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Molecular Genetic Investigation of Brain-Derived Neurotrophic Factor in
Childhood-Onset Mood Disorder
Masters of Science 2005
John Strauss

Institute of Medical Science, School of Graduate Studies, University of Toronto

ABSTRACT

Childhood-onset mood disorder (COMD) is a condition with pronounced morbidity.
Brain-derived neurotrophic factor (BDNF) has antidepressant-like effects at cellular and
molecular levels in animals; variants of the BDNF gene have been associated with
bipolar disorder. Two BDNF polymorphisms, a dinucleotide repeat, (GT),, and a single
nucleotide polymorphism (SNP), Val®*Met, were genotyped in 99 adults with COMD and
matched controls. The BDNF (GT), marker was associated with COMD (168 bp OR =
3.94, CI = 1.72 t0 9.04). Alleles of Val*®Met were not associated with COMD. The

haplotype val/short contributes to risk.

Studies in several species have implicated BDNF and catechol-O-methyltransferase
(COMT) in memory. In 63 young adults with a history of COMD, we genotyped three
BDNF polymorphisms and the COMT Val'%®1% Met SNP. Multivariate analysis of
variance (MANOVA) was employed to test hypotheses of association. We found no

evidence of association between the two loci and declarative memory phenotypes.
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1.0 Outline

Several recent investigations in the neurobiology of mood disorders have stirred interest
in brain-derived neurotrophic factor (BDNF) as a biomarker and potential genetic risk
factor. The research described in the present thesis is a logical route to pursue, as should

be clear by the end of the introduction.

In the Introduction, I will first outline the neurobiology of depression with an emphasis
on BDNF to present neurotrophic hypotheses of depression and memory dysfunction.
The complex phenotype of interest, namely childhood-onset mood disorder, will be
reviewed, including descriptions of phenotypic heterogeneity and comorbidity. The
reader will be provided with a rationale for use of memory measures as endophenotypes,
based on the memory deficits described in depression and the involvement of the

hippocampus in both mood disorders and memory.

Genetic studies of childhood-onset mood symptoms, including family, twin and
molecular studies will be reviewed. Evidence of the involvement of genetic factors in
memory will also receive attention. Following this, previous genetic association studies
in COMD will be reviewed, as will earlier studies of BDNF in mood disorder and of
BDNF and catehol-O-methyltransferase (COMT) in memory. The evidence to date will
be used to further construct candidate gene hypotheses. A brief summary of the
statistical design will be next, covering both case-control and multivariate designs.

Finally, specific hypotheses will be stated regarding BDNF as a candidate gene for

13



COMD. Both BDNF and COMD will be given consideration as candidate genes for

memory phenotypes.

In the Second Chapter, the case-control study which is in press will be presented in full.
The Third Chapter contains the investigation on BDNF, COMT and memory, also in

press.

In the Fourth Chapter, Discussion and Conclusions, I will summarize the rationale and
results of the investigations, convey some of the principal limitations and interpret the
results. Lastly, the Fifth Chapter, Future Directions, I address some of the environmental

factors involved in depression and BDNF regulation and offer possible hypotheses for

further experiments.

1.1 Neurobiology of MDD

1.1.1 Brain-Derived Neurotrophic Factor and The Neurotrophic Hypothesis of
Depression

Brain-derived neurotrophic factor (BDNF) is a nerve growth factor expressed in the
several brain regions including neocortex, hippocampus, and amygdala (Lindvall et al.
1994), where it influences neuronal survival, synaptic activity, plasticity and
neurotransmitter synthesis (Lang et al. 2004). The BDNF gene is found on chromosome
11p14.1 (Fang et al. 2003) and has several polymorphic markers. One BDNF
polymorphism is a microsatellite (GT), dinucleotide repeat initially reported by Proschel
et al. (1992). Another polymorphism is a functional coding region single nucleotide

polymorphism (SNP) at nucleotide position 196/758, which results in an amino acid
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change at codon 66 val—met (Val*®Met) (NCBI SNP Cluster ID: rs6265) of the
proBDNF molecule. The Val®*Met SNP is located in a section of the BDNF precursor
protein that is cleaved away, rendering the amino acid change absent from mature BDNF.
Substantial evidence implicating a role for BDNF in depression at a molecular and
cellular level has been reviewed in detail (Lang et al. 2004; Coyle and Duman 2003;
Nestler 2002; Altar 1999; Duman et al. 1999; Duman, 1998; Duman et al., 1997). The
hypothesis is that BDNF may be important to stress-related depression. Experiments
supporting the hypothesis demonstrate changes in BDNF expression, neural morphology
and neurogenesis that occur under stress. They are complemented by studies that show
reversal of such changes with antidepressant administration. The neural substrate

affected by BDNF appears to be specific cell types in the hippocampus.

In animal models, stress causes a quick and long-lasting decrement in hippocampal
BDNF. Down-regulation of BDNF has been noted in immobilization stress and
glucocorticoid treatment paradigms. The decrease in BDNF has been localized to the
dentate gyrus granule cell layer and CA1 and CA3 pyramidal cell layers of the
hippocampus (Smith et al. 1995; Nibuya et al. 1995). Persistent exposure to physical
stress in rodents or to psychosocial stress in nonhuman primates is associated with
atrophy of CA3 neurons in the hippocampus, by decreasing the length and number of
CA3 apical dendritic arbourizations (Sapolsky et al. 1985; Sapolsky et al. 1989;
Magarinos et al. 1996; Uno et al. 1999). Similar atrophy of CA3 pyramidal neurons in

the hippocampus has been seen in chronic glucocorticoid treatment (Woolley et al. 1990).

See Figure 1.
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Figure 1. Neurotrophic Effects of Stress and Antidepressant Treatment
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Reduced arbourization and synaptic density along with reduced BDNF expression are
observed in the stress/depressed state in the middle panel. In the right panel,

monoamines (i.e. antidepressants) are associated with increased BDNF expression,

improved arbourization and more synaptic connections.
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Antidepressant treatments down-regulate multiple serotonergic and adrenergic post-
synaptic receptors. However, they up-regulate post receptor levels of adenylyl cyclase,
cAMP-dependent protein kinase (PKA), cAMP response element binding protein
(CREB), BDNF and TrkB (Duman 1998; Duman et al. 1997). Long term antidepressant
treatment increases levels of adenylyl cyclase and PKA (Menkes et al. 1983; Ozawa and

Rasenick 1991; Colin et al. 1991; Nestler et al. 1989). See Figure 2.

Levels of BDNF increase in the dentate gyrus granule and CA1 and CA3 pyramidal cell
layers in rat hippocampus with chronic antidepressant treatment. The effect is specific to
a number of antidepressants with different mechanisms of action, including 5-HT and NE
reuptake inhibitors and electroconvulsive shock. It is not found with non-antidepressant
psychoactives such as opioids, cocaine or haloperidol. The temporal course and sites of
BDNF elevation coincide with CREB activation by antidepressant. Up-regulation of
BDNF occurs in cultured cells when cAMP or Ca2+-dependent pathways are activated
(Nibuya et al. 1995; Nibuya et al. 1996). The evidence above supports the hypothesis
that antidepressants increase BDNF via the second messenger post-receptor cascade, and

that CREB may be a common intracellular target for 5-HT and NE (Duman et al. 1999).

Chronic electroconvulsive shocks (ECS) induce BDNF and TrkB upregulation (Duman

and Vaidya 1998) and also increase CREB expression in hippocampus. The temporal

17



Figure 2. Antidepressants upregulate BDNF via Post-Receptor Second Messenger

Cascade
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Used with permission from Elsevier, Coyle and Duman 2003

AC adenylate cyclase

Akt protein kinase A, downstream from PI 3-kinase
bel-2 B-cell lymphoma associated protein 2
BDNF brain-derived neurotrophic factor

CAMK Ca®-calmodulin dependent protein kinase
cAMP cyclic adenosine monophosphate

CREB cAMP response element binding protein
DAG diacylglycerol

ERK extracellular-regulated protein kinase 1/2
GSK-3p glycogen synthase kinase-3 beta

IP; inositol triphosphate

Li lithium carbonate

MAP kinase mitogen-activated protein kinase
MARCKS myristoylated alanine-rich C kinase substrate
MEK MAP kinase kinase

PI3K phosphoinositide 3-kinase

PKA protein kinase A

PKC phosphokinase C

Raf molecule in the MAP kinase pathway

Ras molecule in the MAP kinase pathway

Rsk ribosomal S6-kinase

kB tyrosine kinase B receptor

VPA valproic acid

The two main pathways on the left are relevant to stress-related depression — the cAMP-
CREB pathway and the TrkB - ERK/MAP kinase pathway. Stimulation of the two
pathways with antidepressants causes increases in BDNF expression which results in
increased Bcl-2 expression and increases in neuronal plasticity, neurogenesis and cell

survival. The two pathways on the right are more relevant to bipolar disorder and are
beyond the scope of this project.
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course and sites of ECS regulated CREB expression are similar to those reported for

antidepressants (Nibuya et al. 1995; Nibuya et al. 1996).

Enhanced survival and arbourization occurs with BDNF and antidepressant treatment.
BDNF promotes growth and survival of cortical neurons (Ghosh et al. 1994) and 5-HT
and NE neurons (Mamounas et al. 1995; Sklair-Tavron and Nestler 1995). A decrement
in BDNF could adversely influence such neurons. The regeneration of cortical
catecholamine neurons in cerebral cortex is increased by antidepressant (Nakamura,
1990). Long-term ECS can increase sprouting of dentate gyrus granule neurons (Vaidya
and Duman 1996). Evoked potentials involving the dentate gyrus are increased in rats
following ECS treatment (Stewart and Reid 1994). Decreased neurogenesis of dentate
gyrus granule neurons has been found in adult animals subjected to acute stress and high
levels of glucocorticoids (Gould et al. 1997; Gould et al. 1998). In contrast, increased
neurogenesis of granule cells has been reported in adult mice exposed to an enriched
environment (Kemperman et al. 1997; van Praag et al. 1999). Neurogenesis of
hippocampal granule cells is increased by chronic antidepressant treatment (including
electroconvulsive seizures) (Madsen et al. 2000; Malberg et al. 2000; Manev et al. 2000;

Santarelli et al. 2003). See Figure 3.

Evidence indicates that BDNF causes similar behavioural effects to antidepressants in the
forced swim and learned helplessness models. BDNF was infused into rat midbrain
seven days before testing and completely reversed increased escape latency in the learned
helplessness model and improved performance by 70% in the forced swim test (Siuciak

et al. 1997). Midbrain BDNF infusion can to increase levels of 5-HT and metabolites in
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several forebrain sites including cortex, hippocampus, striatum and nucleus accumbens

(Siuciak et al. 1994, Siuciak et al. 1996).

Considering the evidence discussed pertaining to stress and antidepressant response,
BDNF may be linked to depression. Glucocorticoids and stress causes decreased levels
of BDNF in the CA1 and CA3 granule cells in the hippocampus, which are associated
with atrophy, cell death and decreased neurogenesis. Antidepressants may act to reverse
or block hippocampal changes via increased BDNF expression brought about by
serotonergic and noradrenergic signals (Duman et al. 1999). Bilateral dentate gyrus
BDNF infusion has produced antidepressant-like behaviour in the forced swim test and
learned helplessness paradigms (Shirayama et al 2002). The bulk of preclinical evidence

points to BDNF being a downstream element that mediates antidepressant effects at

molecular and behavioural levels.

Human investigations corroborate results in the preclinical BDNF literature.
Neuroimaging studies in depressed adults indicate hippocampal atrophy (Bremner et al.
2000; Sheline et al. 1996, 1999), which is compatible with BDNF downregulation.
Postmortem data from humans are convergent with a neurotrophic hypothesis of
depression: antidepressant therapy is associated with increased temporal cortex cyclic
AMP response element binding protein (CREB) concentration (Dowlatshahi et al. 1998)
and increased hippocampal BDNF immunoreactivity (Chen et al. 2001). Furthermore,
there is evidence of lowered serum BDNF concentrations in depressed human subjects

compared to controls (Karege et al. 2002) as well as elevated serum BDNF levels among
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Figure 3. Hippocampal Neurogenesis with Stress and with Antidepressants

Duman 2002
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In adult rodents and nonhuman primates, social or psychological stress is associated with
down-regulation of neurogenesis in the HC which may accompany hippocampal changes

observed by neuroimaging in human depression. Antidepressant administration causes
increased neurogenesis which may help to reverse the effects of stress on the HC.
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depressed patients treated with antidepressants compared to those remaining untreated
(Shimizu et al. 2003).

Evidence for the involvement of BDNF in the pathophysiology of mood disorders is
compelling. Furthermore, as will be described in Chapter 1.4.2, linkage and association

data from adult samples have increased the attention given to BDNF is a potential genetic

risk factor for mood disorder phenotypes.

1.1.2 A Neurotrophic Hypothesis of Memory Dysfunction

Several lines of evidence point to the involvement of BDNF in memory. Synaptic
strength is increased by BDNF. This is measured by long term potentiation (LTP), a
cellular model of learning and memory. Synaptic strength of hippocampal neurons is
increased following incubation with BDNF. Lower levels of BDNF in knockout mice
result in reduced LTP (Kang and Schuman 1995; Levine et al. 1995). Studies involving
antidepressants have not provided definitive results, showing both increased and reduced
LTP in the hippocampus (Birnstiel and Hass 1991; Massicotte et al. 1993). One study
exists showing improved spatial learning in rats treated with antidepressants (Yau et al.
1995).

BDNF is important to neuronal transmission and plasticity (Lu and Gottschalk 2000
Tyler et al. 2002; Vicario-Abejon et al. 2002) and it is important to in vivo memory
formation in the hippocampus (HC) (Alonso et al. 2002a). Several studies suggest that
BDNF has a role in learning and memory performance in differing mammalian and avian
species, including rats (Alonso et al. 2002b; Mu et al. 1999), chicks (Johnston and Rose
2001), and monkeys (Tokuyama et al. 2000). Thus, in vitro, animal and human

experiments all suggest BDNF is important to memory function.



1.2 Description of COMD Phenotype

The broad diagnostic category of mood or affective disorders includes conditions such as
major depressive, dysthymic, and bipolar disorder. The various mood disorders differ
from one another in several regards including overall clinical phenomenology, duration,
and course. However, the common feature of all mood disorders is pathologically
dysregulated mood which is accompanied by a cluster of characteristic cognitive,
neurovegetative, and behavioral symptoms and signs. Major depressive disorder is the

most prevalent of the various mood disorders in the juvenile years and has been studied

the most extensively.

Depression is a syndrome characterized by certain emotional, cognitive, and somatic
symptoms and physical signs, which may meet criteria for a disorder if the syndrome
persists, interferes with functioning, and is not secondary to drugs or medical conditions.
According to the Diagnostic and Statistical Manual of the American Psychiatric
Association, Fourth Revision (DSM-IV), major depressive disorder (MDD) is defined by
the presence of a minimum of five criterion symptoms nearly every day for at least two
weeks (Amercian Psychiatric Association, 1994). The diagnosis requires the presence of
depressed mood (or irritable mood in youngsters) or anhedonia. The other four
symptoms can be any combination of the following: appetite or weight change, insomnia
or hypersomnia, psychomotor agitation or retardation, fatigue or anergia, feelings of
worthlessness or guilt, poor concentration or indecision, and recurrent thoughts of death

or suicidal ideation or suicide attempt. The symptoms must cause significant distress to
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the sufferer or interfere with daily functioning and not be a direct physiologic
consequence of medical illness, substance abuse (legal or illegal) or certain other specific
psychiatric disorders (e.g., schizophrenia). Additionally, the symptoms and signs must

represent a change in the person’s functioning.

1.2.1 Comorbidity

COMD is not a single disorder, but one with different psychiatric comorbidities, social
morbidities and outcomes. Comorbid psychiatric disorders are extremely common in
children with MDD. According to most clinical and epidemiological studies, from 40%
to 70% of depressed youngsters have one or more additional psychiatric diagnoses
(Birmaher et al. 1996; Angold and Costello. 1993). In one sample of depressed
psychiatrically referred youths, 90% were reported to have comorbid diagnoses
(Biederman et al. 1995). The presence of multiple psychiatric disorders may affect risk
of depression recurrence and be associated :Nith increased suicidality, treatment
resistance, and mental health service utilization (Birmaher et al. 1996). Psychiatric
comorbidity also may possibly characterize various subtypes of childhood depression

which may differ in course and outcome (Lewinsohn et al. 2000; Angold and Costello

1993; Goodyer et al. 1997).

Anxiety disorders are the most frequent comorbid psychiatric diagnoses among clinically
referred depressed youngsters and have been detected in up to 50% of such samples
(Birmabher et al. 1996; Kovacs 1996). Anxiety disorders include conditions characterized
by phobias, excessive worry and fearfulness, panic attacks, impairing obsessions and

compulsions, and various associated symptoms (APA, 1994). It is notable that when
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anxiety and depressive disorders coexist in youngsters, the anxiety disorders typically
precede the onset of MDD; this observation has been reported both in clinical (Kovacs et

al. 1989) and nonclinical but high-risk samples (Avenevoli et al. 2001).

A chronic and symptomatically less severe form of depression called dysthymic disorder
(DD) also is frequent among children with MDD and is present among up to about one-
third of them (Kovacs et al. 1997; Rao et al. 1995; Biederman et al. 1995). Dysthymic
disorder has been defined for children as at least a one-year period of depressed mood
with other associated depressive symptoms that fail to reach the threshold for MDD
(APA 1994). The nosologic boundary between MDD and dysthymia however is not
entirely clear partly because dysthymic disorder is a risk factor for major depression
(Kovacs et al. 1997). According to DSM-IV, no major depressive episode can occur in

the first 2 years (one year for children and adolescents) of DD or the diagnosis becomes

MDD and not DD.

Conduct disorder is another fairly common concurrent diagnosis that characterizes 7% to
24% of clinically referred depressed youngsters (Kovacs 1996). Conduct disorder
comorbid with depressive disorder has been documented in community samples as well
(Angold and Costello 1993). Conduct disorder is a persistent pattern of misbehavior in
which the rights of others or important age-appropriate societal norms or rules are
repeatedly violated and may result in involvement with the juvenile justice system (APA
1994). This behavior pattern may develop as a complication of depression and may

persist even after the depression remits (Kovacs et al. 1988).



There is no question that major depression in children and adolescents is associated with
substantial morbidity (Birmaher et al. 1996; Kovacs 1997). Interpersonal relationships
and functioning of depressed youngsters are more impaired than of youths with
nonaffective psychiatric disorders (Puig-Antich et al. 1985a, 1985b). Clinical depression
in the school-age years is associated with difficulties in academic achievement and school
performance (Kovacs and Goldston 1991). Depressed youngsters also are at high risk
for attempted (Kovacs et al. 1993) and completed suicide (Brent et al. 1993) particularly
as they reach early to mid-adolescence, and their rates of suicidal behaviour exceed the
rates among peers with other psychiatric disorders (deWilde et al. 2001; Pfeffer 2001).
Childhood depression also is a harbinger of subsequent psychiatric morbidity. In
particular, while in their teens, these youngsters are at high risk for bipolar disorder (BP).
Rates of “switch” from unipolar to bipolar disorder have been reported as ranging from
9% to 20% or higher (Kovacs et al. 1994; Rao et al. 1995; Strober and Carlson 1982;
Strober et al. 1993; Geller et al. 1994). For example, a seven-year follow-up of
adolescents with MDD revealed that 19% had converted to bipolar disorder compared to
0% of controls (Rao et al. 1995). Manic episodes are the sine qua non of BP and are
characterized by a constellation of symptoms including unnaturally euphoric, expansive,
or irritable mood and abnormal states of mental and physical excitement and agitation
(APA 1994). Bipolar disorder usually is manifested by alternating or mixed episodes of

depression and mania, can present at various levels of severity, and requires lifelong

management.

In addition to the emergence of bipolar illness in adolescence, psychiatric morbidity of

childhood MDD continues into adulthood for many cases as well. Controlled follow-up
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studies of clinically referred as well as community-based but carefully diagnosed samples
have found that, as depressed youths grow up, they are at risk for adult depression,
substance abuse, as well as personality disorder (Rao et al. 1995; Weissman et al. 1999a,
1999b; Lewinsohn et al. 1999; Harrington et al. 1990; Kasen et al. 2001).

As indicated above, COMD is a heterogeneous phenotype with a variety of different

comorbidities, functional impairments and outcomes.

1.2.2 Memory subphenotypes

Memory dysfunction is frequently part of the clinical presentation of depression and may
be related to changes in the hippocampus, a region known to have a role in memory
(Squire and Zola-Morgan, 1991). Diminished hippocampal volume is repeatedly
observed in patients with major depression (Sheline et al. 1996, 1999). Although
volumetric findings are not completely consistent, hippocampal shape also appears to be
affected (Posener et al. 2003). Declarative memory is affected in individuals with
depression (Zakzanis et al. 1998). This is evident during an acute episode Calev et al.
1998; Austin et al. 1992) as well as following remission (Marcos et al. 1992).
Postpubertal major depression adversely affects performance on hippocampal-dependent
memory tasks in both antidepressant-naive first-episode individuals and in those with
multiple-episodes. MacQueen et al. (2003) found hippocampal volume to be low, but
only in those with multiple episodes, suggesting that memory deficits may precede
anatomic change. Other lines of evidence for relationships between memory function
and depression include studies demonstrating that antidepressants improve memory
performance in rats (Yau et al. 2002; Barros et al. 2002) and in depressed (Levkovitz et

al. 2002) and non-depressed (Harmer et al. 2002) humans. The use of a memory
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phenotype in the study of depressive disorder may reduce clinical heterogeneity by

dissecting out a single cognitive aspect of a complex phenotype which affects emotion,

neurovegetative function and cognition.

1.3 Family and Twin Studies

1.3.1 Family and Twin Studies of COMD and Depressive Symptoms

Multiple family studies have demonstrated that COD is familial. “Bottom-up” reports
consider juvenile-onset probands and consider rates in their first-degree relatives.
Between 40 and 70% of first degree relatives of depressed children have a history of
mood disorder - these rates are significantly greater than rates in relatives of psychiatric
or normal juvenile controls (Harrington et al. 1993, Kovacs et al. 1997; Todd et al. 1993;
Puig-Antich et al. 1989; Weller et al. 1994). As an example, 94% of depressed children
had affected pedigrees, with families of probands having a five-fold greater odds of
depression compared to psychiatric controls (Kovacs et al. 1997). “Top-down” studies of
the prevalence of mood disorders in offspring of depressed adults are convergent with the
data on the parents of depressed offspring. Investigators have noted high rates of
affective disorder among prepubertal, adolescent and young adult children of adults with
mood disorder (Hammen and Brennan 2003; Orvaschel 1990; Weissman et al. 1984a, b).
There is evidence that prepubertal-onset depressive probands yield families that have
twice the prevalence of mood disorder compared to adult-onset families, which may

suggest that families with prepurbertal-onset depression have a greater familial loading

(Neuman et al. 1997).
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Most complex traits are influenced by genetic factors to a degree - including even traits
such as age related hearing impairment (Fransen et al. 2003), adaptation to high altitude
(Rupert et al. 2001), hemoglobin A(1c) levels in healthy individuals and those with Type
I diabetes (Snieder et al. 2001), and educational achievement in 12-year-olds (Bartels et
al. 2002). It is therefore not surprising that similar results have been found in twin
studies of depressive symptoms with onset in childhood and adolescence. Heritability
estimates of parent-rated depressive symptoms ranged from 30-80% in several studies
(Hewitt et al. 1992; Deater-Deckard et al. 1997; Thapar and McGuffin et al. 1994;
Edelbrock et al. 1995; Eaves et al. 1997; Gjone and Stevenson 1997; Hudziak et al.
2000). For instance, in 492 twin pairs, the additive genetic influence on the parent-rated
depressive symptoms was estimated to be 0.65 [95% C1=0.55-0.73] for boys and 0.61
[95%CI1=0.48-0.71] for girls, while nonshared environment was estimated to account for
0.35 and 0.39 of the variance, respectively for boys and girls (Hudziak et al. 2000).
Heritability of self-reported depressive symptoms in youth has ranged from 15-80%
across several twin studies (Rende et al. 1993; Thapar and McGuffin 1994; Eley 1997;
Silberg et al. 1999; Eaves et al. 1997; Boomsma et al. 2000). As an example, the
heritability estimate for Childhood Depression Inventory (CDI) scores was 0.34 in a
sample of 707 twin and sib pairs, with a majority of the remaining variance accounted for
by nonshared environmental factors (Rende et al. 1993). While the heritability of
juvenile depressive symptoms is less than that for ADHD (heritability about 0.80)
(Biederman and Faraone 2002), it is comparable to adult disorders that have had ample
molecular investigation such as alcoholism (heritability of about 0.5-0.6) (Enoch and

Goldman 2001). See Figures 4 and 5. Overall, family and twin studies suggest
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molecular investigation of a depressive phenotype in youth, such as COMD, is a

reasonable scientific task.

Figure 4.
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Figure S,
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Figures 4 and 5 adapted from Rice et al 2002.

1.3.2 Heritability of Memory

As a subphenotype or endophenotype of depression, it is necessary to demonstrate
heritability of the proposed characteristic (Gottesman and Gould 2003). Memory
phenotypes have been shown to be influenced by genetic factors and by environmental or
stochastic factors. In a twin study of memory in elderly subjects, the maximum
likelihood estimate of memory heritability was 0.52. Another investigation remarked a
heritability for verbal memory of 0.21 and a heritability for visuo-spatial memory of 0.36
(Tuulio-Henrikssen et al. 2002). With documented heritability, it is easy to argue that

memory phenotypes merit molecular genetic study.
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1.4  Molecular Genetic Investigations

1.4.1 Molecular Studies in COMD

A next step after establishing heritability for COMD is to do molecular investigations. A
small number of studies exploring genetic polymorphisms and mood symptoms in
children have been published, mainly involving genes involved in serotonin and
dopamine metabolism. The serotonin tranporter (SLC6A4) is the site of action of
commonly used antidepressants and is commonly studied in mood disorders. COMT
affects dopamine metabolism; dopaminergic drugs are often associated with symptoms
similar to those observed with mania. A longitudinal twin study of emotional
development indicated no association between internalizing symptoms and a functional
polymorphism in the serotonin transporter (5S-HTTLPR) (Young et al. 2003). In another
report, the I/ genotype of the S-HTTLPR was associated with decreased platelet
serotonin uptake rate in depressed subjects compared to controls (Nobile et al. 1999).
Two investigations of juvenile BP indicated no association between the 5-HTTLPR
variant and juvenile BP (Geller and Cook 1999) nor between bipolar ultradian cycling
and the COMT Val'®"*® Met polymorphism (Geller and Cook 2000). Until this year,

there has been nothing published on BDNF as a candidate gene for juvenile mood

disorders.

1.4.2 Genetic Studies Relevant to BDNF and COMD

Genetic studies of linkage, function and association have piqued interest in BDNF is a
possible risk factor for mood disorder phenotypes. Linkage studies suggest that the
11p13-14 region may contain genetic variants affecting vulnerability to mood disorder

(Detera-Wadleigh et al. 1999; Mclnnes et al. 1996). Data specifically focused on BDNF



polymorphisms show association with hippocampal function and affective disorders.
Egan et al. (2003) have examined the Val®*Met SNP and indicated that in transfected
neurons, the methionine (met) allele reduced activity-dependent BDNF secretion, and
that in humans the met allele was associated with impaired hippocampal synaptic activity
and deficits in episodic memory. A family-based association study of bipolar disorder
using 283 trios indicated the 170 bp allele of the (GT), marker and the val allele of the
Val**Met were associated with bipolar disorder (Neves-Pereira et al. 2002). Another
study of 470 bipolar disorder trios from three samples showed statistically significant
overtransmission of the same Val®**Met val allele to probands in one sample and trends
towards significance in the other two samples (Sklar et al., 2002). The association
between the BDNF Val®*Met SNP and bipolar disorder failed to be replicated in a
Japanese case-control paper (n=132 cases, n=190 controls) (Nakata et al. 2003). Overall,

previous investigations offer strong empirical support for more study of the BDNF locus

in mood disorders.

1.4.3 Genetic Investigation of BDNF in Declarative Memory Function

Recent reports indicate that the BDNF Val®®Met SNP has effects on BDNF distribution,
hippocampal function and performance on a declarative memory task in humans (Egan et
al. 2003; Hariri et al. 2003). In vitro experiments noted that the met-BDNF had less
dendritic expression and depolarization-induced secretion than val-BDNF. In vivo data
remarked an allele dose effect, with more met alleles being associated with a diminished
hippocampal synaptic activity gauged by N-acetyl-aspartate levels. Data were also

discussed concerning human memory indicating that BDNF genotype affected
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participants’ facility to recall brief narratives as manifested by their score on the Logical
Memory subtest of the Wechsler Memory Scale, Revised (WMS-R). Individuals
homozygous for the met allele recalled less information than others (Egan et al. 2003).
Synthesizing the results of the aspects of the study, the authors conclude that the BDNF
met allele may influence declarative memory by affecting the intracellular movement of
BDNF, thereby modifying synaptic activity in the hippocampus. Lastly, findings in
Alzheimer’s disease suggest BDNF and its gene may play a role in human memory

function (Garzon et al. 2002; Riemenschneider et al. 2002).

14.4  Catechol-O-Methyltransferase and Memory

Aside from BDNF, the catechol-O-methyltransferase (COMT) locus has been studied in
cognitive phenotypes. Strong evidence supports a rationale for investigating the COMT
gene in memory abilities. COMT degrades dopamine by methylation and can impact
prefrontal function. The methionine (met) variant of a functional SNP at codon 108/158
(COMT Val %158 Met ) (Genbank accession no. Z26491) causes lessened dopamine
catabolism in the prefrontal cortex. Accordingly, the Val'®*® Met met allele has been
associated with more optimal executive function and, to a lesser extent, better working
memory in adults (Egan at al. 2001). Another report on the COMT Val'%®/'3® Met SNP in
adults with schizophrenia found the met variant was associated with processing speed and
attention, but not with measures of executive function or verbal declarative memory
(Bilder et al. 2002). Although the strongest evidence finds effects of COMT on
prefrontal function and working memory (Egan et al. 2001; Bilder et al. 2002), animal
and human studies also suggest that COMT also has effects on spatial and verbal

declarative memory abilities. Tolcapone, which is a COMT antagonist, improved ability
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on a spatial memory test (Liljequist et al. 1999) and also partly repaired memory
dysfunction caused by cholinotoxin damage (Khromova et al. 1997). Augmentation of
verbal and visuospatial memory has also been observed in human studies of tolcapone
treatment (Gasparini et al. 1997). Because of the associations between mood disorder
and memory and between memory and COMT, the locus warrants investigation as a
potential genetic influence on memory abilities in mood disorders. At present, there
appear to be no reports that examine for possible association between COMT genotypes

and memory in human subjects with affective disorders.

1.5 Justification for Statistical Design

1.5.1 COMD phenotype and Case-Control Analysis

Case-control association studies have been popular in the genetic investigation of
neuropsychiatric disorders. Their appeal in part stems from successes in complex
disorders — genetic case-control association methods have yielded significant positive
results in Alzheimer’s disease (Farrer et al. 1997) and Type I diabetes (Cudworth and
Wolfe 1982). Nonetheless case-control association studies have been surrounded by
controversy (Sullivan et al. 2001) and have caused confusion as initially positive studies
often are followed by multiple nonreplications. False positives in case-control studies
may result from population stratification, which occurs when a sample is composed of
two or more subgroups with differing genetic histories. False positives can occur when a
trait is more prevalent in one subgroup and if the prevalence of the genetic marker also
differs by subgroup. Several issues related to case and control selection may help to
reduce bias contributing to spurious positive results. Participants should not be related;

lifetime phenotype should be considered; comparable periods of risk should exist



between cases and controls; cases and controls should be matched by ethnicity. The
above measures serve increase homogeneity and comparability of cases and controls. It
may also be useful to study subphenotypes where genetic factors may be more important
— e.g. early onset MDD (Sullivan et al. 2001). Subphenotypes reduce clinical
heterogeneity by focusing on a single dimension of a complex phenotype. Genomic
control strategies can be used to evaluate the degree of stratification and to adjust for
population substructure (Devlin and Roeder 1999; Bacanu et al. 2000). In this design,
multiple markers across the genome are used to determine the correction for case-control

(i.e. population-based) tests, - a variance inflation (A) is calculated using Bayesian

methods.

1.5.2 Memory phenotypes and MANOVA for Correlated Variables

Analysis of variance discerns whether variation associated with independent or predictor
variables is sufficiently large when compared to variation within experimental subjects,
to conclude that the predictor variables differ in their effects (Glantz and Slinker 2001
p274). Multivariate analysis of variance (MANOVA) is used to test the hypothesis that
two or more dependent variables which are correlated are together affected by
independent variables. The correlation between dependent variables is taken into account

in the MANOVA (http://www.statsoftinc.com/textbook/stathome.html; Statsoft, Inc.

2004). MANOVA is useful for memory subtests which are often not independent.

1.6 Hypotheses and Purpose of Study

Emerging findings implicating the BDNF gene in mood disorders suggest that further

investigation of this locus is important. BDNF is associated with biochemical,
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microscopic and behavioural antidepressant-like effects in animal stress paradigms.
Human physiologic, neuroimaging and genetic studies lend support to its investigation as
a candidate locus for affective disorders. Moreover, BDNF has demonstrated
hippocampal expression and been implicated in memory. Both preclinical and human

studies also suggest COMT has relevance to memory phenotypes.

The first goal of the study was to evaluate two BDNF polymorphisms, (GT), and
Val®*Met for association with mood disorder in our sample of cases with onset in
childhood and early adolescence. The second goal of this study was to explore the
relationships between childhood-onset mood disorder, the presence of BDNF and COMT
polymorphisms and declarative memory abilities. Based on our review of the extant
literature, we hypothesized that in a sample of young adults with onset of mood disorder
before the age of 14, relatively poorer declarative memory would be found in those with
the met allele of the Val®®*Met marker of BDNF. While one previous study in
schizophrenia was negative (Bilder et al. 2002), the COMT Val'®!*® Met marker is
associated with reduced dopamine breakdown; reduced dopamine catabolism has been
associated with improved verbal and spatial memory performance (Gasparini et al. 1997;
Liljequist et al. 1999). Our secondary hypothesis was that better verbal/declarative or
visuospatial memory performance would be associated with the presence of the met allele

of the COMT Val'®"*® Met marker in the current sample.

37



CHAPTER 2.0

ASSOCIATION STUDY OF BRAIN-DERIVED
NEUROTROPHIC FACTOR IN ADULTS WITH
A HISTORY OF CHILDHOOD-ONSET MOOD

DISORDER
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ABSTRACT

Background: Brain-derived neurotrophic factor (BDNF) is a nerve growth factor that
has antidepressant-like effects in animals. BDNF gene polymorphisms have been
associated with bipolar disorder. We tested two genetic polymorphisms of BDNF for
their association with childhood-onset mood disorders (COMD) within the context of a
case-control design.

Methods: Two BDNF polymorphisms, a dinucleotide repeat, (GT),, and a single
nucleotide polymorphism (SNP) in the coding region, val66met, were genotyped in 99
adults with a history of COMD and matched psychiatrically healthy controls. A Genomic
Control (GC) method was used to evaluate population substructure.

Results: Alleles at (GT), were highly associated with COMD in this sample (x2= 17.8;
d.f.=5; p=0.0032). The odds of carrying the 168 bp allele were 3.94 times greater for
cases than controls (C1=1.72 t0 9.04). Alleles of val66met were not significantly
associated with COMD. GC analysis suggested population substructure was not a
confounder of association. Analysis of haplotypes, in which (GT), was treated as a
binary variable (long versus short alleles), provided significant evidence that the
haplotype val/short contributes to liability to COMD.

Conclusions: The BDNF (GT), marker and the val/short haplotype are associated with
COMD in this sample, in accord with the previously described neurotrophic hypothesis

of depression and some previous studies of association for bipolar disorder and

neuroticism.
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2.1.1 Introduction

The role of hereditary factors in vulnerability to depressive symptoms has empirical
support in both youth and adult populations [Englund and Klein, 1990; Kendler et al.,
1992; Hudziak et al., 2000]. To disentangle genetic contributors, strategies have included
traditional genetic linkage analysis and association studies of candidate genes. Candidate
genes are hypothesized to contribute to a disease based on being part of a metabolic
pathway important to the phenotype. One potential candidate gene for mood disorder
phenotypes is brain-derived neurotrophic factor (BDNF). BDNF is a nerve growth factor
that influences neuronal survival and plasticity [Thoenen, 1995]. The BDNF gene is
localized to chromosome 11p14.1 [Fang et al., 2003] and has several polymorphic
markers. One BDNF polymorphism is an intronic microsatellite (GT), dinucleotide
repeat [Proschel et al., 1992]. Another marker is a functional coding region single
nucleotide polymorphism (SNP) at nucleotide position 196/758, which results in an
amino acid change at codon 66 val—met (val66met) (NCBI SNP Cluster ID: rs6265) of
the proBDNF molecule. The SNP is located in a section of the BDNF precursor protein

that is cleaved away, rendering the amino acid change absent from mature BDNF.

A role for BDNF in stress-related depression via cellular signaling has been described in
animal models [Duman, 2002]. Repeated antidepressant administration, including
electroconvulsive seizures, increases hippocampal BDNF expression [Nibuya et al.,
1995; Duman and Vaidya, 1998] and neurogenesis [Madsen et al., 2000; Malberg et al.,
2000; Santarelli et al., 2003].

Human experiments, including neuroimaging [Sheline et al., 1996; Sheline et al., 2003],

postmortem {Chen et al., 2001] and clinical [Karege et al., 2002, Shimizu et al., 2003]

investigations support findings in the preclinical BDNF literature. Previous human
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linkage studies suggest that the 11p13-14 region could harbor alleles affecting
susceptibility to mood disorder [Detera-Wadleigh et al., 1999; Mclnnes et al., 1996].
Emerging data specifically focused on BDNF polymorphisms show association with
hippocampal dysfunction and mood disorders. Recently Egan et al. [2003] studied the
val66met SNP and demonstrated that in transfected neuronal cells, the methionine (met)
variant impaired activity-dependent BDNF secretion, and that in humans the met allele
was associated with reduced hippocampal synaptic activity and poorer episodic memory.
An association study of bipolar disorder using 283 triad families indicated the 170 bp
allele of the (GT), marker and the val allele of the val66met were associated with illness,
suggesting the site conferring risk was in linkage disequilibrium with both markers
[Neves-Pereira et al., 2002]. A larger study involving 470 bipolar trios from three
separate samples showed significant overtransmission of the same val66met val allele to
probands in one sample and trends towards overtransmission in the other two samples
[Sklar et al., 2002]. However, association l;etween the BDNF val66met polymorphism
and bipolar disorder was not replicated in a Japanese study of 132 cases and 190 controls
[Nakata et al., 2003]. Emerging findings implicating the BDNF gene in mood disorders
suggest that further investigation of this locus is important. We evaluated two BDNF
polymorphisms for association with mood disorder in our sample of cases with onset in
childhood and early adolescence. This genetic study occurs in the context of a larger
multidisciplinary research project on risk factors for and correlates of juvenile-onset

mood disorder, whose overarching theme concerns the characteristics, development, and

utilization of emotion regulatory strategies.
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2.1.2 Methods and Materials

Subjects

Sixty-one cases in our sample were originally ascertained as clinic-referred children
between the ages of 8 and 13 in Pittsburgh, PA and were followed longitudinally [Kovacs
et al., 1984, 1994]. Diagnoses were ascertained at initial and repeated follow-up
assessments through a standardized semi-structured interview, the Interview Schedule for
Children and Adolescents or its version for young adults [Sherril and Kovacs, 2000], as
age appropriate. Another 42 cases were ascertained in Pittsburgh as adults through a
variety of means (e.g. prior research study participants, self-referred in response to
advertisements). Diagnoses in these subjects were determined based on the Structured
Clinical Interview for DSM-IV [First et al., 1995] with the subject about him/herself, a
separate interview about the subject with a second informant, and research and medical
records. Consent (or assent) were obtained from all subjects and conformed to IRB
guidelines. All cases met DSM-III [APA, 1980] or DSM-IV [APA, 1994] criteria for
affective disorder (MDD, n=66; DD, n=14; (bipolar I/ II disorder) BP, n=23) with onset
in childhood or adolescence. Participants provided blood samples and sometimes cheek
swabs for DNA extraction at a mean age of 25.7 (SD=3.5) years. The ethnic distribution
of the sample was 81% Caucasian, 16% African American, and 3% mixed ethnicity, and

there were altogether 60 (58%) females.

Controls

COMD subjects were individually matched to controls for sex and ethnicity. Control
subjects were healthy adults who had no history of mental illness based on screening
questions from the SCID interview. Controls were ascertained from a variety of sources

such as undergraduate university students, newspaper advertisements, and surgical
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clinics, both in Toronto and through collaborators. The mean age of controls was 32.2
(§D=9.7) years.

Genotyping

DNA was extracted from lymphocytes using a high salt method [Lahiri and Nurnberger,
1991] and from buccal swabs using NaOH and Proteinase K (details available upon
request). The (GT), variant was genotyped using PCR conditions previously described
[Proschel et al., 1992]. The products were resolved on a 6% polyacrylamide gel and
visualized by autoradiography. Results were confirmed using the ABI PRISM® 3100-
Avant Genetic Analyzer (Applied Biosystems, Foster City CA). The val66met SNP was
selected from the NCBI SNP database (SNP Id: rs6265). PCR amplification used the
following primers: 5-GAGGCTTGACATCATTGGCT-3' and 5-
CGTGTACAAGTCTGCGTCCT-3". The PCR products were digested with Eco721 (MBI
Fermentas) and the fragments were separated on 3.5% agarose gel and visualized with
ethidium bromide. Genomic control testing was performed in the cases and controls with

22 informative markers randomly distributed across the genome.
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Statistical analysis

Chi-square, genomic control analyses and regression models utilised SAS V8 [SAS
Institute, 1999]. The HWE program of the LINKUTIL package was used to test Hardy-
Weinberg assumptions {Ott, 1991]. Genomic control analysis provides a factor by which
one can correct for potential stratification [Devlin and Roeder, 1999]. There were no
corrections for multiple testing. Haplotype analysis made use of eHap, a freeware
package that makes use of evolutionary relationships among haplotypes to examine

whether certain haplotypes are associated with illness vulnerability [Seltman et al., 2003].

2.1.3 Results

There were no detectable deviations from Hardy-Weinberg equilibrium (HWE) for the
val66met SNP for either COMD or control groups; there were no detectable deviations
from HWE when COMD and control groups were split and examined according to
ethnicity. For the (GT), marker, no differences between observed and expected
homozygosities were observed in cases or controls. Based on the distribution of val66met
alleles and genotypes (Table 1.), neither the allele nor the genotype frequencies were
significantly different between cases and controls. [Table 1 about here.] By contrast, the
allele distribution of (GT), for COMD individuals (Table 2.) differed significantly from
control individuals (x2=17.8; d.f.=5; p=0.0032). In particular, there was a significant
excess of the 168 bp allele (allele 4; odds ratio=3.94, 95%CI=1.72 to 9.04) in cases.
[Table 2 about here.]

Genomic control (GC) analysis [Devlin and Roeder, 1999] revealed a robust correction
factor of 0.656 across the 22 biallelic markers (using the mean chi-square yields a similar

correction of 1.36). Because the distribution of the %* values for the 22 case-control
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comparisons showed variance close to that expected by chance - expected correction for
a population without substructure is 1.0 - we did not use a GC correction for our analyses.
Haplotype analysis was done by dividing the (GT), alleles into two categories, namely
short (166 & 168 bp) and long (=170 bp), to reduce the number of haplotypes created by
combining microsatellite and SNP markers. The four haplotypes were val/long, val/short,
met/long and met/short. Maximum likelihood estimation of the haplotype frequencies
revealed substantial differences in their distribution by case/control sample (See Table
3.). We performed a likelihood ratio test after eliminating the one individual carrying the
met/long haplotype. This analysis, which used eHap [Seltman et al., 2003], shows the
distributions to be significantly differentiated (x* = 13.8, d.f.=2, p=0.0032). Using
eHap we also performed a test based on cladistic relationships among haplotypes for this
sample. For these two loci, the one-step-mutation cladogram was quite simple, namely
met/long connected to val/long, which is then connected to val/short. Nested tests
described in Seltman et al. [2003] group met/long and val/long as having a similar effect
on affection status, and highlight the increased risk for COMD due to the val/short
haplotype (roughly 2.6 fold) relative to the met/long and val/long haplotypes (contrast: >
=13.1, d.f.=1, p=0.0003). It is worth noting that the haplotype-based results might be
driven solely by the marginal effect of the (GT), locus. [Table 3 about here.]

Linkage disequilibrium between the val66met and (GT), markers calculated for the
COMD and control samples using the data in Table 3 yields an estimate of Lewontin’s

[1964] D'of 0.422 and 1.0, respectively. The analyses are based on the frequency of the

val/short haplotype.
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2.1.4 Discussion

While our data indicate an association between the 168 bp allele of the BDNF (GT),
dinucleotide repeat and COMD, this finding should be interpreted with caution.
Limitations to the present report include the diagnostic heterogeneity of mood disorders
within the sample and the relatively small sample size. It is also conceivable that our
results may be confounded by population substructure [Devlin et al., 2001a; 2001b]. The
GC results provide evidence against confounding due to substructure, suggesting that
population stratification due to ethnicity is not likely to affect our results. Under the
assumption that the risk allele is the (GT), 168 bp allele, and for the results given in
Table 2, we estimate that a new sample size of n=102 case-control pairs will be required
to replicate our results with 80% power (0=0.05).

Results of Egan and colleagues support a role for BDNF in hippocampal function and a
functional role for the val66met SNP, which could be germane to mood disorders [e.g.
Sheline et al., 2003; Egan et al., 2003]. As noted previously, among adults with bipolar
disorder, associations with both the BDNF (GT), repeat polymorphism and the BDNF
val66met SNP support the hypothesis that BDNF variants are risk factors for affective
disorder [Neves-Perieira et al., 2002; Sklar et al., 2002]. Alternately, the (GT),
polymorphism may be in linkage disquilibrium with a true risk marker within or near this
locus.

Other genetic investigations of BDNF in human psychiatric disorders are of note. Sen
and colleagues reported that the val allele of the BDNF val66met polymorphism is
associated with neuroticism, a heritable risk factor for depression [Sen et al., 2003].
Two large published studies have undertaken analysis of BDNF markers in adult bipolar

disorder. The haplotype analysis of Sklar et al. [2002] indicated a haplotype containing
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the a39 (our val66met) minor met allele was undertransmitted. Neves-Pereira et al.[2002]
found the 170 bp/G (i.e. 170 bp/val) haplotype overtransmitted to cases. In our data, a
small number of cases (23%) were diagnosed as having bipolar disorder. Predictably,
because the small sample has low power, analysis of that subsample did not yield

significant association to val66met alleles.

Our results and related reports provide encouraging evidence for BDNF as a genetic risk
factor in mood disorders. This body of literature implicates BDNF also as a potential
genetic influence on the development of emotion regulation. Specifically, our results
suggest the (GT), polymorphism in the BDNF locus could be a risk factor for COMD,
especially the 168 bp allele, although other loci in the gene or the surrounding region
cannot be ruled out. Studies of its functional significance and follow-up studies of

association of BDNF polymorphisms will be required to clarify the role genetic variation
in BDNF plays in risk to mood disorders.
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Tables

Table 1: BDNF val66met allele and genotype frequencies

BDNF val66met allele BDNF val66met genotype
met val Total | met/met | val/met | val/val Total
COMD 42 156 198 5 32 62 99
Controls 34 164 198 3 28 68 99
A.A.:
COMD 4 36 40 0 4 16 20
Control 5 35 40 1 3 16 20
Caucasian:
COMD 38 120 158 5 28 46 79
Control 29 129 158 2 25 52 79
Ailele x’=1.0; d.f.=1; p=0.31 Genotype %’=1.0; d.f.=2; p=0.59

(A.A.= African American)
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Table 2: BDNF GT(n) polymorphism allele frequencies

BDNF GT(n) allele n=93
Allele 0 | Allele1 | Allele2 | Allele3 | Allele4 | Allele5 | Total
176 bp | 174bp | 172bp | 170bp | 168bp | 166 bp

COMD 1 39 7 107 27 5 186
Controls 2 35 15 125 8 1 186
AA.
COMD 1 2 3 16 10 0 32
Controls 1 1 5 24 1 0 32
Caucasian:
COMD 0 37 4 91 17 5 154
Controls 1 34 10 101 7 1 154

For total sample Table 2 (African American (A.A.) + Caucasians):
x*=17.8; d.f.=5; p= 0.0032 ;
Allele 2 (172 bp): OR=0.55; 95%CI=[0.21-1.39];

Allele 4 (168 bp): OR= 3.94; 95%CI=[1.72 to 9.04]

Table 3: Maximum-likelihood estimates of haplotype frequencies for COMD+Controls,

COMD only and Controls only.

Sample Haplotype
Val/Long Val/Short Met/Long Met/Short
COMD+Controls 0.7058 0.1027 0.1837 0.0078
COMD 0.6299 0.1590 0.1970 0.0140
Controls 0.7798 0.0483 0.1719 0.0000

See Results for test statistics.
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Supplemental Material:
Association Study of Brain-Derived Neurotrophic Factor in Adults with
A History of Childhood Onset Mood Disorder

Strauss et al.

Introduction
Several sources of evidence support our use of a phenotype that includes major

depressive disorder (MDD), dysthymic disorder (DD) and bipolar disorder (BP).
Regarding symptoms and outcome, there is great overlap between MDD and DD [Kovacs
et al., 1994]. Considering natural history, BP develops in about 30% of prepubertal
children with MDD [Geller et al., 1994] and in about 20% of adolescents with MDD
[Strober and Carlson, 1982], rates that are an order of magnitude higher than in the
general population. Family studies also indicate a much higher prevalence of BP in first-
and second-degree relatives of childhood MDD probands than in the general population
[Todd et al., 1993] and a much higher prevalence than in adult-onset MDD [Neuman et
al., 1997]. Neuman et al. [1997] also found that first-degree relatives of childhood-onset
mood disorder probands have higher rates of affective disorder than adult-onset mood
disorder probands. It has been proposed that genetic contributions to liability to mood
disorder may be more readily identified among very early onset probands [Todd et al.,
1993]. To summarize, the findings suggest that there is sufficient phenomenological
continuity and familiality across the three diagnoses to consider their use as a single
phenotype potentially more homogeneous than adult-onset MDD.

Methods and Materials
Each subject with COMD was individually matched to a control with the same ethnic

background. The ethnic matching was based on detailed descriptions of ancestry. For
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example, a randomly selected pair from the data set is a COMD case of Scottish, Irish,
Polish and German descent matched to a control of British and German origins. Subjects
were also matched for sex in 99 of the 103 cases (96%). Of the samples available, 99

case-control pairs were successfully genotyped for the val66met SNP; and 93 pairs were

genotyped for the (GT), microsatellite.

Results

The HWE val66met test statistics were x°=0.11, d.f.=1, p=0.74 and %*=0.01, d.f.=1,
p=0.95 for case and control samples respectively. Because the relative frequencies of
several (GT), alleles were small compared to the group sizes, we tested HWE by
contrasting observed versus expected homozygosity. For the control group, observed
versus expected homozygosities were 55.9% versus 50.0% (x°=1.50, d.f.=1, p=0.22); for
the cases, observed versus expected homozygosities were 49.5% versus 39.8% (X2=3.62,
d.f.=1, p=0.06).

An analysis of the GT repeat by ethnicity showed similar associations in both African
Americans and Caucasians (not shown). To examine the potential confounding by
ethnicity in more detail, we constructed a logit model incorporating terms for self-
identified ethnicity (E), presence/absence of one or more 168 bp alleles (A), and their
interaction (A*E). In the logit model, only the presence of 168 bp alleles significantly
affected the outcome (A: ¥°=9.32, d.f.=1, p=0.002; E: x2=0.94, d.f.=1, p=0.33; A*E:
x’=2.04, d.f=1, p=0.15). It should be recognized that small sample size limited our
power to distinguish subtle differences in association between ethnic subgroups. Finally,
because we matched cases and controls based on ethnicity and gender, association
between candidate loci and COMD was also evaluated using conditional logistic

regression to account for the matching [Breslow and Day, 1980]. The conditional logistic
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regression analysis, using the presence/absence of one or more 168 bp alleles as the
genetic variable, again showed a significant association between the 168 bp allele and
COMD status (Likelihood Ratio x2 =18.82, d.f.=5, p=0.002; Odds Ratio (168 bp
heterozygotes vs. 170 bp homozygotes)=5.60, 95% CI=[1.85-16.98]). Maximum

likelihood estimate analysis of clinical subgroups (BP, MDD, DD) yielded no significant

results.

Discussion
When we used regression methods to test for different associations attributable to

ethnicity, none could be detected.

Although the functional relevance of the (GT), polymorphism is unknown, other
dinucleotide repeat polymorphisms that alter gene expression have been noted by
schizophrenia researchers - variation in expression has been associated with number of
repeats, offering additional rationale for our dichotomizing the (GT), into long and short
repeats [Miyatake et al,. 2002; Itokawa et al., 2003].

In the Michigan sample, the A (met) allele was associated with lower neuroticism scores.
Val66met genotype was significantly associated with four of the six neuroticism facets
[Sen et al., 2003].

Recent results from Taiwan found no association between val66met genotype and adult
MDD [Tsai et al., 2003]. The (GT), marker was not evaluated in either paper. While our
single marker analysis did not show the val allele to be significant, the val/short
haplotype was significant, though this may be due to the (GT), 168 bp allele association.
The BDNF val66met polymorphism has also been associated with obsessive-compulsive
disorder - notably the minor met allele was undertransmitted, especially in the subgroup

with child- or adolescent-onset. The association was independent of mood disorder [Hall
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et al,, 2003]. BDNF may be relevant to phenotypes that have significant [Sen et al.,
2003] or no [Hall et al., 2003] overlap with mood disorders.

Related to BDNF by being in the same molecular cascade [Duman, 2002] is cAMP
response element binding protein (CREB). Chronic antidepressants typically upregulate
hippocampal CREB [Nibuya et al., 1996] and the CREB1 gene has been associated with
major depressive disorder in women with age of onset less than twenty-five [Zubenko et
al., 2002]. Evidence supports the hypothesis that antidepressants exert neuroprotective
effects by augmenting CREB and BDNF expression and increasing neurogenesis in the

hippocampus. The post-receptor cAMP-CREB-BDNF metabolic pathway appears to
have increasing pertinence to mood disorders.
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Table 4: Genomic control results for twenty-two markers, n > 79.

Marker &

Allele X P

Chromosome 1 ) (d.f.=1)
Rs 1035712 cases 36 136 0.004 0.947

controls 38 146
rs 10590 cases 118 58 0.16 0.689
4 controls 128 56
rs 11240 cases 121 53 0.104 0.747
4 controls 129 51
rs 11608 cases 59 123 0.08 0.777
4 controls 72 138
s 11796 cases 131 65 0.112 0.738
6 controls 131 59
rs 11801 cases 115 77 2.368 0.124
16 controls 141 67
rs 13646 cases 119 81 0.11 0.74
7 controls 133 83
s 13651 cases 83 111 0.007 0.932
20 controls 90 129
rs 13735 cases 79 101 0.462 0.497
6 controls 70 106
rs 13873 cases 128 40 0.141 0.707
6 controls 127 45
rs 3937 cases 108 105 12.0 0.0005
3 controls 126 60
1s 4453 cases 57 131 1.958 0.162
22 controls 78 130
s 4457 cases 112 88 1.051 0.305
22 controls 107 105
1s 4677 cases 45 151 5.329 0.021
14 controls 71 139
s 474 cases 65 129 0.002 0.966
7 controls 73 143
rs 5096 cases 99 59 0.383 0.536
11 controls 101 71
1s8610 cases 97 75 0.19 0.663
17 controls 109 75
5-HT1a 450T/C cases 201 21 0.157 0.692
1 controls 176 22
5-HT1D G861C cases 167 57 0.029 0.865
6 controls 156 50
5-HT2A 102T/C cases 81 135 4.183 0.041
13 controls 94 102
GRIN2B cases 110 104 0.008 0.927
12 controls 87 79
TPH A218C cases 76 144 1.00 0.317
11 controls 68 102
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ABSTRACT
Recent investigations in several species have suggested a role for brain-derived

neurotrophic factor (BDNF) in memory, which may be mediated by the influence of
BDNF on neuronal plasticity in the hippocampus. BDNF polymorphisms have also been
associated with mood disorders. Catechol-O-methyltransferase (COMT) metabolizes
dopamine and has been implicated in prefrontal function, another area of the brain
relevant for memory. In a sample of sixty-three young adults with a history of childhood-
onset mood disorder, we typed three BDNF polymorphisms, including the BDNF
Val®Met single nucleotide polymorphism (SNP), and the COMT Val'%/'>® Met SNP.
Multivariate analysis of variance (MANOVA) was used to test for association between
BDNF and COMT markers and measures of declarative memory. Variants at the three
BDNF markers and one COMT marker were not associated with declarative memory
function - p-values ranged from 0.25 to 0.98. Higher IQ (F=6.18, d.f.=4,58, p=0.0003)
and female gender (F=4.41, d.f.=4,58, p=0.0035) were associated with more optimal
performance on the memory tasks. This study did not provide evidence supporting an

association between BDNF and COMT genes and declarative memory phenotypes.
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3.1.1 Background

Brain derived neurotrophic factor (BDNF) is known to be important to neuronal
transmission and plasticity (/-3) and influences in vivo memory formation in the
hippocampus (HC) (4). Multiple investigations provide evidence that BDNF is

implicated in learning and memory performance in several species, including rats (5,6),

chicks (7), and monkeys (8).

A single nucleotide polymorphisim (SNP) causing an amino acid change from valine
(val) to methionine (met) at position 66 of the BDNF precursor protein (BDNF Val*®Met)
has recently been reported to have effects on BDNF distribution, hippocampal function
and declarative memory encoding and retrieval in human subjects (9,10). In vitro assays
showed that the met-BDNF had significantly less dendritic expression and
depolarization-induced secretion than val-BDNF. In vivo data from the same report
indicated a possible allele dose effect, with an increasing number of met alleles being
associated with a significant linear reduction in hippocampal synaptic activity as
measured by N-acetyl-aspartate levels. An accompanying analysis of human memory
showed that the BDNF genotype influenced subjects’ ability to remember stories over a
delay period, as indexed by their performance on the Logical Memory (subtest of the
Wechsler Memory Scale, Revised (WMS-R). Individuals homozygous for the met allele
recalled fewer story elements than individuals with other genotypes (9). This work
suggests that the BDNF met allele may affect declarative memory by altering the release
and the intracellular distribution of BDNF, thereby influencing hippocampal synaptic
activity. BDNF and its gene have also been implicated in Alzheimer’s disease (11,12),

further suggesting a role for this gene in memory ability.
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Increasing evidence suggests that the effects of BDNF in the hippocampus may not be
limited to memory, but may also be associated with mood disorders. BDNF is
upregulated in the hippocampus by antidepressants of different classes and may be
relevant to human depressive disorders (13,14). Not only are reduced serum BDNF
concentrations present in depressed patients, as compared to controls (15), but reduced
hippocampal volume is repeatedly observed in patients with major depression (16,17).
Though volumetric findings are not completely consistent, hippocampal shape also
appears to be affected (18). From a neurocognitive perspective, declarative memory is
impaired in subjects with depression (19), and this is evident during an acute episode (20,
21) as well as following remission (22). Postpubertal major depression affects
performance on hippocampal-dependent memory tasks in both antidepressant-naive first-
episode subjects and in muitiple-episode subjects (23). MacQueen et al. (23) also find
hippocampal volume to be reduced, but onI-y in the multiple-episode depressed subjects,
suggesting that memory dysfunction may precede detectable neuroanatomic changes.
Other support for interrelationships among BDNF, memory function, and depression
include studies demonstrating that antidepressants improve memory performance in rats
(24,25) and in depressed (26) and non-depressed (27) patients. Also consistent are data
linking BDNF polymorphisms with bipolar disorder (28-30), childhood onset mood

disorder (37) and with neuroticism (32).
Although the data are less compelling, another candidate gene for neurocognitive

phenotypes has been the catechol-O-methyltransferase (COMT) locus. COMT

metabolizes dopamine and has been implicated in prefrontal function, insofar as the
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methionine (met) variant of the functional SNP at codon 108/158 (COMT Val'%®/!>® Met )
(Genbark accession no. Z26491) results in reduced dopamine catabolism in the prefrontal
cortex. The met variant was associated with better performance on a measure of planning
and deductive reasoning (“executive function”) and to a lesser extent, on measures of
working memory (33). Another study of the COMT Val'%®/!* Met SNP in patients with
schizophrenia indicated the met variant was associated with more optimal processing
speed and attention, but not with measures of executive function or verbal declarative
memory (34). While a significant body of evidence demonstrates a role for COMT in
prefrontal function and working memory (33,34), some animal and human studies
suggest that COMT is associated with spatial and verbal declarative memory functions.
Tolcapone, a COMT inhibitor, improved performance on a spatial memory task (35) and
also partially restored memory deficits induced by cholinotoxin lesions (36).
Improvements in verbal and visuospatial memory have also been reported in humans
treated with tolcapone (37). To date, we know of no studies that investigate the

association between COMT genotypes and memory in humans with mood disorders.

The present report is part of a broader research program examining biological, social,
cognitive and behavioural aspects of emotion regulation in childhood-onset mood
disorder. The goal of this study was to explore the relationships between childhood-onset
mood disorder, the presence of BDNF and COMT polymorphisms and declarative
memory abilities. Based on our review of the extant literature, we hypothesized that in a
sample of young adults with onset of mood disorder before the age of 14, relatively
poorer declarative memory would be found in those with the met allele of the Val*® Met

marker of BDNF. While one previous study in schizophrenia was negative (34), the
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COMT Val'%"*® Met marker is associated with reduced dopamine breakdown; reduced
dopamine catabolism has been associated with improved verbal (37) and spatial (35,37)
memory performance. Although it had less empirical support than the first hypothesis
involving BDNF, our secondary hypothesis was that better verbal/declarative or

visuospatial memory performance would be associated with the presence of the met allele

of the COMT Val'®"*® Met marker in the current sample.

3.1.2 Methods

Subjects The mean age of participants at memory assessment was 18.4 years (S.D. 2.5).
Sixty-three young adults with onset of major depression (MDD) or dysthymic disorder
(DD) were initially recruited between the ages of 8 to 13 years in Pittsburgh, PA as part
of a systematic investigation of risk factors and correlates of pediatric depression (38, 39).
Psychiatric diagnoses were ascertained at initial and repeated follow-up assessments
through a standardized semi-structured interview, the Interview Schedule for Children
and Adolescents or its version for young adults (40), as age appropriate. All cases met
DSM-IIl or -1V criteria (41,42) for affective disorder (MDD with or without DD (n=39),
pure DD (n=5), or Bipolar I or Il Disorder (BP) (n= 19)). The mean age of onset was
10.3 (S.D. 2.3) years. The ethnic distribution of the sample was 65 % European
American, 29 % African American, and 6 % mixed ethnicity, and 48% of the entire
sample was female. Subjects taking antidepressants (selective serotonin reuptake
inhibitors or tricyclic antidepressants) at the time of testing were included in the present
study. Experimental methods met with IRB approval at the University of Pittsburgh and
the Centre for Addiction and Mental Health. Written informed consents were obtained

from the parent(s) and child.



Measures Verbal declarative memory was assessed with three measures: the immediate
and delayed recall Logical Memory (LM) subtests from the Wechsler Memory Scale
(WMS) (43), and the delayed recall subtest from the Verbal Paired Associate Learning
Test (44). The LM task assesses the ability to recall connected discourse. A brief story
consisting of 25 scored units is read to the subject, who has to retell it immediately
thereafter, and again, after a 30 minute delay. The Verbal Paired-Associate Learning
Test examines learning efficiency by presenting the subject with 10 pairs of unrelated
nouns (e.g., neck/salt); after all 10 pairs are presented, learning is assessed by presenting
the first word of each pair as a clue or cue. Four such study/test trials are presented.
Delayed recall of the pairs is evaluated 30 minutes later by again presenting the cues. A
large body of literature suggests that optimal performance on these tasks reflects
hippocampal function (45,46). The Rey-Osterrieth Complex Figure (RCF) (47, 48) is a
measure of visuospatial memory skills, which are affected by BDNF (2, 6) and COMT
(35). In the RCF, the subject copies a complex geometric design and then, without
warning, is asked to reproduce it from memory 30 minuites later. A detailed scoring
system has been developed (49). Because performance on cognitive tests is associated
with overall level of intelligence, the Vocabulary subtest from the Wechsler Adult
Intelligence Scale (50) or the Wechsler Intelligence Scale for Children (51) was
administered. Vocabulary is highly correlated with Full Scale IQ, is widely considered to
be the best estimate of global intellectual ability, is quite stable over time, and is
relatively insensitive to either neurological or psychological disturbances (52).
Laboratory

Twenty millilitres of blood were drawn from each subject and DNA was extracted with a

high salt method (53). Subjects were genotyped for an intronic BDNF dinucleotide repeat
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polymorphism, (GT), , previously thought to be upstream from the transcription start site
(54); it is now thought to be located in the first intron because of the finding of another
exon in the §' direction. Polymerase chain reaction (PCR) was performed on 50 ng of
template DNA to amplify a fragment containing the (GT), dinucleotide repeat
polymorphism. The forward primer was labelled with a yellow fluorescent dye (NED™).
PCR products were separated using the ABI Prism® 3100-Avant Automated Genetic
Analyzer. Allele numbers were assigned according to their size (allele 1 = 174 bp; allele

2 = 172 bp; allele 3 = 170 bp; allele 4 = 168 bp; allele 5 = 166 bp), using

GENOTYPER® software, version 3.7.

The BDNF Val® Met SNP (NCBI SNP Id rs6265) was typed using primers, probes and
PCR conditions developed by Applied Biosystems Inc. (ABI Assay ID
C__11592758_10). Amplification and detection of the PCR product were performed
with an ABI Prism® 7000 sequence detection instrument (Applied Biosystems Inc.), as
suggested by the manufacturer, by use of all default program settings. The PCR product
was detected as an increase in reporter dye fluorescence during the PCR extension phase
when the probe was cleaved by the 5' exonuclease activity of the Tag DNA polymerase.
The BDNF (GT), and Val®® Met polymorphisms are in strong linkage disequilibrium

(28), thus the BDNF markers we examined were not independent.

A third BDNF polymorphism was genotyped using restriction enzyme analysis — a SNP
in the 5'-noncoding region — C270T, using PCR primers described by Kunugi et al. (55).
Restriction digest was with Hinfl. Products were separated on 3.5% high-resolution

agarose gel and visualized using ethidium bromide.
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The COMT Val'%®'*® Met SNP was genotyped using modifications to the PCR conditions
and primers used by Kunugi et al. (56). Restriction digest was with Nlalll and products
were visualized with ethidium bromide on 3.5% high-resolution agarose gel. Further
information about primers and PCR conditions for any of the polymorphisms discussed is
available upon request. Hardy-Weinberg equilibrium was calculated for each of the
SNP’s. The Hardy Weinberg statistics were — BDNF Val® Met v* =2.0, d.f.=1, p=0.15;
BDNF C270T y* =0.97, d.f.=1, p=0.32; and COMT Val'®¥'*® Met 4 =0.009, d.f =1,
p=0.92. For the BDNF (GT), marker, observed and expected homozygosities were
compared. The number of observed homozygotes was 30 (49%); and expected, 25.2
(41%). The observed homozygosity in this sample did not differ statistically from
expected (y* =1.5, d.f.=1, p=0.22). Heterozygosities were 51% for the BDNF (GT),
variant, 31% for the BDNF Val®Met SNP, 13% for the BDNF C270T SNP and 49% for
the COMT Val'®'*®Met SNP. Minor allelé frequencies were 0.15 for the BDNF
Val®®Met SNP, 0.083 for the BDNF C270T SNP and 0.49 for the COMT Val'®/'% Met

SNP. Allele frequencies for BDNF (GT), and genotype frequencies for the SNP’s are

reported in Table 1.

Statistical Methods Analyses were completed with SAS v8 (57). Pearson correlation

coefficients were calculated to test for correlation among the four memory measures. To
account for multiple testing of four different dependent variables (i.e. the memory test
scores) of interest, we employed multivariate analysis of variance (MANOVA). The PA
delayed, LM immediate and delayed and the RCF delayed rendered a global impression

of memory. This enabled us to make the simultaneous inference on the null hypothesis
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that the independent variables had no effect on any of the dependent variables.
Conversely, the statistical significance of a given independent variable would have led us
to conclude that that factor influenced at least one of the dependent variables.
Independent variables included the presence of alleles of the four genetic markers
discussed above. Out of necessity, we made the assumption that the allele effects were
additive. If the true effect of heterozygosity was more (or less) than additive, we would
have needed interaction terms in the model and we lacked statistical power for such
purposes. Covariates included age, gender, ethnicity, Wechsler Intelligence Scale
Vocabulary subtest score (WVS), current mood episode, current substance abuse and
current antidepressant treatment. To adjust for covariates in a parsimonious fashion, the
following steps were used before testing the effects of the independent variables: i)
covariates were added to the model in order of decreasing statistical significance if,
according to Pillai’s Trace statistic, they were independently associated with memory
scores at p<0.10, ii) if, after adjusting for other covariates, a covariate was not significant
at p<0.10, it was removed from the model, iii) each covariate was entered only once.
Once the potentially influential covariates were identified, a model for each locus was

generated by including indicator variables for the presence or absence of each allele

associated with that locus.

3.1.3 Results

Memory subtest scores were highly intercorrelated (r values ranged from 0.32 to 0.87; p
values ranged from < 0.05 to < .0001), thereby meeting statistical criteria for the use of

MANOVA. Covariates, when tested one-at-a-time, indicated gender (p=0.0035) and
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WVS (p=0.0003) as significant, with the other covariates not being significant on their
own. After controlling for IQ, of the remaining covariates, only gender remained
significant (p=0.0016). A total of five subjects were being treated with antidepressants,
including imipramine, nortriptyline and fluoxetine at the time of testing. Antidepressant
at the time of testing was associated with lower overall memory test scores (F=2.31,
d.f.=4,56, p=0.07) after controlling for gender and WVS, meeting our criteria for being
included in the final model (p=0.07), which is presented below. Current mood episode
did not affect memory: current MDD (n=5) (F=0.35, d.f.=4,55, p=0.84), DD (n=6)
(F=1.0, d.f.=4,55, p=0.41) or BP (n=7) (F=0.61, d.f.=4,55, p=0.66) did not influence
memory test scores. Age, ethnicity, and current substance use also did not impact

memory scores according to the selection rule outlined above and were not included as

covariates.

Analyses of candidate gene alleles and memory scores were done controlling for gender,
WVS and current antidepressant use. See Table 3. Alleles of the BDNF (GT),
polymorphism did not significantly impact upon memory scores (174 bp: F=1.37,
p=0.26; 172 bp: F=0.39, p=0.82; 170 bp: F=0.16, p=0.96; 168 bp: F=0.56, p=0.69; 166
bp: F=2.48, p=0.06; d.f.=4,51 for each allele). There were only two 168/166 bp
heterozygotes contributing to the result noted with the 166 bp allele. Similarly, there was
no effect for the BDNF Val®® Met variant (F=1.40, d.f.=4,54, p= 0.25 for the Met allele,
N/A for the Val allele because all cases had at least one Val at this position). Neither
were BDNF C270T alleles (F=0.11, d.f.=4,51, p=0.98; F=0.34, d.f.=4,50, p=0.85, for C
and T variants respectively) nor COMT Val'®'*® Met alleles (F=0.49, d.f.=4,54, p=0.75;

F=0.75, d.f.=4,54, p=0.56; for Val and Met alleles respectively) associated with memory
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function. Allele effects and confidence intervals around the allele effects are found in
Table 3. Data are the adjusted effects rather than the unadjusted means. So, for example,
the BDNF (GT), 174 bp allele accounts for a 0.26 point increment in LM Immediate.
Raw means for the sample are presented in a note under the table.

Effect sizes were calculated for individual alleles (58). For BDNF (GT),, the Eta
Squared (n°) values range from 0.01 to 0.16, all but the 166 bp allele had n’ values less

than 0.10. Similarly, for C270T, n2 values were 0.01 and 0.03; for val66met, the nz was

0.09; and for COMT, the 1’ values were 0.03 and 0.05.

3.1.4 Discussion

The present investigation does not support an association between the proposed BDNF
and COMT candidate polymorphisms and selected memory measures in young adults
with COMD. Specifically, three BDNF variants, including the Val® Met SNP, were not
associated with declarative memory function. The COMT Val!%/!>® Met marker also had
no effect on the memory measures. Higher WVS, and female gender were associated
with more optimal performance on the memory tasks. Current mood episode was not
associated with altered declarative memory capacity, while a trend was observed for
antidepressant use to be associated with less robust declarative memory. While we
cannot exclude the possibility of Type II error as a result of the ethnic structure of the

sample, our analysis did indicate that ethnicity was not associated with memory scores.

Our results should be viewed in light of certain limitations. The absence family members

or other controls precluded the use of other statistical genetic methods, such as those

using quantitative phenotypes with family-based controls e.g. quantitative TDT (59). The
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small sample size limited statistical power - the lack of evidence for an association
between BDNF or COMT candidate polymorphisms and the memory measures may be
related to our sample’s low power to detect more modest effect sizes. Modeling
complete genotypes or potential gene-gene interactions in this small sample was likely to
introduce strata that could produce spurious results, or, worse, mask significant results by
consuming degrees of freedom. Haplotype analysis of the BDNF and COMT markers
would have been an alternate approach (60), but would require a larger sample to produce
meaningful results. Instead we focused on two a priori hypotheses for individual
markers. In other studies, the BDNF Val®® Met SNP has accounted for 1.9% of the
variance in the WMS-R LM delay phenotype (9) and the COMT Val'®*'>® Met SNP has
explained 4.1% of the variance for the WCST respectively (33). Variances of such
magnitude may be difficult to observe in our sample. Effect sizes that we calculated are
further lack of evidence to reject a null hypothesis. In fact, Eta Squared (%) is known to
be biased in more increasingly complex analyses of variance (58); therefore, the 1>
figures represent an upper boundary of effect size. The true allelic effect sizes could be
somewhat smaller. With this low level of phenotypic variation, a substantially larger
sample would be needed to find a significant result -- at which point one would be left to
wonder how meaningful such small differences are. In a growing literature of potential
associations where individual reports may difficult to interpret, our results may be useful
when considered as part of a meta-analysis.

Before discussing main results further, we will elabourate briefly on the results of other
variables in the MANOVA model. The narrow range of ages in the present study may
explain why age did not impinge upon declarative memory tests as would be expected

(49). Since the measures we selected were primarily verbal declarative memory, we



expected female subjects would score higher (61). Altered declarative memory in
childhood-onset mood disorder might be expected based on adult literature (62). We did
not find an association between current episode of BP or MDD and declarative memory.
If memory dysfunction progresses with manic-depressive (63) or unipolar illness (23),
our young adult subjects may not have accrued sufficient morbidity to manifest
declarative or verbal memory disturbance on the measures we used. The unexpected
trend with antidepressant treatment affecting memory function is made difficult to
interpret by the low number of subjects taking antidepressants. An alternate possibility is
that those antidepressants (largely tricyclics) had anticholinergic effects that may have
impaired cognition. Antidepressant-induced BDNF upregulation depends on chronic
treatment lasting weeks, consistent with therapeutic drug effects (64,65). We recognized
that neurological conditions and substance abuse may add to phenotypic variance.
Participants were excluded from the study at intake if medical or neurological illness was

present; substance abuse was considered as a covariate in the MANOVA but was not

significant.

Previous reports on memory phenotypes in juvenile mood disorders are few in number.
Adolescents with unipolar depression achieved lower scores on the RCF and other visual
tasks compared to healthy controls (66) — we did not have controls. Depressive
symptoms in juvenile populations have been associated with lower scores on the Block
Design (67,68) and the Coding and Digit Span subtests (67) of the WISC-R (51).
However, there were no genetic aspects to the prior studies in youth. Previous genetic
studies examining BDNF and COMT genes with memory have been exclusively in

healthy adults and schizophrenia spectrum phenotypes (9,33), but not COMD. Another
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contrast between this study and that of Egan and colleagues (9) was younger age at
memory measurement - participants in this study were on average at least 13 years
younger than in the earlier study. We examined a smaller sample when compared to the
three samples with n >143 each. We used the same LM delay and some memory
measures that were not examined in the original study by Egan et al. (9) that considered
mainly the LM delay. A possible reason for our nonreplication of adult studies might be
the observation that the first published genetic association study for a phenotype is often
positive, even if subsequent investigators fail to repeat the initial finding - reasons for this
include bias and between-study heterogeneity (69). Our failure to replicate previous
findings, if verified, would suggest 1) the influence of the BDNF Val®® Met on LM delay
reported (9) may be age-related and not significant before the late twenties: 2) other
molecular targets that affect memory - NMDA (70), C/EBP B (71), TNFa (72) and other
proteins, such as cAMP response element binding protein (CREB) (73) — are likely to be
relevant; and 3) environmental factors affecting BDNF mRNA expression (74-76) may
influence memory independently of the BDNF Val® Met polymorphism, perhaps via
transcription factors, such as CREB. We find no evidence to suggest the COMT
Val'%'>¥ Met SNP is related to declarative memory, in agreement with the previous study
that considered the same COMT SNP and declarative memory (34). The role of genetics
in memory and mood disorders may be much more complex than suggested by previous
molecular studies. It is curious that the met allele of the BDNF Val®® Met SNP is
associated with reduced hippocampal function and lower memory scores (9), while the
same met allele has also been associated with lower neuroticism scores (32) and a

reduced vulnerability to obsessive-compulsive disorder (77). The SNP may have

pleiotropic effects.
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Strengths of the present study include utilization of 1) a neurobiologically based
dimensional phenotype, 2) a rigorously characterized sample 3) standardized, commonly
used neuropsychological measures and 4) a juvenile population where any molecular
genetic investigation of declarative memory would be novel. In conclusion, we find no
evidence of association between selected BDNF or COMT genetic variants and

declarative or visuospatial memory phenotypes in this sample, suggesting that the BDNF
and COMT markers we examined are not related to such memory phenotypes in
paediatric-onset mood disorders.
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Table 1a: BDNF (GT), allele frequency distribution

BDNF (GT),

Allele (bp) n (%)

174 20 (18)
172 4 (3.6)
170 67 (60)
168 19 (17)
166 2(1.8)

Table 1b: SNP genotype frequency distributions

BDNF Val® Met BDNF C270T COMT Val'™ ™8 Met
Genotype | n (%) Genotype | n (%) Genotype n (%)
Val/Val | 43 (69) C/C 51 (85) Val/Val | 18(29)
Val/Met | 19 31) C/T 8 (13) Val/Met | 31 (49)
Met/Met | 0 (0) T/T 1(2) Met/Met | 14 (22)

Table 2: Pearson Correlation Coefficients for memory scores

LM Immediate LM Delay PA Delay RCF Delay
LM Immediate 0.873%** 0.209 0.249*
LM Delay 0.873*** 0.179 0.303*
PA Delay 0.209 0.179 0.320%*
RCF Delay 0.249* 0.303* 0.320%*
*p<0.05 **p<0.01 *¥*p<0.0001
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Table 3: Effect of Selected Gene Polymorphisms on Memory Test Scores

N of | Allele Effect (Standard Error) [95% Confidence interval] on | Test of allele main
Subj | Memory Test Score Adjusted for IQ, Gender, and effect.**
ects* | Antidepressant Use **
Polymorphism LM LM Delay PA Delay RCF Delay F d.f. P
(Marker Immediate
Allele)
BDNF (GT),
At least one:
174 bp Allele 18 0.26 (1.24) 0.64 (1.20) 1.20 (0.57) 2.24 (1.91) 1.37 451 0.26
(-2.22,2.74] | [-1.76,3.04] | [0.06,2.34) | [-1.59, 6.06]
172 bp Allele 8 -0.33(1.53) | 0.69(1.48) 0.00 (0.70) -0.26 (2.36) 0.39 4,51 0.82
[-3.39,2.73] | [-2.27,3.65] | [-1.4], 1.42] | [-4.99, 4.46)
170 bp Allele 48 -0.35(1.44) | -0.76(1.40) | 0.04 (0.67) 0.73 (2.23) 0.16 4,51 0.96
[-3.25,2.55] | [-3.56,2.04] | [-1.30, 1.37] | [-3.73, 5.20]
168 bp Allele 16 0.71 (1.31) 0.72 (1.26) 0.35 (0.60) -1.92 (2.02) 0.56 4,51 0.69
[-1.91,3.33] | [-1.81,3.25] | [-0.86, 1.56] | [-5.96, 2.12]
166 bp Allele 2 -3.96 (2.82) | -4.37(2.72) | -2.21(1.30) | 5.34(4.35) 2.48 4,51 0.06
[-9.62, 1.69] | [-9.83,1.10] | {-4.82,0.40] | [-3.38, 14.06]
BDNF Val66 Met
At least one:
Val Allele*** 62 0 0 0 0 - - -
Met Allele 19 0.19 (1.08) 0.21 (1.06) 1.13 (0.49) 1.77 (1.68) 1.40 4,54 0.25
[-1.97,2.35] | [-1.91,2.33] | [0.16,2.11] | [-1.59,5.14]
BDNF C270T
At least one:
C Allele 59 -1.18 (4.17) | 0.21 (4.07) -0.66 (1.95) | -0.30(6.45) 0.11 4,51 0.98
[-9.53,7.17] | [-7.95, 8.38] | [-4.58,3.25] | [-13.2, 12.64]
T Allele 9 -0.60 (1.49) | 0.01(1.45) -0.55 (0.70) | -1.62(2.30) 0.34 4,51 0.85
[-3.58,2.38] | [-2.91,2.93] | [-1.95,0.84] | [-6.24, 3.00]
COMT Val108/158
Met
At least one:
Val Allele 49 0.06 (1.24) 0.15 (1.22) 0.79 (0.58) 1.26 (1.87) 0.49 4,54 0.75
{-2.42,2.54] | [-2.29,2.58] | [-0.39, 1.96] | [-2.49,5.01]
Met Allele 45 -0.17 (1.14) | -0.40(1.12) | -0.34(0.54) | -2.92 (1.72) 0.75 4,54 0.56
[-2.45,2.12] | [-2.64, 1.84] | [-1.42,0.73] | [-6.37, 0.54]

* Since subjects have two alleles for each marker, heterozygotes are represented twice in this column. The
net effect of a heterozygote genotype in this model is therefore the sum of the two corresponding allele

effects.

** Other potential covariates such as age, race, currently in episode, and substance abuse were not
statistically significant and therefore not included in this model. The unadjusted mean LM Immediate, LM
Delay, PA Delay, RCF Delay was 12.4 +4.0, 11.0 +4.2, 8.2 +2.1, 18.9 £6.3, respectively.

##% All subjects with genotypes and memory scores for Val®® Met had at least one Val allele.
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4.1 Summary of Results

To summarize, the main purpose of this project was aimed towards expanding the
neurotrophic hypotheses of depression and memory function by analyzing several BDNF
polymorphisms as putative risk factors for the COMD phenotype. The approaches taken
involved a case-control association study and a quantitative genetic analysis using
MANOVA. In the first set of analyses, individually matched cases and controls were
tested using standard RxC tables for BDNF polymorphism alleles and/or genotypes.
Results indicated no association of Val**Met variant genotypes or alleles with COMD,
but did find an association of the 168 bp allele of the (GT), with caseness. Conditional
logistic regression also supported these results after accounting for strata introduced by
matching. The result is further supported by GC data that do not indicate any significant
population heterogeneity between cases and controls. Haplotype analysis made use of
evolutionary relationships to reduce the nun&ber of hypothesis tests and to make results
more interpretable, indicating that the BDNF val/short haplotype was associated with
COMD. We found no relationship between three BDNF or the COMT Val'®'%8 Met
variants and declarative memory. Gender and a proxy variable for IQ (WVS) were

covariates that had statistically significant effects on declarative memory.

4.2 Synopsis of Rationale for Research

To our knowledge, the present effort is the first to molecular genetic study to implicate a
neurotrophin gene, namely BDNF, as a possible risk factor for COMD. The field of
psychiatric genetics of child- and adolescent-onset affective disorders is in its infancy,

with only a handful of published papers. Most of the published molecular genetic studies

84



on COMD concern polymorphisms of the 5-HTT or COMT genes, ostensibly based on
the monoaminergic hypothesis of depression (Schildkraut et al. 1965). However, the
monaminergic theory arose when little was known about the importance of cellular
resilience and structural plasticity in mood disorders (Manji et al. 2003). Both theories
overlook the phenotypic variability of COMD, which can be unipolar or bipolar and can

be comorbid with anxiety or disruptive behaviour disorders.

BDNF has been implicated in stress-related depression via cellular signaling in animal
models. Stress could contribute to the hippocampal changes observed in preclinical
models of depression, while antidepressants reverse such changes via second messengers
(for reviews, see Duman et al. 2000; Nestler et al. 2002). Hippocampal neurotoxicity in
CA3 neurons has been described in chronic stress paradigms (Sapolsky et al 1990;
Magarinos et al. 1996). Stress is also associated with adverse effects in hippocampal
CA3 neurons and dentate gyrus granule cells manifested by reduced BDNF (Smith et al.
1995). Chronic antidepressant administration over a period of weeks, including
electroconvulsive seizures, boosts hippocampal BDNF expression and neurogenesis.
Central BDNF infusion into the dentate gyrus has produced adaptive behaviours in the
animal stress paradigms (Shirayama et al. 2002). Although exact replication of such
findings is not possible in humans, neuroimaging and postmortem data to date support the
animal research. In a complex disorder such as COMD, any mono-biomarker hypothesis
is likely a gross oversimplification. New preclinical evidence supports the potential

involvement of multiple genes from at least five different gene groups (Altar et al. 2004).



4.3 Limitations of Study

A first limitation of the study is the hypothesis relating to neurotrophic effects and
depression. Beyond being a blatant oversimplification, there are specific elements of the
neurotrophic hypothesis of depression which have been remarkable. Firstly, BDNF has
been implicated in schizophrenia in several studies. For example, BDNF interacts with
the dopamine D3 receptor (Guillin et al. 2001) and evidence that dopamine antagonists
affect BDNF expression (Chlan-Fourney et al. 2002) exists. Secondly, the human serum
neurotrophin changes that have been observed in depression are believed to reflect CNS
neurotrophin support — a premature notion considering the serum neurotrophin changes
may simply be epiphenomena. Thirdly, increases in BDNF expression need to be
associated directly with increased neural plasticity, and improved mood and cognitive
function in depressed human subjects (Lang et al. 2004). Such reports have not been
forthcoming at this time. It is clear the limitations of the neurotrophic hypothesis of

depression may affect the prior probability of the current project.

A second important limitation has already been alluded to above, namely the
heterogeneity of the COMD phenotype. As with psychosis (Kendler et al. 1998),
phenotypic heterogeneity is the rule with COMD. Heterogeneity of this nature makes the
interpreting of results more cumbersome. COD likely involves symptom overlap in
conditions with differing pathogenetic sequences. Examining genetic factors that may

affect sub- or endophenotypes may increase the probability of finding common biologic

substrates.
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Third on a list of limitations would be the small number of variants genotyped in a gene
with multiple polymorphisms. As expanded upon in the manuscripts, the polymorphisms
studied have been found to be in near complete linkage disequilibrium, making the small
number of markers less concerning, and potentially a strength by reducing the amount of
redundant data and by diminishing multiple testing concerns. Again, no corrections for

multiple tests were made since our examination of COMD was exploratory.

A fourth difficulty we faced was the retrospective aspect of the memory analysis.
Memory data for some participants had been collected and then stopped without the
entire sample having been characterized cognitively. The experimental design was

retrospective and failed to capture memory data on the maximum possible number of

subjects.

Which naturally leads discussion to the fifth and most obvious limitation of the present
study, that of power. The small sample is offset a little by the power of case-control
design. Genotype relative risk is the chance of disease for one genotype at a locus versus
another genotype. For complex traits, GRR’s of between two and four are often
assumed, meaning and individual with a risk genotype is two to four times more likely to
have the disorder. The estimated sample size required for replication of the BDNF (GT),
168 bp allele finding in the current study was n=102 for the same power and alpha, using
the genotype frequencies we observed.

The sample size for the memory analysis was smaller. For this reason we reported allele
effects with their respective confidence intervals so as to not just rely on significance

testing. Allele effects were small, especially for alleles possessed by larger numbers of
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subjects. Effect sizes for the MANOVA we reported as Eta Squared (nz) values: all were
between 0.01 and 0.16. Eta squared values tend to be biased upwards with smaller
samples, so the true effect sizes are most likely smaller than our estimates. One
contributor to the small effect size is the limited variation in the sample on memory test
scores. A more ideal design would have prospectively obtained memory data and DNA

on a larger sample with a control group.

Case-control designs have been criticized for relying on the assumption of population
homogeneity and thereby producing false positive results. Population heterogeneity
tends to be the rule in large North American cities, such as Pittsburgh. Cryptic
relatedness — when affected individuals are more likely to be related than controls
because they share a common genetic disorder - can also contribute to spurious
associations. GC methods we used help to avoid many of the difficulties of the case-

control design by using multiple markers across the genome to correct for stratification.

There is no one neuropsychological test that is an absolute measure of hippocampal
function. The most optimal test of hippocampal function is most likely spatial navigation
(Ekstrom et al. 2003). While we did not have such data available for our sample, other

measures available were reasonable proxies for hippocampal function.

Lastly, there are more general difficulties common to genetic association studies, namely
problems with reproducibility. The point is well illustrated by the recent nonreplication
of a finding that a polymorphism found in the 3' UTR of the interleukin-12B p40 gene

was associated with Type I diabetes. Linkage data, biological plausibility, and positive
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association in two samples (249 sib pairs and 235 simplex families) supported this as a
candidate marker for Type I diabetes (Morahan et al. 2001). A subsequent attempt at
replication examining five samples individually and with a total combined sample size of
2873 families found no association, with 99.9% power to detect a difference at p<0.01.
The authors emphasized a need for independent replication, large datasets and small P-

values to make results more reliable (Dalhman et al. 2002).

4.4 A Putative Role for BDNF in Depressive Disorders

Results from the case-control analysis provided data indicating an association between
the 168 bp allele of the BDNF (GT), polymorphism and COMD. In addition, the
val/short haplotype was associated with caseness. Caution must be used in interpreting
the results, in light of the diagnostic heterogeneity of the sample, the limited sample size
and the absence of correcting for multiple testing. In contrast there was no association
between the val66met marker and COMD, ;13 one might expect if the LD were high
between val66met and (GT), in other samples (Neves-Pereira et al. 2002; Lanktree
personal communication). We observed a D' of 0.422 for cases and 1.0 for controls.
This does suggest the possibility of a spuriously differing genotype distribution in cases,
or may reflect the use of a small sample size with unrelated individuals. The BDNF
Val®*Met polymorphism has been associated with adult bipolar disorder in North
American (Neves-Pereira et al. 2002; Sklar et al. 2002) but not Japanese (Nakata et al.
2003) or Chinese (Hong et al. 2003) adults, suggesting that ethnic influences may be
possible. The positive findings in adult bipolar disorder may be of relevance to juvenile
onset mood disorders, considering the high rate of switching to bipolar disorder in this

population. The present sample was too small to adequately address that question.
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Hypotheses derived from several sources include 1) the small risk associated with the
Val®*Met SNP varies with ethnicity and 2) a phenotype of dysregulated emotionality
underlies the pleiotropy exhibited by BDNF polymorphisms, specifically Val**Met.
Looking beyond the mood disorder literature, study of disorders associated with
depressive symptoms may be informative. BDNF markers, including Val**Met, have
been associated with other mood disorder-related phenotypes which have irritability and
mood lability as prominent symptoms. Such phenotypes include attention-deficit
hyperacitivity disorder (ADHD), eating disorders such as bulimia nervosa, rapid-cycling
bipolar disorder and the personality trait of neuroticism - all of which frequently share
depressive comorbidity. For example, recent data indicate association between ADHD
and the BDNF Val**Met G(valine) allele (Kent L et al. 2004; Lanktree M et al. 2004).
Comorbidity involving eating disorders is common in depressive disorders - BDNF
serum levels have been associated with eating disorders (Nakazato M et al. 2003) and the
BDNF Val®*Met A (methionine) variant has been associated with eating disorders
including bulimia nervosa (Ribases M et al. 2003; Koizumi H et al. 2004: Ribases M et
al. 2004a). Further, evidence has implicated multiple BDNF SNPs, including the
Val®®Met G allele in the DSM-IV-TR (American Psychiatric Association, 2000) “with
rapid cycling” phenotype (Mueller DJ al. 2004). Both BDNF Val®*Met polymorphism
and BDNF serum concentration have also been implicated in neuroticism in Western but
not Asian populations (Sen S et al. 2003; Itoh K et al. 2004; Lang UE et al. 2004; Tsai SJ
et al. 2004) Taken together, these studies suggest 1) that the two variant alleles at
Val®Met increase risk for different clinical phenotypes in different populations, as with
adult bipolar disorder, and 2) that BDNF variants are associated with emotion

dysregulation manifested by irritability or mood lability across different DSM

90



syndromes. The two hypotheses presented would be reasonable if we are considering
small effects of the BDNF locus against differing genetic backgrounds involving a
complex, polygenic phenotype. Hence it is not surprising that the Val®*Met valine allele
is associated with adult bipolar disorder (Sklar et al. 2002; Neves-Pereira et al. 2002)
while the Val**Met methionine allele appears to be associated with less optimal

declarative memory (Egan et al. 2003).

In the setting of multiple polymorphisms existing at a locus, it is beneficial to consider
haplotypes to evaluate how often a set of variants are found together as a unit. The value
of haplotypes lies in making more full use of the information contained in a gene. For
instance, studying a single marker for association with a particular phenotype may be
difficult, given that the markers used as candidates are often common on a population
level. Further, multiple mutations at different points in a gene can have an important
effect on the phenotype. Over the course of evolution, a unique set of markers may be in
high LD and therefore be inherited as a single unit together with the etiological
polymorphism(s) or mutation(s). Haplotype analysis, therefore, may be a more powerful

tool to detect association than single-marker analysis.

A problem that can occur with haplotype analysis is that for increasing numbers of
markers, there can be a very large number of haplotypes, many of which are not
informative, and use up degrees of freedom. Templeton et al. (1987) first suggested the
use of evolutionary relationships among haplotypes, as illustrated in a cladogram, to
reduce the number of hypotheses tested in detecting an association between a trait and

one or more clusters of haplotypes. A method involving the use of a generalized linear
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model as applied to cladistic analysis that can be applied to both family- and population-
based samples has been proposed (Seltman et al. 2003). We made use of this
Evolutionary-Based Haplotype Analysis Package, eHap. We used eHap performed an
overall test of significance and tests based on cladistic relationships. Met/long and
val/long were grouped while val/short was a separate node. Met/short was discarded
from the analysis as it was present in only one case. Although we suspect the association
of the val/short haplotype to COMD may be driven by the association of the (GT), 168
bp allele, it allows room to speculate that the val66met marker may have an association

which our sample is not large enough to detect.

In more recent analyses we have begun, seven BDNF polymorphisms spanning 30.3 kb
were genotyped in 132 pedigrees of Hungarian probands with childhood-onset DSM-IV
major depressive disorder or dysthymic disorder. The BDNF polymorphisms included
the (GT),, Val®®Met and five other single nucleotide polymorphisms (SNPs) distributed
across the BDNF gene. The transmission disequilibriuni test (TDT) was used to test for
allelic association with diagnosis. Statistically significant overtransmission involving
five of six SNPs was found, with p-values ranging from 0.013 to 0.046. A sixth SNP
exhibited a trend towards biased transmission (BDNF1: chisg=2.9, df=1, p=0.087).
Specifically, the Val®®Met SNP was associated with COD (chisg=4.9, df=1, p=0.027),
with the val allele being overtransmitted. Alleles of the (GT), polymorphism
demonstrated no bias in transmission, with p-values for this marker ranging from 0.17 to
0.47. High D' coefficients were observed for the SNP’s (0.84<D'<1.0). Although
Val®*Met was associated with caseness and (GT), was not, the Hungarian results provide

further evidence of a signal in the region, from one of the polymorphisms typed or
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another variant in high LD with those already analyzed. Aside from Val®®Met, none of

the other polymorphisms are known to be functional.

4.5 Interpretation of Memory Results

We found no association between BDNF and COMT polymorphisms and selected
memory measures in young adults with COMD. Three BDNF variants and the COMT
Val'®'%® Met marker had no influence on the memory test performance. For COMT, the
rationale of the hypothesis was less robust. The chance of of Type II error is a realistic
consideration. Without controls or family members, we were not able to take advantage
of other statistical methods, such as quantitative TDT. The principal problem in
interpreting the results is the limited statistical power. However, effect sizes offer no
support to reject a null hypothesis. Eta Squared (n%) is known to be biased upward in
smaller samples — so the 1’ figures presented would be an upper bound, meaning the
actual effect sizes would be even less than what we report. With this low variability in
memory, a much bigger sample would be required to detect a statistically significant
result, which would increase the difficulty of interpreting the result. Although the results
of the memory analyses are cumbersome to interpret, they may be of some use in the
context of a future meta-analysis. There is no one neuropsychological test that is an
absolute measure of hippocampal function. The most optimal test of hippocampal
function is most likely spatial navigation (Ekstrom et al. 2003). While we did not have
such data available for our sample, other measures available were reasonable proxies for
hippocampal function.

Genotypes of the COMT polymorphism studied are known to be difficult to read -

regenotyping with automated methods indicated four genotypes discrepant with the
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original genotypes done by manual methods. Reanalyzing the memory data with the

more reliable automated genotypes did not significantly alter the results.

4.6 Conclusions

To conclude, the data from the current study are among the first to implicate the BDNF
gene as a putative risk factor for mood disorders with onset in childhood and
adolescence. The finding also suggests other elements in the cAMP-CREB and
ERK/MAP kinase pathways may be worth investigating. It is imperative that the results
from the current study are viewed as preliminary, until multiple replications have
occurred. The observations provided by the present investigation underscore the
importance of broadening the scope of molecular genetic research of depressive disorders
beyond monoaminergic systems, to heed the notion that several molecular systems may
be germane. Should our results be replicated, they would illustrate the value of using
preclinical research to inform candidate ger;e selection. Haplotype analysis was a useful
tool, with the involvement of the val/short haplotype converging with results from
genetic association studies of adult bipolar disorder. Endophenotypes may serve to
reduce the heterogeneity of the phenotype in polygenic complex disorders. Since BDNF
is a highly conserved protein within and between species, coding sequence
polymorphisms may not account for major functional changes. Other mechanisms may

regulate expression of this protein, as outlined in Future Directions.
New hypotheses derived from several sources include 1) the small risk associated with

the Val**Met SNP varies with ethnicity and 2) a phenotype of dysregulated emotionality

underlies the pleiotropy exhibited by BDNF polymorphisms, specifically Val®®Met.
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Looking beyond the mood disorder literature, study of disorders associated with
depressive symptoms may be informative. BDNF markers, including Val®*Met, have
been associated with other mood disorder-related phenotypes which have irritability and
mood lability as prominent symptoms. Such phenotypes include attention-deficit
hyperacitivity disorder (ADHD), eating disorders such as bulimia nervosa, rapid-cycling
bipolar disorder and the personality trait of neuroticism - all of which frequently share
depressive comorbidity. For example, recent data indicate association between ADHD
and the BDNF Val®*Met G(valine) allele (Kent L et al. 2004; Lanktree M et al. 2004).
Comorbidity involving eating disorders is common in depressive disorders - BDNF
serum levels have been associated with eating disorders (Nakazato M et al. 2003) and the
BDNF Val®®Met A (methionine) variant has been associated with eating disorders
including bulimia nervosa (Ribases M et al. 2003; Koizumi H et al. 2004; Ribases M et
al. 2004a). Further, evidence has implicated multiple BDNF SNPs, including the
Val®Met G allele in the DSM-IV-TR (American Psychiatric Association, 2000) “with
rapid cycling” phenotype (Mueller DJ al. 2004). Both BDNF Val®**Met polymorphism
and BDNF serum concentration have also been implicated in neuroticism in Western but
not Asian populations (Sen S et al. 2003; Itoh K et al. 2004; Lang UE et al. 2004; Tsai SJ
et al. 2004) Taken together, these studies suggest 1) that the two variant alleles at
Val®*Met increase risk for different clinical phenotypes in different populations, as with
adult bipolar disorder, and 2) that BDNF variants are associated with emotion
dysregulation manifested by irritability or mood lability across different DSM
syndromes. The two hypotheses presented would be reasonable if we are considering
small effects of the BDNF locus against differing genetic backgrounds involving a

complex, polygenic phenotype. Hence it is not surprising that the Val®*Met valine allele
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is associated with adult bipolar disorder while the Val®®Met methionine allele appears to

be associated with less optimal declarative memory (Egan et al. 2003).
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The neurobiology of affective disorders has greatly broadened since increasing attention
has been given to metabolic pathways beyond traditional receptor targets. Multiple
factors — molecular and environmental - have been shown to influence BDNF expression.
At least two other important molecules affect BDNF expression. MeCP2 binds to a
BDNF promoter and when the MeCP2 is phosphorylated, it releases from the BDNF
promoter, facilitating BDNF transcription (Chen et al. 2003). Augmented synthesis of
BDNF correlates with a decrease in CpG methylation in its regulatory region and is
associated with dissociation of the MeCP2 repression complex from the promoter
(Martinowich et al. 2003). Both studies showing interactions between BDNF and
MeCP2 suggest that modulation of methylation occurs in acute gene regulation. Multiple
studies have suggested interactions between estrogen and BDNF (Solum and Handa
2002; Cavus and Duman 2003; Scharfman et al. 2003) and may begin to improve the

biological understanding of why unipolar depression is more common in women.

Further, several environmental factors have been found to influence BDNF expression.
Exercise promotes BDNF expression in the hippocampus (Farmer et al. 2004; Adlard and
Cotman 2004; Russo-Neustadt et al. 2001, 2000, 1999) and is known to have
antidepressant effects (Brosse et al. 2002). Maternal deprivation is another known
environmental risk factor for depression associated with diminished BDNF expression
(Roceri et al. 2004, 2002; Liu et al. 2000). Obesity and sugar intake have been associated
with depression humans (Westover and Marangell. 2002; Stunkard et al. 2003) while
diets high in sugar and fat have been associated with reduced BDNF expression in

animals (Molteni et al. 2002). Though some of the many of the above associations
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remain speculative in nature, they point out some of the adverse mental health effects of
current North American lifestyle. The studies cited above enhance the idea that
epigenetic effects (Petronis 2001) and other social, molecular and physiological

influences on BDNF expression may be relevant to depression.

With a complex, non-Mendelian disorder, simple monogenic investigations such as this
one likely cannot comprehensively address the phenotype, reflecting the limitations of the
investigator and the available diagnostic and laboratory methods. Epigenetic
investigations and endophenotypes may have increasing relevance (Abdolmaleky et al.
2004; Gottesman and Gould 2003). Microarray studies will be valuable in addressing
patterns of gene expression and identifying novel, empirical loci for future studies

(Alfonso et al. 2004; Altar et al. 2004). The present area of research offers ample room

to expand with future projects.
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