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ABSTRACT 

Modelling Drought Option Contract Prices 

Jielin Zhu 

To help farmers reduce their risk of income loss caused by drought, we introduce a 

new financial weather derivative called a drought option. We model and estimate 

drought option contract prices based on existing techniques used in temperature and 

precipitation option pricing. 

The difference is, unlike the direct measure of temperature or precipitation, we 

need to find a index which can reflect the severity of drought in some long time 

period. Then we use historical burn analysis, index value simulation and daily value 

simulation to estimate the value of the contract based on data in dry regions in China. 

Comparing the three evaluation methods, we attempt to determine which one is 

more reasonable for data with different lengths and different parameters in the con

tract. 

Key Words: Drought option prices, reconnaissance drought index, potential evapo-

transpiration, goodness-of-fit test, mean-reverting process, daily temperature simula

tion, speed of monthly rainfall simulation. 
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Chapter 1 

Introduction 

1.1 Motivation for the Research 

Weather plays an important role in people's daily lives. It can also affect profits of 

companies directly and indirectly. For example, if it is a cold winter, a heating oil 

company may face increased demand. Or if there is too much rain in the summer, a 

zoo could lose many tourists resulting in decreased revenues. While weather can be 

predicted a few days in advance, it is difficult to predict for long periods and almost 

impossible to control. But that doesn't mean nothing can be done to reduce the risk 

of weather related financial loss. 

In the past, the main financial instrument to reduce the risk of weather-related 

loss was insurance. However, an insurance can only be effective when a peak weather 

incident happens, such as a flood or tornado. It is hard to set an insurance contract 
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if there is only a little change in weather expected. Most of the time, when we want 

to control the financial effect of weather, we want to reduce the effect of cumulative 

weather measures, not disasters (Alaton, 2002). 

In the mid-1990's, new derivative contracts called weather derivatives were intro

duced to reduce weather-related risks. 

Financial Derivatives and Weather Derivatives 

In the past few decades there was an explosive growth in the development of new 

financial assets called financial derivatives (Stampfli, 2001). They are not like other 

traded assets, such as commodities, stock, bonds and currencies, which have their own 

values. The value of a derivative depends on the values of some underlying assets. 

Actually, most financial derivatives can be seen as a contract between a buyer and a 

seller with some special terms, such as when to trade or at what price to trade. The 

most common types of derivatives are futures, options and swaps. 

Weather derivatives are very similar to financial derivatives. The difference is that 

the value of a weather derivative depends on some weather indices which cannot be 

exchanged or traded (Alaton, 2002; Mraoua, 2005; Yoo, 2003; Cao, 2004). The details 

of these contracts will be given in next chapter. 

Currently, weather derivatives are used to control the risks associated with tem

perature, precipitation or wind. 

Drought 

Since the birth of agriculture, farmers have been battling drought in different 
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regions of the world. Even though they try very hard to avoid its influence, drought 

is still one of the largest risks facing farmers. In developed countries, irrigation is 

common and electricity readily available, but both are a luxury for the farmers in 

many developing countries. To help those farmers, we will develop a financial tool 

called drought option contract to avoid the risk of drought. When the drought is 

serious, farmers can get some profits by exercising this contract and make up the 

loss from their yields. Actually, in current weather derivative markets, when people 

discuss using weather derivatives to control the risk of drought, they often choose to 

use rainfall derivatives. Specific drought option contract have not being discussed in 

the academic literature. 

Of course when people mention the word "drought", the most common description 

is "the lack of water". But water is not the only factor which can affect drought 

conditions. Actually, it is hard to define drought to everyone's satisfaction (Redmond, 

2002). Drought means different things to different people. While for one person 

drought might mean there's no rainfall during a 15 day period, for somebody else 

drought might mean in one month the amount of precipitation falls below some set 

level. 

The American Meteorological Society divides drought into four groups: meteoro-

logical/climatological, agricultural, hydrological, and socioeconomic (Richard, 2002). 

Meteorological drought is a long term phenomenon. It means the reduction or 

absence of precipitation caused by the change of climate conditions. If there is a lack 
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of water in the surface layers during an important time in the growing season, which 

would decrease the product of the crop, it can be seen as an agricultural drought. 

A hydrological drought focuses on a balance of water at a specific place. It means 

the water supply cannot meet the demand after a deficit of rainfall in a long pe

riod. Socioeconomic drought highlights the impact of meteorological, agricultural, 

and hydrological drought on some economic good. 

In this thesis, we consider the problem as a combination of agricultural drought 

and socioeconomic drought. First of all, we want to help the farmers to hedge their 

risk when the agriculture drought results a reduction of the yield. Secondly, we use 

an option as a financial tool, whose price depends on the drought index which can 

measure the condition of the agricultural drought. 

1.2 Objective of Thesis 

Based on the above, to help farmers reduce the income risk caused by drought, pre

cipitation derivatives may not be a good choice. But the main idea for all weather 

derivatives are the same. Therefore, the aim of this thesis is to propose a drought 

option contract and estimate a reasonable price for this contract. 

It is almost the same with other kinds of weather options, except we need to find 

a proper index as the measure of drought. The measure of drought is not so obvious, 

like temperature or precipitation, because it is a combination of other weather factors. 

The evaluation of the derivative contract is as important as the setting of contract. 
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We can consider the financial option contract first. The buyer of the option only holds 

the right to buy or sell something in the future. It is not so obvious that we could 

say how much this right should be worth. For weather options, it is more difficult 

because the underlying is even not a traded asset, but some kind of weather measure. 

Currently, the equilibrium method is most commonly used to decide the price of 

a weather option contract. In other words, we choose the expectation of the present 

value of all possible profits as the price of contract. Therefore the profit or loss of the 

contract is directly affected by possible index values in the future. Thus our problem 

becomes: how to decide the possible index values. Considering the methods used 

to price other weather options, we decide to use three different models to evaluate 

the option contract (Cao, 2004; Mu/3hoff, 2006). Then, we will compare these three 

models to see which one is better for drought options. 

1.3 Thesis Outline 

Chapter 2 

In this chapter, we want to introduce some background materials: the definition 

of option, description of drought indices and which kind of drought index we want to 

use, all the parameters which can affect the change of this drought index, and some 

mathematical algorithms which will be used in the subsequent chapters. 

Chapter 3 

In this chapter, we use a historical analysis model to calculate the drought option 
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price based on data from stations in China for the past 56 years. We analyze the basic 

characteristic of the drought index based on different periods. Then we compare the 

option prices based on different data lengths and different strike levels. 

Chapter 4 

In this chapter, we introduce the index value simulation model for the estimation 

of a drought index. Prom a statistical point of view, we want to describe the behavior 

of a drought index based on the value in the past. Then we simulate possible index 

values following the specific pattern, and get the option price. Based on three different 

goodness-of-fit tests, a non-negative test and a stability test, we attempt to find a 

better way to decide which distribution fits our data best. Then, we compare the 

results with those from the historical burn analysis. 

Chapter 5 

In this chapter, we try to use a daily value simulation model to simulate the 

index value. Unlike other kinds of weather indices, our drought index is influenced 

by at least two climate variables, which means we need to simulate daily processes 

for two different weather factors. In this chapter, we attempt to use a similar mean-

reverting process to describe the behavior of both temperature and precipitation. 

Then we combine the results from those two models to calculate the possible values 

of a drought index and the option price. Finally, we compare them with those from 

the historical burn analysis and index value simulation. 

Chapter 6 
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In this chapter, we discuss the work we have done, and indicate possible future 

work on how to improve the accuracy of the model. 



Chapter 2 

Background 

In this chapter we will introduce some general terms which would exist with a high 

frequency in this thesis. First, we will show the basic knowledge about weather deriva

tives based on financial derivatives. Second, we describe how we can measure drought 

and what kind of factors we need. Then, we introduce the expectation principle as 

the rule of option pricing. Finally, we present some general algorithms used in this 

thesis. 

2.1 Weather Derivatives 

When we talk about weather derivatives, we can not avoid talking about financial 

derivatives, which are at the root of weather derivatives. 
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2.1.1 Options 

The three most common kinds of derivative contracts are: Futures, Options and 

Swaps. In a future contract, the buyer and seller both agree that they will trade some 

stocks or commodities at a specific time in the future. A swap means the buyer and 

seller will sell each other something on a specific date in the future (Stampfli, 2001). 

An option is a special contract. The buyer of the option has the right to choose 

whether he/she wants the deal to happen. With this contract, they will set a maturity 

date and an agreed price level, which is called the strike price. If the buyer has the 

right to sell something to the seller, this contract is called a put option, as the buyer 

will exercise this contract when the market price is lower than the strike price. If the 

buyer has the right to buy something from the seller, it is a call option. The buyer 

of a call option would exercise the contract when the market price is higher than the 

strike (Stampfli, 2001). 

Actually, there are many standard types of option contracts existing which are 

traded. For example, a European option only allows the buyer to exercise the contract 

at the maturity, while, an American option allows the buyer to exercise the option at 

any time during the contract period (Stampfli, 2001). When we talk about the price 

of the option, we always use a European option or an American option as an example. 

We will introduce the details about pricing these in Section 2.6. 
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2.1.2 Drought Options 

Options on financial assets and weather options are very similar at a contractual level. 

However, there is one fundamental difference, the underlying item in the contract, for 

example a temperature measure, cannot be traded directly like a financial asset such 

as oil. From a modeling point of view, this can make a huge difference. Another big 

difference is the weather phenomenon are often more localized, so the price of oil in 

New York and London will be highly correlated, but the temperature less so. 

Therefore, for a drought option, as the underlying item is the measure of drought, 

the strike level should be also changed to some specific value of drought index, not a 

price. When the holder wants to buy a drought option contract, first of all the buyer 

and the seller should decide whether it is a call option and when the buyer could 

exercise the contract. Then they should set up the strike level, the period of this 

contract. Another item called tip should be brought in the contract, which reflects 

the relationship between the value of drought index and the loss of farmers' income. 

This drought option can be used by the government to help the farmers. Right 

now under existing crop insurance policies, farmers are paid only after there has been 

a claim. That is, only after there has been a complete or partial crop failure. For 

small farmers in developing countries, such as subsistence farmers, this might occur 

only after they have lost their livelihood or are starving. However, the drought option 

contract is more sensitive than the insurance contract. For example, a put option 

contract is bought by the agriculture agency. The profit from this contract is kept 
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as a funding to assist farmers. As mentioned above, they need to choose a drought 

index as the underlying item, a specific value of the index, K, as the strike level, the 

tip S, and the period of the contract. The value of this asset will increase before the 

crops fail because it only depends on the severity of drought. Another difference with 

drought options is that, even though the drought is not so serious to destroy almost 

all the crops and trigger the insurance payout, the agency can still get a payback by 

exercising the deal as long as the real value of drought index I is smaller that the 

strike level K, which means the profit will be S • (K — I). 

2.1.3 Weather Index 

As the market for weather derivatives continues to develop, there is a need for more 

and more specific weather risks to be hedged, which means many kinds of weather 

indices exist. Therefore, for one kind of weather factor, there may be many kinds of 

indices. 

For example, the most common types of weather derivatives are for the temper

ature and precipitation. For temperature, HDD (Heating Degree Day) and CDD 

(Cooling Degree Day) are used to measure how cold or hot it is outside. HDD is the 

difference when daily mean temperature is lower than 18° C, written as HDDt = 

max{18 — Tj,0}, where TJ is the temperature for day i. Similarly, CDD can be esti

mated by CDDi = max{Tj — 18,0}, which reflects the situation when more energy 

should be used to cool the house. They can be used to hedge against heating or air 
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conditioning costs (Alaton, 2002; Mraoua, 2005). For precipitation, we usually use 

the amount of the precipitation over a period as the index (Cao, 2004). 

For drought, there is no single obvious measurement like degrees for the tempera

ture or the amount of rainfall for the precipitation. But there are still some kinds of 

drought indices which we can consider to use in our problem. We will describe these 

in the next section. 

2.2 Drought Indices 

Different definitions of drought make it difficult to have a universal drought index. 

Drought is a very complex phenomenon. There are many factors which can affect 

the intensity and severity of drought. There is no simple index which can include all 

these factors. 

Based on work of Richard in 2002, drought indices should meet the following four 

criteria (Richard, 2002): 

1) the timescale should be proper to the problem we have at hand; 

2) the index should be a quantitative measure which can be used for large-scale, 

long-continuing drought conditions; 

3) the index should be appropriate to the problem being studied; 

4) a long accurate past data set should be applicable to compute the index. 

Since 1900's, scientists have designed many drought indices to satisfy their needs 

to measure drought (Richard, 2002; Keyantash, 2002). A lot of research has been 
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done to check the efficiency of those indices in Africa and Asia(Bhuiyan, 2004; Ntale, 

2003).The most popular ones are Palmer's drought index (PDI) and the standard

ized precipitation index (SPI). Both indices focus on meteorological or hydrological 

drought (Alley, 1984; Guttman, 1997; Guttman, 1999). 

With our problem, the drought index should satisfy the following conditions: 

1) It can be used to measure agriculture drought; 

2) It can be calculated in any appointed period; 

3) It can include as many factors as possible, which can affect the severity of 

drought; 

4) The data we have is enough for the calculation. 

To measure agricultural drought, we can not only consider the supply of water in 

that region. Based on the work of Boken (2005) and Hanson (1991)'s work, agricul

ture drought is concerned with climate factors like evapotranspiration, temperature, 

precipitation planting dates and so on. What we find now is an index called a re

connaissance drought index (RDI), which we will show the details of in the following 

section. Based on this RDI, we can adjust this index by changing the potential evap

otranspiration to other measurements. 

2.3 Reconnaissance Drought Index (RDI) 

The Reconnaissance Drought Index was first introduced by Tsakiris in 2004 (Tsakiris, 

2005; Tsakiris, 2007). It was used to measure the severity of drought in the Mediter-
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ranean region. 

This index has three expressions. The first one is called the initial value of RDI, 

a0. If we use a%
0 to stand for the initial RDI for the zth year, we can calculate it by 

the following formula: 

y12_ p.. 
ai = - ^ ^ - , i = l...Nandj = 1...12, (2.1) 

where Pij and PET^ are the precipitation and potential evapotranspiration of the jth 

month in the ith year with the unit mm/(m2 • month), N is the number of years of 

the available data. Potential evapotranspiration reflects the upper limit of evapotran

spiration in the region. Based on this formula, we know that lower the RDI is, more 

serious the drought will be. 

The second one is called normalized RDI (RDIn), which is used to reflect the 

abnormality of the drought in this region. The normalized RDI in the ith year can 

be calculated by the following formula: 

RDPn = ^ - 1, (2.2) 

where d0 is called the aridity index, reflecting the arithmetic mean of all aQ for N 

years. In this expression, when RDIn is negative, the value of RDI is lower than the 

aridity index, which means the drought is serious in the place. 

The third one, Standardized RDI (RDIst), is the standardization of the second 

one. If we use y% to stand for ln(al
0), the RDIS^ can be shown to be 

RDPst = y ^ - , (2.3) 
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where y is the arithmetic mean of all y%, and dy is the standard deviation. The impor

tant assumption for this expression is that the cto follows the lognormal distribution. 

From Tsakiris (2006), we can see that there are some advantages of the RDI: 

1) It can be actually calculated for any period of time, even though Equation (2.1) 

is used for the whole year. 

2) It can be used for measurement of the agricultural drought, as it considers the 

relationship of water supply as precipitation and water demand of the crop, which we 

use potential evapotranspiration to stand for. 

3) This index actually includes more climate factors than PDI or SPI, such as day 

hour and crop coefficients. Both of them are included in potential evapotranspiration, 

which may lead to a more accurate measurement. 

Actually, what we choose for the option underlying is the initial value of RDI. The 

normalized one can be seen as the the retained profit of the option if we use d0 as the 

strike value. We will show the details in the following section. In Chapter 4 we will 

see that the assumption of the lognormal distribution cannot be satisfied most of the 

time. The value of RDI for any period in one year can be calculated by the following 

formula: 

RDr=JZJ=1" ,i = l...Nandj = l...m, (2.4) 

where j = l stands for the beginning day of the period we need, and m is the number 

of days for this period. 
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2.4 Parameters in RDI 

Prom the Equation (2.1), we can see that the most important parts of this index are 

precipitation and potential evapotranspiration. Based on other drought indices, we 

could see that the precipitation plays the most important role in drought problems. 

As rain is a common weather phenomenon in people's lives and easily measured, here 

we only focus on the potential evapotranspiration part. 

2.4.1 Potential Evapotranspiration (PET) 

Evapotranspiration (ET) is used to describe the sum of evaporation and plant transpi

ration from the surface of the land to atmosphere. Evaporation focus on the movement 

of water to the air from sources such as the soil, and canopy interception. Transpira

tion measures the subsequent loss of water for a plant as vapor through stomata in 

leaves. Evapotranspiration plays an important part in the water cycle. 

Potential evapotranspiration, PET, means evapotranspiration with no lack of wa

ter supply all the time. This term was used commonly in an earlier period. As the 

upper limit of ET, this term is hard to put into practice because it depends on the type 

of plants, soil and climatic conditions. This means scientists cannot use a universal 

definition of potential evapotranspiration. 

Jensen first introduced the reference crop evapotranspiration (ETr) to stand for 

the ETp for alfalfa from 30 to 50 cm in height, many view those two terms as one thing 

(Burman, 1994). They are the basis for the measure for actual evapotranspiration. 
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Actual evapotranspiration (ETa) is the actual loss of water from the land surface 

due to the processes of evaporation and transpiration. To get actual evapotranspira

tion, the calculation procedure is to calculate reference crop evapotranspiration first 

and then to multiply ET r by a crop coefficient Kc (Burman, 1994), which is estimated 

by considering the growth stage of the vegetables and other conditions. We can see 

this actual evapotranspiration as the potential evapotranspiration for some specific 

crop, which makes more sense to use actual evapotranspiration in the estimation of 

RDI. 

Therefore, in this thesis, we want to consider the actual evapotranspiration as a 

parameter of drought, which means we will have a new index. We call it Adjusted 

RDI (RDIa(j). It can be written as 

RDPad = J^t1* ,i = l...Nandj = l...m (2.5) 

where ETjj is the actual evapotranspiration in the jth day of this period in the ith 

year. 

In the rest of the thesis, we use RDI to stand for Adjusted RDI (RDIa(j). 

2.4.2 Actual Evapotranspiration 

Since the 1950's, scientists have tried many methods to estimate evapotranspiration 

(Jensen, 1990). As there are many factors which can affect the value of evapotranspi

ration, the more parameters the formula includes, the more complicated the formula 

is. We can divide these methods into three categories (Xu, 2002): 
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1) mass-transfer based methods; 

2) radiation based methods; 

3) temperature based methods. 

Because of data limitations, right now the applicable methods are the temperature 

based methods: Blaney-Criddle and Thornthwaite. Prom other research (McGuinness, 

1972; USDA, 1964), the Blaney-Criddle method is considered to be more accurate. 

SCS Blaney-Criddle Method 

Scientists have developed many different versions of the Blaney-Criddle method 

since the original one appeared in the 1950's. Except for the FAO-24 version, the other 

methods can be directly used to estimate actual evapotranspiration with special crop 

coefficients (Burman, 1994). What we use in this thesis is called the SCS Blaney-

Criddle method. 

The climatic factors used in SCS Blaney-Criddle method are temperature and day 

hour length. In addition, there is another factor called the monthly consumptive use 

crop coefficients for the specific crop. 

The formula used for the SCS Blaney-Criddle method is: 

ETa = kcktf, (2.6) 

A;t = 0.0311T + 0.24, (2.7) 

f={ , (2-8) 

0.003p, if T< 1.67 
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where ETa is the monthly actual evapotranspiration with unit mm/(m2 • month), 

kc is the consumptive crop coefficient for the SCS version, kt is a climate coefficient, f 

is called monthly comsumptive-use factor which reflects the radiation variation based 

on temperature and day length, which is the length of the time from when the sun 

appears to when the sun disappears for every day, T is monthly mean temperature 

with unit °C and p is the percentage of day length cumulated in one month over a 

whole year. We should note that when air temperature is no more than 1.67 °C, the 

value of k̂  is a constant number, 0.3. 

While we hope that we can set our contract for any period, which means the ET a 

should be applicable for any period, right now we don't have an efficient method for 

daily ET a . 

Even though based on work of Bordne in 2005, the SCS Blaney-Criddle method 

is used for daily evapotranspiration (Bordne, 2005), we need to test it by ourselves. 

If the actual error is not too big, we can use it directly. 

In this thesis, to simplify the problem, we only consider the contract with full 

month period, like 3 months or 6 months. 
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2.5 Price of Drought Options 

2.5.1 Profits of the Option 

From the definition of the option and the drought index in Section 2.1 and 2.2, we can 

propose a put option contract for drought based on the characteristics of the RDI: 

smaller the RDI is, more serious drought it will be. We assume the strike price is K, 

the tip is S, and the period of this contract is from t=0 to t=T. We also assume this 

is a European option contract, which means it can only be exercised at the maturity 

date. Then at the maturity date T, the profit is known after they calculate the value 

of the drought index. The equation is given as follows: 

f(I) = Smax(K-'l,0), (2.9) 

where f is the profit at the end of this period the holder will receive, and I is the value 

of the reconnaissance drought index as given in Equation (2.5). If I is smaller than 

K, then the holder will receive S(K-I), if I is bigger than K, the holder would choose 

not to exercise this contract and the profit would be 0. 

2.5.2 Basic Method 

For financial derivatives, the principle of the pricing method is called the no-arbitrage 

assumption. It means there's no arbitrage opportunity in the market. The contract 

price should be consistent with its future value. The representative method is the 

Black-Scholes equation (Stampfli, 2001). We create a replicated portfolio which has 
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the same payoff with the option, and estimate the price of this portfolio as the price 

of the option. However, for weather options, the underlying is not an asset, but a 

weather index, which means it cannot be traded. Thus this no-arbitrage assumption 

is not suitable for weather options. 

The equilibrium method is always used to estimate the weather derivative contract. 

People use the present value of the expectation of the profits as the price of the option 

(Cao, 2004; Mu/?hoff, 2006). We use the drought option above as an example. The 

price is the discounted expectation of all possible profits when the contract is exercised. 

This method can be shown to satisfy the following formula: 

Pr = E[S e-ti
r{u)Au / ( / ) |Q] , (2.10) 

where T is the contract period, r(u) is a function of the interest rate, I is the value of 

drought index, Q is the space which includes all possible value of I. Here S, the tip, 

reflects the payment of the contract, which depends on the relationship between the 

value of the drought index and the loss of farmers' income. For example, if a farmer 

buys this kind of drought option, he/she should choose a big S if he/she thinks the 

drought would damage his/her crops seriously. f(I) reflects the model for the profits, 

given by Equation (2.9). 

To simplify the problem, we keep S constant as 1 in Equation (2.9) and assume the 

rate of interest is constant during the period T. Then Equation (2.10) can be written 

as 

Pr = e-rTE[max(K-I,0)\Q] (2.11) 
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The value of Pr would be affected by the variation of drought index from the strike 

level (Stampfli, 2001). 

Therefore, based on Equation (2.11), our problem is changed to setting the strike 

level and finding possible index value. The strike level depends on the RDI condition 

in the specific place. The analysis will be shown in Chapter 3. 

2.5.3 Modeling Possible Index Value 

Based on Equation (2.11),. we should focus on finding possible values of RDI in Q. 

In general, there are three kinds of methods for this part: Historical Burn Analysis; 

Index Value Simulation; Daily Value Simulation (Mu/3hoff, 2006). 

The historical burn analysis method does not need to consider the future. What 

we need is only the information from the past. The index value simulation method 

needs one to think about the possible values of the index by considering the distri

bution of this index. The daily value simulation needs one to use stochastic methods 

to simulate the daily process of climate, for example, precipitation, to simulate the 

drought condition in the future. The details of these three models will be shown in 

Chapter 3, 4, 5 separately. 
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2.6 Mathematical Algorithms 

2.6.1 Goodness-of-Fit Test 

The goodness-of-fit test is used to determine if the samples follow a special distribution 

or which distribution is better to fit the samples. We compare the data with the 

assumptive density function for a parametric distribution under the null hypothesis 

H0: if H0 is true by testing many times with experimental data, we could generate 

data following the distribution in the hypothesis. In general, there are three kinds of 

tests: the Chi-Square test, the Kolmogorov-Simirnov test, and the Anderson-Darling 

test (James, 1971; Stephens, 1972). 

In Chapter 4, the drought index is seen as a continuous variable in time. The 

proper distribution function should describe the probability that the value of index 

falls in some specific range. Different distributions have different density of probability 

functions. Normal distribution, lognormal distribution, Weibull distribution, gamma 

distribution are usually used in some engineering problems. Since many researchers 

have worked in this field, we won't discuss the characteristic of the distributions 

(Burley, 1999; Evans, 1993; Kotz, 2002; Milhesan, 2008). 

In this thesis, to test the data lists and generate random numbers from a special 

distribution, we use a software package called BestFit. There are 20 kinds of distribu

tion which can be considered. We can rank those fitting distributions by the 3 tests 

mentioned above. It can also generate 100000 random numbers following a specific 



UHAFTER 2. BACKGROUND 

distribution. 

2.6.2 Monte Carlo Simulation 

If we assume that the RDI index follows some special distribution, and we want to 

use the basic method to calculate the option price based on Section 2.6, we need to 

calculate the expectation of all possible profits based on Equation (2.11). 

We know that if the variable I follows a special distribution, the expectation of 

f(I) should satisfy the following equation: 

E = f p ( / ) / ( / ) d/ (2.12) 

where p(I) is the density function for the distribution, f(I) is the function of the option 

profits like the one in Equation (2.9) and (2.10), a and b are the range of possible 

value. For many distributions, even if we know the cumulative function and the 

value of parameters of this distribution, it's still hard to calculate the expectation by 

Equation (2.12) directly. Therefore, we consider the Monte Carlo method. 

The basic idea of Monte Carlo method is that we randomly pick values which 

follow the chosen distribution, and estimate E by the following formula: 

where Ij follows the special distribution, and N is the number of random values we 

pick, f(I) is the profit function. The law of large numbers ensures that this estimate 

converges to the correct value as the number of draws, N, increases. 
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One disadvantage of Monte Carlo method is that the speed of convergence will 

become very slow when N increase (Glasserman, 2003). Based on the law of large 

numbers, we have that the Error is (9(-7=), which means if we want to get an extra 

decimal place of accuracy, we need 100 times as many samples. Therefore, even if we 

choose a very large size of sample, the results may not converge quickly enough. We 

will analyze this part in Chapter 4. 

Random Number Generator based on the Transformation Method 

To generate a random variable which follows a specific distribution, the most 

common way is to use an inverse-CDF method: An arbitrary random variable X can 

be generated from a uniform variable U ~ Uniform(0,1) due to X ~ F _ 1 ( t / ) where 

F is the cumulative distribution of X. 

In general, we can generate the random variable X from another random variable 

Z if we have Z = g(X). If we know X = g~1(Z), and how to generate variable Z, we 

can use this formula to convert Z to X directly. 

For example, consider the lognormal variable. We know the uniform variable and 

standard normal variable can be easily generated in every modern computer language. 

Also, we know X is a lognormal variable if X satisfies X = eY where Y is a normal 

variable. Therefore, we can generate lognormal random variables directly based on 

the above. 

But if Z = g(X) has no unique solution, for example, we have solutions x0, Xi,..., xr, 

we can not convert Z to X directly as we don't know which Xi we should choose. 
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Actually, we can approximate the probability of the conditional cumulative distri

bution by the following formula (Taraldsen, 2005) 

" ' ^ - ^ - ^ - E ^ V B D - (2'14) 

where F is the cumulative distribution function of X. 

If we choose v0 = 0, Vi = J2j<:iPj, the variable v follows the uniform distribution 

in the interval (0,1). Then we have an algorithm when multiple roots exist: 

1. Generate V ~ Uniform(0,1), denoted by v; 

2. Return x = Xj, where Xi is the unique root such that Vi-i < v < Vi. 

This algorithm can be used to generate the inverse Gaussian variable in Chapter 

4. We know the density function of the inverse Gaussian distribution is 

/G(/x,A) =p(x) = ( ^ ) 1 / 2 ^ ( ~ A (
2 7 / ) 2 ) , (2-15) 

which can be obtained from the Wald distribution, whose density function is 

Wald{§) = p(x) = \ ^-e*x-3/2exp[^-(x + x'1)}. (2.16) 

V 2n 2 

Therefore, if X ~ Wald($), then Y = fiX would follow the inverse Gaussian distri

bution 7G(/i,/i$). 

We also have the relationship between the Wald variable and Chi-square variable: 

g(X) = ${X ~1)2 = Z ~ X\. (2.17) 

Solving Equation (2.17), we have two roots: 

x1 = l-—(Vz2 + 4$z-z), (2.18) 
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x2 = l/x1. (2.19) 

We also have the conditional probability when X = Xi: 

Pl =P(X = Xt\Z = z) = 1/(1 + xt). ' (2.20) 

Based on the above algorithm, with x\ < x2, if we want to choose Xi as the value of 

the variable, we need to make sure v < p\ = 1/(1 + X\). 

This method can be used to generate random numbers following many other dis

tributions too. 

Van der Corput Sequence 

By using a Quasi-random sequence, we can improve the efficiency of -7= in the 

error part for the Monte Carlo method. The Van der Corput sequence is an example 

of a one-dimension low-discrepancy sequence. 

Any integer n has a unique expansion with base b. If n — Ylilo ai(n)b%, then the 

inverse expansion with base b is <j>b(n) = Y^oai(n)b~l~l•, which is the nth element of 

the Van der Corput sequence. 

2.6.3 Gauss-Newton Method for Non-Linear Least-Square Prob

lems 

It is very hard to solve non-linear systems directly. Sometimes there are no ex

act solutions, or sometimes the form of the solution is too complicated to calculate. 

Therefore, we need to find another way to compute the "locally" optimal solution 
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(Bartholomew-Biggs, 2005). 

One way is to convert the problem to a least-square problem. Assume we have a 

non-linear system 

/*(-?) = 0 , i = l , . . ,m, (2.21) 

where ~x eM.n. Instead of solving it directly, we turn to finding an optimal ~x which 

minimizes || / ( x ) ||2= YllLi fi(~^)2- The Gauss-Newton method is a common choice 

for the non-linear least-square problem. 

The algorithm is: 

1. Give a start guessing for ~x, denoted by ~x^°\ and an iteration of convergence 

error (ER); 

2. Linearize / near the kth estimation ~x^: 

fitft) « fi(^ik)) + Dr{jt{k)){^ - lt{k)), i = 1,..., m (2.22) 

where Dr is the Jacobian: (Dr)ij = ^ ; 

3. Calculate 

A™ = Dr{-x{k)), (2.23) 

~b{k) = £>r("x (fc))("?(fc)) - 7 ( (^ ( f c ) ) ) , (2.24) 

which satisfy 

7( (^ ( f e ) ) ) + Dr{-x{k)){~x - ~x (fe)) = A^lc^ - V(fc); (2.25) 

4. Solve the linear system: 

^ ( f c+D = (A(k)TA(k)ylA{k)T-g(k). ( 2 2 6 ) 
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5. Calculate || f(~x) ||2. If || f(~x) ||2< ER, output ^ f e + 1 ) as the optimal 

approximation of the solution for this non-linear system; otherwise, repeat step 2, 3, 

4. 

2.6.4 Milstein Method to solve Stochastic Differential Equa

tions 

Assume a stochastic process has the form 

dXt = a(t, Xt)dt + b(t, Xt)dWt, (2.27) 

on t0 < t < T with the initial value Xto = X0, a(t, Xt) and b(t, Xt) stand for functions 

with variables t and Xt, and W is the Wiener process. 

As a(t, Xt) or b(t, Xt) could be very complicated, it could be hard to solve Equation 

(2.27) directly. Therefore, it's important to find a way to simulate the approximation 

of the process as accurately as possible. 

Here we choose the Milstein method (Kahl, 2004; Han, 2005). The explicit Milstein 

method is shown as: 

Xn+1 =Xn + a(tn,Xn)Atn + b(tn, Xn)AW + ±b(tn, Xn)b'x(tn, *n)((AW02 - A*J, 

(2.28) 

where A tn is the time interval from tn to tn+1, Xn+1 is the simulated value of X when 

the time is tn+1, AW follows normal distribution N(0,a2At). 

To make the approximation more accurate and convergent, we can use the implicit 
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Milstein method which is shown as: 

Xn+1 =Xn + a(tn,Xn+l)Atn + b(tn,Xn)AW + ±b(tn,Xn)b'x(tn,Xn)((AW)2 - Atn). 

(2.29) 

The difference between the Equation (2.28) and (2.29) is that there's an unknown 

Xn+i in the right hand side of (2.29). To make (2.29) work, we can use the result of 

Equation (2.28) as an approximation of Xn+x, and substitute it into the left side of 

Equation (2.29) to get the implicit approximation of Xn+i. 

2.7 Java Code 

In this thesis we choose to use Java code to calculate RDI and estimate the option 

price. Java is easy to write, compile, and debug because of the automatic memory 

allocation and garbage collection. Another important reason is, Java is independent 

on the platform. We can easily move Java program from one computer system to 

another, which means it's easy to make people in different fields cooperate on this 

program. Finally, Java is robust when we need to check for possible errors in the 

beginning. 

2.8 Data 

Based on Section 2.3 and 2.4, we need the data of temperature, precipitation, day 

hour length, and crop coefficient curve. In this thesis, the climate data are from the 
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China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/). They 

have daily and monthly data for more than 700 climate stations since the year 1951. 

In order to minimize the error, we use observing data in those stations where the 

percentage of missing points is no more than 10. The gaps are filled by substituting 

random numbers following normal distribution. We choose data from Jinan station 

first, which have a history of drought. It is located in 40°N in the east part of China. 

Data included observations from January 1st, 1951 to December 31st, 2006. 

The curve of consumptive crop coefficient is based on McGuinness's research 

(McGuinness, 1972). 

http://cdc.cma.gov.cn/


Chapter 3 

Historical Burn Analysis 

The historical burn analysis method can be seen as the simplest method for the 

pricing of weather derivatives, including our drought option. By this method, people 

who want to calculate the price of the option need neither complicated mathematical 

knowledge nor specialized software. 

3.1 The Description of the Model 

The basic assumption of this method is that all the historical data can cover all the 

possibilities in the future, which means the price of the option only depends on the 

data we already have. 

From the expectation principle in Chapter 2, based on Equation (2.11), we can 
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see that the price of a put option for drought is given by 

1 N 

Pr = -e-rTC£max(K-Ii,0)), (3.1) 

i= i 

where T is the maturity, r is the interest rate, Ij is the value of the drought index for 

the ith year during that specific period, N is the number of years of data, K is the 

strike value for drought indices. 

As the threshold of drought indices, K should reflect the boundary between drought 

and no drought. Therefore, we should decide K based on every RDI list. Prom the 

definition of RDI in section 2.3, in the beginning, we suggest K could be n in (1, a0), 

where a0 is given by Equation (2.2). 

K=l can be used for those regions with a good irrigation system or.no serious 

drought problems. For the holder of this put option, he/she can get a profit when 

the value of RDI is less than 1, which means the precipitation can not fit the need 

of actual evapotranspiration. Now, for dry regions, we suggest it is better to choose 

K=a0, because a0, as an aridity index, can reflect the dryness conditions in these 

regions. 

3.2 Results of Actual Evapotranspiration 

We use SCS Blaney-Criddle method to calculate actual evapotranspiration for our 

problem, and we check this formula to see if it is fitted to the daily cumulation. 

From Chapter 2, we can see Equation (2.6) (2.7) and (2.8) are used for monthly 

http://or.no
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ETa- The data we use now are those from Jinan station, and the daily values of the 

SCS Blaney-Criddle crop growth stage coefficients from alfalfa curve. 

We calculate ETa for every month over past 56 years by using monthly data and 

by summing up daily E T a based on the same formula (2.6)-(2.8). Figure 3.1 shows 

the histogram of relative error between them. We can see that the percentage of 

those points whose relative error from the original monthly values is lower than 20% 

is 93.56. 0.45% of all points have a big difference from the original formula results 

(greater than 50% relative error). Based on this, we cannot say Equation (2.6)-(2.8) 
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Figure 3.1: Histogram of Relative Error for ET 

can be used for daily ET a . 

3.3 Results of RDI 

Here we still use monthly and daily data separately to calculate RDI for different 

periods. If we assume that the SCS Blaney-Criddle method can be used to calculate 
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daily actual evapotranspiration, we can calculate adjusted RDI for any period by 

Equation (2.5). Right now we only consider the contracts for three months, half a 

year and one whole year, as the drought condition can always be reflected in a long 

period, to see if the drought in this place is serious. 

Around Jinan station, the main crop is corn. Even though we can not get the 

consumptive crop coefficient of corn, we can use the curve of alfalfa instead of the 

curve of corn, because based on the definition of potential evapotranspiration and 

actual evapotranspiration in Section 2.4.1, the actual evapotranspiration of alfalfa 

can be seen as the potential evapotranspiration in that region. In Jinan, corn is 

planted in April or May, and they will be harvested in July or August. Based on the 

growth stage of the plants, we can set the period of the contract from April to August 

for corn. We can also choose the month when the crops grow or are yielded as a short 

period for the contract, for example, April to June. 

RDI Lists with All Data 

First we substitute all the monthly data we have in Equation (2.6)-(2.8). We 

calculate the value of RDI for different periods in a year. Table 3.1 and Table 3.2 

show the results for the stations Jinan and Wuhan. Jinan is located in latitude 40°N 

and Wuhan is located around 30° N in China. Here we use the same crop coefficient 

for Wuhan station. This would give us a basic idea how different the RDI would be 

in dry and wet regions. In each table, we calculate the RDI lists for the whole year, 

half the year from spring to summer, the whole grown stage from April to August for 
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corn, the growth stage from April to June and harvest stage from July to August. 

From Table 3.1, we can see that Jinan is always under a dry condition in the 

whole year, because the mean value of RDI from 1951 to 2006 is 0.51751. It means 

the supply of water from rainfall is only satisfying half of the crops' need for water. 

Similarly, in the period from March to August, or from April to August, the situation 

doesn't change. For the period from April to June, the situation is much worse. Even 

though we think the summer is a rainy season, the RDI list for the period from June 

to August shows that the water balance still doesn't look good. We believe here the 

day hour length and high temperature affects drought more than we thought before. 

If we compare the last three columns in Table 3.1, we could see that the aridity index 

for the period from June to August is higher that the one in the June-to-August 

period, which means the water balance in June is pretty good. On opposite, April 

and May would be very very dry because the aridity index for the period from April 

to June is much smaller than other periods. Then if we turn to Table 3.2, we could 

say that this region keeps a good water balance over the last 56 years. For the whole 

year or half a year, the aridity index which reflects the average of RDI is close to 1. 

And during the growth stage, the aridity index is 1.05126. If we look at the whole 

list, we can see that in this period, the value of RDI is often in the range [0.7,1.2]. 
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Table 3.1: The RDI for Different Periods in Jinan 

Y/P 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1-12 

0.52539 

0.45947 

0.72129 

0.62925 

0.31937 

0.58918 

0.40815 

0.43156 

0.40306 

0.34676 

0.71698 

0.89216 

0.77145 

0.86156 

0.32007 

0.36408 

0.38331 

0.23042 

3-8 

0.49698 

0.34171 

0.84575 

0.60145 

0.23839 

0.57828 

0.46083 

0.41641 

0.40012 

0.40058 

0.61830 

0.92069 

0.94658 

0.80175 

0.33477 

0.41804 

0.34061 

0.15355 

4-8 

0.49394 

0.31881 

0.85277 

0.61702 

0.23546 

0.57134 

0.45147 

0.41360 

0.39720 

0.41448 

0.63525 

0.95605 

0.96642 

0.81203 

0.34290 

0.40294 

0.33489 

0.15721 

6-8 

0.74906 

0.22496 

1.36285 

0.88782 

0.45928 

0.46755 

0.57886 

0.68651 

0.46812 

0.74956 

1.08221 

1.75325 

1.30203 

1.25986 

0.56502 

0.54224 

0.53392 

0.17900 

4-6 

0.25372 

0.40754 

0.36318 

0.36721 

0.04016 

0.67797 

0.33011 

0.16571 

0.32490 

0.12012 

0.23504 

0.21393 

0.63318 

0.39598 

0.14238 

0.26927 

0.16060 

0.13782 

7-8 

0.56150 

0.37211 

1.00925 

0.74114 

0.30187 

0.68849 

0.57195 

0.47289 

0.40218 

0.51026 

0.83173 

1.23500 

1.00393 

0.91661 

0.39414 

0.53493 

0.43905 

0.12846 
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Table 3.1: The RDI for Different Periods in Jinan 

Y/P 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1-12 

0.55575 

0.39708 

0.59660 

0.51750 

0.68649 

0.55214 

0.41561 

0.61585 

0.41617 

0.64030 

0.43087 

0.54609 

0.28168 

0.47238 

0.43264 

0.54232 

0.46727 

0.25712 

3-8 

0.55965 

0.39695 

0.65056 

0.49685 

0.71172 

0.49764 

0.34667 

0.60566 

0.41343 

0.72264 

0.39739 

0.55748 

0.31335 

0.43768 

0.40580 

0.52012 

0.38911 

0.26831 

4-8 

0.56025 

0.40750 

0.64426 

0.50980 

0.74190 

0.49506 

0.35514 

0.62837 

0.43228 

0.73715 

0.37906 

0.55704 

0.31858 

0.45336 

0.37802 

0.52492 

0.39839 

0.26815 

6-8 

0.78500 

0.55947 

0.89536 

0.94469 

1.20373 

0.91555 

0.51683 

1.10904 

0.63862 

1.24524 

0.50887 

0.23350 

0.40972 

0.62411 

0.50086 

0.70196 

0.53703 

0.38617 

4-6 

0.34187 

0.26569 

0.41236 

0.13644 

0.29997 

0.12425 

0.21006 

0.19411 

0.24236 

0.29985 

0.25677 

0.85018 

0.23562 

0.30447 

0.27073 

0.36025 

0.26638 

0.16403 

7-8 

0.57935 

0.42121 

0.83369 

0.64193 

0.90457 

0.66312 

0.40524 

0.77268 

0.47666 

0.99702 

0.44482 

0.49288 

0.41022 

0.55831 

0.33782 

0.62623 

0.40669 

0.34724 
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Table 3.1: The RDI for Different Periods in Jinan 

Y/P 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

1-12 

0.67826 

0.41264 

0.26779 

0.57779 

0.58795 

0.40529 

0.63949 

0.60757 

0.44468 

0.63087 

0.43525 

0.54463 

0.43089 

0.53353 

0.43923 

0.33680 

0.77899 

0.84382 

3-8 

0.78426 

0.48626 

0.26684 

0.61528 

0.62470 

0.40277 

0.61728 

0.65709 

0.45744 

0.76458 

0.37485 

0.67185 

0.46094 

0.47735 

0.40928 

0.34548 

0.68449 

0.95134 

4-8 

0.80867 

0.49826 

0.23445 

0.62670 

0.61343 

0.41187 

0.64322 

0.67568 

0.46642 

0.78003 

0.36587 

0.68489 

0.45921 

0.50172 

0.42041 

0.35903 

0.69684 

1.00294 

6-8 

1.19887 

0.86989 

0.32596 

0.90594 

1.00160 

0.68204 

0.77119 

1.00754 

0.76217 

1.22875 

0.49652 

1.06975 

0.51548 

0.62470 

0.45731 

0.23924 

1.06617 

1.27369 

4-6 

0.42700 

0.17745 

0.15262 

0.35387 

0.23260 

0.15165 

0.53205 

0.37293 

0.19444 

0.37807 

0.23388 

0.32495 

0.40996 

0.38673 

0.38961 

0.47708 

0.37362 

0.76117 

7-8 

0.98646 

0.58466 

0.29211 

0.72953 

0.70522 

0.47233 

0.68722 

0.84799 

0.59335 

1.05254 

0.34014 

0.76478 

0.49744 

0.60076 

0.55698 

0.26090 

0.76563 

1.14499 
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Table 3.1: The RDI for Different Periods in Jinan 

Y/P 

2005 

2006 

Mean Value 

Standard Deviation 

1-12 3-8 4-8 6-8 4-6 7-8 

0.71103 0.58395 0.60535 0.87637 0.37833 0.71134 

0.47685 0.57705 0.60558 0.62870 0.58491 0.55179 

0.51751 0.52176 0.52899 0.76017 0.31727 0.61752 

0.15586 0.17965 0.18882 0.23880 0.15968 0.33582 

Table 3.2: The RDI for Different Periods in Wuhan 

Y/P 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1-12 

0.98341 

0.78822 

0.81165 

1.52036 

0.87552 

0.72402 

0.99494 

1.02657 

1.08191 

0.76131 

0.72378 

3-8 

0.97449 

0.71494 

0.76553 

1.71108 

1.07079 

0.86520 

1.00139 

0.94195 

0.98887 

0.73185 

0.60142 

4-8 

0.95790 

0.56905 

0.68891 

1.77183 

0.95655 

0.71537 

0.98776 

0.89608 

0.96326 

0.54887 

0.47938 

6-8 

0.83686 

0.41774 

0.65526 

1.58704 

0.99640 

0.48062 

0.92267 

0.59860 

0.73659 

0.48318 

0.40343 

7-8 

0.97507 

0.73573 

0.88416 

2.24640 

1.49102 

1.11758 

1.14144 

0.93551 

1.97510 

0.80689 

0.83001 

4-6 

0.94099 

0.39077 

0.50361 

1.30115 

0.44726 

0.31314 

0.83814 

0.85628 

0.09089 

0.30130 

0.12491 
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Table 3.2: The RDI for Different Periods in Wuhan 

Y/P 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 ' 

1974 

1975 

1976 

1977 

1978 

1979 

1-12 

1.20819 

0.81985 

0.97906 

0.68349 

0.52871 

0.85381 

0.72073 

1.30144 

0.93501 

0.59391 

0.79728 

0.90239 

0.70368 

0.95261 

0.66155 

0.87390 

0.56602 

0.72222 

3-8 

1.29084 

0.92803 

0.94982 

0.59843 

0.44467 

0.63151 

0.67565 

1.55127 

0.88256 

0.50836 

0.53239 

0.83673 

0.63157 

0.94191 

0.58892 

0.92065 

0.53628 

0.81680 

4-8 

1.33910 

0.89483 

0.90518 

0.58776 

0.42041 

0.52433 

0.58867 

1.51377 

0.82228 

0.44887 

0.41934 

0.77902 

0.61318 

0.92488 

0.54158 

0.84225 

0.47522 

0.77325 

6-8 

1.40062 

0.71938 

0.65274 

0.47694 

0.27699 

0.33189 

0.48563 

1.78215 

0.61581 

0.31378 

0.22503 

0.48743 

0.38397 

0.74762 

0.45685 

0.50774 

0.27542 

0.70625 

4-6 

1.04944 

0.76058 

1.68219 

0.84379 

0.69142 

0.72513 

0.62618 

0.90036 

1.33362 

0.74068 

0.66097 

1.15333 

0.85593 

1.28512 

0.98681 

1.20314 

0.89506 

1.29695 

7-8 

1.61208 

1.03002 

0.18161 

0.33300 

0.17509 

0.32958 

0.54938 

2.13657 

0.34813 

0.18080 

0.17273 

0.41599 

0.35105 

0.58117 

0.10012 

0.49033 

0.08380 

0.26317 
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Table 3.2: The RDI for Different Periods in Wuhan 

Y/P 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1-12 

1.23403 

0.82671 

1.20782 

1.38182 

0.88633 

0.74831 

0.76623 

1.05998 

0.94674 

1.23237 

0.93467 

1.31626 

0.80337 

1.17874 

0.71587 

0.89034 

0.94231 

0.64636 

3-8 

1.43910 

0.68175 

1.21804 

1.20418 

0.86891 

0.65841 

0.68765 

1.02016 

0.95925 

1.08174 

0.84664 

1.53332 

0.90928 

0.97162 

0.63607 

0.97691 

1.00166 

0.53690 

4-8 

1.29820 

0.61121 

1.14444 

1.23048 

0.85914 

0.58579 

0.64519 

0.95562 

0.94893 

1.04368 

0.80120 

1.47166 

0.72113 

0.88652 

0.60278 

0.99223 

0.89264 

0.54245 

6-8 

1.52636 

0.63148 

1.30312 

1.20517 

0.91955 

0.34949 

0.59873 

0.82567 

0.84225 

0.95586 

0.62448 

1.44733 

0.66198 

0.65749 

0.60029 

0.73395 

1.02429 

0.58308 

4-6 

0.98519 

0.74011 

1.28732 

1.52120 

1.29922 

0.82591 

0.75276 

1.07855 

1.11826 

1.45208 

1.13100 

1.21062 

1.15977 

1.06708 

0.52294 

1.37373 

0.93536 

0.44688 

7-8 

1.64654 

0.48598 

0.99566 

0.92696 

0.43218 

0.34535 

0.53040 

0.83377 

0.78109 

0.63449 

0.48383 

1.72865 

0.27597 

0.69047 

0.68429 

0.62232 

0.84943 

0.64409 
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Table 3.2: The RDI for Different Periods in Wuhan 

Y/P 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

Mean Value 

Standard Deviation 

1-12 3-8 4-8 6-8 4-6 7-8 

1.14111 1.36168 1.31151 1.14886 1.15376 1.46981 

0.96213 1.14760 1.14106 0.99805 1.78149 0.46426 

0.78058 0.51610 0.52265 0.48313 0.67080 0.36747 

0.58602 0.44579 0.43319 0.27609 0.75293 0.11476 

1,02451 1.06775 0.98982 0.67357 1.25135 0.71334 

0.94193 0.95241 0.87988 0.77760 0.99451 0.76453 

1.04995 1.18029 1.21351 1.32581 1.16065 1.26992 

0.73358 0.58645 0.57359 0.49953 0.72476 0.39926 

0.67477 0.62962 0.64470 0.50348 0.64253 0.64702 

0.90551 0.88845 0.83736 0.73467 1.05126 0.62937 

0.21809 0.28980 0.30210 0.36138 0.35124 0.44868 

The Strike Level 

It seems like the use of a drought option is not so urgent in Wuhan. If we want 

to, we can set the strike as 1. For Jinan, we can say that there is a serious problem 

with the lack of rain if there is no irrigation system because from April to June corn 

needs water to grow. We cannot just use 1 as the strike in the contract, which is 

too far away from the real situation. From the RDI list for the period from April to 
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August, we can see that the aridity index is 0.5290. And for the last 56 years, only one 

RDI point is larger than 1. Therefore based on Section 2.5.2 and Equation (3.1), the 

aridity index would play a very important role in the option prices, not the diffusion 

of RDI any more. However, it's also not proper if we choose to use the aridity index 

as the strike. Unlike drought, the aridity reflects the usual dry condition in the past. 

In some cases, we want to consider some of the effects of the aridity in our contract. 

Then it's reasonable to choose some value between 1 and the aridity index. We should 

consider the specific situation when we put this contract into practice. Right now, 

we just assume strike is 0.5 for the period from April to June, 0.7 for the period from 

April to August and for the whole year. 

Checking RDI with Cumulative Daily E T a 

If we assume Equation (2.6), (2.7), and (2.8) can be used for daily ETa, we can 

calculate monthly ETa by summing all daily values up. Table 3.3 shows the RDI lists 

for different periods based on daily ET a in Jinan. 

Table 3.3: The RDI based on Daily ET in Jinan 

Y/P 

1951 

1952 

1953 

1954 

1-12 

0.52296 

0.42322 

0.72610 

0.63987 

3-8 

0.33162 

0.41222 

0.39643 

0.37052 

4-8 

0.49923 

0.33211 

0.85678 

0.63726 

6-8 

0.75194 

0.23923 

1.37425 

0.90316 

4-6 

0.25909 

0.43262 

0.37360 

0.38432 

7-8 

0.56304 

0.38678 

1.02384 

0.75399 
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Table 3.3: The RDI for Different Periods in Wuhan 

Y/P 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1-12 

0.32787 

0.59650 

0.39793 

0.43453 

0.40618 

0.35931 

0.73207 

0.88113 

0.77106 

0.84786 

0.33675 

0.37496 

0.39310 

0.24521 

0.55238 

0.38941 

0.57990 

0.52253 

3-8 

0.07402 

0.67470 

0.35707 

0.19886 

0.35183 

0.13214 

0.25037 

0.26010 

0.59614 

0.36799 

0.15506 

0.30686 

0.22876 

0.15886 

0.37364 

0.23830 

0.40373 

0.16881 

4-8 

0.24955 

0.58278 

0.45692 

0.42278 

0.40969 

0.42714 

0.64508 

0.96642 

0.98180 

0.80486 

0.34157 

0.41349 

0.34671 

0.18088 

0.56487 

0.39801 

0.64989 

0.51993 

6-8 

0.46579 

0.47813 

0.59286 

0.69688 

0.48135 

0.76786 

1.09916 

1.76771 

1.31786 

1.27803 

0.57250 

0.55165 

0.55189 

0.19410 

0.79583 

0.56658 

0.90212 

0.95320 

4-6 

0.05928 

0.69466 

0.33225 

0.17851 

0.33372 

0.13204 

0.25279 

0.23065 

0.64882 

0.36822 

0.14018 

0.28354 

0.18075 

0.16115 

0.36218 

0.23177 

0.42581 

0.16346 

7-8 

0.31283 

0.69770 

0.58252 

0.48605 

0.41509 

0.53414 

0.84632 

1.24628 

1.01310 

0.92788 

0.40472 

0.54815 

0.45779 

0.14839 

0.58566 

0.43302 

0.84338 

0.65122 
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Table 3.3: The RDI for Different Periods in Wuhan 

Y/P 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1-12 

0.68606 

0.54903 

0.42325 

0.60797 

0.43036 

0.63753 

0.39409 

0.56198 

0.28973 

0.47943 

0.44632 

0.55445 

0.48328 

0.27685 

0.68493 

0.42711 

0.28857 

0.58301 

3-8 

0.31409 

0.17153 

0.20917 

0.22008 

0.24124 

0.31201 

0.27958 

0.80869 

0.26481 

0.32558 

0.34454 

0.37722 

0.28401 

0.19432 

0.43445 

0.19750 

0.24287 

0.46236 

4-8 

0.74129 

0.50142 

0.36913 

0.63840 

0.44671 

0.74173 

0.37341 

0.56295 

0.32655 

0.46211 

0.38410 

0.53502 

0.40857 

0.28026 

0.81829 

0.51053 

0.24524 

0.63364 

6-8 

1.20365 

0.92920 

0.52937 

1.13283 

0.65864 

1.24651 

0.51634 

0.24765 

0.41941 

0.64001 

0.51553 

0.71308 

0.54922 

0.40565 

1.20985 

0.87855 

0.34558 

0.91461 

4-6 

0.30757 

0.13591 

0.22067 

0.20602 

0.26156 

0.31234 

0.23483 

0.84987 

0.24480 

0.31008 

0.28044 

0.36627 

0.27283 

0.17516 

0.43360 

0.19357 

0.16892 

0.36342 

7-8 

0.90291 

0.67322 

0.41557 

0.78370 

0.49147 

1.00244 

0.46140 

0.49971 

0.42036 

0.56547 

0.35279 

0.62949 

0.41664 

0.35937 

0.99450 

0.59981 

0.30423 

0.73736 
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Table 3.3: The RDI for Different Periods in Wuhan 

Y/P 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

Mean Value 

1-12 

0.59538 

0.41276 

0.65110 

0.62397 

0.45459 

0.64804 

0.44689 

0.55142 

0.43831 

0.54572 

0.45549 

0.34684 

0.78561 

0.84386 

0.71018 

0.48360 

0.52247 

3-8 

0.28722 

0.18737 

0.49575 

0.36075 

0.22213 

0.37729 

0.28656 

0.35817 

0.41510 

0.41848 

0.46173 

0.42865 

0.38874 

0.69178 

0.38956 

0.52416 

0.33546 

4-8 

0.62059 

0.42138 

0.65392 

0.69421 

0.47491 

0.79181 

0.37871 

0.69250 

0.46520 

0.51191 

0.43077 

0.36867 

0.70460 

1.00035 

0.61248 

0.61507 

0.53757 

6-8 

1.00807 

0.68459 

0.78123 

1.02720 

0.78031 

1.24312 

0.51262 

1.07687 

0.51917 

0.63314 

0.47810 

0.24240 

1.07073 

1.28322 

0.88260 

0.63451 

0.77171 

4-6 

0.24368 

0.16313 

0.53994 

0.38540 

0.20317 

0.38934 

0.25506 

0.32661 

0.42577 

0.40160 

0.39729 

0.48207 

0.38032 

0.76170 

0.38501 

0.58943 

0.32673 

7-8 

0.71141 

0.48383 

0.69670 

0.86120 

0.60340 

1.06914 

0.35140 

0.77183 

0.50629 

0.61331 

0.56832 

0.26943 

0.76921 

1.15254 

0.71375 

0.55968 

0.62810 
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Most of values in Table 3.3 are close to those in Table 3.1. We can calculate the 

relative difference for RDI lists based on monthly data and RDI lists based on daily 

data for a whole year, half a year and 3 months. The results are shown in Table 3.4. 

Table 3.4: The Relative Error of RDI based on Daily ET 

Y/P 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1-12 

0.47% 

8.57% 

0.66% 

1.66% 

2.59% 

1.23% 

2.57% 

0.68% 

0.77% 

3.49% 

2.06% 

1.25% 

0.05% 

1.62% 

4.95% 

4-8 

1.06% 

4.00% 

0.47% 

3.18% 

5.65% 

1.96% 

1.19% 

2.17% 

3.05% 

2.96% 

1.52% 

1.07% 

1.57% 

0.89% 

0.39% 

4-6 

2.07% 

5.80% 

2.79% 

4.45% 

32.25% 

2.40% 

0.65% 

7.17% 

2.64% 

9.02% 

7.02% 

7.25% 

2.41% 

7.54% 

1.57% 
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Table 3.4: The Relative Error of RDI based on Daily ET 

Y/P 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1-12 

2.90% 

2.49% 

6.03% 

0.61% 

1.97% 

2.88% 

0.96% 

0.06% 

0.57% 

1.81% 

1.30% 

3.30% 

0.43% 

9.33% 

2.83% 

2.78% 

1.47% 

3.06% 

4-8 

2.55% 

3.41% 

13.09% 

0.82% 

2.38% 

0.87% 

1.95% 

0.08% 

1.27% 

3.79% 

1.57% 

3.23% 

0.62% 

1.51% 

1.05% 

2.44% 

1.89% 

1.58% 

4-6 

5.03% 

11.15% 

14.48% 

5.61% 

14.63% 

3.16% 

16.53% 

2.47% 

8.58% 

4.81% 

5.78% 

7.34% 

4.00% 

9.34% 

0.04% 

3.75% 

1.81% 

3.46% 
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Table 3.4: The Relative Error of RDI based on Daily ET 

Y/P 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

1-12 

2.19% 

3.31% 

7.13% 

0.97% 

3.39% 

7.20% 

0.90% 

1.25% 

1.81% 

1.78% 

2.63% 

2.18% 

2.65% 

2.60% 

1.23% 

1.69% 

2.23% 

3.57% 

4-8 

1.89% 

2.49% 

4.32% 

1.18% 

2.40% 

4.40% 

1.10% 

1.15% 

2.26% 

1.64% 

2.67% 

1.79% 

1.49% 

3.39% 

1.10% 

1.29% 

1.99% 

2.40% 

4-6 

1.64% 

2.36% 

6.35% 

1.52% 

8.32% 

9.65% 

2.63% 

4.55% 

7.04% 

1.46% 

3.24% 

4.30% 

2.89% 

8.30% 

0.51% 

3.71% 

3.70% 

1.93% 
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Table 3.4: The Relative Error of RDI based on Daily ET 

Y/P 

2002 

2003 

2004 

2005 

2006 

1-12 

2.89% 

0.84% 

0.01% 

0.12% 

1.40% 

4-8 

2.61% 

1.10% 

0.26% 

1.16% 

1.54% 

4-6 

1.04% 

1.76% 

0.07% 

1.74% 

0.77% 

From this table, we can see that the relative difference between using monthly 

origin ET a and daily ET a for long periods is lower than 5%. But for short periods 

like 3 months, the relative difference is always around 10%. Here we should also notice 

that the absolute values of RDI from April to June is pretty small in Table 3.1 and 

3.3. For example, the relative difference in 1955 is 32.25%, but the RDI from monthly 

data is 0.04016 and the RDI from cumulative daily E T a is 0.05928. We could say 

they both stand for a very serious drought conditions. 

Therefore, considering there is some missing points for daily data, and right now we 

use the average value of day length over a month in the daily ET a calculations, some 

error cannot be avoided. If we really need to set the drought option contract between 

two specific days for a long period, it is still reasonable to use the same formula to 

calculate RDI. However in this thesis, we only consider to substitute monthly data in 
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Equation (2.6), (2.7), and (2.8). 

RDI Lists with Only One or Two Variables 

From Equations (2.5) and (2.6)-(2.8), we can see there are actually four variables 

in total: the amount of precipitation, the temperature, the day length, and the crop 

coefficient. As we don't know much about the crop coefficient right now, we can 

assume it as a constant because what we can use right now is the coefficient of alfalfa. 

Actually, the day length is only concerned with the latitude of the region. If we already 

decide where to set the contract, we can set the day hour length as a known curve. We 

can see the effect of different variables on drought by changing the historical records 

of the variable to the mean value over 56 years or replacing the day hour length curve 

by the one on another latitude. We still use data from Jinan station for example. 

0.6 
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Figure 3.2: RDI with one variable in April-August 

Therefore the latitude is settled as 40 °N. We calculate the RDI list for the period 

from April to August with one variable and use the mean value over 56 years to 
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replace another one. 

1 4 7 1P 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 

Figure 3.3: RDI with one variable in April-June 

Figure 3.2 and Figure 3.3 show the results for different periods with only one 

variable: temperature or precipitation. In Figure 3.4, the curve of RDI shows the 

historical RDI in the past 56 years. The curve of Constant T means we use the 

mean value of monthly temperature over 56 years to replace the historical records 

of temperature. If we replace the historical precipitation by the average of monthly 

rainfall over 56 years, the results are shown as the curve of Constant P. The meanings 

of the three curves are similar in Figure 3.3. It is obvious that if we substitute monthly 

precipitation for each year and the mean values of monthly temperature, the curve 

is closer to the one with three variables than if we use the temperature as the only 

variable, which means that precipitation is the most important component for the 

measure of drought. This is the same as people always thought. 

We can also change the parameter latitude to see the effect of day hour length. 
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Figure 3.4: Difference between RDI lists for April-August 

Figure 3.4 and Figure 3.5 compare the historical RDI, the RDI with constant tem

perature and the RDI with latitude 30 °N for the period from April to August and 

from April to June for the past 56 years. The curve of Error 1 in both figures shows 

the difference between RDI based on mean monthly temperature over 56 years and 

historical values of RDI. Similarly, the curve of Error 2 in Figure 3.4 and 3.5 shows the 

difference between RDI based on day hour length in latitude 30 °N and the historical 

values. It seems that the effect of the day hour length is similar to the monthly mean 

temperature. They only affect RDI in a small range. However, it's also obvious that 

the influence of day hour length is more stable than temperature. Based on Figure 3.4 

and 3.5, the values of RDI in lower latitude is always bigger than those with latitude 

40 °N. It's reasonable because for the period we choose, the day hour length is always 

longer in higher latitude. 

This part can be seen as the previous analysis for Chapter 5. To simulate the 
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Figure 3.5: Difference between RDI lists for April-June 

climate process in order to simulate the possible RDI value in the future, it is best if 

we can simulate the process for all the variables: the precipitation, the temperature, 

and the day hour length. If not, we should choose the most affective ones in our 

model. Because the day hour length curve for each latitude is available, in Chapter 5 

we will simulate the process of both temperature and precipitation. 

3.4 Results of the Drought Option Price 

Now we have the basic value of Ij. We can use Equation (3.1) to calculate the price of 

the drought option. Here we can assume r=0.1. It is only an assumption of continuous 

rate of interest for the year. 

We assume that this contract is signed to hedge the drought risk for the farmers 

in Jinan. If we set the contract for the period from April to August, we will use both 
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K=0.7 and K=a0 as the strike level, which allow us to see the difference clearly. If we 

choose to use the contract to control the drought risk from April to June, we could 

choose the strike level as K=0.5 or K=a0. We calculate the option price with all the 

K equals a0 by using original monthly ET a or the cumulative daily ET a separately, 

and compare the difference by calculating the relative error of RDI based on daily 

ET a from RDI based on monthly ET a . The results are shown in Table 3.5. We also 

calculate the option price based on different strike levels for different periods. The 

results are shown in Table 3.6. 

Table 3.5: Option Prices Based on Monthly and Daily ET with K=aridity index 

Jan-Dec 

Apr-Aug 

Jun-Aug 

Jul-Aug 

Apr-Jun 

MonthlyET 

0.05823105 

0.07410387 

0.09473529 

0.13648905 

0.05862795 

DailyET 

0.05726732 

0.07370554 

0.09414235 

0.13618975 

0.05858515 

AbsError 

0.00096373 

0.00039833 

0.00059294 

0.0002993 

4.28E-05 

Relative Error 

1.68286% 

0.54043% 

0.62983% 

0.21977% 

0.07306% 

Here we could see that even though RDI from cumulative daily ETa is 10% away 

from those based on the original monthly ET a , the relative error of the option prices 

is only around 1% when the strike equals the aridity index. This result is reasonable 

because the fluctuation of RDI value affects option price the most based on Section 

2.5.2. No matter whether we use monthly or daily ETa, the fluctuation of RDI 
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Table 3.6: Option Prices Based on Monthly and Daily ET with Different Strike 

Jan-Dec(K=0.7) 

Apr-Aug(K=0.7) 

Jun-Aug(K=0.7) 

Jul-Aug(K=l) 

Apr-Jun(K=0.5) 

MonthlyET DailyET AbsError Relative Error 

0.17638766 0.1717791 0.00460856 2.68284% 

0.18724644 0.17995118 0.00729526 4.05402% 

0.14405319 0.13683864 0.00721455 5.27230% 

0.29134917 0.28338004 0.00796913 2.81217% 

0.19633826 0.18850471 0.00783355 4.15563% 

is similar to each other. For those with different strike levels, the relative error is 

around 5%. As we change the strike level for different periods, this could also affect 

the final results. Therefore, if we need to set the contract between some random days, 

this historical burn analysis method is still available. 

Let us examine the columns of option prices based on monthly ET in both tables. 

If we use the aridity index as strike level, the option prices for most periods we chose 

are very low. In the rainy season July and August, the option price is higher than 

other contracts. It's reasonable because the standard deviation of the RDI for this 

period is twice as much as the one for other periods, and the option price is seriously 

affected by the fluctuation of RDI based on Section 2.5.2. However, if we set the 

strike a little bit closer to the water balance, the results are totally different. For 

most periods, the option prices are much higher, three times as much as the previous 

one, which means if we consider the dry condition in the contract, this would raise the 
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fluctuation of RDI under the strike level. And this shows us that it is really important 

how we decide which kind of strike level we choose. 

Table 3.7: Option prices based on different data length with K=aridity index 

Jan-Dec 

Mar-Aug 

Apr-Aug 

Jun-Aug 

Jul-Aug 

Apr-Jun 

1951-2006 1957-2006 1967-2006 1977-2006 1987-2006 RE 

K=0.5175 K=0.5147 K=0.5066 K=0.509 K=0.5392 

0.05823105 0.05927542 0.05149668 0.05237679 0.05468512 13.077% 

K=0.5218 K=0.5223 K=0.51 K=0.5213 K=0.5607 

0.07012366 0.06956631 0.0637194 0.06451195 0.06488154 10.051% 

K=0.529 K=0.5307 K=0.5185 K=0.5303 K=0.573 

0.07410387 0.0736046 0.06720845 0.06854319 0.06904676 10.260% 

K=0.6175 K=0.6181 K=0.6008 K=0.6081 K=0.6573 

0.09473529 0.09441723 0.08826735 0.088455 0.08886422 7.328% 

K=0.7602 K=0.7684 K=0.7358 K=0.7263 K=0.8 

0.13648905 0.13492447 0.12660834 0.12570558 0.12277856 11.167% 

K=0.3173 K=0.3131 K=0.3207 K=0.3516 K=0.3646 

0.05862795 0.05676536 0.05713177 0.05735197 0.05343755 9.713% 

Now we use some subsets of the RDI lists to calculate the option price. Now for 

a contract used in Jinan, we have climate records for 56 years, from 1951 to 2006. 

However, we should consider that there may not be enough data records to use if we 
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want to set the contract in some other places. Maybe they only have observations for 

40 years, or much less, for example, 20 years. We want to see what would happen if 

we assume we only have data for the most recent 50, 40, 30 or 20 years. 

Here we only calculate the option prices based on monthly ET a . Table 3.7 shows 

the option prices with K=a0 in different periods. Because the aridity index is con

cerned with data sets, if we choose to use different data sets, the strikes are different. 

Table 3.8 shows the option prices with some constant strike levels considering the dry 

condition in that period. The final column in both tables shows the relative error 

between the option price estimated based on data over 56 years and the most biased 

one based on the smaller data sets. 

In Table 3.7, it seems that different data length doesn't make much difference for 

the final results. The relative error is around 10%. But if we turn to use some constant 

value as strike like Table 3.8, the conclusion would be different. If we only use the 

data in the most recent 50 or 40 years, it seems that the results of option price don't 

change a lot. However, when we only use the data in the most recent 20 years, the 

difference is obvious. For the period from April to August, the relative error between 

the original one and the 20-years-data one is 28.8%. Similarly, for the period from 

April to June, the relative difference is 30.6%. 

This result is easy to understand. From Equation (3.1), when K equals 1, because 

n is not as big as possible, mean of K-Ij would change a lot if we add one big RDI in 

the RDI list, which means this option price is sensitive to the time length. But if we 
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Table 3.8: Option prices based on different data length with constant strike level 

. 1-12(K= 

3-8(K= 

4-8(K= 

6-8(K= 

7-8(K 

4-6(K= 

=0.7) 

=0.7) 

=0.7) 

=0.7) 

=1) 

=0.5) 

1951-2006 

0.17638766 

0.18899318 

0.18724644 

0.14405319 

0.29134917 

0.19633826 

1957-2006 

0.17986768 

0.18803025 

0.18548385 

0.14425515 

0.28282846 

0.19906111 

1967-2006 

0.1812595 

0.1910371 

0.18769 

0.14829443 

0.29430696 

0.19267914 

1977-2006 

0.17987126 

0.18334147 

0.17968787 

0.14501448 

0.30490181 

0.16857261 

1987-2006 

0.15610641 

0.1515263 

0.14533541 

0.11030307 

0.23814665 

0.15046567 

RE 

12.992% 

24.726% 

28.837% 

30.598% 

22.340% 

30.487% 

use the strike K=ao, the value of a0 would change as the increase of the year number, 

which would always reflect the aridity condition for that region. This change would 

reduce the difference between each RDI value and a0. This would make the option 

price looks more stable than the other kind of contract. 

Actually, we can say that the results of the historical burn analysis model depends 

on the time scale of records if we use a constant K. If there are not enough data 

records for the site, we should avoid this method to calculate the value of the option. 

This leads to the following questions: How many years of data records are enough? 

When can we say that we get a stable or good result? 



Chapter 4 

Index Value Simulation 

In this chapter, we implement the index value simulation model to simulate the distri

bution of the index based on available data from Jinan station. The results obtained 

from this model is then compared to those obtained using the historical burn analysis 

as presented in the previous chapter. 

4.1 The Description of the Model 

In this analysis, the index is considered to be the only variable for determining the 

drought option. Unlike the historical burn analysis approach, the index simulation 

method considers not only the current and past values, but also the possible future 

values of the index. 

In this model, the goodness-of-fit mentioned in Chapter 2 is used to select the 

best distribution that provides the simulation that is most consistent with the RDI 
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results. Then, a large number of random numbers exceeding 50,000 are generated to 

produce the new RDI distribution. Therefore, using Equation (2.11) and (2.13), the 

option price can be estimated by the following formula: 

Pr = ^e-rTC£™^(K-Ii,0))- (4-1) 

Equation (4.1) is similar to Equation (3.1). The difference is the definition of N. In 

historical burn analysis, N stands for how many years of data we have. Here N is 

the number of simulated RDI value following the specific distribution in index value 

simulation in Equation (4.1). 

The most challenging aspect of this model is the determination of the best dis

tribution function. Here we utilize the BestFit algorithm to determine the most 

appropriate distribution. The selected distributions are tested against the standard 

tests described in Section 2.6 including Chi-Square test, Kolmogorov-Simirnov test, 

and Anderson-Darling test. In addition to satisfying these tests, the random number 

generator based on the selected distribution must generate only non-negative random 

numbers to be physically meaningful as a measure of precipitation. 

Therefore, the best fitting distribution must satisfy the following criteria: 

1. The distribution must adequately satisfy the three goodness tests. 

2. The random numbers generated from the distribution must be physically mean

ingful. 

3. The distribution must be stable over the time scale considered in the RDI 

computation so that it will be valid for all relevant time intervals. 
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For a specific contract of drought put option the following procedure is followed. 

First, the value of the RDI are computed (see details in Section 3.3). Second, the 

RDI results are used in the BestFit algorithm to determine the distributions. Third, 

the rank of each distribution with respect to the various tests are estimated. Fourth, 

the best distribution is then selected to generate the random numbers and used to 

calculate the price of the option contract. 

4.2 The Results of the Best Fitting Distribution 

The BestFit algorithm is used to determine the most appropriate distribution from 

the RDI results. It should be noted that the lognormal distribution was first tested 

to determine whether it will provide the best fit. However, the results were not 

encouraging as the it did not provide consistently good fit. 

4.2.1 The Ranking from the Goodness-of-Fit Tests 

After substituting historical RDI in BestFit, we can have a ranking list based on 

specific goodness-of-fit test. The distributions on the top of the ranking is fitting data 

better than those at the bottom based on the value of statistics. For example, if we 

use Chi-square test, the test value for the triangle distribution is 5.714 which is the 

closest one to the critical value. On opposite, the test value for the Pareto distribution 

which is at the bottom of the ranking is 83.18, which means this distribution isn't 

good even though it pass the goodness-of-fit test. 
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As the ranking of the different distribution various according to the particular 

test, we initially chose those distributions with a rank of at least three for each of 

the different tests. The distributions are ranked using the weight 0.4, 0.3, and 0.3 

for Chi-Square, Anderson-Darling and Kolmogorov-Simirnov test. After this initial 

trial iteration, other approaches can be considered. For example, when the RDI list 

for the period from April to August is used for the BestFit algorithm, the resulting 

distributions are ranked according to the various tests. According to the Chi-square 

test, the top five ranked distributions turned out to be triangle distribution, extreme 

value distribution, gamma distribution, inverse Gaussian distribution and beta gen

eral distribution. On the other hand according to the Anderson-Darling test, the best 

five distributions are ranked as extreme value distribution, inverse Gaussian distribu

tion, lognormal distribution, Gamma distribution, and Pearson Type V distribution. 

Finally, according to the Kolmogorov-Simirnov test, the best rankings are Weibull 

distribution, beta general distribution, gamma distribution, inverse Gaussian distri

bution, and lognormal distribution. It is hard to say which distribution is the best. 

Therefore, after recalculating the ranking by the above iteration, we can see that the 

gamma distribution, inverse Gaussian distribution, and extreme value distribution 

are ranked as the top three by all the three tests and will be considered the best 

distributions. The summary of the ranking is presented in Table 4.1 for the various 

data periods we choose in Chapter 3. As the table demonstrates, no distribution is 

always the best one for all the RDI of different periods. 
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Table 4.] 

Jan-Dec 

Mar-Aug 

Apr-Aug 

Jun-Aug 

Jul-Aug 

Apr-Jun 

: BestFit Distributions for RDI Lists 

1 

Triang 

Gamma 

Gamma 

InvGauss 

ExtValue 

Log-logistic 

2 

Weibull 

Pearson5 

InvGauss 

Lognorm 

Weibull 

ExtValue 

3 

ExtValue 

BetaGeneral 

ExtValue 

Pearson5 

InvGauss 

Pearson5 

4.2.2 Non-Negative Test 

Once we have chosen the best distributions, we generate 50,000 random numbers from 

which we remove any distributions with negative values in order to obtain physically 

meaningful prices. Table 4.2 depicts the new ranking for each test and for each 

period. As the table demonstrates, many of the distribution functions in Table 4.1 

fail to satisfy the non-negative test. For example all the three top-ranked distributions 

for the period from June to August fail the non-negative test. 

Actually, after the non-negative check, we can see that the results in Table 4.2 

change a lot. For example, for the period from March to August, we need to replace 

the inverse Gaussian and Pearson Type V distribution by beta general and extreme 

value distribution. And for the period from April to June and from June to August, 

we need to kick out all our first choices. 
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.2: BestFit Distributions for RDI Lists After Negativ 

Jan-Dec 

Mar-Aug 

Apr-Aug 

Jun-Aug 

Jul-Aug 

Apr-Jun 

1 

Triang 

Gamma 

Gamma 

ExtValue 

Weibull 

Gamma 

2 

Weibull 

BetaGeneral 

InvGauss 

Weibull 

Triang 

BetaGeneral 

3 

ExtValue 

ExtValue 

ExtValue 

Triang 

BetaGeneral 

Weibull 

In Table 4.3, we rank the distributions for the period from April to June and from 

July to August. It also shows the number of negative numbers for each distribution. 

From this table we could see that for both periods, after non-negative check, only three 

distributions can keep generating non-negative random numbers. Unfortunately, most 

of them are ranked sixth, seventh, or tenth, which are almost at the bottom of the 

ranking. 

Since the BestFit has only 15 distributions in total, it is capable to consider 

the rank of all possible distributions. In general, if the number of distributions is 

large, considering all the distributions becomes impractical because the ranking of 

distributions cannot be copied directly, and one has to calculate the ranking in total 

by inputting the name of the distributions one by one which becomes tedious. 

From Table 4.1 and 4.2, although the RDI lists can fit lognormal distribution, the 
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Table 4.3: Non-negative Test for Distributions for 4-6 and 7-8 

Ranking 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

4-6 

Log-logistic 

ExtValue 

Pearson5 

Logistic 

Lognorm 

Gamma 

BetaGeneral 

InvGauss 

Normal 

Weibull 

Negative Points # 

26 

26 

3 

1412 

4 

0 

0 

5 

1188 

0 

7-8 

ExtValue 

Weibull 

InvGauss 

Lognorm 

Log-logistic 

Normal 

Pearson5 

Triang 

Logistic 

BetaGeneral 

Negative Points # 

7 

0 

10 

10 

89 

613 

38 

0 

1058 

0 

results are not satisfactory. For the six periods considered here, lognormal distribution 

can be only used in one of them. For other periods, lognormal distribution is neither 

the best one, nor passing the non-negative test. Therefore, one cannot assume that 

all the RDI lists fit lognormal distribution to make the problem easier to solve. Then 

it is reasonable that we don't choose the third expression of RDI in Chapter 2 as the 

index in our drought option contract. 

In Table 4.2, some specific distributions are always ranked in the first three places. 

Actually, gamma, beta general, extreme value, triangle and Weibull distributions seem 
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to generate non-negative numbers all the time. However, most of the time they are 

not the best choices. While the other distributions seem to be a better fit according 

to the various tests, their performance with respect to the non-negative test seem to 

be dependent on the parameter values of the distributions which make the selection 

of the best distribution very challenging. 

It seems difficult to find a distribution with good ranking and generating non-

negative random numbers. Note however that, as depicted in Table 4.3, the frequency 

of the negative random numbers is extremely low. For most of distributions the 

number of negative random numbers never exceeded 50 out of 50,000 which is less 

than 0.1%. In order to test the validity of this assessment several sensitivity tests were 

carried out. It turns out that the frequency of the negative random numbers remains 

low and stable. Note that even when the size of the random numbers is doubled, the 

number of negative random numbers remains as low. 

Therefore, it is reasonable to consider the removal of the negative random numbers 

for the highly ranked distributions. This can be done by removing the negative num

bers completely and truncating the size of the random numbers accordingly. This 

method can give reasonable results as the frequency of the negative number is ex

tremely small as shown above. The result of the option prices obtained from these 

approaches will be presented in Section 4.3. 
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4.2.3 Stability Test 

In this section, the issue of stability of the distribution as the distribution of RDI index 

will be considered. Here 3 periods are chosen in order to determine the distribution 

ranking based on the subsets of RDI lists. The results are shown in Table 4.4, 4.5 and 

4.6 for period 1-12, 4-8 and 4-6. In each table, we test the distributions in Table 4.1 

with different data lengths and give the estimation of parameters. 

Table 4.4: Stability Check for 1-12 

T/L 

Triang 

Weibull 

ExtValue 

56 

1 

min=0.2005 

m.likely=0.4162 

max=0.94017 

2 

a=2.1779 

/3=0.36357 

shift=0.1954 

3 

a=0.44284 

b=0.13464 

50 

4 

min=0.19777 

m.likely=0.4156 

max=0.94399 

3 

o:=2.0853 

/3=0.35631 

shift=0.1990 

6 

a=0.43932 

b=0.13484 

40 

8 

min=0.19429 

m.likely=0.4326 

max=0.88233 

2 

a=2.8229 

/?=0.40348 

shift=0.1460 

9 

a=0.43721 

b=0.12967 

30 

5 

min=0.2101 

m.likely=0.4326 

max=0.8906 

4 

a=2.3796 

/3=0.35574 

shift=0.1935 

9 

a=0.44052 

b=0.12698 

20 

3 

min=0.23135 

m.likely=0.4392 

max=0.91539 

1 

a=2.5099 

,5=0.38147 

shift=0.2007 

1 

a=0.46854 

b=0.13026 

For example if one considers the period from April to August, the inverse Gaussian 

distribution, extreme value distribution and gamma distribution will be chosen as the 
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^ ^ _ Table 4.5: Stability Check for 4-8 

T/L 

Gamma 

InvGauss 

ExtValue 

56 

1 

a=8.7073 

/?=0.0642 

shift=-0.0304 

2 

/x=0.7981 

A=14.0822 

shift—0.2691 

3 

a=0.43985 

b=0.1599 

50 

Not Fit 

3 

/x=0.82878 

A=16.66057 

shift=-0.3101 

1 

a=0.43154 

b=0.15715 

40 

Not Fit 

3 

/i=0.69494 

A=8.8002 

shift=-0.1867 

1 

a=0.41778 

b=0.15974 

30 

3 

a=8.6486 

/3=0.067676 

shift=-0.0579 

4 

/x=0.83400 

A=14.57738 

shift=-0.3066 

1 

a=0.43388 

b-0.16768 

20 

Not Fit 

3 

/x=0.66212 

A=5.58731 

shift=-0.1450 

2 

a=0.41336 

b=0.17879 

most appropriating distributions. In Table 4.5, we could see that for inverse Gaussian 

distribution and extreme value distribution, the ranking doesn't change a lot with 

different data lengths. However, the data from recent 50, 40, or 20 years don't fit 

gamma distribution any longer. Therefore, even though gamma distribution is the 

best one from the first iteration, and it passes non-negative check, we should not 

use it as the distribution of RDI. Between the inverse Gaussian and extreme value 

distribution, we prefer the extreme value distribution, not only because the rank of 

this distribution is always better than the other, but the values of parameters for this 
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Table 4.6: Stability Check for 4-6 

T/L 

Log-logistic 

ExtValue 

Pearson5 

56 

1 

a=4.4404 

/?=0.3596 

7=-0.0708 

2 

a=0.24645 

b=0.12107 

3 

a=13.204 

0=6.5185 

shift=-0.2169 

50 

6 

a=2.6638 

/?=0.20538 

7=0.06946 

1 

a=0.24602 

b=0.10992 

2 

a=5.9898 

0=1.7065 

shift=-0.0271 

40 

3 

a=2.7866 

0=0.21652 

7=0.066827 

1 

a=0.25295 

b=0.11116 

4 

a=6.2842 

/3=1.8649 

shift=-0.0308 

30 

2 

a=3.0347 

/3=0.23927 

7=0.07509 

4 

a=0.28166 

b=0.11446 

1 

a=6.7877 

/?=2.1802 

shift=-0.02423 

20 

3 

a=8.0236 

/3=0.66199 

7=-0.31058 

5 

a=0.29447 

b=0.1246 

4 

a=26.391 

,9=18.923 

shift=-0.3805 

distribution remain essentially the same. For the inverse Gaussian distribution, the 

value of A changes a lot with different data lengths. In the next section we could see 

if this would make huge difference on option prices. 

Similarly, for the period from January to December in Table 4.4, we would finally 

choose the Weibull distribution. The rank of this distribution is more stable, and the 

values of parameters don't change as much with different data lengths. For the period 

from April to June, in Table 4.6, the results lead to unexpected conclusions. All those 
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distributions which can generate negative random numbers still fit the subsets of the 

data lists. However, if we check the non-negative distributions in Table 4.2, gamma 

and Weibull distribution can fit the data list with 55 points but do not fit all other 

subsets, and beta general distribution is ranked around tenth. It seems that it's a 

bad idea to ignore all the distributions with negative numbers. 

We hope the distribution we choose can always reflect the behavior of RDI no 

matter how many years of data we have. Therefore, the stability iteration can be 

used as the most important one to decide which distribution we should use. 

For index value simulation method, we should consider the limit of the lack of data 

records too. If the data length is too short, this method doesn't have many advantages 

against historical burn analysis. However, if we check the stability of the distribution, 

it would make sense that this distribution can somehow reflect the frequency of RDI 

index, and the option price based on this distribution should be reasonable. 

4.3 The Results of the Option Price 

Once the random numbers are generated using the selected distributions, the price of 

the option contract can be computed using Equation (4.1). In these calculations it is 

assumed r=0.1 and we use the same strike level as those in Chapter 3. 
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4.3.1 Option Prices after Tests 

Tables 4.7 depicts the computed option prices obtained from distributions selected 

using the ranking and the non-negative tests with different strike levels. Here the 

number of random numbers is 100000. For all the periods and the distributions 

considered, the option prices seem to converge and there is very little discrepancy 

from the results of the historical burn analysis. However, we should also see that the 

relative error for the last two periods is higher than others. After non-negative check, 

the distribution left is ranked low, which means it could not describe the RDI well. 

This finding is reasonable as the results from historical burn analysis and index 

value simulation both reflect the expectation of the profits of the option, so that as 

long as we use sufficiently large enough data records, the results from the two methods 

are expected to be relatively close. 

The remaining question from the previous section is whether it is necessary to do 

the non-negative check. For most distributions, no matter which period we choose, 

they could always generate some negative numbers. Table 4.8 depicts the case in which 

the negative numbers are discarded and the total random number size is truncated 

accordingly. We list the number of negative numbers in all 100000 numbers, option 

prices for the distributions in Table 4.1, and the biggest relative error compared to 

historical option prices. 

Based on Table 4.2, for the period from March to August, during non-negative 

check with 50000 random numbers, beta general and extreme value distributions 
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Table 4.7: Option Price Compared with Historical Ones 

Jan-Dec 

K=mean 

K=0.7 

Mar-Aug 

K=mean 

K=0.7 

Apr-Aug 

K=mean 

K=0.7 

Jun-Aug 

K=mean 

K=0.7 

Jul-Aug 

K=mean 

K = l 

Apr-Jun 

K=mean 

K=0.5 

1 2 3 

Triang Weibull ExtValue 

0.05754521 0.05721736 0.05822185 

0.17486741 0.17685126 0.1795586 

Gamma BetaGeneral ExtValue 

0.06804662 0.06814147 0.06961309 

0.18814329 0.18745995 0.19107193 

Gamma InvGauss ExtValue 

0.07216899 0.0719541 0.07367136 

0.18684759 0.18698024 0.18968462 

ExtValue Weibull Triang 

0.09457096 0.09462239 0.09922325 

0.14479546 0.142197 0.14659589 

Weibull Triang BetaGeneral 

0.13302472 0.12397935 0.13969621 

0.29032712 0.26737847 0.29147417 

Gamma BetaGeneral Weibull 

0.05915839 0.05977087 0.06221157 

0.19173244 0.19175319 0.19252778 

Historical RE 

0.05823105 1.772% 

0.17638766 1.766% 

0.07012366 3.052% 

.0.18899318 1.088% 

0.07410387 2.988% 

0.18724644 1.285% 

0.09473529 4.523% 

0.14405319 1.734% 

0.13648905 10.090% 

0.29134917 8.965% 

0.05862795 5.760% 

0.19633826 2.402% 
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Table 4.8: Option Prices Compared with Historical Ones including Negative Points 

Jan-Dec 

Negative # 

K=mean 

K=0.7 

Mar-Aug 

Negative # 

K=Mean 

K=0.7 

Apr-Aug 

Negative # 

K=mean 

K=0.7 

Jun-Aug 

Negative # 

K=Mean 

K=0.7 

Jul-Aug 

Negative # 

K=Mean 

K = l 

Apr-Jun 

Negative # 

K=Mean 

K=0.5 

1 2 3 

Triang Weibull Ext Value 

0 0 0 

0.05754521 0.05721736 0.05822185 

0.17486741 0.17685126 0.1795586 

Gamma Pearson5 BetaGeneral 

0 0 0 

0.06804662 0.06753036 0.06786055 

0.18814329 0.18783847 0.18868324 

Gamma InvGauss ExtValue 

0 0 0 

0.07216899 0.0719541 0.07367136 

0.18684759 0.18698024 0.18968462 

InvGauss Lognorm Pearson5 

4 7 8 

0.0928481 0.09259562 0.09120931 

0.14207453 0.1417632 0.14032337 

ExtValue Weibull InvGauss 

28 0 27 

0.13462023 0.13302472 0.13140339 

0.2961963 0.26737847 0.2908061 

Log-logistic ExtValue Pearson5 

77 39 13 

0.05787283 0.05833659 0.0587987 

0.19406525 0.19280756 0.19321773 

Historical RE 

0.05823105 1.772% 

0.17638766 1.766% 

0.07012366 3.840% 

0.18899318 0.615% 

0.07410387 2.988% 

0.18724644 1.285% 

0.09473529 3.866% 

0.14405319 2.658% 

0.13648905 3.870% 

0.29134917 8.965% 

0.05862795 1.305% 

0.19633826 1.615% 

cannot be used. However, when we try to generate 100000 random numbers in Table 

4.8, both of them go through the non-negative check. For some distributions, it's hard 

to decide whether it can generate negative numbers or not. We should also notice 
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that for the last two periods, the relative errors become lower than those in Table 4.7. 

For the period from July to August in Table 4.8, Weibull distribution gives us the 

worst result with strike 1 even though only this distribution guarantees positivity. 

Let's see the period from April to June in Table 4.3, the fourth distribution, lo

gistic distribution gives us 1415 negative numbers with 50000 in total. If we calculate 

the option price with strike K=0.5 following this distribution, the price would be 

0.19102675 with relative error 2.74%. We could say this result isn't good compared 

to the first three distributions, but not as bad as those based on non-negative dis

tributions. Therefore, as expected, those distributions which generate fewer negative 

numbers yield reasonable option prices. 

It seems that the ranking iteration is more important than the negative value 

check. The distribution with good ranking will lead to better results. Our best 

choice is the distribution with good ranking which can only generate positive points. 

However, negative values are not as bad as we thought as long as the negative points 

are below 1% in total. 

We can choose one distribution as our best fitting one based on Table 4.4-4.6 for 

different periods by using the stability check. The results based on subsets of data 

records are presented in Table 4.9 for periods from January to December, April to 

August, and April to June separately, using constant strike value as before. 

For the period from April to August, after the stability test, we can see that the 

inverse Gaussian distribution and the extreme value distribution both have good rank 
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Table 4.9: Option Prices with different length of data 

1-12(0.7) 

Weibull 

Historical 

4-8(0.7) 

InvGauss 

ExtValue 

Historical 

4-6(0.5) 

ExtValue 

Pearson5 

Historical 

1951-2006 1957-2006 1967-2006 1977-2006 1987-2006 

0.17685126 0.17879697 0.1815513 0.18046826 0.15584478 

0.17638766 0.17986768 0.1812595 0.17987126 0.15610641 

1951-2006 1957-2006 1967-2006 1977-2006 1987-2006 

0.18698024 0.18524225 0.18849903 0.18220057 0.14724776 

0.18968462 0.18737687 0.19307224 0.18428832 0.15345643 

0.18724644 0.18548385 0.18769 0.17968787 0.14533541 

1951-2006 1957-2006 1967-2006 1977-2006 1987-2006 

0.19280756 0.19559308 0.18973144 0.16469412 0.1521844 

0.19321773 0.19927843 0.19316501 0.16751694 0.15047973 

0.19633826 0.19906111 0.19267914 0.16857261 0.15046567 

RE 

13.479% 

12.992% 

RE 

26.983% 

23.608% 

28.837% 

RE 

26.693% 

28.401% 

30.487% 

with different lengths of data sets. However, results from the extreme value distribu

tion seems a little better than those obtained from the inverse Gaussian distribution, 

with a smaller relative error when compared to the historical burn analysis. The 

results are similar for the period from April to June. Therefore, during the stability 

check, if more than one distributions have a good rank based on different data lengths, 

maybe we should choose the one whose value of parameters keep more stable than 

others. 
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Comparing the results with those from the historical burn analysis, we can see 

that the option prices are similar. For the results based on data in the most recent 

20 years, those from the index value simulation is closer to the original ones than 

those from the historical burn analysis. Therefore, if we don't have sufficient data 

for the RDI, the index value simulation model is more reliable than the historical 

burn analysis, even though the results are not so good. Similarly, for the period from 

January to December, we think Weibull distribution is much better than other ones: 

its rank is good, it can only generate non-negative numbers and it's stable for our 

subsets of data lists. Even though the results with data in recent 40 or 30 years looks 

a little far away from the original values, here we should still use this result as the 

option price, which means the Weibull distribution can reflect the characteristic of 

RDI index. 

When we don't have enough data for a stability check, it's difficult to decide which 

distribution we should choose only based on the ranking iteration and the non-negative 

check. In this case we should just choose the one with the best rank. Maybe this 

distribution would not fit the RDI list if we get more data, but right now we cannot 

avoid that possibility. 

4.3.2 The Convergence of the Model 

In this section, we consider the convergence of the Monte Carlo method. We consider 

the three periods and generate 100000 random numbers for each distribution to test 
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whether or not the results converge. As shown in Table 4.10 for the April to August 

period, the price remains 0.18. However, it should be noted that convergence is 

generally slow as shown on the table. This finding is consistent with the discussion 

provided in Section 2.6.2. Increasing the random number size by a hundred-fold will 

only improve the accuracy by one significant digit. In general, increasing the size of 

the random number beyond 100,000 is not feasible if one is using the BestFit algorithm 

and a more powerful algorithm must be considered in this case. 

r 

1-12(0.7) 

4-8(0.7) 

4-6(0.5) 

rable 4.10: < 

Type 

Weibull 

InvGauss 

ExtValue 

3ption Price with 100000 random numbers 

Price 1 

0.17685126 

0.18698024 

0.19280756 

Price 2 

0.17620741 

0.18711332 

0.19301155 

Price 3 

0.17659686 

0.18686204 

0.19284184 

Price 4 

0.17581592 

0.18592518 

0.1931022 

Therefore, the multiple roots simulation algorithm which is described in Section 

2.6.2 is considered as an alternative to the BestFit. The algorithm is written in 

Java code as shown in Appendix B. Here only the inverse Gaussian distribution is 

considered. For the April to August period, the results for larger random number 

sizes are presented in Table 4.11. Clearly the method converges. Moreover, using the 

low-discrepancy, Van der Corput sequence to replace the uniform random variables 

in Java gives a similar conclusion. 

The option prices simulated from the inverse Gaussian distribution with the pa-
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rameters: // = 0.7981, A = 14.0822, shift = -0.2691 are shown in Table 4.11. As 

the size of the random number increases from 1000 to 1,000,000 the results based on 

uniform variable in Java are slowly converging to three digits. However, those from 

Van der Corput sequence seem to converge faster. The result from both method are 

consistent with that of the BestFit. 

Table 4.11: Convergence Check for the Monte-Carlo Method 

4-8(0.7) 

Java 

Van der Corput 

1000 10000 100000 1000000 

0.18723542 0.18961918 0.1868792 0.186384 

0.1871167 0.18651146 0.18665177 0.186636 

BestFit Historical 

0.18698024 0.18724644 

0.18698024 0.18724644 

In a word, if we want to get a more accurate option price based on index value 

simulation model, we could use Van der Corput sequence to replace the basic random 

sequence and generate much more random numbers following our best distribution. 

However, we should notice that it is considerable work to convert every distribution 

generator by ourselves. 

4.4 The Procedure for the 2nd Model 

As discussed in the previous sections, in order to use the index value simulation model 

one must consider a procedure to select the appropriate distribution and a procedure 

to compute the option prices. 
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In general, if the time scale is short, once the distributions are ranked with respect 

to the three goodness tests and the non-negative test is carried out, the distribution 

with good rank and relatively smaller number of negative random numbers is selected. 

However, if the time scale is relatively long then in addition one must consider the 

issue of stability. As discussed in the previous section, a subset of the RDI list must 

be considered at different years from which the option prices are computed. 

As the size of the random number is limited in the BestFit algorithm, one needs 

to consider other algorithms if larger random number sizes are to be considered. In 

this thesis a couple of different approaches have been presented. 



Chapter 5 

Daily Value Simulation 

In the previous two chapters two different methods were considered. While the first 

method was based only on the historical records therefore focused primarily on the 

effect of the past, the second method takes both the past and the future into account. 

However, both methods treat the RDI as the variable. As discussed in Chapter 2 the 

RDI is dependent on both precipitation and evapotranspiration which is determined 

by the monthly mean temperature for a specific location of the contract. Therefore, 

a third model called daily value simulation model is considered in this chapter. 

5.1 The Description of the Model 

In this model, the mean-reverting stochastic process is used to simulate the process of 

the daily mean temperature and monthly rainfall over the entire year. Then the period 

rainfall and evapotranspiration is obtained by summing up the related simulated 
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values. Finally, the option payoff is computed based on the repeatedly simulation 

of both precipitation and temperature where the average discounted payoff is used as 

the option price. 

5.2 Simulation of Monthly Mean Temperature 

Even though based on the Equation (2.5), (2.6), (2.7) and (2.8), only the mean 

monthly temperature is needed in order to calculate the actual evapotranspiration, it 

is relatively simple to simulate the daily mean temperature directly. 

Figure 5.1: Historical Daily Mean Temperature 

Figure 5.1 shows the historical records of daily mean temperature from 1951 to 

1955 in Jinan station. We can see that the daily temperature is always changing 

following the season. It is always high in summer and low in winter. For one specific 

day, we can see that over 56 years, the temperature at that day is always changing 

around the mean value in a small range, for example, within 4 degree, depending on 

the climate condition for the specific region. Therefore, we can choose mean-reverting 
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stochastic process to simulate the behavior of daily temperature (Alaton, 2002; Benth, 

2007). 

We have the following Stochastic Differential Equation (SDE) 

dTt = dTT + a(Tt
m - Tt)dt + atdWt, (5.1) 

whose solution is 

Tt = {x- T s
m)e-° ( t- s ) +Tt

m+ f e-a(t-T)<Ji dWT, (5.2) 

where x is Ts, the temperature at time s when Ojsjt, Tt is the temperature at time t, 

Tt
m is the mean daily temperature at time t, a reflects the speed of the mean-reversion, 

at reflects the variation from the mean value at time t and WT stands for the Wiener 

process. 

Mean Daily Temperature 

.Average of Historical Daily Temperature over 56 years 

-real mean daily tem| 

r . ' » ::•• i:i- u i 1*1 ' t . *••?•: ••. : '-•;.* z - ' . " i i .. a o 

Figure 5.2: Historical Mean Monthly Temperature 

Tf1 in Equation (5.1) stands for the mean daily temperature which is shown in 

Figure 5.2 where the average over 56 years is taken. If the mean temperature is 
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assumed to be a continuous variable then it is possible to simulate this curve by a 

sinusoidal function of the form: 

sin(uit + ip), (5.3) 

where t denotes the time, measured in days. We let t=l,2,..., denote January 1, 

January 2 and so on. As we use one year (365 days) as the repetitative period, we 

have u> = 27r/365. Since the yearly minimum and maximum mean temperature do 

not usually occur at January 1 and July 1 respectively, we shift the above curve by 

adding a phase angle <p. In order to account for global warming, the mean tempera

ture is increased slightly each year through a linear variation with respect to time t. 

Therefore, the mean temperature is modeled as: 

Tt
m = A + Bt + Csin(u}t + cp). (5.4) 

The Variation 

The term atdWt in Equation(5.1) reflects the discrepancy of real temperature from 

the simulated mean temperature. Actually, to make the problem easier, we choose 

the function at to be a piecewise constant function. Here we assume the value of at 

is a constant number for each month. 

Parameter Estimation 

Expanding Equation (5.4), we get 

T™ = ai + a2t + a3 sin(ut) + a4 cos(atf), (5.5) 
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where 

A = au (5.6) 

£ = a2, (5.7) 

C = y/a* + al (5.8) 

. O4 . 

<p = arctan(—) — %. (5.9) 

We can use the Gauss-Newton, method to make the data fit this function, by solving 

min^Tt-Xf, (5.10) 

where X is the data vector, £ is the parameter vector (ai,a2,a3, a4). This formula 

means we want to reduce the discrepancy between the real temperature and the sim

ulated ones as much as we can. Here the Gauss-Newton method is used as described 

in Chapter 2. The relative Java code is attached in Appendix B. 

As at reflects the variation of daily temperature, the first estimator is based on 

the quadratic variation of Tt: 

1 JV"~1 

" J=0 

where N^ is the number of days in month /i. 

If we discretize Equation (5.1), for a given month //, we have 

Tj = Tf - T™, + aTp_, + (1 - 0)7}.! + a^-uj = 1,..., iVM, (5.12) 
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where {tj}^ follow a standard normal distribution. We use T3- to stand for 7} — 

(Tp - T^i). We can change (5.12) to 

• Tj = aT£1 + (l-a)Tj-1+allej-U (5.13) 

which we can see as a regression of today's temperature on yesterday's temperature. 

Therefore, the second estimator of a^ is 

1 *" _ 

^ = W^2^{fj ~ hT^ ~ (1 ~ d)T^l)2' (5-14) 

^ j=2 

where a is an estimator of a, which is described as follows. 

To estimate the mean-reverting speed parameter a, we can use the martingale 

estimation functions method. After we collect observations during n days, an efficient 

estimator an of a can be obtained by solving the equation 

Gn(an) = 0, (5.15) 

where 

Gn(a) = JZ bC7V ;a )(Ti - SPIITU]), (5.16) 

and b(Ti-i; a) denotes the derivative w.r.t a of the term 

b{Tt-a) = -±- + a{TT-Tt). (5.17) 

Therefore, we have 

6 (T i _ 1 ; o )=77 n -T t . (5.18) 
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Then, to solve Equation (5.15), the only thing we need to know is the formula of 

Ti — E[Ti\Ti-i\. Since we know the solution of Equation (5.1) is (5.2), and that the 

expectation of the integration part is 0, when t=i and s=i-l, we have 

^TilTi-i] = (Ti-x - TT_x)e~a + T™. _ (5.19) 

Then, we have 

n <T<m rp 

Gn(a) = £ " "ft - ( 1 U - Ttx)e-« - 7™]. (5.20) 

It's easy to estimate the parameter a from 

an = -my — — ) , (5.21) 

where 
rpm rp 

Ki- i= ^ o i " 1 , i = l,2,...n. (5.22) 

Based on Equation (5.20), we know that an is the unique estimation. 

A Correction for the Simulated Mean Daily Temperature 

We use the data from Jinan station as an example. Based on the algorithm above, 

we get the estimation of the simulated mean daily temperature. We have a,\=13.8788, 

a2=0.0035, a3=-3.2112, a4 =-13.8329. Based on Equation (5.5), the simulated daily 

mean temperature should be 

Tt
m = 13.8788 + 0.0035* - 3.2112 sin(urf) - 13.8329 cos(wt). (5.23) 

We use Equation (5.23) to simulate the mean daily temperature over the year, and 

compare them to the average daily temperature. In Figure 5.3, the curve called daily 
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tern by theta shows the simulation of mean daily temperature based on Equation 

(5.23) we can see that our simulated points are pretty close to the historical ones. 

It's also obvious that the real mean daily temperature cannot be as exact as a sine 

function like Equation (5.4). If we calculate the distance between the average of the 

temperature and the simulated one for each day, as shown in Figure 5.4, we can see 

that the trend of the distance is also following a sinusoidal function, with half a year 

as the full period. To make sure this characteristic is not a coincidence, we check 

the distance between the simulated and historical mean daily temperature based on 

data from other stations: Wuhan, Nenjiang, Xinyang, and Siping which are located 

in different latitude. It turns out that each curve has the same period half a year and 

a similar trend. 
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Figure 5.3: Mean Temperature Simulation 

Therefore, we assume the simulation of the distance follows this sinusoidal func-
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tion: 

(5.24) 

here we use n= l . 

Based on Jinan's results for example, by Gauss-Newton method, we have the 

simulation of the distance: 

D(t) = -0.0035 + 1.2143sm(7r( t
oge

3f;99)) - 0 . 0 6 1 5 s m ( ^ — ^ ^ ) . (5.25) 
365/4 365/4 

The simulated points of the distance are shown in Figure 5.4 as the red curve. 
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I 
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Figure 5.4: Temperature Distance Simulation 

Now we can write the function of simulated mean daily temperature as the follow

ing form: 

Tt
m = T™ + D(t). (5.26) 

Therefore, we have T? = 13.8788 + 0.0035* - 3.2112sm(|g) - 13.8329sm(|g) 

0.0035 + 1.2143sinC(t^/f
)) - 0.0615sm(3* (^4

99)). 
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Then the whole curve of Tf
m for daily temperature over a year is shown in Figure 

5.5 where it clearly shows that after the correction of T™, the simulation is much 

closer to the historical one compared to the original Tt
m. 
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Figure 5.5: Simulated Mean Daily Temperature Compare 

To confirm these findings, we calculated the mean simulated temperature for all 

the other stations which lead to the same conclusion. 

Summary 

In conclusion, to calculate the simulated list of daily mean temperature, we need 

to use Gauss-Newton method to estimate ai,..., a4 in Equation (5.5) and other param

eters in Equation (5.24) based on data in n years, and substitute them into Equation 

(5.5) and (5.24) to get the simulated daily mean temperature over a year. Then, we 

estimate the variation a and the mean-reverting speed parameter a using Equation 

(5.11), (5.21) and (5.14) directly. 

Note that it is difficult to use an integration solution like Equation (5.2) directly. 
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Therefore, we use a numerical method called the Implicit Milstein method which is 

described in Section 2.6.4. 

The problem is reduced to the following iterative procedure: 

T^ =Tn + (Tn
m/ + a(T? - Tn))At + akAW, (5.27) 

T ^ i = Tn + ( I ^ V + a(T™+1 - Ti%))At + akAW, (5.28) 

where T„+\ is the simulated point we get, ak is the value of diffusion parameter 

depending on the nth point located in month k. 

Simulation of Monthly Mean Temperature 

Based on data from Jinan station, we try to output the average of daily mean 

temperature, the simulated mean daily temperature, the average of simulated daily 

temperature over 10000 simulations, and the simulated daily mean temperature for 

one simulation for a whole year. These four curves are shown in Figure 5.6. The curve 

called daily tern by theta is the same one in Figure 5.3. 

In the figure, the curve of the simulated mean daily temperature list is close to 

the average list of historical daily mean temperature. Therefore our estimate for Tt
m 

fits the historical data well. 

5.3 The Simulation of Monthly Precipitation 

Although the daily precipitation over many years does not show any specific trend, 

Figure 5.7 demonstrates that the monthly rainfall shows a trend that repeats every 
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Figure 5.6: Simulated Daily Mean Temperature Compare 

twelve points. Moreover, the monthly rainfall curve is shaped like the daily mean tem

perature. However, unlike temperature, precipitation hardly behaves in a continuous 

manner which makes it difficult to incorporate precipitation in the current continuous 

model. 

Historical Monthly Rain 
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Figure 5.7: Monthly Rainfall over 10 years 
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5.3.1 Transforming Monthly Rain to Continuous Process 

While precipitation does not behave continuously, the speed of rainfall, which is the 

differential of the rainfall w.r.t time, can be assumed to change continuously in time 

(Sachidananda, 1987). When rain starts the speed of precipitation increases continu

ously from zero to its peak and then decreases continuously to zero where it remains 

at zero until it rains again. In this formulation, the total amount of precipitation can 

be obtained by integrating the speed of precipitation over the period of interest as 

given by the formula: 

Pre = / P(t) dt, (5.29) 
Jt2 

where P(t) represents the speed of rainfall at time t, Pre represents the amount of 

precipitation during the period from time ti to time t2-

Therefore, the monthly rainfall is essentially the monthly mean speed of precipi

tation with the unit mm/(m2 • month). Recall that according to Equation (5.29), the 

amount of precipitation for each month can be expressed as P^ = plj • 1, where Pij 

and p^ is the precipitation and the mean speed of monthly rain in the ith month and 

the jth year. 

Therefore, in order to simulate monthly rainfall, it will be sufficient to simulate 

the speed of rainfall using the mean-reverting process. 
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5.3.2 Simulation of Monthly Precipitation Speed 

As described above, the mean-reverting model will be used to simulate the speed of 

rain through the simulation of the monthly rainfall. Therefore the process that was 

used to simulate the daily temperature as described in Section 5.2 can be utilized 

except that the monthly values will be used instead. Thus we have the following 

stochastic process 

dPt = ffl(t) + k(0(t) - Pt)dt + <rtdWt, (5.30) 

with t > 0, k > 0, and 9(t) > 0, where Pt is the speed of rainfall at time t, 6(t) is 

the mean speed at time t, k reflects the speed of the mean reversion, at reflects the 

variation from the mean value at time t. 

After we have the simulated points, the following formulation can be used for the 

monthly rainfall: 
i=n\ 

Pre =^2 Pi-At (5.31) 
i=ri2 

where rii and n2 respectively refer to for the beginning and end point in the month, 

Pi is the speed of rainfall at the point i, and At is the time interval in our simulation. 

5.3.3 Mean-Reverting Process with Improvement 

In the previous model, the parameter at was modeled as a piece-wise function where 

ot was assumed constant for each month. In order to make the model more realistic, 

the diffusion part can be modeled as a function of Pt which leads to the following 
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SDE 

dPt = d9(t) + k(6(t) - Pt)dt + oP?dWt, (5.32) 

with t > 0, k > 0, and 9(i) > 0. As described in Equation (5.1), 9(t) is the simulated 

mean speed of monthly rain at time t over a year and a is the mean-reverting speed 

parameter. Here a and p together reflect the volatility which is now dependent on 

previous time precipitation. 

Simulated Mean Monthly Precipitation 

Figure 5.8 depicts the mean monthly rain speed over 56 years using the daily 

data for the Jinan station. As in the temperature model, the real mean monthly 

precipitation will be assumed to fit a sinusoidal function of the form (Emmerich, 

2005): 

9(t) =m + asin(2n^~V^), (5.33) 

where m is the mean of the sine curve, a determines the oscillation and v is the 

horizontal shift. 

To make the simulated curve closer to the historical mean one, the simulation can 

also be further improved by expanding 9 in terms of the Fourier series(Emmerich, 

2005): 

9(t)=m + 22aiSinC -). (5.34) 
i=0 

Of course, if the monthly rainfall data is directly substituted over the 56 period, 

it will be equivalent to using the historical mean monthly value rather than the real 
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Figure 5.8: Mean Speed of Monthly Rain over 56 years 

time speed which can lead to significant error in the simulation. In order to minimize 

this error, the amount of rain is substituted on a daily basis 

Parameter Estimation 

For the parameters in #(£), one can still use the Gauss-Newton method to solve 

the least-square problem similar to Equation (5.6). However, according to Equation 

(5.34), first we need to decide how many a.i we should choose for the specific problem. 

The details of this analysis and the results will be shown in the next section. 

Then, we want to find an unbiased estimation of mean-reverting parameter k. The 

original estimation of k is (Emmerich, 2005) 

n - l 

n ^ 
i=0 

(5.35) 
(9(i) - Pi)A 

Because this estimation will change with different length of data, we have the modi

fication as: 

1 _ _ p . , , _ p _ Mi + 1 'l -4- fi(i\ 
(5.36) 

1 ^ p j + 1 - p, - 0(j + l) + 0(j) 
h #/6 53 (0(i) _ P.)A 
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with Ib = {i = 1,..., n : \6{i) — Pi\ > b}, b is a positive real number. With b getting 

bigger, kb is convergent. Here we choose to use b=50 to get a proper estimation. 

To estimate the diffusion parameters, first we square Equation (5.32) to get 

(dPt)
2 = [9'(t) + k(6(t) - Pt)dt + aPfdWtf. (5.37) 

Then, based on Ito's integration rule, we have 

\n(dPt)
2 = 2\n(a) + \n(dt) + 2p ln(Pt), (5.38) 

such that ln(dPt)
2 and ln(dPt) have a linear relationship. The data list can now be 

substituted into Equation (5.38), from which one can use the linear regression method 

to get a and p directly. 

After the parameter estimation, based on (2.28), (2.29) and (5.32), the speed of 

monthly precipitation can be simulated by the following formula: 

^ i = Pn + (9'(n) + k(6(n) - P^))Atn + aP^PAWn + ^pP^'^AW2 - Atn), 

(5.39) 

PiZ=PnHe\n+l)+k(e(n+l)-PZ))^tn+aP^PAWn+^ 

(5.40) 

where P„+1 is the simulated point at the n+1 step, n = 0, ...iV, and N is the step size 

for one simulation process. 

5.4 Correcting the Precipitation Model 

Keeping the Positivity of the Simulation 
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Since Pt represents the speed function, it must be non-negative to have meaningful 

interpretation. Moreover, according to Equation (5.39) and (5.40), negative Pt lead 

to no value for the part P4
2p_1. However, there is no guarantee that the simulation of 

Equation (5.32) yields positive values, especially when Pt is close to 0 at the beginning 

of the year (Kahl, 2004). 

If we use Xt to stand for a stochastic process with 

P({Xt > 0 for all t}) = 1, (5.41) 

the stochastic integration scheme possesses an eternal life time if 

P({Xn+1 > 0\Xn > 0}) = 1. (5.42) 

Otherwise, we say it has a finite life time. 

If we can find a numerical method to solve this model which has an eternal life, as 

long as the initial value of historical precipitation is positive, we can make sure that 

all the following simulated points are positive. This is another reason to choose the 

implicit Milstein method to do the simulation (Emmerich, 2005). 

For the mean-reverting process given by 

dXt = (a- pXt)dt + aXfdW, (5.43) 

with a,P,a,p G R+ and p > | , the Milstein method provides numerical positivity 

with the following restriction: 

A t < ^ . (5.44) 
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Compared with Equation (5.43), Equation (5.32) will guarantee positivity with 

a = k-e(t) + 0'(t)eR+. (5.45) 

Origin simulated Mean Monthly Rain 
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Figure 5.9: Simulated speed of monthly rain in Jinan 

We now use the daily data from Jinan station with n= l , and get the parameter 

estimation as: 

Hi) = 58.931 + 7 5 . 5 7 1 2 ^ ^ ' - 2 J 7 4 8 2 ) ) - 24.4185Sm(3*(f ~ f 7 4 8 2 ) ) , (5.46) 
6 6 

and fc=2.2275, cr=4.3080, p=0.7762. 

In Figure 5.9, the curve of Origin Theta shows the value of 6(t) based on Equation 

(5.46), the curve called Detheta shows the differential of 6{t), and the curve of alpha 

shows value of a based on Equation (5.45). As Figure 5.9 shows, the simulation of 

the mean speed of monthly precipitation does not stay positive due to the value a 

which is not always positive. Moreover, for our model whose diffusion part has term 

Pt, once a negative Pt value is obtained, according to Equations (5.39) and (5.40), 
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the simulated value for next step could never be calculated since p < | , which would 

lead to 2p - 1 < 0 and no value for P^'1. 

Therefore, in order to make sure positivity, 8(t) must be modeled appropriately. 

Since 9{t) is a continuous sinusoidal function and the speed of mean reversion k is 

assumed constant, there should be a boundary for the value of a in Equation (5.45) 

that ensures a > 0. Thus we require, 

9(t) > —-—, t — t0,..., tN. (5.47) 

If we only add a constant on the right hand of Equation (5.34) to make sure the 

new 6{i) satisfies Equation (5.45), we still have the same 6'{t). Therefore we must 

find maxt=t0,...,tN(—^ ) denoted by M so that the adjusted simulated mean speed of 

precipitation could be expressed as 0ad(t) = 6(t) + M + 1, and 9'ad(t) = 9'{t). 
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Figure 5.10: Adjusted Simulated speed of monthly rain in Jinan 

Still using the Jinan data as an example, the results of 9ad(t) are shown as the 

curve of Adjusted Theta in Figure 5.10 and the corrector for $(t) is -40.977. The 

curve Detheta and alpha has similar meanings like those in Figure 5.9. 

http://jj_g-.iT
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To use new 6 in the algorithm, we need to notice that all the simulated points Pt 

here has mean value 6ad(t). This change could also affect the diffusion part. In order 

to keep the process still similar to the original one, we have to modify the algorithm 

as follows: 

\.E = max(Pn —M — l,v), where v is a uniform random variable in (0,0.1). If we 

use 0 to replace v, the diffusion part could be 0 if 2p — 1 > 0 and infinity if 2p — 1 < 0. 

2.change (5.39) and (5.40) to 

Pi+i = PnHO\n)+k{d(n)-P^))Atn+aEpAWn + \a2pE2^\AW2
n-Atn), (5.48) 

P^x = Pn^{e\n+l) + k{d{n+l)-P^l))Atn+aE^AWn^a2pE2^\AWl-Atn). 

(5.49) 

3. After calculating all the simulated points, we need to change the whole list back 

down to the original level: 

Pn = pW-M-l. (5.50) 

Note that if p < | , then positivity is not yet guaranteed for large size simulation. 

For now we can run the program ignoring the negative values until an acceptable 

point is obtained. 

A Correction for Simulated Mean Speed of Rain 

Note that, since the number of steps simulated we choose to use over 12 months is 

1000, At should equal 0.012. There are about 83 points in each month's simulation. 

Based on Equation (5.31) and (5.34), we can get the simulated mean monthly rain 
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over a year. The results are shown in Figure 5.11. The red curve is the average of 

monthly rainfall over 56 years. The yellow curve is our simulated value for mean 

monthly rainfall which is clearly inaccurate. Since the data used is for the last 56 

years, the average monthly rain for a whole year is expected to be close to the real 

mean monthly rainfall. 
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Figure 5.11: Simulated Mean Monthly Rain Compare 

Note that, n = l was used in Equation (5.46). However, in Figure 5.12, we have a 

similar simulation except when n=0. Thus n = l is chosen for the model. 
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Figure 5.12: Simulated Mean Monthly Rain with Different Number of alpha 
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Similarly like the simulation of mean daily temperature, we also use a sinusoidal 

function to correct the discrepancy between the simulated and historical curve. Figure 

5.13 shows the distance between the historical records and simulated points based on 

Equation (5.46). Based on Figure 5.13, we can still assume the period of the distance 

is 12 (months). This could change depending on the condition of different places. 

Distance Correction for Sfcieed of Rain 

fljs^ffijte*^ 
-Distance 

-Simulated Distanced 
alpha) 

Figure 5.13: Distance between real and simulated speed of monthly rain 

Therefore, we can assume the simulation of the distance to be of the form: 

D{t) = d + Y;&si< 7T )' (5.51) 
i=0 

here we still use n= l . 

Based on Jinan's results for example, by Gauss-Newton method, we have the 

simulation of the distance: 

D(t) = 0 - 3 6 . 7 2 5 1 ^ " + ° 7 0 M ) ) - 0.9923sm(3* ( t + 0 7 0 5 4 ) ) . (5.52) 

The simulated points of the distance are shown in Figure 5.13 as the red curve. Even 

though this new curve looks not so close to the original one at the beginning of the 

year, it's a continuous correction for our 6{t). 
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Now we can write the function of simulated mean monthly precipitation as the 

following form: 

6(t) = 6(t) + D(t). (5.53) 

Therefore, we have d(t) = 58.931+75.5712sm(7r(f~277482)) - 24.4185am(37r(f~2
6

77482)) • 

36.7251smr(t+0
6

7054)) - 0.9923Sm(37r(t+^7054)). 
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Figure 5.14: Fixed Mean Monthly Rain for a Whole Year 

Then the whole curve of 9(t) with 1000 points called Fixed Theta is shown in. 

Figure 5.14 where the newly simulated points for each months are shown as the blue 

curve in Figure 5.11. In Figure 5.14, the curve Origin Theta is the original simulation 

of mean speed of rainfall given by Equation (5.46). We also calculate the differential 

of 6{t) and the value of a based on Equation (5.53) and (5.45), shown as the curve 

Fixed Detheta and alpha in Figure 5.14. Clearly, after correcting 9(t), the simulation 

is much closer to the historical one compared to the original 9(t) even though the 

simulation of the difference in Equation (5.52) isn't a good one. 

To check our results, we can also calculate the mean simulated speed of rain 

for other stations. The results are similar to the above. We can say that the new 
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simulation of mean monthly precipitation is better than the original one. 

Combination of the Modification 

From the a curve in Figure 5.14, we can see that the correction function D(t) 

cannot help avoiding the error from the limitation of positivity. Therefore, we need 

to combine the correction and the limitation of positivity for each simulation. 

Then, the algorithm for the simulation of monthly precipitation become: 

1. Decide the number of steps we should use for the simulation during a whole 

year based on Equation (5.44). Here we use 1000. 

2. Do parameter estimation based on Equation (5.34)-(5.38). 

3. Change 0(t) to 0(t) based on (5.51) and (5.53). 

4. At each step, the numerical simulation should follow the algorithm (5.48)-(5.49) 

in the first part of this section. 

5. After the simulation, we substitute all simulated points in Equation (5.31) to 

get the simulated monthly rainfall and use them to evaluate the option price. 

5.5 Analysis of the Results 

In this section, we analyze the simulation of temperature and precipitation. Then we 

use them to estimate the value of drought option contract based on daily precipitation 

and speed of precipitation, and compare the results with those based on historical burn 

analysis and index value simulation. 
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5.5.1 The Results of Daily Temperature Simulation 

Based on the model in Section 5.2, we can simulate the daily mean temperature with 

an initial value. To simplify the programming, here we set the initial value to be the 

real mean daily temperature on December 31st in the last year in our data. And we 

only simulate the daily mean temperature over a year, because in our contract we 

only predict the drought condition for one year. 

Then, we calculate the mean monthly temperature and substitute them into Equa

tion (2.6)-(2.8) to calculate the actual evapotranspiration. 

We use data from Jinan and Siping station for example. In the previous section we 

already get the simulated mean daily temperature curve. Then, based on Equation 

(5.11) and (5.14), we get two series of a. The results are shown in Table 5.1. From 

this table, we can see that the curve of a for each month based on Equation (5.11) 

is smoother than those from Equation (5.14), which obviously varies between every 

month. Of course, we cannot conclude that the estimator of Equation (5.14) is better 

than (5.11) only based on these curves. 

Therefore, we simulate the daily mean temperature over a year for 10000 times, 

and calculate monthly mean temperature for each simulation. Then, we calculate the 

mean and standard deviation of monthly mean temperature for historical data and 

simulated value for each month. The results are shown in Figure 5.15 and 5.16. We 

can see that the mean of historical and simulated value in Figure 5.15 are really close. 

The simulated mean monthly temperature is less than 2% away from the mean of 
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Table 5.] 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

: Sigma Estimator for Daily Temperature 

Sigma Estimator 1 

2.473412771 

2.726849447 

2.89676842 

3.19882791 

.3.086592084 

3.062162518 

2.712585873 

2.660742508 

2.645188804 

2.720021982 

2.698762944 

2.667227284 

Sigma Estimator 2 

2.535306941 

2.939145292 

3.116445658 

3.220360937 

2.888380112 

2.431683392 

1.966805113 

1.751119392 

1.901978641 

2.412730342 

2.831803427 

2.617969293 

the historical data. Even though for January and December, the simulated mean is 

around 40% higher than the historical ones, we should also notice that the absolute 

distance between the two values is around 0.5 °C, which is really small as a change of 

temperature. 

Figure 5.16 shows that based on different a series, the standard deviation for each 

month is also different. We can see that the standard deviation doesn't change a lot 
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Figure 5.15: Monthly Temperature Simulation 

for the first 4 months and last 2 months as the estimation of a is pretty close to each 

other. But for other months, those from Equation (5.14) are closer to the standard 

deviation of historical data than those from Equation (5.11). Here we can say that 

Equation (5.14) can actually give us a better simulation of daily mean temperature. 
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Figure 5.16: Simulated Standard Deviation Compare 

By using data from Siping station, we can get the similar results. The mean of 
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simulated points are only around 5% away from historical results. Moreover, for most 

months, the relative error between monthly standard deviation based on Equation 

(5.14) and historical ones is lower than those based on Equation (5.11) and historical 

ones. They are still less than 10% away from the historical ones. 

If we only simulate the process of daily mean temperature, and choose the average 

of historical monthly rain as the precipitation for the specific year in the contract, we 

can get another RDI list based on Equation (2.4), (2.6), (2.7), and (2.8). Compare 

them to the real RDI list over past 56 years, and the results are shown in Figure 5.17. 

We can see that the simulated RDI results change only over a narrow range. 

1 i 

09-

0.8-

0 7-

0.6-

05 

04^ 

0.3-

0 2 

01 

0-

R 8 a ' A n d F 1 X R * R D ' C ° m P a r ' 

1 
! ! 

T ' ;: i i . 
T " "J-. • • • • " _ \ " , \ 

.1 ( I 1 . | >, 

\ \ 1 t i . * . k > /»* V i 
, • rJ , ' • " " * , ! l * ' ! 1- . 

I 

- • - April to June fwfttv constant ncur 
lengffi) 

~»-Apr i ! toJune (Fix mean Rain) 

Figure 5.17: Simulated RDI with variable Temperature 

Because the influence of mean temperature on RDI is relatively small it is not 

worth putting more effort to further improve the diffusion parameter. 
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Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Table 5.2 

Historical 

6.2661 

9.6607 

14.3393 

31.2286 

49.4125 

83.1179 

201.9679 

160.1911 

63.0625 

36.1964 

20.9357 

7.8893 

Simulated Mean Monthly Rain Compare 

Simulated 

0.3840 

3.8419 

28.4677 

20.9910 

37.1675 

106.1426 

183.8513 

160.5453 

78.7743 

22.8629 

26.5345 

14.7048 

Average 

1.5482 

4.2409 

27.7626 

22.5753 

39.7941 

106.0027 

186.5088 

163.3399 

91.5232 

36.1383 

31.3882 

17.9086 

Absolute error 

5.8820 

5.8188 

14.1284 

10.2376 

12.2450 

23.0247 

18.1165 

0.3542 

15.7118 

13.3336 

5.5988 

6.8155 

RE of mean 

93.87% 

60.23% 

98.53% 

32.78% 

24.78% 

27.70% 

8.97% 

0.22% 

24.91% 

36.84% 

26.74% 

86.39% 

5.5.2 The Results of Monthly Precipitation Simulation 

Based on the model in Section 5.3, we can get the simulated monthly rainfall as long 

as we know the initial amount of precipitation of a specific month. Right now the 

initial value is the precipitation in the last December. Then we generate the simulated 

monthly precipitation for a whole year. 

Based on the same model as the one we use for temperature simulation with 
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Table 5.3: Monthly Rain Standard Deviation Compare 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Historical 

8.0596 

8.7385 

11.1763 

26.3709 

39.4132 

58.8316 

105.5342 

95.1555 

51.4736 

30.5236 

22.4000 

8.4581 

Simulated 

3.3362 

5.2941 

10.4675 

18.2921 

30.3748 

49.3789 

106.9998 

91.3618 

83.1080 

40.2103 

27.1438 

16.8490 

Absolute error 

4.7234 

3.4443 

0.7088 

8.0787 

9.0384 

9.4527 

1.4656 

3.7937 

31.6344 

9.6868 

4.7439 

8.3909 

RE of SD 

58.61% 

39.42% 

6.34% 

30.64% 

22.93% 

16.07% 

1.39% 

3.99% 

61.46% 

31.74% 

21.18% 

99.21% 

monthly data, if we calculate the average of simulated value over all the simulation, 

the results are shown in Table 5.2 and 5.3. We use data from Jinan station, calculate 

the average of simulated monthly rain over 10000 simulations for the whole year, and 

compare them to the average value of the historical monthly rain. From the table we 

can see that the relative error of simulated mean monthly rain from April to November 

is between 0% to 37%. And the standard deviation in the middle of year is between 
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1% to 30% except the one in September. The biggest relative error in both tables is 

almost 100%. 

Table 5.4: Simulated Mean Monthly Rain Compare 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Historical 

6.2661 

9.6607 

14.3393 

31.2286 

49.4125 

83.1179 

201.9679 

160.1911 

63.0625 

36.1964 

20.9357 

7.8893 

Simulated 

0.0000 

7.5444 

25.5504 

24.3370 

39.8668 

115.1314 

183.5855 

161.4174 

76.2705 

27.1644 

23.8714 

15.7477 

Average 

0.2362 

7.8601 

25.6453 

24.1607 

39.7016 

115.0582 

182.3929 

160.2324 

75.9524 

27.2241 

23.9580 

16.1095 

by Model 2 

Absolute error RE of mean 

6.0298 

1.8006 

11.3060 

7.0679 

9.7109 

31.9403 

19.5749 

0.0414 

12.8899 

8.9723 

3.0223 

8.2203 

96.23% 

18.64% 

78.85% 

22.63% 

19.65% 

38.43% 

9.69% 

0.03% 

20.44% 

24.79% 

14.44% 

104.20% 

Then, we use the model whose diffusion part depends on the previously simulated 

point with daily data. From Table 5.4 and 5.5, we could see the comparison of mean 

monthly rainfall and standard deviation between historical and simulated results. 

Here the relative error of simulated mean monthly rain from April to November is 



CHAFTEK5. DAILY VALUE SIMULATION 114 

Table 5.5: Standard Deviation Compare by Model 2 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Historical 

8.0596 

8.7385 

11.1763 

26.3709 

39.4132 

58.8316 

105.5342 

95.1555 

51.4736 

30.5236 

22.4000 

8.4581 

Simulated 

0.5253 

4.8873 

19.0543 

23.0329 

26.2796 

54.3828 

91.6479 

93.5994 

65.6957 

30.9772 

21.3171 

19.3064 

Absolute error 

7.5343 

3.8512 

7.8780 

3.3379 

13.1336 

4.4487 

13.8863 

1.5561 

14.2221 

0.4537 

1.0829 

10.8483 

RE 

93.48% 

44.07% 

70.49% 

12.66% 

33.32% 

7.56% 

13.16% 

1.64% 

27.63% 

1.49% 

4.83% 

128.26% 

between 1% to 38%. And the standard deviation in the middle of year is between 1% 

to 34% without an odd in September. This means the second model may give us a 

better description of rain process. 

For both methods, the simulated points at the beginning and the end of year is 

always far away from the historical ones. However, this trend is reasonable. We start 

the simulation at the beginning of year every time, if the initial value at December 
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31st is far away from the simulated mean value, it would take a while for the model 

to make it back to the mean curve. Generally, the simulation for each month looks 

good in the middle range of the year, which is also the growth period for most plants. 

Compared with the simulation of mean monthly temperature, it's hard to say 

these two models show a good simulation. The relative error on the simulated mean 

monthly precipitation is always around 20% or 30%. However, this is consistent with 

other research results which are often based on the two-stage Markov chain model 

rather than the mean-reverting model (Cao, 2004). It is also similar to the results 

based on the same model based on data from Germany (Emmerich, 2005). Hence the 

result is not that unreasonable. 

5.5.3 Option Price Comparison 

Option Prices Comparison for Two Models 

Here we still assume that we have the same drought option contract for Jinan as 

in Section 2.5.1. We set the same periods, constant strike level and data as those 

in the above two models. After we use daily value simulation model to estimate 

100,000 possible values of monthly temperature and precipitation, we substitute them 

into Equation (4.1) to get the value of contract and compare it with those from 

historical analysis model. The results are shown in Table 5.6. Here Model 1 means the 

same mean-reverting model we use to simulate both daily temperature and monthly 

precipitation. In Model 2 we change the diffusion part and substitute daily data for 
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precipitation simulation. 

Table 5.6: Option Price Compare for Jinan 

Historical 

Modell 

Model2 

RE1 

RE2 

Jan-Dec(K=0.7) 

0.17638766 

0.14246321 

0.16663164 

23.813% 

5.855% 

Apr-Aug(K=0.7) 

0.18724644 

0.17034594 

0.18461022 

9.921% 

1.428% 

Apr-Jun(K=0.5) 

0.19633826 

0.0852701 

0.1616114 

130.255% 

21.488% 

From this table, we could see that the option prices from model 1 are not as good 

as those from model 2. For the period from January to December and from April to 

August, the relative error for both methods from historical results are within 20%. 

But for the period from April to June, the relative error of model 1 is larger than 

100%, while it's only 21% for model 2. It seems like even though we cannot describe 

the behavior of rainfall well, the option price based on model 2 is much better than 

we thought. Of course we cannot make this conclusion only by this set of data but 

we must also check our model by substituting data from other stations. 

Table 5.7 gives us the option price for the put option contract in Siping with 

the same period as above. We use the same strike level for each period. From each 

column in the two tables, we could see that even though the two places are located 

around 40° N, the option prices are totally different as long as the drought condition is 
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Table 5.7: Option Price Compare for Siping 

Historical 

Modell 

Model2 

RE1 

RE2 

Jan-Dec(K=0.7) 

0.05864985 

0.05745684 

0.07660143 

2.076% 

23.435% 

Apr-Aug(K=0.7) 

0.08026772 

0.08517523 

0.10053972 

5.762% 

20.163% 

Apr-Jun(K=0.5) 

0.06540103 

0.01884279 

0.06275855 

247.088% 

4.211% 

different. In Table 5.7, for the first two periods, results from model 1 look closer to the 

historical ones. On the other hand the price for the period from April to June is too 

far away. Here we could say that model 2 gives us a much better estimation for the 

option price. The relative error from both models seems too high compared to those 

from the index value simulation model based on historical option prices. However, 

considering the significant error in modeling rainfall process this result is not that 

surprising. 

Option Prices with Different Data Lengths 

Just like Chapter 3 and 4, we can also use subsets of all the data to see the effect 

of time limitation on option prices. As we only use data in 40 or 20 years, all the 

parameter estimation should be different. Here we skip the parameter estimation part 

and consider the option prices. 

Table 5.8-5.10 show the option prices based on different data lengths for different 
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Table 5.8: Option Price Compare for 1-12 in Jinan with Time Limitation 

Modell(H) 

Model2(Weibull) 

Model3(Monthly) 

Model3(Daily) 

K=0.7 

0.17638766 

0.17685126 

0.14246321 

0.16663164 

1957-2006 

0.17986768 

0.17879697 

0.14311397 

0.16861026 

1967-2006 

0.1812595 

0.1815513 

0.15055475 

0.1782004 

1977-2006 

0.17987126 

0.18046826 

0.14541882 

0.17387247 

1987-2006 

0.15610641 

0.15584478 

0.12260332 

0.15022846 

Table 5.9: Option Price Compare for 4-8 in Jinan with Time Limitation 

Modell(H) 

Model2(ExtV) 

Model3 (Monthly) 

Model3(Daily) 

K=0.7 

0.18724644 

0.18968462 

0.17034594 

0.18461022 

1957-2006 

0.18548385 

0.18737687 

0.16904443 

0.18671642 

1967-2006 

0.18769 

0.19307224 

0.17862279 

0.19884574 

1977-2006 

0.17968787 

0.18428832 

0.1729103 

0.18730138 

1987-2006 

0.14533541 

0.15345643 

0.14775786 

0.1583788 

periods for all three models. The results for the three models are generally similar 

for each columns except for those in Table 5.10 which is based on monthly data. It 

seems the results based on daily value simulation model with daily data is closer to 

the results from the first two models than those with monthly data regardless of how 

many years of data is used. 

In the last column in these three tables, the option prices change significantly 
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Table 5.10: Option Price Compare for 4-6 in Jinan with Time Limitation 

Modell(H) 

Model2(ExtV) 

Model3 (Monthly) 

Model3(Daily) 

K=0.5 

0.19633826 

0.19280756 

0.0852701 

0.1616114 

1957-2006 

0.19906111 

0.19559308 

0.083204 

0.16512109 

1967-2006 

0.19267914 

0.18973144 

0.09117522 

0.16755921 

1977-2006 

0.16857261 

0.16469412 

0.07966244 

0.15198266 

1987-2006 

0.15046567 

0.1521844 

0.07025823 

0.14474896 

regardless of the model used, which means the time limitation would always exist in 

our models, even though at the beginning of Section 2.5.3, we hope the index value 

simulation model and daily value simulation model can predict more possible values 

of RDI for Equation (2.11). Comparing the results from data over 20 years and those 

over 56 years for each model, we could see that the difference from historical burn 

analysis is always bigger than those from the other two. Comparing the prices in each 

row in Table 5.10, we could see that the prices based on mean-reverting process with 

daily data is more stable than the other two even though the original option prices 

based on data over 56 years is not accurate enough. 

Finally, if sufficient data is not used then the estimated option prices will generally 

be inaccurate. However, even though the lack of data would always affect the accuracy 

of the estimation of option prices, index value simulation model and daily value process 

model can receive reasonable results compared to historical burn analysis model. Even 
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though our daily value simulation model cannot describe the behavior of precipitation 

well, it is still the most stable one. 



Chapter 6 

Conclusion 

In this thesis we propose a new type of option contract that can be used to hedge 

against the financial risks of drought. We also develop three mathematical models to 

estimate the price of these options. 

6.1 Conclusion 

Unlike other weather derivatives, we need to consider more climate factors in drought 

option contracts. Such contracts potentially involve factors from biological and hy-

drological fields, and are dependent on not just location, but also the type of plants 

involved. 

Right now the RDI can be seen as a good measure of agricultural drought with 

the limitation of the types of data, but other good indices might be developed in the 

future, which can include more climate factors and reflect the severity of drought. 
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In this thesis, we use three models to estimate the value of the drought contract 

for the period from January to December, April to August and April to June in Jinan 

with different strike levels. It turns out that the results from the three methods are 

very close to each other if we have enough historical data, which means that each of 

the three methods can reasonably be used. 

However, if we wish to put this contract into practice, there may be other consid

erations. First of all, we should consider the relationship between the drought index 

and the influence of drought on farmers' income. Secondly, currently in developing 

countries with poor irrigation systems, it is difficult to obtain sufficient historical data 

sets, which means we cannot get an accurate description of drought in those places. In 

this situation we cannot use the historical analysis model. The index value simulation 

and daily index process can provide more information about future possible value of 

drought index. From our example with data in Jinan station, the index value simula

tion model is better. However, the possible disadvantage of this model is that it could 

be complicated to generate a large size of random numbers following different distri

butions to improve the efficiency of the price. The results from daily value simulation 

model is not as good as the second one because of the inaccurate precipitation model. 

However, it's simple to use only one model to describe the behavior of temperature 

and precipitation in different places. 
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6.2 Future Work 

Improvements to the models presented in this thesis fall into two categories: improving 

the financial models or improving the weather models. 

6.2.1 Improvements to the Contract 

The focus of this thesis was to model drought conditions and so we ignored many 

financial factors to simplify the contracts. For example, as mentioned, we did not pay 

attention to the relationship of drought index and farmers' profits. We also ignored 

the change of the interest rate in the real market and, in general, we did not consider 

the potential market price of risk as the market is not complete (Cao, 2004). 

6.2.2 Improvements to the Model 

A number of improvements can also be made to improve the weather models used to 

price drought contracts. For instance, in this thesis we use the mean-reverting process 

to simulate monthly rain. Even though it is not so bad when we try to simulate the 

behavior in the long term, we can not say this model is efficient because the standard 

deviation from our simulations fluctuate too much from the real one. 

Actually, we have another method which can simulate the daily rainfall. In this 

method, we can divide the process into two parts: the first one is the Markov chain 

which can approximate the probability of wet or dry days based on the whether the 

previous day is wet or dry; in the second part, we see the amount of precipitation 
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as the variable and try to find a goodness-of-fit distribution to fit the behavior of 

precipitation. This method is more often used when one wants to simulate the amount 

of rainfall in any period. This method was not implemented for this thesis. 

Another problem is that we did not consider the location limitations of the climate 

models. The climate stations which collect precipitation data are usually located 

in large cities, which are far away from the farmland where the drought contract 

should be used. Even though the behavior of temperature may be similar between 

the neighborhood, the amount of precipitation may change a lot even though two 

locations are really close. Therefore, it is important to include the spatial basis risk 

in the model. 
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Java Code for Some Algorithms 

Genera te Van der Corput Sequence 

publ ic c lass VanderCorput { 

double Value(int n , i n t b) 

{ 

i n t a = 0; 

i n t c = 0; 

do 

{ 

a+=l; 

c = ( i n t ) (n/Math.pow(b,a)); 

} 

while(c!=0); 

130 
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int [] A = new int [a] ; 

A[a-1] = (int)(n/Math.pow(b,a-l)); 

for (int i=a-2;i>=0;i—) 

•C 

double r = 0; 

for (int j=i+l;j<a;j++) 

{ 

r+=A[j]*Math.pow(b,j); 

} 

double R = n-r; 

A[i] = (int)(R/Math.pow(b,i)); 

} 

double x = 0; 

for (int i=0;i<a;i++) 

i 

x+=A[i]*Math.pow(b,-i-l); 

} 

return x; 
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> 

} 

{\bf Random Number Generator Following Inverse Gaussian Distribution} 

// Output Random Number List following 

Wald Distribution with parameter mu, lambda 

public class WaldRandom 

{ 

double[] List(double mu, double lamda, double[] X, double[] U) 

{ 

double u,v,x,y,z; 

double fi = lamda/mu; 

int n = X.length; 

double[] L = new double[n]; 

for (int i=0;i<n;i++) 

{ 

z = Math.pow(X[i],2); 

y = l - (Math.sqr t (Math.pow(z,2)+4*fi*z)-z) / (2*f i ) ; 

v = ( l+y)*U[i] ; 
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if (v>l) 

{ 

L[i] = 1/y; 

} 

else 

{ 

L[i] = y; 

> 

} 

return L; 

} 

// Convert Random Number List following Wald Distribution to one 

following Inverse Gaussian Distribution with parameter mu, lambda, and 

shift 

public class IGRandom 

{ 

double[] List(double[] X, double mu, double lamda, double shift) 
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{ 

i n t n = X.length; 

double[] L = new double[n] ; 

for ( i n t i=0;i<n;i++) 

{ 

L[i] = mu*X [i] +shif t ; 

} 

r e t u r n L; 

} 

} 

// Output m random number following Inverse Gaussian Distribution 

import j ava.io.*; 

import java.util.*; 

public class InvGaussianList2 

{ 

public static double[] List(int m, double mu, double lamda, double shift) 

throws IOException 
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{ 

IGRandom b = new IGRandomO; 

Random r = new Random(); 

VanderCorput d = new VanderCorput(); 

WaldRandom e = new WaldRandom() ; 

MEAN g = new MEANO; 

PrintWriter outl = new PrintWriter(new FileWriter("RandomInvGaussian.txt")); 

double[] LI = new double[m+1]; 

double[] L2 = new double[m+1]; 

double[] L3 = new double[m+1]; 

for (int i=l;i<m+l;i++) 

{ 

L l [ i ] = r .nextGaussianO ; 

L3[i] = Math.random(); 

} 

double[] W = e.List(mu,lamda,Ll,L3); 

double[] L = b.List(W.mu.lamda,shif t ) ; 

double[] L4 = new double[m]; 
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for (int i=0;i<in;i++) 

{ 

L4[i] = L[i]; 

out1.println(L[i] ); 

} 

out1.close(); 

double x = g.mean(L4); 

double y = 0; 

for (int i=0;i<m;i++) 

{ 

y+=Math.pow(L4[i],2); 

> 

double value2 = Math.sqrt((y-m*Math.pow(x,2))/(m)); 

System.out.println("The mean value for the distribution is: "+x); 

System.out.println("The standard deviation for 

the distribution is: "+value2); 

return L4; 

} 
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{\bf Gauss-Newton Method to Estimate Mean Daily Temperature} 

// M is the number of loops for Linear System; 

XO is the initial value for non-linear system; 

X00 is the initial value for linear system; 

public class GaussNewtonTem 

{ 

double[] ListCint M, double Error, double[] XO, double[] X00, double[] S) 

{ 

LinearSystem b = new LinearSystemO; 

MatrixMultipler c = new MatrixMultiplerO; 

MatrixMultipler2 c2 = new MatrixMultipler2(); 

MatrixMultipler3 c3 = new MatrixMultipler3(); 

int m = 4; 

double[] X = XO; 

double[] D = S; 

double [] F = new double[365]; 
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double [] [] A = new double [365] [m] ; 

double[] B = new double[365]; 

double[] L = new double[m]; 

i n t i , j » k ; 

k = 0; 

double x , y , z , s ; 

x = 0; 

y = 0; 

while(k<M) 

{ 

for (i=0;i<365;i++) 

{ 

F[ i ] = X[0]+X[l]*(i+l)+X[2]*Math.sin(2*Math.PI*(i+l)/365)+ 

X[3]*Math.cos(2*Math.PI*(i+1)/365)-D[i]; 

} 

for (i=0;i<365;i++) 

{ 

A[i][0] = 1; 
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A [ i ] [ l ] = i+1; 

A[i][2] = Math.sin(2*Math.PI*(i+l)/365); 

A[i][3] = Math.cos(2*Math.PI*(i+l)/365); 

} 

double[] C = c3.List(A,X,365,m); 

for (i=0;i<365;i++) 

{ 

B[i] = C [ i ] - F [ i ] ; 

} 

double [ ] [ ] A2 = c .L is t (A,365,m) ; 

double[] B2 = c2.List(A,B,365,m); 

L = b.List(A2,B2,X00,m,Error); 

for (i=l;i<m;i++) 

{ 

z = M a t h . a b s ( L [ i - l ] - X [ i - l ] ) ; 

y = Math, max (Math. a b s ( L [ i ] - X [ i ] ) , z ) ; 

} 
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for (i=0;i<m;i++) 

{ 

X[i] = L [ i ] ; 

} 

k+=l; 

} 

if (y>Error) 

•C 

System.out.printIn("The iteration exceeds"); 

> 

return X; 

} 

} 

public class LinearSystem 

{ 

double [] List (double [] [] A, double [] B, double [] X0, int n, double Error) 

{ 

int i.j.M; 
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M = 0; 

i n t N = 100000; 

double[] R = new double[n]; 

double [] X = X0; 

double[] Z = new double[n]; 

double a,x,y; 

x = 0; 

y = 0; 

do 

{ 

y=0; 

for (j=0;j<n;j++) 

i 

x + = A [ 0 ] [ j ] * X [ j ] ; 

} 

a = X[0] ; 

R[0] = B [ 0 ] - x ; 

X[0] = X [ 0 ] + R [ 0 ] / A [ 0 ] [ 0 ] ; 

Z[0] = M a t h . a b s ( X [ 0 ] - a ) ; 

y = Math, max ( Z [ 0 ] , 0 ) ; 
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x = 0; 

f o r 

•C 

( i= 

f o r 

{ 

> 

l ; i<n; i++) 

(j = 

x+= 

/ 
=0;j<n;j++) 

=A[i][ j ]*X[j] ; 

R[ i ]=B[i] -x; 

a = X [ i ] ; 

X[ i ]=X[ i ]+R[ i ] /A[ i ] [ i ] ; 

Z[i] = Math.abs(a-X[i]) ; 

y = Math.max(Z[i] , Z [ i - l ] ) ; 

x = 0; 

M+-1; 

if (M>N) 

System.out.println("The iteration exceeds"); 

System.out.printlnC"The error term right now is "+y); 
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break; 

} 

} 

while (y>=Error); 

r e tu rn X; 

} 

} 

public c lass MatrixMultipler 

{ 

double [] [] L is t (double [] [] A.int m.int n) 

{ 

double[] [] X = new double[n][n] ; 

i n t i , j , k ; 

double x = 0; 

for ( i=0;i<n;i++) 

•C 

for (j=0;j<n;j++) 

i 

for (k=0;k<m;k++) 
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x+=A[k][i]*A[k][j] ; 

} 

X[i] [j] = x; 

x = 0; 

} 

r e tu rn X; 

} 

} 

public c lass MatrixMultipler2 

{ 

double [] Lis t (double [] [] A, doublet] B. in t m.int n) 

{ 

double[] X = new double[n] ; 

i n t i , k ; 

double x = 0; 

for (i=0;i<n;i++) 
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for (k=0;k<m;k++) 

{ 

x+=A[k] [ i ]*B[k] ; 

> 

X[i] = x; 

x = 0; 

} 

r e tu rn X; 

} 

> 

publ ic c lass MatrixMultipler3 

{ 

double[] L i s t (double [ ] [ ] A,double[] B. in t m.int n) 

{ 

double[] X = new double[m]; 

i n t i , k ; 

double x = 0; 

for (i=0;i<m;i++) 
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for (k=0;k<n;k++) 

{ 

x+=A[i][k]*B [k] ; 

} 

X[i] = x; 

x = 0; 

> 

re tu rn X; 

} 

} 


