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ABSTRACT

Data Compression and Transmission in Wireless Sensor Networks

Ashkan Heshmati

Wireless Sensor Networks (WSNs) have emerged as a new research area in
communication systems in recent years. Theoretically, sensor networks can be modeled
by either Chief Executive Officer (CEO) problem or Multi-terminal communication
problem. A Wireless Sensor Network consists of a set of battery-powered nodes which
are limited in energy; and network’s lifetime depends on the energy consumption of the
nodes. Therefore, one of the main issues in designing WSNs is reducing the energy
consumption. In sensor networks we deal with a set of correlated observations. We can
exploit this correlation and compress the data which is going to be transmitted from
different nodes. Moreover, as all nodes are equipped with antennas, we can take
advantage of having several antennas and apply advanced energy-efficient
communication methods such as Multiple-Input Multiple-Output (MIMO) technique.

The contributions of this thesis are presented in two parts: In the first part we
consider the Chief Executive Officer (CEO) problem for binary sources. We model the
source by an i.i.d. unbiased sequence which is connected to each sensor via a Binary
Symmetric Channel (BSC). We analyze the behavior of the system and show that sensors
can compress their observations according to Slepian-Wolf rate bound. We consider the
conditional entropy of the source given a set of observations as a function of number of
sensors as well as cross-over probability of the BSC. We derive a closed form for this
function and prove that it converges to zero as the number of sensors tends to infinity.

Substituting this function in Fano's inequality, we determine the minimum number of
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sensors required to achieve a desired probability of error. We also derive the estimation
rule for a Maximum Likelihood estimator.

In the second part we consider cooperative communication where sensors are able
to communicate in order to jointly compress their correlated information and apply
MIMO transmission techniques. We assume two scenarios. In the first scenario we
consider the Gaussian CEO problem where sensors observe a common Gaussian source
and report noisy versions of this source to the CEO. We propose an energy-efficient
cooperative algorithm for data estimation exploiting virtual MIMO technique. In the
second scenario we extend the problem to Multi-terminal communication where all nodes
wish to transfer their individual correlated information to the Fusion Center which is
interested in all observations. We propose two different cooperative data compression
algorithms. In the first algorithm we transform the correlated data into parallel
independent Gaussian sources. We derive mathematical closed form equations for the
transform matrices and optimum rate allocation. In the second algorithm we apply Vector

Quantization. We simulate the proposed algorithms and compare their performance.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Sensor networks have become known as a new discipline in communication
systems in recent years. In many engineering problems we deal with sensing an
environment and making estimates based on the phenomena sensed. The numerous
applications of sensors in life and environment together with advances in wireless
communications, microelectronics and digital signal processing have motivated
researchers to develop the idea of Wireless Sensor Networks (WSNs). As a general
definition, a Wireless Sensor Network consists of a set of small, battery-powered and
low-cost nodes which are usually equipped with three major components: a sensing
device, a processor and a communication module. They can communicate with each
other, process their observations and cooperatively transmit their information to the

Fusion Center (FC) [1].



Wireless sensor networks have many applications in imaging the environment and
habitat monitoring. Imaging implies spatially distributed sampling or measuring of a field
(e.g., moisture content in soil or air temperature) which provides us with more precision,
diversity and tolerance against failure. The fact that nodes are connected wirelessly and
operate on batteries let us sense remote or inaccessible areas. For instance they can be
used for detection of fire in forests, floods and earthquakes. They also have health,
industrial, commercial and home applications which include monitoring the patients or
industrial settings and home automation systems [2].

Sensor networks have wide variety of applications. Depending on the application,
design constraints vary from network to network. We categorize sensor networks into
different classes. For instance in one class of WSNs, all nodes observe one phenomenon
and the Fusion Center estimates the phenomenon based on all observations. In this
system exact observations of individual nodes are not of interest and only the final
estimation is desired (e.g. measuring the moisture content in soil). On the other hand,
there also exist other networks which require all individual observations at the Center
(e.g. fire detection networks). We consider both system models in our work and
throughout the thesis we study Energy-Constrained wireless sensor networks.

One of the main characteristics of sensor networks is that in most cases we deal
with an ensemble of correlated observations. Specially, in distributed sensing systems
where all agents are imaging one phenomenon, observations are highly correlated. The
problem of distributed sensing and encoding correlated observations was first introduced
by Flynn and Gray [3] in 1987. They considered a distributed sensing system wherein

several sensors observe a phenomenon, separately encode their observations and



communicate to an estimator over a channel of limited capacity. The objective is to
estimate the phenomenon with minimum distortion. They analyzed the achievable rate
and distortion for the case of two sensors under certain conditions and proposed two
algorithms for quantizer design in order to achieve good performance.

Distributed sensing and wireless sensor networks can also be regarded as an
example of the classical Chief Executive Officer (CEO) problem [4], defined in
information theory. The problem states that the CEO (also referred to as Central
Estimation Officer) is interested in estimating a data sequence which cannot be observed
by him directly. Therefore, CEO deploys a team of agents who observe independently
corrupted versions of this data and report it to him. This problem was introduced by
Berger and Zhang [5] in 1994 and was developed in [6] with a Gaussian source model.

They considered a continuous source with an i.i.d. sequence of zero mean Gaussian

random variables N(0,07”) which are corrupted by identical independent memoryless

noises N(0,0) . This model is called “Quadratic Gaussian CEO Problem”. In [7] the

rate-distortion function for this source is studied. We also use this data model for our
‘Continuous’ sources throughout this thesis. In addition, we extend the CEO problem to
discrete model and consider ‘Binary’ correlated sources and analyze the binary source
modeled in [10].

The problem of lossless encoding of discrete correlated sources was introduced by
Slepian and Wolf [8] in 1973. Consider correlated discrete sources X and Y with joint

entropy H(X,Y). The two sources are encoded separately and decoded jointly. Slepian
and Wolf proved that if X is encoded to rate H(X), Y could be encoded to rate H(Y | X)

and decoded using X, with no loss of information. The joint decoder exploits X and the



side information received from Y in order to decode Y. They presented a theoretical limit
for achievable rate region. After them, Wyner and Ziv [9] considered the extension of this
problem for lossy compression.

In recent years, several algorithms have been proposed for encoding correlated
binary sources using error correcting codes. Proposed algorithms are mostly based on
Turbo Codes [10]-[14] or Low-Density Parity Check (LDPC) codes [15]-[17], [22]. The
results have improved as sequentially presented and in comparison, it seems that LDPC
codes have better performance than Turbo codes. They have achieved rates very close to
the Slepian—-Wolf limit. Distributed Source Coding (or source coding with side
information) has application in systems where sources do not communicate with each
other and want to send their information to a common decoder. Therefore, Distributed
Source Coding is a good candidate for Wireless Sensor Networks [19]-{22].

A group of the Wireless Sensor Networks, which is of our interest, can be
regarded as an implementation of CEO problem with energy constraint for the nodes.
Considering the energy constraint together with correlation of data, we can compress the
information and reduce the number of bits to be transmitted. As in wireless
communications most of the energy consumption is due to transmission; reducing the
number of bits to be transmitted helps us save considerable amount of energy. On the
other hand, it is also possible to apply advanced wireless transmission techniques (such as
multiple antenna communication technique) which requires less energy compared to
traditional systems.

A lot of research has been done in order to take advantage of the correlation

among sensors’ data and reduce the number of bits to be transmitted. Some of the works



are based on distributed source coding theorem [19]-[22] and some are based on
decentralized estimation technique [23]-[27]. In [19], authors proposed DIstributed
Source Coding Using Syndromes (DISCUS) technique for sensor networks. In DISCUS
[18], codewords are divided into Cosets. One source sends uncoded data and other
sources send the side information which is the index of the Coset containing their
codeword. Extension of this idea with an adaptive signal processing approach is proposed
in [20]. In this work, in addition to the concept of DISCUS, an adaptive filtering
framework is used at the Data Gathering Center to continuously track the correlation
structure among sensors’ data. The data gathering center first asks nodes for uncoded data
for K rounds in order to learn the correlation structure of data and estimate the correlation
parameters. After initialization, it asks for coded (compressed) data and using the already
set correlation parameters estimates data of each sensor and updates the correlation
parameters for the next round. They showed that their algorithm saves considerable
energy (from 10%—-65%). Other Distributed Source Coding techniques have also been
proposed for wireless sensor networks. In [21] compression via powerful channel codes
(such as Turbo and LDPC codes) for sensor networks is presented. The LDPC-based
coding scheme presented in [22] achieves any arbitrary rate on the Slepian—Wolf region.
The problem of decentralized estimation in sensor networks has been studied
under different constraints in [23]-[25]. In these algorithms, sensors perform a local
quantization on their data considering the fact that their observations are correlated with
those of other sensors. They produce a binary message and send it to the FC. Fusion
Center combines these messages based on the quantization rules used at the sensor nodes

and estimates the unknown parameter. Optimal local quantization and final fusion rules



are investigated in these works. Decentralized Estimation problem is extended in [26] and
[27], considering energy constraint and power scheduling for the nodes. In these papers,
algorithms are designed assuming that sensor observations and additive noises are
bounded. In our thesis, we always consider the unbounded noise case and Gaussian
probability density function for sensor observations and noises.

As an alternative approach, some research has been done on energy-efficient
transmission techniques such as cooperative/virtual Multiple-Input Multiple-Output
(MIMO) and its application in sensor networks [28]-[33]. In these works, as each sensor
is equipped with one antenna, nodes are able to form a virtual MIMO system. If nodes
communicate with one another and get knowledge of the information of each other, they
can be regarded as one system and resemble a virtual MIMO. In [28] the application of
MIMO techniques in sensor networks based on Alamouti [34] space-time block codes
was introduced. In this paper, authors compared the energy-efficiency of MIMO systems
with SISO and showed that in some cases, where transmission distance is short, SISO
transmission can be more energy-efficient than cooperative MIMO. Note that in sensor
networks total energy consumption of nodes should be considered. As cooperative
MIMO has the overhead of communication among nodes, considering both the Circuit
and Transmission energy consumptions makes SISO outperform cooperative MIMO in
some cases. The problem of cooperative transmission in Wireless Sensor Networks is
extended and analyzed in more details in [30]-[33]. Energy-efficiency of MIMO
techniques has been explored analytically in [30] and [31]. Also a combination of the
distributed and adaptive signal processing algorithm for source coding presented in [20]

and cooperative MIMO technique is proposed in [32].



1.2 Contributions

Our contributions in this thesis are divided in two parts. In the first part, we
extend the CEO problem to Correlated Binary Sources. We define a correlation model for
a set of binary observers (sensors) which together with the CEO want to estimate a
common source. We analyze the estimation problem based on entropy. We calculate the
conditional entropy of the unknown parameter given the set of observations, prove its
convergence as the number of observers tends to infinity and propose a mathematical
method to find the minimum required number of sensors for estimation with given
probability of error. We also derive the estimation rule according to Maximum
Likelihood estimation method. This problem can be regarded as a special case of sensor
networks, when observations are assumed to be ‘Binary’.

In the second part, we focus on energy-constrained Wireless Sensor Networks and
Correlated Gaussian Sources. First, we propose a data estimation algorithm for Quadratic
Gaussian CEO Problem, which exploits Cooperative MIMO for transmission. In our
scenario, nodes communicate with each other to process their data in order to make it
more compact and become able to transmit it using MIMO techniques. We then consider
the Multi-terminal communication problem for sensor networks where the center is
interested in receiving all individual observations. We propose and compare two

cooperative algorithms for data compression and transmission.

1.3 Organization of Chapters

The thesis is organized as follows: in Chapter 2 we present a background on the

concepts and terms which are defined in the literature and used in our thesis. We present



a review on the classical CEO problem and its relations to Wireless Sensor Networks. It
is followed by Distributed Source Coding and its applications in WSNs. Moreover, we
review the Cooperative Source Coding for correlated information and finally present the
background on Cooperative Transmission in WSNs and Space-Time Coding.

In Chapter 3 we consider the problem of estimation in correlated binary sources.
A number of agents are observing a phenomenon and wish to report their observations to
a common center (CEO). We define a discrete model for data and their correlation and
prove that it is possible to detect the phenomenon with any arbitrarily low distortion
(probability of error).

In Chapter 4 we present the energy-efficiency of Multiple-Input Multiple-Output
(MIMO) systems and its application on Wireless Sensor Networks. Firstly, we consider
the Gaussian CEO problem in Wireless Sensor Networks where all nodes are deployed in
a field in order to observe a phenomenon and report it to the CEO. In this scenario, CEO
or Fusion Center is interested in estimating the information about the environment by
processing observations of all nodes. We propose an energy-efficient cooperative
algorithm for data estimation in CEO-based wireless sensor networks exploiting
cooperative (virtual) MIMO technique.

Afterwards, we extend the problem to Multi-Terminal communication scenario
and consider the general sensor network case where all nodes wish to transfer their
individual information to a center. We propose two communication algorithms for the
network and compare their performance. The proposed algorithms are based on joint
compression of correlated Gaussian sources by transforming into independent parallel

Gaussian sources and Vector Quantization. Finally, chapter 5 concludes the thesis.



CHAPTER TWO

BACKGROUND

This chapter presents a background on the main concepts and terms which are
defined in the literature and used throughout the thesis. In Section 2.1 we present a
review on the classical CEO problem and its relations to Wireless Sensor Networks.
Section 2.2 is devoted to Distributed Source Coding and its application in WSNs.
Slepian-Wolf Theorem is discussed in general and a simple example is given for
clarification. We review the Cooperative Source Coding for correlated Gaussian
information and Vector Quantization in Section 2.3. Finally, Section 2.4 presents the

background on Cooperative Transmission in WSNs and Space-Time Coding.

2.1 CEO Problem and Distributed Sensing

In 1994, Berger and Zhang [5] introduced the Chief Executive Officer (CEO)
problem. The problem states that a CEO (also referred to as Central Estimation Officer)
is interested in estimating a sequence of data which cannot be observed by him directly.

Hence, he employs a number of agents to observe independently corrupted (noisy)



versions of the phenomenon and report to him for final estimation. The general model for

CEO problem can be illustrated as Fig. 2.1.

n

SENSOR 1
n
b -
X, R, 9
S ISEL coo e 3
/\_i
SENSOR 2 Qo A
Y mm * Y
o (o] 98
o] o U
e o m
Py
n
X, R,

SENSOR L

Figure 2.1 — CEO Problem

In the above figure, Y is the actual phenomenon to be sensed and estimated by the
CEO and X;’s are the noisy observations of the agents. Additive noises have identical
distribution but are independent from each other. That is, observations are conditionally

independent given the source.
L
P, X, X0 X, ) = p(M[ [ (X, | Y) 2.1)
i=1

In 1995, Viswanathan and Berger [6] considered the Quadratic Gaussian model

for CEO problem. They assumed that the source is a continuous Gaussian random
variable € ~ N(0,0) and additive noises have also Gaussian distribution n, ~ N(0,02).

Hence,

X,=0+n, , X,~N(0,0}+0)) (2.2)
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The CEO is interested in reconstructing € from the set of X;’s with minimum
mean square distortion. Berger et al [4] studied the asymptotic behavior of minimum
achievable distortion as the number of agents and total data rate of agents in limit tend to

infinity.

In the next chapter, we study the CEO problem for a discrete binary source Y,
which is observed by a number of agents who have an average probability of error (p,) in
bit detection. We assume that observations are conditionally independent given the
source. In the following problem, we are interested in determining the asymptotic
behavior of uncertainty about Y in limit as the number of observers tends to infinity and
how many agents are required in order to detect ¥ with any arbitrary average number of

CIToTrS.

Wireless Sensor Networks (WSNs) have recently become a growing interest.
Distributed sensing of a phenomenon to gain a more precise, robust and fault tolerant
observation has always been of interest for scientists. Technological advances in
manufacturing small, low-cost and low-power integrated systems to perform all tasks of
sensing an environment, processing the data and transmitting information have now let
the engineers develop this idea [1] and implement WSNs., Wireless sensor networks can
be regarded as an example of classical CEO problem. The main difference is that in CEO
problem, there is no energy constraint for the agents, whereas, in a typical WSN energy
consumption of nodes is the main issue. In Chapter 4, we propose the ways of reducing
energy consumption by applying network source compression and cooperative

transmission.
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2.2 Distributed Source Coding in Sensor Networks

2.2.1 Entropy

One of the basic definitions in information theory is the concept of Entropy,
which is a measure of uncertainty of a random variable. Suppose X is a discrete random

variable with probability mass function (pmf) p(x) =Pr{X =x},xe X. The Entropy

H(X) of Xis defined by [39]

H(X)=-) p(x)log p(x) (2.3)

xeX

1 withprobability, p

Let X = ) .
{O with probability, 1 - p

then,

def
H(X)=-plog p—(1-p)log(1- p) = H(p) 2.9

H(p)

06 07 08 0.9 1

Figure 2.2 - H(p) versus p

12



2.2.2 Slepian-Wolf Theorem

In 1973, Slepian and Wolf [8] presented a theorem that became the basis of
Distributed Source Coding. They proved that correlated sources can be encoded
separately (i.e. without conferring with each other) with a total rate as low as their joint
entropy and decoded jointly without any loss of information. The achievable rate region

is shown in Fig. 2.3.

A
Achievable
H(Y) Rate Region
S (X)Y)
o
H(YIX) ¢
HIXTY)  H(X)

R(X)

Figure 2.3 — Achievable rate region for Slepian-Wolf theorem

They proved their theorem with a Syndrome-Based idea. Consider two correlated

sources X and Y with joint entropy H(X,Y). The theorem states that if the first source
encodes its data with rate R = H(X) and the second source encodes its data with
rate R, = H(Y | X), it is possible to decode X and Y with a joint decoder and without any

loss of information. The first message sequence is transmitted with rate R, = H(X). The

second encoder is equipped with different random codebooks, in which it searches in all
codebooks for a codeword identical to the message sequence to encode the second
message. [t then transmits the address (Syndrome) of that codebook. The decoder uses

information received from Y as ‘side information’ and with the help of X, decodes Y. It

13



searches in the addressed codebook for a codeword which is maximally likely to the first

message. To present this idea more clearly consider the following example:

We have two binary sources which have 16 outputs. We assume that the sources

are correlated and their outputs are very close to each other. All possible codewords are

listed and shown on the real axis (Fig. 2.4).

0000 0010 0100 0110 1000 1010 1100 1110
L 4 L4 >

\ 4
0001 0011 \0101 / 1001 1011 1101 1111

Coset | = {0000,0100,1000,1100}

Figure 2.4 - Example of Distributed Source Coding

We divide them into Cosets (codebooks) and address each Coset with two bits
Coset | = {0000,0100,1000,1100}=01
Coset lI= {0001,0101,1001,1101}=10
Coset Il = {0010,0110,1010,1110} =11
Coset IV = {0011,0111,1011,1111} =00

One of the nodes ( X)) encodes itself into H# ( X' ) = 4 bits (i.e. sends its actual codeword)
and the other node ( Y ) sends its Coset address (syndrome) as side information. The

decoder looks at the members of the received coset and chooses the closest codeword to

X and declares it as Y.
Ex) X=1100,Y=1101
X sends M7 = 1100 and as Y belongs to Coset 11, it sends M, = 10

Decoder searches in Coset 11 for the closest codeword to M; which is 1101

14



This idea has been examined in details as DlIstributed Source Coding Using
Syndromes (DISCUS) [18]. In this paper algebraic trellis codes are used to compress the
message. Practical implementation of Slepian-Wolf model has been proposed using
different types of channel codes [10]-[22]. Distributed Source Coding using Turbo codes

is originally proposed in [10]. Both sources are considered binary i.i.d. with
Pr{X =1} = % The correlation is assumed to be in the form of Pr{x, =y,} =1-p. Each

encoder generates two parity sequences which are punctured before transmission. Half of
the systematic bits are transmitted along with parities. The decoders use the usual
iterative Turbo decoding to decode X and Y. The only difference is that decoders iterate
an additional extrinsic information between each other after performing each round of

iteration.

Compression of binary correlated sources using LDPC codes is first considered in
[15]. The idea is presented for asymmetric case where the first source, is transmitted
uncompressed and the second source is compressed using the parity check matrix of an
LDPC code. Consider sources X and Y with probability distributions described above.
The message sequence X is transmitted uncompressed and the message sequence Y is
multiplied by the Parity Check matrix to form a syndrome. This syndrome is transmitted
to the decoder. The decoder uses a modified version of Belief Propagation algorithm [15]

to decode Y from X using this syndrome.
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2.3 Cooperative Source Coding in Sensor Networks

2.3.1 Compression of correlated Gaussian sources

Consider a set of correlated Gaussian sources (X, ~N(O,0',.2) ,i=12,...,m)

which are available at a joint encoder for compression. The Rate-Distortion function for
this multivariate normal vector can be obtained by reverse water-filling on the
eigenvalues [39].

The covariance matrix of these sources is defined as
Cix =10} ] im (2.5)
o, =E[XX,] , i,j=12,..,m (2.6)
Since the sources are correlated, the non-diagonal elements of the covariance

matrix are non-zero. Therefore, by applying eigenvalue decomposition method, we

transform it into a diagonal matrix to achieve parallel (independent) Gaussian sources.

C,, =UAU" (2.7
Where,
A 0 0
A= (.) ’12 0 and UU ' =U'U=1 (2.8)
0 0 o4

U is the transform matrix which maps correlated sources X, ~ N(0,0;) to independent
sources )A(,. ~N(0,4,).

X=U"X , C..=A (2.9)

Columns of U are normalized eigenvectors of Cyy .
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In the new covariance matrix A, diagonal elements are the eigenvalues of the
covariance matrix Cyy, and can be regarded as variances of transformed sources. Now,

we can apply the Rate-Distortion theorem for parallel Gaussian sources [39].
Theorem [39] (Rate-Distortion function for parallel Gaussian sources)
Let X . ~N(,4,) , i=12,.,m be independent Gaussian random variables and let the

distortion measure be mean squared error. Then the rate distortion function is given by

| A,
R(DY=) —log—~ 2.10
(D) ,.212"%,. (2.10)
where
o , I<4,
D, = (2.11)
A, 024

and ¢ is chosen so that ZD,. = D. This method is known as Reverse Water-Filling [39].

i=1

Figure 2.5 — Reverse Water-Filling for independent Gaussian random variables

Once transformed, the sources will be compressed according to the above rates

and transmitted over the channel. At the receiver, they will be converted to X as X = UX .
We apply the above algorithm for joint compression of sensor observations in

cooperative Wireless Sensor Networks.
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2.3.2 Vector Quantization

Vector Quantization [36] (VQ) is a data compression method. In VQ, instead of
quantizing each symbol separately, we apply the quantization rule to a vector of symbols.

It can be used in many applications such as image compression, voice compression and
pattern recognition. A Vector Quantizer maps a k-dimensional vector V*in the vector
space R'into a finite set of codewords{Q,»k =(4,:9;,>9;) eR :i=12,..,N } The

quantizer maps the vector to the associated codeword of its neighbor region. The

neighbor region of O is defined as

S, ={xe®* -0 <|x-0!

||JC—Q,~"||=,/Z]:(xj—q,-,)2 (2.13)

Therefore, the vector space R* is partitioned into N neighbor

V)= if (2.12)

where

N N
regions {S, :i =1,2,..., N } where, US,. =R* andﬂS,. =¢.
P i=1

4

-1}

-2

-3

-4 L L \ \ s 1 1
-4 -3 -2 -1 0 1 2 3 4

Figure 2.6 — Partitioning Example for R?
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Vector Quantizer takes the input vector, searches among all codewords to find the
closest one to the input vector (which produces the least distortion) and outputs the index
(address) of that codeword. At the receiver side, decoder takes the index and decodes the
quantized vector. Vector quantization offers better performance than scalar quantization
of the same rate, specially for correlated information [36]. The main problem with vector
quantization is the increased complexity. As the number of codewords increases, the
search complexity for optimum codeword increases exponentially [36]. Another
challenge in VQ is the codebook design. Here, we present an algorithm which produces
the best quantizer with Least Mean Square distortion.

Codebook Design

The distribution of data to be quantized is given. We generate a large number of
random sample vectors with the given distribution and design the codebook for them. The
procedure, known as Lloyd-Max [37]-[38] algorithm, is described bellow:

1. Determine the number of codewords ( V)

2. Choose N random vectors from the set of generated samples as the initial

codewords.

3. Calculate the Euclidean distance of all vectors from the codewords and put all

of the vectors in the neighbor region of each codeword in one group.
4. To each group, assign a new codeword Q by taking the average over all

sample vectors belonging to that group.
5. Continue steps 3 and 4 until the variation of distortion D is less than a defined

threshold. That is, 0 < 2t~ Doew _

old
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2.4 Transmission in Cooperative Sensor Networks

In this section we study the problem of transmission in energy-constrained
wireless sensor networks. In classical systems, nodes communicate to the center on a
Single-Input Single-Output (SISO) basis where each node transmits its information
directly to the center. Here, we present the cooperative transmission technique which

exploits Space-Time coding for energy efficient transmission.

2.4.1 Cooperative (virtual) MIMO in sensor networks

In Wireless Sensor Networks, every single node is equipped with an antenna and
they all wish to report their observations to a common center. This implies that if we
consider the system in a Transmitter—Receiver context, on the transmission side we have
multiple antennas. The advantage of having multiple antennas has motivated researchers
in recent years to propose and develop the problem of Cooperative Communication in
Wireless Sensor Networks [28]-[33]. In a typical sensor network nodes are located close
to one another and their distance from each other is relatively shorter than their distance
to the Fusion Center. Recently, a lot of advances have been achieved in energy-efficient
multiple antenna communication systems known as Multiple-Input Multiple-Output
(MIMO) technique, where information is encoded over space and time and is transmitted
by multiple antennas. Wireless medium is affected by channel impairments such as
fading and noise. MIMO techniques provide diversity gain as well as coding gain.
Therefore, they have better performance (Bit Error Rate) than SISO systems. That is,

MIMO systems offer the same performance as a SISO system by spending less power for
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transmission. The problem with MIMO systems is that they require more hardware and
have higher complexity. Therefore, their circuit energy consumption is not negligible.

In [28], Cui et al presented an energy-efficient cooperative technique for sensor
networks. In order to be able to apply MIMO techniques for transmission, nodes need to
have knowledge about each others’ information. Therefore, authors in [28] proposed
local data exchange among sensor nodes. They studied cooperation for two nodes and
applied ‘Alamouti’ Space-Time coding scheme. The network is divided into groups of
two nodes and in each group, nodes confer with each other. Having exchanged their data,
they encode it into Alamouti codewords and transmit the codewords with their antennas.
The performance is the same as a system with two antennas but we have the overhead of
transmission and reception of data in local exchange which requires additional circuitry
and increased processing complexity (the communication module needs to be a
transmitter/receiver rather than a transmitter). In [28] authors showed that if the distance
between nodes and Fusion Center (long-haul transmission) is long enough, cooperative
MIMO technique can be more energy-efficient than SISO. As in wireless sensor
networks total energy consumption of the nodes is critical, we have to take into account
both the transmission energy and consumed energy of the circuit. As analyzed in [28] and
shown in Figures 2.7 and 2.8, Transmission energy of SISO is always higher than MIMO
but when we consider Total energy consumption, for short distances, SISO outperforms

cooperative MIMO.
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Figure 2.8 — Transmission energy consumption per bit over d, MISO vs. SISO [28]

The idea of Virtual (Cooperative) MIMO, proposed in [28], has been extended

and analyzed in more details in [30] and [31]. In [28] authors assumed that perfect
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Channel State Information (CSI) is known at the receiver while in [31] the training
overhead required for channel estimation is also taken into account. The system model
and parameters used in all these works are the same. The analysis is as follows:

Consider the system as a narrow-band, flat Rayleigh fading communication link
with multiple antennas. The system has Ny Transmit antennas and Ny receive antennas.
The energy consumption of baseband signal processing blocks is omitted and the system
is assumed to be uncoded. The total power consumption is divided into two main
components: power consumption of power amplifiers Pps and circuit blocks Pc.
Assuming that power consumption of amplifiers is linearly dependent on the transmit
power P, , it can be approximated as [31]

P, =(+a)P,, (2.14)

where
azé—l (2.15)
n

In the above equation, 7 is the drain efficiency of RF power amplifier and & is

the peak-to-average ratio which depends on the modulation scheme and constellation

size. For M-QAM modulation we have

—24/ 1
= 3M_2_44__+__ (2.16)
M -1
The transmit power P,,, can be calculated as
(4ﬂ)2d”M,Nf —
out — G,Gr/lz EbRb (217)

where d is the transmission distance and x is the channel path loss exponent which

usually lies between 2—4 for wireless channels (x=2 corresponds to free space
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propagation). G, and G, are the antenna gains for transmitter and receiver and A is the

wavelength. M, is defined as the link margin to compensate the hardware process

variations and other additive background noise or interference. N, =—* is the receiver

0

noise figure where N, is the power spectral density (PSD) of the total effective noise at

the receiver input and N, is the single-sided thermal noise PSD at room temperature. E,

is the average energy per bit required for a given BER and R, is the system bit rate. The

block diagram of Transmitter and Receiver circuits is shown in Fig. 2.9 and Fig. 2.10.

DAC :
Filter ~ Mixer Filter PA /]/

Filter LNA  Filter Mixer Filter IFA ADC

Figure 2.10 — Receiver circuit blocks [28]

As assumed in [28], [30] and [31],we consider that the frequency synthesizer is
shared among all the antennas in MIMO system. We can estimate the total power

consumption of the circuit as

F.= T(PDAC+Pmix+Pﬁ11)+21)synth+NR(PLNA+P + P+ Py + Pipe)  (2.18)

mix Sfilr
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where Ppuc, Pumix s Paic s Poynn s Pina s Prira , Py and Pypc are the power consumption
values of Digital to Analog (D/A) converter, mixer, active filters of transmitter,
frequency synthesizer, Low Noise Amplifier, Intermediate Frequency Amplifier, active
filters of receiver and Analog to Digital (A/D) converter respectively. The assumed

values for these parameters are listed in Table 2.1.

PDAC: 15.7 mW PADC: 6.7 mW

| Py = Py =2.5mW | f,=2.5GHz
P = 30.3 mW P, = 50 mW
Piys=20 mW Pipy=3mW
G,G,=5dBi Ny=-171 dBm/Hz
M= 40 dB N,= 10 dB

Table 2.1 - System Parameters

Total energy per bit for a fixed rate system can be estimated as

i

E, = 2.19
bt Rb ( )

The bit error rate of an M-QAM MIMO system (M = 2°) with a square constellation (& is

even) is given by [31]
NyNp k
NpNp-1
= 4 1) 1 1 1 (NyNg-1+k 1
P="{1-— 1- — — | (.
A b[ 2%] k( ' j1+ (2.20)

NyNp
2 ‘/l+_ L = 2 ’1+_ L
E, /2N, E, /2N,

When b is odd, we may use (2.20) as an upper bound for the BER after dropping the term

[1 ——%/—] . By inverting (2.20) we can obtain the required E, for any BER value P,.
272

If we substitute for the above values in equations, we will have the relationship
between total energy consumption per bit and distance. As noted in [28] optimizing the
constellation size also minimizes energy consumption. As simulated in [31], following

figures illustrate the Total Energy consumption versus constellation size and distance.
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2.4.2 Space-Time block codes

One of the fundamental characteristics of the wireless channel is multipath fading.
That is, transmitted signal is severely attenuated after passing through wireless
environment. Fading is a random process that can be modeled as the channel gain. Since
the value of fading is random, it is better to have multiple replicas of the transmitted
signal at the receiver. Having multiple copies of the signal, we can combine them and
detect the signal. This can be done by having diversity in time (like using error correcting
codes) or space (using multiple antennas). Recently there have been many advances in
Space-Time Coding.

In Space-Time coding signal is encoded over time and space and is transmitted
through multiple antennas at the same time. A simple transmit diversity scheme has been
proposed by Alamouti [34] in 1998. His proposed scheme is as follows:

As shown in Fig. 2.13, the scheme has two transmit antennas and one receive
antenna. At a given symbol period, two signals are transmitted simultaneously by

transmit antennas. Suppose that sy and s; are two consecutive symbols.

5p n
"l' So.
Ix antrrna @ T ? tx antenna 1
m k|=a,e"'l

Y anienns

interference
ny & noise

channel

esfmanr |

morimum (ikelihond detecior

! !

Figure 2.13 Two transmit diversity scheme with one receiver [34]
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For the first symbol period, s is transmitted over antenna O and s; is transmitted

over antenna 1. During the next symbol period, (—s,) will be transmitted by antenna 0

and s, will be transmitted by antenna 1, where (*) denotes complex conjugate operation.

The channel gains are modeled as multiplicative distortion and we assume that

they are constant during two consecutive symbol periods. As indicated in Fig 2.13,

channel coefficient is denoted as 4 for transmit antenna 0 and 4, for transmit antenna 1.
Received signals for two consecutive symbol periods are:

v, =hys, +hs, +n, (2.21)

no=—hys +hs, +n, (2.22)

After channel estimation (4 and 4,) the received signals will be combined at the receiver.

Sy =hory + b = (hg +h)sy + hyny + hyn, (2.23)

S5, =hry—hyr =(hd +hl)s, —hyn +h'n, (2.24)

These combined signals are then sent to the maximum likelihood detector and sq and s;

will be detected. Alamouti coding scheme is based on orthogonal design and that makes

it easy and simple to decode. Orthogonality means that inner product of columns in the

coding matrix is equal to zero.

[so — sl* } <« Transmit Antennal

s, S, « Transmit Antenna?2
Inner product = s,.(=s;) +5,.(5;) = —5,.5, + 5,.5, = 0
Alamouti scheme has been extended for more than two antennas in [35] and is

referred to as Space-Time Block Coding (STBC). In STBC, data is encoded using a

Space-Time block code and is split into m streams which is simultaneously transmitted
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using m antennas. The received signal at each receive antenna is linear superposition of
attenuated transmitted signals, impaired by channel fading. Using the orthogonal
structure of Space-Time Block Codes, signal streams can be decoupled and detected by
maximum likelihood decoding. Orthogonal designs offer maximum achievable diversity
order for any given number of Transmit antennas. It is possible to construct orthogonal
STBC for complex and real constellations. For real constellations (such as PAM),

maximum possible transmission rate can be achieved and for any complex constellation
(such as PSK or QAM) we can always design a code of rate % for any number of
transmit antennas. For special cases of two, three and four transmit antennas, Space-Time

Block Codes are designed that achieve rates 1, % and % , respectively. The designed

codes are:

Two transmit antennas; Rate One (Alamouti):

[s‘ _fz} (2.25)
S8

Three transmit antennas; Rate % :

o S s,
T &
* S; S5

$, ) ﬁ '—-\7—5 (226)

* * * *
-5 =5 +8,—58, S,+S,+Ss —S

I~ &
Ql‘ t
N LFS)
[\
N
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Four transmit antennas; Rate % :

s S S, A
1 2 ﬁ \/E
N 5, S; ——é—
2 1 ﬁ \/5
Sy S sl—s:+sz—s2 sz+s;+sl—sr
242 2 2
S3 S3 —S2—S;+S1—S: _SI+S;+S2—S;

V2 2 2

2

(2.27)

For any complex constellation with at least four transmit antennas we can design an

STBC with rate % For instance,

s, =8, —8 =8
s, 5 Sy =8
L PR s,
S, Sy =S8, 8§

s, =S8, —8§ -5,
S, S =S, S
S5 S, 8 =8
S, —8 S, 0§

S¢ —S5 S —8
7 TSy TS5 S
S, 8, —8g —Ss

30
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CHAPTER THREE

CEO PROBLEM FOR

CORRELATED BINARY SOURCES

Consider the problem of estimating a binary sequence from a set of “Correlated
Binary Sources”. We have a set of binary sources whose data are correlated and we want
to compress their data and send them to the Fusion Center. The goal of the fusion center
is to extract the overall information from the set of data received from the sources and
estimate an unknown phenomenon. This problem can be regarded as ‘Binary’ Chief
Executive Officer (CEQO) problem [5], where a CEO employs a team of agents to observe
independently corrupted versions of a phenomenon and report the observations to him.
We consider that the phenomenon to be observed is a binary source and all agents
observe binary data which are independently corrupted by errors. For example, sources

can be digital video camera arrays.
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As the sources’ data are correlated, according to Slepian-Wolf theorem [8], they
can be encoded separately and decoded jointly with a side information decoder. In source
coding with side information one of the sources compresses its data according to its own
entropy and other sources compress their data according to the conditional entropy. That

is, if Xj and X5 denote the correlated binary sources, node 1 encodes X; into /(X)) bits
and node 2 encodes its data into (X, | X,) bits. Decoder uses this information together

with information received from X (side information) to decode X5.

We define the “Binary CEO Problem” in sensor networks as following: There are
a number of sensors (agents) with a certain precision in sensing and each of them
observes a binary source with an average probability of bit error, * p, ’. The CEO is
interested in having a more precise observation on the phenomenon (i.e. average
probability of bit error less than p, ). Therefore, it deploys a number of these sensors and
by processing all observations, detects the phenomenon with any arbitrary average
probability of error.

First, we define the correlation and present the system model. We then analyze
the systems’ behaviour considering entropy as the measure of uncertainty and prove the
convergence of estimation analytically. Using the Fano's inequality [39] we determine
the theoretical (minimum) number of agents required to observe the phenomenon for any
given distortion. Finally, we find the estimation rule for extracting the information from

the set of observations.
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3.1 System Model

We denote the unknown phenomenon to be estimated as Y, the number of sensors

n

as n , the sensor observations as ( X;, i =1, 2, ..., n ) and the final estimation as Y.
Sensor observations ( X; ) are corrupted versions of ¥ . Meaning that, X; ’s are modulo-2
addition of Y with a random error ( £; ,i=1,2, ..., n ). E; is a ‘Bernoulli’ random

variable with probability of being 1 equal to  p,’.

X, =Y+E (3.1
Pr{E;=1}=p, (3.2)
Pr{Ei=0}=1-p, (3.3)

Observations (X;’s) are conditionally independent given the source ().

As Y is a binary source, its entropy is less than or equal to 1,
H(Y)SH(%)=1 3.4
Without loss of generality we assume that source Y is unbiased and we have

Pr{Y=0}=Pr{Y=1}= (3.5)

N |-

HY)=1 (3.6)
We denote the received vector at the Fusion Center by X = (X, X,,..., X,) and the desired

average probability of error by ‘p, .

p, =Pr{¥ %1} (3.7)
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3.2 Theoretical analysis for required number of agents

In this system we observe a random vector X and wish to estimate the value of
the random variable Y which is highly correlated to the entries of X with a low
probability of error p, = Pr{)} #Y}. This can be done if the conditional entropy
H(Y | X) is small. We calculate a function Y= f(X) which is an estimate of ¥ and wish
to bound the probability that Y #Y . We observe that ¥ — X=(X.,X,,..X,)> Y form
a Markov chain. Therefore, based on Fano'’s inequality [39] we have

H(p,)+p, log(lY|-1) 2 H(Y | X) (3.8)
As we consider Y to be a binary source, its cardinality is |Y |:2 and the inequality

reduces to
HY|X)<H(p,) (3.9
We have to calculate the conditional entropy H(Y | X) = H (Y | X1, X3,..., X)) as a

function of (n, p.) and relate it to the desired probability of error ( p, ).
From the chain rule in joint entropy we have
HY,X,X,,..,X)=HY)+H(X,,X,,..X, |Y)
=H(X,X,,..X)+HY|X,,X,,...X,) (3.10)
Since the additive errors in observations ( E;’s) are independent of each other,
H(X,X,,...X,|Y)=HX,®Y,X,®Y,..X,®Y|Y)=H(E,E,,..E, |Y)

- 2H(Ei )= ﬁ]H(E,-) —nH(p,) (3.11)

Substituting (3.11) and the fact that H( Y) =1, into (3.10) , we will have

HY | X, Xy, X,)=1+nH(p,)-H(X,, X,,..,X,) (3.12)
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From the definition of joint entropy, we have

H(X, Xy, X,) = =2 pi(X,, o X, ) log pi(X,, X000, X,)
= [p(X), X0 X, | Y = O)PH(Y = 0) + p, (X, Xy X, | ¥ =) Pr(Y =1)]

xlog[ p.(X,, X,y X, | Y = 0)PE(Y =0)+ p.(X,, X,,... X, | Y =D)Pr(Y =1)] (3.13)

Where Z means summation over all possible probabilities of X = (X, X,,....X,) .

The joint probability distribution function p,(X,,X,,...,X,|Y =0) has Binomial

n!

=m combinations of
(n—k)!

distribution. That is, for any 0<k <n , there are [Z]

pi(X,,X,,....X,|Y =0) with probability pek (1- p,)" " that have k ones and (n — k)
n
zeros and with similar analysis, there are (k} combinations of p,(X,,X,,..X,|Y =1)

with probability (1- p,)" pe"—k that have £ ones and (n — k) zeros. Therefore, if we

substitute these values in (3.13) and take the summation over all possible combinations,

we will have

2 (n)1 1 o
H(Xl’XZr"’Xn):—Z(k Epek(l—pe) k+5(l—pe)kpe ¢
k=0

1 nk 1 -
XlOg Epek(l—pe) ¢ +E(l—pe)kpe *

21(n) 4 o | pAA=p)F +=p) ]
= — —_ 1._ 10 € € e e
gz(kjpe( p.) g{ >

u kew n—k _ k nk
’Z%(Z]a—pe)kpen—k log[pe (1-p,) ;(1 p.) D. } (3.19)
k=0
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In the last summation we define the variable / = n — &k and substitute it for £.

n—~k |

“1(n ¢ iy | DS A=p) " +U=p)D
_ _— 1_ 1 e e 14 e
;2(1«)( p)p. og[ ;

:—i.l_( n (l_p )""Ip Ilog pen_l(l_pe)[+(l_pe)n_1pl
1202 n_l ¢ ¢

2 -
n n-{ _ ! _ n—l !
— _Z%(’;j(l_pe)n—lpel 10g|:pe (l pe) ;(1 pe) pe :| (315)
=0

Now if we change the name of auxiliary variable / with & , we will have

L(n " “A-p) ™ +U-p)p, ™
H(Xl5X2a'-~3Xn)Z_Z(kjpek(l_pe) k10g|:pe ( pe) 2( pe) P
k=0

=1- Z[ )pe (a-p.) ”"log[pe (-p) " +(1-p)p, ] (3.16)
From independence of E; , E» , ... , E, we know that H(E,,E,,....E )=nH(p,).

On the other hand,
H(E,E,,.,E,)= —Zpi(El,E2,...,En)logpi(El,Ez,...,En)

= “i (Z]Pf (1-p)"* log[pe" (- pe)"‘k] (3.17)
k=0

Thus,
HY|X,X,,...X,)=1+nH(p,)-H(X,, X,,....X,)

=1- Z( Jpe (1-p.) ™ loglp. (1 - p)™]
(1 Z( jpe (1= p)* loglp . (1—p)y* + (- p.) p, "]J

n n 5 e o
= [ ]pek(l—pe)"klog[pe"(l—pe) “+(1-p)p, "]

- n k n—k k n-k
- (jp 1-p.)*loglp, - p.)*] (3.18)
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Finally, the closed form equation for entropy of Y given X = (X, X,,....X,) will be

B n (n . B L pe n—2k
H(Y|X1,X2,...,Xn)-;(kae (1-p,) 1og[1+(l_pej } (3.19)

According to DeMoivre-Laplace Theorem [40], the asymptotic form of Binomial
distribution with parameters p, and 1- p, , when n— o, for k in the /np,(1-p,)

neighbourhood of np, can be approximated by

__(k=np,)?

Ry nk 1 2. (1-p.)
p,(1-p) "= e “PlTPe (3.20)
[kJ J2mp,(-p,)

The normal function is a close approximation for binomial distribution and in the limit

when n tends to infinity, the approximation can be stated as equality. Therefore, for n

n
very large, we can approximate [kj P~ p.)"* by an upper bound which is the Normal

function with mean np, and standard deviation /np,(1~- p,). The mean grows linearly

with n while the standard deviation grows with NS

Going back to (3.18), by adding and subtracting Z(Z] pgk(l -p)"* log{(}tﬂ we have
k=0

n n ~ e e
HY X X X) = pA= py*logp - p )y +1-p) p ]
k=0
(7 k n—k I n (1 k n—k n
- 1 _ - 1
2l P 1-p,) og-(kﬂ ;(k]pe (1-p,) Og[(kﬂ
n n . r -
S k- py loglp.t - py ]
=k
~IEAN bk [(n k n—k n & n—k
= 1- 1 1- + 1-
k=o[k p, 1-p,) og_(kjpe (1-p,) (kj( p.) p. }
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k=0

*i[ijek(l—pe)""‘ log (Z pek(l—pe)"""}

n
1 _ k n—k
k]( p.) P,

=3 m pr1-p)  log 1+ (3.21)
EN n]pek(l—pe)””‘
Lk

We substitute (3.20) in (3.21),
; I
limH(Y | X,,X,,....X,) = lim ; NErE e log(1+e )

LA

=lim ), J2mpe(l — gl+e ) (3.22)
We will prove that the above summation has a limit and converges to zero.

 (k-p,)? Qk=n)1-2p,)

1

v2mp,(l-p,)

by taking the first derivative and setting it equal to zero.

We find the Maximum of the sequence S(k)= e 7P Jog(l+e 27U )

(k=np,)* (2k-n)(1-2p,)
d d 1 - - -
—S(k)=—— e 2np,(1 "”)log(l+e 2p.(1-p.) )
dk dk| \[2mp,(1-p,)
) (2k-n)(1-2p,) ,
_ _(k=np,) (2k-n)(1-2p.) 2p.(l-p,) ke
1 np,—k e 2P log(l+e 2p.(-p,) )+10g(e)(1—2pe)e 2np,(1-p.)

= Jzmp.0-p,) | .0-p.) S
r p.(1-p)1+e 2p.(I-p.)

_ (k=np,)’ (k-n)(1-2p,)
e 2np,(-p.) k ___.____(2’2‘"")?‘2“) e 2p,(1-p,)
= 5 (pe—-’;)log(l+e P.(=pe) ) +log(e)1-2p ) ——mmimrg | =0 (3.23)
V2mn [pe (1 —pe)] ) 1+e 2p.01-p.)

We denote the value of k that maximizes S(k) by %, .
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In order to make the notations simpler, we define new variables

e=2k -n __1=2p. (3.24)
2p.(-p.)
i _n+te (2km—n)(1—2pe):Ag (3.25)
"2 ’ 2p.(-p,)
Equation (3.23) reduces to
km e eAE
(pe—T)log(l+e )+10g(e)(1—2pe)1+eAg =0 (3.26)
We substitute for &,
1 e » e’ 397
(5+5—pe)ln(l+e )=(1—2Pe)1+eAg (3.27)
£ 4o 2e%
~+(1-2p,) |Inl+¢*) = (1-2p,) " (3.28)
We claim that limZ = 0. As defined earlier, & = 2(k,, —12"‘-) .
n—ro0 n
Since 0<%, <n from (3.24) wehave —n<e<n and —1< imE<1.
n— n
We calculate the limit of (3.28) when n —
.l e 4 . 2e*
lgmn ;+(1—2pe) In(1+¢e*) =}.l_rmn (1_2pe)1+e“ (3.29)
We assume that limﬁ =L ,-1<L<1
n—>®0 n
If L>0 wehave e=nL , £ >
lim{In(1+e*)} = d¢ (3.30)
Ae
m{%}zz (3.31)
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lim{[L+(1-2p,)]4e }=2(1-2p,) (3.32)

lime = 4p.(1-2p,) (3.33)
Equation (3.33) implies that lime is bounded, and L = limZ =0 which contradicts with
n—x0 n—>w n
the assumption that L > 0.

If L<0 wehave e=nL , € > —©

lim{In(1 + e"*)} =™ (3.34)
Ac
lim {28 _}=2e% (3.35)
nool4e
lim{[Z+(1-2p,)]e* }=(1-2p,)2¢" (3.36)
L=1-2p, >0 (3.37)

Equation (3.37) contradicts with the assumption that L < 0. Therefore, the only solution

is that L = 0.

Ae
Going back to (3.29), lim{[£ +(1- 2p2)} In(1+e* )} = lim{(l - 2pe)—1ze - } .
n—c n n—0 + e

Substituting L = 0 in (3.29), we have

Ae
In(l+¢*) = 2% (3.38)
1+

eAc

We solve the above equation and find A4¢ =1.3665 and from (3.25) we will have

6= 2p.(1-p,) (1.3665) = 2.733p.(A-p.) (3.39)
l"zpe l_zpe
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Equation (3.39) states that for large values of n ,&is only a function of p,and for »

sufficiently large, from (3.24) we have

km=n+e=£+l.3665pe(1—Pe) (3.40)
2 2 1-2p,

Substituting k,, into .S (k)

(k,-np,) Qk,—n)1-2p,)

llmS(km) = hm__l—e 2np,(1-p,) loga +e 2p.(-p,) )
n—® n—0 27mpe(l _pe)

(nw:—anL,)2
1 —_—

=lim e PP Jog(l+ ")
= [2mp,(1-p,)

22991 oo

= lim e 82020 _1im &

=lim (3.41)
n—yow \/zmpe(l _pe) noo [

Going back to (3.22) and substituting (3.41)

imH(Y | X,,X,,...X,)=lm) S(k) <lim) S(k,) = 1im(n+l)f/_ =limvne™ =0 (3.42)
n—0 n—o k=0 h—® k=0 n—»o0 n n—y0

In order to illustrate the behaviour of system when the number of observers

increases, we sketch H(Y | X, X,,...,X,) for different values of p..

n-2k
.n
H(Y | XI’X2"",Xn) = Z(kjpek(l_pe)n-k 10g|:1+(ij ]
k=0

I-p,
As shown in Fig. 3.1, when the number of observers increases, the uncertainty

about Y decreases and tends to zero. For smaller values of p, the convergence is faster

and less number of observers is needed.

41



1 0 T T T T T T T T

N
/
) {
10
7
10™ -
g
P 10° S
o
x
— -
S 10 —x— Pe=0.001
bl —6— Pe=0.005 5
-10 —— Pe=0.01
107 | —a— Pe=0.02
—+— Pe=0.05
107°L —— Pe=0.1
10'14 ] ] | | 1 } | !

1 2 3 4 5 6 7 8 9 10
Number of Obseners

Figure 3.1 — Comparison of speed of convergence for different values of p,

3.3 Estimation Rule

We calculate the likelihood ratio and derive the Maximum Likelihood estimation
rule for Y.

We denote the Likelihood Ratio by A, .

A, = log P =01 X1, X, X,) (3.43)
Pr(Y =1| X,, X,,.. X,)

If A, >0, we estimate Y= 0 and if A; <0, we estimate ¥ =1.

Based on Bayes’ Theorem [40] we have

Pr(X,, Xppn X, 1V

Pr(Y | X, X,,., X,) =
Pr(X,, X,,...X,)

) (3.44)
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Therefore,

Pr(X,,X,,...X,|Y =0)
Pr(Y =0| X, X,,....X,) _ Pr(X,,X,,...X,)
Pr(Y =1| X,,X,,..X,) SPr(X,, X, X, [Y =)
Pr(X,,X,,...,X,)

Pr(Y =0)
A, =lo

Pr(Y =1)

C10g D=0y P Xy X, [V =0) (3.45)
Pr(Y =1) Pr(X,, X, X, | Y =1)

As we assumed Pr(Y=0)=Pr(Y=1) = % , the first term of A, will be cancelled.

Suppose that (X,, X,,..., X, ) has k ones and (n-k) zeros,

Pr(X,, Xy, X, | Y =0)=pf1-p,)"* (3.46)
Pr(X,,X,,..X,|Y=1)=pl™*(1-p,)* (3.47)
_ k1 n—k _
o Pr(Xl’XZa'--aXn |Y_O) zlogpe_(z pe) p =(n—2k)10g 1 pe (348)
Pr(X,,X,,..X,|Y =1) pr"(-p.) p.
. 1 I-p, | . i . n .
Since 0< p, <5, logl ——= | is always positive. Therefore, if & <5, A, >0and Y is
P

. . n L
estimated to be zero and if &k > 5 A, <0and Y is estimated to be one.

In summary, Maximum Likelihood estimation in this problem, results in ‘Majority
Decision’. That is, since sources are unbiased and probability of Y = 0 is equal to Y =1,
we look at the set of observations and count the number of zeros and ones, whichever is
higher, we consider as Y. For general cases (biased sources) we should calculate the

likelihood ratio as in (3.45) and find the estimation rule.
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3.4 Coding Structure

Our analysis proved that the following coding scheme can be applied to this
problem. We determine the number of required observers () and follow the algorithm:

a) Node 1 encodes its data into H (X,) bits and sends its message to the receiver.

b) Node 2 encodes its data into H(X, | X,)bits and sends its message to the
receiver.

C) Similarly, nodes i = 3,4,..., n encode their data into H(X,| X, ,,....X,, X))
bits and send their message to the receiver.

The receiver sequentially decodes X, X,,..., X, using the previously decoded data.
That is, the joint decoder at the receiver, uses X, X,,...,X,  and the message received
from node i , which was encoded to H(.X, | X,_,,...,X,,X,) bits, in order to decode X,.

After all data is detected at the receiver, it applies the Maximum Likelihood estimation

rule to estimate Y. The decoding structure at the receiver is illustrated in Fig. 3.2.
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Figure 3.2 — Receiver structure for joint decoding
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We can also model this problem as encoding a data sequence using repetition

code, passing it through a Binary Symmetric Channel (BSC) with cross-over probability

p, and decoding the noisy sequence. The block diagram of this model is shown in Fig.3.3

Y N Y=(Y,7,.,Y)
Repetition Cod 2E ot
® > Lelnlgth n © ' >

Binary Symmetric X=(X1,X2,...,X")
Channel - - | 4
Pe

Figure 3.3 — Repetition code model
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As X =(X,,X,,....,X,) is a function of Y and the final estimation Y is a function
of X,wehave ¥ - X =(X,X,,...X,) > Y forming a Markov chain. Therefore,
HY|X)<HY|Y) (3.49)
The uncertainty about Y given Y, depends on the probability of decoding error:

Pr{error} =Pr{Y = ¥} (3.50)

As derived in Section 3.3, we will have an estimation error whenever the weight of the
. n
error vector £ =(E,,E,,...,E ) is greater than > Hence,

n
~ —hp,

“in) . .
i 1_ n—i =~ 2
( .jpe( r)" =0 —-————re =

s~}
-
—~—
~
H
s
—~—
i
s~
—
—
s
.
2
.
~_~
Q
3
Qo
~
~
\Y4
| =
—
If

1
—~—— D,
=gl @51

The approximation in (3.51) holds for large values of n. As n tends to infinity, we have

1
n 5 iy
limPr{Y £V} =limQ| Vn-——2—-—|=0 (3.52)
n—ow n—»ew pe(l _ pe)
Therefore,
limH(Y|Y)=0 (3.53)
and from (3.49) we conclude that
IimHAHY | X)=0 (3.54)
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CHAPTER FOUR

COOPERATIVE SENSOR NETWORKS:

COMPRESSION AND TRANSMISSION

In Wireless Sensor Networks (WSNs) nodes operate on batteries. Therefore, they
have limited energy. One of the main objectives in designing WSNs is to reduce energy
consumption as much as possible, so that network lifetime increases. As explained earlier
in Chapter 2, we can apply cooperative communication techniques for compression and
transmission of information. We assume that nodes are able to communicate with each
other and base our transmission on Virtual (Cooperative) MIMO technique. Energy
efficiency of Virtual MIMO has already been studied in [28], [30] and [31]. Considering
their results, in this chapter we propose techniques for processing and compressing the
information before transmission with the aim of saving more energy. In order to become
a Virtual MIMO system, nodes confer with each other. Since sensors’ data are correlated,
they can apply distributed source coding techniques to send their information to their

neighbors and as we have their information available in multiple nodes, this information
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can be compressed using a joint encoder. Two classes of sensor networks are studied.
First, we consider CEO problem in wireless sensor networks where CEO’s objective is to
estimate one phenomenon 6 = (X, X,,...,X,) from a set of observations and after that,
we consider sensor networks in the context of Multi-Terminal communication problem
where the center is interested in all observations and networks’ objective is to have

individual observations X =(X,,X,,...,X,) at the Center.

4.1 CEOQO Problem in Wireless Sensor Networks

4.1.1 Assumptions

A) System Model

The network consists of L distributed sensor nodes and a Fusion Center (also
called CEO). Sensors are deployed uniformly in the field, close to one another, each
taking observations on an unknown parameter €. The CEO is located far from the nodes.
All nodes observe same phenomenon but with noisy observations. These nodes together
with the Fusion Center are supposed to estimate the value of the unknown parameter.
Nodes send binary messages to the Fusion Center. FC processes the received messages
and estimates the phenomenon.
B) Data Model

Consider the Quadratic Gaussian CEO problem [6] in wireless sensor networks.

The phenomenon to be estimated has Gaussian distributiond ~ N(0,57) and the

observations are corrupted by additive noises n, ~ N(0,07) . That is,

X =0+n, (4.1)
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X, ~N(©,0! +0?) (4.2)

We estimate as where,

é:li)(,.. (4.3)

a

Note that since additive noises are zero-mean, we will have E[@]=E[#] and the

estimation is unbiased.
C) Reference System Model

Our reference system consists of L conventional Single-Input Single-Output
(SISO) wireless links, each connecting one of the sensor nodes to the FC. For the
reference system we do not consider any communication or cooperation among the
sensors. Therefore each sensor quantizes its observation by an /-bit scalar quantizer
designed for distribution of &, generates a message of length / and transmits it directly to
the FC. Fusion Center receives all messages and performs the processing, which is

calculation of the numerical average of these messages.

4.1.2 Cooperative Data Processing Algorithm

Sensor observations are analog quantities. Therefore, each sensor has to quantize
(compress) its data before transmission. For data compression we use /-bit scalar
quantizer [37],[38]. In our algorithm, network is divided into clusters, each cluster having
a fixed number of members m. Members of each cluster are supposed to cooperate with
one another in two ways:

1. Share, Process and Compress their data

2. Cooperatively transmit their processed data using virtual MIMO
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Figure 4.1 illustrates the cooperative data processing block diagram for CEO problem in

Wireless Sensor Networks.
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Figure 4.1 — CEO problem in Wireless Sensor Networks
A) Phase 1: Cooperative Processing and Compression
In the first phase, nodes inside each cluster confer with one another and send their
data to their neighbors so that all members of each cluster will be aware of observations
of their co-cluster neighbors and will have the same set of data as others. We can model
the channel between nodes inside a cluster as AWGN with x™—order path loss (x = 3.5).
This part of transmission can be done with very small probability of error (error-free).

b

At this time, each node decodes the ¢ m ’ received messages from its neighbors,
takes their numerical average and again quantizes the sub-average into / bits. As they all

have the same set of data, they will reach the same result. This message is the information

of the corresponding cluster. As each sensor has an /-bit message, in this phase by
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computing the average, we have compressed m/ bits into / bits. That is, the compression
ratio is m.

The first phase of our algorithm not only compresses the message length by factor
of m, but also lets us consider each cluster as a virtual Multiple-Input Multiple-Output
(MIMO) system with m antennas.

B) Phase 2: Cooperative Transmission by Virtual-MIMO

In the second phase, sensors split this message into m symbols and transmit it
using an orthogonal space-time block code (STBC) [35] of order m. As orthogonal STBC
codes have lower Bit Error Rate (BER) compared to SISO, we can meet the required
BER or distortion by consuming less energy than a SISO system.

Depending on the size of clusters, we can use different STBCs. For m = 2, we can

use Alamouti code [34], which is full rate. For m = 3 and m = 4, we have an orthogonal

code of rate % and for m >4 we can construct an orthogonal code of rate % [35].

Processing and cooperation block diagram of members in each cluster is shown in

Fig. 4.2.
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Figure 4.2 — Block diagram of Cooperation (Processing and Virtual-MIMOQO)

We consider the channel connecting clusters to the FC as a Rayleigh fading

channel with square-law path loss (x =2). Once all clusters have transmitted their data to
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the FC, the Fusion Center decodes these binary packets into analog numbers and takes

the numerical average of these messages and considers it as the network’s measurement.

4.1.3 Analysis

The performance metric considered in our analysis is the total distortion due to
compression and errors occurred during transmission. The first distortion is due to finite
length quantizer, used in each sensor to represent the analog number by / bits. This
distortion depends on the design of quantizer. We consider a Gaussian scalar quantizer
which is designed over 10° randomly generated samples. The second distortion is due to
errors occurred during transmission through the channel. In our system, this distortion is
proportional to the probability of bit error. Since the probability of bit error p, is a
function of transmission energy per bit E, (assuming fixed power for noise), the
transmission distortion will be a function of E,. In this section we characterize the
transmission and total consumed energy of sensors and find the relationship between
distortion and probability of bit error. Finally, we sketch the Energy—Distortion diagrams
of V-MIMO and SISO.

A) Estimation Procedure

Estimation of the unknown parameter (calculation of average) is done in two

stages. The first stage is done among m sensors inside each cluster and the second level is

done by taking the average of the results of the first level. We denote the data belonging

to sensor i and cluster j by X, ;. The outcome of each cluster by y,,(j = 1,2,...,£) and
m

the final estimation by 6.
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all data
B) Energy Consumption
In order to compare the proposed algorithm with the reference conventional
system (SISO), we have to consider total energy consumption of sensors which is the
energy consumed in baseband and RF circuitry plus the energy consumed in power
amplifiers in order to satisfy certain SNR at the receiver. In addition, we have to make
sure that the total delay (transmission rate) of the system is the same for both schemes.
The difference in total energy consumption is due to the fact that in the proposed
V-MIMO scheme, each sensor in the “Cooperation Phase” is involved in one
transmission and (m — 1) receptions, so that if we assume that each transceiver circuit
consumes P, (Watts) during transmission and P, (Watts) during reception, the overhead
of “Cooperation Phase” for each sensor will be
Epy=F,xT,+(m-1)FP, xT, (4.6)
Where 7, is the time that each sensor spends to transmit / bits to its neighbors.
The communication system model for transmission and reception is the same as
[28], [30] and [31]. That is,
Py = Ppyc + Pﬁlt + Ppix + Psynth (4.7)
Por = Pypc + Ppir + Poix + Pyynan + Piva + Pira (4.8)
Where Ppac, Papc, Phir . P, Pmix » Psynn . Pina and P4 are the power consumption

values of D/A converter, A/D converter, active filters of receiver, active filters of
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transmitter, mixer, frequency synthesizer, Low Noise Amplifier and Intermediate

Frequency Amplifier, respectively. The received signal power (P,) is modeled as

2
P =P’(i) GG, (4.9)
4md ) M|N,

Where P, is the power of transmitting signal and G, and G, are the transmitter and

receiver antenna gains, respectively. M; is the link margin compensating the hardware

iy N, . . .
rocess variations and N, = —= is the receiver noise figure.
!

C) Distortion

In both systems sensors have /~bit messages that have to be transmitted through
the channel and decoded by the Fusion Center. The scalar quantizer has 2 levels and as
a result, we can divide the Real axis into 2’ sub-intervals (W;). We apply Gray coding to
map the Real axis into /-bit codewords and denote the quantizing points of each sub-

interval as U, where i is the decimal value of the corresponding codeword of that sub-

interval (i =0,1,...,2" —1). With these assumptions in mind, occurrence of an error in the

/™ Least Significant Bit (LSB) will result in decoding U 42/ mod 2’ instead of U,. As the

i+2/7!
probability of bit error is very small, we assume that in each packet, only one bit might be

in error. Therefore, the resulting distortion will be

D= z Z P, I(x N U(i+2/")mod2’ )zf/\’ (x)dx (4.10)

Where P; is the probability that the ;™ LSB is in error and

XZ

1 2ol+od)
fr ()= e 4.11)
! \2n(ol +o?)
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is the probability density function of X;. Since bits of each packet are equally protected,

we have P; = p, and P; can come out of the summations, we will have D = a..p, where

a=; ZI: j(x—UW,_,)MZ,)z S x)dx (4.12)

The above distortion D corresponds to one sensor. Therefore, the total distortion after

estimating the average at the FC will be

D «
SISO: Dy :Z _ZPe,SISO 4.13)
V-MIMO: D, = %D = E‘fLﬂ Prumo (4.14)

4.1.4 Simulation and Numerical Results

To give a numerical example, we assume m =4 members in each cluster.

Therefore, our Virtual-MIMO scheme will consist of 4 transmit antennas. We assume

that network has L =32 nodes. Sensor observations are Gaussian with o’ =1 and are

corrupted by a Gaussian noise of o =0.1 . Nodes are deployed uniformly in the field
and are 2 meters apart from each other and the Fusion Center is located 100 meters away
from the center of the field.

The values for circuit parameters are quoted from [28] and are listed in Table. 4.1.
These parameters depend on the hardware design and technological advances. Hence, if
we have more efficient hardware, our algorithm provides better Energy—Distortion

performance. For the MIMO transmission, we applied orthogonal space time block code
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[35] for 4 transmit antennas with rate % The coding Matrix used for simulations is

shown below:

SI —S2 —53 —S4 S] S; -‘S3 "S4
SZ S] A —53 S2 S‘ 8y —S3 (4 15)
S3 —S4 s] S2 S; —S: Sl* S;
S4 S3 —SZ S] S: S; —S; S;
PDAC= 15.7 mW PADC= 6.7 mW
Pﬁ[r= Pﬁ], =2.5mW fc =2.5GHz
P =303 mW P, =50 mW
PLNA=2OmW P,pA=3mW
G,G, =5 dBi Ny=-171 dBm/Hz
M, = 40 dB N,= 10 dB

Table 4.1 — System Parameters

The Bit Error Rate performance of the proposed algorithm (V-MIMO) is
compared with reference system (SISO) in Fig. 4.3. The significant difference in

performance motivated us to design our algorithm based on MIMO.

107} \-\ — 5150 |4
. —%— V-MIMO
.
-3 \\.\c
2 10 ;
: ™~
: .
w Ay
el p
107, . : , . A :
0 5 10 15 20 25

Signal to Noise Ratio (dB)

Figure 4.3 - Bit Error Rate vs. Signal to Noise Ratio at the Fusion

In Fig. 44 we sketched and compared the Distortion performance versus
Transmission energy consumption per bit of the reference system and the proposed Two-

Phase V-MIMO scheme. Fig. 4.4(a) shows the curves in linear scale. In order to have
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better view of the performance, we depicted our curves also on the Logarithmic scale
over a wider range in Fig. 4.4(b). As shown in the figures, depending on how much

precision needed in the system, we can save energy by using the proposed algorithm.

x 10
10 . - .
\ —— SISO
B»t —=—— V-MIMO| |
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Q2
b=
L
[’
8 4 X 1
27 \ ]
.\.\‘ \'\.
O’- 1 l\—' l. 1
0 0.2 0.4 0.6 0.8 1

Transmission Energy per Bit (Joule) x 107

Figure 4.4(a) — Distortion vs. Transmission Energy Consumption per Bit (Linear Scale)

T

—— SISO ||
—=— V-MIMO

Distortion

10 10° 10°
Transmission Energy per Bit (Joule)

Figure 4.4(b) — Distortion vs. Transmission Energy Consumption per Bit (Logarithmic Scale)

Figures 4.5 illustrate the Distortion versus total energy consumption of sensor
nodes. We again depicted the performance over linear and logarithmic scales to have a
better and complete view. The parameters that lead us to these results are quoted from
[28]. Note that we may design different circuits to achieve better performance. However,

from these figures we can conclude that the proposed algorithm outperforms the
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reference system when we want to have distortion less than 10~ and it can save energy

as high as 10 dB.
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Figure 4.5(a) — Distortion vs. Total Energy Consumption per Bit (Linear Scale)
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Figure 4.5(b) — Distortion vs. Total Energy Consumption per Bit (Logarithmic Scale)

In summary, we proposed a novel algorithm that takes advantage of cooperation
among sensor nodes in two ways: it not only compresses the set of sensor messages at the
sensor nodes into one message appropriate for final estimation, but also encodes this
common message into orthogonal space-time symbols which are easy to decode and

energy-efficient. This algorithm is able to save energy as high as 10 dB.
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4.2 Multi-Terminal Communications Problem in Wireless
Sensor Networks: Source Coding and Transmission

In this section we extend the CEO problem in Wireless Sensor Networks to a
more general model. In some applications, it is required to have all nodes’ observations
available at the Fusion Center. We assume that nodes’ data are highly correlated and we

are interested in transmitting observations of all nodes, denoted by X = (X, X,,..., X,).

Therefore, we propose algorithms that jointly compress X;’s before transmission. The

block diagram for our system is shown in Fig. 4.6.
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Figure 4.6 — Block diagram of multi-terminal communication problem in wireless sensor networks

We consider a data model similar to the one considered in Section 4.1. Data are

Gausstan distributed. Nodes’ observations are highly correlated. We denote the correlated
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part of data by 6 and the differences between observations by n,. Therefore,

observations are again additions of two Gaussian random variables. The common part &
has higher variance compared to n;’s. We are interested in transmitting X;’s instead of 6.

The number of sensors is assumed to be L.

X =0+n , i=12,.,L (4.16)

0~ N(0,067) , n.~ N(0,57) (4.17)

X, ~N@O,62+0)) , o:>>0’ (4.18)
0_2

The amount of correlation among sensor’s data depends on the ratio of —-. The higher

n

this ratio, the more correlation among sensors’ data. We define this ratio by a new

parameter in order to characterize the correlation.

(4.19)

Correlation coefficient for two sensors’ data is

Ox.x o’ K
=—t= e = 4.20
Px.x, O, 0y, ol+ol K+1 (420)

4.2.1 Compression via Transforming into Parallel Gaussian Sources

The objective is to transmit the vector X = (X, X,,...,X,) using Virtual MIMO.

As described in the previous section, we divide the network into clusters of ‘m’ members.
In order to be able to resemble a Virtual MIMO, members of each cluster should have the
same data. They confer with each other (communicate X;’s to their neighbors) and

process the set of data, encode it and transmit the new data using Virtual MIMO.
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We calculate the cross-correlation of sensors’ data and build up the covariance matrix.

E[X,X ;1= E[(0+n,)(0 +n)] = E[6°]+ E[0.n,)+ E[0.n. ] + E[nn,]

2 2 . .
o.+0, , i=j
=3 2 .. (4.21)
o, , i#J
The covariance matrix will be
2 2 2 2
o, +o, o o,
2 2 2 2
o ol +o o
CXX:E[X[XJ]z :X X . n :x (4'22)
o’ o} o oltol .

As the covariance matrix is symmetric, we can decompose it using eigenvalue

decomposition method.

olvor ol e O
Cye =E1X.X]= OJ Offof OJ =UAU"  (423)
BRI
where,
mo.+o; 0 0
A= ? 02 ? and UU" =1, (4.24)
0 0 - o]

The diagonal elements of A are the eigenvalues of C,, . The corresponding orthogonal

eigenvectors are as following:
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(1] 1] 1] F 1]
1 -1 1 1
1 0 -2 1
V= V,=10 V,=| 0 V=] (4.25)
0 0
; : . 1
1] | 0 ] 0 ) | —m |

The unitary matrix U is constructed by normalizing the eigenvectors (V;’s) and putting

them in the columns of U. Thatis, U, = L

I
Basically, by transforming the data, we are removing the correlation among sources and

they are turning to become m parallel independent Gaussian sources. According to

Reverse Water-Filling solution [39], we can quantize these data with the following rates.

llog 4 , A > L
2 D m
R, = (Zj (4.26)
0 , A, < D
m
Therefore,
1, mo’+o? 1 ol 1, mo(c) " +(a)"
R =—log—F—" +(m-1D—=1 n_—_] x\“n n
Towal = 0g (2) (m )2 Og(g) 2 0g DY (4.27)
m m ;

In terms of K

_L, moie)" (o) 1, (mK+1)(o})"

R, ,=—lo
Total 2 (Djm 2 (Djm
m m

The processing and compression block diagram in depicted in Fig. 4.7.

(4.28)
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Transformation
into Independent Compression

Gaussian with Rates Orthogonal
Sources according to Space-Time
Reverse Block Coding MIMO
¥=U"x Water-Filling TRANSMISSION

K‘:(Xan’---,Xm)

ﬂﬁooo@k&x

Figure 4.7 — Block diagram of processing and compression for cooperative source coding

Sinceo? >> o, variance of &, =X, —X,, which is 20;, is much less than
variance of X, which is o’ + o> . For communication inside clusters during conference

phase we can reduce the rate of transmission. We propose that in each cluster one of the

nodes transmit X; and the rest of the nodes transmitgj =X i —X,. Without loss of
generality we assume that X; is transmitted completely and X,,X,,..., X, subtract the

received data (X, ) from themselves and encode the difference.

Transmission scenario scheme is depicted in Fig. 4.8.

X _ 0 +n transmit

|- 1

X, =0+n, 6 =X,-X, ~ —twmi,
X3 - 9 + n3 83 — X3 _ Xl transmit
X,=0+n, £, =X, - X, ~ —tami

Figure 4.8 — Transmission scenario scheme inside each cluster

All nodes will have (X,,¢,,¢;,...,€,) Where,
X, ~ N(0,0” +0?) (4.29)

e, ~N(0,20;) ,  j=23,....,m (4.30)
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The rate-distortion function for the new method is,

1 ol +o?

R =—lo 2 I 431
R ——llog . forj=23,..,m (4.32)
J 2 D 3 .] 930y .

Leading to a sum-rate distortion region:

2 2 2 m-1 2\m
ol + 07 20, _ 11, K402 (@)

1
+(m-1DN—log—=% = 4.33
( )2 s D 2 D" ( )

< 1
RTotaI = ZRI = Elog
i=1

Compared to the first method (all nodes transmitting X;’s during conference phase), the

: —1 .
new algorithm saves m2 Iog( K2+ l ) bits. Because,

1 ol +o? 1 ol +o? 1 207 m—1 K+l)
mx—lo X 2{-R.  =(m-1)|~lo X 2 —=lo = lo
> g[ D j rotat = ( ){2 g( D > logl — 5 log —

The transmission rate reduction diagram is shown in Fig. 4.9

Rate Reduction

1 !

1_ L 1 L L
10 20 30 40 50 60 70 80 90 100
Comelation Parameter (K)

L 1

Figure 4.9 Transmission Rate Reduction vs. Correlation
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We calculate the cross correlation among set of (X, ¢,,&,...,€,,)
E[X,g,]= E[(0 +m)(n; —n)] = E[0.n;]+ E[n.n,] - E[0.n]- E[n)]=~0, (4.35)

Eleé,;]= El(n, —n)(n, = n)] = Eln.n,] + Eln,n, )~ Eln.n, ]+ E[n]

20, , i=j (i#l
=y =7 =D (4.36)
lof , i#j (i#l)

n

The covariance matrix of (X,,¢,,¢;,...,£,) will be

of+af —of —af —O'f
ot 20} of e o
Cu=| -6 o 207 o =UAU" (4.37)
| —O o’ 0'3 20’3_mxm
where,
A4 0 0
0 e 0
A=| . ’?7 . .| ad UU'=UU=I (4.38)
0 O m _imxm

We calculate the eigenvalues (4,,4,,...,4,,) of the above matrix.

_O t(m+Do, | V(@) —2(m 16?67 +(m? +2m-3)(c2)

& 2 2
p— 2 —
_K+m+1+ (K —m+1)* +4(m 1)0’3 439)
2
o2 +(m+D)o? (02 —2(m-1)02c? +(N* +2m—-3)(02)
py= 200 :
:K+m+1—\/(K—2m+1)2+4(m—l)o_j .40
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A=A == =0 (4.41)
If K>>m,

A=(K+)ol=cl+0’ and A, =mo’

The corresponding (orthogonal) eigenvectors are

[ 62— (m-1)0? +(0?) —2m -0’0 + (m’ +2m—3)(0?) |
207
1
v, = 1
- 1 -
| K-mtle(K—m+ D +dm+4 | g mo1]
. !
= ) ~ 1 , A (4.42)
. 1 -4 - l -
&2 ~(m=1)0% (02 ~2m-1)02.0? +(r +2m-3)(0?)’ |
20,
1
V,= {
- 1 -
| K-m+l-f(K=m+1 +4m+4 | [0
° !
= 1 =1 s A (4.43)
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0 0 0 0
1 1 1
-1 1 1 1
v,=| 0 v,=|-2| ¥=|1 Vo=l 1 |, Adond,  (444)
0 0 -3 1
0 | 0 | 0 —m+2]

The unitary matrix U has normalized eigenvectors as its columns. That is, in order

to form U, we have to define U, = ”7’ and put the normalized vectors in columns of U.

V.
f
Now, if we transform the data vector ¥ = (X ],82,83,...,EM)T by matrix U T the new set of
data will be uncorrelated and we have
Y=U"Y (4.45)
E[YY"=E[U'YY'U)= E[UT(UAU™U] = E[I A1, ]= A (diagonal) (4.46)
At the receiver we again transform the data by multiplying matrix U to the received

vector. We then recover Y = (X,,ez,gs,...,gm)r and finally X = (X,,X,,....X,).

According to Water-Filling solution we have

m-2
RTotal :.llog‘_ﬂl—-'--]b'log_ﬂz_‘"'(n'l'—2)%1Ogi:l ﬂ ll }{’m

G I I ) I R P

2 2 232 2\m-2 2 2ym-1 2\m
:llogma"ﬂ" *(9,) llog (0,) mo, {9,) m+(0")
m

NG

The processing block diagram of the improved algorithm is depicted in Fig. 4.10.

1
5 (4.47)
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Transformation
into Independent Compression

Gaussian with Rates Orthogonal
Sources according to Space-Time
Reverse Block Coding | MIMO
y=UTY Water-Filling j TRANSMISSION

X=(X|,£2,_,.,8m)

Figure 4.10 - Improved algorithm, processing and compression block diagram

4.2.2 Compression via Vector Quantization

As an alternative approach, we suggest using a Vector Quantizer for joint
compression of correlated sources. That is, we consider that when nodes have shared
their data inside their clusters and all have received the same set of data, they can use a
Vector Quantizer to compress and encode the data jointly. Since they will reach to the
same codeword, they can transmit this codeword by MIMO techniques. We compare the
two systems (transformation into parallel independent sources & Vector Quantization) in
performance by simulation. The block diagram of Vector Quantization based algorithm is

depicted in Fig. 4.11.

Compression via Orthogonal
Vector Space-Time
Quantization Block Coding MIMO
TRANSMISSION

V=(0X,X;,.,X,)

@x oo o@gﬂﬁ

Figure 4.11 — Compression via Vector Quantization
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We design a Vector Quantizer by applying the algorithm described in Chapter 2,

on 10°randomly generated samples.

4.2.3 Numerical Examples and Simulations

In this section we present some examples of compression using the methods
described above. We designed several Scalar and Vector Quantizers for the
corresponding rates and variances.

We assume that nodes in the network are clustered in groups of m =4 and are observing

2
g

correlated sources with parameters o> =1, o =0.01 (Thatis K =—%=100)
lof

2
n

The pre-calculated covariance matrices for compression methods are:

Method 1:
i+ ol e o]
Coe =EIX,X,]= OJ i Ta’f 02 —UNU"  (4.48)
A
where,
mo+o. 0 0
A= ? 02 ? and UU" =1 (4.49)
0 0 o],

100 1 1 1
o _ 1 1.01 1 1 (4.50)
S| 1 101 1 '

1 1 1 1.01
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rr 1 1 11 1 1

2 V2 6 243 2 2 2 2

: ‘/I ‘/1— ‘1/_ 401 0 0 0 I .

- = — — —— 0 0
12772 T 2B 0 00 0 0| la 2

oy -2 Lt o o o0t ofp| L L _2

2 V6 230 o o oo01||v6e 6 e
Loy, 3 11 13

2 243 | (2V3 2V3 243 243

(4.51)

The total rate for compression of sources as derived in (4.27) and (4.47) is

2 2ym-1 2\m 2\m
R:_l_o mo_x‘(o-n) +(O-n) =110 (mK+1)(O-n)

e T

We set this rate equal to 8 and 12 and find the corresponding compression rate for each

(4.52)

source, the rounded rates for compression are
R, =8 - R =5R,=1,R, =1,R, =1 (4.53)
Ry =12 - R =6,R,=2,R, =2,R, =2 (4.54)
Note that the quantizers with the above compression rates are designed for Gaussian
sources with variances 4, =4.01,4, =0.01,4, =0.01,4, =0.01 .

Sample data:

X, =1.3098
X, =1.1872
X, =1.2236
X, =1.2084

X =[1.3098,1.1872,1.2236,1.2084]" (4.55)
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(111 1]
2 2 2 2
1 ] . . 1.30987 [2.4645
. H 1.1872| |0.0867
X=U'X-= ‘/15 }5 ) x = (4.56)
B 1.2236 | |0.0203
~/15 ~/13 1/—6_ 3 1.2084 | |0.0276
W3 23 23 23]
X will be quantized to
2.6073
Ry =38 &, =207 (4.57)
Toral ’ 7°10.0785 '
0.0785
and the transformed data will be
LR T B
2 2 6 243 |
1 1 “/1_ ‘1/— 2.6073] [1.4138
~ 4 5 I 0.0785| |1.3028
X=ux, =|? V2. V6 23 - (4.58)
Iy -2 _1 ]00785] |1.2622
: V6 2\/35 10.0785] [1.2357
il 0 0 -
2 24/3 |

The distortion for this example is 0.0066
We simulated the algorithm for 10° sample vectors and achieved an average distortion of
Average Distortion = 0.042

With higher quantization rate, R, =12 we will have

2.4554
. 00393
R,,=12 X0 = 00303 (4.59)

0.0393

and the transformed data will be
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1
1

rtr 1 1
2 2 6 243 |
1 ‘Fl ‘/1_ ‘1/— 2.4554] [1.2829
< o |12 T/ J& 243 (00393 |1.2273
X=UX = 2 V2 \/g 2«/5 _ (4.60)
T, 2 1 [00393] |1.2069
2 V6 2~/3§ 0.0393] [1.1936
- 0 0 —-—
2 24/3 ]

The distortion for this example is 0.0007

We simulated the algorithm for 10° sample vectors and achieved an average distortion of

Average Distortion = 0.0017

Method 2:
(o+0? —o! -0 —o?]
-0, 20, o, o,
Cu=| -0} o 20} o’ =UAU’ (4.61)
| —o, o, O'f ZJf_mxm
where,
A 0 -~ 0
0 e 0
A=|. ’?7 L and UU ' =U'U=1I (4.62)
O O m _Imxm

We substitute for the parameters and using (4.42)—(4.44) we have

[—0.9998 0.0178 0 0

101 -0.01 -001 -001] | 00103 05773 —-L _L
_|-001 002 o001 o0l |_ ;/5 \/18
71001 001 002 0.0l 0.0103  0.5773 N
~0.01 001 001 0.02 00103 05773 o0 2

L J6 |
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[—0.9998 0.0103 0.0103 0.0103]
1'0;03 00297 8 g 0.0178 0.5773 0.5773 0.5773
X ' X 0 L L 0 (4.63)
0 0 001 O 22
1 1 2
0 0 0 001 0 - 2 __<
i NN J6 |
X, =1.3098
X, =1.1872 ,
X =[1.3098,1.1872,1.2236,1.2084] (4.64)
X, =1.2236
X, =1.2084
X, 1.3098
X,-X,| |-0.1226
Y = = (4.65)
X,-X, | |-0.0862
X,-X,| [-0.1014
By transforming Y using U we will have
[-0.9998 0.0103 0.0103 0.0103'_13098 L3128
0.0178 0.5773 0.5773 0.57731 o
P oUTY - 0 1 1 0 -0.1226 | |-0.1557 (4.66)
IR V22 —0.0862| | 0.0257 '
1 1 2
0 - —~ __~ [-01014] |-0.0024
I Jo 46 N
Using a total rate of R, =8 bits, ¥ will be quantized to
—1.4899
_ —~0.1025 467)
| 0.0785 '
—0.0809

By retransforming using U , we have
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[—0.9998 0.0178 0 0 ]
1 1 |
0.0103 05773 —— —_ [—-1.4899 1.4879
7 oUf = ]/5 \/13 -0.1025| | -0.163 (4.68)
00103 05773 0o - [700809] [-0.0084
L J6 |
Y, 1.4879
~ |Y, -Y | [1.3248
F=|Bhs (4.69)
Y,-Y | |1.4358
v,-Y | |1.4794

The distortion for this example is 0.0423

We simulated the algorithm for 10°sample vectors and achieved an average distortion of

Average Distortion = 0.0126

Using a total rate of Ry, =12bits, ¥ will be quantized to

-1.3731
7 - —-0.1479 , 4.70)
‘7] 0.0393 '
—0.0393
By retransforming using U , we have
[-0.9998 0.0178 0 ]

[—1.3731 1.3702

0
nE

\/18 ~0.1479| |-0.1113 71
T | 00393 1 -0.0557 '

0.0103  0.5773 2 |[-0.0393] |-0.1316
V6 |

0.0103 05773 - LZ

Y=UY,=| 00103 05773

o &l-

X = = (4.72)



The distortion for this example is 0.0045
We simulated the algorithm for 10° sample vectors and achieved an average distortion of
Average Distortion = 0.0036

We simulated the scheme for Vector Quantization method over 10°samples and

achieved:

Ripw =8 Average Distortion = 0.0094
Ry =12 Average Distortion = 0.004

Table 4.2 summarizes the simulation results and Fig. 4.12 gives a visual comparison for

different methods.

Compression Method 1 | Compression Method 2 | Vector Quantization
Summary of Results

8 bits 12 bits 8 bits 12 bits 8 bits 12 bits
Average Distortion 0.042 0.0017 0.0126 0.0036 0.0094 0.004
2 2
o +0
SQNR=10log,, ——*
D 13.81 27.74 19.04 24.48 20.31 24.02
(dB)

Table 4.2 — Summary of Results for Cooperative Compression algorithms
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Figure 4.12 — Visual comparison among compression algorithms for rates 8 and 12
Comparison between compression Methods 1 and 2

We simulated the system considering both the conference phase and cooperative
compression phase. We compared the distortion achieved by Methods 1 and 2.
The associated distortion considering only conference phase is:

Conference-Phase Distortion (Method 1) = 1.1912x107*

Conference-Phase Distortion (Method 2) = 1.3512x10™*
The total distortion due to Conference Phase and Cooperative Compression Phase for

total rate of 8 bits is:
Total Distortion (Method 1) = 0.0421

Total Distortion (Method 2) = 0.0128
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Finally, we added the MIMO transmission block to the system and simulated the whole

sensor network. The simulation results are depicted in Fig. 4.13.

—+— SISO - No Cooperation
0.03- —— Compression Method 2 ||
—+— Compression Method 1
0.025.- —&€— Vector Quantization
g 0.02-
2
O
k7
2 0.015-
]
©
|_
0.01-
0.005+-
0 l | | L L | L 1 L
3 4 5 6 7 8 9 10 11
Total Energy per Bit (J) x 10-6

Figure 4.13 — Comparison of Total Distortion vs. Total Energy consumption per bit

From Fig. 4.13 it is observed that for distortion levels below 0.015 compression method 2
has the best performance. It is also observed that compression method 1 performs very

close, but slightly better than Vector Quantization.
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CHAPTER FIVE

CONCLUSION

In this thesis we considered the problems of data compression and transmission in
wireless sensor networks.

In Chapter 2 we presented a background on the main concepts, theorems and
algorithms which were defined in the literature and used throughout the thesis. We
presented a review on the classical CEO problem and its relations to Wireless Sensor
Networks. We studied Slepian-Wolf theorem, achievable rate region for Distributed
Source Coding and its application in WSNs. We reviewed the Cooperative Source
Coding for correlated Gaussian information by eigenvalue decomposition and
transferring into parallel independent sources followed by Vector Quantization method.
Finally we presented the background on Cooperative Transmission (Virtual MIMO) in
WSNs and Space-Time Coding.

In Chapter 3 we considered the CEO problem for Binary sources. We modeled
data for observations by an i.i.d. unbiased sequence Y which is connected to each sensor

via a Binary Symmetric Channel (BSC). In other words, observations X; (i =1,2,..., n) are
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corrupted by a random error £, with Pr{E;= 1} = p, . We analyzed the behavior of the
system and showed that sensors can compress their observations according to Slepian-
Wolf rate limit and a joint decoder can estimate the common sequence Y using this

information. We derived H(Y | X,,X,,...,X,)as a function of » and p, and proved that it

converges to zero as n tends to infinity. Substituting this function in Fano's inequality,
we determined the minimum number of sensors required to achieve a desired probability
of error.

In Chapter 4 we considered energy-efficient compression and transmission
techniques for wireless sensor networks. We assumed two scenarios for sensor networks
and for both scenarios presented cooperative compression and transmission schemes. In
the first scenario we considered the Gaussian CEO problem where sensors observe a
common Gaussian source and report noisy versions of this source to the CEO. The
Fusion Center (CEO) is interested in estimating the source by processing the observations
and extracting the information. We proposed an energy-efficient cooperative algorithm
for data estimation in CEO-based wireless sensor networks exploiting cooperative
(virtual) MIMO technique. In the second scenario we extended the problem to Multi-
terminal communication problem and considered the general sensor network case where
all nodes wish to transfer their individual correlated information to a center. In this case
sources are highly correlated and the Fusion Center is interested in all observations. We
proposed cooperative data compression and transmission methods and compared their
performance. The proposed algorithms are based on joint compression of correlated
Gaussian sources. In the first algorithm we transform sources into parallel independent

Gaussian sources while in the second one we apply Vector Quantization.
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5.1

Contributions

Analysis of data estimation in Binary CEO problem:

Derivation of closed form for joint Entropy H(Y | X,,X,,...,X,) and proving its
convergence to zero as »n tends to infinity.
Determination of the minimum number of sensors for any given desired distortion

Derivation of the estimation rule from a set of observations

Cooperative compression and transmission in Gaussian Wireless Sensor Networks

5.2

Proposed a data estimation algorithm for CEO problem in WSNs using
cooperative data processing and energy-efficient MIMO transmission technique

Proposed cooperative compression methods for general Multi-terminal
communication problem in wireless sensor networks by removing the correlation

from the set of data using eigenvalue decomposition technique
Derivation of closed form parametric equations for eigenvalue decomposition

Proposed a Vector Quantization based cooperative algorithm for compression

Future Work

For future research we suggest designing of a Distributed Source Coding scheme

for data conference among sensors. Since sensors’ data are correlated and they want to

share their information, a well-designed DSC scheme can achieve the same performance

by consuming less energy. We also suggest designing of a coding scheme for

implementation of Binary CEO problem, proposed in Chapter 3, according to DSC in

order to achieve Slepian-Wolf bound. For this purpose we can use powerful channel

codes like Turbo or LDPC codes.
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