMc...... 43
Table 3-5 Notation in MFDRM e e 46
Table 3-6 Data access before replica allocation in MFDRMccoooovveevviiivriciiinennen, 48
Table 3-7 Data access cost in MFDRM after adding replicasccccceeeeeevoicneeennnes 49
Table 4-1 Simulation environment parameters with fixed valuesc.cccevvveevrcceeenne. 58
Table 4-2 Experiment parameters in read-write ratioccccccecniercciiieiinencciiieeeen e 59
Table 4-3 Experiment parameters in pause timeccccoceereiiieericeee e e 66
Table 4-4 Experiment parameters in packet sending ratecccoevvevieveeicciieneenennnnes 72
Table 4-5 Experiment parameters in network Sizeooooeeeviieei e, 77

Table 4-6 Ranking of ARAM, FDRM and MFDRM under different system features ... 85

viil

MANETs
AODV
DSR
DSDV
BS
DFSA
IP

LAN
MAC
NS-2
QcC
ROWA
CBR
PDA
ORMDP
TORA
STRA
TBRPF
ARAM

FDRM

DHTR

Glossary of Acronyms

Mobile ad-hoc networks

Ad-hoc On - Demand Distance Vector
Dynamic Source Routing

Destination - Sequenced Distance Vector

Base Station

Deterministic Finite State Automaton

Internet Protocol

Local Area Networks

Medium Access Control

Network Simulator 2

Quorum Consensus

Read-One-Write-All

Constant Bit Rate

Personal Data Assistant

On-Demand Multicast Routing Protocol

Temporally-Ordered Routing Algorithm

Source-Tree Routing in Wireless Networks

Topology Dissemination Based on Reverse-Path Forwarding
Dynamic Adaptive Replica Allocation Algorithm in MANETSs

Dynamic Distributed Replica Management Mechanism Based On

Accessing Frequency Detecting

Distributed Hash Table Replication

Chapter 1

Introduction

1.1 Motivation

Recent advances in radio communication and computer technologies have led to
an increasing interest in mobile ad-hoc networks (MANETs). MANETSs are, however, far
from maturity and there are tremendous difficulties in making MANETS into real working
systems. Most previous research work in MANETs focused on routing protocols [31],
which allow a mobile node to efficiently discover routes between communication peers.
Although routing is an important and fundamental issue in MANETs, we believe
providing data services is another important goal in MANETs. Unfortunately little
research into providing data services in MANETs has been done. Previous research
work [9] demonstrates that data replication is a feasible solution to provide efficient and
reliable data service in distributed systems. Data replication, however, faces significant

challenges in MANETs because of their lack of an infrastructure and their dynamic

network topologies.

There are basically two different ways to configure mobile wireless networks [2].
They are infrastructure-based mobile wireless networks (Figure 1.1) and ad-hoc based
mobile wireless networks (Figure 1. 2). Infrastructure-based mobile networks are the
most prominent in wireless LAN and global wireless networks. An infrastructure-based
mobile network uses fixed network access points, also known as base stations, with
which mobile nodes interact for communication. For example, a base station forwards

messages that are sent or received by mobile nodes. One limitation of infrastructure-

based mobile wireless networks is that mobile nodes must be in the communication

range of base stations.

Laptop Computer

Figure 1.1 Infrastructure-based wireless networks

Ad-hoc based mobile wireless networks (MANETSs) are autonomous and self-
organizing systems composed of mobile nodes connected by wireless links. Mobile
nodes are free to move and organize themselves without the restriction of any fixed
infrastructure, such as centralized access points or base stations. Each mobile node in
MANETs plays the role of a router and communicates with other mobile nodes. If the
source and destination mobile nodes are not within communication range of each other,

data packets are forwarded to the destination mobile nodes by relaying transmissions

through other mobile nodes that exist between them. Several nodes may cooperate with
each other to carry out a certain task. MANETs are constrained by limited
communication bandwidth, frequent network partitioning, and limited battery lifetime [3].
Despite these limitations, MANETs have two attractive advantages. First, MANETSs can
be deployed quickly because they do not require any fixed infrastructure. Second,
MANETSs are robust in the face of single point failures since all nodes in the network are
equal in status. MANETs are popular in situations such as emergency operations,
disaster relief efforts and battlefields because it is impossible or too expensive to deploy

infrastructure-based wireless networks in these situations.

/§.

\\ Laptop Computer

Figure 1.2 Mobile ad-hoc networks

Benefits of data replication include increased data availability, decreased data
access time, and balanced workload. Replication, which creates redundant information

in a system, also increases system reliability. It allows systems to remain operational in

spite of node and/or link failures. Replication, however, incurs space overhead in nodes
and requires complex algorithms to maintain data consistency. Database systems adopt
replication techniques to minimize query latency [33, 34]. Peer-to-peer file sharing

systems use replication techniques to improve file availability [35].

Trade-offs between consistency, performance and availability in data replication
have been well studied [55, 56 and 57]. Replication algorithms can be categorized as
static or dynamic. Static replication decides the number of replicas and their locations
when data enters the system. This decision does not change during the lifetime of data.
Based on data access patterns and system load, dynamic replication changes the
number of replicas and their locations from time to time. It is believed that dynamic
replication is a feasible solution to alleviate poor network connection and partitioning in

mobile environments.

Two important issues in dynamic replication must be addressed. The first issue is
replica management, which decides when to create or destroy a replica, and where to
place a replica. The second issue is the replica consistency protocol, which decides how
to propagate replica updates. Compared with wired networks, data availability in
MANETs is low. In MANETs, users move from one place to another place while
accessing replicas. Unless replicas move with the user in the form of a cache, they need
to be retransmitted back and forth. Retransmission wastes limited communication
bandwidth and slows down transaction processing. Moreover, retransmission results in
faster consumption of limited battery power. On the other hand, most mobile devices
have limited memory and battery so it is impossible to replicate all data on mobile
devices. In order to achieve better data access performance and data availability in

MANETS, efficient and reliable replication algorithms are important. The performance of

mobile networks is sensitive to the distribution of data among mobile nodes. Reads are
usually sent to one node or a set of nodes. It is critical that data is close to nodes that
require more reads. On the other hand, writes are usually done on all replicas or a
majority of replicas. This requires replicas to be close to each other [58]. In MANETS,
replication algorithms need to dynamically adjust to deal with the dynamic network
topology. Maintaining replica consistency in MANETS is extremely difficult. The lack of a
central control and frequent network partitioning make it difficult to propagate replica
updates. It should be noted that creating more replicas improves overall data availability.

More replicas, however, make replica consistency more difficult to maintain.

1.2 Objectives

In this thesis, we study dynamic replication algorithms for MANETs. We
investigate three questions in dynamic replication: (1) When and where replicas need to
be created? (2) When and which replicas need to be destroyed? (3) How to maintain
replica consistency? We use simulation to evaluate dynamic replication algorithms,
FDRM [7] and ARAM [8], along with our extension of them and a static replication
algorithm. FDRM, proposed for wired networks, is a decentralized dynamic replication
algorithm with an interesting access frequency detecting mechanism. ARAM is a
dynamic replication algorithm in MANETSs. In ARAM, mobile nodes dynamically adjust
the replica set based on workload and hop distance. MFDRM, our extension of ARAM
and FDRM, uses the access frequency detecting mechanism in FDRM and dynamically
adjusts the replica set based on workload and hop distance. A major difference between
ARAM and MFDRM is that a replica node in ARAM only expands replicas to its
neighboring non-replica nodes that read from it, while a replica node in MFDRM expands

replicas to non-replica nodes that read from it.

While we acknowledge that most dynamic replication algorithms are not designed
for MANETS, studying their behavior in various scenarios yields insights into the design
of replication algorithms for MANETS. This thesis makes the following contributions:

= Study and evaluate dynamic replication algorithms in MANETs in terms of
availability, consistency, performance and energy consumption.

= Based on FDRM and ARAM, we provide an extension, MFDRM, which uses the
access frequency detecting mechanism in FDRM and adopts a mechanism of
adjusting replica sets dynamically based on workload and hop distance.

= Provide suggestions and guidelines for the design of replication systems in

MANETSs.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 presents an overview
of MANETs and data replication. We also introduce previous work on replication
algorithms in MANETs. Chapter 3 presents the details of the dynamic replication
algorithms FDRM [7] and ARAM [8]. We also discuss MFDRM, which is our extension of
ARAM and FDRM. Chapter 4 presents a comprehensive simulation model. We evaluate
and analyze the algorithms discussed in Chapter 3 along with a static replication

algorithm under different scenarios. Finally, Chapter 5 presents conclusions and future

work.

Chapter 2

Background and Related Work

In this chapter, background information about data replication and MANETS are
provided in Section 2.1 and Section 2.2. Related work including previous work of data

replication algorithms in wireless networks is discussed in Section 2.3.

2.1 Data Replication

In distributed systems, a data object is often accessed from muiltiple locations so
it is beneficial to replicate data objects through out a network. The benefits of data

replication [9] are as follows:
. Increased data availability

The existence of multiple replicas improves data availability and reliability in the

face of network failures.
. Faster query response

Queries initiated from nodes where replicas are stored can be satisfied directly

without incurring network transmission delays from remote nodes.
J Load sharing

The computational load of responding to queries can be distributed among a

number of nodes rather than centralized at a single node.

Achieving these benefits, however, incurs additional cost and complexity in systems. For

example, maintaining replica consistency causes severe scalability problems and

increases communication costs.

One important aspect in data replication is mutual consistency, that is, all replicas
must agree on exactly one current value. When communication fails between nodes
containing replicas of the same data, maintaining mutual consistency between replicas
becomes extremely complicated. The most disruptive of these communication failures
are partition failures, which separate the network into isolated sub-networks called
partitions. In general, data replication is an effective way to improve data access
performance and data availability where network connectivity is not reliable, and network

partitioning may happen at any time. Replication, therefore, provides a way to support

data services in MANETS.

2.1.1 Replication Models

A replication model refers to the relationship between replicas. There are three basic
replication models [60, 61]: (1) master-slave, (2) client-server and (3) peer-to-peer. The
master-slave model (Figure 2.1) assigns one replica as master while other replicas are
slaves. The advantage of this model is simplicity. It, however, offers limited functionality,
such as slaves are essentially read-only. Replica updates are performed only at the

master and slaves synchronize directly with the master.

Master

Replica update Replica update
Replica update

Slave

Slave s

Figure 2.1 Master-slave replication model

The client-server model (Figure 2.2) designates one server to serve multiple clients.
The functionality of a client is greatly improved and multiple inter-communicating servers
are permitted. Replica updates can be performed at a client. The client-server model has
been successfully implemented in replication systems such as Coda [36]. The major
drawback of the client-server model is that clients can only communicate with one of the
servers. They cannot directly synchronize with each other. This limits their functionality
when clients are mobile. For example, two clients in a room cannot exchange updates
directly. Both of them must communicate with remote servers. Although multiple servers
make client-server models more scalable and robust in the presence of single server

failure, the absence of direct communication between clients limits the advantages of

data replication.

Server Server

Replica update Replica update Replica update

Replica update

Figure 2.2 Client-server replication model

The peer-to-peer model (Figure 2.3) removes the restrictions in the client-server model.
All replicas are equal and replica updates are allowed among all replicas. Replica
updates can be propagated to all peers without the requirement that all peers are
connected at the same instant. The single point of failure is naturally eliminated. The
peer-to-peer model is quite useful in mobile systems that have poor network connectivity.
It has been implemented in systems such as Bayou [37], Ficus [38] and Rumor [39]. The
peer-to-peer model, however, has poor scalability because each node must store all
replica information. Such an approach consumes a large amount of space at each node

and additional communication costs are needed to synchronize all replica information.

10

Peer

Replica update Replica update

Replica update

Peer

Figure 2.3 Peer-to-peer replication model

2.1.2 Replica Consistency

A major issue in data replication is how to maintain replica consistency among all
replicas. From a replica consistency point of view, replication techniques can be

classified into two categories: pessimistic replication and optimistic replication [59].

Pessimistic replication keeps replica consistency all the time through various
consistency protocols. Pessimistic replication always makes worst case assumptions
and prevents update conflicts before they occur. If one replica fails, all replica updates
failed. As the number of data replicas increases, the probability of one replica failure
increases and the data availability thus decreases. Pessimistic replication is used in

banking applications that must avoid giving a wrong answer.

Various pessimistic replica consistency protocols have been proposed in

distributed systems [9]. Read-One-Write-All (ROWA), the most popular replica

11

consistency protocol, states that all copies must be updated and any one copy can be
read. The advantage of this method is its simplicity and its ability to process read
operations in spite of node or communication link failures as long as at least one node

remains up and reachable.

Read-One-Write-All-Available (ROWA - A) [9] is a modified ROWA approach. In
this method, a transaction is no longer required to ensure updates on all copies of a data
item, but only on all available copies. This method avoids the delay incurred by an
update transaction when some nodes fail. For this protocol to work properly, failed nodes
are not allowed to become available again until they recover by copying the current value
of a data item from an available copy. ROWA - A can tolerate n -7 node failures, but it

does not tolerate network partitioning.

Another interesting variant of ROWA is called Primary Copy ROWA [9]. In this
method, a specific copy of a data item is designated as the primary copy and the
remaining copies are backup copies. A replica update is carried out at the primary copy
which forwards the update to all operational backups while reads are satisfied from either
primary copy or backup copies. A transaction that updates a replica is allowed to commit
only after the primary copy and all operational backup copies have successfully recorded
the update operation. When the primary copy fails, a backup copy is chosen through an
election protocol to take its responsibility as the new primary. This requires that failure of
the primary site is detectable and distinguishable from failure to communicate with it.

However, such a distinction is theoretically impossible [40, 41].

The ROWA family of protocols implicitly favors read operations by allowing a read

to proceed with only one copy, while requiring write operations to be carried out at all up

12

nodes. This latter condition also means that ROWA algorithms can not permit write
operations to succeed when it is not possible to communicate with an up node because
of network failures. These drawbacks gave rise to the quorum consensus (QC) approach
[9]. QC methods, often termed voting methods, allow writes to be recorded at only a
subset (a write quorum) of the up nodes, so long as reads are made to a subset (a read
quorum) that is guaranteed to overlap the write quorum. This quorum intersection
requirement ensures that every read operation returns the most recently written value.
Different QC methods adopt different styles for specifying quorum membership.
Quorums can be static as they are specified by votes that are assigned once and for all
at system startup time. Quorums also can be dynamic when the nodes are capable of

reconfiguring the quorum specification.

In the uniform majority QC method [9], the distributed system is modeled as a group
of sites that vote on the acceptability of read or write requests. A read operation or a
write operation succeeds if and only if a majority of the sites approve its execution. Not
all sites that vote for an operation need to carry it out on their local copies. In particular, a
read operation needs to be executed at only one current copy while a write operation
must be executed at a majority of the copies. The majority requirement ensures that
there is an intersection between the read and write operations. This method is resilient to
both site and network failures, but it has high read and write costs. At least half of n sites
must participate, via voting, in every data access. This method works on the presumption
that a network failure partitions the sites into two groups - a majority partition and non-

majority partition. Repeated failures may, however, split the system into many groups of

sites, with none of the groups forming a majority.

13

The weighted majority QC method [10] generalizes the notion of uniform voting.
Instead of assigning a single vote per site, each copy of a data item dis assigned a non-
negative weight (a certain number of votes) whose sum over all copies is v. The data
item ditself is assigned a read threshold, denoted by r, and a write threshold, denoted by
w,suchthat: r+w>uandw>u/2. A read (or write) quorum of dis any set of copies
with a weight equal to at least r (or w). This constraint of read and write thresholds
provides greater flexibility in vote assignment while ensuring mutual consistency of the
copies just as in majority consensus. A versioning mechanism determines the currency
of the copies. Because of the need to poll multiple sites before every read operation,
workloads with a high proportion of reads do not perform well under this method. The
quorum consensus algorithm does not require a complicated recovery protocol. A copy
of the data item d that is down and therefore misses some writes does not have the
largest version number in any read or write quorum of which it is a member. Upon
recovery, it cannot be read until it has been updated at least once. Transactions continue
to ignore stale copies until they are brought up-to-date. The algorithm is flexible. By
altering 7, w, and the weight assignment to the copies of each data item in replication
systems, the performance characteristics and the availability of the protocol can be

altered.

Optimistic replication allows inconsistency among replicas in a controlled way
[59]. They propagate updates in the background and allow any read or write operation to
be performed on a replica as long as any one of the replicas is accessible. In general,
optimistic replication assumes that concurrent updates and conflicts are rare and most
conflicts can be resolved transparently without user involvement. Optimistic replication
greatly improves data availability at the expense of increasing the risk of serving stale

data.

14

2.1.3 Replica Management

Replica management algorithms, which decide the humber of replicas and their
locations, affect the performance of distributed systems [64]. For example, reading from
a local cache is faster than reading from a remote node. In general, for read-intensive
data a widely distributed replica management algorithm is preferred since it increases
the number of local reads and balances workload among replica nodes. On the other
hand, a replica update is usually written to all replicas or a majority of all replicas. For

write-intensive data, a narrowly distributed replication algorithm is therefore preferred.

There are two kinds of replica management algorithms: static replica
management algorithms and dynamic replica management algorithms. A static replica
management algorithm decides the number of replicas and their locations when a data
object enters the system and this decision does not change during the lifetime of the
data object. The decision is usually based on access patterns. The static approach
performs well if access patterns are known and fixed, but this is not always possible

especially in a large scale distributed system environment.

A dynamic replica management algorithm makes its decision when a data object
is created and changes the number of replicas and/or their locations during the lifetime of
a data object. Dynamic replica management algorithms can be classified into two types:
centralized algorithms and distributed algorithms. A centralized algorithm has a global
view of the access patterns of all replicas and makes its decision based on the
information that is gathered through a central point. The benefit of a centralized algorithm

is its simplicity. A centralized algorithm, however, is likely to become a bottleneck for a

15

large distributed system. In a distributed algorithm, a node makes its decision to add or

delete replicas based on its local information and need not know about replicas on other

nodes.

Distributed algorithms have two advantages over centralized ones. First, they
respond to changes in the read-write pattern in a timelier manner because they avoid the
delay involved in the collection of statistics and computation. Second, their overhead is
lower because they eliminate extra message exchanges required in centralized
algorithms. A distributed algorithm, therefore, is more likely to be implemented in large
systems since it does not require any centralized point. However, coordination is
required among different decision-making nodes in order to agree on a replication
decision. In general, a distributed solution that requires limited coordination among all

decision-making nodes is preferred since it produces less overhead on the system.

Acharya and Zdonik [13] present an efficient dynamic replication system. The aim of
their scheme is to optimize message traffic by intelligent data placement. Each node
maintains a deterministic finite state automaton for every neighbor node to record each
neighbor’s access pattern for each file. It uses a finite automaton-based technique to
learn access patterns. This acquired information is then used to predict future access
sequences and dynamically reorder replicas or delete replicas. The algorithm is adaptive
and distributed in nature. It continuously adjusts the replication scheme and adapts to
changes in access patterns. Each node decides to add or delete a replica based on its
local information such as statistics about reads and writes. This algorithm adapts well to
the system and has good performance, but it is complicated to construct the

deterministic finite state automaton and it needs to maintain a large amount of

16

information for both replicas and neighbors. The computational complexity increases

dramatically when the system scale increases.

Giacomo [12] has another interesting solution for dynamic replication, in which a
node scans its replicas periodically. When it finds the read-write ratio of a replica reaches
a centain level, it invokes the dynamic replication algorithm to add or delete replicas. The
solution only involves replica nodes and is easy to implement. Simulation results,
however, demonstrate that the system performance is sensitive to the scanning
periodicity. If the file is not accessed frequently, keeping a small scanning period is
wasteful and leads to an unnecessary load on the node. If the file is intensively accessed,

a large scanning period may not respond to change in a timely manner.

Bartal [11] presents another algorithm for dynamic replication. Each node maintains
a counter Cfor each file it accesses. The value of C goes up with a read of the file. When
C reaches a certain value D, the node adds a new replica to the scheme. The counter C
also goes down with a write of the file. When the counter drops to zero, the node deletes
its replica. Bartal's algorithm is simple to realize, but it is difficult to determine a proper
value for D, and all hodes accessing a file have to maintain a counter of the file whether

the node has the replica or not. This obviously enlarges the range of managed nodes.

2.2 Mobile ad-hoc networks

The popularity of mobile devices along with the presence of ad-hoc networks has
contributed to recent advances in the field of mobile computing in ad-hoc networks [63].
MANETSs consist of mobile nodes, which form a temporary network without the aid of an

established infrastructure or centralized administration. MANETs can be employed in

17

areas such as emergency rescue sites, combat fields, etc. Each mobile node in a
MANET acts as a node and as a router. Mobile nodes can forward packets on behalf of
each other. If a source node cannot send a packet directly to a destination node due to
limited transmission range, the source node sends packets to intermediate nodes, which
forward packets toward the destination node. According to Johnson [44], a MANET is
defined as follows:

“An ad-hoc network is a collection of wireless mobile hosts forming a temporary
network without the aid of any cenltralized administration or standard support service

regularly available on the wide-area network to which the hosts may normally be

connected.”

2.2.1 Characteristics of MANETSs

The characteristics of MANETSs are summarized as follows:

1. Dynamic Network Topology
Most nodes in an ad-hoc network are wireless mobile devices. They move, join and
leave the network freely. Ad-hoc networks can be formed wherever mobile nodes are
located since they do not require a physical infrastructure. They can also assemble
and disassemble on demand. This feature makes the network topology change
unpredictably. There are many reasons that cause the network topology to change.
For instance, each node in an ad-hoc network can arbitrarily decide to join or leave
the network. A node may also be disconnected from the network when it accidentally
moves out of wireless transmission range, runs out of power, or gets unexpected
transmission inference. Even though the network topology varies, connectivity in the
network should be maintained to allow applications and services to operate without

disruption. This characteristic affects the design of routing protocols.

18

2. Bandwidth and energy constraints
Wireless links have limited bandwidth. Moreover, since wireless links have lower
capacity than wired links, traffic congestion is typical rather than exceptional.
Besides, the throughput of wireless communications in real environments is often
much less than a radio’s maximum transmission rate because of the effects of
multiple access, fading, noise, and interference conditions [45]. Ad-hoc network
applications must minimize various network overheads. Most nodes in ad-hoc
networks are battery powered [22]. Battery life is limited; therefore protocols and
applications need to be energy efficient. Energy conservation is considered a key
system design criterion.

3. Constrained Network Security
MANETSs are vulnerable to attack and there is an increased possibility of spoofing
and denial-of-service attacks.

4. No fixed network infrastructure
MANETs were initiated as a means of communicating in the battlefield where
network infrastructure is not always available or an infrastructure can be easily
interfered with by an enemy. One important goal of ad-hoc networks is not to rely on
any form of infrastructure for support in routing, network management and data
transmission. All nodes are equipped with packet forwarding capabilities. Each node
in ad-hoc networks can communicate with its peer directly in a single hop, or in
multiple hops, without using any existing infrastructure. These features significantly
reduce the cost of deploying, maintaining and administering the network.

5. Decentralized Network Control
MANETSs are very robust in the face of single-point failures since all nodes in the

network are equal in status.

19

2.2.2 Routing Protocols in MANETSs

In MANETS, two nodes may not be able to communicate directly with each other
because they are out of radio transmission range. In Figure 2.4, node Cis not within the
transmission range of node A and node A is not within the transmission range of node C.
If node A and C want to communicate with each other, they must ask node B to forward
packets for them because node B is within the transmission ranges of both nodes A and
C. In a real ad-hoc network, routing problems are more complex than this example,

because any or all nodes associated with the network may move at any moment.

Figure 2.4 A MANET with three mobile nodes

Many routing protocols in MANETSs derive from the distance vector or link state
algorithms [21]. In distance vector routing, each router maintains a table containing the
distance from itself to possible destinations. Each router periodically transmits this table
information to its neighbor routers, and updates its own table by using the values

received from its neighbors. Based on the comparison of the distances obtained from its

20

neighbors for each destination, a router can decide the next hop which gives the shortest
path from itself to the destination. When the routing table is frequently updated, the
algorithm speeds up the convergence to the correct path. However, the overhead in CPU

time and network bandwidth for flooding routing updates also increases.

In link state routing, each router has a complete view of the whole network
topology. Each router checks the cost of the link to each of its neighbor routers and
periodically floods updated information to other routers in the network. After each router
receives this update of the cost of each link in the network, it calculates the shortest path
to each possible destination. When a router needs to forward a packet to a destination, it
transmits the packet to the next hop router based on the best path to the destination
acquired from the updated information. Link state routing protocols show faster
convergence to the correct network view when the network is dynamic. However,
compared to the distance vector routing protocol, a link state routing protocol requires
more CPU time for computing the complete shortest route to each possible destination,
and more network bandwidth for broadcasting the routing updates from each router to all

other routers in the whole network.

Routing protocols in MANETs can be also classified into reactive routing
protocols and proactive routing protocols [49]. Reactive routing protocols do not initiate
route discovery until it is needed. In other words, route discovery is totally on-demand.
Examples of reactive routing protocols for ad-hoc networks include Ad-hoc On- Demand
Distance Vector (AODV) [48], Dynamic Source Routing (DSR) [50], On-Demand
Multicast Routing Protocol (ODMRP) [51] and Temporally-Ordered Routing Algorithm
(TORA) [52]. On the other hand, proactive routing protocols are based on the periodic

exchange of network topology knowledge. The proactive protocols provide a needed

21

route instantly at the expense of bandwidth because of transmitting periodic updates of
topology. Examples of proactive routing protocols include Destination-Sequenced
Distance Vector (DSDV) [46], Source-Tree Routing (STAR) [53] and Topology

Dissemination Based on Reverse-Path Forwarding (TBRPF) [54].

Perkins and Bhagwat [46] devised a Destination-Sequenced Distance Vector
(DSDV) protocol in MANETS. It is based on the famous Bellman-Ford routing algorithm.
DSDV also has the features of a distance-vector protocol since each node holds a
routing table including the next hop information for each possible destination. A
performance study on DSDV [48] shows that it is able to deliver virtually all data packets
when each node moves with relatively low speed. However, as the mobility of each node

increases, the speed at which the system converges to the correct path decreases.

The Dynamic Source Routing (DSR) [50] protocol is based on source routing,
which means the source of a packet determines the complete route from itself to the
destination. All intermediate nodes along the route simply forward the packet to the next
hop indicated in this predetermined route. No routing decision is made at intermediate
nodes. The advantage of source routing is that intermediate nodes do not need to
maintain up-to-date routing information in order to route packets because the packets
already contain all routing decisions. The obvious disadvantage is that data packets

must carry predetermined routes.

DSR consists of two major operations: route discovery and route maintenance.
Each node maintains a cache of routes it has learned so far, called the route cache.
When a node attempts to send a data packet to a destination, it first checks its route

cache to determine whether it already has a route to the destination. If an unexpired

22

route to the destination is found, the node uses this route to send the packet. Otherwise,
the node initiates a route discovery operation to discover a route. Route discovery works
by broadcasting Route_Request packets. A Route Request contains the address of the
destination as well as a Route_Record that records the nodes that the request has
passed by. Each node receiving a Route Request checks whether it knows a route to
the destination, i.e. the desired route is contained in its route cache, or it is itself the
destination. In both cases, the complete route from the initiator to the destination is
found. A Route Reply packet, which includes the route, is forwarded to the initiator.
Otherwise, the node appends its own address to the Route Record of the route request

and re-broadcasts the route request to its neighbors.

Route maintenance in DSR is invoked when a route is broken. Routes may
become invalid due to node movement. To quickly adapt to this change, each node
constantly monitors its links. If a node in a route finds out that it cannot forward packets
to the next node in the route, it immediately sends a Route_ Error packet to the source of
the route. Therefore, the source is able to quickly detect an invalid route and stop using
it. The source removes any route using this link from its cache. A new route discovery

process must be initiated by the source if this route is still needed.

Ad-hoc On-demand Distance Vector (AODV) [47] is a reactive protocol which
combines both DSR and DSDV characteristics. It adopts the route discovery and route
maintenance mechanisms in DSR. It also uses mechanisms in DSDV, such as hop-by-
hop routing, sequence numbers and beacons. AODV does not maintain any routing
information nor transmit any periodic advertisement packets for exchanging routing
tables. Route Discovery is performed only when a new route is desired. In other words,

only when two nodes need to communicate with each other will they exchange routing

23

packets to maintain connectivity between them. AODV also depends upon dynamically

establishing route table entries at intermediate nodes.

AODV also consists of two procedures: route discovery and route maintenance.
The route discovery process occurs when a source node wishes to transmit traffic to a
destination node to which it has no route. The source node generates a route request
(RREQ) message that is flooded in a limited way to other nodes. A route is considered
found when the RREQ message reaches either the destination itself, or an intermediate
node with a valid route entry for the destination. A route reply (RREP) message is
unicasted back to the originator of a RREQ. The reason one can unicast the message
back, is that every route forwarding a RREQ caches a route back to the originator. As
long as a route exists between two endpoints, AODV remains passive. When the route

becomes invalid or lost, AODV will again issue a route request.

In AODV, route maintenance is designed to deal with the problem of frequent
broken links and route failures. In order to monitor the link status of next hops in active
routes, a node periodically broadcasts HELLO messages to its direct neighbors to
determine whether the neighbors are alive. When a link breakage in an active route is
detected, a route error (RERR) message is used to notify other nodes of the loss of the
link. In order to enable this reporting mechanism, each node keeps a list, containing the
IP address for each of its neighbors that are likely to use it as a next hop towards each

destination.

Figure 2.5 illustrates an AODV route lookup session. Node A wishes to initiate traffic to
node H, to which A has no route. Node A broadcasts a RREQ, which is flooded to all

nodes in the network. When this request is forwarded from D from H, H generates a

24

RREP. This RREP is then unicasted back to A using the cached entries in node D.

Figure 2.5 An AODV route discovery session

2.3 Data replication in wireless mobile networks

2.3.1 Data replication on infrastructure-based wireless mobile networks

Recent advances in hardware technologies such as portable computers and
wireless communication networks have led to the emergence of mobile computing
systems. Data replication is an important technique that reduces contention on the
narrow bandwidth wireless channel. Replication in mobile wireless networks, however, is
severely affected by disconnection and nodal mobility. Barbara [14] points out that even
though the number of replicas in mobile networks can be large, the key issue is how to
manage replicas that can be updated. Several strategies [16, 17, 18 and 19] have been
proposed for replication or caching in traditional infrastructure-based wireless mobile

networks. Most of these strategies assume that mobile nodes access data at a base

25

station and replicate or cache data on mobile nodes. These strategies focus on reducing
the one hop wireless communication cost induced by keeping data consistency between

base station and mobile nodes.

It is important that mobile nodes access data in a way that minimizes
communication because of limited wireless bandwidth. This can be achieved in a one-
copy or two-copy replica allocation scheme [62]. In a one-copy scheme only the base
station stores data whereas in a two-copy scheme both the base station and the mobile
nodes store data. For example, if reads from a mobile node x to a data item n, located at
the base station, are frequent while updates from the base station are infrequent, then it
is beneficial to allocate a replica of n to x. This way reads from x access its local replica,
and do not require additional communication. The infrequent updates are transmitted
from the base station to x. In contrast, if reads from x are infrequent compared to writes
from the base station, then n should not be allocated to x and reads should be sent to the

base station.

Sistla, Wolfson and Huang [20] propose a family of dynamic data replication
methods in infrastructure-based mobile networks. Based on the read-write ratio, these
methods select different allocation schemes. If reads are more frequent, the two-copy
scheme is selected. Otherwise, the one-copy scheme is adopted. Based on a sliding
window of & requests, their methods allocate or de-allocate data items to mobile nodes.
For the latest A requests, if the number of reads is higher than the number of writes and
the mobile computer does not have a copy, then a copy is allocated to the mobile
computer. If the number of writes is higher than the number of reads and the mobile

computer does have a copy, then the copy is de-allocated. Thus, the allocation scheme

26

is dynamically adjusted according to the relative frequencies of reads and writes.

Algorithms in this family differ on the size of the window.

2.3.2 Data replication in MANETSs

Little research work has been done to provide data replication in MANETS.
Existing solutions for data replication in traditional one-hop wireless networks is not
applicable to MANETs. These solutions are not designed for dynamic networks. The high
possibility of network partitioning in MANETs means that some nodes may not be able to
communicate updates to other nodes or may not be able to retrieve the latest information

on queries.

Hara [4] proposes three replication methods that take into account data access
frequencies and network topology. The goal of these algorithms is to improve data
accessibility in MANETSs. The author assumes replicas are relocated in a specific period,
called the relocation period. Replica allocation is determined based on the access
frequency from each mobile node to each data item and the network topology. The
author makes two major assumptions. First, data items cannot be updated. Second, the
access freguencies to data items from each mobile host are known and do not change.
The algorithm is periodically executed to cope with the dynamically changing network

topology. The three methods proposed in [4] are described as follows:

e Static Access Frequency Method (SAF)

Only the access frequency to each data item is taken into account. Each

mobile node allocates replicas in descending order of the access frequency.

¢ Dynamic Access Frequency and Neighborhood Method (DAFN)

27

Both the access frequency to each data item and the neighborhood among
mobile hosts are taken into account. Replicas are initially allocated based on
the SAF method, and then replica duplication is eliminated among
neighboring mobile nodes
¢ Dynamic Connectivity Based Grouping (DCG) method

The access frequency to each data item and the whole network topology are
taken into account. An algorithm is executed to find bi-connected components
in the network. Bi-connected components form a stable group. In each
component, the cache spaces of all nodes are treated as a big cache.

Replicas are allocated into the big cache according to the access frequency.

Simulation results show that in most cases, the DCG method gives the highest

accessibility and the SAF method generates the lowest traffic.

Hara [5] extends the three methods to £-SAF, E-DAFN and E-DCG by allowing
periodic updates to data items. Although reducing the degradation of data accessibility
to some extent, both scheme DCG and scheme E-DCG have a major drawback in that
they require all data nodes to broadcast their information to other nodes which causes
a significant amount of network traffic. This situation is more severe in MANETSs

because of limited network bandwidth.

Huang and Chen [23] explore data replication in MANETSs with group mobility. In
reality, the moving behavior of mobile nodes is usually regular and follows some mobility
patterns [24, 25]. Group mobility usually occurs in collaborative works. For example, a
group of visitors visiting an art gallery with the same guide usually have similar

movement behavior. The underlying group mobility model is assumed to be the

28

Reference Point Group Mobility model (RPGM) [26]. To avoid blind flooding [27], their
scheme takes a bottom-up approach without requiring global network connectivity. Each
mobile node first exchanges its motion behavior with its neighbors. The coverage of the
information exchange is limited by a predetermined parameter. A decentralized
clustering algorithm is proposed to cluster mobile nodes with similar motion behavior into
mobility groups. Finally, data items are replicated according to the resulting allocation
units. Moreover, the scheme maintains the mobility groups in an adaptive manner, which

minimizes the humber of information broadcasts.

Karumanchi [28] proposes a variation of the quorum-based approach to support
data replication in MANETS, with the assumption that there are many designated servers
throughout the network. These predefined servers are divided into a number of quorums.
Each quorum has at least one server in common. Updates are sent from a node to a
quorum of servers and a mobile node queries a data item from a quorum of servers to
get the most up-to-date data. The reaching ability of these predefined servers changes
when the network topology changes. Therefore some queries may fail. Their work
developed heuristics for clients to select servers with the highest likelihood of being

accessible in order to maximize the chance of successful replica query.

Wang and Li [6] propose an algorithm to predict network partitioning and allocate
replicas before the network partitioning happens to ensure replica availability. Their
approach ensures replica availability to clients by dynamically creating and placing
servers based on the changing network topology. The solution utilizes observed node
mobility patterns to predict the occurrence of partitioning, and takes necessary actions in
advance to efficiently provide continuous service availability when the network

partitioning happens. On the servers, the authors also present a simple sequential

29

clustering algorithm that can identify correlated mobility patterns, which are used to
predict the time and location of network partitioning. On the clients, a fully distributed
grouping algorithm is proposed. The grouping algorithm discovers mobility group

membership based on the stability with respect to distances of neighboring nodes.

Ratner [42] proposes an optimistic replication system called ROAM. Mobile
nodes in ROAM close to each other are grouped into domains. One of the mobile nodes
inside the domain is chosen as a master node. The master node is in charge of
communication with other domains. All master nodes form an adaptive ring and update
operations are propagated epidemically along this ring to each domain. Yu, Martin and
Hassanein [43] propose a novel optimistic replication scheme, called Distributed Hash
Table Replication (DHTR). DHTR organizes all mobile nodes into non-overlapping
clusters and builds a two-level distributed replica information directory on cluster heads
to facilitate the propagation of query and update messages. DHTR also employs
distributed hash table techniques to speed up the directory lookup process. Although
both seek to improve the performance of replica updates, their studies do not address
availability and the effects of changing the number of replicas. In addition, construction
and maintaining an adaptive ring or a distributed hash table which has a tree structure in

MANET impose a lot of load on the network.

2.4 Summary

This chapter provides background information about data replication and the
basic characteristics of MANETs. Previous research on data replication in wireless
networks is also addressed. Section 2.1 gives an overview of data replication in
distributed systems. Replication models, such as the master-slave replication model,

client-server replication model and peer-to-peer replication model, are discussed.

30

Replication consistency protocols, such as Read-One-Write-All and Quorum Consensus
protocols are introduced in detail. Previous research on replica management algorithms
are addressed as well. Section 2.2 gives a brief overview of MANETs. The
characteristics of MANETSs are illustrated and different routing protocols, such as DSDV,
AODV and DSR are introduced. Section 2.3 presents previous research work in the field

of data replication on infrastructure-based wireless networks and MANETS.

Only a few replication algorithms have been proposed for MANETS, to the best of
our knowledge and no work has been done to define the guidelines of replication in
MANETs. Most existing replication algorithms in MANETs emphasize data availability
issues while neglecting performance issues. Moreover, many of these algorithms
assume that data are read-only. This obviously limits the functionality of replication
systems. In the next chapter, we discuss dynamic replication algorithms, namely FDRM
and ARAM, and MFDRM, which is our extension of FDRM and ARAM. The aim of these
algorithms is to improve data access performance and to enhance data availability and

consistency.

31

Chapter 3

Dynamic Replication Algorithms

In this chapter, we discuss dynamic replication algorithms, namely FDRM [7]
(dynamic distributed replica management mechanism based on accessing frequency
detecting), ARAM [8] (dynamic adaptive replica allocation algorithm in MANETSs) and
MFDRM which is our extension of FDRM and ARAM. FDRM is a dynamic replication
algorithm with an access frequency detection feature. Each replica node in FDRM
scans its local replica to detect its access frequency and make a decision to add
another replica and/or delete the current replica. In addition, the scanning interval of a
replica is variable according to the access frequency. ARAM is another dynamic
replication algorithm proposed for MANETs. Each replica node in ARAM collects
access requests from other nodes and makes decisions on whether to add replicas to
neighboring nodes and/or delete its local replicas. MFDRM is our extension of FDRM
and ARAM. MFDRM uses the access frequency detecting technique in FDRM. Based
on the workload and the hop distance of each data access, each replica node makes
the decision locally to add, and/or delete replicas. Section 3.1 outlines our assumptions
and definitions for the three algorithms. Section 3.2 and section 3.3 discusses the
details of FDRM and ARAM. Section 3.4 discusses the details of our extension,
MFDRM. Section 3.5 presents our summary of dynamic replication algorithms on

MANETSs.

3.1 Assumptions and Definitions

FDRM, ARAM and MFDRM use the ROWA (Read-One-Write-All) protocol to

maintain replica consistency. Reads are satisfied from the local cache or from the closest

32

replica node, while writes are propagated to all replica nodes. The read-write pattern
during a time period is predictable based on the read-write pattern in the immediately
preceding time period. The shortest hop distance between any two mobile nodes is
available. Replica accesses are independent and the cost of multiple accesses is the
sum of each individual accesses. Each mobile node has enough power to send and
receive packets.

All algorithms work in two phases, namely a data access phase and a replica
allocation phase. In the data access phase, each node performs reads and writes based
on its local view of replicas. In the replica allocation phase, a node adds and/or deletes

replicas.

3.2 The FDRM Algorithm

FDRM is a decentralized, dynamic replication algorithm for wired networks with the
goals of reducing network traffic and improving system performance. Each replica node
scans the local replica access information and makes decisions independently to add,
and/or delete a replica in a periodic manner. The scan interval of each replica varies
according to the access frequency of that replica. Table 3-1 lists the definitions of

variables that a replica node k maintains.

33

Notation | Definition

R the number of reads from a replica node k itself during a time interval 7,

Rou j the number of reads from a non-replica node to node k (j # k) during a time
interval 7,

Wou the number of updates from other nodes during a time interval 7, for a replica
node k

Wi the number of writes from replica node Kk itself during a time interval 7,

a system cost of reading a replica

B system cost of updating a replica

F the set of replica nodes in the system

74 the set of all nodes in the system

T, the time duration of the nth replica allocation interval

A, the number of data accesses during the time interval T, for a replica node &

Table 3-1 Notation in FDRM

3.2.1 Replica allocation in FDRM

When a replica is added to a non-replica node j(je V , j¢ F'), the reads from node /
can be satisfied from its local cache therefore the overall read cost decreases. On the
other hand, writes must update the replica at node ;j therefore the overall write cost
increases. The criterion for a replica node 4 to add a new replica to another non-replica
node j is that the overall read cost decrement is greater than the overall write cost

increment. The condition of replica addition in a replica node k (k € F')is expressed as

in (3.1). FDRM assumes « = £ in a real system and the local read and write costs are
zero.

Rout,j a > (Wout Win)ﬂ = Rout,j > (Wou+ Win) (3.1)

34

If a replica node k deletes a replica from itself, the reads from node & must be
satisfied from another replica node m, therefore the overall read cost increases. On the
other hand, writes do not need update the replica at node k therefore the overall write
cost decreases. The criterion for replica node A to delete its replica is that the overall
read cost increment is less than the overall write cost decrement. The condition of replica

deletion in a replica node 4 (k € F) is expressed in (3.2)

Rina < Woutﬂ = Rin < Wou (3.2)

3.2.2 Interval of replica allocation

A replica node decides whether to add and/or delete a replica after a period of time
7. The length of T is important to the system’s performance. FDRM uses a varied
interval, which is sensitive to the frequency of replica access. The interval becomes
shorter when the access frequency increases and longer when the access frequency
decreases. Different nodes in the system may thus have different replica allocation
frequencies. We assume that there is a sequence of intervals 7, ..., 7,for a replica. The
unit of 7;is seconds. A;denotes the number of accesses during the time period 7 If the

current time interval is 7, the next time interval 7,.,can be calculated as in (3.3)

Tn+1= T;?) A:—%"“ (3.3)
7,

3.2.3 Details of FDRM

Appendix A shows the details and pseudo code of FDRM. The current number of
replicas in the system, denoted |F|, must be within a certain range. If it is too small or

shrinks to zero, the availability of data cannot be guaranteed. If it is too large, then too

35

many system resources are consumed. FDRM, therefore, sets two thresholds, M/N and

MAX, where MIN < JF] < MAX.

Each replica node A maintains three counters R;,, W,,, W, and a list outRead. Each
element in outRead has two fields: (1) node identifier j (/ # k) and (2) R...; which denotes
the number of reads that replica node & received from non-replica node j The elements
of outRead are in decreasing time order, which means the first element in the list has the
information about the node that most recently accessed the replica. it is believed that the

most recently accessed node is the most probable node to have further read access.

When a read request from non-replica node / arrives at replica node 4, replica node
k first finds whether node / has accessed the replica node & before by searching the
outRead list. If node j has not accessed replica node 4, replica node k inserts a new
element at the beginning of the list and sets r,, ;to 1 and node id to /. If node ; has
accessed replica node k before, replica node k increases 7, ;by 1 and moves the

element to the head of the list.

Replica node 4 records the current time interval length 7,and the number of data
accesses A, that replica node k received in 7, Replica node k also records previous
interval length 7,.;and the number of data accesses A,.; that replica node k received in

7..7. The next interval 7,.;therefore, can be calculated in accordance with equation (3.3).

FDRM also considers some special cases for an allocation interval. If there is no
data access during 7, then no matter how many data accesses occurred during 7,.;, 7.7
equals 27,. If there is no access during 7,,.;, then no matter how many accesses occurred

in 7, T,.requals to 1/2 7, . To avoid the interval being too short or too long, FDRM set

36

two thresholds M/IN_PERIOD and MAX PERIOD, where MIN_PERIOD < T, <
MAX_PERIOD.

A replica node k has six states during the replica allocation phase, namely Start,
Adding, Added, Deleting, Deleted and Switch. Figure 3.1 illustrates these states. First, a
replica node k tries to add a replica to the current replication scheme. It searches
outRead to find a node P which satisfies condition (3.1). If the search for node P
succeeds, replica node k changes its state from Start to Adding. Next, replica node k&
sends coordination messages RPCA_ADDING to other replica nodes to request
permission to add a replica. Replica hodes send permission messages back to node &
only when its state is Adding. We denote the number of permission messages that
replica node A receives in the Adding state as ARP and the current number of replicas as
CRP. If CRP +ARP < MAX, which means replica node k has enough permission to add a
new replica, replica node k changes its state from Adding to Added. Otherwise, it
changes its state from Adding to Start. When replica node &k is in the Added state, it
sends data message ARPCA ADD to node P. When node P receives the message
RPCA ADD, it adds a replica to its replica cache and sends a broadcast message
RPCA ADD REPLY to inform all nodes that a new replica is added. Finally, node k&

changes its state from Addedto Startwhen it receives RPCA ADD REPLY.

Second, replica node k decides whether to delete the replica from its local cache. If
node A satisfies condition (3.2), it changes its state from Startto Deleting. Even if node k
satisfies (3.2), it cannot delete the replica immediately because there may be several
replica nodes in the system that satisfy (3.2), so deleting without the necessary
coordination may cause the number of replicas in the system to drop to zero. Replica

node 4 in the Deleting state sends coordination message RPCA DELETING to other

37

replica nodes to request permission to delete its replica. Replica nodes send a
permission message back to node & only when its state is Deleting. We denote the
number of permission messages that replica node k receives as DRP and the current
number of replica as CRP. If CRP - MIN > DRP, which means replica node k has enough
permissions to delete its replica, replica node k& changes its state from Deleting to
Deleted. Otherwise, it changes its state from Deleting to Start. When a replica node kis
in Deleted state, it deletes its replica and sends message RPCA_DELETE to inform all
nodes in the system that its replica is deleted. Finally, it changes its state from Deleted to
Start

Third, if both attempts to add and delete a replica fail and F reaches MAX, FDRM
applies the migration process. Replica node & scans the outRead list to find the first
node j (f # k) that satisfies (3.4) and changes its state from Start to Switch.

Rout,j > Rin (34)

When replica node « is in the Swifch state, it sends a message RPCA SWITCH to
node jand deletes its local replica. Upon receiving RPCA_SWITCH from replica node £,
node j copies the replica from message RPCA_SWITCH to its local cache and sends a
broadcast message RPCA_SWITCH_REPLY to all nodes in the system to indicate the
switching of replica from node k to node / Finally, when node k receives

RPCA _SWITCH_REPLY, it changes its state from Switchto Start.

38

Send RPCA_ADDING Send RPCA_ADD

CRP + ARP < MAX

On Add and Delete fails and |F| = MAX

-
"1);?“ receive RPCA_SWITCH_REPLY

S Send RPCA_SWITCH

Deleted

Send RPCA_DELETE

Deleting

CRP - MIN >DRP

Send RPCA_DELETING

Figure 3.1 States of replica allocation phase in FDRM

3.3 The ARAM Algorithm

ARAM is a dynamic replication algorithm proposed to minimize the
communication cost of data access and adapt to node mobility. The major difference
between ARAM and FDRM is that replicas are added or switched to neighboring nodes.
The replica allocation in ARAM is based not only on local replica access information but
also on replica access information from other nodes. Reads are satisfied from a local
cache or from the closest replica node 4. Writes are first sent to the closest replica node
k, which forwards writes to other replica nodes. The notation used in the ARAM algorithm

is defined in Table 3-2.

39

Notation

Definition

F

the set of replica nodes in the system

ag, j) the shortest hop distance between node /and node /
qf) the weighted value of a replica node / (i) = . d(i, j)
jeF
/)] the access set of a non-replica node j, C (j) ={i/ min d ¢ /)}
ag, F) the cost of a read request from a non-replica node /.
If there are multiple nodes which all have the fewest hop distance to node
j, node j access the replica set from the replica node which has the least
weight value.
df, F) =dg, k), q(k) = min (q(m)) and m, k € C(j)
R() the number of reads sent by node /during a fixed time interval t
w) the number of writes sent by node /during a fixed time interval t
P) the number of writes that a replica node i receives from itself and its non-
replica neighbors.
WHV) the cost of forwarding writes to the closest replica nodes
Wr(v)= > W(i)d(i,F)
ieV
Wp) the cost of propagating writes, Wp(V)= > > P(s)d(s, j)
seF jeF
R(V)

The read cost of all nodes, R(V)= D" R(i)d(i, F)

ieV

Table 3-2 Notation in ARAM

3.3.1 The Cost Model

ARAM assumes each data access is independent. The costs of a read request

from a node / are defined as d (j, F). The costs of a write request from a node / are

defined as d (j, F) +Zd(s,k), and node j accesses the replica set £ through node s.

keF

Figure 3.2 gives an illustration of replica access in ARAM.

40

Figure 3.2 Replica access in ARAM

In Figure 3.2, jis a non-replica node and s, m and n are replica nodes. The numeric
number denotes the shortest hop distance between two nodes. The solid bold line
represents a write request from node / is first sent to a replica node s while two dash
lines represents write requests are forwarded to replica node n and replica node m.
Based on the definitions in Table 3-2, we have the following equations:

e F={s,mn)andV={,s, m,n}

e d(,F)=2and C()={s, n}

e q(s)=d(s,m)+d(s,n)=1+3=4

e qg(n)=d(n,m)+d(n,s)=3+3=6.
Because ((s) is less than q(n), node jaccesses F through node s. A write request is first
forwarded to node s, which propagates the write request to node 77 and node m. The total

communication cost for all nodes during a time interval t is defined in (3.5).

41

Cost (V) = Wi(V) + Wp(V) + R(V)

=D W(NA(,F)+ D P(s)d(s,k) +) R()NA(j,F) (3.5)

jev seF keF jev

3.3.2 Replica allocation in ARAM

Table 3-3 shows the definitions of variables which are used to add replicas in
ARAM. In Figure 3.3, non-replica node v is a neighbor of replica node s. If a replica is
added to u, one hop is decreased for some nodes to access the replica. The write cost,
however, increases for propagating writes to the new replica node u. Let Vbe the set of

all nodes in the system. The condition of replica addition is expressed in (3.6).

all mobile nodes in the system

a neighboring node of replicanodes,u e V-F, seF, ds5,u)=1

4
F replica nodes in the system
u
A

A={ilie V-F seC(i)and uis on one of the shortest paths between /
and s, and i access F through p;}

R() the number of reads received by sfrom v
W) the number of writes received by sfrom v
R(A) the number of reads from set A
WA) the number of writes from set A

WTtk) the number of writes that replica node A receives from other nodes and itself

WA (k) the number of writes that replica node & received from set A

w the number of writes from set V

Achange | the change of write cost caused by the change of the access path of A
Achange = W (i)(q(s) — q(Pi))

icd

Table 3-3 Variables used to add replicas in ARAM

42

Figure 3.3 An illustration of adding a replica in ARAM

R(u) + R(A) > (JF]- 2) (M) + W(A)) + 3 (WT (k) - WA(k))d(k,s) +W +Achange (3.6)

keF
Table 3-4 shows variables used in deleting and switching replicas. In Figure 3.4, if
the number of writes received by a replica node s from other replicas is larger than the
reads and writes received by s from itself and non-replica nodes, then s deletes the

replica. The condition of replica deletion is expressed in (3.7).

: Notation Definition
B Bfilie V-F, iaccess F through sand C (i) = {s}# ¢}
R(B) the number of reads from set B
W(B) the number of writes from set B
RT(s) the number of reads received by s from itself and other nodes
WT{(s) the humber of writes received by s from itself and other nodes
[fori € B, p/ € C(i) and q(p;’) = min q(j), j € C(i)-{s}.
z z2e F—{s})and d(s, F—{s}) = d(s, z)
w w e F—{s}, q(w)—d(w, s) =max(q(k) — d(k, s)), k € F— {s}
AQ AQ=max (1,q(s) +|F|-1-q(j)).je F-{s}

Table 3-4 Variables used to delete and switch replicas in ARAM

43

Figure 3.4 An illustration of deleting a replica in ARAM

(R(B) +W(B)) d(s, 2) + X WT()d(i,s) > (RT(s) + WT(s)) d(s, 2) + WT(s) (q (W) — q(s) -

ieF

d(s, w)) + W(B)(q (pi) —q (W) —=d (s, p) + d(s, W)) 3.7

A replica node s switches a replica to a neighbor node v when u receives more reads

and writes than replica node s. The condition of replica switch is expressed in (3.8).

R(u) + W(u) > 1/2 (RT(s) + WT(s) + > WT()AQ) (3.8)

JeF—{s}
3.3.3 Details of ARAM

Appendix B shows the details and pseudo code of ARAM. The ARAM algorithm
does not give detailed information about how to collect reads and writes from other
nodes and how to calculate the replica allocation intervals. In our simulation, we adopt
the same allocation interval scheme in FDRM. We use the blind flooding algorithm [27]
to collect data access information from other nodes. When replica node s starts the
replica allocation process, s sends a broadcast message ALLOCATE to inform all nodes

in the network that it is starting to collect data access information. Upon receiving the

44

ALLOCATE message, node j replies with the total number of read and write requests
that node /sent during the time interval t. If /is a replica node, it also replies with the total

number of read and write requests that node /received during the time interval £

3.4 The MFDRM Algorithm

MFDRM is an extension of FDRM and ARAM that works in MANETSs. In MANETS,
the communication cost between two nodes includes the wireless bandwidth cost,
energy consumption, and the delay of communication. Since all those factors are directly
related to the number of hops on a communication path, we use the number of hops
between two nodes to measure the communication cost between these two nodes.
FDRM assumes that the system cost to satisfy a read request, « , and the system cost to
update a replica, S, are the same. This assumption is not accurate in MANETSs because
of the multi-hop nature. Replica allocation in MFDRM considers both the data access
load and the hop distance for each data access, which is more suitable in MANETS.

Appendix C has detailed pseudo code of algorithm MFDRM.

3.4.1 The Cost Model
Table 3-5 shows the notation used in MFDRM. We consider a general network
consisting of a set of mobile nodes V={7, 2.. n}. Fis a set of replicanodesand FcV .

A non-replica node jmay access a replica at a replica node / The cost of such an access
is denoted as dj, j), where d(j, j) 2 0and d{j, j) is the shortest number of hops between

node /and node /. The cost of a read request from mobile node /is defined as migl afg j.
Jje

The cost of a write request from mobile node /is defined as 2.4,)) . if we assume the
jeF

number of replicas over a time duration t is constant, the total communication cost of all

nodes during t can be expressed in (3.9).

45

Notation Definition

R() the number of reads from node /

W) the number of writes from node /during a time period t

F all replica nodes in the system

|4 all nodes in the system

ag, j) the shortest number of hops between node /jand node /

RL a list whose entry represents the number of reads that node /

receives. For example, RL(f) means the number of reads that are sent
from node jand received by node /

wL a list whose entry represents the number of writes that node /
receives. For example, WL(k) means the number of writes that are
sent from node kand received by node /.

Table 3-5 Notations in MFDRM

Cost(V)= X RM)(mind(i, /) + 3. YW@,)) (3.9)

ieV jeF ieVjeF
3.4.2 Replica allocation in MFDRM

We assume the read-write pattern during a time period is in most cases
predictable based on the read-write pattern in the preceding time period. After adding a
replica to a non-replica node j, the read cost decreases because reads from node j can
be satisfied from its local cache. On the other hand, the write cost increases since writes
from other nodes must be propagated to node /. The criterion for a replica node /to add a
replica to a non-replica node j which reads from it, is that the overall decreases of read
costs are greater than the overall increases of write costs. The condition of replica

addition is expressed in (3.10).

RLG) e d(i))> D (WLUk)ed(k,) + Wi)e d(ij) (3.10)

keWL
If a replica is deleted from node / read costs increase because node /must read a
replica from another replica node m. On the other hand, write costs decrease since
writes need update fewer replicas. The criterion that a replica node /delete its replica, is
that the overall increase in read costs is less than the overall decrease in write costs.

The condition of replica deletion is expressed in 3.11

46

R() ed (i, m) # >, RL(j) *(d(j,q)-d(, j)) < D WL(k)ed(i,k) (3.11)

JeRL keWL
m = mind (i, p) g = mind (j, p) F’=F-{i}
peF’ peF'

m denotes the replica node from which node /reads a replica after node / deletes its
replica. g denotes the replica node from which non-replica node jreads a replica after

node /deletes its replica.

3.4.3 An illustration of MFDRM

In this section, we give an illustration of MFDRM. In Figure 3.5, there are five
mobile nodes M; M,, Ms;, M, and Ms M;and Mshave replicated data D. The numeric
number of an edge denotes the hop distance between two nodes. For example, aiM; M,)
=1 and dM; Ms) = 2. The direction of an edge means a non-replica node reads a
replica from a replica node. For example, M, and M; read replica D from M;while M,

reads replica Dfrom M;.

Table 3-6 shows the data access load, hop distance for reads and writes, and
communication costs for each mobile node. The communication cost is defined as the
number of data accesses times the hop distance. For example, M>has 100 reads and 10
writes. Mzreads replica D from node M;with a hop distance afM; M) = 1. Therefore, the
read cost for M.is 100 * 1 = 100. For a write access, M.must update two replicas in M,
and M5 The overall hops distance is diM; M) + d(M, Ms) = 3. Therefore, the write cost
for M2is 10 * 3 = 30. The total read cost for all nodes is 140 and the total write cost for

all nodes is 146.

47

2
] D
D 2 ﬂb 9
Figure 3.5 Replica placements in MFDRM before allocation
Reads Writes
Hosts load hops Access load hops | Access cost
cost
M, 40 0 0 30 3 90
M, 100 1 100 10 3 30
M3 20 1 20 0 3 0
My 10 2 20 0 5 0
Ms 30 0 0 8 3 24
Total 140 146

Table 3-6 Data access cost before replica allocation in MFDRM

At the end of the replica access phase, the replica node M; enters the replica
allocation phase. Based on its local data access information, M, tries to find a non-
replica node which reads replicas from it and satisfies the condition of replica addition. In
this example, M,first tries to add a replica Dto M, The read cost decrease for M,is 100

because the reads can be satisfied from its local cache. The write cost increases include

48

the write cost increase from M, which is 30, and the write cost increase from Ms which
is 16. The overall write cost increase, therefore, is 46. Based on (3.10), the condition for
a replica to be added to M2 is satisfied. For M;, the read cost decrease is 20. The write
cost increases includes the write cost increase from M; which is 30, and the write cost
increase from Ms which is 16, and the write cost increase from M;, which is 30. M;does
not satisfy condition (3.10). Thus, a replica D is added to node M.,. Table 3-6 shows that
the read cost decreases from 140 to 40 while the write cost increases from 146 to 190.

However, the total communication cost decreases from 286 to 230.

Read Write
Hosts load Hops | accesscost | Load hops Cost
M; 40 0 0 30 4 120
%) 100 0 0 10 3 30
M; 20 1 20 0 4 0
M,y 10 2 20 0 7 0
M; 30 0 0 8 5 40
Total 40 190

Table 3-7 Data access cost in MFDRM after adding replicas

After the addition, M;decides whether to delete the replica of D from itself. The
overall read cost increases include the read cost increase from node M, which is 40, and
the read cost increase from node M; which is 0 because d (M; M;) equals d(Ms; M,).
The overall read cost increase, therefore, is 40. The overall write cost decreases include
the write cost decrease from node M, which is 10, and the write cost decrease from M;,
which is 24. The overall write cost decrease is 34. Based on the inequality 3.11, the

deletion is not satisfied.

49

3.5 Summary

In this chapter, we present a detailed description of the selected dynamic
replication algorithms. Section 3.1 outlines the assumptions and definitions of the
selected dynamic replication algorithms. Section 3.2 and Section 3.3 discuss the details
of the FDRM and ARAM algorithms. Section 3.4 discusses MFDRM, which is our
extension of FDRM and ARAM.

There are five major differences between these algorithms. First, replica
allocation in ARAM includes both local and remote read/write information, which makes
the algorithm complex. On the other hand, replica allocation in FDRM and MFDRM only
includes local read/write information. Second, the replica allocation in ARAM and
MFDRM consider both the workload in each replica node and the hop distance of each
read/write request, which makes the algorithms more accurate in MANETs. Replication
allocation in FDRM considers only the workload in each replica node. Third, adding and
switching replicas in FDRM and MFDRM applies to any node in the system while adding
and switching replicas in ARAM only applies to neighboring nodes. Fourth, both FDRM
and MFDRM control the number of replicas in the system, which guarantees that the
number of replicas in the system does not become zero. ARAM, however, does not have
any mechanism to control the number of replicas in the system. Fifth, the replica update
procedure in ARAM is different from the replica update procedures in FDRM and
MFDRM. Each write request in ARAM is first forwarded to the closest replica node,
which has the least weight value, and this node forwards replica update requests to other
replica nodes in the system. Each write request in FDRM and MFDRM is sent to all
replica nodes in the system individually. In Chapter 4, experimental results are presented

and analyzed in terms of selected performance metrics under different simulation

50

scenarios.

1

Chapter 4

Performance Evaluation

In this chapter, we compare the dynamic replication algorithms presented in
Chapter 3 to a static replication algorithm, which we denote as SDRM. Each read
request in SDRM is sent to the closest node while each write request is sent to update all
replicas. The number of replicas in SDRM does not change during the simulation.
Various tests are done to demonstrate trade-offs between efficiency, availability, and
consistency. Based on our simulation results, we provide suggestions for improving

certain aspects of dynamic replication systems that are suitable for MANETSs.

Section 4.1 introduces the simulation model. Section 4.2 discusses the
performance metrics, factors that affect the performance and simulation parameters.
Section 4.3 discusses the simulation results and analyzes the performance of the
selected replication algorithms under different scenarios. Section 4.4 summarizes this

chapter.

4.1 Simulation Model

The Network Simulator Version 2, namely NS-2 [29], is used in our simulation
experiments. NS-2 is an object-oriented and discrete event-driven network simulator,
which provides support for wired and wireless networks. NS-2 provides substantial
support for the simulation of TCP, routing, and multicast protocols over wired and
wireless networks. NS-2 separates detailed protocol implementation from simulation
configuration and is, therefore, the most popular network simulator for MANETs. All
algorithms are simulated under the same settings to guarantee the fairness of the

simulation results. All results presented are the average of ten simulation runs.

52

Our simulation model consists of four models: (1) Mobility Model, (2) Workload

Mode, (3) Energy Model and (4) Network Model.

4.1.1 Mobility Model

The mobility patterns [33] refer to how a mobile node moves in a network area.
Given a fixed radio communication range for mobile nodes, mobility is the main reason
for network partitioning and dynamic topology. The mobility pattern affects the replica
availability and consistency. The random waypoint mobility model [30] is used in our
simulation. In this model, the starting and ending positions of a node movement, called
waypoints, are uniformly distributed inside the simulation area. Motion is characterized
by two factors: (a) a maximum speed and (b) a pause time. During simulation each node
starts moving from one waypoint to another waypoint in a straight line with constant
velocity. The velocities for different nodes are uniformly distributed between 0 and the
maximum speed. When a node reaches the target waypoint, it waits for the pause time.
Afterwards, it proceeds by selecting another random target waypoint and moves to it and

so on. In our simulation, we choose the maximum node movement speed as 5 m/s.

4.1.2 Energy Model

Mobile devices are usually battery-powered and one of the design objectives for
a mobile system is minimizing power consumption in order to increase the lifetime of
mobile devices. NS-2 provides a simple energy model, called EnergyModel, to model the
energy consumption of a mobile node. Parameters, such as initial energy, packet
sending energy and packet receiving energy, must be specified for this model. In our
simulation, each mobile node has the same initial energy of 500 joules, which
guarantees all mobile nodes are active during the simulation. Sending and receiving

each packet consumes 0.6w and 0.4w of energy, respectively. Although in practice

53

mobile nodes also consume energy while listening, we assume for simplicity that the

listen operation for each mobile node is energy free.

4.1.3 Workload Model

Workload has a significant impact on the performance of replication systems.
Since no real workloads have been collected from MANETS, we vary the read-write ratio
and the packet sending rate to emulate the changes in workload. A higher read-write
ratio generates less traffic than a low read-write ratio because writes update all replicas
while reads only access one replica. A higher packet sending rate generates more
message traffic than a lower packet sending rate. The traffic source in our simulation is a
constant bit rate application. In our simulation, we choose 20 nodes as traffic sources.

Each packet sent by the source has a fixed size payload of 2KB.

The simulation takes 900 seconds [29] and consists of two phases. The length of
the first phase is 200 seconds. Ten mobile nodes in the system are selected randomly as
replica nodes at the beginning of simulation. Different replica nodes send a broadcast
message at different time units in the first phase to indicate to other nodes that they have
the replicas. This guarantees each mobile node has a complete list of replicas before the
actual data access phase starts. The second phase is 700 seconds long. Each node
generates reads and writes based on the simulation settings. The time for each node to
start sending reads and writes is randomly distributed among the 700 seconds. A node

keeps sending reads and writes until the simulation ends.

4.1.4 Network Model

Each mobile node in the ad-hoc network has the same initial value settings, such as
energy, memory and computation power. All mobile nodes are distributed randomly

inside a terrain of size 1000 meters * 1000 meters. All simulated algorithms are

54

implemented in the application layer. 802.11 [31] is the MAC layer protocol. The

bandwidth is 2Mb/s. The Ad-hoc On-Demand Distance Vector (AODV) routing protocol

[32] is used as the unicast routing protocol. Broadcast messages are sent using the blind

flooding [27] algorithm.

4.2 Performance Metrics and Factors

Five performance metrics, namely read response time, read fail ratio, write

propagation delay, write fail ratio and energy consumption, are used to analyze the

performance of the four algorithms. Four important factors read-write ratio, pause time,

packet sending rate and network size, are varied over a certain ranges to examine their

impact on the performance of the algorithms.

4.2.1 Performance Metrics

1.

Read response time

Read response time is the time that elapses from the time a mobile node sends a
read request until it receives an object. Read response time is assumed to be zero
when a node has a replica stored locally. The average of all read response times
during the length of the simulation is calculated. A fundamental goal of data
replication in distributed systems is to ensure that read response time is low. In a
MANET, response time becomes the limiting factor in data access due to the limited
bandwidth and processing capabilities. The majority of replicated data in real
scenarios is read-only and the read response time is an indicator of the efficiency of
data access in the system.

Read fail ratio

Read fail ratio is defined as the percentage of failed read requests among all read
requests during the simulation. In wired networks, all nodes are strongly connected

with each other and the read fail ratio is zero in the absence of node and or link

55

failure. In MANETS, the read fail ratio would normally be higher than the read fail
ratio on wired network because the network can be partitioned at any time. The
probabilities of node failure and link interference in MANETS are high as well. A low
read fail ratio implies high data availability. This metric is an indicator of the data
availability.

3. Write propagation delay
Write propagation delay is defined as the time that elapses from the time a mobile
node sends a write request until all replicas in the system have been updated. There
are trade-offs between low read response time and high write propagation delay. An
algorithm may have a low read response time but a high write propagation delay. A
low write propagation delay also reduces the chances of replica update conflicts.

4. Write fail ratio
Write fail ratio is defined as the percentage of failed write requests among all write
requests during the simulation. A write request succeeds only when all replicas in
the network are updated. This metric is an indicator of replica consistency. A low
write fail ratio indicates a high percentage of replicas in the system have the most
recent data.

5. Energy consumption
The average energy consumption of all nodes in the network is computed. We
assume that all mobile nodes are active during the simulation and mobile nodes
consume energy only when it sends or receives packets. In this way, the average
energy consumption of all mobile nodes during the simulation is proportional to the

received and sent packets during the simulation. An algorithm that has low energy

consumption improves the lifetime of the network.

4.2.2 Factors affecting Performance

56

1. Read-write ratio
The read-write ratio is defined as the number of read requests versus the nhumber of
write requests during the simulation. Dynamic replication expands or shrinks the
number of replicas in the system based on the number of read and write requests in
the network. Varying this factor affects the number of replicas in a dynamic
replication system.

2. Pausetime
Pause time is defined as the time period during which a node is stationary after
arriving at a destination. A higher pause time results in lower mobility. Varying this
factor demonstrates the ability of the algorithms to deal with node mobility. The
ability to deal with node mobility is one of the primary goals for any algorithm in
MANETSs.

3. Packet sending rate
Packet sending rate is defined as the number of requests sent within a second for
each node that generates workload. A high packet sending rate implies the MANET
has a high workload. Increasing the workload may cause undesirable changes in
network performance, such as high latency, packet dropping and control overhead.
We observe the performance of the algorithms under different workloads by varying
this value.

4. Network size
Network size is defined as the number of nodes inside the simulation area. It is an
indicator of node density in the system. A high node density implies a low chance of

network partition. We observe algorithms under different nodal densities by varying

this value.

4.3 Simulation Results and Analysis

57

In this section we evaluate the performance of SDRM, FDRM, ARAM and MFDRM.
Multiple simulation scenarios are designed to observe the efficiency, availability,
consistency and energy consumption. Table 4-1 lists the fixed parameters of our

simulation model, which are discussed in section 4.1.

Parameters Values

Number of replicas at the beginning 10

Number of nodes sending packets 20

Maximum movement speed 5 meter / second
Simulation time 900 seconds
Initial energy 500 Joules
Packet size 2KB

Bandwidth 2M bit / second
Sending energy 06w

Receiving energy 04w

Simulation area 1000 meter * 1000 meter
Routing protocol AODV
Broadcasting protocol Blind flooding
Minimum number of replica 1

Maximum number of replica 25

Minimum allocation interval 20 seconds
Maximum allocation interval 200 seconds
Allocation interval at the beginning 60 seconds

Table 4-1 simulation environment parameters with fixed values

4.3.1 The effects of read-write ratio
Table 4-2 lists the parameter settings in this experiment. Read-write ratio is varied from

1:1 to 40:1 to simulate scenarios from a high percentage of writes to a high percentage
of reads.

58

Figure 4.1 shows the difference between the initial number of replicas and the number of
replicas after the simulation. This reflects whether the replica set expands or shrinks
during the simulation. Figures 4.2 to 4.6 show the simulation results of all algorithms
under different read-write ratio scenarios.

Parameters Value

Read-write ratio 1:1, 10:1, 20:1 and 40:1
Transmission range 230 meters

Number of nodes in the system 30

Number of nodes sending packets 20

Number of replica nodes at the beginning 10

Packet sending rate 1 packet/2 seconds
Pause time 50 seconds

Table 4-2 experiment parameters in read-write ratio

& FDRM O MFDRM B ARAM

12
%’,310 N
EF §
38 \ \
2 | _\ N
Sy \‘1 \ - —
H o2 | I 20 40
'U"Q
N D
= 56

-8

Read-Write Ratio

Figure 4.1 Effects of read-write ratio on the difference in the number of replicas

59

Read response time (ms)

160
140
120
100
80
60
40
20

@ SDRM FDRM 0O MFDRM ®m ARAM

m Il 7= 1

20 40

Read-write ratio

Figure 4.2 Effects of read-write ratio on read response time

Read fail ratio (%)

25

& SDRM @ FDRM O MFDRM B ARAM

20

15

/

10

A Vi n

1 10 20 40
Read-write ratio

Figure 4.3 Effects of read-write ratio on read fail ratio

Write propagation delay (ms)

3000

2500

2000

1500

1000

500

o

B SDRM 2 FDRM O MFDRM]

:

M

il
M

.

1 10 20
Read-write ratio

H

0

Figure 4.4 Effects of read write-ratio on write propagation delay

60

@ SDRM FDRM O MFDRM B ARAM
120
100
9
o 80
=
5 60
&
g 40
20
o L L
1 10 20 40
Read-write ratio
Figure 4.5 Effects of read-write ratio on write fail ratio
B SDRM FDRM O MFDRM B ARAM
c 50
]
B2
£ 40
29
c g
8 g 30
> 9
(-]
g 3 20
w3
(]
= 10 1
: i
[}
Z 0 . %
1 10 20 40
Read-write ratio

Figure 4.6 Effects of read-write ratio on average energy consumption

From Figure 4.1, we see that the replica sets of ARAM, FDRM and MFDRM
shrink when the read-write ratio is set to 1. The reason is that writes are sent to all
replicas in the network while reads are satisfied from the local cache or the closest
replica node. There are more write packets than read packets during the simulation
when the read-write ratio is set to 1. For example, if every write packet is delivered to a

destination, a replica node & may receive 20 writes since the number of traffic source

61

nodes is 20. Meanwhile, the read requests that a replica node & receives are most likely
less than 20. Since the replica nodes and the traffic source nodes are distributed
uniformly in the system, the chances that all nodes read a replica from a single replica
node k is very low. The replica set of dynamic replication algorithms shrink when a
replica node receives more writes than reads. Replica allocation in FDRM only considers
the workload while replica allocation in ARAM and MFDRM considers both workload and
hop distance for each data access. The consequence is that the number of replicas in
FDRM shrinks significantly when the workload has a high percentage of writes while the
number of replicas in FDRM expands significantly when the workload has a high

percentage of reads.

The number of replicas in ARAM does not expand when the workload has more
reads than writes. This demonstrates that the replica adding condition in ARAM is very
restricted and does not respond well as the number of reads increase. On the other
hand, the number of replicas in MFDRM only has a slight decrease when the workload
has a higher percentage of writes. From (3.11) in MFDRM, we see the read cost
increase, caused by deleting its replica, contains both the read cost increases from a
replica node k and the read cost increases from other non-replica nodes that read from
replica node k. From (3.2) in FDRM, we see the read cost increase, caused by deleting
its replica, only contains the read cost increase from replica node & itself. Deleting
replicas in MFDRM, therefore, is more restricted than deleting replicas in FDRM.

MFDRM therefore does not respond well as the number of writes increases.

The read response time and read fail ratio in Figure 4.2 and Figure 4.3 decrease as
the read-write ratio increases. There are two reasons. First, the nhumber of packets sent

during the simulation decreases as the read-write ratio increases because writes

62

generate more packet transmissions than reads. As fewer writes are sent, the workload
decreases. This results in the decrease of each packet’s end-to-end delay. Second, the
number of replicas created increases or equivalently, the number of replicas deleted

decreases during the simulation as the read-write ratio increases.

Simulation results in Figure 4.2 show that SDRM has a higher read response time
than dynamic replication algorithms when the workload has a high percentage of write
requests, such as when the read-write ratio is set to 1. The reason is that the number of
replicas and their locations in SDRM do not change during the simulation. When the
read-write ratio is set to 1, FDRM has a higher read response time than ARAM and
MFDRM because it has the lowest number of replicas among all algorithms. As the read-
write ratio increases, the replica set of FDRM expands and its read response time
decreases as well. We also notice that when FDRM has more replicas than MFDRM, its
read response time is higher than MFDRM. This demonstrates that MFDRM, which
distributes the data based on both the workload and hop distance of each data access,

outperforms FDRM, which distributes replicas based only on workload.

From Figure 4.3, we see FDRM has the highest read fail ratio when the workload
has a high percentage of write requests such as a read-write ratio of 1. The reason is
that its replica set shrinks from 10 to 4.5. As the read-write ratio increases, the replica set
of FDRM increases which results in its read fail ratio decreasing. ARAM has a lower read

fail ratio than the static replication algorithm SDRM although ARAM has fewer replicas

than SDRM.

The write propagation delay in Figure 4.4 decreases when read-write ratio

increases from 1 to 10. The reason is that the packet end-to-end delay is reduced as

63

fewer writes are sent during the simulation. When the read-write ratio is 1, SDRM has the
highest write propagation delay because it has largest number of replicas among all
algorithms. FDRM has the lowest write propagation delay because it has the lowest
number of replicas. When the read-write ratio increases from 10 to 40, the write
propagation delays of FDRM, MFDRM and ARAM increase while the write propagation
delay of SDRM decreases slightly. The reason is that as the read-write ratio increases,
the number of created replicas increases or the number of deleted replicas decreases
which means more replicas need to be updated for algorithms ARAM, FDRM and
MFDRM. The replica set in SDRM does not change and the workload is reduced as

fewer writes are sent. SDRM therefore has a slight decrease in write propagation delay.

The write-fail ratio in Figure 4.5 is fairly high (90% - 99%) when the read-write ratio is
1. There are three reasons for such a situation. First, writes which are sent to update all
replicas in the system generate large amounts workload. As the workload increases, the
packet delivery ratio decreases. Second, no reliable multicast protocol is used. Control
messages, which indicate the changes in replica set information, may not be delivered to
all replica nodes. This results in an inconsistency between the local view of the replica
set and the global view of the replica set. Third, since mobile nodes move freely in
MANETSs, network partitioning is frequent which makes updating all replica nodes
impossible. This also leads us to suggest that the replica consistency protocol, Read-
One-Write-All, is not suitable for MANETs when the network workload has a high

percentage of writes.

From Figure 4.5, we see ARAM has the lowest write fail ratio among all algorithms.
The reason is that a write request is first forwarded to the closest replica node that has

the least weight value. This approach minimizes the total hop distance of the replica

64

update path. A replica update path that has fewer hops tends to reduce the write fail

ratio.

The average energy consumption in Figure 4.6 reflects the total number of packets
sent and received during the simulation. Since the total number of packets sent and
received during the simulation decreases as the read-write ratio increases, the average
energy consumption of each node decreases for all algorithms. When the workload has
a high percentage of writes, such as a read-write ratio of 1, the algorithms that have the
fewest number of replicas consume less energy because write requests take a high
percentage of the overall energy consumption. The simulation results in Figure 4.6
demonstrate FDRM has the lowest energy consumption when the read write ratio is 1.
As the read write ratio increases from 10 to 40, FDRM consumes more energy than other
algorithms. There are two reasons. First, the addition and deletion of replicas in FDRM
only considers the workload and does not consider the hop distance for each data
access. This approach is not suitable for MANETs. Second, FDRM sends many
broadcast messages to update the replica set information. Broadcasting messages in
MANETSs consumes large amounts energy. We also observe that ARAM consumes less
energy than the other algorithms when the read-write ratio is between 10 and 40. There
are two reasons. First, ARAM does not send agreement messages in terms of adding
and or deleting replicas while agreement messages must be sent in FDRM and MFDRM.
Second, ARAM minimizes hop distances of a replica update path, which reduces the

energy consumption in terms of replica updates.

4.3.2 The effects of pause time

In this experiment, pause time is varied from 0 second to 400 seconds, which simulates
scenarios from a high mobility to a low mobility. Table 4-3 lists the parameter settings in

65

this experiment. Figure 4-7 shows the difference between the initial number of replicas in
the system and the final number of replica in the system after the simulation, which

reflects whether the replica set expands or shrinks during the simulation. Figures 4-8 to
4-12 show the simulation results of all algorithms under different pause times.

Parameters Value

Pause time 0, 100, 200 and 400 seconds
Transmission range 230 meters

Number of nodes 30

Number of replicas at the beginning of simulation | 10

Number of traffic source nodes 20
Packet sending rate 1 packet / 2 seconds
Read write ratio 10:1

Table 4-3 experiment parameters in pause time

g3y % / o
3 . / .
iE I e

Pause Time (seconds)

Figure 4.7 Effects of pause time on the difference in the number of replicas

66

Pause time (seconds)

B SDRM FDRM 0O MFDRM m ARAM
50
;E; 40
2 30
% 20 —
E 10
ol 7 7
o 100 200 400
Pause time (seconds)
Figure 4.8 Effects of pause time on read response time
@ SDRM ©z FDRM O MFDRM = ARAM
10
- 8
S
% 6
g . 7 7
E 2 1
0
0 100 200 400
Pause time (seconds)
Figure 4.9 Effects of pause time on read fail ratio
B SDRM FDRM O MFDRM B ARAM
1000
~ 800
&
3
e 600
[=}
B
g 400
[+%
§ 200
0
0 100 200 400

Figure 4.10 Effects of pause time on write propagation delay

67

& SDRM FDRM O MFDRM B ARAM
80
S 60
£
= 40
8
£
2 20
(0]
0 100 200 400
Pause time (seconds)

Figure 4.11 Effects of pause time on write fail ratio

@l SDRM FDRM 0O MFDRM B ARAM
30

25

20

15

10

5

0
0

Figure 4.12 Effects of pause time on average energy consumption

Average energy consumption per
node (Joules)

100 200 400
Pause time (seconds)

From Figure 4.7, we see the replica sets in FDRM and ARAM shrink while the
replica set in MFDRM expands. The reasons are mainly related to the read-write ratio,
the traffic source nodes, the number of replica nodes and the hop distance for each data
access. When the pause time is large enough, the system becomes stable. A replica
node k may receive 20 writes because the number of traffic source nodes is 20. The
reads that a replica node 4 receives from itself is 10 because the read-write ratio is 10.

From (3.2), we see replica nodes in FDRM tend to be deleted during the simulation

68

because more writes are received than reads. Based on our simulation data and analysis

of (3.7), we ﬁndZWT(i)d(i, s), the write communication cost between the replica node

ieF
s and other replica node i (i¢ s), is the main reason that the replica set in ARAM shrinks.
At the beginning of simulation, the number of replica nodes in the system equals 10.

WT(i), the number of writes that a replica node i receives during a time period t, may

equal 20 because 20 traffic sources generate writes. The summation of 2 WT(@)d(,s),
ieF

including the hop distance for each write request, is obviously larger than the read and
write cost that a single node s received. Therefore, replica nodes tend to be deleted and
the number of replicas after simulation is less than 10. MFDRM does not shrink its
replica set in this scenario. There are two reasons. First, MFDRM has a restricted replica
deletion condition as we explained in Section 4.3.1. Second, some nodes during the
simulation may receive more reads than writes because of the high write fail ratio.
Therefore the replica set in MFDRM has a slight expansion. As the pause time becomes
small, the reads/writes that can be delivered to the destination nodes decreases because
nodes keep moving. A replica node &, therefore, receives fewer reads and writes. The
decrease in writes received by a replica node & however, is larger than the decrease in
reads received by a replica node & because a large portion of writes are generated from
nodes that are far away from replica node A while reads are generated from local or non-
replica nodes that are close to node A The number of deleted nodes, therefore,
decreases slightly or equivalently the number of added nodes increases slightly as the

pause time becomes small.

in Figures 4.8 and 4.9, both read response time and read fail ratio decrease as the
pause time increases. The major reason is that the network becomes more stable as the

pause time increases. Finding a route for a read request, therefore, takes less time and

69

the chances of a network partition decreases. FDRM has the largest response time and
highest read fail ratio because it has the fewest number of replicas. MFDRM has the
lowest read fail ratio. This is because (a) the replica set of MFDRM expands during the
simulation and it has the largest number of replicas among all algorithms. A scheme with
more replicas during the simulation tends to reduce the read fail ratio; and (b) replicas in
MFDRM can be expanded to any node not just the neighboring nodes. This approach
distributes replicas more widely and therefore increases the replica availability,
especially when a network partition takes place. The number of replicas in ARAM shrinks
during the simulation. In Figure 4.8, ARAM has the lowest read response time among all
algorithms. This is interesting because MFDRM has more replicas than ARAM. This
leads us to suggest that when the network has high mobility, having more replicas in the

system does not guarantee improving the performance of read operations.

High node mobility causes more frequent route failures and packet loss. The
routing protocol needs to find new routes. Finding new routes increases control packet
retransmission, which increases the propagation delay of replica updates. High node
mobility also increases the probability of a network partition. The fail ratio of replica
updates increases as networks are partitioned. Figure 4.10 shows ARAM has the lowest
write propagation delay. There are two reasons for this. First, the replica set of ARAM
shrinks during the simulation. A scheme that has fewer replicas tends to have a shorter
write propagation delay. Second, ARAM minimizes the hop distance of a replica update
path and replicas are expanded only to neighboring nodes, which makes replica nodes
close to each other. As fewer hop distances are traveled for each replica update, the
write propagation delay is reduced. This is more obvious when the network has a high
mobility such as a pause time equals 0 second. Although the replica set of FDRM

shrinks and FDRM has the lowest number of replicas, the simulation result shows its

70

write propagation delay is higher than that of ARAM. This also demonstrates that the
number of replicas is not the only factor that affects the write propagation delay and

locations of these replicas also affects write propagation delay.

Simulation results in Figure 4.11 show that both SDRM and ARAM have higher write
fail ratios than FDRM and MFDRM when mobility is high. The reason is that SDRM is
static and it is not suitable for high mobility networks. The update procedure in ARAM is
also not suitable for high mobility networks in terms of its write fail ratio. A replica update
request in ARAM is first sent to the closest replica node, which forwards the update
request to other replicas nodes. In a high mobility environment, it is very likely that the
first replica node may not receive the replica update request and, therefore, cannot
forward the replica update request to other nodes. This update procedure in ARAM
increases the replica update fail ratio when the network has high mobility. When the
mobility is low, ARAM has the lowest write fail ratio due to the fact that its replica set
shrinks and it minimizes the total hop distance of the update path. A scheme that has

smaller hops distances in the replica update paths tends to reduce the replica update fail

ratio as well.

The packet retransmission decreases as node mobility decreases. The average
energy consumption for all mobile nodes in Figure 4.12, which represents the total
packets sent during the simulation, therefore decreases as well. SDRM has the highest
energy consumption among all algorithms due to the fact that the number of replicas and
their locations does not change during the simulation. ARAM has the lowest energy
consumption among all algorithms. There are three reasons. First, the replica allocation
in ARAM considers not only workload but also the hop distance of each data access.

This approach minimizes the overall communication cost in terms of replica reads and

71

replica writes. Second, ARAM minimizes the total hops in replica update paths. Third,
ARAM does not send agreement messages in terms of replica addition and deletion.
Energy consumption in FDRM is higher than energy consumption in MFDRM. There are
two reasons. First, replica allocation in FDRM only considers workload while replica
allocation in MFDRM considers both hop distance and workload. Second, more
broadcast messages are sent in FDRM to update the replica set information in each

node. Broadcasting in MANETSs consumes large amounts of energy.

4.3.3 The effects of packet sending rate

In this experiment, packet sending rates are varied from 0.5 packet/s to 2 packet/s, which
simulates scenarios from a low workload to a high workload. Table 4-4 lists the
parameter settings in this experiment. Figure 4.13 shows the difference between the
initial number of replicas in the system and the number of replicas in the system after the
simulation. Figures 4.14 to 4.18 shows the simulation results of all algorithms under
different packet sending rates.

Parameters Value

Packet sending rate 0.5, 1.0, 1.5, 2.0 packet/second
Pause time 50 seconds

Transmission range 230 meters

Number of nodes 30

Number of replicas at the beginning of simulation | 10

Number of traffic source nodes 20

Read-write ratio 10:1

Table 4-4 Experiment parameters in packet sending rate

72

FDRM 0O MFDRM B ARAM
3
)]
2
—~
@ & 0 , : = —
e 7 7 7 7
S iEiREiRE
ThlE St B S
-2 T 7 7 Z
E5 4
-5
Packet Sending Rate (packet/second)
Figure 4.13 Effects of packet sending rate on the number of replicas
@ SDRM FDRM 0O MFDRM m ARAM
80
=~ 70
g 60
E 50
40
30
E 20
10
0
0.5 1 1.5 2
Packet sending rate (packet/second)
Figure 4.14 Effects of packet sending rate on read response time
20 @ SDRM @ FDRM 0O MFDRM m ARAM
18
e 16 Z
g 7
§ 10
2 8
E 6
4
2
0
0.5 1 1.5 2

Packet sending rate (packet/second)

Figure 4.15 Effects of packet sending rate on read fail ratio

73

@ SDRM FDRM 0O MFDRM B ARAM

2100
g 1800
% 1500
-§ 1200
B o900 _]
g: 600
f 300 %

0

0.5 1 15 2

Packet sending rate (packet/second)

Figure 4.16 Effects of packet sending rate on write propagation delay

&8 SDRM FDRM O MFDRM | ARAM
120

100

80

60

40

Wite fail ratio (%9

20

0.5 1 1.5 2
Packet sending rate (packet/second)

Figure 4.17 Effects of packet sending rate on write fail ratio

@B SDRM FDRM 0O MFDRM B ARAM

B
N

Average energy consumption per node
(Joules)
w
(@]

0.5

1 1.5
Packet sending rate (packet/second)

Figure 4.18 Effects of packet sending rate on average energy consumption

The simulation results in Figure 4.13 shows that the replica sets in FDRM and
ARAM shrink while the replica set in MFDRM expands. The major reason is the same as
in section 4.3.2. As the packet sending rate increases, a replica node A receives more
reads and writes. The increase in writes received by replica node &, however, is smaller
than the increase in reads received by replica node k because most writes take longer
paths than reads to reach destination nodes. As the workload increases, a request that
takes a longer path tends to get lost. The nhumber of deleted nodes, therefore, decreases

slightly as the packet sending rate increases.

Network traffic increases as the packet sending rate increases. High network traffic
causes network resource contention and increases the end-to-end packet delay and
packet loss. Figures 4.14 and 4.15 show that the read response time and the read fail
ratio increase as the packet sending rate increases. MFDRM has the lowest read
response time and read fail ratio because its replica set expands during the simulation.
MFDRM has the largest number of replicas among all algorithms. The replica sets in
FDRM and ARAM shrink during the simulation and ARAM has more replicas than
FDRM. The read response time and read fail ratio of FDRM, therefore, are higher than

the read response time and read fail ratio of ARAM.

Simulation results in Figures 4.16 and 4.17 shows that write propagation delay and
write fail ratio increase as the packet sending rate increases. There are two reasons for
this performance. First, the end-to-end delay and packet loss increases as more packets
are sent during the simulation. Second, the number of replicas created increases slightly

or the number of deleted replicas decreases slightly. The write fail ratio of all algorithms

75

is very high (85% - 99%) when the packet sending rate is 1 packet/second. The reasons

are the same as in Section 4.3.1.

ARAM has the lowest write fail ratio and write propagation delay among all the
algorithms. The replica set of ARAM shrinks during the simulation therefore it has fewer
replicas to be update compared with SDRM and MFDRM. ARAM also minimizes the total
hop distance in the replica update path. Simulation results also demonstrate that
dynamic replication algorithms have lower write propagation delay compared with static
replication when the network has high workloads. MFDRM has a higher write
propagation delay than FDRM because its replica set expands during the simulation

while the replica set of FDRM shrinks during the simulation.

Simulation results in Figure 4.18 show that average energy consumption for all
nodes increases as the packet sending rate increases. ARAM has the largest energy
increment when the packet sending rate is high. The reason is that the replica allocation
interval is shortened when the packet sending rate is high. The replica allocation in
ARAM is based on global data access information. Collecting data access information
from other nodes consumes a large amount of energy because of broadcasting
information. The replica set of FDRM shrinks during the simulation and its replica set
changes more frequently, which results in more agreement messages and broadcast

message to be set. FDRM, therefore, consumes more energy than MFDRM and SDRM.

4.3.4 The effects of network size

In this experiment, the humber of nodes in the network is varied from 20 to 50. This
simulates scenarios from a low node density to a high node density. Table 4-5 lists the

parameter settings in this experiment. Figure 4.19 shows the difference between the

76

initial number of replicas in the system and the number of replicas in the system after the

simulation. Figures 4.20 to 4.24 show the simulation results of all algorithms under

different network sizes.

Parameters Value

Number of nodes 20, 30, 40 and 50
Pause time 50 seconds
Transmission range 230 meters

Number of replicas at the beginning of simulation | 10

Number of traffic source nodes 20
Packet sending rate 1 packet / 2 seconds
Read write ratio 10:1

Table 4-5 experiment parameters in network size

FDRM O MFDRM W ARAM

N B

30 40 50

DA

MO

number of replicas
ts
|
DA

The difference in the

Network Size
Figure 4.19 Effects of network size on the difference in the number of replicas

77

Network size

@ SDRM @ FDRM 0O MFDRM B ARAM
180
g 150 %
120 /
£ o
§ 90
60
L= ™
0
20 30 40 50
Network size
Figure 4.20 Effects of network size on read response time
@ SDRM @ FDRM O MFDRM B ARAM
14
12
S 10
o
B s %
8 6
§
2
0
20 30 40 50
Network size
Figure 4.21 Effects of network size on read fail ratio
B SDRM FDRM O MFDRM @ ARAM
_. 1000
%’. 800 |]
g 600
% 400
200
£
2
20 30 40 50

Figure 4.22 Effects of network size on write propagation delay

78

&8 SDRM FDRM 0O MFDRM = ARAM

80

Wite fall ratio (%)

20 30 40
Network size

Figure 4.23 Effects of network size on write fail ratio

@ SDRM FDRM 0 MFDRM B ARAM

N
n

- -
(3}

Average energy consumption
(Joules/node)
)
o o o o

20 30 40 50
Network size

Figure 4.24 Effects of network size on average energy consumption

From Figure 4.19, we see the replica sets in FDRM and ARAM shrink while the
replica set in MFDRM expands. The major reason is the same as in section 4.4.2. As
the network sizes increase, the chance of network partition and packet loss decreases. A
replica node k, therefore, can receive‘more reads and writes. The increases in writes
received by a replica node 4 are larger than the increases in reads received by it. The
reason is that a large portion of writes come from nodes that are far away from replica

node k and the chances of these writes succeeding increases as the network density

79

increases. The number of deleted nodes increases or the number of added nodes

decreases as the network size increases.

The network size is an indicator of node density inside the simulation area. High
network size represents high node density. Simulation results in Figure 4.20 demonstrate
that the read response time increases as the network size increases. There are two
reasons for this performance. First, the probability of network partitions is higher in
MANETSs than in wired networks because of mobility. As the network density inside the
simulation area increases, the probability of nodes being within transmission range
increases. The probability of network partition therefore decreases. Both reads and
writes that have long communication paths can be satisfied in this situation. These
reads, which require many hops, increase the average read response time. Second,
from Figure 4.19 we see the number of replicas created during the simulation decreases
and the number of replicas deleted during the simulation increases as the network size
increases. As few replicas are available during the simulation, the average read

response time for replica reads increases.

Figure 4.21 shows that the read fail ratio of MFDRM, FDRM and ARAM increases
while the read fail ratio of SDRM decreases. The number of replicas and their locations
in SDRM does not change during the simulation. As the network density increases, the
packet loss rate decreases. The read fail ratio in SDRM therefore decreases as the
network size increases. For these dynamic replication algorithms, however, this is not
the case because the number of deleted replicas increases as the network becomes
dense. As more replicas are deleted during the simulation, the read fail ratio increases.

FDRM has the highest read response time and read fail ratio while MFDRM has the

80

lowest read response time and read fail ratio. The reason is that MFDRM has the largest

number of replicas while FDRM has the lowest humber of replicas during the simulation.

The probability of a network partition decreases as the number of nodes increases in
the simulation area. Write requests which take a long communication path, therefore,
can reach the destination node. Simulation results in Figure 4.22 and 4.23 show that the
write propagation delay of SDRM increases while the write fail ratio of SDRM decreases.
The reason is that the number of replicas and their locations do not change during the
simulation. As more write requests succeed, the write propagation delay increases and
the write fail ratio decreases as well. However, the write propagation delay and write fail
ratio decreases for the dynamic replication algorithms because the number of deleted
replicas increases or the number of added replicas decreases. ARAM has the lowest
write fail ratio and write propagate delay among all algorithms because its replica update

procedure minimizes the total hop distance of write updates.

Figure 4.24 shows that the average energy consumption of all nodes increases as
the network size increases. When the network becomes dense, the probabilities that
reads and writes which take a long communication path can reach the destination node
increases. This obviously increases the data packets and control packets to be sent
during the simulation. ARAM has the lowest energy consumption because it minimizes
the hop distance of the replica update path. Another reason is that ARAM does not send
messages to control the number of replicas in the network. SDRM has the highest
energy consumption because the number of replicas and their locations do not change
during the simulation. FDRM has higher energy consumption than MFDRM when the
network size is large. There are two reasons for this performance. First, replica allocation

in FDRM only considers the data access load. This approach is not guaranteed to

81

minimize the overall communication cost. Second, more broadcast messages are sent in

FDRM to coordinate and update the replica set information.

4.4 Summary

In this chapter, we compare the performance of the dynamic replication algorithms
discussed in chapter 3 and a static replication algorithm SDRM. We conduct a series of
simulations to investigate how each parameter of the simulation model affects the
performance of different algorithms. Section 4.1 outlines our simulation model which
consists of a mobility model, a workload model, an energy model and a network model.
Section 4.2 illustrates five selected performance metrics and four selected factors that
affect the performance of the algorithms. The five selected performance metrics are read
response time, read fail ratio, write propagation delay, write fail ratio, and average
energy consumption. The four selected factors that affect the performance of algorithms
are read-write ratio, pause time, packet sending rate and network size. Section 4.3

discusses the simulation result and our analysis.

Simulation results demonstrate that FDRM responds well to a read-write ratio
change. Its replica set expands or shrinks significantly when the workload has a high
percentage of reads or writes, respectively. Simulation results also demonstrate FDRM
has a higher read response time and read fail ratio than MFDRM when FDRM has more
replicas than MFDRM. This demonstrates MFDRM outperforms FDRM in terms of read
response time and read fail ratio. It also reflects that the actual increase in performance
and availability through replication is a complex function of both the number of replicas
and their placements in the system. Having more replicas in the system does not always

reduce the read response time and the read fail ratio. We also see that MFDRM does not

82

shrink its replica set greatly when the workload has a large percentage of writes while
ARAM does not expand its replica set greatly when the workload has a large percentage
of reads. This demonstrates that the replica deletion condition in MFDRM and the replica

addition condition in ARAM are too restrictive.

Simulation results also demonstrate that ARAM outperforms the other algorithms in
write propagation delay and write fail ratio. The main reason is that the replica update
procedure in ARAM minimizes the total hops of the update path. ARAM also has the
lowest energy consumption in most simulation scenarios. There are two reasons. First,
ARAM does not send agreement messages to control the number of replicas while
FDRM and MFDR control the number of replicas. The drawback is that the number of
replicas may become zero, which affects the availability. Second, replica allocation in
ARAM is based on not only the number of reads and writes but also the hop distance for
each read and write. This minimized the overall communication cost. However, when the
access frequency is high, ARAM consumes more energy than other algorithms. The
reason is that replica allocation in ARAM is based on information collected from other
nodes and its local read-write information. High access frequency shortens the replica
allocation intervals, which results in more data collection messages needing to be sent. It

therefore brings significant overhead when the access frequency is high.

We realize that the write fail ratio is extremely high in MANETs. Maintaining replica
consistency in MANETSs is therefore extremely difficult when the network has a high
workload. Simulation resuilts also demonstrate that dynamic replication algorithms ARAM
and MFDRM outperform the static replication in terms of energy consumption. FDRM
which allocates replicas based on only the workload of reads and writes is not suitable

for MANETs. Based on our simulation results, we rank the dynamic replication

83

algorithms FDRM, ARAM and MFDRM under different system features in Table 4-6.

the next chapter, we present our suggestions and future work.

In

System High workload
Features
Algorithms Performance Metrics
Write Write fail ratio | Energy Read Read fail
propagation Consumption | response ratio
delay time
ARAM Good Good Poor Fair Fair
FDRM Fair Fair Fair Poor Poor
MFDRM Poor Poor Good Good Good
System Low workload
Features
Algorithms Performance Metrics
Write Write fail Energy Read Read fail
propagation | ratio Consumption | response ratio
delay time
ARAM Good Good Good Fair Fair
FDRM Fair Fair Poor Poor Poor
MFDRM Poor Poor Fair Good Good
System High mobility
Features
Algorithms Performance Metrics
Write Write fail Energy Read Read fail
propagation | ratio Consumption | response ratio
delay time
ARAM Good Poor Good Good Poor
FDRM Fair Good Poor Poor Fair
MFDRM Poor Fair Fair Fair Good
System Low mobility
Features
Algorithms Performance Metrics
Write Write fail | Energy Read Read fail
propagation | ratio Consumption | response ratio
delay time
ARAM Good Good Good Good Fair
FDRM Fair Fair Poor Poor Poor
MFDRM Poor Poor Fair Fair Good

System

Equal read write ratio

Features
Algorithm Performance Metrics
Write Write Energy Read Read fail
propagation fail consumption | response ratio
delay ratio time
ARAM Fair Good Fair Fair Fair
FDRM Good Fair Good Poor Poor
MFDRM Poor High Poor Good Good
System Low percentage of write requests
Features
Algorithms Performance Metrics
Write Write Energy Read Read fail
propagation fail consumption | response ratio
delay ratio time
ARAM Good Good Good Poor Poor
FDRM Poor Poor Poor Fair Fair
MFDRM Fair Fair Fair Good Good

Table 4-6 Ranking of ARAM, FDRM and MFDRM under different system features

85

Chapter 5
Conclusions and Future work

The characteristics of MANETs pose significant challenges for providing data
services. Frequent network partitioning in MANETs decreases data availability and
makes it difficult to maintain data consistency. Previous research demonstrates that data
replication is a feasible solution to alleviate the problems caused by poor network
connectivity and network partitions. Data replication, however, faces significant

challenges in MANETSs because of their lack of infrastructure and their dynamic network

topologies.

The dynamic network topologies of MANETS require dynamic replication algorithms.
Unfortunately, only a few replication algorithms, each emphasizing different aspects,
have been proposed for MANETs. To the best of our knowledge, until now there has
been no systematic comparison among different replication algorithms in MANETS. In
this thesis, we use simulation to evaluate the dynamic replication algorithms FDRM [7],
ARAM [8], MFDRM and a static replication algorithm SDRM. We believe studying the
behaviors of these algorithms under various scenarios yields insights into the design of

dynamic replication algorithms in MANETSs.

51 Conclusions

The actual benefits achieved by data replication are a complex function of the
number of replicas, their placement and the replica consistency protocol. Simulation
results demonstrate that ARAM achieves the lowest energy consumption, replica update

propagation delay and replica update fail ratio in most cases among all algorithms. A

86

drawback in ARAM is that no agreement protocol is executed when the number of
replicas changes. This may lead to a situation in which the number of replicas drops to
zero and affects data availability. ARAM does not respond well when the workload has a

large portion of reads.

MFDRM outperforms other algorithms in terms of read response time and replica
read fail ratio. MFDRM, however, suffers high replica write propagation delay and does
not respond well when the workload has a large portion of writes. Compared with ARAM
and MFDRM, FDRM is much simpler and adapts to the read-write ratio change in a
timely manner. Simulation results, however, show replica allocation in FDRM is not
accurate in MANETS because it fails to take into account the hop distance for each data

access.

Simulation results demonstrate that dynamic replication algorithms, like ARAM
and MFDRM, outperform static replication algorithms in most scenarios. We also realize
that increasing the number of replicas in the system does not guarantee the proportional
increment of availability and performance in read operations. On the other hand, an
increase in the number of replicas in the system may cause severe problems in

maintaining the replica consistency because of the dynamic nature of MANETS.

Simulation results lead us to propose the following guidelines in designing
replication systems:
® The Read-One-Write-All replica consistency protocol is not suitable for MANETs
because the write fail ratio in MANETS is very high. Furthermore, the number of
updatable replicas in MANETs must be small for applications that have tight

consistency requirements. Tight correctness and consistency requirements imply

87

5.2

lower performance and availability.

A dynamic replication algorithm has lower write propagation delay compared with a
static replication algorithm when MANETSs have a high workload.

Compared with a dynamic replication algorithm, which only considers the number
of data accesses when making a decision in replica allocation, a dynamic
replication algorithm, which considers both the number of data accesses and their
hop distance, improves performance.

Dynamic replication algorithms, which control the number of replicas among a
certain range, consume a significant amount of energy because broadcasting

agreement messages in MANETSs generates a large amount of traffic.

Future Work

There are many issues related to dynamic replication in MANETs and it is

impossible to address all of them. Through our simulations, we found the following

issues need further study:

® Accurate hop distance information

Most dynamic replication algorithms in MANETs assume the hop distance
information between any two mobile nodes is available. This assumption is not
realistic because of the dynamic nature of the ad-hoc network. An efficient way to
collect accurate hop information in MANETs needs to be investigated in order to
make the dynamic replication systems practical.

Efficient broadcasting mechanism

Most dynamic algorithms in MANETs uses blind flooding [27] to send broadcast
information. Blind flooding generates huge amounts of network traffic. Dynamic
replication algorithms need an accurate replica allocation policy to improve

performance and availability. An accurate replica allocation policy usually requires

88

that each node has a global view of the system. Obtaining a global view of the
system may cause lots of overhead in the system. An efficient broadcast mechanism
in MANETSs can thus be combined with dynamic replication in MANETS to minimize
the message traffic. On the other hand, an efficient dynamic replication algorithm on
MANETS needs to minimize information broadcasts.

Replica update and reconciliation mechanism

An efficient and reliable replica update approach must be found to maintain replica
consistency in MANETSs. Replica reconciliation mechanisms must be studied to solve
the inconsistency between a node’s local view of the current replica set and the
global view of the current replica set.

Replica consistency model

Most existing dynamic replication algorithms use Read-One-Write-All protocol to
maintain the replica consistency. Simulation resuits, however, demonstrate the write
fail ratio is fairly high. Other replica consistency protocols, such as the Quorum

Consensus method, which only updates a portion of all replicas, may be worth further

investigation.

89

REFERENCES

(]

2]

3]

(4]

(5]

(6]

71

[8]

191

Homepage of /ETF MANETs Working Group http.//www.jetf.org/html.charters/manet-
charter.html

B. Leiner, D. Nielson, and F. A. Tobagi, “Issue in Packet Radio Network Design”, in
Proceedings of /EEE Global Telecommunications Conference, vol. 75, pp. 6-20, January
1987

I. Chlamtac, M. Conti, and J. Liu, “Mobile Ad Hoc Networking: Imperatives and Challenges”,
in Proceedings of Ad Hoc Network Journal, Vol.1, No.1, pp. 13-64, July 2003

T. Hara, “Effective Replica Allocation in Ad-hoc Networks for Improving Data accessibility”,
in Proceedings of /EEE Conference on Computer and Communications, pp. 1568-1576,
April 2001

T. Hare, “Replica Allocation in Ad-hoc Networks with Periodic Data Update”, in

Proceedings of /nternational Conference on Mobile Data Management, pp.79-86, January
2002

K Wang, B. Li, “Efficient and Guaranteed Service Coverage in Partitionable Mobile

Ad-hoc Networks”, in Proceedings of /EEE Conference on Computer and Communicalions,
pp.1089-1098, June 2002

X. Zhou, X. Lu, M. Hou and J. Wu “A Dynamic Distributed Replica Management
Mechanism Based on Accessing Frequency Detecting”, in Proceedings of ACM Special
Interest Group on Operating Systems Review Volume 38, pp. 26-34, July 2004

J. Zheng, Y. J. Wang, X. C. Lu, K. Yang "A Dynamic Adaptive Replica Allocation Algorithm
in MANETSs", in Proceedings of the Second IEEE Annual Conference on Pervasive

Computing and Communications Workshops, pp. 65-70, 2004.

A.A. Helal, A.A. Heddaya, and B.B. Bhargava, “Replication Techniques in Distributed
Systems” Kluwer Academic Publishers 1996, ISBN: 0792398009

90

[10]

(1

2

3]

4]

5]

[16]

17

N8l

[19]

D. K. Gifford, “Weighted voting for replicated data” in Proceedings of the 7th Symposium on
Operating System Principles, pp. 150-162, December 1979

Y. Bartal, A. Fiat, and Y. Rabani. “Competitive algorithms for distributed data management”,
in Proceedings of the 24th ACM Symposium on Theory of Computing, pp. 39-50, 1992

G. Cabri, A. Corradi and F. Zambonelli “Experience of Adaptive Replication in Distributed
File Systems”, in Proceedings of the 22nd EUROMICRO Conference, pp. 39-50, 1996

S. Acharya and S. B. Zdonik, “An Efficient Scheme for Dynamic Data Replication”,
Technical Report CS-93-43, Brown University, September 1993

D. Barbara and H. Garcia - Molina, “Replicated Data Management in Mobile Environments:

Anything New Under the Sun”, in Proceedings of /F/P WG 10.3 Working Conference on
Applications in Parallel and Distributed Computing, pp. 18-22, April 1994

Q. R. Wang and J.F. Péris, "Managing Replicated Data Using Referees", in Proceedings of
Workshop Mobility and Replication, European Conference on Object-Oriented
Programming, August 1995.

D. Barbara, T. Imielinski, “Sleeper and Workholics: Caching Strategies in Mobile
Environment”, in Proceedings of the 1994 ACM International Conference on Management
of Data, pp.1-12, June 1994

J. Cay, KL Tan, B. C. Ooi, “On Incremental Cache Coherency Schemes in Mobile
Computing Environments”, in Proceedings of the Thirteenth International Conference on
Data Engineering, pp. 114-123, April 1997

Y. Huang, S. Pistla, and O. Wolfson, “Data Replication for Mobile Computer’, in
Proceedings of 1994 ACM International Conference on Management of Data, pp.13-24,
June 1994

E. Pitoura, B. Bhargava, “Maintaining Consistency of Data in Mobile Distributed

Environments”, in Proceedings of 75th /EEE International Conference on Distributed
Computing Systems, pp. 404-413, 1995

91

[20] P. Sistla, O. Wolfson and Y. Huang, “Minimization of Communication Cost through Caching

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

in Mobile Environments”, in Proceedings of /EEE Transactions on Parallel/ and Distributed
Systems, Vol. 9, No.4, April 1998.

J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison of
Multi-Hop Wireless Ad-hoc Network Routing Protocols”, in Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 85-
97, October 1998.

L. D. Fife and L. Gruenwald, “Research Issues for Data Communication in MANET
Database Systems”, in Proceedings of the ACM Special Interesting Group on Management
of Data Record, Vol. 32, No. 2, pp. 42-47, June 2003

J. L. Huang and M. S. Chen, “Exploring Group Mobility for Replica Allocation in a MANET,”
in Proceedings of the 72" ACM International Conference on Information and Knowledge
Management, November 2003

W. C. Peng and M. S. Chen, “Developing Data Allocation Schemes by Incremental Mining
of User Moving Patterns” in Proceedings of a Mobile Computing System IEEE Transactions
on Knowledge and Data Engineering, 15(1):70—85, February 2003

H. K. Wu, M. H. Jin, J. T. Horong, and C. Y. Ke “Personal Paging Area Design Based on
Mobile’s Moving Behaviors”, in Proceedings of /EEE Conference on Computer and
Communications, pp. 21-30, April 2001

X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A Group Mobility Model for Ad-hoc Wireless
Networks”, in Proceedings of the 2nd ACM International Workshop on Modeling Analysis
and Simulation of Wireless and Mobile Systems, August 1999.

Y. Yi, M. Gerla and T. J. Kwon “Efficient Flooding in Ad-hoc networks: a Comparative
Performance Study”, in Proceedings of 2003 IEEE International Conference on
Communication, Vol.2, pp. 1059-1063, May 2003

G. Karumanchi, S. Muralidharan, and R. Prakash, “Information Dissemination in
Partitionable MANETSs,” in Proceedings of /EEE Symposium on Reliable Distributed

Systems, pp. 4-13, October 1999

NS-2 network simulator: http://www.isi.edu/nsnam/ns

92

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Pong and T. Moors “The Impact of Random Waypoint Mobility on Infrastructure Wireless
Networks”, in Proceedings of the 17th International Conference on Parallel and Distributed
Systems Workshops, pp. 140-144, 2005

E. M. Royer and C-K Toh, “A Review of Current Routing Protocols for Mobile ad-hoc
Wireless Networks”, in Proceedings of 7999 /EEE Personal Communications, pp. 46-55,
April 1999

C-K. Toh, "Mobile ad-hoc Wireless Networks: Protocols and Systems", |SBN; 0130078174,
Prentice Hall Publishers, 2001.

E. Pacitti and E. Simon, “Update propagation strategies to improve freshness in lazy
master replicated databases”, in Proceedings of Very Large Data Bases Journal, 8(3-4):
pp. 305-318, 2000

B. Kemme and G. Alonso, “A suite of database replication protocol based on group
communication primitives”, in Proceedings of the 18th International Conference on
Distributed Computing Systems, pp. 1576-1586, May 1998

M. Papadopuli and H. Schulzrinne, “Design and implementation of a peer-to-peer data
dissemination and prefetching tool for mobile users”, in Proceedings of the First NY Metro
Area Networking Workshop, pp. 10 -21, March 2001

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere, “Coda: A
highly available file system for a distributed workstation environment”, in Proceedings of
IEEE Transactions on Computers, pp. 447-459, April 1990

D. Terry, M. Theimer, K. Peterson, A. Demers, M. Spreitzer, and C. Hauser, “Managing
update conflict in bayou, a weakly connected replicated storage system”, in Proceedings of
the 15th ACM Symposium on Operating Systems Principles, pp. 172-183, December 1995

R. Guy, J. Heidemann, W. Mak, T. Page, G. Popek, and D. Rothmeier, “Implementation of
the ficus replciated files system”, in Proceedings of USENIX Conference, pp. 63-71, June
1990

93

[39]

[40)

[41]

[42]

[43]

[44]

[49]

[46]

[47]

[48]

R. Guy, P. Reicher, D. Ratner, M. Gunter, W. Ma, and G. Popek, “Rumor: Mobile data
access through optimistic peer-to-peer replication”, in Proceedings of the 17th international
Conference on Conceptual Modeling, pp. 254 - 265, November 1998

T.D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems”,
in Proceedings of Journal of the ACM, 43(2), pp. 225 - 267, 1996

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with
one faulty process”, in Proceedings of Journal the ACM, 32(2), pp. 374 - 382, April 1985

D. Ratner, “Roam: A Scalable Replication System for Mobile and Distributed Computing”,
PhD. Dissertation, University of California, 1998

H. Yu, P. Martin and H. S. Hassanein, “Cluster - Based Replication for Large - Scale Mobile
Ad - hoc Networks”, in Proceedings of the International Conference on Wireless
Communications and Mobile Computing, pp. 552-557 June 2005.

D. B. Johnson, “Routing in Ad-hoc Networks of Mobile Hosts,” in Proceedings of the /[EEE
Workshop on Mobile Computing Systems and Applications, pp. 158-163, December 1994.

S. Corson and J. Macker, “MANETing (MANET): Routing Protocol Performance Issues and
Evaluation Considerations”, /nternet Engineering Task Force RFC 2501.

C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers,” in Proceedings of the Special Interest Group on
Data Communications Conference on Communications Archilectures, Prolocols and
Applications, pp. 234-244, August 1994.

C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,
pp. 90-100, February 1999.

J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison
of Multi-Hop Wireless Ad-hoc Network Routing Protocols,” in Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile and Networking, pp. 85-97, October
1998.

[49) P.Jackquet, P. Muhlethaler, T. Cluusen, A. Laouiti, A. Qayyum, and L. Viennot,

94

[50]

[51]

[52]

(53]

[54]

[59]

[56]

[57]

[58]

[59]

“Optimized Link State Routing Protocol for Ad-hoc Network,” MANET (MANET) Working
Group, Internet Engineering Task Force, February 2000

D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The Dynamic Source Routing Protocol for
Multihop Wireless Ad-hoc Networks,” Ad-hoc Networking, edited by Charles E. Perkins,
Chapter 5, pp. 139-172. Addison-Wesley, 2000 '

S. Lee, W. Su and M. Gerla, “On-Demand Multicast Routing Protocol (ODMRP) for Ad-hoc
Networks”, Internet Engineering Task Force MANET Working Group, Internet-draft, 2000.

V. Park, and S. Corson, “Temporally-Ordered Routing Algorithm (TORA) Version 1
Functional Specification,” Internet draft, Internet Engineering Task Force, 1997.

J.J. Garcia-Luna-Aceves and M. Spohn, “Source-Tree Routing in Wireless Networks”, in
Proceedings of /nternational Conference on Network Profocols, October 1999.

R. Ogier, F. Templin and M. Lewis, “Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF)”, RFC 3684, Network Working Group, 2004.

B. Bhargava, A. Helal, and K. Friesen, “Analyzing availability of replicated database
systems”, in Proceedings of the International Journal of Computer Simulation, 1(4), pp.
393-418, December 1991

A. Kumar and A. Segev, “Optimizing voting-type algorithms for replicated data”, in
Proceedings of the International Conference on Extending Database Technology:
Advances in Database Technology, pp. 428-442, March 1998

E. J. Shekita and M. J. Carey, “Performance enhancement through replication in an Object-
Oriented DBMS?”, in Proceedings of ACM Special Interest Group on Management of Data
Conference, pp 325-336, June 1989

I. S. Pressman, S. A. Cook and J. K. Pachl, “The Optimal Location of Replicas in a Network
Using a read-one-write-all Policy”, in Proceedings of Journal of Distributed Computing,

Volume 15, pp. 57-66, April 2002

J. Barreto, “Information Sharing in Mobile Networks: a Survey on Replication
Strategies”, 7echnical Report, Inesc-ID, September 2003.

95

[60] P. Reiher, G. Popek, M. Gunter, J. Salomone, and D. Ratner, “Peer-to-Peer Reconciliation
Based Replication for Mobile Computers”, in Proceedings of European Conference on

Object Oriented Programming 96 Second Workshop on Mobility and Replication, June
1996.

[61] E. Pacitti, P. Minet and E. Simon, “Replica Consistency in Lazy Replicated Databases”, in
Proceedings of Distributed and Parallel Databases, Volume 9, Number 3, pp. 237-267, May
2001

[62] B.R. Badrinath and T. Imielinski, “Replication and mobility”, in Proceedings of the 2 IEEE
Workshop on Management of Replicated Datla, pp. 9-12, November 1992

[63] C.-K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems"” Prentice Hall, ISBN:
0130078174, Chapter 1&2, December 2001

[64] O. Wolfson, S. J'ajodia, Y. Huang, “An Adaptive Data Replication Algorithm®, in Proceedings
of ACM Transactions on Database Systems, Vol. 22, No. 2, pp. 255-314, June 1997

96

APPENDIX A - FDRM ALGORITHM
This section lists the details and pseudo code of the FDRM algorithm. Figure A.1 lists the

variables and constants in FDRM. Figure A.2 lists different types of message in FDRM.

Variable/Constant | Definition

k the replica node that executes the algorithm FDRM

R; the number of reads from node kitself during a time period 7,

Rou, j the number of reads from node / to node k (j # k) during a time period 7,

Wou the number of updates from other nodes during a time period 7,

Wi, the number of writes from node kitself during a time period 7,

F the set of replica nodes in the system

outRead a list whose entry represents the number of reads that node A receives. For
example, outRead(j) means the number of reads, which are sent from node j
receives by node k

Tn the time duration of the n" replica allocation interval

A, the total number of data access during the time period 7,

N the number of RPCA_ADD PERMIT messages that replica node kreceives

D the number of RPCA_DELETE_PERMIT messages that replica node &
receives

|4 the set of all mobile nodes in the system

slate a variable indicating the state of node k

MAX_INTERVAL

the maximum replica allocation interval

MIN_INTERVAL

the minimum replica allocation interval

MAX the maximum number of replicas
MIN the minimum number of replicas
|4 the set of all mobile nodes in the system

Figure A.1 Variables and constants in FDRM

97

Message Type

Message Functionality

RPCA_READ query a replica

RPCA READ REPLY a query response

RPCA WRITE a replica update message

_ADDING coordinate the adding of a new replica to the system
RPCA ADD PERMIT the permission of adding a replica from a single node
RPCA_ADDED add a replica to the system

RPCA _ADDED REPLY

a broadcast message informs a replica is added to the system

RPCA_DELETING

coordinate the deleting of a replica from the system

RPCA _DELETE PERMIT

the permission of deleting a replica from a single node

RPCA_DELETED

a broadcast message indicating the replica is deleted

RPCA_SWITCH

switch a replica in the system

RPCA_SWITCH_REPLY

a broadcast message indicating a replica is switched in the system

AllocateRpca

Figure A.2 Messages in FDRM

AllocateRpca is executed on a replica node & when the replica allocation phase starts.

Figure A.3 shows the pseudo code of AllocateRpca. Node k first executes the AddRpca

and DeleteRpca procedures, as in lines 1 and 2. Next, if both add and/or delete a replica

fail and the current number of replica reaches MAX, node k applies the migration

process. Finally, node k executes procedure Nextinterval to set the next replica

allocation interval.

Begin AllocateRpca

10 end if
1 end for
12 endif

End AllocateRpca

1 execute AddRpca procedure

2 execute DeleteRpca procedure

3 if AddRpca and DeleteRpca fails and /F/ = MAX then
4 for eachie outRead do

5 if outRead[i] > R, then

6 execute SwilchRpca procedure

9 break;

13 execute Next/nterval procedure

Figure A.3 AllocateRpca procedure in FDRM

98

AddRpca

If the current number of replicas in the system is less than the maximum number of
replicas in the system, the add procedure starts. Replica node & searches the outRead
list fo find the first node v that satisfies (3.1), as in line 5. Next, node k changes its state
from Start to Adding, as in line 6. Next, replica node A sends coordination messages
RPCA_ADDING to other replica nodes to request permission to add a replica. A replica
node sends a permission message RPCA_ADDING_PERMIT back to node & only when
its state is Adding. We denote the number of permission messages that replica node &
receives as N and the current number of replica is /F/. If N +/F] < MAX, which means
replica node & has enough permissions to add a new replica, replica node k changes its
state from Adding to Added. Otherwise, it changes its state from Addingto Start. When a
replica node 4 is in the Added state, it adds a replica to node v by sending message
RPCA _ADD. When node u receives the new replica, it sends a broadcast message
RPCA ADD_REPLY to all nodes in the system to indicate that a new replica is added.

Finally, node k& changes its state from Added to Start when it receives message

RPCA_ADD_REPLY.

99

Begin AddRpca

1 K |Fj<MAX then
2 i—>0

3 for each entry in outRead do

4 u —> oulReadfi]

5 If u satisfies 3.1 then

6 state — Adding

7 for eachnoden,neFandn# k do

8 node k sends message RPCA_ADDINGto node n

9 end for

10 break;

11 end if

12 i—> i+1

13 end for

14 N—>0

15 for each received RPCA_ADDING_PERMIT do
16 N—> N+1

17 end for

18 If N+ |F]<Max then

19 state — Added

20 node k sends message RPCA ADDED to node u
21 else

22 state — Start

23 end if

24 on received RPCA_ADDED REPLY do
25 F=F U {u}

26 state — Start

28 end do

29 endif

End AddRpca

Begin OnRecv_RpcaAdd

1 F=F U {u}

2 node u sends broadcast message RPCA_ADDED REPLY
End OnRecvRpcaAdd

Figure A.4 AddRpca procedures in FDRM
DeleteRpca
If node k satisfies 3.2, it changes its states from Sfart to Deleting. Next, it sends the
coordination message RPCA_DELETING to other replica nodes to request permission to
delete its replica, as in line 4. A replica node sends a permission message back to node
k only when its state is Defeting. We denote the number of permission messages that
replica node kin Deleting state receives as D and the current number of replicas as |F|. If

[F] - MIN > D, which means replica node k& has enough permissions to delete its replica,

100

replica node A changes its state from Deleting to Deleted, as in line 12. When a replica
node k is in the Deleted state, it deletes its replica and sends the message
RPCA_DELETED to inform all nodes in the system that its replica is deleted. Finally, it

changes its state from Deletedto Start.

Begin DeleteRpca

1 If node k satisfies 3.2 then

2 state —> Deleting

3 for eachnoden,neFandn#k do

4 node k sends message RPCA_DELETING to node n
5 end for

6 D—->0

7 for each received message RPCA DELETE_PERMIT do
8 D—>D+1

9 end for

10 if D<|F|-MIN then

1 F=F U-{k}

12 state — Deleted

13 node k broadcasts message RPCA_DELETED
14 end if

15 state — Start

16 endif

End DeleteRpca

Begin OnRecv_RpcaDeleted

1 F=FuU-{}

End OnRecv_RpcaDeleted

Figure A.5 DeleteRpca procedures in FDRM

SwitchRpca

Node & searches the outRead list to find the first node v that satisfies (3.4) and changes
its state from Start to Switch. When replica node k is in the Switch state, it sends a
message RPCA_SWITCHto node J. Upon receiving RPCA_SW/ITCH from replica node &,
node j adds a replica to its local cache and sends a broadcast message
RPCA_SWITCH_REPLY to all nodes in the system to indicate the switching of replica
from node Ato node /. Finally, when node jreceives RPCA SWITCH REPLY, it changes

its state from Swifchto Start

101

Begin SwitchRpca

for each outReadfi] do
u —> outRead]i]
if Row u>Rin then
state — Switch
node k sends message RPCA SWITCHto node u
break;
end if
i—>>i+1
end for
On receive RPCA _SWITCH_REPLY do
10 F=FuU -{k} + {u}
11 state — Start
End SwitchRpca

OO NOOUNHWN=

Begin OnRecv_RpcaSwitch

1 node u sends broadcast message RPCA_SWITCH_REPLY
2 F=FuU -{k}+{u}

End OnRecv_RpcaSwitch

Figure A.6 SwitchRpca procedures in FDRM

Nextinterval

The next replica allocation interval is calculated based on 3.3, as in line 6. Some special
cases are addressed as well. If there are no data accesses during the current interval,
then no matter how many accesses the replica had in the last interval, the length of the
next interval is twice the length of the current interval, as in line 2. On the other hand, if
there are no data accesses during the last interval, then no matter how many data
access in current interval, the length of next interval is half of the length of current
interval, as in line 4. To avoid the length becoming too short or too long, a lower and

upper limit is set, as in line 9 and line 11.

102

Begin Next/nterval

1 if A(n)==0 then

2 T(n+1) =2 T(n)

3 elseif A(n-1)==0 then

4 T(n+1)=0.5T(n)

5 else

6 T(n+1) >T (M) *A(-1)*T (n)/ (T (n-1)*A (n))
7 end if

8 if T(n+1)> MAX PER/IOD then

9 T (n+1) = MAX_PERIOD

10 elseif T (n+1) < MIN_PER/OD then
11 T (n+1) = MIN_PERIOD

12 endif

13 return T (n+1)
End Nextinterval

Figure A.7 Nextinterval procedure in FDRM

ReadRpca

If node khas a replica in its local cache, node k increase the counter of local read 7;,by 1
and the read operation succeeds locally. Otherwise, node k sends a message
RPCA_READ 1o a replica node 7 which has the fewest hops to node 4 When it receives
the RPCA_READ message from node 4, if node n never receives a request from node &,
it inserts a new entry outRead(k) into the outRead list and set its counter to 1. If node n
receives the request from node A before that, it increases its counter by 1. Then, node n
moves outRead(k) to the head of the outRead list. The read operation succeeds when

node A receives the message RPCA_READ REPLY from node n.

103

Begin ReadRpca

if node k € F then
lin => Mint+ 1
retun O

else

n —> min d(k, j)
JjeF

node k sends message RPCA_READto node n

if node k receives message RPCA_READ REPLYthen
retun O

end if

10 endif

End ReadRpca

OWOoOONO N HWN=

Begin OnRecv_ReadRpca
1 if k ¢ inoutRead then
2 outRead(k) — 1

3 else

4 outRead(k) — outRead(k) + 1

5 endif

6 node n moves k to the first entry in outRead

6 node n sends message RPCA READ REPLYto node k
End OnRecv_ReadRpca

Figure A.8 ReadRpca procedures in FORM

UpdateRpca

If node A has the replica in it local cache, node kincrease the counter of local write W,by

1. Next, node k& send message RPCA_WRITE to other replica nodes. When it receives

the RPCA_WRITE message from node &, a replica node nincreases its counter w,,, by 1

and update its replica.

104

Begin UpdateRpca

1 ifnodek € F then

2 Win = Wi+ 1

3 update replica O

4 endif

5 foreachnoden € Fandn# kdo

6 node k sends message RPCA_ WRI/TE to node n
7 end for

End UpdateRpca

Begin OnRecv_UpdateRpca
1 Wou —> Wou+ 1

2 update replica O

End OnRecv_UpdateRpca

Figure A.8 UpdateRpca and OnRecv_UpdateRpca procedures in FDRM

105

APPENDIX B - ARAM ALGORITHM
This section lists the details and pseudo code of the ARAM algorithm. Figure B.1 lists the

variables and constants in ARAM. Figure B.2 lists different types of messages in ARAM.

Variable/Constant | Definition
k the replica node that executes the algorithm ARAM
"4 all mobile nodes in the system
F replica nodes in the system
ak, j) the shortest hop distance between node kand node
q(k) qtk) =Z d(k, j) is defined as the weight value of a replica node k
JEeF
R(k, u) reads received by node A from node v during a time period t
Wik, u) writes received by node & from node v during a time period t
C CG)={fi/i€F, d(F)=mind(k)
A A={ilie V-F ke C(i), uisone of the shortest paths between /and s}.
RA) reads from set A
WA) writes from set A
WTk) writes that replica node & receives from other nodes and itself
WA(K) writes that replica node kreceived from set A
w writes from set V
Achange Achange = z W (iY(q(k) — q(Pi))
icA
B B={i|lie V-F k=pjand C(i) - {k}# ¢}
P/ fori € B, p/ € C(i) and q(p;) = min q(j), j € C(i)-{k}.
Z ze F-{s}and d(s, F—{s}) =d(s, z)
w

w € F—{K}, q(w) — d(w, k) = max(q(i) — d(i, k), i € F — {k}.

B.1 Variables and constants in FDRM

106

Message Type

Message Functionality

RPCA_READ

query a replica

RPCA READ_REPLY

response from replica query

RPCA _UPDATE

update a replica

RPCA_FORWARD

forward a replica update request to the node that has the least weight

ALLOCATE a message broadcast to collect data access information

ALLOCATE _REPLY a reply message indicating the data access information at source node
RPCA_ADD add a replica to the system

RPCA_ADDED a broadcast message indicates a replica is added

RPCA_SWITCH

switch a replica

RPCA_SWITCHED

a broadcast message indicating the replica switch information

RPCA DELETED

a broadcast message indicating the replica has been deleted

AllocateRpca

Figure B.2 Messages in ARAM

Figure B.3 has the detailed pseudo code of procedure AllocateRpca. First, node A sends

a broadcast message ALLOCATE to collect data access information from other nodes.

Upon received ALLOCATE, a node sends ALLOCATE_REPLY which contains the data

access information during the current interval. Second, for each node u, which is a

neighbor of node &, if node v satisfies 3.6, then procedure AddRpca is executed. If node

u satisfies 3.8, then procedure SwitchRpca is executed. If node v satisfies 3.7, then

procedure DeleteRpca is executed. Finally, procedure Next/ntervalis executed to set the

next replica allocation interval.

107

Begin AllocateRpca

1 node k sends broadcast message ALLOCATE
2 onreceive message ALLOCATE_REPLY do
for each neighbor node vof kand v ¢ F do
if v satisfies 3.6 then
execute AddRpca procedure
end if
if v satisfies 3.8 then
execute SwitchRpca procedure
end if
10 if usatisfies 3.7 then
11 execute DeleteRpca procedure
12 end if
13 end for
14 execute Next/nterval procedure
End AllocateRpca

Begin OnRecv_Allocate
1 node m sends a message ALLOCATE _REPLY
End OnRecv Allocate

OCONOU A~ W

Figure B.3 AllocateRpca procedures in ARAM

AddRpca
Node k sends a message RPCA_ADD, which contains the replica. When node v
receives RPCA_ADD message, it sends a broadcast message KPCA_ADDED to inform

all nodes in the system that a new replica is added.

Begin AddRpca
1 node k sends message RPCA ADD+to node u
End AddRpca

Begin OnRecv_AddRpca

1 node u sends a broadcast message RPCA_ADDED
2 F=FV {u

End OnRecv_AddRpca

Figure B.4 AddRpca procedures in ARAM

SwitchRpca
Node A& sends message RPCA SWITCH, which contains the replica, and deletes its

replica. When node v receives RPCA_SWITCH, node v sends a broadcast message
RPCA _SWITCHED to inform all nodes that a new replica is added to node v and the

replica at node kis deleted.

108

Begin SwitchRpca
1 node k sends message RPCA_SWITCH to node u
2 F=FV {u-{k}

End SwitchRpca

Begin OnRecv_SwitchRpca
1 node u sends a broadcast message RPCA_SWITCHED
2 F=FV {u-{k}

End OnRecv_SwitchRpca

Figure B.5 SwitchRpca procedures in ARAM

DeleteRpca

Node A sends a broadcast message RPCA_DELETEDto inform all nodes in the system

that its replica is deleted. Next, node A deletes the replica from its local cache.

Begin DeleteRpca
1 node k sends a broadcast message RPCA_DELETED
2 F=F-{}

End DeleteRpca

Begin OnRecv_DeleteRpca
1 F=F-{k}
End OnRecv_DeleteRpca

Figure B.6 DeleteRpca procedures in ARAM

ReadRpca

If node k has the replica in its local cache, node kincrease the counter of local reads Rk,

k) by 1 and the read operation succeeds locally. Otherwise, node A sends a message

RPCA_READ to a replica node n which has the lowest weight value. When it receives

the RPCA_READ message from node &, node n updates its read list information and

replies with message RPCA READ REPLY.

109

Begin ReadRpca

1 ifnode k € F then

2 R(k, k) = R(k, k) + 1

3 return O

4 else

5 q(n) — min q(r) and re C(k)

6 node k sends message RPCA_READto node n
7 if node k receives message RPCA_READ REPLY then
8 return O

9 end if

10 endif

End ReadRpca

Begin OnRecv_ReadRpca

1 if k €Rthen

2 R(n, k) =1

3 else

4 R(n, k) = R(n, k) +1

5 endif

5 node n sends message RPCA READ_REPLY 1o node k
End OnRecv_ReadRpca

Figure B.7 ReadRpca and OnRecv_ReadRpca procedures in ARAM

UpdateRpca

If node k has the replica in its local cache, node k increases the counter of local write
Wik, k) by 1 and updates the replica. Next, node k< sends RPCA_FORWARD 110 a replica
node nwhich has the lowest weight value. When node 7 receives the RPCA_FORWARD
message from node k; if kis not in its write list W, it inserts kinto Wand set W(n, k)= 1.
If kis already in the write list W, it updates W{n, k) by 1. Then, node n sends
RPCA UPDATE to other replica nodes. When a replica node / receives message

RPCA_UPDATE from node n, it updates its write list. Finally, node fupdates its replica.

110

Begin UpdateRpca
if nodek € F then
W(k, k) &> W(k, k) + 1
update replica O
end if
q(n) — min q(r) and re C(k)
node k sends message RPCA_ FORWARD b node n
End UpdateRpca

ODDNHEWN=

Begin OnRecv_ForwardRpca
if k¢ Wthen
W(n, k) =1
else
W(n, k)—> W(n,k)+ 1
end if
update replica O
for eachnodej € Fandj* k do
node n sends message RPCA UPDATEto node j
end for
End OnRecv_ForwardRpca

OCOONONHBWN =

Begin OnRecv_UpdateRpca
if ngW then
W(@, n) =1

-

2

3 else

4 W(, n)—> W(,n)+1
5 end if

6 update replica O

End OnRecv_UpdateRpca

Figure B.8 UpdateRpca procedures in ARAM

111

APPENDIX C - MFDRM ALGORITHM
This section lists the details and pseudo code of the MFDRM algorithm. Figure C.1 lists

the variables and constants in MFDRM. Figure C.2 lists different types of message types

in MFDRM.

Variable/Constant | Definition

k the replica node that executes the algorithm MFDRM

d(k j) the shortest hop distance between node 4 and node /

R the number of reads from node kitself during a time period 7,

RL a list whose entry represents the number of reads that node & receives. For
example, RL(j) means the number of reads, which are sent from node j,
receives by node &

wL a list whose entry represents the number of writes that node 4 receives. For
example, WL(j) means the number of reads, which are sent from node j,
receives by node &

Wi, the number of writes from node k itself during a time period 7,

F the set of replica nodes in the systems

T, the time duration of the n" replica allocation interval

A, the total number of data access during the time period 7,

N the number of RPCA_ADD_PERMIT messages that replica node A receives

D the number of RPCA_DELETE PERMIT messages that replica node &
receives

4 the set of all mobile nodes in the system

slate a variable indicates the state of node &

MAX_INTERVAL

the maximum replica allocation interval

MIN_INTERVAL

the minimum replica allocation interval

MAX

the maximum number of replica

MIN

the minimum number of replica

Figure C.1 Variables and constants in MFDRM

112

Message Type

Message Functionality

RPCA _READ query a replica
RPCA READ REPLY a query response
RPCA WRITE a replica update message

RPCA_ADDING

coordinate the adding of a new replica to the system

RPCA_ADD_PERMIT

the permission of adding a replica from a single node

RPCA_ADDED

add a replica to the system

RPCA ADDED REPLY

a broadcast message that replica has been added to the system

RPCA _DELETING

coordinate the deleting of a replica from the system

RPCA_DELETE_PERMIT

the permission of deleting a replica from a single node

RPCA_DELETED

a broadcast message indicating that the replica is deleted

RPCA_SWITCH

switch a replica in the system

RPCA SWITCH REPLY

a broadcast message indicating a replica is switched in the system

AllocateRpca

Figure C.2 Messages in MFDRM

Figure C.3 shows pseudo code of AllocateRpca. Node k first executes AddRpca

procedures and DeleteRpca procedures, as in lines 1 and 2. Next, if both add and/or

delete a replica fail and the current number of replica reaches MAX;, node k applies the

migration process. Finally, node k executes procedure Next/ntervalto set the next replica

allocation interval.

Begin AllocateRpca

1 execute AddRpca procedure

2 execute DeleteRpca procedure

3 if AddRpca and DeleteRpca fails and /F/ = MAX then
4 for eachie RL do

5 if RL[]>R;, then

6 execute SwilchRpca
7 break;

8 end if

9 end for

10 endif

11 execute Next/nlerval procedure

End AllocateRpca

Figure C.3 AllocateRpca procedure in MFDRM

113

AddRpca

If the current number of replicas in the system is less than the maximum number of
replicas in the system, the add procedure starts. Replica node & search the RL list to find
the first node vthat satisfies (3.10) as in line 3 and node A changes its state from Startto
Adding as in line 4. Next, replica node & sends coordination messages RPCA_ADDING
to other replica nodes to request permission to add a replica. A replica node sends a
permission message RAPCA_ADD_PERM/T back to node k& only when its state is Adding.
We denote the number of permission messages that replica node A receives while in the
Adding state as N and the current number of replicas as /F/. If N +/F/ < MAX, which
means replica node k has enough permissions to add a new replica, replica node &
changes its state from Adding to Added. Otherwise, it changes its state from Adding to
Start. When a replica node kis in the Added state, it adds a replica to node v by sending
message RPCA_ADD. When node v receives the new replica, it sends a broadcast
message RPCA ADD REPLY to inform all nodes in the system that a new replica is
added. Finally, node 4 changes its state from Added to Start when it receives message

RPCA_ADD REPLY.

114

Begin AddRpca

1 If|F| < MAX then

2 for eachnodeuin RL do

3 If usatisfies 3.10 then

4 state — Adding

5 for eachnoden,neFandn# k do
6 node k sends message RPCA_ADDING to node n
7 end for

8 break;

9 end if

10 end for

1" N—>0

12 for each received RPCA_ADDING PERMIT do
13 N—> N+1

14 end for

15 IfN + |F| < Max then

19 state — Added

20 node k sends message RPCA_ADDED to node u
21 else

22 state — Start

23 end if

24 on received RPCA_ADDED REPLYdo

25 F=F U {u}

26 end do

27 endif

End AddRpca

Begin OnRecv_RpcaAdd

1 F=F U {u}

2 node u sends broadcast message RPCA_ADDED REPLY
End OnRecv_RpcaAdd

Figure C.4 AddRpca procedures in MFDRM

DeleteRpca

If node & satisfies 3.11, it changes its states from Normal to Deleting. Next, it sends
coordination message RPCA_DELETING to other replica nodes to request permission to
delete its replica, as in line 4. A replica node sends a permission message back to node
k only when its state is Deleting. We denote the number of permission messages that
replica node k in Deleting state receives as Dand the current number of replica as |F|. If
[F/ - MIN > D, which means replica node k has enough permissions to delete its replica,

replica node k changes its state from Deleting to Deleted, as in line 12. When a replica

115

node k is in the Deleted state, it deletes its replica and sends message
RPCA _DELETED to inform all nodes in the system that its replica is deleted. Finally, it

changes its state from Delefedto Start.

Begin DeleteRpca

1 I node k satisfies 3.11 then

2 state — deleting

3 for eachnoden,neFandn#k do

4 node k sends message RPCA_DELETINGto node n
5 end for

6 D—>0

7 for each received message RPCA DELETE PERMIT do
8 D—>D+1

9 end for

10 if D<|F|-MIN then

11 F=F U-{k}

12 state — Deleted

13 node k broadcasts message RPCA_DELETED
14 isDeleted — true

15 end if

16 state — Normal

12 endif

End DeleteRpca

Begin OnRecv_RpcaDeleted

1 F=FuU-{}

End OnRecv_RpcaDeleted

Figure C.5 DeleteRpca procedure in MFDRM

SwitchRpca

Node k searches the outRead list to find the first node v that satisfies (3.4) and changes
its state from Start to Switch. When replica node £ is in the Switch state, it sends a
message RPCA_SWITCHto node J. Upon receiving RPCA_SWITCH from replica node &,
node j adds a replica to its local cache and sends a broadcast message
RPCA_SWITCH_REPLY to all nodes in the system to indicate the switching of replica
from node kto node /. Finally, when node jreceives RPCA SWITCH_REPLY, it changes

its state from Swifchto Start.

116

Begin SwitchRpca

1 for each node/in RL do

3 if RL())> R, then

4 state — Switch

5 node k sends message RPCA_SW/TCHto node u
6 break;

7 end if

8 endfor

9 On receive RPCA_SWITCH_REPLY do

10 F=FuU -{k} +{u}

11 state — Start

End SwitchRpca

Begin OnRecv_RpcaSwitch

1 node u sends broadcast message RPCA SWITCH_REPLY
2 F=Fwv -{k}+{u}

End OnRecv_RpcaSwitch

Figure C.6 SwitchRpca procedures in MFDRM

ReadRpca

If node & has the replica in it local cache, node k increases the counter of 7;,by 1 and the
read operation succeeds locally. Otherwise, node A sends a message RPCA_READto a
replica node 7 which has the fewest hops to node & When receives the RPCA_READ
message from node k, node 77 either inserts 4 into the list and set the counter to 1 or

increases the counter by 1. The read operation succeeds when node A receives the

message RPCA READ REPLY from node n.

117

Begin ReadRpca
1 ifnode k € F then
2 Tin - Fin + 1
3 return O
4 else
5 n — min d(k, j)
jeF
6 node k sends message RPCA_READ1o node n
7 if node k receives message RPCA _READ REPLY then
8 return O
9 end if
10 endif
End ReadRpca

Begin OnRecv_ReadRpca
1 if node k ¢ RL then

2 RL(k) =1

3 else

4 RL(k) > RL(k) +1
5 endif

6 node n moves k to the first entry in RL
7 node n sends message RPCA_READ REPLYto node k
End OnRecv_ReadRpca

Figure C.7 ReadRpca procedures in MFDRM

UpdateRpca

If node k has the replica in its local cache, node 4 increases the counter of W;,by 1 and

updates the replica. Next, node & sends RPCA WRITE to other replica nodes. When a

replica node 77 receives the RPCA_ WRITE message from node &, if kis not in WL, it

inserts A into WL and set WL(k) equals 1. If kis already in WL, it increases its counter

WL (k) by 1 and updates its replica.

118

Begin UpdateRpca
if node k € F then
Wi, = W, + 1
update replica O
end if
for each node n € Fand n* kdo
node k sends message RPCA_WRITEto node n
end for
End UpdateRpca

NOOEWN =

Begin OnRecv_UpdateRpca

1 ifnode k€ WL then

2 insert kinto WL and WL[K] —1
3 else

4 WLIK] — WLk + 1

5 endif

6 update replica O

End OnRecv_UpdateRpca

Figure C.8 UpdateRpca procedures in MFDRM

119

