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Abstract 

Biomechanical studies often attempt to identify differences between groups. 

Several scientific methods are available for identifying such differences. Traditional 

methods often focus on the analysis of single variables and do not take into 

account high-dimensional dependencies. Moreover, the analysis procedures are 

often biased by the expectations of the researcher. Pattern recognition based 

methods provide data driven analysis often conducted simultaneously in multiple 

dimensions. Such algorithms have recently been applied for biomechanical 

analysis tasks. However, the use of pattern recognition algorithms is still not well 

understood in the biomechanical community. Therefore, the contribution of this 

thesis was to add further understanding of tools from pattern recognition to 

biomechanical tasks of group differentiation. 

Two main application scenarios were addressed. In the first part of the thesis, 

questions of human gait classification were examined. Existing studies with 

respect to this task had two main shortcomings. First, the features used for 

classification were often specific to the input measurements, derived from specific 

time points and thus not directly transferable to different tasks. Second, frequently 

only information from single variables was analyzed and high-dimensional 

dependencies neglected. Therefore, techniques for running and walking gait 

pattern classification were developed that overcame these shortcomings. They 

employed generic features that used a more complete representation of the 

available information compared to traditional methods. Moreover, high-dimensional 

dependencies were accounted for. Several group classification tasks were 

successfully solved using the developed methodology. The techniques are general 

and applicable to different group classification tasks without adaptation. 
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In the second part of the thesis, the implementation of pattern recognition 

algorithms on embedded systems was considered. Such systems allow, for 

instance, the application of pattern recognition systems outside the lab for sports 

biomechanics as well as for many other domains. General considerations for the 

implementation of pattern recognition algorithms on this specific hardware 

environment were still missing in the literature. A general methodology for 

embedded classification was therefore developed. The ability of this approach to 

produce acceptable results in sports biomechanics related classification tasks was 

shown. Furthermore, the applicability of embedded solutions for data collection in 

sports classification studies was demonstrated. 
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

Biomechanical studies often attempt to identify differences between groups such 

as male/female, elderly/young or injured/not injured. A commonly applied strategy 

to describe group differences is to collect data for variables that are assumed to 

contain relevant information. However, single variables seldom allow group 

differentiation and high-dimensional dependencies are often difficult to identify 

using traditional analysis methods. Pattern recognition methods offer themselves 

as a tool for solving such biomechanical problems. These methods have the 

potential of identifying groups and of revealing relevant variables in multiple 

dimensions. Pattern recognition algorithms have recently been applied for isolated 

biomechanical studies. The use of such data mining algorithms, however, is still 

not well understood in the biomechanical community. Therefore, the purpose of 

this thesis was to apply selected pattern recognition methods to biomechanical 

questions of group differentiation. 

1.2 Background on pattern recognition 

Pattern recognition is a scientific discipline with the goal to classify objects into a 

number of categories or classes (Theodoridis and Koutroumbas, 2009). Pattern 

recognition has a strong applied aspect, with contributions towards many facets of 

daily life. Early research in pattern recognition had applications in speech and 

optical character recognition (Mori et al., 1992). Patents on optical character 

recognition go back to the 1920’s (Tauschek, 1929), and today character 
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recognition systems operate in every mail sorting plant. Also the more modern 

form of mail (namely email) is sorted into ‘ham’ and ‘spam’ (Koprinska et al., 2007) 

using pattern recognition methodology. Further applications of pattern recognition 

applications include speech recognition and face and object detection (Furui, 2004; 

Pontil and Verri, 1998; Viola and Jones, 2004). Despite the fact that the analysis 

methods from pattern recognition have such long tradition, they have only recently 

started to be applied in research concerned with locomotion, sports and, in 

general, with biomechanics. The value of such methods lies in the fact that they 

have an unbiased mode of operation and the capability to handle a large quantity 

of collected data. For example, a system for the classification of human feet has 

been developed (Grimmer et al., 2009) based on measured foot surfaces. The 

data set consisted of more than 11000 measured feet and each foot consisted of 

about 50000 individual points. The developed pattern recognition data mining 

needed no prior assumptions and could be applied efficiently for automatic group 

differentiation despite this high amount of data. 

The classical pattern recognition approach (e.g. Duda et al., 2001; Niemann, 2003) 

uses data from arbitrary sensors as input into a classification system (Fig. 1.1). For 

biomechanical studies, these data represent typical measurements as they are 

collected in biomechanical studies, e.g. kinematic and kinetic data from a motion 

analysis system (Nigg et al., 2007). The measurements are subjected (if needed) 

to a preprocessing step in order to enhance the signal properties. The subsequent 

feature extraction provides a feature vector for subsequent classification. This 

vector describes the input measurements in feature space. For supervised 

classification, labeled feature vectors are presented to a classifier for training 

(Fig. 1.1). The vectors used for classifier training constitute the training set. The 

mentioned labels assign a feature vector to one of several possible classes. One 

example for a class label is the gender of a person that is measured, with two 

possible classes in this case. The classifier then ‘learns’ the class specific 
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properties and establishes a decision rule. In the working phase, the trained 

classifier uses this decision rule and automatically assigns a feature vector to a 

class. Different classifiers using diverse strategies for learning can be used, 

including for example, Support Vector Machines (Vapnik, 1998) and Linear 

Discriminant Analysis classifiers (Fisher, 1936). 

 

Fig. 1.1. Flow chart of a pattern recognition system (Niemann, 2003). 

However, there are few theoretical guidelines to determine what preprocessing, 

which features and which classifier are required to optimally solve a given 

classification problem (Duda et al., 2001). Research is therefore required 

whenever pattern recognition is applied to new problem domains, for example to 

biomechanics. 

1.3 Applying pattern recognition in biomechanics 

Today’s methods for quantifying variables of interest in locomotion studies are 

rather sophisticated. For example, the moments and forces that the human body is 

exposed to during a specific movement task can be estimated using motion 

analysis data combined with an inverse dynamics approach (Nigg et al., 2007). 

Furthermore, movement characteristics can be quantified using mobile, 
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computationally powerful embedded systems. These ‘ubiquitous computing’ 

systems can provide monitoring, direct feedback and interventions by interacting 

with equipment (Baca et al., 2009). 

In scientific studies related to such questions, a considerable amount of data is 

generated. This demands for automatic, computerized analysis methods that have 

the ability to deal with large data sets and that use algorithms that are powerful 

and effective. The objective, data-driven methods from pattern recognition can 

contribute to these projects by offering useful tools for such analysis procedures. 

In this thesis, pattern recognition methods have been applied in two different 

application domains. The first application was group classification in biomechanics 

and the second was classification of data on embedded systems. 

1.3.1 Group classification in biomechanics 

Biomechanical research questions are often related to the quantification of specific 

characteristics of groups. Various studies have been conducted to distinguish 

between groups with respect to gender (von Tscharner and Goepfert, 2003), age 

(DeVita and Hortobagyi, 2000), footwear (Nigg et al., 2003) and identification of 

factors important for the development of injuries (DiBenedetto et al., 2005; Messier 

and Pittala, 1988; Stefanyshyn et al., 2006; Taunton et al., 2002). These studies 

quantified kinematics, kinetics, soft tissue vibrations and/or electromyography 

(EMG). The classification was often done by comparing mean and standard 

deviation of discrete variables (e.g. impact peak force, maximal foot eversion, 

EMG root mean square, etc.). Recently, new methods have been proposed and 

successfully applied for such classifications based on pattern recognition (e.g. 

Begg and Kamruzzaman, 2005; Janssen et al., 2008; Schöllhorn et al., 2002; Wu 

et al., 2007). However, several research questions were left unanswered by these 

published studies. 
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1.3.1.1 Research question one 

A shortcoming of many of the recently proposed methods was that the features 

used for classification were specific to the input measurements. One example 

publication used angles and forces at specific time points of the human gait phase 

(Wu et al., 2007). This approach is characterized by the fact that information was 

lost when the ‘analog’ locomotion cycle of walking or running was reduced to 

‘discrete’ time points. The classification rate in every classification study depends 

on the information content of the features that are used (Niemann, 2003). Feature 

sets for biomechanical locomotion data were therefore missing that represented as 

much information as possible, that needed no additional information about specific 

time points and that could be calculated on the ‘analog’ time-dependent kinematic 

and kinetic data directly. Such so-called ‘generic’ features were developed for this 

thesis and the first research question addressed by this thesis was: 

“Is acceptable group classification for gender and shod vs. barefoot possible using 

generic features for biomechanical data?” 

A classification rate of 80% was arbitrarily set for testing acceptable group 

classification. This value was deemed to demonstrate a good classifyability of the 

underlying data. Gender and footwear (shod/barefoot) classes were selected for 

investigation because they are present in most biomechanical studies. The two 

hypotheses tested with this research question were: 

Hypothesis H1 

“Using generic features for biomechanical data, a class-wise mean classification 

rate of at least 80% is possible for gender classification.” 

Hypothesis H2 

“Using generic features for biomechanical data, a class-wise mean classification 

rate of at least 80% is possible for shod versus barefoot running classification.” 
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By showing that both hypotheses H1 and H2 are fulfilled, supporting evidence to 

the general usability of such a classification methodology for biomechanical group 

differentiation tasks was provided. 

Research question one was presented in two publications (Eskofier et al., 2010a; 

Eskofier et al., 2010b) that form Chapter 3 and Chapter 4 of this thesis. 

1.3.1.2 Research question two 

A further disadvantage of published classification methods for biomechanical data 

was that information about what exactly characterized the differences between the 

groups identified was often not provided. For example, it has been shown that 

several emotional states (e.g. ‘angered’, ‘normal’) can be classified using gait data 

(Janssen et al., 2008). However, the publication was not able to characterize the 

differences within the original gait data with the chosen approach. A methodology 

that is ideally suited for biomechanical group classification tasks does not only 

obtain high recognition rates, but also identifies the differences in the data that 

allowed the classification. Such feature selection and ranking strategies for 

biomechanical data were investigated and research question two in this context 

was: 

“Are feature selection and ranking methods for biomechanical data capable of 

pointing out discriminating characteristics of classes with acceptable classification 

rate, i.e. can they identify the measured variables containing the discriminating 

information?” 

Research question two was also addressed in the publication (Eskofier et al., 

2010b) in Chapter 3. 
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1.3.1.3 Research question three 

A further shortcoming of existing methods for finding differences between groups 

in biomechanical data is that multi-dimensional dependencies of features are often 

not used for classification. In the classical analysis, a one-to-one comparison of 

features for both groups was frequently made (e.g. Stefanyshyn et al., 2006). 

However, the information necessary for classification is often multi-dimensional 

(Duda et al., 2001) and a data-driven combination of features for classification is 

desired to allow better discrimination of the groups under investigation. For that 

reason, it was needed to be demonstrated that combinations of features are 

beneficial for discrimination of the studied groups. Consequently, research 

question three was: 

“Are pattern recognition methods able to show high-dimensional dependencies of 

classes on features that have previously not been revealed?” 

The hypothesis that was deduced from this research question directly tested its 

validity. 

Hypothesis H3 

“Using pattern recognition methods, a better class-wise mean classification rate is 

obtainable by combination of multiple features compared to using selected 

individual features for classification.” 

Research question three was addressed in the publications (Eskofier et al., 2010a; 

Eskofier et al., 2010b) that form Chapter 3 and Chapter 4 of this thesis. 

1.3.2 Classification on embedded systems 

The second research task of this thesis was the application of classification 

methods to embedded systems. Embedded systems are lightweight and highly 

mobile systems, capable of measuring, storing and processing data. They are 
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ideally suited for classification tasks in sports because they allow taking 

measurement and decision-making outside the laboratory. As a result, a growing 

number of embedded systems are applied in a variety of application scenarios in 

sports. Examples include systems for physiological measurement and processing 

tasks (Laukkanen and Virtanen, 1998) and embedded devices that sense 

locomotion information and utilize it to adapt sports gear (DiBenedetto et al., 

2005). 

Despite their advantages for classification of sports related data, embedded 

systems have not been in the focus of biomechanical research so far. Therefore, 

several basic points needed to be addressed in order to first obtain a generally 

applicable framework for embedded classification. This general framework was 

then applied to classification research tasks in sports biomechanics. To do this, 

several research questions needed answering. 

1.3.2.1 Research question four 

Embedded systems have restricted memory and processing capabilities. At the 

start of this project, it was not clear which of the often computationally demanding 

pattern recognition algorithms (Duda et al., 2001; Fukunaga, 1990; Niemann, 

2003) were suitable for implementation on embedded systems. A selection and 

validation of appropriate algorithms was, therefore, important. There existed, 

however, neither a theoretical or practical result as to what method of selection is 

appropriate, nor how a validation in the context of embedded systems should take 

place. Therefore, a better understanding of all the steps necessary to adapt pattern 

recognition algorithms to embedded devices was needed. A general methodology 

for development of classification systems for embedded microprocessors was thus 

missing that took into account all important steps in the pattern recognition process 

(Fig. 1.1). For this, the types of features that were computable on embedded 

hardware needed to be discussed. Furthermore, a selection of classification 
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algorithms for this hardware needed to be made. Thus, research question four 

was: 

“Are the employed types of features and classification algorithms suited for 

obtaining acceptable classification rates on an embedded microprocessor?” 

Two hypotheses were tested for this research question. A classification rate of 

80% was set for testing them for the reason already explained in Section 1.3.1. 

Surface and speed classes were selected for investigation because their 

recognition was an important task in a sports example system (cf. Chapter 5). 

Hypothesis H4 

“Using the developed methods for embedded recognition, an on-system class-wise 

mean classification rate of at least 80% is possible for surface classification  

(2 classes).” 

Hypothesis H5 

“Using the developed methods for embedded recognition, an on-system class-wise 

mean classification rate of at least 80% is possible for speed classification  

(3 classes).” 

By showing that both hypotheses H4 and H5 were fulfilled, supporting evidence to 

the general applicability of the developed embedded classification framework was 

collected. 

Research question four was addressed in two publications (Eskofier et al., 2009a; 

Eskofier et al., 2010c), which are Chapter 5 and Chapter 6 of this thesis. 

1.3.2.2 Research question five 

A key point of the development of every pattern recognition method is the 

validation of the classification rate on the target system (Duda et al., 2001). 

Normally, extensive testing of the proposed methodology on a desktop computer is 
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sufficient for this purpose. However, desktop computers and embedded 

microprocessors can exhibit important differences regarding their hardware 

capabilities. For example, floating point multiplication might not be available on the 

microprocessors and integer arithmetic must be used instead. It was therefore not 

clear whether the classification results on the desktop computers that were used 

for testing and those results on the embedded system were identical. Research 

question five was thus: 

“Can the developed algorithms for microprocessors effectively be tested on the 

embedded hardware?” 

The hypothesis that was tested for this research question directly tested its validity. 

Hypothesis H6 

“Testing the class-wise mean classification rate on the embedded device leads to 

the same result that was achieved during testing of the classifier on a desktop 

machine.” 

Proving this hypothesis was necessary in order to obtain a classification framework 

for embedded systems that was not only accurate in theory, but also in practice. 

Research question five was also addressed in the publication (Eskofier et al., 

2009a) in Chapter 5. 

1.3.2.3 Research question six 

Another aspect where embedded systems can play an important role in sports 

classification studies is data collection. In pattern recognition, a maximum of data 

about the classification problem is desired to properly learn the class conditional 

statistical properties (Duda et al., 2001; Niemann, 2003). Therefore, the 

development of such a system for data collection that is general and applicable to 

a wide range of different studies was desirable in order to generate important input 
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for the classification. Such a system needed to be capable of collecting high-

quality data while still being unobtrusive, i.e. not hindering the athlete. Therefore, 

an embedded system implementation was developed for the purpose of athlete 

monitoring and data collection and the research question in this context was: 

“Is this developed system capable of collecting high-quality data while still being 

unobtrusive, i.e. not hindering the athlete during their sports activity?” 

Research question six was addressed in the publication (Eskofier et al., 2008a) in 

Chapter 7. 

1.4 Purposes of the thesis 

The first purpose of this thesis was to show the applicability of pattern recognition 

methods to biomechanical data, to define a set of generic features and to 

demonstrate that shortcomings depending on the classical approach can be 

overcome. 

The second purpose of this thesis was to develop a general methodology for 

embedded classification and to demonstrate its capability to produce acceptable 

results in sports biomechanics related classification tasks. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter provides an overview of the relevant literature for this thesis. 

Background knowledge dealing with pattern recognition in general is discussed in 

the first section. Publications that have used pattern recognition methods together 

with biomechanical data are discussed in the second section. Publications that 

deal with classification on embedded systems are discussed in the third section. 

2.1 Pattern recognition in general 

Pattern recognition is a relatively young science and will play an important role in 

this thesis. Therefore, a review of the most important literature of pattern 

recognition will be presented. This review is based on the schematic flow chart 

presented earlier (Fig. 1.1). Therefore, publications addressing relevant aspects of 

sensing, preprocessing, feature extraction and classification are included. 

2.1.1 Sensor input 

Pattern recognition is a scientific discipline with the goal to facilitate decision 

making by machines (Theodoridis and Koutroumbas, 2009). In order to make a 

decision in any context, it is required that information is obtained. For automatic 

pattern recognition systems, this information is often provided by sensors (Duda et 

al., 2001). These sensors measure physical quantities and provide an analog or 

digital characteristic of the objects that have to be classified (Niemann, 2003). An 

example task in pattern recognition is the recognition of spoken words (e.g. Furui, 

1986). For this purpose, the sensor input to the classification system consists of 

the acoustic signal that is recorded by a microphone and is subsequently digitized. 
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The design of sensors is not the focus of pattern recognition research (Duda et al., 

2001). Sensor design is conducted only in very specific cases, for example when 

Braille signs (for visually impaired persons) need to be recognized with tactile 

sensors (Arabshahi and Jiang, 2005). Instead, existing sensor technology is most 

often employed for a given pattern recognition task. The selection of the 

appropriate sensor technology is in the hands of the researcher. No theoretical 

result exists yet that outlines what sensor is most appropriate for a specific pattern 

recognition problem (Theodoridis and Koutroumbas, 2009). 

2.1.2 Preprocessing 

After measurement, the sensor data is preprocessed in terms of a signal to signal 

transformation. The purpose of this step (Niemann, 2003) is to enhance the signal, 

to alleviate the subsequent analysis (reduction of input signal complexity) or to 

increase the classification performance (improvement of obtainable classification 

rate). Preprocessing is an important aspect of the pattern recognition flow chart, 

but it is not the focus of pattern recognition research. Therefore, only a brief 

overview of preprocessing is given. 

Several examples for preprocessing techniques exist. Digital filters (Shenoi, 2006) 

can be used to extract specific frequency bands from a measured signal. Time 

normalization (for instance using Spline interpolation (De Boor, 1978)) is often 

applied to facilitate the computation of time independent features. Threshold 

operations can be employed to suppress selected ranges of values (Niemann, 

2003). Segmentation of individual objects (e.g. words within an audio signal) is 

mandatory for pattern recognition systems to identify single occurrences of certain 

events within the data (Duda et al., 2001, pp. 9-10). 

For the parameter selection and evaluation of a specific preprocessing approach, 

detailed rules are often available. When, for example, digital filters like general 
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lowpass filters are employed, these filters need to dampen a defined frequency 

range. However, the decision which of the manifold of available preprocessing 

methods is appropriate for a given problem is in the hands of the researcher. It is 

not known yet how to choose preprocessing techniques independent of the 

complete pattern recognition system (Niemann, 2003). This is a direct deduction 

from the ‘No Free Lunch Theorem’ (Duda et al., 2001). They basically state that a 

universally applicable approach does not exist. In order to evaluate a specific 

implemented preprocessing method in the context of the pattern recognition 

system, heuristics are therefore often applied. For example, the classification result 

with and without the selected preprocessing method is evaluated and the selection 

of the appropriate algorithms is based on this evaluation. Another heuristic that is 

often employed is to subjectively compare the quality of a signal before and after 

preprocessing by visual or auditory inspection (Niemann, 2003). 

The differentiation between preprocessing and the subsequent feature extraction is 

often not straightforward. In some publications and textbooks, preprocessing is 

seen as part of feature extraction and vice versa (Niemann, 2003). 

2.1.3 Feature extraction 

The goal of feature extraction is to provide a representation of the measured object 

characteristics that alleviates subsequent decision making. This goal can be 

achieved by representing objects of the same category by feature values that are 

similar, and objects of different categories by feature values that are distinct (Duda 

et al., 2001). The representation of a spoken word, for instance, by the originally 

measured time series is not optimal in order to distinguish male and female 

speakers. For such a classification task, the fundamental frequency of the spoken 

word has frequently been employed (Childers and Wu, 1991). 
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The generation of appropriate features “is of paramount importance in any pattern 

recognition task” (Theodoridis and Koutroumbas, 2009, p. 323). One major 

concern of this thesis is therefore appropriate feature extraction strategies for 

biomechanical group and embedded data classification tasks. For this purpose, 

generic as well as manual feature extraction methods can be employed. As an 

optional step of feature extraction, a reduction of the feature set is often beneficial 

for classification (Dash and Liu, 1997). Publications related to the generic features, 

manual features and feature reduction are discussed below. 

2.1.3.1 Generic features 

Generic (heuristic) features are defined as features that are not adapted to the 

sensor input. This approach does not rely on specific properties of the signal that 

are required to be known a priori (Zhang and Rockett, 2009). Such features can 

thus be applied to measurements even if the characteristics of the input changes, 

for example by using a different sensor. 

The first group of generic features that are employed in the literature applies a 

transformation into the frequency domain on the sensor input. Examples include 

the discrete Fourier transform (Proakis and Manolakis, 1992) and related 

frequency transformation algorithms, e.g. the discrete cosine transform (Ahmed et 

al., 1974). Features derived from the fast implementation of the discrete Fourier 

transform, the fast Fourier transform, were used for fingerprint recognition (Willis 

and Myers, 2001), for instance. The discrete cosine transform was, for example, 

employed to efficiently retrieve images from a large database (Fan and Wang, 

2002). The same discrete cosine transform algorithm was also applied to 

recognize faces in images (Hafed and Levine, 2001). 

These frequency domain approaches for feature generation do not take into 

account the temporal aspect of a signal. If this aspect should be considered, the 

Wavelet transformation (Aldroubi and Unser, 1996; Daubechies, 1992) can be 
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applied. This transformation performs a simultaneous decomposition of the signal 

in time and frequency. The resulting coefficients can directly be used as generic 

features for classification. The Wavelet feature extraction technique was, for 

instance, applied to the classification and segmentation of textures of images 

(Unser, 1995). In a different example study (Mallet et al., 1997), an adaptive 

implementation of the Wavelet transformation was used for feature extraction. 

A different class of generic features for classification is directly computed from the 

time domain signal without transformation. The arguably simplest of these features 

are mean and variance of the input measurement (Duda et al., 2001). These 

features were, for instance, used for the classification of audio signals with respect 

to genre or content (Wold et al., 1996; Tzanetakis and Cook, 2002). More 

advanced directly computed features are derived from a polynomial regression of 

the given signal up to a predefined order. These polynomial coefficient features 

were, for example, employed for face verification (Sanderson and Paliwal, 2002) 

and for speech recognition (Furui, 1986). 

The Principal Component Analysis, also called Karhunen-Loève transformation 

(Karhunen, 1947; Loève, 1977), can also be applied for generic feature extraction. 

This method transforms a multi-dimensional signal according to its directions of 

highest variance. These directions of highest variance often contain the 

information that is necessary for classification. Efficient implementations of this 

technique for large dimensionality and small sample sizes exist (Fukunaga, 1990). 

Principal Component features were employed in a variety of classification tasks 

(e.g. Bicciato et al., 2003; Draper et al., 2003; Hubert and Engelen, 2004). 

2.1.3.2 Manually designed features 

Manually designed (analytic) features are defined as features that represent 

specific characteristics of the sensor input. For example, individual heart beats 

measured in electrocardiogram signals exhibit a detailed structure that is 
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characteristic of the electrical activity of the heart (Fig. 2.1). The information 

contained in this specific heart beat structure can be closely represented by 

designed features. These could, for instance, be computed by measuring timing 

between R-peaks or the integral of the T-wave (Fig. 2.1). Such features that are 

specific to electrocardiogram signals were used for classification of pathologic 

heart beats for example in (Chazal et al., 2004). 

 

Fig. 2.1. Illustration of an example for manually designed features. Depicted is a 
typical individual heart beat in an asymptomatic electrocardiogram signal. 
Also shown are possible design features, for example specific intervals. 
These features can be used for the purpose of classification. Image from 
Wikimedia Commons, created by Anthony Atkielski, printed with 
permission. 

 

http://en.wikipedia.org/wiki/File:SinusRhythmLabels.svg
http://en.wikipedia.org/wiki/File:SinusRhythmLabels.svg
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One shortcoming of manually designed features is that they can not be directly 

transferred to other classification tasks. For instance, the straightforward 

application of the above-mentioned electrocardiogram features to signals with 

different structure, e.g. audio signals, is not possible. This is in contrast to generic 

features (cf. Section 2.1.3.1), that can be applied to various signals with only minor 

modifications. Furthermore, the composition and implementation of manually 

designed features takes more time than for generic features (Theodoridis and 

Koutroumbas, 2009). However, the advantage of specifically designed features is 

that they often represent the information content of the underlying measurements 

better than generic features (Duda et al., 2001). Therefore, a better classification 

system performance can frequently be achieved using a manual design approach. 

The number of possible approaches for manual feature design is large. This is due 

to the variety of conceivable input signals to a classification system and the 

circumstance that manual features are specific for the actual signal they are used 

for. Therefore, comprehensive reviews are not even conducted in dedicated 

textbooks (Theodoridis and Koutroumbas, 2009, p. 411). Nevertheless, a selection 

of additional examples for manual feature design is presented. 

Simple numeration features were shown to be applicable for the classification of 

proteins (Chen and Kurgan, 2007). The features that were used in this study count 

the occurrences of certain helix, strand and coil structures of the proteins that they 

classify. In a different study (Varela et al., 2006), benign versus malignant masses 

in mammographic mass lesions were classified by designing features that 

represented the degree of sharpness and microlobulation of the mammographic 

mass margins. The computation of features that measure specific distances and 

areas was also conducted in classification tasks (DeKruger and Hunt, 1994; Oh 

and Suen, 1998). Many of these studies that applied manual feature design 

reported successful classification results. All of them required a profound 

knowledge about the question studied and the measured signal characteristics. 
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2.1.3.3 Feature reduction 

Feature reduction is an optional step following feature computation. In this step, 

the dimensionality of the feature representation is reduced. It is, for example, a 

common approach to create a large set of candidate features where individual 

features contain some redundancy (Kudo and Sklansky, 2000). This redundancy is 

deliberate, with the goal to represent the information in the original signal as 

completely as possible. Nevertheless, this overrepresentation sometimes 

degrades the performance of a classification system. It is therefore beneficial for 

classification to reduce the set of features. 

Applying feature reduction in a pattern recognition system has several additional 

advantages. First, the complexity of the classification system can be reduced 

(Niemann, 2003). Second, the generalization properties of the classification 

system (i.e. the ability to classify samples that are not in the set that is used for 

training) can be improved by feature reduction (Theodoridis and Koutroumbas, 

2009). Third, classification is based on learning category properties from a 

representative sample. The number of required samples grows exponentially with 

the dimensionality of the feature representation (Duda et al., 2001). This is also 

referred to as ‘curse of dimensionality’ in the literature (Theodoridis and 

Koutroumbas, 2009). One goal of feature reduction is therefore to obtain a feature 

representation with lower dimension compared to the original feature space. 

Feature reduction can be performed with two different approaches. The first is 

feature reduction by selecting a subset of the best individual feature values from a 

set of candidate features. The second is direct dimensionality reduction within 

feature space, for example by linear combination of features. 

Feature reduction by subset selection 

Several feature reduction methods exist for selecting a subset of features from a 

larger candidate set. These feature reduction methods are called feature selection. 



 20

 

The criterion for the selection of a new set of features is most often the resulting 

classification rate.  

One possible subset selection algorithm is ‘exhaustive search’. It tests all possible 

combinations of features and guarantees finding the best subset with respect to 

the evaluated criterion. Exhaustive search may be computationally prohibitive 

when the dimensionality of the feature representation is high (Narendra and 

Fukunaga, 1977). 

A computationally more efficient strategy is used by the ‘beam search algorithm’ 

(Bisiani, 1987). This algorithm starts with evaluating all combinations of a given 

number of features. All these combinations are evaluated with the given 

performance criterion, and only those that perform best are promoted to the next 

iteration. In this subsequent iteration, the surviving subsets are combined with the 

remaining features, and are again evaluated. 

An additional approach is feature reduction by ‘dynamic programming’ (Niemann, 

2003). This algorithm searches through the feature space in multiple iterations. In 

each iteration, one single feature is added to the feature subset that gives the 

highest improvement in classification rate for the worst class pair. For this 

algorithm, a distance criterion has to be utilized that is monotone and separable. 

For this purpose, the Mahalanobis distance criterion (Mahalanobis, 1936), a type 

of generalized Euclidean distance, is frequently employed. 

A further method is selection by classification algorithms with the inherent ability to 

identify the most relevant features for a classification task. The AdaBoost classifier 

(Freund and Schapire, 1997) can be used for this purpose. Feature selection using 

AdaBoost is for example demonstrated by Viola and Jones (2004). Genetic 

algorithms with a neural network classifier can also be used for feature selection 

(Jaremko et al., 2002). A comprehensive review of other feature selection methods 

can be found in (Dash and Liu, 1997). 
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Feature reduction by dimensionality reduction 

In addition to methods that select feature subsets from a base set, direct 

dimensionality reduction methods can also be employed to reduce the complexity 

of the classification task. In principle, these methods can be used directly on the 

signals as well; however, this subsection will concentrate on features. 

The Principal Component Analysis can be applied for this purpose (Duda et al., 

2001). The Principal Component Analysis linearly transforms the input space in 

such a way that each axis is ranked according to the variance that it contributes to 

the original dataset. By projecting the features on the axes of highest variance, the 

noise that is inherent in the features is reduced and the classification rate is 

typically increased (Theodoridis and Koutroumbas, 2009). Furthermore, the 

resulting feature components are mutually independent and normally distributed. 

Feature reduction by Principal Component Analysis was for example applied for 

machine defect classification (Malhi and Gao, 2004). 

The Principal Component Analysis can also be performed using a kernel function 

in order to investigate nonlinear dependencies within the original data (Schölkopf 

et al., 1998), which has the advantage that such nonlinear dependencies can be 

incorporated and used for the analysis. This so-called kernel Principal Component 

Analysis also found applications in pattern recognition (e.g. Stamkopoulos et al., 

1998; Wu et al., 2007). 

Another approach for dimensionality reduction is the Linear Discriminant Analysis 

(Duda et al., 2001). In contrast to Principal Component Analysis, the features are 

not projected onto the axes of highest variance, but on the axes of highest 

discriminability. These axes are those directions in the multi-dimensional feature 

space that represent the highest difference between classes. This requires 

features that are labeled. Linear Discriminant Analysis for feature reduction was for 

example employed for face recognition in images (Yang et al., 2005). 
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2.1.4 Classification algorithms 

The last aspect of the schematic flow chart presented in Fig. 1.1 is classification. 

Classification algorithms operate in a training and a working phase (Theodoridis 

and Koutroumbas, 2009). In the training phase, the specific characteristics of the 

classes are learned from a representative sample. For this purpose, the objects 

are labeled with the information to which class they belong and the classification 

algorithms are provided with this information. Given this information, a decision 

criterion is established. This criterion can be represented by a decision boundary in 

the feature space. In the working phase, the decision criterion, or decision 

boundary, is employed to new sensor input. The newly measured objects are 

consequently assigned to the class or category that they most likely belong to. 

As of yet, there exists no theoretical result, which of the numerous classification 

algorithms that are published is applicable in a specific pattern recognition task 

(Duda et al., 2001). An approach that is often followed is to compare different 

classification algorithms with respect to the classification rate that they achieve 

(Niemann, 2003). In this thesis, several classification algorithms were employed in 

such a way. The relevant literature for these classifiers is described in the 

following. 

2.1.4.1 Linear Discriminant Analysis 

The Linear Discriminant Analysis classifier is based on Fisher’s (1936) work on 

discriminant methods. It is a transformation that aims at minimizing the variability 

within a class, and maximizing the distance between classes. This algorithm can 

also be employed for feature reduction as was discussed earlier. When Linear 

Discriminant Analysis is applied for binary classification, the feature space is 

effectively projected onto a single axis. On this single axis, a threshold is applied 

for differentiation. The linear decision boundary that results in the feature space 

can be easily implemented for the working classification system and uses only 
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minor computational resources. More complex decision boundaries can not be 

represented. Applications of Linear Discriminant Analysis can be found in a variety 

of fields, including face recognition (Lu et al., 2003) and document classification 

(Ye and Li, 2005). 

2.1.4.2 Boosting 

The goal of boosting is to increase the accuracy of a learning algorithm using the 

idea of combining multiple simple classifiers to form a strong ensemble (Schapire 

et al., 1998). One of the most important boosting algorithms is AdaBoost (Freund 

and Schapire, 1996). In the related publication, a specific algorithm for combining 

the weak classifiers and establishing the strong ensemble classifier is presented. 

One advantage of AdaBoost is that it generalizes very well to new samples. 

However, it has also been shown that its performance is affected by noise within 

the data (Rätsch et al., 2001). Numerous variations of this method exist with 

varying strengths and weaknesses (e.g. Li and Zhang, 2004; Rätsch et al., 2001; 

Schapire and Singer, 1999). AdaBoost has been applied to face detection (Viola 

and Jones, 2004) and for fingerprint recognition (Liu, 2010). 

2.1.4.3 Support Vector Machine 

Support Vector Machines often operate by first transforming the features into a 

high-dimensional space (Vapnik, 1998; Burges, 1998). This transformation can be 

computed quite efficiently by different kernel functions (Schölkopf and Smola, 

2002). A linear decision boundary with maximum margin is then established in the 

resultant space. Extensions of the classifier to multiple classes are proposed (Hsu 

and Lin, 2002; Lee et al., 2004). Support Vector Machines obtain high 

classification rates in many pattern recognition tasks (Sapankevych and Sankar, 

2009). Numerous applications of this classifier exist. They include image 

classification (Chapelle et al., 1999), email categorization (Drucker et al., 1999) 

and 3D object recognition tasks (Pontil and Verri, 1998). 
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2.1.4.4 Naïve Bayes 

The Naïve Bayes classifier makes use of the assumption that all features are 

mutually independent (Theodoridis and Koutroumbas, 2009). This assumption is 

often not justified, but it allows a straightforward estimation of the classifier 

parameters from the sample set during training. The number of classifier 

parameters is considerably reduced by this approach compared to classifiers that 

estimate more complete representations of the data distribution. The ‘curse of 

dimensionality’ (Duda et al., 2001) is thereby mitigated, i.e. the classifier allows 

working in high-dimensional feature spaces directly. The Naïve Bayes classifier 

has been proven to perform well in many classification tasks (Langley et al., 1992; 

Domingos and Pazzani, 1997). 

2.1.4.5 Nearest Neighbor 

An early publication in classification theory by Cover and Hart (1967) forms the 

basis for the Nearest Neighbor classifier. This classifier performs categorization of 

newly measured feature vectors based on the neighboring feature vectors that are 

already labeled. It can be proven that this classifier has a low achievable error rate 

that is, given certain requirements, between the Bayes error rate and twice the 

Bayes error rate (Cover and Hart, 1967). The Bayes error rate is the lowest 

achievable error rate of any classifier (Niemann, 2003). It also places considerable 

demands to computer memory and processing speed. Despite being one of the 

first published classification algorithms, the Nearest Neighbor classifier is still 

applied in recent publications (e.g. Lee, 1991; Blanzieri and Melgani, 2008). The 

Nearest Neighbor classifier operates very well when the data exhibits many 

subclusters. 
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2.1.4.6 Neural Networks 

Neural Networks are built to simulate neuron interaction in the human brain 

(Specht, 1990). The neurons are implemented by multiple single nodes that are 

connected in multilayer nets (Duda et al., 2001). Each node has an input and an 

output. A feature value that is input into the node is subjected to a specified 

nonlinear function, e.g. a sigmoid function. Weights specify the contribution of 

individual nodes to the classification result. These weights can be adjusted using 

different learning strategies (Hagan and Menhaj, 1994). The networks are often 

hard to interpret (Chau, 2001b). Neural networks are frequently applied and 

several survey articles cover them (e.g. Baxt, 1995; Chua and Yang, 1988; Hunt et 

al., 1992). 

2.1.5 Summary 

There are several possible classification systems that can be applied for pattern 

recognition. The selection of the appropriate method depends on the question at 

hand and the boundary conditions. In order to solve a given group classification 

task, a careful analysis of sensor input, preprocessing, feature extraction and 

classifier selection has to be conducted. The different proposed algorithms for 

these steps have varying strengths and weaknesses. Choices with respect to the 

complete system have to be made in order to come up with a solution for a given 

task. 

2.1.6 Further reading 

Various textbooks for further reading on pattern recognition exist. Amongst them 

are classics like Fukunaga’s (1990) introduction into the topic, and Niemann’s 

(2003) book (in German). Among the most cited is the book by Duda and 

coworkers (2001), which contains many application examples. One of the most 
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state-of-the-art books is the recently edited work by Theodoridis and Koutroumbas 

(2009). 

2.2 Biomechanical group classification 

To provide the basis for the biomechanical group classification work done in this 

thesis, a review of the important publications for this work will be presented. In the 

first section, general applications of pattern recognition to biomechanics that are 

not related to group classification are described. Studies that are relevant for group 

classification are presented in the second section. 

2.2.1 General applications of pattern recognition 

General applications of pattern recognition to biomechanics that are not 

specifically related to group classification are described in this section. Previous 

studies that explicitly target feature extraction methods are described first. Then, 

publications relating to the application of pattern classification algorithms to 

biomechanics are presented. 

2.2.1.1 Feature extraction methods 

Several feature extraction methods that are specific to biomechanics have been 

published. A novel approach for feature extraction from EMG measurements (Von 

Tscharner and Herzog, 2007) was introduced by von Tscharner (2000). The author 

used the property of the Wavelet transformation to give a representation of a signal 

both in frequency and in time. Thus, the features were capable of resolving events 

within the EMG signal in time, frequency and intensity. By averaging those 

features over multiple experiments, functional aspects of muscle activation could 

be determined. These so-called Wavelet features were applied in subsequent 

classification studies (von Tscharner, 2009; von Tscharner and Goepfert, 2003). 
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An important idea in these studies was to use multi muscle Wavelet patterns for 

subsequent classification (von Tscharner and Goepfert, 2003). These multi muscle 

patterns combined the information from several muscle groups. This approach 

allowed, for instance, employing timing relations between these muscle groups for 

classification. 

A Wavelet feature extraction method was also used in a different study (Nyan et 

al., 2006). The authors classified gait patterns from three classes: ascending 

stairs, descending stairs and level walking. A recognition rate of more than 97% 

was reported. As basis for the classification, the authors used data from 

accelerometers that were strapped to the shoulder of their subjects. Employing 

accelerometer measurements for such a task requires careful action by the 

researchers (Nigg and Boyer, 2007). Especially the tightness of the strapping of 

the accelerometer has been shown to affect the measured signal amplitude. It has 

therefore yet to be demonstrated whether the information from this type of sensor 

is reliable enough to conduct more complex group classification tasks. 

Results were published using the kernel Principal Component Analysis for feature 

reduction in a study related to gait classification (Wu et al., 2007). The feature 

reduction was applied to kinematic variables that were computed at specific time 

points of the gait cycle (e.g. heel-strike, toe-off). The computation of these 

kinematic variables can lead to an error amplification (e.g. when skin movement 

affects the marker positions) and requires additional assumptions (e.g. about the 

joint axis directions). Furthermore, a substantial amount of information is lost by 

using only specific time points of the measured time series. It has already been 

stated in the literature that the incorporation of time dependent patterns yields 

valuable information for gait analysis (Chau, 2001a). 
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2.2.1.2 Pattern recognition algorithms 

One pattern recognition concept that is often used in biomechanical modeling is 

Artificial Neural Networks. An example is the prediction of dynamic muscle force 

from EMG measurements (Von Tscharner and Herzog, 2007). This prediction task 

was performed in a study (Liu et al., 1999) using such an Artificial Neural Network. 

In this study, a model that predicted the force produced by the cat soleus muscle 

from EMG measurements was presented. The results for intrasession as well as 

intersubject prediction showed cross-correlation values of the measured and the 

predicted signal of over 0.9. In study with a similar approach, an Artificial Neural 

Network was employed in order to simulate lumbar muscle response to static 

moment loads (Nussbaum et al., 1997). A further study (Sepulveda et al., 1993) 

showed that a Neural Network can be used to model the relationship between 

muscle activity and lower-limb dynamics of human gait. Neural Network classifiers 

were also applied for the recognition of the progression of scoliosis (Jaremko et al., 

2002). A comprehensive overview of further applications of Artificial Neural 

Networks in the area of clinical biomechanics in general can be found in 

(Schöllhorn, 2004). 

Other classification algorithms have also been applied in biomechanical studies. 

For example, a Support Vector Machine was employed to derive a diagnostic tool 

based on shoulder strength data (Silver et al., 2006). The goal of this study was to 

develop a representative shoulder strength score using a regression type of 

analysis. The resulting shoulder strength value was deemed essential for the post-

operative evaluation of the shoulder function. The authors showed that their 

developed Support Vector Machine based score was a measure that seems to be 

promising for future applications for summarizing shoulder strength data. 
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2.2.2 Group classification in biomechanics 

Applications of pattern recognition to group classification in biomechanics are 

described in this section. Studies that are not related to walking gait classification 

are described first. Then, publications related to the classification of walking gait 

are presented. 

2.2.2.1 Studies not related to walking gait classification 

Gender classification was performed in a classification study (von Tscharner and 

Goepfert, 2003) based on EMG data. The authors applied the Wavelet feature 

extraction method (cf. Section 2.2.1.1) that was developed earlier (Von Tscharner, 

2000) to the EMG data. The Wavelet transformation that was employed was 

specifically adapted to be physiologically meaningful with respect to the EMG 

measurements. In this classification study (von Tscharner and Goepfert, 2003), the 

authors were able to linearly classify the gender groups with a statistically 

significant classification rate of 95%. The same Wavelet feature extraction 

technique was recently used to distinguish EMG patterns of runners during 

prolonged running (Stirling et al., 2009). The authors of this study showed that 

muscle intensity patterns from a non-fatigued (early) and fatigued (late) running 

phase could be classified using a Support Vector Machine with a statistically 

significant classification rate of 92.9%. It appears, therefore, that the 

physiologically adapted Wavelet transformation method is well suited for group 

classification based on EMG measurements. 

EMG measurements were also used for the classification of injury groups 

(Christodoulou and Pattichis, 1999). The authors of this study applied features 

derived from motor unit action potential signals that needed to be identified in the 

EMG. Artificial Neural Networks and Discriminant Analysis were used to classify 

neuromuscular disorders with a classification rate of 97.6%. This technique is 
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specific to the measured signal and not generally applicable to other types of input 

data. 

Another study performing injury group classification has also been published 

(Umapathy and Krishnan, 2006) that was based on vibroarthrographic signals. 

Vibroarthrographic and vibromyographic measurements are a simple, non-invasive 

way of assessing the mechanical signal in the low frequency range that is 

generated by the moving joint or contracting muscle, respectively (Nigg and Boyer, 

2007). The purpose of the aforementioned study was the classification of knee 

joint disorders using features that were specific to these vibroarthrographic 

measurements. The classification was based on two groups consisting of 51 

normal and 38 abnormal vibroarthrographic signals of the knee joint. A 

classification rate of 80% was reported using a Linear Discriminant Analysis type 

classifier. Since this injury classification method is based on vibroarthrography, it is 

specific to pathologies and classification tasks that are related to joint disorders. 

The method is therefore not directly adaptable to more general movement analysis 

tasks that are not explicitly related to joints. 

2.2.2.2 Studies related to walking gait classification 

Many research studies focused on walking gait classification. The research can be 

divided in two different groups based on whether motion capture data was used for 

the classification. 

Gait classification studies not based on motion capture data 

Numerous gait classification studies were published that analyzed data that was 

not originating from 3D motion capturing systems. An early application of pattern 

recognition to the classification of normal and four pathological gait patterns was 

presented (Bekey et al., 1977), which used features from EMG signals measured 

from six muscles of the foot and ankle joint complex. For classification, a Linear 
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Discriminant Analysis was performed. The work reported successful classification 

results for 15 of the 19 cases that were investigated. 

A different study (Zhang et al., 2005) presented a method for characterizing human 

locomotion outside the laboratory. In this study, a portable device was developed 

that measured timing variables describing the ground contact. The authors 

demonstrated that they could classify different locomotion types (level walking, 

running, ascending/descending stairs) with high classification rates of more than 

97% for each activity. 

A further study (Aminian et al., 1993) investigated the classification of body 

accelerations during human walking. The features computed from these body 

accelerations were presented to a Kohonen Neural Network classifier (Kohonen, 

1990). Such Kohonen Neural Networks have been described as “the most 

prevalent non-traditional methodology for gait data analysis in the last 10 years” 

(Chau, 2001b, p. 102). The authors of the aforementioned study (Aminian et al., 

1993) used this technique to successfully distinguish level and uphill walking. 

However, it has been suggested that an analysis based on accelerometer 

measurements is often difficult (Nigg and Boyer, 2007). 

Another input to a gait classification system was proposed in (Begg et al., 2005). 

The authors employed minimum foot clearance measurements with the purpose of 

an age related gait classification. Minimum foot clearance is defined as the 

minimum height that the foot lifts off the ground during the stride cycle. Successful 

classification with rates of 90% was reported. This result was different than earlier 

findings that showed no age differences in level walking (Chen et al., 1991). It has 

yet to be shown whether minimum foot clearance can be used reliably to classify 

complex changes in human gait. 

A different system based on measured pressure patterns below the foot was 

presented in (Barton and Lees, 1995). For this study, foot pressure patterns (Nigg, 
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2007) were recorded from 18 subjects during normal walking. The purpose of the 

study was the classification of foot pathologies into three output categories: healthy 

feet, pes cavus (‘high arch’) and hallux valgus (‘bunion’). The authors used a 

complex neural network with two hidden layers to categorize the measured 

maximum pressure patterns. The network inputs consisted of 1316 measured 

pressure values. Classification rates in the range from 77% to 100% were 

reported. These results were based on a relatively small number of test and 

training samples when compared to the high number of pressure inputs. This 

mismatch can lead to an overadaptation of the Neural Network to the input 

pressure values (Duda et al., 2001). Overadaptation can cause a poor 

generalization performance of the network, i.e. the classification might fail when 

new patterns are presented to the classifier. Furthermore, is has been criticized 

(Chau, 2001b) that the use of a two hidden layer network was not well motivated 

by the authors. It is known that for learning most functional relationships, a single 

hidden layer is sufficient (Bishop, 1996). 

Ground reaction force data were extensively used as input to gait classification 

systems. An example of a classification system based on ground reaction forces 

was presented in (Holzreiter and Kohle, 1993). The proposed system employed 

Fourier transform features and an Artificial Neural Network classifier. The method 

was successfully applied to the distinction of normal and pathological gait, where 

the pathologies consisted of subjects with calcaneus fractures (71 subjects) and 

artificial limbs (12 subjects). In a different study using ground reaction force 

measurements (Mezghani et al., 2008) a method was developed to distinguish 

between asymptomatic and osteoarthritis knee gait patterns. In this study, the 

authors extracted two different feature types from the force vector variations: the 

coefficients of a polynomial expansion and the coefficients of a Wavelet 

decomposition. The features were classified with the Nearest Neighbor classifier. 

Linear Discriminant Analysis classifiers were used (Bertani et al., 1999) on 
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features calculated from 3D ground reaction force measurements. The purpose of 

this study was to apply pattern recognition as an aid in clinical decision-making to 

diagnose flat foot pathologies. Success rates of over 90% were reported by the 

authors, indicating that their method provided important information for the 

evaluation of flat foot pathologies. A different approach (Wu and Wang, 2008) was 

based on the vertical component of the ground reaction force data. The authors 

performed feature extraction using the complete temporal information by applying 

the Principal Component Analysis. Subsequently, a Support Vector Machine 

classifier with polynomial kernel was utilized to classify gait patterns 30 young and 

30 elderly participants. A classification rate of 90% was reported. Similar methods 

that use the complete collected temporal information could also be beneficial when 

motion capture data is additionally used for the classification (Chau, 2001b). 

Gait classification studies based on motion capture data 

For several group classification tasks related to gait, additional contributions for 

classification can be identified by analyzing selected body kinematics. For 

example, several studies showed that the motion of shoulder and hip in the sagittal 

plain is an important feature for gender differentiation (Barclay et al., 1978; Cutting 

et al., 1978). It was furthermore demonstrated (Mather and Murdoch, 1994) that 

the extent of lateral body sway is another postural aspect that changes in the 

gender example. This information about postural changes in gait is collected in 

studies that employ 3D marker-based measurements of selected body kinematics 

for classification. 

Several publications reported on utilizing the kinetic and kinematic data computed 

from 3D markers and force plate measurements. Schöllhorn and colleagues (2002) 

used these data and self-organizing Kohonen maps (Kohonen, 1990), a type of 

Neural Network for unsupervised learning, to distinguish different heel heights of 

females walking in dress shoes. This method was successful in identifying group 
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and subject specific gait changes. A similar approach was investigated for a 

different classification task in (Janssen et al., 2008). In this study, the authors also 

analyzed kinetic and kinematic data with an Artificial Neural Network. The purpose 

of their study was the recognition of emotion. In two experiments, the authors first 

classified four emotional states (normal, happy, sad, angry) from gait patterns, and 

then analyzed effects on walking gait patterns when listening to three types of 

music (excitatory, calming, no music). In another study based on Neural Network 

classification (Barton and Lees, 1997) hip-knee joint angle diagrams were used as 

the basis for identification of gait patterns. The purpose of this study was the 

classification of three conditions: normal walking, simulated leg length difference 

and simulated leg weight difference. Eight healthy subjects walked on a motorized 

treadmill at constant speed and hip and knee angles were calculated from a set of 

four reflective markers. The reported classification rate for discriminating the three 

walking conditions was 83.3%. As they did in previous work (Barton and Lees, 

1995), the authors employed a complex Neural Network with two hidden layers. 

Again, no justification for the second hidden layer was given. 

A classification of patellofemoral pain syndrome injury groups based on kinetic and 

kinematic variables was performed in (Lai et al., 2009). The authors reported a 

classification rate of 88.9% for the classification of subjects that suffered from this 

syndrome and such that do not. A Support Vector Machine was used for the 

purpose of classification. In this study, the authors used features that were specific 

to the kinematic and ground reaction force measurements that they collected. Only 

certain time points within the measured time series were analyzed and temporal 

information was therefore discarded. Furthermore, the groups under consideration 

were based on retrospective assignment of the injury classes. This retrospective 

assignment is an approach that might not give optimal results (Stefanyshyn et al., 

2006). 
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In a different study (Wu et al., 2006), a classification system that was also based 

on kinetic and kinematic data was published. The purpose of this study was age 

related gait classification. The authors used the computed kinematics and kinetics 

at specific time points of the human gait phase as basis for the classification. The 

authors applied kernel-based Principal Component Analysis (KPCA) to these data 

to extract relevant information from the highly correlated time-dependent gait 

variables. They reported that this procedure improved the generalization 

performance of the Support Vector Machine classifier that they employed. The 

authors obtained classification rates of 89.6%. In a similar study (Begg and 

Kamruzzaman, 2005), spatio-temporal features (e.g. double support time, stride 

length) were used in addition to kinetic and kinematic variables. The authors also 

investigated the application of a Support Vector Machine classifier to recognize 

young and elderly gait groups. In total, their feature set comprised 24 gait features 

and they obtained an overall classification rate of 91.7% when using them for the 

classification. 

The aforementioned approaches have two major shortcomings. Firstly, the 

methods require the computation of kinetics, kinematics and sometimes spatio-

temporal variables. These computations have several disadvantages, because the 

determination of these variables a) usually requires additional assumptions, for 

example, about the joint axes direction, which are difficult to validate; b) might lead 

to an error amplification, for example when skin movements affect the marker 

positions; c) is often time consuming. Secondly, only specific time points of the gait 

cycle are used to extract the feature vectors. However, a large amount of time 

dependent information that is contained in the measurements is possibly neglected 

(Chau, 2001a). Therefore, a method that is directly based on the measured 3D 

marker positions and incorporates the complete gait cycle information for 

classification might be better suited for gait classification. This approach is 

generally not used in biomechanics. 
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A method was developed (Troje, 2002), that was directly based on the measured 

3D marker positions. The author used a Principal Component Analysis based 

feature extraction method. The method was applied in gender classification using a 

Linear Discriminant classifier. This method did not require the intermediate step of 

calculating kinematic features. However, the author also discarded temporal 

information and fine structure within the gait data by applying a simple modeling to 

the measured variables. 

2.2.3 Summary 

Several successful applications of pattern recognition to biomechanics were 

presented in this section. Among these, a considerable number of publications 

were related to gait based classification. Some studies that were not based on 

kinematics provided important cues for postural aspects of locomotion. Some 

studies related to gait classification were using features computed from specific 

time points of the collected kinetic and kinematic variables. Still missing in the 

literature is a method that uses the complete temporal information from motion 

capture data for classification. Ideally, this method should not be specific to the 

input measurements to be transferable to different classification tasks. 

Furthermore, it should be able to identify and visualize high-dimensional 

dependencies of the classification on the computed features. A first attempt to 

develop such algorithms was conducted in this thesis. 

2.3 Embedded classification 

To provide the basis for the embedded classification work done in this thesis, a 

review of the important literature for this work will be presented. In a first section, 

relevant literature for the employed measurement method is included. Literature 

that is related to a general framework for classification on an embedded 
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microprocessor is presented in a second section. Studies that are related to the 

application of this framework in sports classification tasks are presented in a third 

section. 

2.3.1 Measurement method 

Hall sensors have been employed to collect the relevant data for embedded 

classification. Hall sensor measurements are based on the Hall effect, which “is 

one of the best known and earliest exploited solid-state sensor effects” (Popovic, 

1989, p. 39). The effect has been discovered by Hall (1879). The sensor that 

measures this effect evaluates the potential difference that is created on both sides 

of a conductor when it is placed in a magnetic field. The potential difference is 

proportional to the magnetic field strength when the electric current flowing through 

the conductor is constant. Present-day Hall sensor applications are made possible 

by developments of semiconductor technology. In 1948, a germanium Hall device 

has been proposed as a magnetic sensor (Pearson, 1948). Such devices are 

small, lightweight and power-efficient and ideally suited for integration into 

embedded systems. Applications of this sensor technology can be found for 

example in field applications to identify metal objects (Ripka, 1994) and for 

contactless wear-free angular position measurements (Lozanova and Roumenin, 

2010). 

2.3.2 Embedded classification framework development 

Only few classification studies exist that target embedded devices. None of them 

provides general considerations for implementing a pattern recognition system on 

microprocessors. Those studies that have been published represent explicit 

solutions for a given problem. An early example for such a study (Kerrick and 

Bovik, 1988) described a system for the recognition of hand printed English 

characters. For this purpose, an 8-bit microprocessor was employed. Another early 
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study (Botros, 1988) investigated the differentiation of normal or abnormal human 

liver tissue by ultrasound. Both studies do not consider a general approach to 

microprocessor classification. 

It was also shown that real-time gesture recognition is possible on a specific 

device, so-called smart cameras (Wolf et al., 2002). These smart cameras are a 

new generation of digital cameras that directly analyze the scene they are pointed 

at. Computationally powerful 32-bit microprocessors with 100 MHz clock frequency 

were employed. 

Possibilities to naturally control upper extremity prostheses were investigated in 

(Englehart and Hudgins, 2003). For this purpose, four channels of myoelectric 

signals were measured and multiple classes of desired limb movement were 

discriminated. The classification was subject based and learned the muscle 

activation patterns for each desired class for each individual. 

In another application of pattern recognition algorithms to microprocessor 

classification (Rahman et al., 2004) an electronic taste sensing system was 

described. This system was capable of discriminating liquid samples that did and 

did not contain Eurycoma longifolia (a type of herbal remedy). Specially fabricated 

screen-printed arrays of lipid-membrane sensors were employed for this task. A 

simple Artificial Neural Network was employed for the implementation on the 

microprocessor. 

A different classification system (Hacker et al., 2006) used the video camera of a 

cell phone to identify whether or not the user is directly looking into the camera. 

For this purpose, the AdaBoost classifier (Freund and Schapire, 1997) and an 

established face detection algorithm (Viola and Jones, 2004) were applied. A 

further study (Benbasat and Paradiso, 2002) also reported about classification on 

a mobile communication device, a Palm III (Palm Inc., Sunnyvale CA, USA). In this 

publication, a gesture recognition application based on inertial sensor 
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measurements was described. Simple motions were classified by the developed 

system, such as movements in a straight line, twists, etc. These simple motions 

were then combined in order to recognize composite gestures that could then be 

tied to output routines. 

An example of a microprocessor classification system for the recognition of robot 

motion (Stewart and Wang, 2003) used feedback patterns produced by the robot’s 

electromotor in the analog waveform. A Support Vector Machine was used for the 

purpose of data classification. 

All of these studies consider the implementation of pattern recognition algorithms 

on the embedded system that they target, but they do not discuss a general 

methodology that could be used for classification on microprocessors. No feature 

selection strategy is applied and different classifiers are not compared. 

One paper (Boni et al., 2005) was more oriented towards making classification 

feasible on general microprocessor hardware. However, the authors did not 

discuss the complete pattern recognition flow chart (Fig. 1.1). Their work aimed at 

an efficient implementation of one specific classifier, the Support Vector Machine, 

on an 8-bit microprocessor. This contribution is only one building block of a general 

methodology for embedded classification. If the Support Vector Machine classifier, 

or any other type of classifier, is selected for the implementation on the embedded 

device, efficient implementation strategies need to be considered. 

A similar idea was followed in a different publication (Benbasat and Paradiso, 

2004). The authors explored general design rules for techniques, which could 

reduce power consumption of the employed microprocessors. This was facilitated 

through real-time sensor selection and reduced storage requirements for the 

computed features. This publication is not a dedicated classification study, but the 

need for power consumption reduction is important for all autonomous embedded 
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devices. Reduced power consumption should be observed in the considerations 

for a general embedded classification methodology. 

2.3.3 Applications of the embedded classification framework 

The embedded classification methodology that is proposed in this thesis has been 

employed in two running related tasks. These are the classification of the surface 

condition that a runner is on in Chapter 5, and the classification of the current 

running speed and inclination in Chapter 6. A compression measurement based on 

a Hall sensor has been made for this purpose. In this section, studies that are 

related to these classification tasks are reviewed. 

Publications that use such a Hall sensor (cf. Section 2.3.1) for the given 

classification purposes do, to the knowledge of the author, not exist yet. Surface 

classification methods can only be found for research domains other than 

biomechanics and sports. For example, a land surface classification methodology 

based on satellite images was presented (Welch et al., 1992). The applied method 

was based on Discriminant Analysis and Neural Network classifiers and only 

classified large scale surface regions for meteorology. A method for large scale 

surface classification in a remote sensing application was also published (Schaale 

and Furrer, 1995). The authors employed spectrographic imagers mounted on an 

airplane for data acquisition and classification using a Kohonen Neural Network 

classifier (Kohonen, 1990). A further example was contributed in (Zhou et al., 

2009). In this study, surface classification of objects was performed by utilizing a 

Laser scanner. The authors used a simple threshold classifier for their surface 

classification. None of these approaches can be transferred to a running surface 

classification task in sports because each of them targets a completely different 

application domain. 
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Running speed and surface inclination classification applications can be found in 

some biomechanics related publications. An example study (Aminian et al., 1995) 

proposed a method based on accelerometry for walking gait. The authors applied 

Neural Networks for the walking speed measurement task. This technique was 

later extended for outdoor running (Herren et al., 1999). Subsequently, this 

approach for speed classification was further modified (Song et al., 2007) in order 

to obtain more accurate results. All these approaches made use of accelerometer 

measurements. Accelerometers inherently give information about movement 

speed, but their application has been criticized in biomechanics related tasks (Nigg 

and Boyer, 2007). It has, for instance, been demonstrated that the tightness of the 

mounting of the accelerometer considerably influences the amplitude of the 

measured acceleration signal. Even more important in the context of embedded 

classification is that complex Neural Networks are needed for the speed and 

inclination classification. Complex Neural networks require a considerable memory 

(Williams and Zipser, 1989) and processing power (Orponen, 1994) and can not 

be efficiently implemented on a microprocessor. 

2.3.4 Summary 

The presented studies in Section 2.3.2 showed specific implementations of pattern 

recognition algorithms on embedded hardware. A general discussion of design 

criteria for an implementation of the complete pattern recognition procedure 

(Fig. 1.1) on embedded systems is still missing in the literature. Such a more 

general discussion of a methodology for embedded classification was attempted in 

this thesis. 

Using this developed methodology, it was also attempted in this thesis to 

successfully solve embedded surface, speed and inclination classification tasks in 

sports. These tasks were based on Hall sensor measurements (cf. Section 2.3.1). 
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The presented studies in Section 2.3.3 showed that these embedded classification 

tasks were also addressed for the first time. 

2.4 Concluding remarks 

The review of the literature has shown that a considerable number of applications 

of pattern recognition methods to biomechanics exist. Most of these previous 

studies reported successful classification results, indicating the benefits of a data 

driven analysis that pattern recognition algorithms offer. However, several 

weaknesses of existing techniques were identified. Furthermore, a number of 

research questions that have not been answered yet in the literature were 

disclosed in Chapter 1. A careful selection and implementation of the different 

available pattern recognition techniques has to be made in order to successfully 

answer these research questions. 
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CHAPTER 3 PATTERN CLASSIFICATION OF KINEMATIC 
AND KINETIC RUNNING DATA TO 
DISTINGUISH GENDER, SHOD/BAREFOOT 
AND INJURY GROUPS WITH FEATURE 
RANKING 

3.1 Introduction 

Biomechanical studies have been conducted to use kinematics, kinetics, soft 

tissue vibrations and/or EMG data to distinguish between groups such as gender 

(von Tscharner and Goepfert, 2003), age (DeVita and Hortobagyi, 2000), footwear 

(Nigg et al., 2003) and to identify injury mechanism characteristics (Stefanyshyn et 

al., 2006). The classification is often done by comparing means and standard 

deviations of discrete variables (e.g. peak impact force, maximal foot eversion, 

etc.). Recently new methods have been proposed and applied for such 

classifications based on pattern recognition methods. For example, it has been 

shown (Janssen et al., 2008) that Artificial Neural Networks can identify emotional 

state from human gait data. Furthermore, Support Vector Machine classifiers have 

been used (Begg and Kamruzzaman, 2005) to differentiate young and elderly gait 

patterns. These and other published classification methods (Schöllhorn et al., 

2002; Wu et al., 2007) were successful in identifying groups using biomechanical 

data. However, the results depended obviously on the analyzed features, and 

those features were very specific to the input measurements and the specific 

studies. Furthermore, the applied methods did not always provide information 

about what exactly characterized the differences between the groups identified. 
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Therefore, the purpose of this paper was to develop a pattern classification 

approach for typical tasks of biomechanical group classification that was not 

specific to the input measurements and additionally provided information about the 

group differences. This general approach was applied to three different groups 

without adaptation. In particular, groups composed of gender, shod/barefoot 

running and injured/non-injured subjects were considered. While the first two 

groups were primarily tested for proof of concept, the last group had clinical 

relevance. The injury that was examined was the patellofemoral pain syndrome, a 

condition affecting up to a quarter of all persons active in sporting activities 

(Devereaux and Lachmann, 1984; Malek and Mangine, 1981). For the purpose of 

classification, generic features were used that were not in any way specific to the 

collected measurements. These measurements consisted of kinetic and kinematic 

data collected during a longitudinal running injury study (Stefanyshyn et al., 2006). 

3.2 Methods 

The employed classification methods (Fig. 3.1) followed a classical pattern 

recognition approach (Duda et al., 2001). Dynamic biomechanical measurements 

(Section 3.2.1) were first subjected to preprocessing to enhance the signal 

properties. The output of the subsequent feature extraction step (Section 3.2.2), 

the feature vector  described the input in  dimensional feature space. ,cc N cN

All groups under investigation were differentiated using AdaBoost (Freund and 

Schapire, 1997), a supervised classifier that has the inherent ability to select 

features according to their importance for the classification task (Section 3.2.3). 

Thus, it was possible to identify which features contributed most to the 

differentiation of the groups under investigation. 
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Fig. 3.1. Overview of a pattern recognition system. 

For AdaBoost training, a labeled sample Strain was used (Fig. 3.1 below the dotted 

line). The label assigned a feature vector c to a class ,Ωκω  where 

Ω   set of  possible classes ΩN

Ω,,1 Nκ    class number. 

One example class label was the runner gender, with NΩ = 2 in that particular 

case. The class specific statistical properties were learned during training and 

decision criteria were established. In order to test the generalization performance 

of the AdaBoost classifier, cross-validation was performed (Section 3.2.4). 

3.2.1 Data for experimental evaluation 

The process of collecting the experimental data for the prospective study has been 

described earlier (Lun et al., 2004; Stefanyshyn et al., 2006). The study was 

reviewed and approved by the University of Calgary Conjoint Health Research 

Ethics Board. Shortly, at the beginning of the running season, 153 recreational 

runners (71 women, 82 men) were recruited, written consent was obtained and 

anthropometric and biomechanical measurements were conducted. During the 

following six months, any running related injuries were recorded and a running 

journal was kept. 
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Of the initial 153 subjects, Nr = 80 (40 women, 40 men) were suitable for analysis 

(Tab. 3.1). 73 subjects dropped out of the study because they stopped running (4), 

work (2), incomplete running journal (16), injury at time of recruitment (2), loss to 

follow up (49). 

Tab. 3.1. Characteristics of the 80 runners who completed the prospective running 
injury study. Values are presented as mean (standard deviation). 

 n Age 
[y] 

Mileage 
[km] 

Experience
[y] 

Height 
[m] 

Mass 
[kg] 

Women 
Men 
 
Mean 
Max 
Min 

40 
40 
 
 
 
 

36.0 (8.8) 
41.1 (8.7) 
 
38.5 (9.1) 
64.0 
22.0 

033.7 (16.9)
036.3 (16.8)
 
035.0 (16.8)
100.0 
006.0 

06.4 (6.5) 
11.4 (9.2) 
 
08.9 (8.3) 
40.0 
00.5 

1.68 (0.08) 
1.79 (0.07) 
 
1.74 (0.10) 
1.93 
1.55 

066.2 (10.0)
085.7 (13.6)
 
075.9 (15.4)
123.5 
047.6 

3.2.1.1 Dynamic biomechanic measurements 

All runners had data collected on both legs. The measurements included a shod 

condition, with the runners wearing their own running shoes and a barefoot 

condition. Between two to ten complete dynamic datasets were collected for each 

subject. In total, 496 datasets were used for experimental evaluation. 

 

Three leg segments (upper leg, lower leg, foot) were prepared using a total of nine 

reflective markers. The 3D marker positions were collected using four 

electronically shuttered, high-speed video cameras (NAC MOS-TV, V-14B, Japan) 

equipped with 12.5 mm – 75 mm zoom lenses (Cosmicar, Japan) and a VP310 

video processor (Motion Analysis Corp, Santa Rosa, California). 3D force data 

were collected using a force platform (Kistler AG, Winterthur, Switzerland) 

mounted flush with the floor in the center of a 30 m runway. Running speed was 

controlled at v = 4.0 ± 0.2 m/s using two photocells, 1.9 m apart, at shoulder 
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height. Markers were tracked for 50 ms before and after force plate contact. 

Kinematic and kinetic data were imported into Kintrak 4.0 (Motion Analysis Corp) 

for analysis. Joint attitude and angular motions were determined using a 3D joint 

coordinate system implemented in Kintrak 4.0. 

A total of Ndyn = 51 variables were collected for each leg of the athlete (Tab. 3.2). 

Each of them consisted of Nf = 101 normalized time frames from touch-down on 

the force platform to toe-off. These variables are referred to as di[k], with 

i = 1,…,Ndyn denoting the specific measurement (Tab. 3.2). 

Tab. 3.2. Dynamic variables that were acquired during data collection. 

Number  i Measured variable

1-3 
 
4,5 
6 
7-10 
11-14 
15-18 
19-22 
23-26 
27-30 
31 
32 
33 
34,35 
36,37 
38,39 
40,41 
42,43 
44,45 
46,47 
48,49 
50,51 

Ground reaction force; vertical, medial-lateral, anterior-
posterior 
Center of pressure location; medial-lateral, anterior-posterior 
Free moment on the force plate 
Ankle flexion-extension angle, velocity, moment, power 
Ankle inversion-eversion angle, velocity, moment, power 
Ankle abduction-adduction angle, velocity, moment, power 
Knee flexion-extension angle, velocity, moment, power 
Knee abduction-adduction angle, velocity, moment, power 
Knee internal-external rotation angle, velocity, moment, power 
Hip flexion-extension moment 
Hip abduction-adduction moment 
Hip internal-external rotation moment 
Foot sagittal segment plane angle, angular velocity 
Foot frontal segment plane angle, angular velocity 
Foot transverse segment plane angle, angular velocity 
Shank sagittal segment plane angle, angular velocity 
Shank frontal segment plane angle, angular velocity 
Shank transverse segment plane angle, angular velocity 
Thigh sagittal segment plane angle, angular velocity 
Thigh frontal segment plane angle, angular velocity 
Thigh transverse segment plane angle, angular velocity 
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3.2.1.2 Injury information 

After completing all measurements, the athletes were observed on a monthly basis 

for six months during their usual training routine from April to September (Lun et 

al., 2004). For all runners participating in the study it was documented if any injury 

attributed to running occurred. An injury was defined as any musculoskeletal 

symptom of the lower limb that required a reduction or stoppage of normal training. 

A weekly drop-in injury clinic was available to subjects for evaluation of injuries. 

The injuries were assessed by two experienced sports medicine doctors at the 

University of Calgary Sport Medicine Centre. 

3.2.1.3 Class labels 

The data were analyzed with class labels based on gender, on the shod/barefoot 

condition, and on whether the runners developed a specific injury type 

(patellofemoral pain syndrome, PFPS). For each experiment, the dynamic dataset 

of a single step cycle was labeled according to the membership to a certain class. 

For gender classification, 244 datasets were from females and 252 from males. 

For the shod and barefoot experiments, 217 and 279 sets were assigned to each 

class, respectively. 

The injury group consisted of runners that suffered from patellofemoral pain 

syndrome during the six month study period, compared to matched uninjured 

runners. This specific injury was selected for this project, because (a) this was the 

most frequent injury in the six months prospective study and (b) it is a very 

common injury in runners, affecting up to a quarter of all persons active in sporting 

activities (Devereaux and Lachmann, 1984; Malek and Mangine, 1981). For this 

experiment, six patients that were diagnosed with patellofemoral pain syndrome by 

the clinicians were matched with respect to mass, gender, mileage and running 

experience (Tab. 3.3) with six subjects who remained injury free throughout the 

study (Stefanyshyn et al., 2006). These characteristics have been proposed to be 
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associated with injury and/or to have an influence on resultant joint moments 

(Moisio et al., 2003; Van Mechelen, 1992). In this study, 28 data sets from the 

injury (PFPS) group were classified against 27 data sets from the matched 

asymptotic runners (ASYM group). 

Tab. 3.3. Comparison of the characteristics of the six injured patients and the six 
asymptotic patients who were used as matched controls. 

Patient Injured side Gender Mileage
[km] 

Experience 
[y] 

Mass
[kg] 

Injured #1 
Match #1 
Injured #2 
Match #2 
Injured #3 
Match #3 
Injured #4 
Match #4 
Injured #5 
Match #5 
Injured #6 
Match #6 
 
Mean 
Injured 
Non-injured 

Left 
 
Left 
 
Right 
 
Left 
 
Right 
 
Right 
 
 
 
 
 

Female
 
Female
 
Female
 
Male 
 
Male 
 
Male 
 
 
 
 
 

12.0 
15.0 
40.0 
35.0 
15.0 
15.0 
55.0 
60.0 
40.0 
40.0 
30.0 
30.0 
 
 
32.0 
32.5 

01.0 
00.7 
16.0 
14.0 
01.0 
02.0 
20.0 
15.0 
01.5 
04.0 
01.5 
04.0 
 
 
06.8 
06.6 

65.5 
59.0 
59.3 
63.5 
76.6 
76.2 
82.5 
75.2 
79.1 
84.0 
76.0 
74.1 
 
 
73.2 
72.0 

3.2.2 Feature extraction 

Generic features for classification were calculated in order to be independent from 

specific characteristics of the original measurements. Generic in this context 

means that the features were not restricted to the calculation of key variables like 

angles or forces at specific time points. Rather, their calculation considers the 

complete temporal information of the measurements. Consequently, the set of 
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features was chosen so that it represented an arbitrary measurement as 

completely as possible. Therefore, the features can be straightforwardly applied in 

different group classification tasks. The chosen features have already proven to 

perform well in other pattern recognition tasks (Fan and Wang, 2002; Furui, 1986; 

Hafed and Levine, 2001). 

3.2.2.1 Basic features 

Basic features for time-dependent dynamic measurements  were mean ][kdi
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for each measurement curve with 

fN   number of discrete time frames, 

k   discrete measurement time point, fNk ,,1 , 

i   specific measurement. 

Further basic features were derived from temporal positions and from the actual 

and absolute maxima and minima of the curves (Tab. 3.4). 
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Tab. 3.4. Basic extrema features that were generated. Min, Max, Abs and Idx 
abbreviate Minimum, Maximum, Absolute Value and Index of, 
respectively. The variable i  that is used to distinguish the different 
features corresponds to the number assigned to the measurements 
(Tab. 3.2). 

Feature Formula

Min  ci,min 
Max  ci,max 
Abs Min ci,absmin 
Abs Max ci,absmax 
Idx Min ci,minidx 
Idx Max ci,maxidx 
Idx Abs Min ci,absminidx 
Idx Abs Max ci,absmaxidx

min Di[k] 
max Di[k] 
min |Di[k]| 
max |Di[k]| 
arg mink Di[k] 
arg maxk Di[k] 
arg mink |Di[k]|
arg maxk |Di[k]|

3.2.2.2 Transformation features 

Transformation features project the original function into a different space (e.g. 

frequency space). In this work, discrete cosine transform (DCT, (Ahmed et al., 

1974)) features were used for the purpose of incorporating the information 

contained in the frequency components of the measurements. These features 

have been successfully used for 2D image classification (Fan and Wang, 2002), 

and face recognition (Hafed and Levine, 2001). For the discrete cosine transform, 

the original function values di[k] were linearly transformed into real numbers Di[f], 

f = 1,…,Nf, that represented the measurement function in the frequency domain. 

The transformation formula was 
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where 

f   discrete frequency. 
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The values were used as features ci,dct by setting 

[k]).DCT(,, ifdcti dc   (3.4)

In this example, the high-frequency components contributed little information. 

Consequently, only the first (f = 1,…,Ndctcut, Ndctcut < Nf) coefficients were 

considered. The parameter Ndctcut was set to 30 for this study, because no activity 

was observed in components with higher frequency. 

3.2.2.3 Regression features 

Cosine transform features described the measurement frequency characteristics, 

but did not sufficiently characterize general trends. Therefore, polynomial 

regression (PR) features were calculated. Regression features have successfully 

been used in speech recognition (Furui, 1986), but also in gait classification tasks 

based on ground reaction force data (Mezghani et al., 2008). Depending on the 

degree Np of the chosen polynomial, signal properties such as gradient or 

curvature are adequately described. For this purpose, each measurement di[k] was 

approximated in a least squares sense by a polynomial function 





pN

m

mxmrxp
0

][)(  (3.5)

where 

pN   number of polynomial coefficients, 

][mr   polynomial coefficients, pNm ,,0 . 

The coefficients were used as features by setting 

].[,, mrc impri   (3.6)
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The polynomial degree Np was set to three for this study, which corresponds to a 

cubic fit of the original measurements. Experimental results showed no 

improvement when calculating fits of higher degree. 

3.2.3 Pattern classification using AdaBoost 

AdaBoost (“adaptive boosting”, (Freund and Schapire, 1997)), is a meta algorithm 

for supervised learning that utilizes other learning algorithms (i.e. classifiers). The 

idea of AdaBoost is to use a linear combination (ensemble) of multiple simple 

decision rules (weak classifiers), which combined create a more accurate complex 

decision rule (a strong classifier). If each classifier predicts the correct class with 

an accuracy αsimple > 0.5, then the ensemble classification accuracy approaches 

αcomplex → 1 as the number of simple classifiers increases (Boland, 1989). 

The AdaBoost classifier was trained in several iterations, adding one simple 

classifier to the ensemble in each of these iterations. The iteration number for all 

experiments was set to 20 to prevent overadaptation of the classifier to the input 

data. During training, each feature vector  ,tc ,,,1 tNt   where 

tN   number of samples in the training set  ,trainS

was assigned a weight wt. These weights (Freund and Schapire, 1997) were 

initially equally distributed with 

.1
1

t
t

t Nt
N

w   (3.7)

As weak classifier for AdaBoost a so-called decision stump (Viola and Jones, 

2004) was used. This is a simple classifier that uses a threshold value in only one 

of the Nc feature space dimensions. Using the decision stump weak classifier, 

AdaBoost performed implicit feature selection. By counting how often each feature 

contributed to the final decision process, a measure of the ability of a certain 
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feature to separate the trained classes was derived. As final hypothesis for 

classification, a weighted vote of all classifiers in the ensemble was cast. 

3.2.4 Cross-validation 

In order to test the classifier for generalization performance and to prevent 

overadaptation to the training samples, cross-validation (Duda et al., 2001) was 

employed. The available data were partitioned into a fixed number NCV of sets. 

Then the selected classifier was trained using NCV – 1 sets. Following training, the 

remaining set Stest was used for classifier testing. By iterating this process until 

each of the NCV sets was used as test set once, generalization performance was 

tested because the information in the test set had always been unknown to the 

classifier. For each cross-validation iteration v = 1,…,NCV, it was recorded which 

features were selected for classification, and the test classification rates αtest,v were 

also stored. The final classification rate αtest was calculated as the mean over all v 

iterations. 

The samples of one person were naturally more similar among each other than 

samples of different persons. Thus, the data were partitioned into Nr = 80 disjoint 

sets for cross-validation so that the samples from one athlete were always in the 

same set, i.e. NCV = Nr. 

3.2.5 Statistics 

Classification rates were deemed significant if the null hypothesis that classification 

was random could be rejected using a binomial test with significance level 

α = 0.01. A one-tailed t test was used for statements about the statistical 

significance of differences of single features between groups with significance level 

α = 0.01. 
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3.3 Results 

3.3.1 Gender classification 

For gender, the mean classification rate was 84.7%. This is significantly different 

from random (p < 0.001). Two basic features were present in each cross-validation 

iteration (Fig. 3.2), the variance c of the hip flexion-extension moment and the 

variance c of the vertical ground reaction force. The top 30 ranked features 

included 19 basic and 11 discrete cosine transform features. The first polynomial 

regression feature appeared at rank 33. 

 

Fig. 3.2. The ten features that were most often selected for gender classification. 
Numbers above each bar represent how often each feature was 
selected. The respective feature identifiers are defined in Eq. (3.1), (3.2), 
(3.4) and (3.6). 
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3.3.2 Shod/barefoot classification 

For shod/barefoot, the mean classification rate was 98.3%, with 8 of 496 sets 

misclassified. This is significantly different from random (p < 0.001). Two 

regression features were present in each cross-validation iteration (Fig. 3.3), the 

quadratic polynomial component cpr,2 of the foot sagittal plane angle and the linear 

polynomial component cpr,1 of the shank sagittal plane angle. The top 30 ranked 

features included 16 cosine transform, 10 polynomial regression and 4 basic 

features. 

 

Fig. 3.3. The ten features that were most often selected for shod/barefoot 
classification. Numbers above each bar represent how often each feature 
was selected. The respective feature identifiers are defined in Eq. (3.1), 
(3.2), (3.4) and (3.6). 
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3.3.3 Injury/non-injury classification 

For injury/non-injury, the mean classification rate was 100%. Thus, every single 

dataset and in effect every runner was assigned to the correct group. This is 

significantly different from random (p < 0.001). One single feature was selected in 

each cross-validation iteration, the mean c of the hip abduction moment. This 

basic feature allowed classification without further combination with other features. 

The mean hip abduction moments were significantly higher (p < 0.001) for all six 

PFPS group patients compared to those of the six matched ASYM group patients 

(Fig. 3.4). This difference was also visible in the originally measured mean hip 

abduction moments (Fig. 3.5). 

 

Fig. 3.4. Mean (standard deviation) hip abduction moments for the six patients 
who developed patellofemoral pain syndrome (PFPS group) and the six 
asymptomatic matched controls (ASYM group). 
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Fig. 3.5. Mean (standard error) resultant hip abduction moments for the six 
patients who developed patellofemoral pain (PFPS group) and the six 
asymptomatic matched controls (ASYM group). 

3.4 Discussion 

One purpose of this paper was to show that the applied methods are capable of 

pointing to the characteristics that discriminate groups. For the case of injury/non-

injury classification, one single feature was found that distinguished runners from 

the injury group and the asymptomatic group with 100% accuracy. Because it is 

only a single feature, traditional methods should provide the same result. However, 

the method presented in this paper are not relying on assumptions that may be 

subjectively biased but allow an objective, data-driven evaluation of the input 

variables. Stefanyshyn and colleagues (2006) had identified knee angular impulse 

as a predictor of patellofemoral pain syndrome in an earlier study on the same 

data using traditional methods. However, this variable only discriminated the 

runners on a one-to-one matched basis, and is individually true only for five of the 

six matched pairs. The result suggested by the presented algorithm shows that 
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using the mean hip abduction moment as a discriminating predictor, all individuals 

can be classified simultaneously and correctly without the need to heed the 

matching. 

Because prospective data were only available for six runners that developed 

patellofemoral pain syndrome, it remains to be evaluated whether this single 

indicator is also sufficient for a larger group of patients. However, even if a single 

variable is not sufficient for larger groups, the presented algorithms would be 

capable of finding those variables that are additionally needed for discrimination. 

Furthermore, the results are highly significant even for the relatively small group 

and indicate that increased hip abduction moments should be deemed risk factors 

that play a role in the development of patellofemoral pain in runners. Muscular 

deficits in the hip abductors have already been presumed to be a major factor in 

the development of knee injuries in runners (James, 1995; Fredericson et al., 

2000). Footwear and running style can influence hip abduction moments, and the 

appropriate manipulation of these variables may play a preventive role for patients 

who are predisposed to patellofemoral pain. 

The ability to discriminate classes has also been shown for gender and 

shod/barefoot classification. Although those tasks lack the clinical relevance of the 

injury classification, a different strength of the methodology was shown. While 

traditional methods often evaluate individual discrete variables, the presented 

algorithms are able to evaluate what combination of features is needed to 

discriminate classes. Those features that were most often selected contain the 

important indicators for the difference between the classes. For gender 

classification, two variables (hip flexion-extension moment and vertical ground 

reaction force) were always selected (Fig. 3.2). The hip flexion-extension moment 

has already been shown to be different for gender by Kerrigan and colleagues 

(1998) for walking. The importance of the vertical ground reaction force for the 

gender differentiation can be explained by the higher weight of the male study 
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participants (Tab. 3.1). For shod/barefoot classification, the variables that were 

most often selected for classification (Fig. 3.3) were the foot and shank sagittal 

plane angles. These variables have already been reported to be significantly 

different for shod/barefoot running earlier (De Wit et al., 2000). 

Highly significant classification rates could be achieved in all experiments. This 

shows that the generic features computed for the dynamic data contained the 

information content necessary for accurate group discrimination. While the 

features did not directly represent key time points and associated variables like 

angles and moments, they were computed for every measurement without 

modification. Thus, they can be used for a wide range of biomechanical 

measurements. 

The ability of the presented methodology to rank features showed that typically a 

combination of the different feature types leads to correct classification. Although, 

for example, regression features are not mandatory for gender classification, they 

add important discrimination information for shod/barefoot classification. 

Consequently, it is a good idea to compute all the proposed features. This is 

particularly true because the inherent feature selection of AdaBoost will reject 

features for classification if they do not contribute indicators critical to the 

classification. 

A further aspect of the presented methodology is that the applied algorithms are 

not restricted to a two-class problem. Freund and Schapire (1997) have already 

shown that AdaBoost is capable of discriminating multiple classes. Thus, the most 

important effects of for instance wearing different running shoes could be identified 

using biomechanical measurements. 

One limitation of the methodology is the required parameter setting for the 

extracted features. However, these parameters can be set by simple experimental 

evaluation once the methodology is implemented. Firstly, the number of necessary 
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DCT features needs to be determined. These can be set by observing the amount 

of energy that is contained in higher frequency components. Secondly, the 

required polynomial fit order has to be identified. Experimental evaluation of the 

classification rates using different orders straightforwardly reveals the optimal 

setting. 

A further limitation of the methodology is that the exact mechanisms responsible 

for the discrimination were not revealed by the different classification tasks. 

Nevertheless, the methodology pinpointed those variables that were most relative 

to a certain differentiation. From this starting point, more detailed experiments may 

be conducted in order to unveil the relationship between those variables and the 

specific classification task. 

3.5 Summary  

A classification approach using generic features and AdaBoost was shown that 

provides an effective tool for identifying variables that allow subject or patient 

group discrimination. Besides high classification rates for gender and 

shod/barefoot running, the results also suggested that the mean hip abduction 

moment may be a very important indicator connected to the development of 

patellofemoral pain syndrome in runners. 
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CHAPTER 4 CLASSIFICATION AND VISUALIZATION OF 
YOUNG-ELDERLY GAIT PATTERN 
DIFFERENCES VIA DIRECT PCA FEATURE 
EXTRACTION AND SVMS 

4.1 Introduction 

The automated recognition of gait patterns is of importance because of its potential 

applications in medical diagnostics, e.g. for the identification of at-risk gait in the 

elderly. In such clinical gait analyses, 3D positions of markers attached to the 

human body are typically measured to determine joint angles and range of motion. 

Previous studies used pattern classification methods to differentiate gait patterns 

of young-elderly groups based on such kinematic variables (Wu et al., 2006) or the 

combination of kinematic and spatio-temporal variables (Wu et al., 2007) with 

classification rates of 89.6% and 91%, respectively. While these classification rates 

indicate the ability of pattern classification to differentiate the group gait patterns, a 

possible loss of information may have been introduced by the methods that were 

applied to the data. First, the calculation of the kinematic variables required to 

combine marker information. Therefore, the amount of spatial information was 

reduced. Second, only specific time points of the gait cycle (e.g. touch-down, toe-

off) were considered in the evaluation. Thus, a substantial part of the available 

temporal information was discarded (Chau, 2001a). 

It is suggested that more information is available for group differentiation if the 3D 

marker trajectories, which represent the complete available temporal information, 

are used for feature computation and classification. Such a method for the 
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classification of gait has not been presented in the literature. It is postulated that 

higher group classification rates will be obtained when using such an approach. 

Therefore, the purposes of this study were (a) to present a method for classifying 

gait pattern group differences using a more complete representation of the spatial 

and temporal information of the individual markers and (b) to compare the 

classification rates to previous studies using conventional classification features. 

4.2 Methods 

4.2.1 Data preparation 

4.2.1.1 Collected data 

Kinematic data was collected from 48 healthy female subjects (Tab. 4.1). The age 

of 24 subjects was between 55 and 70 years (elderly group), the age of the other 

24 subjects was between 21 and 30 years (young group). All subjects gave 

informed written consent according to the guidelines of the University of Calgary’s 

Conjoint Health Research Ethics Board, which approved the study. 

All subjects were equipped with 37 reflective markers that were placed on head, 

trunk, arms, hands, legs and feet consistent with Vicon’s (Oxford Metrics, Oxford, 

UK) Plug-In-Gait model (e.g. Orendurff et al., 2006; Buckley et al., 2009). 

Before data collection, all subjects walked for five minutes on a treadmill in order to 

warm up and to select a comfortable walking speed. During data collection, the 

subjects walked for 80 seconds on the same treadmill at the self selected speed 

(Tab. 4.1). The walking speed remained constant for each subject throughout the 

data collection. 
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Tab. 4.1. Characteristics of the 48 subjects that were used for analysis purposes. 
Values in the first two rows are presented as mean (standard deviation). 
Values in the last two rows indicate the ranges of the different 
parameters. 

 n Age 
[y] 

Height 
[m] 

Mass 
[kg] 

Treadmill speed
[m/s] 

Elderly group 
Young group 
 
Ranges 
Elderly group 
Young group 

24 
24 
 
 
 
 

59.9 (4.5) 
25.3 (2.4) 
 
 
[55.0;70.0]
[21.0;30.0]

1.61 (0.05)
1.66 (0.07)
 
 
[1.50;1.75] 
[1.52;1.78]

68.8 (10.9) 
67.2 (13.0) 
 
 
[51.1;89.4] 
[50.5;101.0]

1.24 (0.27) 
1.53 (0.17) 
 
 
[0.76;1.67] 
[1.07;1.79] 

Marker positions were recorded at 240 frames/second using a system of eight 

synchronized digital infrared high-speed cameras (Eagle and Hawk, Motion 

Analysis Corp., Santa Rosa, CA, USA). The coordinate system defined by the 

calibration of the camera system had the subjects walk along the y-axis (anterior-

posterior direction). The x-axis was aligned with the medial-lateral, the z-axis with 

the vertical direction. 

Of the 37 originally collected markers, 28 were at anatomical landmarks (Tab. 4.2). 

These markers were selected for the current study. The remaining nine markers 

were placed on arbitrary positions of specific segments and were not used for 

classification purposes. 

The trajectories of individual markers were reconstructed using the software Eva 

Real-Time (EVaRT, Motion Analysis Corp., USA). The data was not filtered. Gaps 

shorter than 0.1 s in individual marker trajectories were reconstructed using either 

cubic interpolation or by determining the position of the missing marker from 

adjacent markers. Longer gaps were not present in the data. All subsequent 

analyses were performed using a custom MATLAB (version 7.6.0.324, The 

MathWorks Inc., Natick, MA, USA) software. 
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Tab. 4.2. Identifiers of the 28 markers that were used for classification purposes. 
The identifiers were in accordance with Vicon’s plug-in-gait marker set. 

Marker nr. Marker identifier Marker position 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

'LTOE' 
'LANK' 
'LHEE' 
'LKNE' 
'RTOE' 
'RANK' 
'RHEE' 
'RKNE' 
'RASIS' 
'LASIS' 
'RPSI' 
'LPSI' 
'STRN' 
'CLAV' 
'C7' 
'T10' 
'RSHO' 
'RELB' 
'RWRA' 
'RWRB' 
'LSHO' 
'LELB' 
'LWRA' 
'LWRB' 
'LFHEAD' 
'RFHEAD' 
'LBHEAD' 
'RBHEAD' 

Left toe 
Left ankle 
Left heel 
Left knee 
Right toe 
Right ankle 
Right heel 
Right knee 
Right anterior superior iliac spine 
Left anterior superior iliac spine 
Right posterior superior iliac spine 
Left posterior superior iliac spine 
Sternum 
Clavicle 
7th cervical vertebrae 
10th thoracic vertebrae 
Right shoulder 
Right elbow 
Right wrist thumb side 
Right wrist pinkie side 
Left shoulder 
Left elbow 
Left wrist thumb side 
Left wrist pinkie side 
Left front head 
Right front head 
Left back head 
Right back head 

4.2.1.2 Gait cycle extraction 

For each of the 48 subjects, ten consecutive gait cycles were extracted from the 

collected walking gait data. For this purpose, gait phases without artifacts in the 

gait were used. Artifacts were defined as any measurements that deviated from a 
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subject’s automated (unconscious) gait pattern, for example when the subjects 

scratched themselves or moved their head in an unusual way. 

The beginning of a new gait cycle was arbitrarily defined as the point in the time 

sequence when the left heel marker reached its lowest z-axis position. This point 

allowed unambiguous splitting of gait cycles. 

The ten extracted gait cycles were then prepared for classification in three steps. 

First, they were individually time normalized. For this purpose, a normalization to 

101 time steps from 0% to 100% was performed using a cubic spline interpolation 

(De Boor, 1978). Second, anthropometric differences of the subjects were 

eliminated by calculating the mean position of each of the 84 marker time 

sequences (28 markers in three axes each) for each subject and by subtracting 

them from the respective time sequence. Third, the classification was designated 

to use a mean gait cycle representation from each subject. For that reason, the 

mean of the ten consecutive gait cycles that were extracted was computed. 

The 84 marker sequences were then concatenated into one movement pattern 

vector mi per subject i = 1,…,48, which was of dimension 8484 (84 marker 

sequences times 101 time steps). 

The movement pattern vectors mi were visualized (Fig. 4.1), where the mean 

movement pattern vector m̄ of all subjects is illustrated for four positions of the gait 

cycle. In each time point the marker positions were visualized in the x-z-plane 

(sagittal plane) on the left and the y-z-plane (frontal plane) on the right. 
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Fig. 4.1. Mean marker position of all subjects at different time points of the gait 
cycle. For each time point, the sagittal plane is shown on the left and the 
frontal plane on the right. Each star represents the position of one of the 
28 markers that were used for classification. 

4.2.2 Group classification algorithm 

4.2.2.1 Feature extraction 

The purpose of feature extraction was to retain as much of the spatial and 

temporal information of the movement patterns as possible. Therefore, a direct 
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feature extraction from the movement patterns by principal component analysis 

(PCA, Fukunaga, 1990) was performed. The important characteristic of the PCA 

was that it conducted a transformation of the marker movement space that still 

incorporated all available information. Furthermore, the PCA feature representation 

is known to be suitable for classification (Theodoridis and Koutroumbas, 2009). 

To perform the PCA, the movement pattern vectors mi from all subjects were 

arranged in the data matrix M. As the number of individual samples (48) was 

smaller than the number of dimensions (8484), the small sample size PCA 

algorithm (Fukunaga, 1990) was used. In this algorithm the features for each 

pattern vector were computed by first removing the mean and then projecting it 

onto the eigenvectors of the sample correlation matrix MtM. As a result of the PCA 

algorithm, the movement pattern of each subject could be represented as a linear 

combination of up to 48 principal movements , where d
ix

 d = 1,…,48  number of principal movement 

 i = 1,…,48   number of runner. 

The principal movements  were ordered according to the magnitude of the 

eigenvalues of the PCA, which corresponded to the amount of gait variability 

contained in the movement of all subjects. Therefore, the first few principal 

movements corresponded to the largest overall gait variability, and described the 

main variations in the movement over time. 

d
ix

The principal movements  were directly used as features for classification. For 

the evaluation of the classifier, an increasing number d = 1,…,48 of principal 

movements  were used to evaluate the classification performance. This is a 

standard procedure for classification (

d
ix

d
ix

Theodoridis and Koutroumbas, 2009), as 

every PCA component adds additional information for group classification 

according to overall data variability. 
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4.2.2.2 Group classification 

For group differentiation, a support vector machine (SVM) classifier (Vapnik, 1998) 

was used. The SVM classifier (e.g. Begg et al., 2005; Wu and Wang, 2008) has, to 

the knowledge of the authors, previously not been applied to principal movement 

patterns of gait. Important characteristics of the SVM classifier for this project were 

(a) that it typically obtained high classification rates (Sapankevych and Sankar, 

2009), (b) that the SVM implementation that was used (C-SVM, Chang and Lin, 

2001) only possessed one free parameter that had to be set and (c) that the 

application of SVM with linear kernel allowed further analysis of the group 

differences with respect to spatial and temporal information of individual marker 

movement. 

To obtain high group classification rates, the SVM had to find an optimal decision 

hyperplane (Fig. 4.2) that separated the principal movements of subjects from 

different groups with a maximal margin, i.e. the distance of the hyperplane to any 

principal movement was as large as possible. 

The parameter that needed to be set for SVM classification was the cost 

parameter C (Schölkopf and Smola, 2002). It determined the tradeoff between the 

classification performance on the training set and the generalization ability, i.e. the 

ability of the classifier to correctly classify new samples. Since no general rule for 

setting the C-parameter existed (Chang and Lin, 2001; Vapnik, 1998), the 

classification results when using different settings for C were experimentally 

evaluated (e.g. Begg and Kamruzzaman, 2005). For the evaluation, a logarithmic 

range (C = 10n, n = -3,-2.5,-2,…,3) was employed. 
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Fig. 4.2. An SVM example group classification for a two class problem. Class one 
is represented by white circles and labels -1 and class two by black 
circles and labels +1. The class representatives are shown for two 
feature dimensions x1 and x2. The decision hyperplane is represented by 
the normal vector w and the distance to the origin b. 

The SVM operated by first subjecting the principal movements  to an implicit 

mapping to a higher dimensional space (

d
ix

Vapnik, 1998). For this purpose, different 

kernel functions (Schölkopf and Smola, 2002) were available. In the present study 

a linear kernel was chosen because it allowed functional analysis of the 

contribution of individual markers to group differences. The group difference 

visualization that was used for this purpose also allowed investigating what spatial 

and what temporal information was needed for group differentiation. 

 

With the employed linear kernel, the hyperplane that separated the groups was 

parameterized by its normal vector w and by its distance to the origin b (Fig. 4.2). 

The vector w pointed in the direction of difference between the two groups on 
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either side of the decision boundary (Fig. 4.2). Its length was defined by the mean 

distance to the individual group cluster centroids. As the vector w was an element 

of the principal movement space, it could be projected back onto the original 

marker movement space for further analysis of the group differences. For this 

purpose, a linear combination of the PCA eigenvectors using the components of w 

as weights was computed. This back projection of the vector w was called 

difference marker movement vector mw. It represented the spatial and temporal 

contribution of each individual marker movement to group differentiation. To show 

these individual contributions, the difference marker movement vector mw was 

added (elderly group, labels +1) and subtracted (young group, labels -1) from the 

mean movement m̄ of all subjects that was shown in . Fig. 4.1

For evaluation of the classification rate, a leave-one-subject-out cross-validation 

was conducted with all trials from one subject being removed for classifier training. 

Then, the left out trials were classified and tested for correctness. This was 

repeated until each subject was left out once. The number of correctly classified 

trials divided by the total number of trials then gave the classification rate. 

4.3 Results 

The maximum classification rate of 95.8% was reached when using d = 36,…,39 

principal movements (Fig. 4.3). In this case, two subjects that belonged to the 

elderly class were incorrectly classified during cross-validation. 

The setting of the C-parameter did not affect the maximum classification rate or its 

locations. The mean classification rates over all d = 1,…,48 cross-validation runs 

for different C-parameters varied slightly (Tab. 4.3). The minimum and maximum 

mean classification rate were 79.1% for C = 1000 and 80.5% for C = 0.1, 

respectively. 
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Fig. 4.3. Classification rate in percent when using d = 1,…,48 principal movement 
pattern features and C = 0.1. 

Tab. 4.3. Mean classification rates for different C-parameter settings. The 
C-parameter was evaluated over a logarithmic range (C = 10n, 
n = -3,…,3). The parameter n is given within the table. The mean 
classification rates were computed over all d = 1,…,48 cross-validation 
runs. 

Parameter n  Mean classification rate [%] 
 -3.0 
 -2.5 
 -2.0 
 -1.5 
 -1.0 
 -0.5 
 0 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 80.0 
 80.0 
 80.0 
 80.1 
 80.5 
 79.7 
 79.5 
 79.2 
 79.1 
 79.3 
 79.2 
 79.2 
 79.1 
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The computation of the contribution of individual markers to group differentiation in 

position and time was performed at the point of maximum classification rate using 

36 principal movement features (Fig. 4.3). The resulting difference information is 

illustrated for four time points of the gait cycle (Fig. 4.4). A video of the difference 

information for all time points of the gait cycle can be found at 

http://tinyurl.com/group-diff. 

 

Fig. 4.4. Visualization of the contributions of individual markers to group 
differentiability at different time points of the gait cycle. The marker 
location differences in relation to the overall mean movement of all 
subjects (Fig. 4.1) is shown for the elderly group (black crosses) and the 
young group (red plusses). 

 

http://tinyurl.com/group-diff
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4.4 Discussion 

The results demonstrated that the proposed method was capable of obtaining 

higher classification rates compared to previous studies that differentiated young-

elderly gait based on 3D marker data. The previous studies reported classification 

rates of 89.6% based on kinematic variables (Wu et al., 2006) and of 91.0% based 

on the combination of kinematic and spatio-temporal variables (Wu et al., 2007). 

Based on the proposed approach in the current paper, a classification rate of 

95.8% (Fig. 4.3) could be obtained. This increased classification power is mainly 

attributed to the more complete availability of spatial and temporal information that 

was achieved by direct feature computation via PCA from the 3D marker data. 

A direct PCA analysis of group marker information for gait classification had, to the 

knowledge of the authors, previously not been attempted. PCA was, however, 

applied to the analysis of the movement of individuals. Previous results showed 

that the gait patterns of individual subjects could be efficiently modeled using four 

principal components (Troje, 2002). In this light the number of principal movement 

patterns needed for a sufficient classification (36-39) in the present study may 

seem high. However, the current study did not focus on principal components of 

the movement of individual subjects, but on the movement differences between 

groups of subjects. Human gait comprises high inter-individual variance (Sadeghi 

et al., 2000). As opposed to the modeling of the movement of individuals, a higher 

number of principal movement patterns were therefore needed in the current study 

to efficiently generalize and classify the differences between groups. 

Each of the individual principal movement patterns represented a combination of 

spatial and temporal information about the movement of the individuals. Both 

aspects contributed to group differentiation (Fig. 4.4). The illustration showed the 

differences in individual marker positions that led to classification. One example of 

the combination of the spatial and the temporal aspect to group differentiation 
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could be seen by examining the knee markers. During the swing phase (Fig. 4.4, 

33% and 75% gait cycle), the knee markers of both groups did not exhibit a large 

difference. However, during the double support phase (Fig. 4.4, 0% and 50% gait 

cycle), both knee markers exhibited a large difference. Thus, both the spatial and 

the temporal aspect of the movement were important for classification. The authors 

are not aware of a similar technique that allowed the analysis of individual marker 

contribution to group differentiation by taking both the position and time aspect into 

account. 

For the age related example, previous findings could be reproduced by this 

analysis of individual marker contribution to group differentiation. Notable 

differences visible in Fig. 4.4 were the foot clearance and the stride length of 

young and elderly. In the representations of the swing phase (Fig. 4.4, 33% and 

75% gait cycle), it could be seen that the young group had a higher position of the 

swinging foot than the elderly group. This observation of higher foot clearance in 

the young group was consistent with previous results (Begg et al., 2005). In the 

representations of the double support phase (Fig. 4.4, 0% and 50% gait cycle), it 

could be seen that the markers representing the feet were farther outwards for the 

young group than for the elderly group. This increase of stride width in gait of 

young subjects has also previously been reported, e.g. (Blanke and Hageman, 

1989). Other previously reported positional and temporal differences in young-

elderly gait could be reproduced as well. These were, for instance, an increased 

range of motion in the arm movement (Elble et al., 1991) and in the flexion-

extension of the foot (Nigg et al., 1994). In the same manner, differences in 

individual body part movements could be observed by examining individual 

markers over time. In principle, the group difference representation in the original 

marker space also allowed further functional analyses by calculating kinematic 

variables. 
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Limitations of the proposed methodology existed in the necessity for a time 

normalization of the gait cycles due to the equal sample length requirements for 

the PCA. Information about the different walking speeds (Tab. 4.1) was therefore 

lost. Future work could include this information as an additional feature for 

classification. 

As an additional algorithmic limitation, the C-parameter of the SVM had to be set 

correctly. However, this setting could easily be determined by an experimental 

parameter search. Even with a non-optimal C-parameter, the algorithm converged 

with high classification rate (Tab. 4.3). 

When compared to more traditional approaches that used discrete kinematic 

variables at specific time points of the gait cycle for group differentiation, some 

further limitations existed. Given that the selection of variables and time points for 

the discrete approach was appropriate and functional, direct functional conclusions 

could be drawn about group differences. In the approach for the current paper, 

these conclusions were not as straightforward to draw, but required careful 

additional analysis of the reasons that led to group differentiation. 

However, not to perform the classification on discrete functional variables at 

specific time points of the gait cycle also had several advantages. First, the 

selection of functional features for the classification procedures is usually based on 

prior knowledge of the researchers. The method presented here extracts the 

features based on a mathematical algorithm. The classification result therefore 

identifies group differences independently of prior knowledge. Second, the 

calculation of kinematic and kinetic variables typically requires assumptions (e.g. 

about the direction of joint axes), which are often difficult to validate. Third, the 

computation of these variables might lead to error amplification (e.g. when marker 

positions are affected by skin movement). Fourth, the process is often time 

consuming. Last, the incorporation of a more complete representation of the 
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temporal information prevents discarding a substantial part of the available time 

dependent information (Chau, 2001a). 

Since the presented methodology made no special assumptions, it could be 

applied for group classification tasks to any study involving marker measurements. 

Examples include analysis of pathological gait differences that are due to injuries, 

for medical pre-diagnosis of gait diseases and for evaluation of the outcome of 

treatment and rehabilitation. 

4.5 Summary 

The current study proposed a method for group classification that directly extracted 

spatial and temporal information from the 3D marker trajectories collected during 

human gait. Thus, this method did not require prior knowledge or assumptions, 

which are required when biomechanical features such as joint angles are 

determined in additional post processing steps. The classification using the SVM 

classifier yielded better group classification rates for a young-elderly group 

example than those reported in previous studies. The group discriminator could be 

visualized, which allowed identification of functional differences between the 

groups. 
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CHAPTER 5 EMBEDDED SURFACE CLASSIFICATION IN 
DIGITAL SPORTS 

5.1 Introduction 

The ability to perform accurate classification in real-time is a key factor for many 

applications. This is not only true when computationally powerful hardware is used. 

It is most often crucial in the restricted hardware environment of the power-

efficient, highly mobile microprocessors used in embedded systems. Consider, for 

example, portable devices performing image classification or speech recognition. 

As (Hacker et al., 2006) showed, classification of the focus of attention of a user in 

interaction with a portable digital assistant (PDA) is possible with classification 

rates of up to 93%. The authors avail the signal of a built-in video camera and 

information from the speech signal to discern whether the user is trying to interact 

with the device or not. 

The most important question is which of the complex algorithms known in pattern 

recognition can be used and implemented in the context of the restricted memory 

capacity and computational power of the employed microprocessors. Special 

considerations have to be made in order to adapt those algorithms to the specific 

hardware and classification task at hand. A lot of areas of engineering can benefit 

from the possibility of accurate classification in this restricted environment. 

Examples include, but are not limited to, automotive solutions, communications, 

industrial automation, speech recognition and medical care. In each of these fields, 

cheap and therefore mass producible systems that are highly portable can open up 

completely new ranges of applications. 
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We present an approach to accurate classification on a microcontroller that uses 

an example from the field of digital sports. It is quite common in sports related 

fields to use single-dimensional statistical analysis and model building techniques 

even for large, multi-dimensional datasets. (Lun et al., 2004) for example 

examined the relation between biomechanical variables of runners and the risk of 

running specific injuries. To facilitate this, they defined several injury classes and 

tried to identify significantly different parameters between those. While their work 

offers a lot of new insights, the underlying database is very complex so that 

important higher-dimensional coherences might not have been revealed. In the 

most recent years, pattern analysis concepts find their way into the field of digital 

sports, too. One application of pattern analysis methodology was shown in (von 

Tscharner and Goepfert, 2003). In this paper it is reported that electromyograph 

signals of muscle activity can be represented in pattern space using wavelet 

analysis. The authors furthermore demonstrate that the different activity patterns of 

males and females can be classified with a precision of more than 95%. 

Our approach to guarantee accurate classification on the embedded system is to 

perform as much analysis as possible on computationally powerful PCs. This 

allows us to efficiently compare a lot of different approaches and select the one 

that is best suited for the classification task. Thereby, we keep the hardware 

restrictions in mind during every step of the pattern recognition chain. We identify 

the classifier that is best suited for the implementation on the specific 

microcontroller that is used, performing only the final verifications on the 

embedded hardware. For this presentation, we focus on the application of these 

concepts on the adidas_1 running shoe, which is the first shoe ever that features 

an embedded system. This shoe is built to adapt to various running conditions like 

the prevailing surface situation. A precise classification of these conditions is of 

course mandatory to guarantee this functionality. To facilitate this, the step signal 

of the runner is continually measured and processed by the embedded 
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microcontroller. A detailed description of the adidas_1, its functionality and 

embedded system hardware can be found in Sections 5.2.1 and 5.2.2, in 

(DiBenedetto et al., 2004) and in (DiBenedetto et al., 2005). In the rest of Section 

5.2 we describe the analysis methods that lead to accurate, real-time surface 

classification, including: 

 the preprocessing steps that are a prerequisite to later obtain features that 

can be reliably computed (Section 5.2.4); 

 the choice of discriminative features, which dependably represent the signal 

information while still being efficiently calculable (Section 5.2.6); 

 a detailed description of the examined classifiers (Section 5.2.7). 

The choice and parameterization of each of these factors of the classification chain 

is essential for ensuring optimal results. In Section 5.3 we present the conducted 

experiments and their results. In our summary in Section 5.4 we will show that, 

while the specific question of surface classification is solved, the employed 

methods are general in nature so that they can contribute to a wide area of 

applications featuring embedded systems. The presented example for a 

classification system has recently been implemented in the current version of the 

adidas_1 running shoe, which is commercially available. It is significantly 

contributing to the shoe’s functionality and thereby offering runners an ideal 

adaptation during each phase of their run. 

Signal classification techniques have long been successfully applied to radio 

signals (Schmidt, 1986), images (Haralick et al., 1973) and speech signals (Furui, 

2004). Recently, examples of classification systems implemented on embedded 

systems have also been published, for example in (Englehart and Hudgins, 2003; 

Wolf et al., 2002). Pattern recognition algorithms are lately also applied in sports 

related problems (Assfalg et al., 2002; von Tscharner and Goepfert, 2003). 

However, to our knowledge, we are the first group to use these established 
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techniques in order to classify a step signal on an embedded system in the context 

of sports. 

5.2 Materials and methods 

5.2.1 The adidas_1 running shoe 

The adidas_1 is a running shoe, which possesses a built-in 8-bit microcontroller, a 

sensor for heel compression measurement and a motor for cushioning adaptation. 

This shoe is designed for avid runners, and is constantly adjusting itself to the 

running situation. In this presentation, we will focus on the classification of the 

surface that the athlete is running on. While other parameters are also important, it 

was the first goal of the ongoing research to develop an algorithm that is well 

suited for surface classification from the sensor signal alone. The general demand 

to establish constant cushioning when a change of running surface takes place 

and all other running conditions remain constant is to have 

 a soft shoe on hard surfaces (e.g. asphalt, concrete) and 

 a hard shoe on soft surfaces (e.g. grass, trail). 

The shoe therefore provides higher cushioning on hard surfaces, and we aim at a 

good classification of any hard surface that the runner is on. Similarly, if we detect 

a change of surface, i.e. if the surface is not hard anymore, we adapt the shoe to 

this softer surface condition, making it harder and stiffer in order to prevent injuries 

that are attributed to a lack of control. We therefore decided not to use a 

continuous scale from the hardest possible surface to the softest, but rather to 

employ a hard decision threshold either for the hard or soft surface condition. This 

can thus also be regarded as a decision for either a ‘control’ or a ‘cushioning’ 

condition and a corresponding complete adaptation of the shoe. This automatic 
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adaptation ideally takes into account the athlete’s weight, speed, fatigue level and 

furthermore the current surface condition, elevation profile and shoe condition. 

To facilitate this adaptation, the shoe features a cushioning element, whose ability 

to give way in vertical direction (in this chapter defined as z-axis) can be regulated 

by a motor-driven cable system. The cushioning element is depicted in Fig. 5.1. 

The regulating cable is visible in the z-axis X-ray image of the adidas_1 in Fig. 5.2. 

It is running from the motor through the middle of the cushioning element to its 

opposite end and is fixated there. The motor shown in Fig. 5.1 can adjust the 

attenuation setting by turning a screw, which lengthens or shortens the cable. 

When the cable is shortened, the cushioning element is tensed and compresses 

very little when external forces are applied. When the cable is longer, it allows the 

cushioning element to compress further by giving it more room to expand in the 

x-axis direction (forward-backward direction), effectively making the shoe softer. 

Changes to the softness setting are gradual. The attenuation setting from one 

extreme to the other is made in 15 increments. A decision for the current surface is 

made after every fourth step, taking the three preceding steps and the actual step 

into account by a majority vote. In the case of a tie, no adaptation is made. This is 

done to maintain the cushioning adaptation mechanism in the case that the runner 

takes only one or two single steps on a different surface and to save battery 

power. Thus, to go from the softest setting to the hardest and vice versa, 60 steps 

of the runner are required. We did not opt for an instantaneous change from one 

extreme to another once a definite surface change is detected, in order to once 

again save battery power. A complete change of the cushioning setting from one 

extreme to another is quite energy consuming. It is more economical to change the 

setting in small increments. This saves a lot of battery power if the runner only 

changes surface for a small number of steps, e.g. when running over a small 

stretch of grass while being mainly on a hard sidewalk surface. Using this 

approach, we can ensure that the battery (see also next Section 5.2.2) holds for 
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the complete life-time of a running shoe, which is about 100 h. For more details on 

the shoe design the reader is referred to (DiBenedetto et al., 2004) and 

(DiBenedetto et al., 2005). 

 

Fig. 5.1. A view of the adidas_1 shoe, depicting the cushioning element and motor 
unit. The indicated magnet induces a magnetic field for compression 
measurement. 

 

Fig. 5.2. X-ray image of the adidas_1 in z-axis direction. Motor unit, regulating 
cable and the magnet are clearly visible. 

5.2.2 Embedded system hardware 

The compression measurement of the adidas_1 shoe is made by a Hall sensor 

that is mounted at the top of the cushioning element. It detects the magnetic field 
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strength induced by a small magnet, see Fig. 5.1, and can be sampled with a rate 

fs of up to 1 kHz. The sensor- magnet distance dm can then be computed from the 

magnetic field strength with an accuracy of ±0.1 mm. A decision whether the 

attenuation of the shoe has to be adapted is made based on the measured sensor 

data, see Section 5.2.3. 

The sensor-magnet distance is sampled by the built-in microprocessor that is 

mounted on a flexible circuit board on the motor element. Currently, a Cypress 

Semiconductor Corporation controller CY8C21634 is used. However, the 

methodology that is presented below does not make any special requirements to 

the employed Microprocessor. The CY8C21634 possesses a clock speed fclock of 

up to 24 MHz, 512 Bytes of SRAM and 8 kByte flash program store. Additional 

on-chip system resources include internal oscillators, control and communication 

interfaces and other highly configurable I/O options. The controller is designed with 

a standard Harvard architecture and focuses on low power consumption. The 

whole system is powered by a small 3 V coin cell, which is replaceable and lasts 

for the normal life-time of a shoe. The CY8C21634 and similar microprocessors 

are employed in a wide range of embedded applications. Examples include 

automotive solutions and consumer products like handhelds and digital cameras. 

5.2.3 Sensor data 

In order to get the data needed for the analysis, there is a special prototype system 

equipped with a data collection interface. The data from the magnet sensor is 

stored with a 256 kByte EEPROM array and is evaluated offline in a later stage. An 

example running signal is depicted in Fig. 5.3 with the sensor-magnet distance dm 

plotted against time t. During the time where the shoe is in the air, the measured 

signal consists mainly of noise. In contrast, the heel (de-)compression phases of 

four steps can be distinguished. This measured signal is the basis for the surface 

classification experiments in Section 5.3. 
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Fig. 5.3. Data example with 4 step maxima shown. 

Because the signal from the Hall sensor consists mostly of noise while the foot is 

in the air, no relevant information for the cushioning adaptation can be gained. 

Therefore the sensor system and microcontroller are powered down for 120 ms 

after registering a compression maximum. Energy consumption during this period 

is very low, thus the system is saving battery power again. This phase is short 

enough to ensure that no step is missed when running normally. 

5.2.4 Preprocessing 

First of all, we have to extract the specific events that need to be classified in a 

reliable way. In this context, the events correspond to individual steps, which have 

to be found in the signal. All our features that we will present in Section 5.2.6 are 

based on exact identification of these single steps. To facilitate this identification, 

we first establish a baseline sensor-magnet distance value dm,base. This value 
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corresponds to the sensor-magnet distance when the shoe is in the air between 

steps. It can be reasonably assumed that it is the most frequently occurring value 

in the data. Next, all sample values that belong to a compressed state are 

detected. Initial experiments substantiated that compressed states occur when the 

sample values are below a sensor-magnet distance threshold dm,thres = 

dm,base − 1.5 · data, where data is the overall standard deviation of a dataset. 

We define the start and end of the compression phase as those points in the 

compression states where the distance from dm,base drops below three sample 

units, which corresponds to 0.7 mm. By using this approach, all steps could be 

identified in the datasets. This was confirmed by manually extracting 449 steps in 6 

datasets and comparing the manual and automatic approaches. The results were 

completely identical. This result proved that our step detection algorithm provides 

reliable input for feature computation. 

The presented algorithm is rather straightforward, which is a main design criterion 

for all processing steps for the microcontroller implementation. However, in this 

case no tradeoff had to be made between complexity and accurateness. 

5.2.5 Labeling 

In order to learn the necessary parameters for class separation, we needed 

information about the class membership of the samples. We therefore 

implemented a graphical user interface for data labeling. The interface is general 

and can be used for many different labeling tasks. Each event that has to be later 

classified is assigned to one of the classes manually because we believe this 

approach to be superior to an automatic labeling. Manual labeling was quite 

efficiently possible because we could batch label sequences of steps. This is due 

to the fact that a lot of consecutive steps are made on the same surface when 

running, i.e. the surface does not change at each step. We were therefore able to 
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label from a start step to an end step of a sequence, assigning all intermediate 

steps to the same class. Due to the design of our data collection (see Section 

5.3.1), these sequences were easily identifiable. This is because we knew what 

surface the runners were running on. In consequence, we could store the different 

surface data in separate files. Thus, data labeling was consistently and efficiently 

possible. The user interface with a sequence of steps labeled as belonging to the 

soft surface class is depicted in Fig. 5.4. A labeling interface like this can easily be 

programmed for a wide range of classification tasks and does not decrease the 

generality of the approach. 

5.2.6 Feature computation 

A set of features that can be used for microprocessor classification has to fulfill two 

main design criteria. It has to represent the sensor input information consistently 

while being computationally cheap as it has to be computed on the controller. The 

choice of features is critical, and “has to be performed for each specific problem to 

decide which feature of which type one should use” (Ohanian and Dubes, 1992). 

We therefore manually selected a feature set that is very specific to our task of 

running surface classification. The selected features should contain the information 

of the step signal as good as possible. We accordingly computed them such that 

the important properties of steps are well represented. Our experiments indicated 

that these features were sufficient because we noticed no improvement using any 

other imaginable feature. The features are listed in Tab. 5.1, where SD abbreviates 

standard deviation. 
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Fig. 5.4. The graphical user interface used for data labeling. 

Features 1-11 are calculated on one step alone, with the exception of feature 3, 

which is computed on two consecutive steps. Features 12-19 are computed on the 

N preceding steps. The standard deviations N,f, where f = 11, …, 19, are 

computed as an unbiased estimator (Fukunaga, 1990) according to 
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The unbiased estimator of the standard deviation has been chosen because N,f is 

computed for a sample drawn from a larger population in our case. Fig. 5.5 

additionally illustrates features 1-10. 
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The obvious redundancy contained in the extracted features is volitional. It was a 

goal from the start to use only a subset of the given features to reduce complexity 

further, thereby using only features with small or no mutual dependence. We will 

explain our choice for the feature subset selection algorithm in Section 5.2.8. 

Tab. 5.1. Overview of the features used for classification. Step compression and 
decompression refer to the respective phases where the shoe gets 
compressed and decompressed during heel strike. 

Feature number Feature description 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Step compression first order least-squares fit 
Step decompression first order least-squares fit 
Time between step compression maxima points 
Time from step compression maximum to step end 
Time from step start to step compression maximum 
Step curve area approximation by Trapezoid method 
Time from step start to step end 
Step mean value 
Step median value 
Step compression maximum value 
SD of the values contained in one step 
SD of the step minima (feature 10) 
SD of the step means (feature 8) 
SD of the step standard deviation (feature 11) 
SD of the step duration (feature 7) 
SD of the step area (feature 6) 
SD of the time between steps (feature 3) 
SD of the time to peak (feature 5) 
SD of the time from peak (feature 4) 
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Fig. 5.5. Depiction of the step signal classification features 1-10. 

Every single feature can be computed in real-time on the employed 

microprocessor (Section 5.2.2). In order to substantiate our other claim that the 

features dependably represent the signal information, we used them in a different 

classification task. In (Eskofier et al., 2008b), we report on work on running fatigue 

classification where we successfully applied the same step signal feature set. We 
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also performed experiments that showed that our feature set even outperformed a 

computationally more demanding feature set successfully applied in biosignal 

classification. While our set could achieve classification rates of 73.9% in a 

comparative experiment, only 67.4% were achieved using the more complex 

feature set. 

5.2.7 Classifiers 

For our intended goal of embedded system classification we focused on classifiers 

that could be implemented in computationally efficient manner. Once again, this 

decision was motivated by the hardware limitations presented by the embedded 

system described in Section 5.2.2. Our approach is to experimentally compare a 

set of classifiers. (Duda et al., 2001) state that if one algorithm is outperforming 

another one in a particular situation, then this is a consequence of its fit to the 

particular pattern recognition problem, and not of the general superiority of the 

algorithm. We therefore want to find a fit to the problem by evaluating each 

particular classifier’s performance. Of course there exists a large set of available 

classifiers, which we can not all individually test, so we reasonably selected such 

classifiers that are quite well known and widely discussed in the literature. The 

existence of reference implementations to compare the classifier performance 

experimentally further motivated our selection. Our choices included: 

 Naive Bayes (NB), which is described and experimentally evaluated for 

example in (Duda and Hart, 1973; Langley et al., 1992). 

 Neural Networks (NNet) with one hidden layer and varying number of 

hidden nodes (Duda et al., 2001; Specht, 1990). 

 Nearest Neighbor (NNeigh) classifiers with different number of neighbors k, 

which has seen a lot of applications (Cover and Hart, 1967; Lee, 1991). 

 Support Vector Machines (SVM) using kernels of low complexity (Duda et 

al., 2001; Vapnik, 1998). 
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 AdaBoost.M1 (Freund and Schapire, 1996) with decision stumps (Schapire 

et al., 1998) as weak classifiers and varying number of iterations Nit. 

 Rule-based (Duda et al., 2001) approaches like PART (Frank and Witten, 

1998). 

 Linear Discriminant Analysis (LDA), see (Fisher, 1936) and (Duda et al., 

2001). 

In order to test these classifiers, we could efficiently use the WEKA toolbox, 

(Witten and Frank, 2005). This toolbox allowed us to compare all different 

approaches on powerful PC hardware in order to identify the algorithm that is best 

suited for the microcontroller implementation. Our experiments (see Section 5.3.2) 

proved that in our case LDA classification yielded comparable classification rates 

to other, more complex approaches while being the only approach meeting the 

real-time criterion. Because of the restricted hardware environment, we therefore 

decided to train a computationally cheap linear polynomial classifier using LDA. 

While the theory for other approaches will be omitted here and can be found in the 

according references, we will give a brief overview of Linear Discriminant theory for 

the sake of self-sufficiency. LDA classification uses the statistical properties of 

features, and furthermore provides rather simple linear decision surfaces even in 

high-dimensional spaces. To accomplish this, LDA transforms the feature space in 

a way that 

 intraclass variation is minimized, i.e. the features of the same class are as 

densely packed as possible and 

 interclass variation is maximized, i.e. distinct classes are as far apart from 

each other as possible. 

For optimal classification, each point x in the d-dimensional feature space gets 

assigned to the class i, where i denotes the class index, so that the posterior 

probability P(i|x) is maximized. In our case, we only consider two classes 1 
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and 2. However, classification can easily be extended to multiple classes as well. 

According to LDA theory, the equation for the optimal decision boundary between 

two classes (see Duda et al., 2001, pp. 117-121) is 

00 wt xw  (5.2)
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are coefficients for each of the d features used. Here, i are the d-component class 

specific mean vectors and Σ is the d  d covariance matrix that is identical for both 

classes but otherwise arbitrary. P(i) denotes the prior probability of the class i. 

The above equations hold only if the class specific densities p(x|i) can be 

assumed to be multivariate normal distributions (p(x|i)  N(I,Σ)). In Section 3.1 

we show that this assumption is justified. 

In summary, the decision rule for two classes 1 and 2 becomes 
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which can be straightforwardly implemented even on a microprocessor. In the case 

of equality, i.e. wtx + w0 = 0, an engineering decision for one of the classes has to 

be made. 
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5.2.8 Feature selection methods 

Feature selection means identifying a feature subset that delivers good 

classification rate while reducing the complexity of the overall process. The 

computation of the 19 features given in Tab. 5.1 on the microprocessor would be 

too time-consuming. Furthermore, the computation would require storing a lot of 

Hall sensor sample values, which is not possible due to memory constraints. Thus, 

we implemented a method to select the best subset from the original features. This 

reduction not necessarily decreases the overall classification rate, by deselecting 

detrimental features the result can even improve. A widely used method for 

selection or reduction of features is the principal component analysis (PCA), see 

(Duda et al., 2001). It identifies the major axes of variance within the feature space 

by a Karhunen-Loéve transform. Axes of low variance contribute less to the 

discriminative ability of the features and can thus be neglected, thereby reducing 

the feature space. In our case, however, the application of PCA has a major 

drawback. PCA needs all the input feature values in order to come up with a 

reduced set of features for classification. This means that the original set of 19 

features would have to be computed on the embedded system before it is 

reweighed by the PCA coefficients. We cannot compute all these 19 features due 

to the real-time requirement. This means that we have to perform the feature 

reduction on the original set of 19 features, thus deciding for a subset of features 

that can directly be computed from our input signal and meets the real-time 

requirements. However, as we wanted to show whether our feature selection as 

described below is significantly inferior to feature reduction using PCA, we 

compared both methods in our experimental chapter (see Section 5.3.3). 

For our proposed selection algorithm the obvious criterion for choosing the best 

subset is the overall classification rate for a given problem. This result is computed 

via leave-one out cross-validation to prevent any overfitting effects. One example 

is presented in the experiments Section 5.3. In this example, we collected data 
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from 24 runners and performed leave-one-runner-out cross-validation and used 

LDA training and classification to compute the rates. 

Our algorithm follows the principles of a beam search as proposed by (Bisiani, 

1987). During initialization, we use all combinations of two features for training and 

evaluation of the LDA classifier. A total of  combinations is tested where nf is 

the number of features. The overall classification rates are stored for every feature 

pair. Subsequently, only a predefined (e.g. 20) number of feature pairs delivering 

the best results are promoted to the next algorithm step. In this step, the best pairs 

are combined with each of the remaining features, thus leading to feature triples. 

This process is iterated, in every iteration the overall classification results are 

computed, the best combinations are kept and then again combined with the 

remaining features. For each iteration, a subset is thus identified that delivers the 

best result amongst those combinations remaining in the pruned search space. 

While the beam search does not guarantee that the optimal solution is found, it is a 

very cost-effective search method and ensures a good tradeoff between 

computational complexity and classification rate. Moreover, we could show that in 

our case the optimal solution and the one identified by the beam search are 

identical, see Section 









2

fn

5.3. 

An important effect of the feature reduction approach is that it gives a very good 

overview of classification rates for different feature subset sizes. If the hardware 

framework is not completely specified, a system designer can easily decide what 

classification rate is necessary for the particular application and give an estimate 

on computational complexity and thus the required hardware. 
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5.3 Experiments 

In the following, the experimental evaluation of the proposed surface classifier is 

presented. The important framework requirements were that the algorithm works 

for 

 different runners (w.r.t. height, weight, running style, training level), 

 different shoe sizes and 

 all shoe settings (e.g. hard, medium, soft). 

We will show that the system for surface classification that was developed works 

for these conditions. Additionally, the design considerations that specifically aim at 

meeting the hardware architecture restrictions are given below. 

5.3.1 Collected data 

In order to get a sufficient random sample for the subsequent classification 

experiments, a test course was selected where the desired surface conditions 

were present. The test course is located on the campus of the Faculty of 

Engineering of the University Erlangen-Nuremberg. It is depicted in Fig. 5.6. All 

runners were asked to run 12 sections of about 150 m each. The test was divided 

into 2 parts of 6 sections. The first 6 and the second 6 sections were each made 

with a manually chosen shoe setting. No automatic cushioning adjustment was 

made to make sure that signal changes only derive from surface or speed 

changes. The shoe setting was only changed after the first part in order to have 

data generated with varying cushioning setting, then the running procedure from 

that part was repeated. The 6 sections of one part were 

 two runs on soft surface (grass) with constant speed; 

 two runs on hard surface (asphalt) with constant speed; 
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 one run on changing surface, starting on grass, then switching to asphalt, 

and finally running on grass again, all with constant speed; 

 one run on hard surface with a change in running speed, starting with the 

same constant speed from the previous sections and accelerating to a fast 

jog after the first half of the distance. 

 

Fig. 5.6. Aerial view of the test course that was used for data collection. 

Each participant was asked to run normally with a comfortable but constant speed 

for the first 5 sections. Shoe setting, time information and an athlete profile (weight, 

height, training frequency) was noted for every runner. In addition to the shoe 

signal, a Polar RS800 system with foot pod was used to get speed and step 

frequency information. 

Altogether, 24 test runners participated in this data collection. Shoes with sizes 7, 

9 and 11 were used for those experiments. A total of 106 datasets with different 

shoe cushioning settings was collected for the subsequent experiments. Steps 
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were extracted using the automatic procedure described in Section 5.2.4. Tab. 5.2 

shows the number of valid steps for each of the 24 test runners that were used for 

the classification experiments. They amount to a total of 22,910 single steps with a 

fraction of 50.6% on soft surface. The data was labeled as belonging to soft or 

hard surface using the GUI described in Section 5.2.5. The distribution of each of 

the 19 features for the two classes has been tested for normal distribution with a 

χ2-test (e.g. Fukunaga, 1990, Chapter 3) after labeling. As a result we could say 

that the null hypothesis of normal distribution for both classes and each feature is 

true at a 95% significance level. 

Tab. 5.2. Individual identifiers for the 24 test runners with number of valid steps 
given for each of them. Shoe size of each participant is given in brackets. 

ABo (7) 1307 
ABr (9) 1152 
AM (11) 1338 
BD (11) 781 
BE (11) 1206 
CD (11) 911 
DE (11) 1121 
EK (7) 961 

HH (9) 936 
JM (11) 541 
JP (9) 1013 
KH (11) 903 
KR (9) 1326 
MA (11) 898 
MP (9) 914 
MS (9) 627 

MW (11) 1165 
RB (11) 670 
RS (11) 384 
SK (7) 1273 
SW (9) 1240 
TS (11) 612 
TT (11) 791 
VD (11) 840 

5.3.2 Classifier selection 

 

In order to substantiate our choice of classifier, we tested the performance of the 

algorithms given in Section 5.2.7 on our 19-feature set. We used leave-one-

runner-out cross-validation to compute the results that are summarized in Tab. 5.3. 

Algorithm settings were as follows. For the NNets, we used one hidden layer and 

12 hidden nodes in the layer. Nearest Neighbor classification was performed with 

k = 1, 3, 5, 11 nearest neighbors. For the SVM evaluation, we chose linear 

polynomial kernels, as more complex kernels could not be implemented on the 

embedded system. AdaBoost.M1 was tested with decision stumps as weak 
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classifiers. The number of training iterations, Nit, was set to 10, 30 and 50. PART 

was applied with at least 2 instances per rule (212 rules were trained in total). LDA 

and NB were tested as described in Section 5.2.7. As can be seen from Tab. 5.3, 

the results for LDA classification yielded comparable classification rates to most 

other algorithms that were tested. Nearest Neighbor classifiers were the only ones 

that performed significantly better. This indicates the existence of subclusters in 

the high-dimensional feature space, which can not be correctly classified using 

linearly-based decision boundaries. Despite this improved performance, in the 

context of the very restricted memory capacity of only 512 Bytes of the currently 

employed CY8C21634 microcontroller, NNeigh methods would be impossible to 

implement. We would need to store and compare with too many single data points 

or cluster centroids than is feasible. As we will point out in Section 3.3, we already 

used 98% of the available microcontroller program memory with our current 

approach using LDA and three features. All the same, we will certainly reconsider 

the choice of microprocessor in future product generations in the light of these 

results. 

Three other algorithms (AdaBoost.M1 with Nit = 50 iterations, NNet and PART) 

outperform LDA less significantly. Our decision not to implement them on the 

microcontroller was made for computational reasons, too. We will briefly discuss 

them here. The 50 decision stumps trained by AdaBoost require a more complex 

decision system and more memory than is currently available. Furthermore, the 

number of required comparisons is undetermined, leading to a variable decision 

time. The constant number of operations required for LDA classification is 

preferable in our case. Even for a simple Neural Net as tested in our case, we 

would have a lot more multiplications (240 for the described Neural Network 

versus 19 for LDA). More importantly, we have to evaluate the sigmoid function or 

a comparable nonlinear function. These facts inhibit a NNet implementation on the 

employed embedded system. PART generates 212 rules with a total of 1305 
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possible comparisons, which is also impossible to implement on the embedded 

system that we utilize, given the fact that the available memory is already used 

with a much simpler solution. We did, however, compare all these results for the 

different classifiers in order to get good evidence of the performance of our 

proposed compromise of LDA classification. For other data and framework 

conditions, we expect that other solutions are more favorable. As we already 

stated in Section 5.2.7, is the experimental comparison of different solutions vital 

for a profound implementation decision. 

Tab. 5.3. Cross-validated results for different classifiers computed on the complete 
set of 19 features. 

Classifier Classification rate (%) 

NB 
AdaBoost, Nit = 10 
AdaBoost, Nit = 30 
AdaBoost, Nit = 50 
 
SVM 
LDA 
NNet 
PART 
 
NNeigh, k = 1 
NNeigh, k = 3 
NNeigh, k = 5 
NNeigh, k = 11 

70.2 
73.6 
75.3 
76.0 
 
75.4 
75.5 
77.9 
78.4 
 
83.3 
84.9 
84.5 
83.6 

5.3.3 Feature selection results 

The results of the feature selection algorithm described in Section 5.2.8 are given 

in Tab. 5.4 (see Tab. 5.1 for details on the features). Only the combinations that 

perform best are shown. For this evaluation, we used the fact that the classification 
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of single steps can be improved when additionally taking a context of preceding 

steps into account. In this case, a short context of three steps was used by casting 

a majority vote over the single decisions. In the implementation for the final product 

solution, a longer context can be used, which leads to even better classification 

results (see Section 5.3.6). We finally selected the feature triple 1, 12 and 17 for 

the implementation on the microcontroller for three reasons. First, it is the best 

three-feature combination and outperforms the two-feature classifier. Second, with 

the three-feature implementation we used 7816 Bytes program flash memory of 

the embedded CY8C21634 microcontroller. This corresponds to 98% of the 

available program memory, see Section 5.2.2. Implementation of a fourth feature 

would not have been feasible with the selected processor. The third reason for the 

implementation decision was that we could show that even with calculating the 

features and classification decision, we could still sample with maximum sample 

rate and therefore meet the real-time computation criterion. 

Tab. 5.4. Results for the first 7 iterations of the feature selection algorithm. 

Selected features Classification rate (%) 

1,12 
1,12,17 
1, 2, 14,17 
1, 2, 5,14,17 
1, 2, 7,12, 13,17 
1, 2, 5,14, 15,16,17 

75.4 
76.3 
76.9 
77.0 
76.9 
76.8 

As we already stated in Section 5.2.8, the beam search does not guarantee that 

the identified subset performs optimal. We therefore computed the classification 

rates for all 1140 possible three-feature combinations. We could thereby show that 

the selected feature triple represents the optimal solution. We also compared the 

results of our feature selection with feature reduction using PCA as described in 
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Section 5.2.8. A comparison of the classification rates of both methods for 

reduction to two to seven features is depicted in Fig. 5.7. For our data, it can be 

seen that our feature selection method outperforms PCA. In the comparable case 

of reduction to three features, a classification rate of 73.9% could be achieved with 

PCA and 76.3% using beam search. 

 

Fig. 5.7. Comparison of feature reduction using PCA and feature selection using 
beam search. 

The confusion matrix for the selected feature combination is given in Tab. 5.5. 

Sensitivity is 77.7% and specificity is 73.6%. This result shows that no class is 

considerably favored over the other. 
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Tab. 5.5. Classification confusion matrix for the feature combination 1, 12 and 17. 

 Class soft Class hard 

Classified as soft 
Classified as hard 

9000 
2993 

2583 
8334 

The characteristics of the selected feature subset become clear when visualizing 

the three-dimensional feature space. Runners on soft surface generally have 

 smaller compression gradient (feature 1); 

 higher step minima deviation (feature 12) and 

 higher interstep time deviation (feature 17) 

compared to runners on hard surface. 

5.3.4 Classifier implementation 

With the three-feature subset described in Section 5.3.3 we additionally performed 

experiments using all classifiers presented in Section 5.2.7 to confirm our choice of 

the LDA classifier. For cross-validation, 24 subsets were used, each consisting of 

the samples of one individual runner. The results of these experiments are 

presented in Tab. 5.6. Algorithm settings are the same as the ones given in 

Section 5.3.2, with the exception that only 4 hidden nodes were used for the NNet 

and that PART produced only 32 rules on the reduced feature set. It can be seen 

in Tab. 5.6 that only the Neural Network slightly outperforms the Linear 

Discriminant Analysis. However, the gain in classification rate is not statistically 

significant. Moreover, the problem of the complexity of the NNet classifier as 

already described in Section 5.3.2 remains, an implementation on the CY8C21634 

microcontroller is thus not possible. We therefore decided to use the LDA classifier 

in the final application. 
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Tab. 5.6. Results of the experiments on the selected three-feature set using 
different classifiers. Classification rates are computed with a short 
context of three steps. 

Classifier Classification rate (%) 

NNeigh, k = 1 
NNeigh, k = 3 
NNeigh, k = 5 
NNeigh, k = 11 
 
AdaBoost, Nit = 10 
AdaBoost, Nit = 30 
AdaBoost, Nit = 50 
 
NB 
PART 
SVM 
LDA 
NNet 

71.2 
73.1 
75.3 
75.3 
 
72.4 
74.0 
74.5 
 
74.6 
75.5 
76.1 
76.3 
76.5 

5.3.5 Effect of runner-dependent parameters 

We already stated in Section 5.3 that our algorithm has to work independently of 

the runner, i.e. for different runner height, weight, shoe size and training level. The 

surface classification also has to work for different individual running speeds. We 

collected this information for all test participants. Tab. 5.7 shows the ranges for the 

parameters, as well as means μ and standard deviations . The training level was 

derived from the sports activity frequency of each individual on a range of one to 

four. On this scale, one indicates low or no regular sports activity whereas four 

stands for high running relevant activity, e.g. for marathon runners. 

For the evaluation we computed the Spearman rank order correlation coefficient 

rspear (Spearman, 1904) of the individual parameters and the classification rate of 

each runner. These correlation coefficients are ±1 for perfect positive or negative 
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correlation and 0 if the samples are uncorrelated. The results of the evaluation are 

given in Tab. 5.7. In our case of 24 value pairs the null hypothesis that the samples 

are uncorrelated has to be rejected for |rspear| > 0:359 at the 95% significance level 

(Olds, 1938). The results for rspear given in Tab. 5.7 are all below this value and 

show that the value pairs are uncorrelated. If there was a significant correlation, we 

would have to assume that the runner-dependent parameters have some kind of 

influence on the recognition. For instance, the decision threshold would have to be 

adjusted for lighter runners if there was a correlation. However, by showing that 

there is no correlation between the individual parameters and the recognition rate 

we could assure that classification with the proposed system works independently 

of the runner. 

Tab. 5.7. Individual runner parameters. Ranges are given for each parameter, as 
well as mean and standard deviation. The Spearman correlation rspear of 
the individual parameters and the classification rates of each runner are 
also given. 

Parameter Range; mean; standard deviation -rspear 

Height [cm] 
Weight [kg] 
Shoe size [US] 
Training level 
Runner mean speed [km/h]

[156;196]; μ = 181.6;  = 10.5 
[46;125]; μ = 077.3;  = 15.3 
{7,9,11}; μ = 009.9;  = 01.4 
{1,2,3,4}; μ = 002.3;  = 01.1 
[8.3;15.0]; μ = 012.0;  = 01.4 

-0.00 
-0.19 
-0.06 
-0.03 
-0.15 

5.3.6 Final evaluation on the microcontroller 

It was important to implement our classification algorithm on the microcontroller 

that is employed in the product to verify our results. For these control experiments, 

we used the internal EEPROM (see Section 5.2.3) to store for each step only the 

classification decision derived with the described classifier. Longer contexts of 16 

steps were used for the implementation. We let the test participants run totally 
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freely, i.e. no requirements on running speed, step frequency or other parameters 

were made. An external observer counted and wrote down the number of steps on 

each of the surfaces that were tested during this evaluation. Thus, we could 

straightforwardly determine the classification rate. Tab. 5.8 shows the results of 

these experiments. Classification rates of more than 80% could be achieved. 

Tab. 5.8. Description of the datasets that were used for the final evaluation on the 
microcontroller. 

Dataset description 
Number of 
recorded steps 

Hard surface 
ratio (%) 

Classification 
rate (%) 

Park, grass and concrete 
Only asphalt surface 
Forest soil, no inclination 
Forest soil and asphalt, 
running up/downhill 

3480 
0995 
4438 
4448 
 

061.5 
100.0 
000.0 
065.9 
 

82.8 
92.0 
90.8 
80.3 
 

5.4 Summary 

For the realization of accurate surface classification using sensor output from the 

adidas_1, data was collected from 24 test runners on hard and soft surface. This 

data was labeled, and 19 features were extracted, which were chosen because 

they consistently represent the step information. A classification system using 

Linear Discriminant Analysis was then proposed. Using the classification rate as a 

criterion, a subset of three features was found that is suited to be implemented on 

the embedded system that is integrated in the running shoe. The system was 

evaluated with regard to the parameters shoe cushioning setting, runner height, 

runner weight and runner training level, which were all found to have no important 

effect on the accuracy of the classifier. The described classifier has been 

implemented in the current version of the adidas_1 running shoe. 
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During the complete analysis procedure, no assumptions regarding sampling rate 

of the sensor, memory or clock frequency have been made. This makes the 

methodology applicable to many other problems that require accurate embedded 

classification. The first important point is that computationally cheap features can 

be identified that well represent the sensor information. Secondly, a classifier has 

to be determined that establishes a good tradeoff between complexity and 

classification rate. Feature reduction is compulsory to provide a feature subset that 

is best suited for the problem at hand. Lastly, the result of the analysis that has 

been made on computationally powerful PC hardware has to be verified on the 

embedded system itself. 

5.5 Future work 

First results indicate that other important conditions can be classified using the 

shoe signal. One example includes the state of fatigue of a runner. An adaptation 

of the shoe hardness setting to a fatigued condition is therefore imaginable. 

Additionally, we will analyze the effect of elevation profile and speed changes in 

order to be able to classify these parameters, too. 

We will furthermore investigate other application areas, for example accurate 

classification on microcontrollers in household appliances or for mobile phones. In 

the latter case, the computational framework conditions are not as critical as for 

microcontrollers. Still, a lot of effort similar to the one presented in this work has to 

be made to be able to implement pattern recognition algorithms on this kind of 

hardware. 
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CHAPTER 6 EMBEDDED CLASSIFICATION OF SPEED 
AND INCLINATION DURING RUNNING 

6.1 Introduction 

Smart sensors embedded in clothes and equipment for sports open novel 

opportunities to support and guide athletes. An example is the “adidas_1” running 

shoe, which is the first shoe that features an embedded system (see Fig. 6.1). This 

shoe was built to adapt to various running conditions. Examples for conditions that 

have to be taken into account include the prevailing surface situation, the fatigue 

state and the speed of the runner. 

The adaptation was performed by changing the cushioning of the sole by a motor 

driven cable system inside the shoe. In order to recognize the current running 

situation, the heel compression of the shoe was continuously measured. The 

embedded microprocessor of the “adidas_1” processed this signal and performed 

a classification of the prevailing situation. Based on this classification result, a 

decision for a cushioning adaptation was made. 

Pattern recognition methods in general were frequently used in recent locomotion 

related research (e.g. Schöllhorn, 2004; Wu and Wang, 2008). For example, a 

wavelet transformation was applied to electromyographic signals of runners (von 

Tscharner and Goepfert, 2003) for feature extraction. The resulting multi-muscle 

pattern could be employed for gender classification with high classification rate of 

95%. In another study, the authors calculated three types of features (basic 

temporal/spatial, kinetic and kinematic) on human walking gait data (Begg and 

Kamruzzaman, 2005). The resulting set of 24 features was utilized to distinguish 
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the gait of young and elderly subjects with a classification rate of 91.7%. Those 

application examples illustrated that pattern recognition algorithms can contribute 

considerably to data analysis tasks in locomotion related projects. 

To the best of our knowledge, the embedded classification of running speed and 

surface inclination using the described compression measurements has previously 

not been investigated in the literature. Previous publications with the purpose of 

classifying these two variables used different sensor input and were not focused 

on embedded implementation. For example, a method for walking gait that was 

based on accelerometer measurements was presented (Aminian et al., 1995). For 

classification, the authors applied a neural network. The methodology was 

subsequently extended (Herren et al., 1999) for outdoor running. However, these 

approaches were based on triaxial accelerometry. The acceleration signal had 

implicitly included the running speed in its signal. Thus, the results from these 

studies could not be compared to results derived from compression measurements 

that were the basis for the running speed and surface inclination classification 

system that was developed in the present paper. Moreover, the measured signals 

were evaluated on PC hardware only. The complex mathematical calculations 

used for the complex neural networks that were employed (Aminian et al., 1995; 

Herren et al., 1999) may not have been possible with an embedded 

microprocessor. Nevertheless, the embedded classification of the speed and the 

track inclination variables were important in the “adidas_1” application scenario. 

Hence, the primary purpose of this paper was to use methods from pattern 

recognition to identify a classification system that distinguished three speed and 

three inclination classes based on the heel compression measurements. 

In general, athletes can benefit from embedded classification systems. In the 

particular case of running with the “adidas_1”, the shoe could be adapted 

accordingly, setting itself into a cushioning state that was considered optimal for 

the given situation. However, the “adidas_1” shoe was just one example of smart 
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sensors embedded in apparel and sport equipment. Comparable systems could be 

useful in other sports where an athlete can be actively supported by adapting the 

equipment to the prevailing situation. In a previous publication (Eskofier et al., 

2009a), it was already demonstrated that accurate classification on an embedded 

microprocessor in sports was feasible. For this purpose, a framework for 

embedded classification was developed. This framework aimed at calculating 

features that described the originally measured signal well, while being at the 

same time efficiently calculable on embedded hardware. It was also discussed, 

which types of classifiers are suited for implementation on embedded hardware. 

The key idea that was followed was to conduct the various experiments on 

computationally powerful desktop computers, and to implement and validate only 

the most promising solution on the embedded hardware. Comparable systems 

could be useful in other sports where an athlete can be actively supported by 

adapting the equipment to the prevailing situation. Therefore, the secondary 

purpose of this paper was to further develop the previously employed (Eskofier et 

al., 2009a) general methods for embedded classification, so that the developed 

methodology could be more straightforwardly applied to other similar embedded 

classification tasks. 

6.2 Methods 

6.2.1 Data Collection 

A total of 84 runners (30 female, 54 male) participated in a one-hour outdoor data 

collection. The age of the subjects was 32.9 ± 7.9 years (average, standard 

deviation). The subjects were not specifically chosen according to running 

experience; instead, the group contained runners of all activity levels. The 

measurement system consisted of three separate devices. Firstly, a “Polar RS800 
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Running Computer” (Polar Electro Oy, 2010) was used, which included an “S3 

stride sensor” and a chest strap. This system was capable of measuring running 

speed, stride frequency and barometric height. The sampling interval for the 

collected signals was set to 5 s. These measurements formed the ground truth 

data, which means that the classes for the subsequent classification experiments 

were assigned according to these measurements. 

Secondly, the heel compression signal f[t] of the runners was continuously 

measured using the “adidas_1” shoe (DiBenedetto et al., 2004; Eskofier et al., 

2009a). The heel part of the shoe contained an adjustable cushioning element 

(Fig. 6.1). The amount of vertical compression that this element allowed was 

regulated by a motor-driven cable system (DiBenedetto et al., 2004). For the 

purpose of the data collection for this study, the cushioning element was manually 

put in a setting that allowed maximal heel compression and was not changed 

subsequently. This setting was chosen because the resulting compression signal 

had the highest possible signal-to-noise ratio. A hall sensor mounted at the top of 

the cushioning element detected the magnetic field strength induced by a small 

magnet at the bottom of the element. The sensor was sampled with a rate 

fs = 342 Hz by the embedded microprocessor. The sensor-magnet distance dm was 

computed from the measured field strength with an accuracy of ± 0.1 mm 

(Fig. 6.3). 

Lastly, a specially programmed mobile phone (Eskofier et al., 2008a) was used to 

store the GPS position of the runner in intervals of 1 s. This allowed reconstructing 

all running situations after data collection. An example run is visualized in Fig. 6.2 

based on the Google Earth (Google Inc., Mountain View, CA, USA) software. In 

this illustration, running speed is displayed as the height of the orange band along 

the running track. The software (Eskofier and Melzer, 2009) that was utilized to 

generate Fig. 6.2 is available for download from http://tinyurl.com/gervit. 

http://tinyurl.com/gervit
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Fig. 6.1. The “adidas_1” shoe, its cushioning element, magnet and motor unit 
(DiBenedetto et al., 2004; Eskofier et al., 2009a). 

 

Fig. 6.2. Visualization of an example run in Portland, OR, USA. The height of the 
band represents the running speed. 
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After completion of the run, each participant was asked to fill in a questionnaire. 

Among other information, the questionnaire asked the test subjects whether they 

thought that the amount of equipment was in any way hindering to their run. Only 

two out of the 84 runners perceived a notable impediment by the equipment while 

running. This indicated that the collected data represented a free outdoor run very 

well (Eskofier et al., 2008a). 

6.2.2 Data Processing 

Out of the 84 study participants, 28 had to be excluded from further processing for 

various reasons. More specifically, five runners had incomplete data from the Polar 

RS800 system. The remaining 23 participants had to be excluded because of 

unusable data from the “adidas_1” shoe. In eight of these cases, data collection 

was not possible because the “adidas_1” was not present in all shoe sizes at the 

beginning of the study, and therefore the runners had to use other shoe models. In 

the remaining 15 cases (about 18% of all subjects), the runners were mid- or 

forefoot strikers. The measurement system of the “adidas_1” is located at the heel 

of the shoe and can therefore only capture meaningful data for rearfoot strikers, 

which represent more than 80% of the running population (Kerr et al., 1983). 

6.2.3 Step Segmentation 

Prior to feature extraction, the single strides were segmented by finding the 

deflection of the respective compression phases. Fig. 6.3 shows an example 

representation of the heel compression signal. The task of step segmentation was 

to find the beginning of the compression phase, i.e. the point in time when the 

runners started to compress the heel. A linear filter with the convolution vector 

 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1 conv  (6.1)
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was used for this purpose. It was implemented with a moving window strategy in 

order to minimize the number of multiplications. That means that when a new 

sample was measured, the multiplication with the filter was only computed once. 

The multiplication result was stored in a ring buffer which contained only the 

preceding results according to the filter length. For each new sample, the filter 

output was then updated according to the elements in the buffer. 

The filter was chosen for two reasons. First, noise was present in the signal during 

the time that the foot was in the air (Fig. 6.3). The filter had sufficient length to 

avoid misdetecting this noise as beginning of compression. Second, the filter 

yielded maxima for the beginning of the compression phase. The respective 

maxima after filtering marked the beginnings of the compression phase. In Fig. 6.3, 

the points where the maxima were located are depicted as red crosses. 

The beginnings of each compression phase were defining the starts of consecutive 

strides ts,i and ts,i+1, with i and i+1 indicating the respective stride number. Within 

the boundaries of one single stride, the point of maximum compression tm,i was 

identified by a linear search. The points of maximum compression are depicted as 

red circles in Fig. 6.3. The end of the compression phase tc,i (depicted with red 

stars in Fig. 6.3) was defined by the first sample value after maximum compression 

that was greater than the mean value before the actual compression phase minus 

two sample units. The reliability of this method was tested by visual inspection of 

449 measured strides from six subjects (Eskofier et al., 2009a). The end of the 

compression phase was always identified at the correct position. 

6.2.4 Feature Extraction 

From every step, eleven hand-selected features were calculated (Tab. 6.1 and 

Fig. 6.3). These basic features were denoted by F1…F11. In order to add context 

information, the means N and standard deviations N over the features of the 
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preceding N = {4, 8, 16} steps were also calculated. These features were denoted 

N(Fn) and N(Fn), and were calculated from the n = 1, …, 11 basic features. For 

standard deviation calculation the unbiased version given in Eq. (6.2) was used. In 

this equation, cm denotes a single calculated feature value for stride number m and 

c is the mean value of the respective feature values. 
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The gradients of all eleven basic features using N = 16 steps were also calculated 

and were denoted g16(Fn). Consequently, a total of Nf = 88 features were 

calculated. For feature extraction, the first five minutes of each run were not 

considered to ensure that the runners were warmed up and accustomed to data 

collection. 

The obvious redundancy that was contained in these 88 extracted features was 

volitional. It was a goal from the start to use only a subset of the originally 

computed features in order to reduce complexity and to use only features with 

small or no mutual dependence. The feature subset selection algorithm will be 

presented below. 

When conducting the speed classification experiments, it was noticed that a runner 

dependent feature rescaling considerably improved the result. A rescaling to the 

[0, 1] interval for each feature Fn of a runner according to 
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  (6.3)

was therefore implemented for each of the n = 1, …, Nf, = 88 features for the 

speed classification experiments. In this equation,  denominates the rescaled 

feature value. 

nF̂
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6.2.5 Labeling 

After consulting four sports experts, three classes according to running speed v 

and surface inclination, respectively, were defined (Tab. 6.2, Tab. 6.3). The class 

definition was chosen in a way that the resulting ranges of running speeds and 

inclinations covered an approximately equal amount of the distribution of the 

respective values for a typical training run. For this definition, an internal adidas 

report was used that had investigated relevant running speed and inclination 

distributions. In Tab. 6.2 and Tab. 6.3, k = 1…3 indicates the class number. Each 

detected step was labeled for the subsequent classification experiments according 

to these classes using the measured ground truth speed and surface inclination 

signals. 

Tab. 6.1. Definition of the eleven basic features. From these, additional features 
were derived by computing context information over multiple steps. The 
resulting feature vector had 88 dimensions. 

 Nr. Name     Formula 

F1 Inter step time   ts,i+1 – ts,i 
F2 Time to peak    tm,i – ts,i 
F3 Maximum compression  f [tm,i] (measured value at tm,i) 
F4 Compression time   tc,i – ts,i 

F5 Mean compression   1/F4,i   

ic

is

t

tm
mf,

,
 

F6 Step mass center   1/F7,i      
ic

is

t

tm is mftm,

,
,  

F7 Step energy      

ic

is

t

tm
mf,

,
 

F8 Normalized compression time F4 / F1 
F9 Normalized time to peak  F2 / F4 
F10 Compression gradient  (f [tm,i] – f [ts,i]) / F2,i 
F11 Decompression gradient  (f [tc,i] – f [tm,i]) / (tc,i – tm,i) 

 



 117

 

Tab. 6.2. Definition of the three classes according to running speed v. 

Class Class definition [m/s] 

1,v 

2,v 

3,v 

   0 v 2.5 
2.5 v 3.6 
3.6 v 

Tab. 6.3. Definition of the three classes according to surface inclination . A 
negative value indicates that the athlete was running downhill. 

Class Class definition [deg.]

1, 

2, 

3, 

  3 
3°  3 
  3°  

6.2.6 Classifiers 

In the classification experiments, five different classifiers were compared in order 

to evaluate their performance on the measured data. The selected classifiers were 

chosen because each of them can be implemented on an embedded 

microprocessor. More specifically, these classifiers were used for the evaluation: 

 Bayes Classifier (BC). The BC makes use of the assumption that all 

features are mutually independently distributed (Niemann, 1983). This 

assumption allows a straightforward estimation of the classifier parameters 

from the samples that are used for classifier training by direct mean and 

variance computation. The resulting linear discriminant function gk can be 

computed by a multiplication of each feature with a weight factor, adding the 

results of the multiplications and comparing the sum against a threshold. 

Due to this simplicity, the BC is well suited for embedded implementation. 

The BC has been proven to perform well in many classification tasks 

(Domingos and Pazzani, 1997; Langley et al., 1992). 
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Fig. 6.3. Illustration of the eleven basic features. From these, additional features 
were derived by computing context information over multiple steps. The 
resulting feature vector had 88 dimensions. 

 Linear Discriminant Analysis (LDA). The LDA classifier is based on Fisher’s 

(Fisher, 1936) work on discriminant methods. It is a transformation that aims 

at minimizing the variability within a class, and maximizing the distance 
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between classes. When LDA is applied for classification, the feature space 

is effectively projected onto a single axis. On this single axis, a linear 

decision boundary is applied for differentiation. In contrast to BC, the full 

covariance of the distribution is considered. However, the resulting linear 

discriminant function gk can be implemented in the same simple way as for 

the BC. Applications of LDA can be found in a variety of fields, including 

face recognition (Lu et al., 2003) and document classification (Ye and Li, 

2005). 

 Polynomial Classifier (PC). The PC does, in contrast to BC and LDA, not 

use the parameters of the distribution of the features in the sample used for 

classifier training, but estimates the discriminant function gk directly from 

this training sample (Niemann, 1983)). Different polynomial degrees can be 

used. In the present study, given that a simple classification rule for the 

embedded system had to be used, a linear polynomial was chosen. The 

estimation of the discriminant function gk is then performed by solving a 

least squares systems of equations. The discriminant function gk that results 

is again linear and can be implemented in the same simple way as for the 

BC and LDA classifiers. The PC has been shown to obtain good 

classification results in a variety of studies (e.g. Liu and Sako, 2006; Franke, 

1997). 

 Support Vector Machine (SVM). Support Vector Machines operate by first 

transforming the features into a high dimensional space (Vapnik, 1998). 

This transformation can be computed quite efficiently by different kernel 

functions (Schölkopf and Smola, 2002). In the present study a linear kernel 

was chosen, again due to reasons of computational simplicity. After the 

kernel transformation, a linear decision boundary with maximum margin is 

established in the resultant high dimensional space. While the process of 

training is complex, it is computed on a desktop PC and therefore not 
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relevant for the implementation of the classifier on the embedded system. A 

standard SVM implementation was used throughout the present study 

(“libSVM” (Chang and Lin, 2001), freely available on the web). Support 

Vector Machines obtain high classification rates in many pattern recognition 

tasks (Sapankevych and Sankar, 2009). Numerous applications of this 

classifier exist, including image classification (Chapelle et al., 1999) and 

email categorization (Drucker et al., 1999). 

 Multilayer Perceptron Classifier (MLP). The MLP is built to simulate neuron 

interaction in the human brain (Specht, 1990). The neurons are 

implemented by multiple single nodes that are connected in multilayer nets 

(Duda et al., 2001). Each node has an input and an output. A feature value 

that is input into the node is subjected to a specified nonlinear function, e.g. 

a sigmoid function. Weights specify the contribution of individual nodes to 

the classification result. These weights are adjusted during classifier training 

according to different learning strategies (Hagan and Menhaj, 1994). The 

resulting discriminant function gk is nonlinear. For the classifier 

implementation, the complete weight structure multiplication and the 

evaluation of the nonlinear (e.g. sigmoid) function needs to be performed on 

the embedded system. While this is still practicable, considerable higher 

computational demands are posed to the embedded system. MLP 

classifiers are frequently applied and several survey articles cover them 

(e.g. Baxt, 1995; Chua and Yang, 1988; Hunt et al., 1992). 

With these classifiers, each vector of observed features x = (F1…F88) was 

assigned to the class k for that the discriminant function gk of the respective 

classifier is maximal. In the experiments, five-fold cross-validation was performed 

in order to ensure generalizability of the results. In each of the cross-validation 

iterations the classifier was trained using all but the feature vectors from one 

specific fold. Subsequently, the feature vectors from the remaining fold (the test 
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set) was classified according to maximum gk. The mean classification accuracy 

was then computed as the average over all cross-validation iterations. To ensure 

that feature vectors were equally distributed over all classes, 10,000 vectors from 

each class were randomly selected from the collected data. The equal distribution 

of feature vectors per class allowed using equal priors e.g. for the Bayes Classifier. 

Classification accuracies were deemed significant if the null hypothesis that 

classification was random could be rejected using a binomial test with significance 

level  = 0.01. 

6.2.7 Feature Selection 

Due to the requirement that all computations had to be made in real-time on the 

employed microprocessor of the “adidas_1”, it was impossible to implement a 

classifier based on the complete set of 88 features. A feature selection algorithm 

was therefore implemented, the dynamic programming algorithm (Niemann, 1983). 

It required that the initial feature set was rather small, and that the scoring metric 

was monotone and separable. This is true for the Mahalanobis distance 

(Mahalanobis, 1936) 

   lk
T

lklk μμμμG  1
, Σ  (6.4)

between two classes k and l. In Eq. (6.4), k and l denote the class means and 

 is the common covariance matrix of all features. The dynamic programming 

algorithm was applied in multiple iterations using the Mahalanobis distance 

criterion. In each iteration, one single feature was added that gave the highest 

improvement for the worst class pair. 

1Σ
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6.2.8 Microprocessor Implementation 

The number of features that was possible to be computed in real-time on the 

employed microprocessor of the “adidas_1” was empirically found to be only two. 

Therefore, for the microprocessor implementation, the best performing two 

features had to be chosen. However, combinations of more features were also 

evaluated, because they could be implemented in future “adidas_1” versions that 

employ computationally more powerful microprocessors. 

In order to demonstrate the ability of the developed methodology to perform 

accurately on the embedded microprocessor of the “adidas_1” shoe, the best 

classification system (according to the results on a desktop PC) was implemented 

on this microprocessor. The first important framework requirement for this 

implementation was the limited size of the internal memory (256 Bytes). This 

meant that the program had to be as short as possible to save ROM and that it had 

to economize on variables. Moreover the classification had to be done in real-time 

with the available computing power. The microprocessor of the “adidas_1” was 

clocked with 24 MHz, which posed considerable demands to the embedded 

classification algorithm. Finally, a floating point unit was lacking and therefore all 

computations had to work with integer operations only. 

Considering this different hardware architecture, a final evaluation of the 

performance of the classification system on the embedded microprocessor was 

made. For this purpose, the classification decisions made by the microprocessor 

were compared with those of a desktop PC. For the multi-class decision system a 

one-against-one approach was used, where the decision for every class against 

each other was calculated. The one class that won the most decisions was the 

selected class. If two classes won exactly the same number of comparisons, the 

selection depended on the iteration sequence, and a decision for the first 

considered class was always made. In the case of a three class problem this was 
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equal to a decision tree of depth 2. Therefore, two decision functions per step were 

calculated. 

6.3 Results 

6.3.1 Inclination Classification 

The resulting classification rates for the inclination classification are given in 

Fig. 6.4. Fig. 6.4 shows the class-wise averaged classification rates that were 

obtained using one to six features that were selected according to the feature 

selection algorithm for each classifier. 

The results of the feature selection algorithms showed that the most important 

features for this task were μ16 (F2), μ16 (F9) and μ16 (F11). These are the mean 

values over 16 steps computed from time to peak, normalized time to peak and 

decompression gradient, respectively. Those features were, in the given order, 

selected in almost all cases for the classification. It can be seen that by using more 

features, better classification results were achieved in general. The best accuracy 

of 67.2 % class-wise mean accuracy was reached by using six features and the 

MLP classifier. This classification result is significantly different from random 

(p < 0.001). The confusion matrix for this case is given in Tab. 6.4. 

Tab. 6.4. Confusion matrices for six features when using the MLP classifier for 
inclination classification. Classification accuracy values are given in %. 

Classified as 1,v 2,v 3,v 

labeled 1,v 

labeled 2,v 

labeled 3,v 

54.6 22.6 22.8
  5.5 87.8   6.7
19.7 21.1 59.2 
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Fig. 6.4. Inclination classification results with feature selection. Depicted are the 
class-wise averaged rates. 

6.3.2 Speed Classification 

The resulting classification rates for the speed classification are given in Fig. 6.5. 

Fig. 6.5 shows the class-wise averaged classification rates that were obtained 

using one to six features that were selected according to the feature selection 

algorithm for each classifier. 

 

The results of the feature selection algorithms showed that the most important 

features for this task were μ16 (F3) and μ16 (F1). These are the mean values over 16 

steps computed from maximum compression and inter step time, respectively. 

Those features were, in the given order, selected in almost all cases for the 

classification. It can again be seen that by using more features, better classification 

results were achieved in general. The classification accuracies showed a 

noteworthy rise when using two features for all classification approaches. For 

some approaches (BC, SVM, MLP), another considerable rise in the classification 

accuracies was noticed when using four features. The best accuracy of 89.2 % 
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class-wise mean accuracy was reached by calculating six features and applying 

the MLP classifier. This classification result is significantly different from random 

(p < 0.001). 

 

Fig. 6.5. Speed classification results with feature selection. Depicted are the 
class-wise averaged rates. 

For the two-feature case (the number of features that could be computed on the 

currently employed microprocessor of the “adidas_1”) the best results were found 

using the SVM classifier and features μ16 (F3) and μ16 (F1). The class-wise mean 

accuracy was 74.6%, which is significantly different from random (p < 0.001). The 

confusion matrix for the SVM two-feature case is given in Tab. 6.5. 
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Tab. 6.5. Confusion matrices for two features when using the SVM classifier for 
speed classification. Classification rates are given in %. 

Classified as 1,v 2,v 3,v 

labeled 1,v 

labeled 2,v 

labeled 3,v 

73.7 11.7 14.7
  4.0 74.9 21.1
  7.7 17.0 75.2 

 

6.3.3 Microprocessor Evaluation 

Due to the low classification rates of the surface inclination system, only the SVM 

two-feature speed classification system was implemented on the product version 

of the “adidas_1” shoe. Only the trained classifier was implemented, using the 

Support Vectors in the decision process. For the speed classification case, the 

classification decisions made by the microprocessor were compared with those of 

a desktop PC. The tests showed that 99.2% of the classification decisions were 

the same. 

6.4 Discussion 

The inclination classification (Fig. 6.4) could not be performed with high 

classification rate. A major reason for this result was the fact that the quality of the 

signal measured with the “adidas_1” was decreasing with increasing inclination 

(both up- and downhill). This can be seen in the confusion matrix (Tab. 6.4) for this 

case, which showed to be unbalanced with a preference for the class for the low 

inclination range. Further examination of the data revealed that the reason for this 

unbalance was that the measurement sensor was located in the heel part of the 

shoe. When running up- or downhill at certain inclinations many runners tended to 

land more on the mid- or forefoot. In consequence, less overall compression was 

sensed. This resulted in a reduced signal to noise ratio and thus in a lower 
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classification accuracy. To resolve this issue, at least a second sensor would have 

been needed in the front part of the shoe. Using such a sensor, additional 

information would have been available for classification. The incorporation of a 

second or even more sensors, therefore, is part of the future research work within 

this project. 

The speed classification accuracies showed a considerable rise when using two 

features for all classification approaches (see Fig. 6.5). Another noteworthy rise 

was noticed when using four features for some approaches (BC, SVM, MLP). The 

result that adding more features, and therefore more information, to the 

classification process and to then obtain higher classification rates is often 

observed in pattern recognition (Duda et al., 2001; Theodoridis and Koutroumbas, 

2009). The particular result in this study suggested using either two or four 

features for the final implementation on the microprocessor. Because of the limited 

hardware of the microprocessor, only the two feature approach was possible. In a 

future implementation on a computationally more powerful microprocessor, more 

features might also be implemented based on the results. The two selected 

features for classification were μ16 (F3) and μ16 (F1), as these were performing best. 

Although the MLP classifier delivered results that were among the best for all 

conducted classification experiments, it was not chosen for the final 

implementation. First, it is computationally more demanding in a working 

classification system than the other classifiers. The BC, LDA, PC and SVM 

classifiers all have a different approach to classifier training, with typically 

increasing complexity. In the working classification system, however, all these 

classifiers pose a similar demand to the system they are implemented on. Only the 

MLP classifier is computationally considerably more demanding with its necessity 

of a more complex incorporation of the neuron weights and the requirement of the 

evaluation of the nonlinear function. Second, in the two feature case, the SVM 

classifier obtained the highest accuracies in any case. Thus, a decision was made 
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to use SVM in the final microprocessor implementation. The confusion matrix in 

Tab. 6.5 for this case showed that the SVM yielded nearly equally good results for 

all classes. This meant that no speed class was considerable favored over 

another. This is an advantage of the system, because it prevents an 

overestimation of a certain prevailing speed condition. 

The runner dependent feature rescaling was needed in order to obtain more 

accurate classification results. This rescaling thus had to be implemented on the 

microprocessor, which might be considered a disadvantage due to the additional 

calculational effort. However, the additional computational effort was low because 

only the current extreme values of the two features selected for implementation 

had to be stored in memory. Those were updated regularly, this way the shoe 

adapted to different runners. Moreover, the actual computation of the rescaling 

could be efficiently implemented and thus the real-time requirements could still be 

met. 

The fact that the microprocessor classification results were the same as the results 

on a desktop computer in 99.2% of classified steps showed that it was feasible to 

do all the evaluations that require high computational effort on desktop computers 

while only evaluating the final product solution on the embedded microprocessor. 

The obtained classification results were practically the same on both systems. This 

confirms the results shown in a previous study (Eskofier et al., 2009a). The 0.8% 

of steps that were not classified in the same way as on the desktop computer were 

a negligible minority. Although a deficient implementation of the classification 

algorithms on the desktop PC could, in principle, also be the reason for the 

discrepancy, the different classification results were mainly ascribed to the different 

hardware architectures of both systems, e.g. a missing floating point unit on the 

microprocessor. 
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The core idea for enabling embedded classification was using computationally 

simple features and classifiers that could also be implemented on embedded 

microprocessors. Furthermore, all comparative experiments were performed on 

computationally powerful desktop computers, and only the best solution was 

implemented and validated on the embedded hardware. This approach was again 

successful, and an accurate embedded speed classification system could be 

developed. The proposed methodology will be helpful in many tasks in sports 

where classification on embedded systems has to be performed. 

6.5 Summary 

This research demonstrated the application of pattern recognition methods to 

detect running surface inclination and running speed using heel compression 

measured with the “adidas_1” running shoe. A set of 88 features was manually 

designed that was suited for the classification task at hand. The features were 

computationally inexpensive and could be calculated using the embedded 

microprocessor of the “adidas_1” shoe. Several classifiers that are suited for 

embedded implementation were compared with respect to their classification rate. 

Subsequently, it was shown how a subset of the original 88 features, which were 

most important for the classification task, could be identified. The applicability of 

the developed speed classification system was demonstrated by implementing and 

evaluating it on the embedded microprocessor of the “adidas_1”. Thus, a 

classification of the prevailing running speed was performed directly on the 

embedded system. 

It was shown that in the three-class inclination case, a classification rate of 67.2% 

could be obtained using six features and a MLP classifier. Better performance was 

not possible due to the fact that only the heel compression was measured, and for 

the classification of some track inclinations this available sensor information was 
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insufficient. However, it was demonstrated that if continuously good heel 

compression signals were available, as it was in the three-class speed 

classification case, acceptable classification rates of 74.6% could be achieved 

using only two and even 89.2% using six features. This result suggested that a 

trained automatic system could quite precisely support the athlete, for example by 

providing more shoe stiffness and thus more stability by the “adidas_1” running 

shoe when the sportsman was running faster. 
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CHAPTER 7 REAL TIME SURVEYING AND MONITORING 
OF ATHLETES USING MOBILE PHONES 
AND GPS 

7.1 Introduction 

Information about the subjective feeling of athletes is very important for many 

domains. One example is sports product testing. Details such as appearance, 

functionality, handling and ergonomics are important points that have substantial 

influence on the choice of the customer. The subjective feeling of athletes 

concerning their equipment therefore is an important criterion for the success of a 

product. Another example is perception research, where information about the 

perceptive state of an athlete is collected over a longer period of time. Training and 

performance optimization can also benefit from this information. 

The common problem is to access the desired information while the athlete is in a 

typical situation. Real-time surveying is of course possible in a lab environment, 

e.g. on a treadmill. This has already been done for example by (Acevedo et al., 

1996) and (O'Halloran et al., 2004) in psychological studies. The obvious 

disadvantage is that the results are biased due to the nonnatural lab situation. The 

more normal situation of a long distance outdoor run, for example, is much harder 

to assess because direct contact to the athlete is complicated or not possible at all. 

In most cases, the desired subjective as well as objective information is collected 

after the respective sports activity. (Abele and Brehm, 1985) have done this in a 

study where they wanted to assess the change in the mental state of athletes 

caused by a set of different sport activities. The participants had to answer 

questions concerning their subjective actual feeling-states before and after a 60 to 
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90 minute course of physical activity. When following this procedure, part of the 

information is lost because it is not possible for the athlete to memorize all 

individual details of his perception. It is more desirable to access the desired 

information at certain time points or after reaching for example a certain waypoint 

on a predefined route in real-time.  

To achieve this, we designed and implemented a system for the surveying of 

runners using mobile communication equipment, i.e. a standard mobile phone. For 

this specific project we decided to use the Java Platform, Micro Edition (Sun, 

2002b; Sun, 2007) as programming language because it is implemented on most 

mobile phones. The advantages of the cell phone hardware platform are manifold. 

It is lightweight, mobile and highly configurable. There is no extra cost associated 

with hardware development, only the software has to be adapted to the specific 

requirements at hand. Most mobile phones are highly suitable because of their 

advanced computational power. Communication and real-time data transmission 

could also be implemented easily if desired. 

The system we implemented fulfills the following requirements: 

 Predefined questions are handed over to the system as audio files, 

associated answers are recorded. 

 The athlete is asked the questions at certain predefined time points.  

 Alternatively we implemented the option to react to certain external events. 

This includes for example significant changes in running speed or altitude 

and the achievement of waypoints. External hardware like GPS receivers 

can be connected to the phone via Bluetooth to enable this. 

 Headsets can be connected to the mobile phone via Bluetooth as well to 

assure maximum comfort for the athlete. 

 If desired, arbitrary audio files (music) can be played between the question 

units for the purpose of motivating the sportsman. 



 133

 

 Configuration of the system is possible both directly on the cell phone or a 

personal computer. 

Once the configuration is completed, the software requires no further interaction. 

That way, it could be used at anytime that is convenient for the test person. 

Starting the predefined survey program requires only the press of a button. 

We will give a short overview of previous work on the topic of athlete monitoring. In 

the following, the important building blocks of our system will be explained. We will 

also show an experimental evaluation of our mobile monitoring solution with 84 

runners. This evaluation was done within the scope of a larger psychological study 

for which subjective information during a one hour outdoor run was needed. As a 

result and conclusion we will show that our system is highly reliable, providing very 

valuable information about the psychological and physiological state of an athlete. 

7.2 Previous Work 

The authors know of no previous work that aims at implementing a sports 

monitoring and surveying device by using the capabilities of a mobile phone. There 

are, however, several publications that deal with the same topic. An obvious 

example are telemonitoring devices that rely on radio transmission. (Wang et al., 

1992) showed the application of such a device in shell rowing. The disadvantage 

of such systems is that the athlete might get out of transmission range and 

information would be lost. An extensive review by (Armstrong, 2007) gives an 

overview about other applications of wireless connectivity for health and sports 

monitoring. None of the reviewed publications implements a method for getting 

real-time feedback about the subjective state of an athlete. 

(Hallberg et al., 2004) present a system that monitors heart rate and location of an 

athlete via GPS. The information is sent via GPRS to a media server that provides 
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an enriched media experience to viewers of sports events. They also showed the 

practical usability in an example for cross country skiers. However, no direct audio 

feedback from the athlete concerning the subjective fitness and psychological state 

is featured. 

Another application of GPS and physiological information was presented by 

(Saupe et al., 2007). They also use Google Earth for the visualization of 

physiological parameters as well as information about endurance sport training 

activities on a large high resolution display. In contrast to our work, no direct 

subjective information is acquired for the analysis.  

7.3 Methods and Materials 

7.3.1 Java Platform, Micro Edition 

One of our framework requirements was that our software should work with a 

broad range of mobile phones. The Java Platform, Micro Edition (Java ME) is 

preinstalled on most phones and therefore fulfills this requirement. We 

consequently chose this software platform for our implementation. 

The capabilities of an environment for the Java Virtual Machine in the Micro Edition 

are defined by three important building blocks, see Fig. 7.1. The most basic is the 

device configuration. Most common for mobile phones is the Connected Limited 

Device Configuration (CLDC) as specified by (Sun, 2007). It specifies the minimum 

hardware requirement. In the current version 1.1 these requirements include a 16-

bit or 32-bit processor, 32 kByte RAM and at least 160 kByte non-volatile memory. 

The high level programming interfaces are defined by profiles. The Mobile 

Information Device Profile (MIDP) is built on the CLDC and offers basic APIs for 

programmers. The current version 2.0 (Sun, 2002b) offers user interaction classes, 
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security management and basic file connection capabilities. The third important 

building block for software development on mobile phones are the optional APIs. 

Phone manufacturers can decide, which of these packages called Java 

Specification Requests (JSR) they want to implement on their devices. Factually, a 

lot of these additional packages are standard and can be used on most phones. 

Important optional APIs for our software are the: 

 Mobile Media API (JSR 135, (Sun, 2006b)) for playing and recording sound 

files and video processing. 

 File Connection API (JSR 75, (Sun, 2004)) for file handling. 

 Bluetooth API (JSR 82, (Sun, 2002a)) for Bluetooth connectivity. 

 Location API (JSR 179, (Sun, 2006a)) for position determination. 

Applications that build on the MIDP and any of the optional blocks are commonly 

referred to as MIDlets. 

 

Fig. 7.1. High level Java ME architecture view. 
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7.3.2 Mobile Phone Hardware 

For the development of our MIDlet software we had to restrict ourselves to mobile 

phones that offer a CLDC 1.1 compatible hardware and MIDP 2.0 with the optional 

APIs as stated above. Most of the current cellular phones fulfill this requirement. 

We wanted to show with our reference implementation that our software is working 

on different types of mobile phones. The companies Nokia and Sony Ericsson 

offered the best online support for developers, we therefore chose a Sony Ericsson 

W850i (116 g), a Nokia N70 (126 g), a Nokia E50 (104 g) and a Nokia 6110 

Navigator (125 g), see Fig. 7.2. Each of the selected devices offers a slot for 

memory cards and thus enough capacity to store information even for very long 

studies. The phones are all lightweight and have high battery capacities for more 

than 4 hours of active use. 

                               

Fig. 7.2. Selected phone models. From left to right the Sony Ericsson W850i, the 
Nokia N70, the Nokia E50 and the Nokia 6110 Navigator are shown 
(Nokia, 2007; Sony-Ericsson, 2006). 

7.3.3 Development Environment 

Both selected phone manufacturers offer developer tools that provide device 

emulators and advanced debugging capabilities. This is very important for MIDlet 
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development because error identification on the mobile platform can be very 

tedious. The software development itself was done with NetBeans 5.5 with mobility 

pack. The manufacturer SDKs can easily be integrated in this development 

environment, additional tasks like code obfuscating and optimization are thereby 

provided. 

7.4 Implementation Details 

7.4.1 Software Structure 

The evaluation system had to be easily configurable and very flexible in order to 

support a lot of different devices and study options. Questions and position data 

had to be recorded as well as predefined sound files played to the athletes. The 

software had to work with minimum preparation time and no user interaction at all 

once the tests were running. The building blocks of our software that are shown in 

Fig. 7.3 will be explained in the following. 

 

Fig. 7.3. Structural diagram of the software for the evaluation system. 
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7.4.2 XML-Parser 

The configuration of question units and storage location for the recorded sound 

files and position information was done with a XML file. Additionally, we stored 

information like start time, recorded files, identification number of the mobile phone 

and other information in a XML info file after the survey was completed. Because 

XML parsing is only supported by JSR 172, which is seldom implemented, we had 

to come up with our own parser. 

The system can be configured to play sound files at certain time points or in 

reaction to external events, e.g. when a predefined distance has been covered. 

Subsequent to the questions, answers can be recorded; in this case a short sound 

is played at the beginning and the end of the recorded time span. The system can 

also be configured not to record after playing a sound file in case the athlete 

should be briefed, e.g. to decrease the pace. Another option is silent recording, i.e. 

recording without playing any sound at all. We used this option to capture the 

breathing noise of the runner in order to be able to determine the respiratory 

frequency. 

7.4.3 Audio capabilities 

The audio part supports threaded playing and recording in order to allow for 

example seamless position information storing even during question units. The 

configuration is done in one single XML file. In case there is an overlap of sound 

files, i.e. in the event that the combined playback and recording duration is longer 

than the span to the desired start of the next unit, this overlap is automatically 

resolved. Fig. 7.4 illustrates this further. The order of the question units in the 

configuration file defines the precedence for the overlap resolution. 
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Fig. 7.4. Overlap resolution. Audio files are played in the order that is defined in 
the configuration file. 

The audio codec is automatically selected dependent on the sound files to play. 

For recording, we used a codec suited for speech. We found that a bit rate of 

128 kbit per second with a sample rate of 8 kHz was sufficient for our purposes. 

7.4.4 GPS Integration 

GPS integration was an integral part of the software development in order to have 

access to speed, altitude and position information. The software works for phone 

models with integrated GPS like the Nokia 6110 Navigator as well as with an 

external GPS receiver (e.g. a Nokia LD-3W) connected via Bluetooth. The GPS 

data is sent in an interval of approximately one second, which is sufficiently precise 

for the purpose of recording running position information. Each sample consists of 

longitudinal and latitudinal position information, speed of movement, altitude, time 

information and various precision and validity parameters. 

The data is stored in the original NMEA (National Marine Electronics Association) 

format (Langley, 1995), as well as directly converted to the KML (Keyhole Markup 

Language) format used by Google Earth. This conversion allows for a quick and 

easy method of visualizing the run. Run parameters like speed and psychological 
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state can be represented as height above ground (see Fig. 7.5 in the results 

section 7.6) or color coded. 

7.4.5 Graphical User Interface 

The GUI that we developed extends the limited window manager provided by Java 

ME. It allows changing several configuration options, to connect to the internal or 

external GPS device and view the current position information. Once the surveying 

process is started, no further user interaction is required in order to minimize 

interference with the athlete. 

7.5 Experiments 

Experimental evaluation of the system was performed in the context of a 

psychological study with 84 runners in Portland, Oregon (USA). While the details 

of the study itself are beyond the scope of this paper, the relevant points for the 

evaluation of our mobile surveying system will be given. 

The objective of the study was to appraise the subjective feelings of the runners 

during a recreational run. Each athlete participating in the study was asked to run 

outdoors for one hour. They could freely choose their preferred route and speed as 

we could record these parameters with the GPS signal. We chose to use the Nokia 

6110 Navigator cell phones for the purpose of this study as they have an inbuilt 

GPS receiver. This prevented that the runners had to carry an external GPS 

receiver as extra equipment. The phones were placed in a belt that was attached 

to the upper arm of the participants. The runners also wore a Bluetooth headset to 

ensure maximum comprehensibleness. 

Before starting the run, an audio file with instructions was played to the 

participants, followed by a first set of 8 questions. After each question, a short 
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sound was played to indicate the start of the recording interval. The end of the 

three second recordings was marked by another sound. The athletes were 

instructed to answer each question about their subjective state with a self-rated 

grade as given in Tab. 7.1. An example question is “Do you feel motivated?”. 

Tab. 7.1. Grades for the athlete self-rating. 

Spoken answer Meaning

0 
1 
2 
3 
4 
5 
6 

not at all 
very little 
little 
somewhat 
rather 
very 
extremely 

Directly following this first question unit the runners were asked to start their one 

hour run. During this run, question units identical to the first one were posed with 

an interval of 5 minutes between the start of each unit. A total of 13 question units 

with 8 answers per unit were thus recorded for each athlete. 

7.6 Results 

 

The mobile surveying system worked without technical difficulties for all 84 

runners. A total of 8736 sound files with self-rated subjective state information 

were recorded. We transcribed the audio files by listening to them and then 

manually entering the spoken answers in a data matrix. We found that 355 sound 

files (4.1%) were unusable, i.e. containing no meaningful answers. The main 

reason for this was that at the beginning of the study, we did not clearly enough 

emphasize the fact that the answers should be spoken in between the two sounds 
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indicating the recording time. Consequently, a lot of runners spoke their answers 

right after the questions were asked when we started the evaluation. We therefore 

changed the set of instructions after the 19th participant so that the record interval 

was clearly explained. After this change, only 62 entries could not be acquired, 

mostly because the runners were exhausted at the end of their runs and did not 

answer in time. In summary it can be said that as long as the athletes gave their 

answers during the recording time, the information was audible and could be 

transliterated. No audio sample was lost due to malfunctioning of the mobile 

phone. 

We also collected a questionnaire after completion of each run. Among other 

details, we wanted to know how much impeded the athletes felt by the additional 

equipment. The results can be seen in Tab. 7.2. It can be seen that most runners 

perceived the cell phone and headset as very little or little impeding. Only 4 out of 

84 athletes found the equipment to be hindering. 

Tab. 7.2. Impediment by the additional equipment as perceived by the 84 study 
participants. 

Perceived impediment Number of runners 

very little 
little 
some 
much 
very much 

51 
29 
2 
2 
0 

It was also very important that the GPS signal recording worked in order to get 

reliable position and running speed information for our study. After analysis of the 

recorded data, we found that only 0.07% (173 out of 260214) of the position 

samples were unusable. Because of the fact that in no case two consecutive 
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samples were missing, it was straightforwardly possible to interpolate the 

unavailable position information with a linear estimation strategy. 

Fig. 7.5 illustrates the GPS information for one example runner. The image is 

based on Google Earth. The speed is displayed as the height of the colored band 

along the running track. Thus, the chosen running track and speed can easily be 

analyzed. We can also show the subjective states, in the example of Fig. 7.5 the 

state of perceived fatigue is displayed color coded. Yellow means little or no 

perceived fatigue. The redder the band becomes, the higher is the perceived 

fatigue state of the athlete. It can clearly be seen that the perceived tiredness is 

increasing during the run. This visualization allows for a straightforward and 

convenient analysis of the interplay between various parameters like elapsed time, 

speed, elevation circumstances and subjective state. Additional data, e.g. heart 

rate, can easily be integrated into the visualization if present. 

 

Fig. 7.5. Visualization of running speed for a 1 hour example run in Portland, 
Oregon, USA. 
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7.7 Conclusion and further work 

We designed and realized a system for collecting real-time subjective, 

physiological and other information about a sports session. For the implementation 

we made use of the advanced computational power and the multimedia 

capabilities of mobile phones, which offer a high adaptability through software 

packages tailored to the problem at hand. Our system is capable of asking 

questions about the subjective state of an athlete as defined in a configuration file 

or as a reaction to external events. Other information like speed and position can 

be collected via an internal or external GPS receiver. It is also possible to connect 

other sensors like heart rate monitors using Bluetooth connection. 

The system has already proven its usability in practice. The system has been 

found to be not hindering to the sports activity of running by a majority of 84 

athletes. Run information has been collected for an hour for each of the athletes 

with 100% reliability for the audio information and 99.93% reliability for the position 

information. The position and other information can very conveniently be visualized 

using Google Earth. The data of this ongoing study is currently analyzed, the 

results will be the topic of another presentation. 

Our system could also be used for evaluation of other outdoor and endurance 

sports like rowing, cross-country skiing and biking. It is highly mobile, lightweight 

and applicable even for long studies due to extendable memory and high battery 

capacities. To our knowledge, it is the first time that a surveying system has been 

implemented on a mobile phone. 
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CHAPTER 8  SUMMARY AND DISCUSSION 

In this chapter, a summary of the thesis work and a general discussion of the 

methodology is presented. The results corresponding to the research questions 

that were defined in Chapter 1 and the related hypotheses are summarized first. 

Then, a general discussion of strengths and weaknesses of the applied methods is 

conducted, followed by a synopsis of the significance of the findings. 

Subsequently, suggestions for future work are presented and finally the thesis is 

concluded with a short overall summary. 

8.1 Summary of results 

A summary of the results of this thesis with reference to the six research questions 

(cf. Section 1.3) and corresponding hypotheses is presented below. 

8.1.1 Research result one 

Research question one was concerned with group classification using generic 

features for biomechanical data. 

In the research work for this thesis, generic feature sets for biomechanical 

locomotion data were developed. The generic features could be calculated from 

the ‘analog’ time-dependent locomotion data directly. Two approaches were 

employed for this purpose. In the biomechanical classification study in Chapter 3, 

locomotion data was first processed using an inverse dynamics approach to yield 

kinematic and kinetic time series. From them, generic features were extracted 

using basic, regression and frequency domain features. In the second 
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biomechanical classification study in Chapter 4, measured data from 3D marker 

positions was directly used for generic feature computation by utilizing PCA 

dimensionality reduction. 

Both approaches allowed group classification with acceptable classification rates. 

In Chapter 3, a classification of gender and shod vs. barefoot classes was 

conducted with the generic features that were developed. 

Hypothesis H1 stated that using generic features for biomechanical data, a class-

wise mean classification rate of at least 80% is possible for gender classification. 

In the experiments, a classification rate of 84.7% was obtained for two groups with 

40 subjects in each group. This result was significantly different from random 

(p < 0.001). 

Hypothesis H2 stated that using generic features for biomechanical data, a class-

wise mean classification rate of at least 80% is possible for shod versus barefoot 

classification. For these groups, a classification rate of 98.3% was obtained. This 

result was also significantly different from random (p < 0.001). 

However, gender and shod versus barefoot groups were not the only ones that 

were examined. In Chapter 3, groups of runners that developed patellofemoral 

pain syndrome and matched runners that did not during a prospective study were 

also examined. For these groups, all trials of each runner could be assigned to the 

correct group. This corresponds to a classification rate of 100%. This result was 

significantly different from random (p < 0.001). In Chapter 4, groups composed of 

young and elderly subjects could be differentiated with a classification rate of 

95.8%. Although not explicitly reported in the study, this result was also 

significantly different from random. 
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8.1.2 Research result two 

Research question two was concerned with feature selection and ranking methods 

for biomechanical data. It was examined whether these methods are capable of 

identifying the measured variables containing the discriminating information. 

In Chapter 3, it was shown that this identification is possible and that the reduced 

feature set still facilitated acceptable classification rates. For the purpose of feature 

ranking, the AdaBoost classifier was applied in a specific implementation with 

decision stumps as weak classifiers. These weak classifiers employed thresholds 

in single feature dimensions for classification. In this process, the feature with the 

most important contribution to class discrimination was selected. By counting how 

often a feature contributed to the discrimination, a ranking of the calculated 

features was facilitated. The results of the study in Chapter 3 showed that using 

this feature selection and ranking method, previous results that were published in 

the literature could be confirmed. Additionally, previously unidentified variables that 

were important for group discrimination could be identified, for example the hip 

abduction moment with respect to the development of PFPS. A further discussion 

of the application of feature selection in biomechanical studies is conducted in 

Section 8.2.1 below. 

8.1.3 Research result three 

Research question three was concerned with the ability of pattern recognition 

methods to show high-dimensional dependencies of classes on features for 

questions of biomechanical group classifications. 

It was shown in both biomechanical group classification studies that for most 

groups that were examined (with the single exception of the patellofemoral pain 

classification in Chapter 3, see below), combinations of features were needed to 

achieve acceptable group differentiation. In the study in Chapter 3, three different 
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groups were investigated. For the groups based on gender, it was shown that two 

features from different kinematic measurements were consistently selected for 

group differentiation. More specifically, these two variables were the variance of 

the hip flexion-extension moment and the variance of the vertical ground reaction 

force (Fig. 3.2). Although other variables were selected as well, these two were 

required in any case to obtain a high classification rate. Both variables have 

individually been shown to be different for gender groups (cf. Section 3.4). 

However, to the knowledge of the author, it was previously not shown that a 

combination of these variables is beneficial for gender group differentiation. This is 

a clear advantage of the data mining aspect of the thesis. Exactly the same 

reasoning is valid for the two features that were consistently selected for 

shod/barefoot group classification, which were the quadratic polynomial 

component of the foot sagittal plane angle and the linear polynomial component of 

the shank sagittal plane angle (Fig. 3.3). The necessity for combination of these 

features for this differentiation task had, to the knowledge of the author, also not 

been revealed previously. 

The results in Chapter 3 also showed that only one feature (Fig. 3.4) was 

necessary for perfect group differentiation for runners that did or did not develop 

patellofemoral pain syndrome. This result illustrates that a high-dimensional 

combination of features is not necessary if the information for perfect group 

classification is already present in one variable. Nevertheless, the advantage of the 

proposed classification methodology is that such single feature is also identified 

automatically and unbiased. Moreover, only a small population of runners that 

developed the investigated injury type was available in that particular study (cf. 

Chapter 3). It is possible (and typical for larger samples) that in a larger population 

of injured and non-injured subjects, the group classification may again depend on 

a combination of features. However, it was demonstrated in the other group 

classification tasks that these combinations of features can be revealed by the 



 150

 

chosen pattern recognition approach. It can therefore be speculated that the 

algorithms that were applied would also successfully identify a combination of 

features that would be needed for group classification in a larger sample. 

In the study in Chapter 4, it was additionally shown that a combination of features 

leads typically to better classification rates compared to using only single features, 

which was stated in Hypothesis H3. In that study, which was concerned with young 

vs. elderly gait classification, the classification rate when using only a single 

feature (Fig. 4.3) was 62.5%. The maximum classification rate that could be 

achieved was 95.8% using 36-39 features. This change in classification rate is 

statistically different (p < 0.001). This is in support of Hypothesis H3. 

A different novel approach for showing high-dimensional dependencies for 

biomechanical group differentiation tasks was also presented in this study. With 

the applied methodology, it was possible to show group differences in gait directly 

in the original marker space. This was made possible by employing the 

classification decision boundary, i.e. the information about the largest group 

differences, as a basis for the movement difference visualization. The groups 

under investigation in this study were clinically not very relevant, but the proposed 

difference visualization might be a promising technique for the analysis of 

pathological gait. 

8.1.4 Research result four 

Research question four was concerned with the suitability of pattern recognition 

methods for obtaining acceptable classification rates on embedded microprocessor 

hardware. 

For this purpose, a general methodology was presented (Chapter 5 and Chapter 6) 

that allowed the implementation of classification algorithms on embedded 

microprocessors. The considerations were general and applicable to a wide range 
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of embedded classification tasks. Firstly, considerations were made regarding 

what types of features were suited for implementation on microprocessors. These 

features needed to be computationally inexpensive but nevertheless they had to 

represent the information available from the sensor measurements as well as 

possible. Secondly, requirements that a classifier must fulfill in order to be suitable 

for a limited performance hardware environment were identified. Feature reduction 

with the chosen classifier was proposed in order to keep the computational 

demand for the embedded device as small as possible. All computationally 

expensive calculations were performed on PC hardware, and only the final solution 

was then implemented and reevaluated with the embedded microprocessor. 

An example task of embedded data classification in sports was investigated and 

successfully solved. It was shown that the types of features and classification 

algorithms were able of obtaining acceptable classification rates on an embedded 

microprocessor. In Chapter 5, the classification of two surface classes was 

conducted with the methodology that was developed. Hypothesis H4 stated that 

using this methodology, an on-system classification rate of at least 80% is possible 

for this task. In the experiments, it was shown that a classification rate of more 

than 80% could be consistently obtained in different scenarios (Tab. 5.8). Although 

not explicitly reported, this result is significantly different from random and in 

support of Hypothesis H4. In Chapter 6, the classification of three speed classes 

was considered with the same methodology. Hypothesis H5 stated that using this 

methodology, an on-system classification rate of at least 80% is possible for the 

speed classification task. In the experiments, it was demonstrated that a 

classification rate of 89.2% is indeed feasible (Fig. 6.5). This result was shown to 

be significantly different from random (p < 0.001). The result thus supports 

Hypothesis H5. 
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8.1.5 Research result five 

Research question five was concerned with the ability to effectively test the 

developed algorithms for microprocessors on the embedded hardware. 

For this purpose, the important key concept (cf. Chapter 5 and Chapter 6) was to 

perform all the comparative experiments using computationally powerful desktop 

computers. Only the final trained classifier solution that was most promising was 

then implemented on the embedded hardware and only this implementation was 

tested. Given that all the considerations that were made in the methodological part 

were correct, the results of the experiments on the desktop computers and those 

on the embedded hardware had to be identical. It could then also be assumed that 

the proposed algorithm represented the optimal solution for the given embedded 

classification task. 

In Chapter 5 and Chapter 6, this methodology was used to verify the results on the 

embedded microprocessor. Hypothesis H6 stated that by using this methodology 

the classification rate on the embedded device and the one achieved during testing 

on a desktop machine leads to the same result. In the experiments conducted in 

this study, it was shown that both classification rates were indeed identical, which 

is in support of Hypothesis H6. 

8.1.6 Research result six 

Research question six studied the ability of an embedded system to collect high-

quality data for classification purposes while at the same time being unobtrusive. 

An embedded system implementation was developed for this purpose (Chapter 7). 

It was programmed to specifically perform athlete monitoring, data collection and 

subsequent information processing. It was designed so that it was applicable in a 

range of data collection tasks. Its data collection ability was shown in real-world 
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studies, and in these studies it was evidenced that it was not hindering an athlete 

during sports activity. 

During the research work for this thesis, it additionally became apparent that a 

software tool for visualizing the collected sports data was desirable. Such a tool 

was implemented and its usability for data visualization was demonstrated. This 

tool for outdoor sports data visualization and its experimental evaluation was 

published earlier (Eskofier and Melzer, 2009). 

8.2 Strengths and weaknesses 

The different methods that were applied in the studies presented in this thesis 

have several general strengths and weaknesses. First, the pros and cons of the 

biomechanical group classification studies that form Chapter 3 and Chapter 4 are 

discussed, followed by the same discussion for the embedded classification 

papers of Chapter 5 and Chapter 6. 

8.2.1 Biomechanical group classification studies 

In Chapter 3, successful group classification was reported for gender, shod versus 

barefoot and injury groups. However, the application of the proposed classification 

methodology is not restricted to these specific groups. Other group classifications, 

including clinical or performance groups, can be conducted straightforwardly. For 

these other group classifications, the classification system as a whole does not 

have to be changed. It only has to be provided with the group information, i.e. 

labels have to exist that define the group membership. The classification system 

can then be retrained using these labels and group differentiability can be tested. 

The same is true for the classification algorithms in Chapter 4. Clinically more 
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relevant groups can be straightforwardly analyzed if different group labels are 

available. 

In the study in Chapter 3, generic features were calculated using time series of 

kinematic and kinetic variables as an input to the classification system. However, 

in Chapter 4, it was argued that a classification system that is directly based on 

marker measurements has advantages for the analysis of biomechanical gait data. 

The question why kinematic and kinetic variables were used as basis for the 

classification study in Chapter 3 therefore needs to be discussed. The 

disadvantage of a classification system that is only based on markers is that the 

moment and force distribution within the human body can not be taken into 

account. Several functional aspects that may, for instance, be a reason for injury 

development, can therefore not be accounted for. As an example, the result of the 

study in Chapter 3 showed that group classification was possible with perfect 

classification rate for groups composed of runners that developed patellofemoral 

pain syndrome and runners that were asymptomatic. Further investigation 

revealed that one single feature, the mean value of the hip abduction moment, was 

sufficient for this group classification. The appropriate manipulation of this variable 

may therefore play a preventive role for patients who are predisposed to 

patellofemoral pain. In order to generate this clinically relevant statement, it is 

required to include the moment and forces distribution within the human body. 

Whether to use the marker-based or the kinematics/kinetics based approach is 

therefore dependent on the specific research task. In Chapter 3, the latter 

approach was deliberately chosen, also because the marker-based methodology 

may be helpful in future studies (Section 8.4) relating to the direct analysis of gait. 

The study that was included in Chapter 4 claimed that anthropometric differences 

were removed by the analysis procedure that was described there. The mean 

position from each marker was removed in order to only use the positional 

variation of each marker for the analysis. However, all aspects of anthropometric 
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differences could not be claimed to be removed by this procedure. The variation of 

each marker position might also be affected by anthropometric differences. For 

example, a tall person might exhibit more variation in the general hand movement 

than a shorter one. Nevertheless, the main aspects of height difference could 

certainly be claimed to be considered by the mean marker position removal. 

Furthermore, the difference in positional variation that was originating from aspects 

of anthropometric differences could be assumed to be small, and they could not 

explain the high classification rates that could be obtained in Chapter 4 alone. 

A shortcoming of the included biomechanical group classification studies can be 

seen in the fact that just one specific feature selection and ranking strategy was 

applied. However, the important point to note is not what feature selection is 

applied, but that some selection scheme should be considered in a classification 

study. This is because feature selection reduces the computational complexity of 

the classifier (Begg and Kamruzzaman, 2005) and can lead to better classification 

rates (Wu et al., 2007). Furthermore, the result of Chapter 3 showed that feature 

selection can be employed for pointing out group discriminating variables, for 

example for sport injuries. Such variables that have been identified to discriminate 

pathological from asymptomatic subjects can then be used for further investigation 

into the causes for developing a specific injury. In order to obtain these 

advantages, it is therefore advisable for researchers to consider at least one of the 

available feature selection and ranking strategies (cf. Section 2.1.3.3) in a 

biomechanical group classification study. 

The last point about the functional interpretation of the reasons for group 

differentiation also indicates a different shortcoming of the biomechanical studies 

that were presented in Chapter 3 and Chapter 4. The methodologies that were 

proposed were all aimed at an information representation that was as complete as 

possible. This approach, which is typical for pattern recognition systems, has the 

advantage that all important aspects are included. The group classification rates 
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that can be obtained are therefore typically high. However, in this pattern 

recognition approach, the functional understanding of the reasons for group 

differentiation may not be obvious. This is because the outcomes of the pattern 

recognition approach may be variables that are difficult to interpret. This 

interpretation may be easier when individual variables with a more functional 

meaning (i.e. knee angle at toe off, hip moment at mid stance) are used for 

analysis. This more traditional approach provides group identification factors that 

are typically easy to interpret. The disadvantage of the more traditional approach is 

that the researcher never knows whether the right variables have been selected. 

Furthermore, the group identification levels are frequently found to be low. In 

summary, it can be said that both approaches have complementary strengths and 

weaknesses. The introduction of techniques from pattern recognition into 

biomechanical analysis procedures might therefore be considered as valuable 

additional tools to gain this complementary information. 

8.2.2 Embedded classification studies 

In the embedded classification studies (Chapter 5 and Chapter 6), an approach for 

microprocessor implementation of pattern recognition algorithms was presented. 

This approach was constructed to be generally applicable. Nevertheless, it needs 

some adaptation when transferred to a different embedded system. This is 

because certain specific considerations must be made for every pattern 

recognition system (cf. Section 2.1), which is independent of the embedded 

classification task. Possible changes may be required for the preprocessing 

methods, the applied features and the selected classifiers. Thus, the presented 

approach is not directly applicable in every conceivable application. However, the 

core ideas that were discussed play a role in any application on embedded 

hardware, and they are transferable to general embedded classification tasks. 

More specifically, the design of manual features allows embedded classification 
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systems to be computationally simple, while still representing the available 

information in the measured sensor signals adequately. Feature selection allows 

identifying a set of features for implementation on the embedded microprocessor 

that can be computed in real-time and obtains high classification rates. Finally, the 

selection of classifiers that are suited for embedded implementation and their 

comparison with regard to the obtainable classification performance allows a 

sound embedded classification system design. 

The manual feature generation that was employed in the embedded classification 

studies in Chapter 5 and Chapter 6 has some disadvantages that require further 

discussion. Manual feature design is more time intensive than generic feature 

extraction approaches (cf. Section 2.1.3.2). Furthermore, manually designed 

features are specific to a given application and not straightforwardly transferable 

like generic features. In some scenarios where computationally more powerful 

microprocessors are employed, it is conceivable to use generic feature extraction 

strategies like Fourier transformations or Principal Component Analysis. However, 

for computationally less powerful systems, generic feature extraction strategies are 

often prohibitive. By following the general considerations made in this thesis, the 

additional work for manual feature design can be minimized. With the availability of 

these designed features, their benefits (i.e. their low computational complexity and 

dense information representation) can be exploited for embedded classification. 

Another shortcoming of the work done in this thesis can be seen in the fact that the 

applicability of the developed embedded classification strategy was only shown in 

a single real world application, the ‘adidas_1’ shoe (Chapter 5 and Chapter 6). 

Although different groups were considered in the related studies, the input sensor 

signal and hardware environment was always the same. However, the purpose of 

this thesis was focused on reporting the general ideas for embedded classification 

system implementation. These ideas are straightforward to apply to various 

different embedded classification tasks. Indeed, the developed methodology has 



 158

 

already been employed in other application scenarios than the ‘adidas_1’ shoe, 

e.g. for fatigue classification in a mobile application (Horz, 2008), for the 

classification of user interaction in household appliances (Haas, 2008) and for 

movement classification based on gyroscopic sensor data from runners (Tüxen, 

2009). In all these scenarios, the general ideas that were presented in Chapter 5 

and Chapter 6 were applied and the classification tasks were successfully solved. 

The classification rates that have been reported in the embedded studies were 

acceptable for the questions at hand. Since the embedded classification systems 

were already employed in real-word application scenarios, there is of course a 

desire to further improve these results. It was, however, not possible to improve 

the classification rate given the embedded system presented in Chapter 5 and 

Chapter 6. Nevertheless, only one sensor was used for classification in these 

studies. Better classification rates can therefore be expected when data from 

multiple sensors becomes available. This has also been evidenced in the above-

mentioned additional embedded classification studies (Haas, 2008; Horz, 2008). In 

these studies that utilized the methodology presented in this thesis, it was shown 

that better classification rates than the ones reported in Chapter 5 and Chapter 6 

could be obtained due to the availability of more sensor information. 

The data collection study that was included in Chapter 7 was not a dedicated 

classification study. At first view, it could be argued that the content of this 

particular chapter does not fit fully into the thesis. However, when regarding the 

classification flow chart (Fig. 1.1) it becomes obvious that the data input for 

classification is an integral part of any pattern recognition system. High 

classification rates can not be obtained without first collecting high-quality data for 

the classification task. In the light of this argument, a study that specifically 

targeted data collection using embedded systems for locomotion studies was an 

integral part of the discussion of the complete classification procedure that was 

conducted in this thesis. 
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8.3 Significance of findings 

The attempt of this thesis was to contribute to the body of knowledge regarding 

group classification including: 

1. Different strategies for feature generation and selection, both in the context of 

biomechanical and embedded group classification. 

2. The demonstration of the ability of various classifiers to produce significant 

classification rates in different biomechanical group classification tasks. 

3. The identification of specific combinations of features needed in order to 

differentiate groups based on biomechanical data. 

4. The demonstration of a single specific feature that is an important indicator for 

the classification of patellofemoral pain. 

5. The introduction of a method to use the resulting classification boundary for 

visualizing gait group differences directly. 

6. The demonstration of the benefits of a comparative analysis of different feature 

extraction and classification methods for embedded classification. 

7. A discussion how to implement the complete classification pipeline on restricted 

embedded hardware environments. 

8. The development of implementation strategies for employing mobile embedded 

devices for self-sufficient data collection from athletes. 

Overall, the thesis answered new, important questions. The results have the 

potential to be implemented in future embedded classification applications and in 

analysis strategies for biomechanical studies. To the best of the author’s 

knowledge, the discussed aspects were either only partially addressed or never 

addressed in the previous literature. 
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8.4 Future work 

Several ideas for future studies resulted from the research for this thesis. First, it 

was demonstrated that indicators for sport specific injuries can be identified when 

applying pattern recognition methods to prospective biomechanic data sets 

(Chapter 3). One of the intended goals of future work is the evaluation of the 

proposed methods based on kinematic/kinetic variables on further studies 

including: 

1. The identification of injury probability due to anatomical characteristics. For this 

purpose, groups containing cases of defined clinically relevant groups and 

asymptomatic subjects need to be analyzed. 

2. The development of an injury severity indicator. So far, due to the limited 

amount of data, it was only attempted to classify two groups (injured or not 

injured). Having more data available, the severity of the injury could additionally 

be taken into account in the classification. 

The gait pattern classification based on direct feature calculation from 3D marker 

positions in Chapter 4 will also be applied to clinically more relevant groups. The 

next steps in this research direction will be: 

1. The analysis of the effect of cognitive tasks on gait. Cognitive and motor control 

tasks that have to be executed at the same time have already been shown to 

influence balance and stability (Huxhold et al., 2006; Lindenberger et al., 2000). 

Gait data for such dual tasking situations has already been collected at the 

Human Performances Lab. The analysis method presented in Chapter 4 is 

planned to be used for the further evaluation of this study. 

2. The classification of clinically more relevant groups. So far, groups composed 

of elderly and young subjects were analyzed. However, the walking gait 

classification method can also be applied to pathological gait groups, for 
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example cerebral palsy gait. The gait differences in pathological groups vs. 

healthy subject groups can also be visualized using the methodology in 

Chapter 4. 

3. The employment of nonlinear relationships for gait classification. The study in 

Chapter 4 used only linear relationships for group differentiation. However, the 

applied PCA and SVM algorithms can both take nonlinear relationships into 

account by employing nonlinear kernel functions (Schölkopf and Smola, 2002; 

Wu et al., 2007). The application of such methods can be speculated to 

increase the classification result further. 

Future work is also intended on aspects of embedded classification. 

Microprocessors are already being used in a manifold of sports and biomechanics 

related applications (Baca et al., 2009). The research work on embedded 

classification that was performed in this thesis (Chapter 5 and Chapter 6) is 

intended to be further employed in applications in: 

1. Real-time classification systems for athlete support. A concrete example is the 

classification of the fatigue state of an athlete. 

2. Embedded classification systems in areas outside of sports. An example is the 

classification on microprocessors in household appliances. Manufacturers of 

household appliances have a desire to prevent dangerous situations during the 

operation of their devices. For instance, children should not be able to operate 

electrical ovens. The recognition of these potentially dangerous states can 

reduce the risk for consumers to sustain damage. 

It is also planned to further employ embedded systems for monitoring purposes. A 

software solution tailored for mobile phones for a running data collection study was 

already presented in Chapter 7. Similar systems could be used in: 

1. The evaluation of other outdoor and endurance sports. It is currently planned to 

extend the application to rowing, skiing and biking. 
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2. The monitoring of risk patients. In Chapter 7, a mobile phone provided the 

basis for the implementation of the data collection tool. It is intended to further 

exploit the networking capabilities of the mobile phone for the purpose of, for 

instance, sending an alarm to a monitoring station in the case of an emergency. 

8.5 Summary 

This thesis had two main purposes. 

The first purpose was to show the applicability of pattern recognition methods to 

biomechanical data, which was demonstrated with two different studies that 

resulted in high classification rates for different group classification tasks. Two 

possible methods to generate generic features for biomechanical data were 

presented, both from kinetic/kinematic measurements and directly from marker 

position data. Furthermore, it was demonstrated that pattern recognition methods 

are capable of identifying what combinations of features are needed to differentiate 

the groups. Additionally, it was shown that the resulting difference information can 

be visualized for the purpose of further analysis. 

The second purpose of this thesis was to discuss a general methodology for 

embedded classification. It was demonstrated that manual feature design, feature 

selection and a careful choice and implementation of classifiers for implementation 

are important factors for embedded classification. Using the proposed approach, 

the ability to produce acceptable results in several sports biomechanics related 

classification tasks was demonstrated. 
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APPENDIX 

Two classification approaches (Support Vector Machines and AdaBoost) were not 

thoroughly explained within the thesis due to word limitations of the respective 

included manuscripts. Those approaches were, however, important for the results 

that were obtained within the thesis. Therefore, further information about these 

algorithms is given here. 

Support Vector Machine 

A Support Vector Machine (SVM) uses a set of m training feature vectors 

 with each vector belonging to one of two classes ,,...,1, min
i x  1,1iy , to 

find a decision hyperplane of dimension n-1 that linearly separates both classes 

(Vapnik, 1998; Burges, 1998). The distance of the training vectors that are closest 

to this hyperplane (these are called the Support Vectors), is tried to be maximized. 

For this reason the SVM is called a maximum margin classifier. 

The decision function of the SVM has the form , see also )sgn()( bf t  xwx

Fig. 4.2. In this decision function, w is the normal vector of the decision hyperplane 

and b is the distance from the origin of the hyperplane. From all possible decision 

hyperplanes, the SVM identifies the one with the minimal quadratic norm of w, 

thus, the problem of finding the optimal hyperplane can be rewritten as 

b

t

,
2
1

min

w

ww 





 , 

(A.1)

 

subject to   ,...1,1 miby i
t

i xw  which is equal to maximizing the distance of 

the Support Vectors to the plane. The normal vector w can then be expressed as a 

linear combination 
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iii yα
1

xw , (A.2)

of the training vectors. With this, the decision function can be rewritten as 

 byαf
m t

iii   xxx
1

sgn)( . (A.3)

A feature vector is then assigned to one of the two classes depending on the sign 

of the decision function. 

Usually, a linear separation in the given feature space is not possible, thus, the 

feature vectors are mapped to a space of higher dimension. This is done by using 

a kernel function K that is a dot product of the feature vectors as 

)(Φ)(Φ),( j
t

ijiK xxxx  , (A.4)

where  denotes a function which maps a feature vector to a (usually) higher 

dimensional space. The underlying idea is that in a higher dimensional space, it is 

more likely possible to find a hyperplane that separates the classes linearly. 

Different kernel functions are available for this purpose (

)(Φ x

Schölkopf and Smola, 

2002), for example linear, polynomial or radial basis function kernels. 

For non-linearly separable cases even in higher dimensions, slack variables are 

introduced into the optimization task. The optimization task is a convex 

programming problem, and can be solved using standard optimization packages. A 

well written tutorial publication about all the different aspects of Support Vector 

Machine implementation can be found in (Burges, 1998). A reference 

implementation (‘libSVM’) that covers many aspects of the classifier as well as 

allows to test and compare different kernel functions is freely available in the web 

(Chang and Lin, 2001). 
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AdaBoost 

For AdaBoost and, specifically, its often used variant AdaBoost.M1, additional 

information to Chapter 3 can be given using pseudocode. This was shown in a 

very well organized overview publication (Polikar, 2006), which covers also other 

aspects of boosting. The pseudocode given in this publication looks as follows: 

 Input: Sequence of N examples S = [(xi, yi)], i = 1,…,N with labels yi Ω , 

,,,  where C is the number of classes. Ω 1 Cωω 

 Input: Weak learning algorithm WeakLearn. 

 Input: Integer T specifying number of iterations. 

 Initialize: NiD /1) , which is the initial weight distribution. (1 

 Do: for t = 1,…,T: 

o 1. Select a training data subset St, drawn from the distribution Dt. 

o 2. Train WeakLearn with St, receive hypothesis ht. 

o 3. Calculate the error of ht: 



iit yhi
tt iDε

)(:

)(
x

. If 2/1tε , abort. 

o 4. Set ).1/( ttt εεβ   

o 5. Update distribution 


 
 otherwise

yhifβ

Z

iD
iDD iitt

t

t
tt ,1

)()(
)(: 1

x
, where 

  is a normalization constant chosen so that 1tD  

becomes a proper distribution function. 


i

tt iDZ )(

 Test: Weighted Majority Voting. Given an unlabeled instance x, 

o 1. Obtain total vote received by each class 

.,...,1,
1

log
)(:

Cj
β

V
jt ωht t

j  
x

 

o 2. Choose the class that receives the highest total vote as the final 

classification. 
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GLOSSARY 

Accelerometer 

A measurement instrument used to determine acceleration. Usually, they possess 

a small mass that is connected to a stiff spring. Typically, the spring deflection is 

measured when the mass is accelerated. 

AdaBoost 

A classifier. AdaBoost is a meta classifier that combines multiple simple classifiers 

to a strong one. The resulting decision boundary is nonlinear. 

Anthropometry 

The study concerned with measuring the proportions, size, and weight of the 

human body. 

Artificial Neural Network 

See Neural Network. 

Biomechanics 

A scientific discipline that examines forces that act upon and within biological 

structures. Furthermore, the effects that are produced by such forces are 

investigated. 

Class 

One of a discrete number of categories that a classifier assigns an object to. The 

object is represented by a feature vector. 

Classification 

The process of assigning a feature vector to a class. 
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Classification rate 

A measure of the ability of a classification system to correctly assign an unknown 

object to its class. 

Classifier 

An algorithm from pattern recognition that facilitates the classification of objects 

into a number of classes. 

Coronal plane 

An imaginary plane that travels vertically from the top to the bottom of the body, 

dividing it into forward (anterior) and backward (posterior) sections. It is 

perpendicular to the transverse and sagittal planes. 

Cross-validation 

A method for evaluating a statistical model that has free parameters. The training 

data is divided into several parts, and in turn one part of the data (the test set) is 

used to test the procedure that is fitted to the remaining parts (the training sets). 

Cross-validation also provides an estimation of the generalization performance of a 

classification system. 

Curse of dimensionality 

The problem caused by the exponential increase in volume associated with adding 

extra dimensions to a (mathematical) space. 

DCT 

See Discrete Cosine Transform. 
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Decision boundary 

A hypersurface that partitions the feature space into several subspaces. In a 

classification problem with two classes, two subspaces are for example 

constructed. The classifier will classify all the points on one side of the decision 

boundary as belonging to one class and all points on the other side as belonging to 

the other class. 

Decision criterion 

See decision boundary. 

Decision stumps 

A simple classifier. It performs a threshold decision in one or multiple feature 

dimensions. It is not commonly used on its own, since very few problems can be 

accurately classified using a simple threshold. Typically, multiple decision stumps 

are used in the AdaBoost learning algorithm as simple classifiers. The decision 

boundary that results from a single decision stump is linear. 

Discrete Cosine Transform 

A transform that is used to represent the frequency content of a time series. 

Electromyography 

A technique for evaluating and recording the muscle activation. EMG 

measurement is performed using an instrument called an electromyograph, to 

produce a record called an electromyogram. 
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Embedded system 

A computer system designed to perform only a few dedicated functions, frequently 

with real-time computing constraints. It often consists of a microprocessor, sensing 

unit, additional hardware and mechanical parts. The microprocessor is thus 

embedded as part of a complete device. By contrast, a personal computer, is 

designed to be flexible and to meet a wide range of end-user needs. Embedded 

systems control many devices in common use today. 

EMG 

See electromyography. 

Feature 

The individual measurable properties of the objects being observed. Choosing 

independent and discriminating features is key to any pattern recognition algorithm 

in order to be successful in classification. Features are usually numeric, however 

structural features (graphs, strings, etc.) are sometime also employed. The 

classification success is critically dependent on the choice of features. Therefore it 

is helpful to consider multiple representations of the same data (i.e. different 

features). 

Feature extraction 

The process of computing a feature representation from an input signal. 

Feature ranking 

The process of assigning each individual feature a measure of importance for the 

classification task. Often, feature selection is done according to the feature ranking 

result. 
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Feature reduction 

Reducing the number of features for classification by combining features, for 

example using a principal component analysis. In contrast to feature selection, the 

information from all computed features in contained in the reduced representation. 

Feature selection 

Reducing the number of feature for classification by removing features that are 

irrelevant for classification, or by selecting features that are most relevant for 

classification. The criterion is usually the obtainable classification rate. In contrast 

to feature reduction, only the information from the most relevant computed features 

in contained in the selected representation. 

Feature space 

The space where each measured object is represented as a point in a high-

dimensional space. The dimension of the space is determined by the number of 

features used to describe the objects. Similar objects from the same class are 

ideally grouped together. 

Feature vector 

A representation of data suitable for classification. Each individual feature is 

concatenated into the feature vector representation. The feature vector for 

classification is typically of constant length and defines the dimensionality of the 

feature space. 

Force 

It is not possible to define force. However, the effects of force can be defined. 

Force is normally represented by a vector, with magnitude and direction. 

Force plate 

An measurement instrument used to determine the magnitude and direction of the 

ground reaction force beneath the foot during gait. 
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Frontal plane 

See coronal plane. 

Fundamental frequency 

The predominant frequency in a complex waveform. 

Gait 

Describes style and manner of locomotion, rather than the walking process itself. 

Generalization performance 

The ability of a classification system to correctly classify new samples, i.e. feature 

representations from objects that have not been used in the training set of the 

classification system. 

Generic feature 

Features that are not specifically adapted to the sensor input, as opposed to 

manual features. 

Inverse dynamics 

A method for computing forces and moments based on the kinematics of a body 

and the body's inertial properties (mass and moment of inertia). In practice, inverse 

dynamics computes the forces and moments from measurements of the motion of 

limbs and external forces such as ground reaction forces. 

Kinematics 

Describes motion without reference to the forces that are involved. An example of 

a kinetic instrument is a camera, which can be used to observe the motion of the 

trunk and the limbs during walking, but which gives no information on the forces. 
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Kinetics 

The study of mass, force, moments, and acceleration without the complete 

knowledge of the orientation and position of the objects that are involved. A force 

plate is normally used for measuring force during gait. 

Label 

An unambiguous, discrete identifier for a feature vector that assigns it to a specific 

class. It is unique for each class. 

LDA 

See Linear Discriminant Analysis. 

Linear Discriminant Analysis 

A classifier. It computes statistics from features before a classification with a linear 

decision boundary is conducted. 

Locomotion 

The process of movement from place to place through an act of self-propulsion. 

Mahalanobis distance 

A distance measure in statistics introduced by P. Mahalanobis. It determines the 

similarity of an unknown sample set to a known set. In contrast to Euclidean 

distance, it takes into account the correlations of the data set. 

Manual features 

Features that are specifically designed to represent characteristics of the input 

measurements, as opposed to generic features. 

Median plane 

See sagittal plane. 
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Microprocessor 

An electronic component that is made from miniaturized transistors and other 

circuit elements. These components are placed on a single semiconductor 

integrated circuit. It is a complete processing unit and capable of performing 

arithmetic and logical operations. 

Motion analysis 

The process of measuring locomotion, typically gait. Motion analysis is often 

conducted by attaching reflective markers to anatomical landmark positions. The 

3D position of these markers is then measured as a time series. 

Naïve Bayes 

A classifier. It assumes that the components of the feature vector are conditionally 

independent for each class. The resulting decision boundary is a quadratic 

function. 

Nearest Neighbor classifier 

A classifier. It assigns a new feature vector to the class that the k nearest 

neighbors of this feature vector possess in feature space. The resulting decision 

boundary is a nonlinear and unconnected. 

Neural Network 

A classifier. It employs a network of neurons that usually implement a logistic 

scaling function. The neurons are connected in the network by weight functions. 

These are adapted during training, and a nonlinear decision boundary results. 

Object 

In pattern recognition, an object is a real-world entity that is desired to be 

automatically assigned to a class. Examples are: audio signals in speech 

recognition, handwritten characters in character recognition and kinetic/kinematic 

measurements of subjects from defined groups for classification in biomechanics. 
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Object detection 

A subfield of pattern recognition. In object detection, images of real-world scenes 

are typically analyzed. The task of object detection is, for example, to recognize 

humans or cars in the images. 

Optical character recognition 

A subfield of pattern recognition. In optical character recognition, images of printed 

or handwritten characters are typically analyzed. The task of optical character 

recognition is to automatically transcribe the printed or handwritten characters to 

an electronic representation. 

Patellofemoral pain syndrome 

An inflammation of the patellar tendon in the knee. It results in pain and/or 

discomfort. 

Pattern classification 

See pattern recognition. 

Pattern recognition 

A scientific discipline with the goal to classify objects into a number of categories 

or classes. Pattern recognition and pattern classification are used synonymously 

throughout this thesis. 

PFPS 

See patellofemoral pain syndrome. 

Recognition rate 

See classification rate. 
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Regression 

The process of predicting the value of a random variable y from a measurement x. 

Regression is generalizing classification since y can be any quantity, including a 

class label. Many classification algorithms can be seen as thresholding the output 

of a regression. Curve fitting is the common special case of regression. 

Sagittal plane 

An imaginary plane that travels vertically from the top to the bottom of the body, 

dividing it into left and right sections. It is perpendicular to the coronal and 

transverse planes. 

Sensor 

A device that measures a physical quantity and converts it into an electronic 

representation. Sensors are often used in pattern recognition for measuring an 

object. Sensors can be part of embedded systems. 

Speech recognition 

A subfield of pattern recognition. In speech recognition, audio signals containing 

words or sentences are typically analyzed. The task of speech recognition is to 

automatically transcribe the utterance to an electronic textual representation. 

Support Vector Machine 

A classifier. It subjects features to a nonlinear transformation before a classification 

with a linear decision boundary is conducted. The linear decision boundary is 

computed by applying a maximum margin criterion. 

SVM 

See Support Vector Machine. 
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Test set 

A set comprising of feature vectors from one or different objects that is used for 

testing the classifier. The test set is unknown to the classifier (but labeled) and 

therefore allows evaluating the generalization performance and the classification 

rate of the classifier. This process is often automated using cross-validation. 

Time series 

A measurement of a variable that may change as a function of time. 

Training set 

A set comprising of feature vectors from different objects that is used for training 

the classifier, i.e. for defining the decision criterion. For supervised classifier 

training, the training set is labeled. After training, the test set is used to evaluate 

the generalization performance and the classification rate of the classifier. This 

process is often automated using cross-validation. 

Transverse plane 

An imaginary plane that travels horizontally, dividing the body into upper (superior) 

and lower (inferior) sections. It is perpendicular to the coronal and sagittal planes. 

Ubiquitous computing 

A concept of computing that is present in many aspects of daily life, often not 

noticed by the users. Ubiquitous computing may involve multiple different 

embedded devices in various appliances that often operate in the background. 

Wavelet 

A one-dimensional wave-like oscillation that is typically delimited in time. Attributes 

of a Wavelet are amplitude, frequency and phase. Wavelet transformations are 

used to represent time series simultaneously in frequency and time. 
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