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ABSTRACT 
 
 
 
 


Very few studies concerning fatigue of oil pipe have been conducted using full-scale 


tests.  Further, no research is found in open literature concerning fatigue cracks in the 


longitudinal direction of pipes, despite being deemed more critical.  Fatigue crack growth 


was investigated in NPS 20, API 5L X-70 grade, straight-seam steel oil pipes in the base 


metal and at the welded joint for various orientations.  Specifically, the effect of the 


welded joint and crack orientation on the fatigue crack growth behaviour relative to a 


longitudinal crack in the base metal was determined.  The fatigue crack growth behaviour 


of a longitudinal crack in the base metal was fully characterized and compared with 


existing fracture mechanics and fatigue theories.  Data from all full-scale pipe tests is 


provided to be used to enhance existing fatigue life prediction models.  
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CHAPTER 1 


 


INTRODUCTION 


 


1.1 General 


 


Canada has the largest pipeline network in the world with over 580,000 km of pipe in the 


ground.  These pipelines are used in transporting oil and gas to various locations within 


the country and the United States.  The structural integrity and safety of these oil and gas 


pipelines is of the utmost importance for Canada’s economy, for the safety of inhabitants 


living near the pipelines, and for the protection of the environment.   


 


Fatigue is defined as the permanent, localized weakening or breakdown of a material due 


to cyclical stress fluctuations, such as pressure variations experienced in oil and gas 


pipelines.  Fatigue is a serious concern for the oil and gas industry and therefore, there is 


a great need to further the current understanding of fatigue crack growth in steel pipe.  


Many pipelines in the field have experienced ruptures or leaks due to fatigue cracks 


initiated either at the weld or at other defects such as corrosion, dents, or scrapes / 


gouges.  This has resulted in huge losses of revenue in the industry, damage to the 


environment, and in many cases injury and even death.  Therefore, a complete 


understanding of fatigue crack growth is imperative to prevent such failure in the future.   


 


Circumferentially cracked pipes have been extensively studied in the existing literature, 


yet the more critical longitudinal cracks have not been researched as thoroughly.  Passed 


research has employed four-point bending test setups to induce cyclical fatigue loadings 


on pipes with a circumferential notch.  The notch created a stress concentration at a 


predetermined location to induce crack initiation.  Crack growth through the thickness of 


the pipe wall was monitored using various techniques and results were used to develop 


models to predict crack growth; however, these models are limited in their applications 


due to the limited data on which they are based.  There is a pressing need to gather more 


fatigue crack growth data so more widely applicable models can be developed. 
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1.2 Statement of the Problem 


 


Longitudinal cracks are considered to be more critical than circumferential cracks due to 


their associated bursting failure mechanism.  The internal pressurization of a pipe creates 


hoop stresses (which act to open longitudinal cracks) that are double the longitudinal 


stresses (which act to open circumferential cracks), which makes a longitudinal crack 


more susceptible to failure than an equivalent circumferential crack under the same 


conditions.  Several research works have been completed to study the fatigue crack 


growth behavior of circumferentially cracked pipes; however, at the time this study was 


undertaken, very few studies on the fatigue crack growth behavior of longitudinally 


cracked pipes could be found in the open literature.  It is currently presumed that the 


presence of a seam weld is detrimental to fatigue life, though no full-scale research tests 


have been conducted to verify this assumption.  Further, no research was found in the 


literature regarding the effect of crack orientation or altering the crack surface 


displacement modes on fatigue crack growth in pipes. 


 


1.3 Objectives of the Study 


 


This study was undertaken to determine the fatigue crack growth behaviour of 


longitudinal fatigue cracks in the weld and base metals of full-scale NPS20 API 5L X-70 


straight-seam steel oil pipe.  Specifically, the comparative effect of the presence of a 


seam weld on the fatigue crack growth was studied.  This study also looked to determine 


the comparative effects of crack orientation on fatigue crack growth in the same full-scale 


specimens. 


 


1.4 Methodology of the Study 


 


The work completed while conducting this study consisted of both experimental and 


statistical methods.  The full-scale tests were not intended to replicate the exact in situ 


conditions or stresses experienced by oil pipes in the field.  The intent was to produce 


fatigue crack growth in steel oil pipe in a controlled environment with known conditions 
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in an analogous manner to how fatigue crack growth occurs in the field.  With all other 


parameters held constant, the relative effect of the seam weld and crack orientation on 


fatigue crack growth could then be established.  Further, with all the test parameters 


known the fatigue crack growth could be fully analyzed and quantified. 


 


1.5 Scope of Work 


 


This study consisted of the following elements: 


• A detailed literature review 


• 28 full-scale tests on 508 mm diameter, 915 mm long straight-seam steel oil pipe 


with longitudinal notch 


• Statistical analysis of experimental results 


• Determination of the stress intensity factors using a detailed linear finite element 


model in ABAQUS 


• Determination of the comparative longitudinal fatigue crack growth behaviour in 


the base metal and welded joint of NPS20 X-70 steel oil pipe 


• Determination of the comparative effect of crack orientation on fatigue crack 


growth in NPS20 X-70 steel oil pipe 


 


1.6 Organization of the Thesis 


 


This thesis consists of five chapters.  The first chapter provides a brief overview of the 


problem and objectives of this study.  The second chapter presents a review of the open 


literature.  First, the background theory of fatigue is reviewed and the parameters used in 


characterization of fatigue crack growth are explained.  Then the mechanisms for 


occurrence in pipelines are discussed before previously conducted research similar in 


nature to this study is examined and areas requiring further research are noted.  Finally a 


review of techniques used for monitoring fatigue crack growth during tests is provided. 
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The third chapter describes the experimental methodology including the details of the test 


specimens, test parameters, testing procedures, and instrumentation used.  Explanation is 


also provided on the development of these parameters and procedures. 


 


The fourth chapter details the results of all tests conducted.  A discussion of the results is 


provided for each growth parameter and general trends are examined.  Further, the results 


of this study are compared to existing fracture mechanics and fatigue theories on a 


qualitative basis. 


 


The fifth and final chapter summarizes the major findings of the study and provides 


recommendations for future research. 
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CHAPTER 2 


 


REVIEW OF THE LITERATURE 


 


2.1 General 


 


Fatigue is a material phenomenon in which a material exposed to repeated loadings is 


weakened.  These loadings need not exceed the maximum strength of the material to 


cause damage.  In fact, the maximum stresses causing damage during fatigue are often 


significantly lower than the yield strength of the material. 


 


Fundamental to the understanding of fatigue is the theory of fracture mechanics.  Fracture 


mechanics is the study of crack propagation in materials.  It is used to characterize the 


crack growth through a material and calculate the material’s resistance to fracture.  


Fracture mechanics applies the theories of elasticity and plasticity to microscopic defects 


found in materials to predict the macroscopic mechanical failure of bodies (Anderson, 


1995).  


 


The following sections will discuss fatigue and how fracture mechanics, particularly 


linear elastic fracture mechanics, is used to characterize the factors driving crack growth 


in a material.  Then, studies of fatigue found in open literature will be reviewed and 


discussed.  Finally, a brief review of crack growth measurement methods is provided. 


 


2.2 Fatigue 


 


Fatigue is defined as the process of progressive localized permanent structural change 


occurring in a material subjected to conditions which produce fluctuating stresses and 


strains at some point or points and which may culminate in cracks or complete fracture 


after a sufficient number of fluctuations (ASTM, 2013). 
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Dissecting this definition provides greater clarification as to what fatigue is and what 


effects this phenomenon has on materials.  The description of fatigue as “progressive” 


indicates it takes place over some period of time.  Although failure of a body due to 


fatigue is often sudden and without warning, the fatigue process will have been initiated 


at some point prior to failure, often since use of the body began. 


 


Fatigue is a localized phenomenon which indicates the fatigue process occurs in small 


localized areas as opposed to the entire body in question.  The local areas in which 


fatigue occurs often experience concentrations of stresses and high strains due to 


temperature differentials, external loadings, residual stresses, sharp corners or changes in 


geometry, and imperfections within the material.  


 


Fatigue is permanent; the damage or structural change of the material due to fatigue 


cannot be reversed. 


 


Fluctuating stresses and strains are required to induce fatigue.  The loading conditions 


must produce stresses and strains that are cyclic in nature.  A sustained loading will not 


induce fatigue.  


 


The culmination of fatigue is the growth of a crack.  All fatigue failures can be attributed 


to the growth of a crack to such an extent that the remaining material in the section 


cannot support the applied stresses and strains.  Hence, a sudden failure occurs. 


 


The fracture of a body after extensive crack growth means that the body is physically 


separated into two or more sections.  This fracture only occurs after a sufficient number 


of loading cycles have been applied to grow the crack to a point where a sufficient 


percentage of the stress-bearing section has been compromised. 


 


The fatigue process occurs in three stages, as shown in Figure 2.1.  Region I, also called 


the threshold region, is where the nucleation of micro-cracks occurs.  This region 


corresponds to crack initiation.  In Region II, the micro-cracks grow to become macro-
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cracks.  This region is also referred to as the Paris Regime as it is the portion of crack 


growth for which Paris’ crack growth equations are applicable.  Region II corresponds to 


stable crack growth.  Finally there is Region III, or the fracture region, in which the 


cracks have sufficiently compromised the integrity of the body and final fracture occurs.  


Region III corresponds to unstable or unrestrained crack growth. 


 


 


Figure 2.1: Fatigue Crack Growth Regions in Metal (ETBX, 2013) 


 


2.3 Linear Elastic Fracture Mechanics 


 


Dowling (1999) defined fracture mechanics as the study of solids with cracks.  There are 


two main subsections of fracture mechanics: elastic-plastic fracture mechanics (EPFM) 


and linear elastic fracture mechanics (LEFM).  LEFM is a study of cracked solids based 


on the assumption that the material is linear elastic and isotropic.  LEFM represents the 


majority of practical fracture mechanics applications as it is the basis upon which other 


fracture mechanics theories are based.  The key elements of LEFM and its applications 


are discussed in further detail in the following sections. 
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2.3.1 Modes of Crack Surface Displacement 


 


There are three different loading types used in fracture mechanics to describe the relative 


movement of the crack surfaces.  As shown in Figure 2.2, these modes of crack surface 


displacement are simply termed Mode I, II, and III.  It is possible for a cracked body to be 


subjected to any one or any combination of these loading modes (Anderson, 1995). 


 


During Mode I, or the opening mode, the two crack surfaces are displaced from each 


other as if hinged on the leading edge of the crack, opening the crack.  Mode I occurs 


when the loading is applied normal to the crack plane. 


 


In the case of Mode II, or the sliding mode, the two crack surfaces slide relative to each 


other in the direction of crack growth.  Mode II occurs when there is in-plane shear 


loading. 


 


In Mode III, or the tearing mode, the two crack surfaces move with respect to each other 


in the direction normal to the direction of crack growth.  Mode III occurs when there is 


out-of-plane shear loading. 


 


 


Figure 2.2: Modes of Crack Surface Displacement (Anderson, 1995) 
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Mode I is often the dominant mode of crack surface displacement; almost all cracks 


experience Mode I displacements and even if other displacement modes were originally 


present, Mode I will almost surely prevail (Broek, 1988).  However, combined mode 


loading does exist in some circumstances.  Mode I will only dominate if the modes are in 


phase and remain proportional.  Under these conditions, and only if the crack is not 


subjected to geometrical confinement, early in crack development the crack will turn into 


a direction which experiences only Mode I loading (ASM, 1996). 


 


2.3.2 Stress Intensity Factor 


 


Of the two approaches used in LEFM (energy calculations and stress-intensity 


calculations) the stress-intensity method is employed most often.  It uses crack-tip 


stresses and strains directly, which are more commonly used in engineering applications.  


The stress-intensity method uses a parameter, K, to quantify the stresses at the crack tip 


(ASM, 1996). 


  


Using the theory of elasticity and a polar coordinate system, as shown in Figure 2.3, the 


stress field at the crack tip of any linear elastic cracked body can be defined by Equation 


2.1. 


 


��� = � �√�	 
���� + ∑ ���
�
�������


���       (2.1) 


 


In Equation 2.1, the term σij is the stress tensor, k is a constant, r is the radial distance 


from the crack tip, and fij is a dimensionless function of θ.  For very small values of r, as r 


approaches the crack tip, the first term becomes very large, approaching infinity. The 


remaining terms tend to zero or stay finite and can therefore be neglected.  The area of 


interest is very near to the crack tip where the cracking and fracturing is occurring.  It is 


therefore reasonable to use only the first term to describe the stress field around the crack 


tip.  Hence, the stress near the crack tip is proportional to 
�
√�, where r is the radial distance 


of a point measured from the crack tip. 
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Figure 2.3: Polar Coordinates (Anderson, 1995) 


 


The terms k and fij of Equation 2.1 depend on the mode and angle, θ.  The stress intensity 


factor, K, is related to k according to the following relation (Anderson, 1995): 


 


� = �√2�          (2.2) 


 


Substituting the stress intensity factor, K, for the constant, k, yields the following: 


 


lim�→� ��� = "
√#$� 
����        (2.3) 


When focusing on the crack plane, where θ=0, then the stress intensity factor can be 


defined by the following mathematical equation (Dowling, 1999): 


 


� = lim�,&→� �'√2��         (2.4) 


 


However, the stress intensity factor is generally expressed in the following form 


(Dowling, 1999): 


 


� = (�√�)          (2.5) 
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In Equation 2.5, the term β is a geometry factor, σ is the reference stress, and a is the 


crack depth.  The geometry factor, β, accounts for different geometries of the crack and 


the cracked body itself.  The stress intensity factor represents the severity of the stress 


field near the crack tip (Dowling, 1999). 


 


Even if plastic deformation occurs at the crack tip, the forgoing discussion may still be 


valid.  A material will experience plastic deformation if stresses at the crack tip exceed 


the yield strength of the material, σy.  The size of the resulting plastic zone is determined 


by the value of K.  Therefore, the plastic zones of two different cracks are equal for equal 


values of K and identical behaviour will result inside each plastic zone.  This is known as 


similitude.  If similitude is applicable, then fatigue crack growth can be described entirely 


by the stress intensity factor, K (ASM, 1996). 


 


For this to be the case, the size of the plastic zone at the crack tip must be small enough to 


be completely defined by the stress intensity factor, K.  In other words, the plastic zone 


must not extend beyond the distance, r, from the crack tip at which the first term of 


Equation 2.1 is still significantly larger than the other terms.  A plastic zone reaching 


beyond this point would force the remaining terms of Equation 2.1 to be significant 


(ASM, 1996).  This area within a radius, r, such that the first term of Equation 2.1 


dominates, is called the elastic singularity zone and is shown in Figure 2.4.  Within the 


elastic singularity zone, the elastic stress field equations described in Equations 2.6 to 2.8 


are applicable.  These equations are the elastic solution for stresses near a crack tip (Paris, 


et al., 1961): 


 


�* = "
√#$� cos


&
# .1 − sin


&
# sin


2&
# 3 + ⋯      (2.6) 


 


�' = "
√#$� cos


&
# .1 + sin


&
# sin


2&
# 3 + ⋯      (2.7) 


 


5*' = "
√#$� cos


&
# sin


&
# cos


2&
# +⋯       (2.8) 
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Figure 2.4: Elastic Singularity Zone 


 


2.3.3 Stress Ratio 


 


Many factors can affect the propagation rates of fatigue cracks, but chief among them is 


the stress ratio (Totten, 2008).  The propagation of a fatigue crack occurs as a result of 


slip between atomic planes and blunting of the crack tip.  When a loading is applied to a 


cracked solid, plastic deformation will occur at the crack tip as a result of slip between 


atomic planes.  This causes a blunting of the crack tip.  When the loading is removed and 


the crack is allowed to close, the crack tip will become sharp again.  This mechanism of 


fatigue crack propagation is illustrated in Figure 2.5.  Other mechanisms are possible; 


however, they are essentially the same.  A larger maximum stress applied during a fatigue 


cycle will cause more blunting and a lower minimum stress will cause the crack to 


become sharper.  Hence, a larger maximum stress (σmax) and a smaller minimum stress 


(σmin) will extend the crack further.  The stress ratio, R, is used to take this effect into 


account.  The larger the value of R, the faster the crack will grow (Broek, 1988). 
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Figure 2.5: Possible Mechanism of Fatigue Crack Propagation (Broek, 1988) 
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6 = 7�89
7�:;


          (2.9) 


 


The stress ratio can also be defined in terms of the stress intensity factor. 


 


6 = "�89
"�:;


          (2.10) 


 


Here, Kmax is the maximum stress intensity factor and Kmin is the minimum stress 


intensity factor in a cycle corresponding to σmax and σmin, respectively.  Substituting 


Equation 2.5 into Equation 2.10, we have the following relation: 


 


6 = <7�89√$=
<7�:;√$=


          (2.11) 


 


Therefore, 


 


6 = 7�89
7�:;


= "�89
"�:;


= <7�89√$=
<7�:;√$=


        (2.12) 


 


Now, if the stress intensity factor range, ∆K is defined as: 


 


∆� = ��=* − ���?         (2.13) 


 


then by rearranging and substituting Equation 2.13 into Equation 2.10, the stress ratio can 


also be written as follows: 


 


6 = "�:;@∆"
"�:;


          (2.14) 


 


Rearranging and simplifying Equation 2.14, the following relation is obtained: 


 


��=* = ∆"
�@A          (2.15) 
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As previously discussed, a higher maximum stress, σmax, and corresponding stress 


intensity factor, Kmax, is associated with faster crack growth.  Therefore, from Equation 


2.15 it can be concluded that faster crack growth is achieved for larger stress intensity 


factor ranges, ∆K, and/or larger stress ratios, R.  However, it should be noted that for the 


same applied stress intensity factor range, ∆K, the maximum stress intensity factor, Kmax 


will be higher for tests conducted under higher stress ratios, R, and consequently, the 


fatigue crack growth rate, da/dN, will be higher.  The crack growth rate, or increase in 


crack length per fatigue cycle, can therefore be described as a function of the stress 


intensity factor range, ∆K, and stress ratio, R (Pook, 2013). 


 


B=
BC = 
�∆�, 6         (2.16) 


 


2.3.4 Effect of Residual Stress 


 


The presence of residual stresses in a material is another factor which can have a large 


influence on the growth of a fatigue crack.  The effects of residual stress can cause 


alterations of the stress ratio, R, and of the applied stress intensity factor range, ∆K.  


Residual stresses chiefly affect the maximum stress intensity factor, Kmax, and the 


effective stress intensity factor range, ∆Keff, which control the crack driving force.  If a 


crack experiences a residual stress field during its growth, a residual stress intensity 


factor, Kr, is introduced that can either decrease or increase the crack driving force 


parameters (Totten, 2008). 


 


When this occurs, the principle of superposition must be applied to the stress intensity 


factor terms.  However, the material must remain linearly elastic for the application to be 


valid (Totten, 2008).  In this way, new stress intensity factors are defined. 


 


�′�=* = ��=* + ��         (2.17) 


�′��? = ���? + ��         (2.18) 
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The stress ratio, R, and the stress intensity factor range, ∆K must then be redefined 


accordingly.  If K’min>0, then they are defined as follows: 


 


6E = "E�89
"E�:;


= "�89F"G
"�:;F"G


         (2.19) 


∆�E = �′�=* −�E��? = ���=* +�� − ����? + ��    (2.20) 


 


Further simplifying Equation 2.20, results in the following relation: 


 


∆�E = ��=* − ���? = ∆�        (2.21) 


 


However, if K’min<0, the new stress ratio, R’, and the new stress intensity factor range, 


∆K’, are defined as follows: 


 


6E = 0           (2.22) 


∆�E = �′�=* = ��=* + ��        (2.23) 


 


It should be noted that there is an assumption made by the use of these equations that 


when the crack is closed at its tip, K’<0, there is no contribution to crack growth (Totten, 


2008). 


 


2.3.5 Crack Propagation 


 


For the simple case of a single applied loading, the 2D fatigue crack propagation is 


divided into three stages: nucleation/initiation, stable growth, and final fracture, 


corresponding to Regions I, II, and III of Figure 2.1, respectively. 


 


In Region I, micro-cracks nucleate in an area of high stress concentration.  Once initiated, 


the crack propagates along planes of high shear stress at 45 degrees to the applied 


loading.  This is also known as the short crack growth propagation stage.  The crack 


propagates until it is obstructed by a microstructural barrier such as a grain boundary, 


inclusions, or pearlitic zones (Pook, 2013). 
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Region II, also known as the stable growth phase or Paris Regime, occurs next.  This 


phase is initiated when slips start to develop in different planes close to the crack due to 


an increase in the stress intensity factor, K.  Crack growth in this stage is in a direction 


perpendicular to the applied loading direction.  A defining characteristic of Region II is 


the presence of striations on the crack surface, which are visible with the aid of a 


scanning electron microscope; however, not all engineering materials exhibit striations 


(Totten, 2008). 


 


Finally, in Region III there is unstable crack growth and fracture.  Crack growth during 


this stage is governed by static modes of failure and is very sensitive to the microstructure 


of the material and the stress ratio of the applied loadings (Totten, 2008). 


 


Inspection of the fracture surface reveals two distinct regions, easily distinguishable with 


the naked eye.   These two regions are formed during stable crack growth (Region II) and 


final fracture (Region III) of the specimen.  The first region, formed during stable crack 


growth, is smooth in aspect due to the friction between the crack faces.  The second 


region, created during failure of the material, is rough and irregular in aspect.  The 


manner of fracture can be either brittle or ductile and is dependent on material properties 


and testing conditions.  The size of the fracture region as a percentage of the load bearing 


section is governed by the loading level applied to the specimen.  Higher loadings will 


result in low cycle fatigue, characterized by a small stable crack growth region, large 


fracture region, and relatively short fatigue life.  However, a lower loading level will 


result in high cycle fatigue.  This is characterized by a larger stable crack growth region, 


a relatively small fracture region, and a long fatigue life.  Essentially, in high cycle 


fatigue the crack must grow for a longer period of time before the applied loadings induce 


a stress intensity factor, K, equal to the fracture toughness of the material on the reduced 


area of the load bearing section (Sachs, 2005). 
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2.3.6 Fatigue Life Prediction 


 


There is often a need to assess the integrity of a cracked solid or structure to determine its 


fitness for use or remaining useful life.  Fracture mechanics is the tool used to assess this; 


however, the defect is almost always inaccessible and as such, the geometry of the defect 


is unknown.  Most commonly, a defect is assumed to be present in the solid, the size of 


which represents the largest undetectable flaw (Allen, 1988).   


 


Fatigue crack growth rate data for a material exposed to constant amplitude fatigue 


loading conditions is usually generated in the following form. 


  


B=
BC = 
���=*, ���?, IJK.         (2.24) 


 


All assessments of fatigue life based on the theory of fracture mechanics use the same 


underlying principle.  The equation characterizing the fatigue crack growth rate is 


integrated between limits representing the smallest undetectable flaw size and the final 


flaw size expected at failure.  However, this complicated function, f (Kmax, Kmin, etc.), can 


often only be integrated with the help of computerized numerical methods such as finite 


element models (Allen, 1988).  In a general sense, the integration is conducted as follows. 


 


MN = O PMCN
� = O B=


N�"�:;,"�89,QRS.
=T
=U        (2.25) 


 


In the above equation, a0 is the initial crack size, which is often chosen as the largest 


undetectable flaw.   The final crack size, af, is chosen as the largest flaw size allowable 


while still preventing undesirable outcomes.  For example, the final crack size may be set 


to a size which avoids fast fracture or collapse, to a size at which in situ repairs are still 


practicable, or to a size which avoids leakage (Allen, 1988). 
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2.4 Experimental Studies in Areas of Interest 


 


Fatigue is a very wide field of study.  Over the past fifty years since investigation into the 


phenomenon of material fatigue began, a plethora of research has been conducted.  The 


following sections will focus on fatigue research relevant to this experimental program by 


examining studies conducted on full-scale pipe specimens, studies investigating welded 


joints, and studies looking into fatigue behaviour under mixed-mode loading. 


 


2.4.1 Full-Scale Pipes 


 


The experimental study of fatigue crack growth in full-scale pipe specimens has been 


fairly limited.  Researchers or research groups who have performed tests on full-scale 


pipes include: Yoo and Ando (1999); Carpinteri and Brighenti (2000); Singh, et al. (2003, 


2008); Luo, et al. (2004); Saxena, et al. (2009); and Shahani, et al. (2010).  With the 


exception of Lou, et al. (2004), all the studies were conducted using either three- or four-


point bending methods.  A schematic illustrating the setup used by Singh, et al. (2008) is 


shown in Figure 2.6.  The pipes contained an initial circumferential notch, shown in 


Figure 2.7, and were subjected to constant amplitude fatigue bending moments.  The 


study completed by Luo, et al. (2004) employed a longitudinal notch in a pipe subjected 


to constant amplitude fatigue loading.  Another study related to tubular specimens was 


conducted by Dover and Holdbrook (1980).  This study investigated fatigue in un-


notched tubular welded connections subjected to variable amplitude in-plane bending 


moments. 
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Figure 2.6: Four-Point Bending Test Setup (Singh, et al., 2008) 


 


 


Figure 2.7: Initial Circumferential Notch (Singh, et al., 2008) 


 


2.4.2 Welded Joints 


 


Research into the fatigue of welded joints in pipes and pipeline steel was conducted by: 


Kam, et al. (1995); Macdonald and Maddox (2003); Neves, et al. (2010); and Xiong and 


Hu (2011).  Rother and Rudolph (2010) conducted research on the fatigue assessment of 


welded structures.  The study conducted by Kam, et al. (1995) discussed the application 


of fracture mechanics to the prediction of crack shape for welded tubular joints in 


offshore pipes.  Macdonald and Maddox (2003) collected published and confidential 


fatigue data from other studies on fatigue of steel pipe girth welds.  They compared the 


experimental results with existing British design codes for the fatigue of welded joints to 
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consider the criteria’s applicability.  Rother and Rudolph (2010) discussed selected 


methods available for the analysis and estimate of fatigue life of welded structures.  


Specifically, recommendations for the practical application of these methods were given.  


Experimental research was conducted by Neves, et al. (2010) and Xiong and Hu (2011) 


on fatigue crack growth in the welded joint of pipeline steel as compared to the base 


metal.  Both studies were conducted using small specimens taken from a pipe wall.  


Neves, et al. (2010) used three-point bending specimens, as shown in Figure 2.8 (all 


dimensions are in mm), taken from the weld and base metals, as shown in Figure 2.9, 


which were subjected to constant and variable amplitude loading conditions.  Xiong and 


Hu (2011), however, used compact-tension (CT) specimens, as shown in Figure 2.10, to 


test the fatigue crack growth behaviour in the base metal, weld metal, and heat affected 


zone under constant amplitude loading conditions.  A heat treatment was used to remove 


the residual stresses in the weld to study the effect of microstructure. 


 


 


Figure 2.8: Three-Point Bending Specimens (Neves, et al., 2010) 


 


 


Figure 2.9: Locations of Test Specimens (Neves, et al., 2010) 
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Figure 2.10: Location and Orientation of CT Test Specimens (Xiong and Hu, 2011) 


 


2.4.3 Mixed Mode Fatigue 


 


Most research conducted in the area of non-proportional mixed mode fatigue was 


concentrated on the initiation stage and investigations focusing on the fatigue crack 


growth stage are rare.  Hence, there is a lack of theoretical and practical support when 


one is concerned with fatigue crack growth under non-proportional mixed mode loading 


conditions.  It must be stated that successful explanations of experimental findings are 


published; however, a generally accepted and validated solution method is yet to be 


determined (Zerres and Vormwald, 2014). 


 


There is more theoretical support if one is concerned with fatigue crack growth under 


proportional mixed mode loading conditions; however, there is still not a thorough 


understanding of all factors affecting crack growth.  Experimental studies on fatigue 


crack growth under mixed mode loading were conducted by Seifi and Omidvar (2013), 


and Li and Qian (2010) using modified compact-tension specimens with angled initial 


notches, as shown in Figure 2.11.  Others, such as Yates and Mohammed (1993), have 


sought to investigate this area with the use of angled slit three-point bending specimens, 


as illustrated in Figure 2.12. 
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Figure 2.11: Modified CT Specimen with Angled Initial Notch (Li and Qian, 2010) 


 


 


Figure 2.12: Angled Slit Three-Point Bending Specimen (Yates and Mohammed, 1993) 
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2.5 Experimental Findings in Areas of Interest 


 


The following sections will discuss selected findings of studies in the areas of interest 


previously listed. 


 


2.5.1 Effect of Notch 


 


A study conducted by Carpinteri, et al. (2003) found the stress fields in notched 


specimens to be significantly altered from those found in un-notched specimens with the 


same sized defect.  The shallower the initial notch, the more pronounced the effect of the 


notch on the stress intensity factor distribution became.  The study compared stress 


concentration factors derived from finite element solutions for a pipe with that for a finite 


plate with an edge notch under tension.  The stress concentration factor is the ratio of the 


local stress to the nominal stress.  Stress concentration factors were used as the basis for 


comparison as they have a significant effect on the stress intensity factor.  The study 


claimed that a thin-walled pipe with a shallow notch subjected to tension could be 


compared to a plate with an edge notch subjected to tension.   


 


Figure 2.13 presents a summary of this comparison.  The relative notch radius is the ratio 


of the notch radius to the pipe wall thickness.  The factor R* refers to the ratio of the pipe 


radius to the pipe wall thickness.  An R* value of ten classifies the pipe used in the study 


as a thin-walled pipe.  The factor δ, or relative notch depth, is the ratio of the notch depth 


to the pipe wall thickness. 


 


For the case of a thin-walled pipe with a shallow notch, an acceptable approximation of 


stress intensity can be achieved with the use of a simpler model of a uniformly tensioned 


plate with an edge notch.  The effect of the notch on the stress intensity factor remains 


significant for any crack size and shape (Carpinteri, et al., 2003). 
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Figure 2.13: Comparison of Stress Concentration Factors (Carpinteri, et al., 2003) 


 


2.5.2 Effect of Crack Shape 


 


It is often hard to predict what shape a fatigue crack will take, so a shape must be 


assumed; however, assumptions about crack shape can introduce considerable error into 


fatigue life models (Broek, 1988).  For instance, assuming a circular crack shape instead 


of an elliptical shape in an effort to be conservative can actually cause calculated stress 


intensity factors to be two to three times larger than actual values (Saxena, 2009).  


 


Studies of pipes and cylinders conducted by Dover and Holdbrook (1980); Yoo and Ando 


(1999); Singh, et al. (2003, 2008); Luo, et al. (2004); Shen, et al. (2006); Iranpour and 


Teheri (2007); Saxena, et al. (2009); and Hosseini, et al. (2010) all used semi-elliptical 


crack shapes in their analysis.  This is, again, an important assumption which must be 


recognized for its effects on the resulting models.  The study by Saxena, et al. (2009) 


concluded that the use of a semi-elliptical crack shape in their analysis produced 


‘unconservative’ results.  In fact, the study suggested that semi-elliptical crack shapes 


should not be used in the solutions of stress intensity or estimates of fatigue life for 


straight pipe with a constant depth crack profile.  In addition, Saxena, et al. (2009) 


reported that semi-elliptical crack profiles derived using ASM (1996) solutions over-


predict fatigue life. 
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However, there is evidence that semi-elliptical crack shapes do exist in pipes.  A study by 


Iranpour and Taheri (2007), conducted to validate the use of a flat plate subjected to 


tension in place of a pipe under bending moment, found elliptical cracks were common in 


pipes subjected to bending moments.  This study also determined how the crack changed 


shape as the growth progressed through the pipe wall.  It was found for materials with a 


homogeneous microstructure subjected to a uniform stress distribution that the crack can 


be assumed to be semi-circular in shape.  The shape of the crack was found to take a 


circular shape as growth progressed, even if the initial crack shape was elliptical.  The 


smaller the initial defect, the sooner the crack shape will change to semi-circular.  It was 


concluded that once a crack became semi-circular in shape, a pipe under bending moment 


could be replaced by a plate under tension. 


 


2.5.3 Effect of Weld 


 


It is generally accepted that fatigue crack growth behaviour in Region I (threshold region) 


is dependent on material microstructure, while it is dependent on the stress ratio, R, in 


Region II (stable crack growth region) (Xiong and Hu, 2011).  However, fatigue crack 


growth rates reflect the effects of both microstructure and residual stresses (Shi, et al., 


1990).  This last point is especially true for welded joints.  Two studies conducted on 


fatigue crack growth behaviour in welded joints of pipeline steel include Neves, et al. 


(2010), and Xiong and Hu (2011). 


 


Neves, et al. (2010) tested the base metal, weld metal, and heat affected zone of API 5L 


X-70 grade pipeline steel using three-point bending specimens (Figure 2.8) subjected to 


constant and variable amplitude loadings.  It was found that the highest fatigue crack 


growth rates for all metal regions were experienced under a stress ratio, R=0.5, at low 


stress intensity factor ranges, ∆K.  However, the highest overall fatigue crack growth rate 


at every stress intensity factor range was experienced in the base metal specimens 


subjected to a stress ratio, R=0.5.  Specimens tested at higher stress intensity factor 


ranges, exhibited similar fatigue crack growth rates across all regions and the stress ratio 


was no longer found to affect the growth rate.  It was therefore concluded by Neves, et al. 
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(2010) and later confirmed by Xiong and Hu (2011) that fatigue crack propagation in the 


Region II is not affected by the microstructure of the welded joints for a stress ratio, 


R=0.5. 


 


Xiong and Hu (2011) used compact-tension specimens to test the fatigue behaviour of 


Q345 pipeline steel in the base, weld, and heat affected metals.  This study found that 


fatigue crack growth rates in the base metal were not affected by the stress ratio, R, while 


the growth rates in the weld metal and heat affected zone increased with increasing stress 


ratio, R.  As with the study by Neves, et al. (2010), this study reported lower fatigue 


crack growth rates in the weld metal and heat affected zones than in the base metal for 


low stress ratios (such as R=0.1) with growth rates becoming approximately equal for 


high stress ratios (such as R=0.5). 


 


Early research suggested there was no significant difference in the fatigue properties for 


the three metal regions, but later investigations indicated the three zones had differences 


in crack propagation resistance for low stress intensity factor ranges, ∆K.  It was 


suggested by Xiong and Hu (2011) that branching and deflection of the fatigue crack in 


the weld metal and heat affected zone promoted crack closure and crack tip stress 


shielding which resulted in higher crack growth resistance.  For low stress ratios, R=0.1, 


the weld metal and heat affected zone were observed to have a greater resistance to crack 


propagation than the base metal. 


 


2.5.4 Effect of Non-Proportional Mixed-Mode Loading 


 


According to Zerres and Vormwald (2014), a shift from in-phase to out-of-phase loading 


of a ductile material, under stress controlled fatigue conditions, will result in an increase 


in fatigue life due to less local plastic deformation when load maxima do not coincide.  


However, under stain controlled fatigue conditions, a shift of phasing will result in a 


decrease in fatigue life. 
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Iida and Kobayashi (1969) found that a crack subjected to an abrupt change in mode-


mixity will turn towards a path minimizing Mode II.  Mode-mixity is defined as the 


tangent inverse of the ratio of Mode II or Mode III stress intensity factor (whichever 


mixed-mode is present) to the Mode I stress intensity factor, tan Φ = ∆K II/III /∆K I.  


Subsequent studies by Qian and Fetemi (1996) and Richard, et al. (2005) confirmed these 


results.  This behaviour is described by the maximum tensile stress criterion.  However, 


Roberts and Kibler (1971) found cases for which the maximum tensile stress criterion 


was not valid.  In these instances, coplanar fatigue crack growth was observed at high 


mode-mixity levels.  This behaviour is described by the maximum shear stress criterion. 


 


Zerres and Vormwald (2014) stated that the maximum shear stress driven fatigue crack 


growth behaviour is generally observed at higher stress intensity factor ranges.  


Essentially, more plastic deformation occurs at the crack tip under these conditions which 


allows for crack extension in the slip planes.  Plastic deformations are dislocations or 


slips which occur at the microscopic scale in planes experiencing high shear stresses.  


These slip planes provide an easy path for crack extension.  Eventually, one shear plane 


becomes dominant and the fatigue crack grows along this plane. 


 


Experiments by Highsmith (2009) revealed that the transition from maximum tensile 


stress governed to maximum shear stress governed crack growth occurs at a mode-mixity 


of 44°.  The study also found that different criteria could be experienced at different 


positions along the crack front, allowing different deflection angles to be experienced in 


the same crack.  This resulted in fatigue crack surfaces which were either warped or 


presented a step-like joining of multiple cracks which had initially formed in different 


planes under different criteria. 


 


Zerres and Vormwald (2014) concluded that increased levels of mode-mixity can lead to 


shear dominated fatigue crack growth instead of the more common tensile stress 


dominated fatigue crack growth and that this effect becomes more important with 


increasing cyclic plastic deformation.  It was also concluded that due to the changing 
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mode-mixity along the crack front, the different directions of the crack growth at varying 


locations can lead to stepped or fissured cracks. 


 


2.6 Crack Growth Measurement Methods 


 


A multitude of different methods, both destructive and non-destructive, have been used 


by various researchers to detect and measure crack growth in a material.  Some methods 


are limited to detecting cracks at the surface, while others can track the growth of the 


crack depth.  These methods include beach marking (Dover and Holbrook, 1980; Yoo 


and Ando, 1999; and Iranpour and Taheri, 2007), alternating current potential drop 


(Kiefner and Maxey, 2000; Seetharaman, et al., 2000; Singh, et al., 2003; Satyarnarayan, 


et al., 2007; and Singh, et al., 2008), direct current potential drop (Kiefner and Maxey, 


2000), eddy current (Al-Anezi, et al., 2008), alternating current field measurement 


(Seetharaman, et al., 2000), dye penetrants (Seetharaman, et al., 2000), galvanostat crack 


testers (Luo, et al., 2004), magnetic particle testing (Hosseini, et al., 2010; and Al-Anezi, 


et al., 2008), stereomicroscopy (Yoo and Ando, 1999), radiography (Al-Anezi, et al., 


2008), conventional ultrasonic (Satyarnarayan, et al., 2007), phased array ultrasonic 


(Satyarnarayan, et al., 2007), and optical 3D displacement analysis techniques (Van 


Wittenberghe, et al., 2011). 


 


2.6.1 Beach Marks 


 


Beach marks are concentric marks which can sometimes be seen on the fatigue crack 


surface.  They result from a period of change in the fatigue crack growth rate caused by a 


temporary load drop, or the application of an overload which produces a compressive 


residual stress field in front of the crack tip (Sachs, 2005).  However, not all materials 


exhibit striations, and by extension beach marks (Totten, 2008). 


 


Beach marks have been used by several researchers to verify crack depth values and track 


crack growth through a material (Yoo and Ando, 1999; Iranpour and Taheri, 2007; 


Satyarnarayan, et al., 2007; and Wittenberghe, et al., 2011).  Examples of these beach 
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marks on the fatigue surface are shown in Figures 2.14 and 2.15.  It can be seen that the 


crack progressed into a semi-elliptical shape.  Beach marks were introduced by the 


researchers at predetermined intervals of fatigue cycles so that crack depth could be 


correlated to the number of fatigue cycles applied. 


 


 


Figure 2.14: Beach Marks in Pipe Specimen (Luo, et al., 2004) 


 


 


Figure 2.15: Beach Marks in Pipe Specimen Subjected to Bending Moment 


(Satyarnarayan, et al., 2007) 


 


Raghava, et al. (2005) conducted a study dedicated to the implementation of beach marks 


in steel plates to determine fatigue crack growth.  The applied fatigue loadings were 


divided into active and passive blocks.  These blocks of fatigue cycles were applied to the 


specimens in alternating sequence.  The active blocks supported crack growth while the 


passive blocks supported the creation of beach marks without further growth of the crack.  


During the active blocks the normal fatigue loadings were applied and crack growth 
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occurred; however, during the passive blocks an altered fatigue loading was applied and 


crack growth was negligible.  Passive blocks of a few thousand fatigue cycles were 


applied to the specimens at regular intervals.  The altered fatigue loading of the passive 


block had an increased minimum loading but same maximum loading as the normal 


fatigue loading of the active block.  This resulted in a significantly reduced stress range 


which retarded the crack growth. 


 


2.6.2 Current Potential Drop Inspection 


 


Alternating current potential drop (ACPD) and direct current potential drop (DCPD) are 


two types of current potential drop technologies used for inspection of cracks.  They both 


work on the same premise of applying a current to the specimen and measuring the 


voltage or potential drop, essentially measuring the resistance.  A defect, such as a crack, 


in the specimen will change the measured potential difference (Satyarnarayan, et al., 


2007).  The difference between ACPD and DCPD technologies (besides the type of 


current they use) is that alternating currents experience a skin effect where the currents 


are restricted to the top layer of the material being inspected.  However, ACPD exhibits a 


linear relationship between crack depths and has a higher sensitivity which DCPD does 


not (Matelect, 2004). 


 


2.6.3 Dye Penetrants 


 


Dye penetrants provide a visual method of detecting a crack on the surface of a specimen 


and determining the crack’s length.  The penetrant liquid consists of very small particles 


capable of penetrating very fine cracks.  The surface of the specimen is cleaned, the 


penetrant dye is applied to the surface, and the penetrant is allowed to seep into the 


surface flaws.  This is done by capillary action that pulls the dye into any crack or defect 


present on the surface.  Next a developer is used to draw the dye back to the surface, 


distinctly showing the presence of a crack (Luk, et al., 2007).  An example of a crack 


found using dye penetrants is shown in Figure 2.16.  This method is suitable for cracks 
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which grow on the surface of the pipe, but does not allow for the measurement of crack 


growth through the thickness of a material. 


 


 


Figure 2.16: Crack Delineated by Dye Penetrant Technique (GCInspector, 2014) 


 


2.6.4 Magnetic Particle Inspection 


 


Magnetic particle inspection uses the distortion of magnetic fields to detect flaws in a 


material.  If a ferromagnetic material is magnetized, a distortion in the magnetic field will 


be caused by any flaws in the material.  The specimen is first exposed to a magnetic field 


and then magnetic particles are spread over the surface.  Flaws cause lines of magnetic 


flux to break the surface of the material and attract these particles, revealing anomalies 


which can be interpreted (Luk, et al., 2007).  As with dye penetrants, this method is 


suitable only for detecting surface cracks. 


 


2.6.5 Ultrasonic Inspection 


 


Ultrasonic inspection is a popular inspection method which uses high-frequency sound 


waves.  The waves are directed through the material by an emitter and collected again by 


a receiver and the difference between the emitted waves and returned waves is interpreted 


accordingly.  Flaws within the material affect the waves, allowing them to be detected.  


The exact method involves a pulse oscillator first creating a burst of alternating voltage 


which is sent to the emitter or sending transducer.  The transducer converts the electrical 
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energy into mechanical vibrations.  An acoustic coupling medium placed between the 


specimen and the transducer transmits the ultrasonic waves to the specimen.  Next, the 


receiving transducer converts the reflected vibrations back into electrical signals.  Finally, 


a receiving unit amplifies, filters, and processes the electrical signals from the returned 


waves and indicates the size of the flaw (Satyarnarayan, et al., 2007). 


 


There are two types of ultrasound technologies: conventional and phased array.  Phased 


array differs from conventional ultrasound in its ability to steer, focus, and scan beams.  


This improves the ability to test specimens with various angles and improves the 


probability of detecting defects.  It also simplifies the inspection of components with 


complex geometries (Olympus, 2013). 


 


2.6.6 Comparison of Methods 


 


Satyarnarayan, et al. (2007) conducted a study comparing the ability of alternating 


current potential drop, conventional ultrasonic, and phased array ultrasonic techniques to 


detect fatigue crack growth in pipes relative to beach marking.  Using the same test setup 


as Singh, et al. (2008), a 169 mm diameter pipe was subjected to constant amplitude, 


four-point fatigue bending.  Beach marks were produced on the fatigue crack surface of 


the specimen after every 2 mm interval in crack depth growth.  This specimen was used 


as the benchmark by which all other methods were evaluated. 


 


All techniques were used to measure the depth of the crack from the surface at five points 


along the crack length, with the exception of the phased array technique which was 


measured at seven points.  Plotting the measured crack depth against the position along 


the length of the crack and connecting the points provided a rough estimate of the crack 


profile, as seen in Figure 2.17.  The evaluation against the benchmark was done by 


calculating the error between the depths measured by each technique and the depth 


measured from the beach mark.  A summary of the comparison results is given in Table 


2.1 and shown in Figure 2.18.  Based on these results, the study concluded that ACPD 
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was the best alternative to beach marking.  Sources of error reported in the study included 


a lack of accessibility and the large curvature of the pipe.   


 


 


Figure 2.17: Measured Crack Profiles at Zero Cycles (Satyarnarayan, et al., 2007) 


 


 


 


Table 2.1: Comparison of Measured Depth Values (Satyarnarayan, et al., 2007) 


No. of 


Cycles 


Beach 


Mark 


(mm) 


Phased 


Array 


(mm) 


% 


Error 


ACPD 


(mm) 


% 


Error 


Conventional 


Ultrasonic 


(mm) 


% 


Error 


0 3.4 3.6 5.88 3.4 0 3.5 2.94 


5,000 5.2 6.1 17.31 5.8 7.69 3.8 26.92 


10,000 7.3 7.7 5.48 7.2 1.37 6.7 8.22 


23,000 9.8 11.1 13.26 10.5 7.14 11.6 18.37 


26,000 12.7 13.2 3.93 12.4 2.36 13.5 6.31 
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Figure 2.18: Comparison of Measured Depth Values (Satyarnarayan, et al., 2007) 


 


The summarized results in Table 2.1 indicate that reasonable results can be obtained 


through the use of any of the techniques used in the study; however, ACPD technique 


was found to produce the smallest percentage of error compared to beach marking.  


Nevertheless, it must be stated that these monitoring techniques do not always produce 


accurate results.  It has been reported that crack depth measurements obtained using the 


ACPD technique were not reliable.  Interestingly, some of the same researchers who used 


ACPD for pipes (Singh, et al., 2008) were also the same ones who found it unreliable at 


times (Raghava, et al., 2005).  Although, it must be stated that Raghava, et al. (2005) 


performed the study on notched plate specimens and not on pipe specimens. 


 


2.7 Summary 


 


A review of the literature on fatigue was provided in this chapter.  A brief summary of 


theory on fatigue and linear elastic fracture mechanics was presented before discussing 


past research on steel pipes, welded joints, and mixed-mode fatigue loading.  Upon 


analysis of the findings of past research, it was noted that: 
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• The determination of the stress intensity factor is a complex issue and the absence of 


available three-dimensional closed form solutions for pipe flaws necessitates the use 


of numerical models, such as finite element analysis. 


• Few studies using full-scale tests of pipes subjected to fatigue have been conducted 


and nothing is available in the public domain concerning the fatigue behaviour of 


longitudinal cracks. 


• The base, weld, and heat affected metals present different resistances to crack 


propagation and therefore, different fatigue crack growth rates; however, this 


difference becomes negligible for a high stress ratio, R=0.5. 


• Existing literature on the fatigue behaviour of welded joints is based on the results of 


compact specimen testing and has not been verified by full-scale testing. 


• Theory on non-proportional mixed-mode fatigue is still evolving and a generally 


accepted and validated solution method has yet to be determined. 


• The application of existing models for fatigue life is restricted to specific conditions 


under which the models were developed and due to assumptions made during 


analysis.  More data is needed to develop more widely applicable models. 


• Beach marks are generally accepted to be the most accurate method of correlating 


crack depth to the number of applied fatigue cycles, while the accuracy of alternative 


methods is somewhat suspect.  However, not all materials can produce beach marks. 
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CHAPTER 3 


 


EXPERIMENTAL METHOD 


 


3.1 General 


 


This chapter explains the methodology of testing, the test specimens, the test setup, and 


the test procedures used to study fatigue crack growth in the base and weld metals of steel 


oil pipe.  It also details how the test parameters were determined and provides 


justification for them.  All tests were conducted in the Structures Lab of the University of 


Windsor’s Center for Engineering Innovation. 


 


Previous research into the fatigue crack growth behaviour of steel pipeline has generally 


been limited to tests using three- or four-point bending with circumferential cracks or 


using compact tension specimens without verification by full-scale tests.  The current 


investigation used a new test setup to study fatigue crack growth in the longitudinal 


direction of the pipe in full-scale tests. 


 


To study the fatigue crack growth and compare crack growth behaviour in the base and 


weld metals of steel oil pipes, the general conditions experienced by these pipes during 


pipeline operation were simulated in the current study.  An experimental procedure and 


testing setup were drafted to simulate the in-situ conditions an imperfection or damaged 


portion of a steel oil pipeline may be subjected to while in operation.  The objective was 


to closely study the fatigue crack growth which may occur at such a defect due to cyclical 


pressure fluctuations inside the oil pipe.  The general model was conceived as an applied 


cyclical loading to a deliberately damaged pipe segment.  The established cyclical 


loading profile was not meant to mimic the in situ pressure fluctuations experienced by a 


pipe as oil is pumped through it, but rather to produce stress fluctuations in the pipe 


within the material limits of the specimen and result in a reasonable fatigue life.  The 


loadings were applied by a hydraulic actuator to the top of the pipe such that deformation 


of the pipe occurred as the sides flexed outward.  At these locations on the sides, the 
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deformation created stress distributions and crack surface displacements similar to those 


caused by the internal pressure loading of the flowing oil.  A notch was cut into the side 


of the pipe using electrical discharge machining (EDM).  This notch acted as a stress 


intensifier, causing a crack to initiate and grow from a predetermined location.  The notch 


simulated an imperfection or mechanical damage to the pipe which may occur during 


manufacturing, transportation, or installation.  Under cyclical loading, the crack initiated 


and grew from the notch location through the thickness of the pipe wall.  The growth 


progression of the fatigue crack was tracked at known cycle counts using destructive 


methods; at predetermined intervals the test was stopped, the pipe was cut open, and the 


depth of the fatigue crack was measured.  The initial test parameters such as notch length, 


notch depth, loading profile, loading frequency, test specimen size, boundary and support 


conditions, and setup were determined by conducting trial tests. 


 


3.2 Selection of Specimen Parameters 


 


The API 5L X-70 grade steel pipes were obtained from EVRAZ North America in 7.3 m 


long sections.  The nominal diameter was 508 mm (20 inches) with a wall thickness of 


7.9 mm (
V
�W inches), resulting in a diameter to thickness ratio, D/t=64.  This represented a 


size and diameter to thickness ratio common to the oil and gas industry. 


 


The first trial test was completed on a pipe segment of approximately 1.8 m (6 ft) in 


length.  However, after it became apparent that beach marking was not a viable option for 


tracking fatigue crack growth, it was decided that 915 mm (3 ft) long test specimens 


would be used.  The shorter length of the revised test specimens allowed for more tests to 


be conducted using the finite supply of oil pipe available.  It was found that the length of 


the test specimens did not affect the localized fatigue crack growth as subsequent trial 


tests using the smaller specimens yielded similar behaviours.  Additionally, the focus of 


the investigation was on the relative effects of proximity to a seam weld and crack 


orientation on fatigue crack growth.  Therefore, as long as the specimen parameters, 


including length, remained constant after they were set, the results would reflect relative 


effects under specific conditions.  These results could later be generalized and expressed 
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in terms independent of testing conditions; namely, crack growth rate and change in 


stress-intensity factor. 


 


3.3 Selection of Boundary Conditions 


 


The applied loadings and subsequent reactions at the supports created stresses within the 


pipe similar to the hoop stresses experienced by pipes in the ground under internal 


pressurization.  The focus of the project was on longitudinal cracks, hence, Mode I crack 


surface displacement had to be experienced in the direction of the longitudinal axis of the 


pipe.  The displacement of the hydraulic actuator was translated into a deformation of the 


pipe, which caused the sides of the pipe to flex outward and the circular cross-section of 


the pipe to become more oval in shape.  At the sides of the pipe, on the outer surface, a 


tensile stress field was created.  Supports that acted as a solid surface to prevent 


movement of the pipe downward were needed to achieve these conditions.  The supports 


used were solid and continuous along the bottom of the pipe.  They were machined from 


solid steel measuring three inches thick, twelve inches wide, and approximately twelve 


inches long.  A radius matching the outer radius of the pipe was machined into the 


supports to prevent lateral movement of the specimens under loading.  These supports 


were placed on steel stands constructed of steel I-beams and plate steel.  The stands 


rested on the base of the loading frame which was bolted to the concrete floor. 


 


For application of loads to the pipe, a steel plate was attached to the bottom of the 


hydraulic actuator.  The plate also had a radius to match the outer surface of the pipe.  


This provided a larger bearing area for the load which resulted in a distributed load effect 


and prevented localized damage which can occur due to point or line loads. 


 


The ends of the pipe specimens were left open, as any capping or covering of the ends 


would have provided a stiffening effect to the pipe.  To eliminate this effect, a much 


longer test specimen would have been needed to be sufficiently far away from the effects 


of the stiffened ends.  Additionally, open ends more accurately simulate the conditions in 
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long stretches of oil line, where there is only open pipe on either side of the point in 


question. 


 


3.4 Selection of Loading Profile 


 


A constant amplitude fatigue loading profile was used to simulate the profile of pressure 


fluctuations experienced in a typical oil pipeline.  Constant amplitude loading profiles are 


simpler to work with than variable amplitude loading profiles.  Variable amplitude 


loading profiles necessitate the use of complex numerical models to account for load 


interactions or the calculation of an equivalent constant amplitude loading profile, which 


will result in the same damage, to simplify analysis.  As a numerical model was not 


proposed in the scope of this project, and an equivalent constant amplitude loading 


profile would need to be created anyway, it was decided that a constant amplitude loading 


profile would be used. 


 


3.4.1 Loading Range 


 


A loading range of -35 kN to -70 kN was used in testing.  A monotonic loading test was 


conducted on a full scale pipe specimen to obtain the yielding load and the maximum 


loading for fatigue testing was set to approximately 80% of the yielding load.  This 


loading level follows the conventions of the oil and gas industry where oil pipe is usually 


operated at a maximum allowable operating pressure (MAOP) which is limited to 80% of 


the yielding pressure.  During trial tests different loading ranges were employed with 


different stress ratios.  A stress ratio of 0.5 is common in fatigue testing and was chosen 


to provide faster crack growth and expedite the testing process.  The final loading range 


of -35 kN to -70 kN was chosen because it had a maximum loading below 80% of the 


yield loading, maintained the selected stress ratio, and resulted in an acceptable fatigue 


crack growth rate. 
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3.4.2 Fatigue Frequency 


 


The fatigue testing was conducted at a frequency of 4.00 Hz.  In the absence of extreme 


environmental conditions, there is no known effect of loading frequency on the formation 


of fatigue cracks for frequencies under approximately 100 Hz (ASTM, 2011).  The 


equipment used to conduct the fatigue tests in this investigation was limited to less than 


100 Hz.  Therefore, the deciding factor became the acceptable error between the 


displacement command for the hydraulic actuator and actual displacement of the actuator.  


There is a lag between the command to move and the actuator actually moving and this 


lag is exacerbated by increasing amplitudes and increasing frequencies.  Trial tests 


revealed that a fatigue frequency of 4.00 Hz provided an optimal balance between test 


speed and accuracy. 


 


3.5 Selection of Initial Notch Dimensions 


 


The dimensions for the initial notches were selected after conducting trial tests.  The 


notches were cut into the pipe specimens using a process called electrical discharge 


machining (EDM).  The aspect ratio of the initial notch and subsequent fatigue crack can 


affect the initiation and growth rate of fatigue cracks; therefore, multiple combinations of 


length and depth were investigated during the trial tests.  The following sections discuss 


the determination of the notch length and notch depth. 


 


3.5.1 Notch Length 


 


An initial notch length of 100 mm was used in this study.  Trial tests were conducted with 


notches having lengths of 75 mm, 100 mm, and 150 mm and varying notch depths.  The 


median length of 100 mm was chosen because it provided a relatively short crack 


initiation period and reasonable fatigue crack growth rate.  Previous experience at the 


University of Windsor in the area of fatigue of similar oil pipe also confirmed that 100 


mm was a suitable length for initial notches. 
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3.5.2 Notch Depth 


 


Initial notch depths of 3 mm for 0° notches and 3.5 mm for 45° and 90° notches were 


used in this study.  Trial tests were conducted with notches having depths of 2 mm, 3 


mm, 4 mm, and 5 mm.  The relative crack initiation period (Region I) was observed to be 


quite long with a 2 mm notch depth and a significant decrease in the time to initiation was 


seen in 3 mm notches.  A 4 mm notch depth resulted in no appreciable reduction in crack 


initiation time compared to a depth of 3 mm.  A 5 mm notch depth had a very short crack 


initiation period relative to other depths; however, the time to through-thickness crack 


growth was found to be too short to allow for adequate spacing of cycle intervals to track 


crack growth.  An initial notch depth of 3 mm provided the optimal combination of a 


relatively short crack initiation phase while still leaving more than 60% of the wall 


thickness for tracking crack growth. 


 


Due to practical limitations of the EDM technique used to notch the pipes, an initial notch 


depth of 3.5 mm had to be used for tests using notches at 45° and 90° to the longitudinal 


axis of the pipe.  The curvature of the pipe could not be followed by the EDM element 


and therefore to achieve a length of 100 mm, a deeper notch was required.  The resulting 


notch had a semi-elliptical shape rather than a rectangular shape. 


 


3.6 Test Parameters 


 


The principal variables investigated by this study were the notch location and notch 


orientation.  Fatigue crack growth behaviour was examined for cracks in the base metal 


of the pipe, away from the effects of the seam weld, and in the weld metal, at the location 


of the seam weld.  The relative fatigue crack growth behaviour at the seam weld as 


compared to away from the seam weld was investigated. 


 


The notch orientation was varied from 0° to the longitudinal axis of the pipe, to 45° and 


90°.  Fatigue crack growth behaviour was examined for cracks at these three orientations 


and the relative effect of crack orientation was investigated. 
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3.7 Details of the Specimens 


 


Six different variations of test specimens were used in this investigation.  Three different 


crack orientations were studied, and two locations were examined.  The following 


sections will discuss and provide details on each of the six variations. 


 


3.7.1 Specimens with Cracks at 0° 


 


Specimens designated as “0°” had initial notches and subsequent fatigue cracks oriented 


at 0° to the longitudinal axis of the pipe.  Details of the 0° specimens for base metal and 


weld metal variants are provided in Figures 3.1 and 3.2, respectively. 


 


3.7.2 Specimens with Cracks at 45° 


 


Specimens designated as “45°” had initial notches and subsequent fatigue cracks oriented 


at 45° to the longitudinal axis of the pipe.  Details of the 45° specimens for base metal 


and weld metal variants are provided in Figures 3.3 and 3.4, respectively. 


 


3.7.3 Specimens with Cracks at 90° 


 


Specimens designated as “90°” had initial notches oriented at 90° to the longitudinal axis 


of the pipe.  Details of the 90° specimens for base metal and weld metal variants are 


provided in Figures 3.5 and 3.6, respectively. 
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Figure 3.1: Initial Notch Location for B0 Specimens 


 


Figure 3.2: Initial Notch Location for W0 Specimens 
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Figure 3.3: Initial Notch Location or B45 Specimens 


 


Figure 3.4: Initial Notch Location for W45 Specimens 
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Figure 3.5: Initial Notch Location for B90 Specimens 


 


Figure 3.6: Initial Notch Location for W90 Specimens 
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3.8 Designation of the Specimens 


 


Each specimen was given a unique name for its identification.  The names recognized 


major parameters of each specimen and the tests conducted using them.  Specifically, the 


first group of two characters indicates the location and orientation of the notch, the 


second group specified the position in the testing sequence, the third group indicated the 


initial notch dimensions, and the last group identified the number of fatigue cycles 


applied to the specimen.  For example, for specimen B0-01-100x3-70K, the “B0” 


specified that the notch was in the base metal and at an angle of 0° to the longitudinal 


axis of the pipe.  A notch in the weld metal was designated with a “W”, and a “45” or 


“90” meant the notch was at 45° or 90° to the longitudinal axis of the pipe, respectively.  


The “01” in the sample designation defined that it was the first specimen in the testing 


sequence of “B0” specimens.  The “100x3” defined the initial notch dimensions as 100 


mm long and 3 mm deep.  Finally, the “70K” identified that 70,000 fatigue cycles were to 


be applied to the specimen.  For specimens experiencing fatigue cycles into the millions, 


the last group of characters featured an “M”, such as 1.1M for 1,100,000 cycles. 


 


3.9 Test Matrix 


 


It was originally intended that the beach marking technique would be employed to track 


crack growth through the thickness of the pipe wall.  Beach marks, if introduced at 


known cycle intervals, would have allowed the measured crack depth at each beach mark 


to be correlated with the number of applied loading cycles.  This would have allowed one 


specimen to yield multiple data points.  Unfortunately, the attempts to produce beach 


marks during the trial tests were unsuccessful.  It is now understood that beach marks 


cannot be produced in this type of steel.  Therefore, a new approach was adopted where 


each specimen was tested to a different pre-determined number of cycles.  At the end of 


the test, the specimen was cut open and the crack depth and crack profile was measured.  


This method only produced one data point per specimen and therefore, necessitated a 


very large number of full-scale tests.  This caused the research program to be extended 


far beyond the initial duration estimate and proved to be very expensive to complete. 
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A total of 28 tests were conducted on six different variations of test specimens.  Three 


different crack orientations were studied at two different locations on the pipe.  The 


complete listing of specimens tested during this project is shown in Table 3.1.  Six 


specimens were included in the testing sequence for each orientation at each location 


except for 90° specimens which only included two specimens for each variant.  It was 


decided that six points would be sufficient to track crack growth and obtain an acceptable 


best fit to the data, but most importantly would allow testing to be completed within the 


extended time constraints of the project.  However, the 90° variants only had two 


specimens tested after it became evident that crack growth was not occurring.  After 


approximately six days of continuous testing (24 hours per day) specimen B90-02-


85x3.5-2M reached two million cycles, was broken open, and no crack growth was 


observed.  It was decided that no more testing would be undertaken on 90° specimens 


beyond this cycle count. 


 


3.10 Experimental Setup 


 


The experiments conducted during this project were performed in the Structural 


Engineering Laboratory of the University of Windsor under room temperature conditions.  


A schematic of the test setup is provided in Figure 3.7.  Specimens were placed into 


supports under a loading frame.  The supports consisted of continuous, solid steel cradles 


which prevented the pipes from translating down or laterally. These cradles rested on 


steel stands on top the loading frame base.  The ends of the pipe were left open.  Using a 


fatigue loading actuator mounted to the loading frame, cyclical loads were applied to the 


top of the pipe on the outer surface.   


 


3.11 Instrumentation 


 


A number of instruments were used during the experimental program to facilitate the tests 


and capture and log data on the local and global behaviour of the pipe specimens.  The 


following sections discuss the various instruments used. 
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Table 3.1: Test Matrix 


Testing Group 
Specimen Designation 


Notch Dimensions 
No. of 
Cycles Angle Location Length 


(mm) 
Depth 
(mm) 


0° 


Base 
Metal 


B0-01-100x3-70K 


100 3 


70,000 


B0-02-100x3-100K 100,000 
B0-03-100x3-150K 150,000 


B0-04-100x3-190K 190,000 
B0-05-100x3-210K 210,000 


B0-06-100x3-230K 230,000 


Weld 
Metal 


W0-01-100x3-70K 


100 3 


70,000 
W0-02-100x3-100K 100,000 


W0-03-100x3-160K 160,000 


W0-04-100x3-175K 175,000 
W0-05-100x3-210K 210,000 


W0-06-100x3-230K 230,000 


45° 


Base 
Metal 


B45-01-100x3.5-200K 


100 3.5* 


200,000 
B45-02-100x3.5-275K 275,000 


B45-03-100x3.5-350K 350,000 
B45-04-100x3.5-450K 450,000 


B45-05-100x3.5-553K 553,000 


B45-06-100x3.5-625K 625,000 


Weld 
Metal 


W45-01-100x3.5-200K 


100 3.5* 


200,000 


W45-02-100x3.5-275K 275,000 
W45-03-100x3.5-350K 350,000 


W45-04-100x3.5-450K 450,000 


W45-05-100x3.5-553K 553,000 


W45-06-100x3.5-625K 625,000 


90° 


Base 
Metal 


B90-01-80x3.5-1.1M 80 
3.5* 


1,100,000 


B90-02-84x3.5-2M 84 2,000,000 


Weld 
Metal 


W90-01-85x3.5-1.1M 85 
3.5* 


1,100,000 


W90-02-80.5x3.5-2M 80.5 2,000,000 
*Maximum depth of irregular shaped notch 
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Figure 3.7: Experimental Testing Setup 


 


3.11.1 Hydraulic Actuator 


 


A hydraulic fatigue loading actuator was used to apply cyclic loads to the pipe specimens.  


The actuator was an MTS 244.31 hydraulic actuator with a ±250 kN capacity and 


integrated force transducer and linear variable differential transformer (LVDT).  The 


actuator is shown in Figure 3.8. 


 


3.11.2 Force Transducer 


 


The integrated force transducer was used to monitor the magnitude of the loadings 


applied to the pipe specimens.  An MTS Series 661 force transducer was used.  The force 


transducer produced an electrical signal proportional to the force exerted by the actuator. 
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It is claimed to achieve at least 99% accuracy throughout the actuator force range.  The 


force transducer can be seen in Figure 3.8. 


 


 


Figure 3.8: Hydraulic Actuator with Integrated Force Transducer and Linear Variable 


Differential Transformer 


 


3.11.3 Linear Variable Differential Transformer 


 


The integrated linear variable differential transformer (LVDT) was used to measure the 


position of the actuator and amplitude of the fatigue loading cycles applied to the pipe 


specimens.  The LVDT came mounted within the actuator piston rod and produced an 


analog feedback signal of piston rod displacement to the system control electronics.  This 


LVDT is inside the actuator shown in Figure 3.8. 


Hydraulic 


Actuator with 


Integrated LVDT 
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3.11.4 Hydraulic Power Unit 


 


The hydraulic power unit was used to power the hydraulic actuator.  It was an MTS 


SilentFlo model 505.60 unit.  It used two pumps to pressurize and send hydraulic oil to 


the actuator.  The hydraulic power unit is shown in Figure 3.9. 


 


3.11.5 FlexTest GT Digital Controller 


 


The MTS FlexTest GT digital controller was used to control the hydraulic power unit and 


actuator as well as monitor and collect data.  It consisted of a controller unit and interface 


software.  The test parameters were programmed into interface software and the 


controller sent signals to the hydraulic power unit and actuator servo-valve.  The 


controller also received signals from the actuator force transducer and LVDT.  The digital 


controller and user interface software are shown in Figure 3.9. 


 


3.11.6 Chiller Unit 


 


The chiller unit was used to cool the water and ethylene-glycol mixture circulated 


through the hydraulic power unit.  It was a portable spiral-scroll compressor type chiller 


from Maximum.  The chilled circulated fluid was warmed in a heat exchanger within the 


hydraulic power unit which acted to cool the hydraulic oil.  The chiller is shown in Figure 


3.10. 
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Figure 3.9: Hydraulic Power Unit and Digital Controller 


 


 


Figure 3.10: Maximum Portable Chiller 
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3.11.7 Electrical Resistance Strain Gauges 


 


The electrical resistance strain gauges were used to measure local strain near the notch on 


the outer surface of the pipe specimens.  The quarter bridge type strain gauges used were 


from Kyowa and had a gauge factor of 2.09 ± 1.0% and a resistance of 120.2 ± 0.2 Ohms.  


They were adhered to the pipe using cyanoacrylate cement in locations depicted in Figure 


3.11. 


 


 


Figure 3.11: Strain Gauge Locations for (a) 45°, (b) 0°, (c) 90° Specimens 


 


The strain gauges deformed with the pipe which caused the electrical resistance of each 


gauge to change.  The change in electrical resistance is related to the gauge factor.  These 


changes in electrical resistance were then measured using an electrical circuit called a 


Wheatstone bridge as shown in Figure 3.12. 


 


 


Figure 3.12: Wheatstone Bridge Electrical Circuit 


 







55 


 


3.11.8 Data Acquisition System 


 


A data acquisition system was used to record strain gauge data and save it electronically 


using Dalite software.  A Datascan 7321 module was connected to a computer to collect 


data once per second during testing.  The module acted as voltmeter which the Dalite 


software interpreted and transformed into strain values.  The number of channels used 


changed depending on the number of strain gauges used.  The Datascan module and 


computer are shown in Figure 3.13. 


 


 


Figure 3.13: Data Acquisition System 


 


3.11.9 Supereyes Digital Microscope 


 


A Supereyes A005+ digital microscope was used to inspect the fatigue cracks and 


measure crack depth and length after completion of the testing.  The accuracy of the 


measurements was ±0.1 mm.  A picture taken using the digital microscope is shown in 


Figure 3.14.  A maximum magnification of 500X was allowed; however, a magnification 


Dalite 


Software 


Interface 


Datascan 


7321 


Module 







56 


 


of 50X to 60X was most commonly used for measurements of crack depths.  In order to 


fit the whole length requiring measurement into the focus of the microscope, lower 


magnifications were required.  Higher magnifications were used for general inspection of 


the fatigue cracks and to verify that no fatigue crack growth had occurred in 90° 


specimens.  The Supereyes digital microscope is shown in Figure 3.15. 


 


 


Figure 3.14: Specimen W45-04-100x3.5-553K at 50x Magnification 


 


 


Figure 3.15: Supereyes Digital Microscope 
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3.12 Experimental Procedure 


 


Specimens were prepared for testing according to the setup depicted in Figure 3.7.  The 


following sections describe the procedures followed while preparing for, conducting, and 


following the tests. 


 


3.12.1 Specimen Preparation 


 


The steel pipe used in the experimental program was provided by EVRAZ North America 


which also sponsored the project.  Piping materials were received in lengths ranging from 


approximately 4.9 m (16 ft) to 7.2 m (24 ft).  To create the specimens used for testing, 


these long pipes had to be cut.  Incremental lengths of 915 mm (3 ft) were marked out 


onto the pipes and around the circumference.  These segments were then cut using a 


plasma torch. 


 


Once a specimen was cut to the proper length, the location of the initial notch was 


measured and marked.  The required orientation of the notch was laid out and the desired 


length and depth dimensions were marked.  Next, the specimen was shipped to an 


external company for the EDM process.  Approximately one week later the specimen was 


received back with the initial notch machined into it. 


 


If strain gauges were required, they were adhered to the outer surface of the pipe in 


locations near the notch in an attempt to acquire data on the strain hysteresis during 


fatigue crack growth.  Static strain at zero load was recorded as well as strain at the 


minimum and maximum loading levels.  Strain data was also recorded while the test was 


being conducted at a rate of one reading per second, an example of this is shown in 


Figure 3.16. 
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Figure 3.16: Strain Hysteresis for Specimen W45-04-100x3.5-553K 


 


3.12.2 Assembly and Alignment Procedures 


 


The following sections detail the procedures followed for the one time construction of the 


testing setup and the recurring procedures followed for the setup of every specimen 


tested. 


 


3.12.2.1 Initial Construction of Testing Setup 


 


The initial construction of the testing setup consisted of placing and connecting major 


components together.  First the testing frame was fabricated by an external agency, 


moved into the desired location, and bolted to the strong floor using threaded connections 


embedded in the concrete.  Next the cross-head of the testing frame was lifted to the 


proper height to allow the actuator to be mounted, such that proper clearance for the 


supports and pipe specimens was attained.  Then the hydraulic actuator was mounted on 


the cross-head and hydraulic lines were installed from the hydraulic power unit to the 


actuator.  The actuator was plumbed and the supports were aligned under the actuator 


using a plumb-bob.  Finally, once the supports were aligned, their location was traced 
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onto the base of the testing frame in permanent marker for future reference.  These steps 


were only completed once at the beginning of the experimental program. 


 


3.12.2.2 Setup for Specimen Testing 


 


Before every test, the actuator was checked for plumb and the alignment of the supports 


was checked to ensure no misalignment had occurred since the previous test.  The pipe 


specimen was marked with its designation and the center of the notch was marked in the 


longitudinal and circumferential directions of the pipe.  Then the specimen was placed 


onto a hydraulic pump-jack cart, lifted to the height of the supports and slid into the 


supports between the testing frame.  The pipe was then lifted and a thin rubber mat was 


placed underneath.  The rubber mat acted to mitigate any minute difference in height or 


imperfections between the supports, thereby preventing any localized damage from load 


concentrations. 


Next, the center of the notch in the pipe was aligned with the line of action of the 


actuator.  The actuator was lowered toward the pipe using the manual control and the 


alignment was checked and adjusted if needed.  The orientation of the notch was checked 


by measuring the circumferential distance from the line of action of the actuator (at the 


top of the pipe) to the center of the notch (at the side of the pipe).  This was done to 


ensure the notch was located 90° from the top of the pipe. 


 


Finally, the actuator was raised and rubber and a metal collar made from pipe material 


were placed between the pipe and actuator.  The rubber was used to mitigate exacerbation 


of imperfections and the metal collar provided confinement to the top of the pipe, just as 


the cradle supports did for the bottom of the pipe.  With equal confinement at the top and 


bottom of the pipe, maximum deformation of the sides of the pipe occurred at 90° from 


the top.  The actuator was lowered to the collar on top of the pipe specimen and the setup 


was completed. 
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3.12.3 Control of Tests 


 


First the actuator was slowly lowered using the manual control until the minimum desired 


loading level of -35 kN was reached.  The corresponding actuator displacement was then 


recorded.  Next, the actuator was slowly lowered using the manual control until the 


maximum desired loading level of -70 kN was achieved.  Again, the corresponding 


actuator displacement was recorded.  The average displacement was calculated and input 


as the “target setpoint” in the MTS controller software.  The difference between the two 


displacements was divided by two and input as the “amplitude” in the MTS controller 


software.  All tests were conducted using a displacement-controlled fatigue loading 


profile.  The use of displacement control for testing was deemed to be the safer than force 


control. 


 


When the loading profile was calibrated and programmed, limits were set for the test.  A 


cycle count limit ensured the test stopped automatically when the desired number of 


cycles was reached.  Limits on the minimum and maximum allowable forces applied to 


the specimen were set to the desired loadings ± 1 kN.  If the limits were exceeded the 


loading process was automatically stopped.  This provided an extra level of safety and 


ensured the required loadings were consistently provided.  For safety, displacement limits 


were generally set to the displacements corresponding to the minimum and maximum 


loadings ± 0.5 mm.  This ensured the test would be stopped if something in the setup 


shifted for any reason.  Finally, with the limits set, the fatigue loadings were applied to 


the pipe specimen at a frequency of 4.00 Hz.  This was found to be the maximum 


frequency which resulted in the maximum acceptable error between command 


displacement and actual displacement of the actuator. The error ranged from ± 1.0 mm to 


± 1.2 mm.  Once the desired number of cycles was achieved, the test was discontinued 


automatically. 
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3.12.4 Inspection of Specimens 


 


When a test was completed, destructive methods were used to access the fatigue crack for 


inspection and measurement.  A 250 mm by 250 mm square was marked on the pipe, 


centered on the notch.  A plasma torch was used to cut this square out of the pipe.  The 


larger size of the square was chosen to prevent the heat of the plasma torch from affecting 


the fatigue crack.  Next, the square section cut from the pipe was further cut down using 


an automatic-feed band saw.  Cuts were made perpendicular to the orientation of the 


notch, eliminating as much of the pipe material that was not cracked as possible.  This 


left a long rectangular section of pipe only slightly wider than the notch and fatigue 


crack.  The pipe section was then placed in a vice and bent open.  The section continued 


to be bent back and forth until the section broke into two pieces, leaving one half of the 


fatigue crack on each piece.  A strip running the width of each piece, approximately 10 


mm to 15 mm thick, containing the fatigue crack was then cut off using the band saw.  


Finally this left two small pieces as thick as the pipe wall (approximately 8 mm), about 


10 mm to 15 mm wide, and as long as the fatigue crack (ranging from 110 mm to 150 


mm). 


 


Finally, the fatigue cracks were inspected using a Supereyes digital microscope.  The 


crack depth and length were measured using digital measurement software included with 


the microscope.  A magnification of 50X to 60X was commonly used for measurements.  


Higher magnifications in the range of 100X to 150X were used for general inspection of 


the fatigue cracks and especially to verify that no fatigue crack growth had occurred in 


90° specimens. 


 


3.13 Explanation of Tests 


 


There were four different groups of tests conducted during the experimental program.  


The groups consisted of trial specimens, 0° specimens, 45° specimens, and 90° 


specimens.  The following sections will discuss each group of tests in greater detail. 
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3.13.1 Trial Tests 


 


As previously mentioned, major parameters of the experiments such as notch length, 


notch depth, loading range, loading frequency, specimen size, and boundary and support 


conditions were set after conducting trial tests.  These parameters were either varied or 


assumptions about the parameters were verified or refuted during the trial tests.  A total 


of seven trial tests were used to assess the effects of multiple variables and aided in the 


selection of the combination of these variables which resulted in the desired outcomes.  


For example, various combinations of notch dimensions were investigated and the final 


selection resulted in a relatively short crack initial phase, allowed for crack growth 


through more than 60% of the wall thickness, and through-wall crack growth was 


achieved in a reasonable amount of time.  Similarly, parameters of the cyclic loading 


were varied and the final selection resulted in promotion of comparatively fast fatigue 


crack growth, allowed tests to be conducted at the fastest possible frequency, and 


maintained error at an acceptable level.   


 


Boundary and support conditions were not varied; however, important assumptions about 


these conditions were verified during trial tests.  As previously discussed, in order to 


simulate stresses on a pipe undergoing internal pressurization in the field, similar stresses 


had to be created within the test pipe.  Therefore, Mode I crack surface displacement had 


to be experienced in the direction of the longitudinal axis of the pipe for longitudinal 


cracks to develop.  Critical assumptions made during the initial design of the supports 


regarding the type of reaction and stress fields they would create in the pipe specimens 


were verified during the trial tests.  The stress fields created in the pipe specimens were 


shown to support crack initiation and promote fatigue crack growth. 


 


Specimen size, specifically length, was set as a result of unsuccessful attempts to 


introduce beach marks to the fatigue crack surface during trial tests.  As previously 


mentioned in Section 2.6.1, the presence of beach marks on the fatigue crack surface 


indicates different periods of crack growth.  During trial tests, the beach marking 


technique was followed in an attempt to introduce beach marks to the fatigue crack 
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surface.  The beach marks were intended to relate the number of cycles applied to the 


pipe specimen to depth of the fatigue crack.  The normal loading range of 35 kN to 70 kN 


represented the active block of crack growth.  Following the application of a set number 


of cycles in the active block, the minimum load of 35 kN was increased to 55 kN while 


the maximum load of 70 kN was maintained for a set number of cycles; this constituted 


the passive block (Figure 3.17).  The objective was to change the fatigue crack growth 


rate for a short period of time, which would create a visible beach mark on the fatigue 


crack surface.  Using a scanning electron microscope (SEM), the distances between these 


beach marks was to be measured and correlated to the known cycle counts at the 


beginning of each passive block. 


 


 


Figure 3.17: Loading Profile for Beach Marking 


 


At the end of the trial test, the pipe was cut open and the fatigue crack was further cut 


into small specimens to be examined under the SEM.  These specimens were taken to the 


Scanning Electron Microscope Laboratory at the Great Lakes Institute for Environmental 


Research at the University of Windsor for inspection.  Unfortunately, beach marks were 


not found on the fatigue crack surface of the specimens (Figure 3.18).  Hence, the 


assumption that beach marks could be introduced into the specimens and used to track 


crack growth was refuted.  In light of this discovery, the method for crack growth 


Active Block Passive Block Active Block 
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tracking using beach marks was amended from one specimen providing multiple crack 


depth data to one specimen providing one crack depth datum.   Consequently, more 


specimens were required and the specimen size was adjusted from 1830 mm (6 ft) to 915 


mm (3 ft) to allow for more tests to be conducted from the limited supply of pipe. 


 


 


Figure 3.18: SEM Photograph of a Trial Specimen 


 


3.13.2 Tests on 0° Specimens 


 


The second group of tests conducted during the experimental program sought to 


investigate the growth behaviour of fatigue cracks oriented in the longitudinal direction 


of the pipe specimens (Figure 3.1 and 3.2).  Due to their association with the bursting 


failure mode, longitudinal cracks have been deemed to be more critical than 


circumferential cracks; however, very little research has been conducted on longitudinal 
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fatigue cracks.  Therefore, this group of tests was conducted to contribute to the research 


of longitudinal fatigue cracks.  The tests were designed to support the initiation of fatigue 


cracks and promote their growth in the longitudinal direction.  The initial notches were 


oriented at 0° to the longitudinal axis of the pipe and subjected to loading conditions 


which produced pure Mode I crack growth. 


 


The longitudinal cracks were studied at two different locations.  Specimens containing an 


initial notch at 0° to the longitudinal axis of the pipe, located in the base metal (far away 


from the effects of the seam weld) and specimens with identically oriented notches 


located in the weld metal were used.  These tests altered only the location of the initial 


notch, which allowed for direct comparison of the results to determine the relative effects 


of the seam weld on the fatigue crack growth behaviour. 


 


3.13.3 Tests on 45° Specimens 


 


The next group of tests conducted were devised to study the growth behaviour of fatigue 


cracks oriented at 45° to the longitudinal axis of the pipe (Figure 3.3 and 3.4).  The 


specimens were subjected to the same loading conditions as the specimens with cracks at 


0° to the longitudinal axis; however, due to the change in crack orientation, this produced 


mixed-mode crack growth instead of pure Mode I crack growth.  Again, very little 


research has been completed on the topic of mixed-mode fatigue crack growth and this 


topic presents a problem for which there is no accepted solution.  Hence, these tests were 


conducted to contribute to the research of mixed-mode fatigue crack growth.  The tests in 


this group were designed to find whether initiation of fatigue cracks would occur, and if 


so, how the fatigue cracks would propagate.  The initial notches were oriented at 45° to 


the longitudinal axis of the pipe and subjected to loadings conditions which produced 


multiple modes of crack surface displacement in the plane of the notch and fatigue crack. 


 


As with the 0° specimens, the 45° specimens contained notches located in two different 


locations.  Specimens containing a notch in the base metal and in the weld metal were 


both studied.  These tests altered only the location of the initial notch, which allowed for 
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direct comparison of the results to discern the relative effects of the seam weld on the 


fatigue crack growth behaviour.  Additionally, these tests on 45° specimens altered only 


the notch, and subsequently the crack, orientations from those tests on the 0° specimens.  


This allowed for direct comparison of the results between 0° and 45° specimens at the 


same locations. 


 


3.13.4 Tests on 90° Specimens 


 


The final group of tests investigated the growth behaviour of fatigue cracks oriented at 


90° to the longitudinal axis of the pipe.  The specimens were subjected to the same 


loading conditions as the specimens with cracks at 0° and 45° to the longitudinal axis.  It 


was thought that the change in crack orientation would produce multiple modes of crack 


surface displacement, similar to the tests on 45° specimens.  These tests were conducted 


to contribute to the research of mixed-mode fatigue crack growth; however, no fatigue 


crack growth was achieved under these conditions. 


 


3.14 Ancillary Tests 


 


In addition to testing the specimens listed in Table 3.1 and various full-scale trial tests, 


other ancillary tests were performed during the experimental program.  Experimental 


tests were conducted to find the material properties of the steel used in the fabrication of 


the pipe and the behavioural properties of the test specimens.  The following sections 


provide details on the ancillary tests. 


 


3.14.1 Determination of Material Properties 


 


Tensile tests were performed on tension coupon specimens in accordance with ASTM 


E8/E8M – 11 (2011) specifications to determine the material properties of the pipe steel.  


These material properties were used in the finite element model which was then used to 


determine the stress intensity factors, K, of the pipe specimens.  Tension coupon 


specimens were cut from the pipe wall in the longitudinal direction of the pipe.  Four 
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coupons were prepared from a segment of pipe material far away from the seam weld to 


avoid residual stresses affecting the determination of the material properties.  The 


coupons were 12.5 mm wide and approximately 8.7 mm thick.  Using an MTS universal 


testing machine, a tensile loading rate of 0.05 mm/s was applied to the coupons until 


rupture.  A clip-on extensometer with a 50 mm gauge length was used to measure the 


strain as the coupon specimens elongated during the tests.  Figure 3.19 presents the 


stress-strain behaviour of the pipe steel in typical engineering stress-strain.  The 


mechanical properties of the pipe steel are summarized in Table 3.2.  The yield stress was 


taken as the stress corresponding to 0.5% strain, following the common practice of the oil 


and gas industry.  The pipe steel meets the requirements of API 5L for X-70 grade. 


 


 


Figure 3.19: Engineering Stress-Strain Behaviour of the Pipe Steel 


 


Table 3.2: Material Properties of the Pipe Steel 


 Modulus of 
Elasticity (GPa) 


Yield Strength 
(MPa) 


Ultimate Strength 
(MPa) 


Test 1 200.52 509.19 592.89 
Test 2 251.29 513.68 596.44 
Test 3 223.61 503.66 581.27 


Mean 225 509 590 
Standard Deviation 25.42 5.01 7.93 


Standard Error 14.68 2.90 4.58 
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Charpy tests were performed by EVRAZ North America, the steel manufacturing 


company which supplied the pipe materials, on charpy test specimens made from the pipe 


material.  The charpy tests measure the energy absorbed by the test specimens from a 


swinging weight dropped from a standardized height.  The results are used to compare 


metals relative to each other; however, there is no practical use for the results.  Three 


tests were performed for specimens from of the base and weld locations, the results of 


which are provided in Table 3.3 and depicted in Figure 3.20.  It can be seen that the weld 


is more affected by temperature than the body (base metal); the ductility of the weld 


metal decreases more than the body.  The weld becomes more brittle at colder 


temperatures absorbing less energy.  It should be noted that the results from the tests 


conducted at a temperature of -30°C seem to be inconsistent with the general trend 


presented by the rest of the test results for other temperatures. 


 


Table 3.3: Charpy Test Results 


  Temperature 
Absorbed Energy (J) % Shear 


1 2 3 Avg 1 2 3 Avg 


Body 


-60 66 71 n/a 69 90 90 n/a 90 
-45 79 74 77 77 100 100 100 100 
-30 73 93 89 85 100 100 100 100 
-15 75 73 90 79 100 100 100 100 
0 72 82 88 81 100 100 100 100 
20 92 87 n/a 90 100 100 n/a 100 


Weld 


-60 23 24 3 17 20 20 5 15 
-45 5 50 24 26 5 70 20 32 
-30 10 49 17 25 10 45 15 23 
-15 62 67 50 60 90 100 70 87 
0 68 60 58 62 100 90 90 93 
20 62 67 72 67 90 100 100 97 
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Figure 3.20: Charpy Test Results for the Pipe Steel 


 


3.14.2 Determination of Load-Deformation Behaviour 


 


Compression tests were performed on full-scale pipe segments to find the load-


displacement behaviour of the specimens.  This data was then used to select a maximum 


loading for fatigue cycling below the loading at which plastic deformation of the pipe 


occurred.  Using the same test setup as depicted in Figure 3.7, a monotonically increasing 


compressive force was applied to the pipe specimen at a loading rate of -1.25 kN/s to a 


maximum of -150 kN.  The load-displacement behaviour for the pipe specimen is shown 


in Figure 3.21.  The manufacturer of the actuator claims an accuracy of 99% for force and 


displacement readings from the integrated force transducer and LVDT.  From a visual 


inspection of the load-displacement graph, the yield load was observed to be between 80 


kN and 100 kN.  A more accurate estimate of the yield load was determined by applying 


a linear trend line to loading ranges from 0 kN to 80 kN up to 0 kN to 100 kN in 5 kN 


intervals.  The best fit was obtained for the loading range of 0 kN to 90 kN with 


R2=0.9969.  Therefore, an assumed yield loading of 90 kN was used throughout this 


investigation. 
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Figure 3.21: Global Load-Deformation Behaviour of Pipe Specimens 


 


3.15 Summary 


 


There were two types of tests conducted for the experimental portion of this project, 


fatigue tests and ancillary tests.  All fatigue tests were conducted in the Structural 


Engineering Laboratory of the University of Windsor at room temperature.  In addition to 


7 tests in the trial phase, a total of 28 fatigue tests were conducted on six different types 


of test specimens.  Three crack orientations were studied at two different locations on the 


pipe.  Six specimens were included in the testing sequence for each orientation/location 


variant except for 90° specimens which only included two specimens for each variant.  


The objective was to discern the relative effects of the seam weld and crack orientation 


on fatigue crack growth behaviour in full-scale pipe specimens.  Ancillary tests consisted 


of tension and compression tests to find the mechanical behaviour of the pipe material.  


Detailed descriptions of the equipment used during testing were provided and the 


procedures followed in preparation for, during, and following tests were outlined. 
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CHAPTER 4 


 


EXPERIMENTAL RESULTS 


 


4.1 General 


 


One of the primary objectives of this study was to characterize the fatigue crack growth 


behaviour of a steel pipe used in oil transmission.  Hence, parameters affecting the crack 


growth, such as strain at the crack location and mode-mixity, were examined and the 


growth of the crack in depth and length was measured.  These measurements were used 


to estimate the fatigue crack growth rate and validate a finite element (FE) model which 


was used to determine the stress intensity factors.  This chapter discusses the 


experimental data collected during testing, analysis of the data, and development of the 


FE model. 


 


4.2 Test Specimen Data 


 


The raw data collected from the tests was comprised mainly of the profiles of the fatigue 


cracks; measurements of crack depth were taken in the middle of the crack and at 10 mm 


increments along the length of the crack.  The depth of each fatigue crack was measured 


in 11 to 13 different locations along the length of the crack depending on its length.  


These measurements were plotted and connected with a line to provide a rough estimate 


of the crack profile shape.  An example of the measured crack profile is provided in 


Figure 4.1.  From these initial crack profiles, further analysis yielded figures comparing 


the number of applied fatigue cycles to relative crack depth, crack length, and crack 


aspect ratio, as well as figures comparing relative crack depth to crack aspect ratio.  


Regression analysis was undertaken to determine the relationship between plotted 


variables in Microsoft Excel.  Results of the regression analyses along with the results 


from the finite element (FE) model allowed figures comparing the stress intensity factor 


range to the fatigue crack growth rate and the relative crack depth to the stress intensity 


factor to be created.  These figures are discussed in more detail in the following sections. 
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Figure 4.1: Measured Crack Profile of B0-01-100x3-70K 


 


4.3 Finite Element Model 


 


Experimental testing is the most conventional and reliable way to study the behavior of 


pipe; however, it is impossible to obtain all the information required for a thorough 


understanding from the experimental data alone.  The experimental method is also 


expensive and time consuming.  Hence, conducting experiments which consider a wide 


range of test variables is not a viable option.  An alternative method to study and predict 


the behavior of pipe specimens is to use numerical tools such as finite element analysis 


(FEA).    


 


In the current study, a numerical modeling technique considering both material and 


geometric linearity was used to simulate the behavior of the test specimens.  


Commercially available general purpose finite element analysis code, ABAQUS/Standard 


version 6.13 distributed by SIMULIA (SIMULIA, 2013) was used to model the pipe 


behavior.  The objective of developing the finite element model was to determine the 


stress intensity factor of the NPS20 X-70 grade pipe used in this study when a crack 


defect has developed on the surface of the pipe.  The stress intensity factor range is 


commonly compared to the fatigue crack growth rate as a means of characterizing the 
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fatigue crack growth behaviour.  The finite element model used in the analysis portion of 


this study was developed with the direct assistance of Mr. Hossein Ghaednia, a Ph. D. 


student at the University of Windsor also working under the supervision of Dr. Sreekanta 


Das.  The finite element model can be seen in Figure 4.2. 


 


 


Figure 4.2: Finite Element Model 


 


The model contained only half of the pipe, as the specimens and boundary conditions 


were symmetric about the pipe’s mid-span, which reduced the time required for 


computational solution.  This half-length FEA model was compared with the full-length 


FEA model and a good agreement between the full-length and half-length FEA models 


was obtained.  The model was created to replicate the real testing conditions, as shown in 


Figure 3.7, as closely as possible including the support and boundary conditions, and 


loading steps.  Displacement boundary conditions were applied on the circumferential 


planes of symmetry (z-plane symmetry) in the half-length model. 


 


The pipe was modelled using first-order solid elements, C3D8R (8-node linear brick), 


with reduced integration in a minimum of three layers through the thickness of the wall.  


First order elements were employed to reduce computational complexity, which resulted 
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in faster solution.  Surrounding the notch, a finer mesh of 10-node quadratic (second 


order) tetrahedron solid elements, C3D10, was used to more accurately model the 


complex geometry and better estimate the high stress concentration at the crack tip, as 


shown in Figure 4.3.  There is a large stress gradient at the crack tip and the stress quickly 


diminishes the further away from the tip it is calculated.  Therefore, to simulate proper 


stress concentration at the crack tip, the elements closest to the tip were chosen to be the 


smallest.  The crack tip itself was modeled using solid elements, C3D20R, as shown in 


Figure 4.4. 


 


 


Figure 4.3: Mesh Refinement at the Notch Area 







75 


 


 


Figure 4.4: Mesh Refinement of the Notch Tip 


 


The loading plate was modelled as a discrete rigid body using 4-node rigid quadrilateral 


elements, R3D4, because the loading plate was much more rigid than the pipe specimen 


and it was assumed any deformation of the plate was negligible.  Fillets were added to the 


edges of the loading plate that contacted the pipe to prevent stress concentrations at sharp 


changes in geometry.  The shape and geometric dimensions of the loading plate in the 


FEA model were similar to those used in the tests as shown in Figure 4.5.  Mesh 


convergence studies were performed to obtain optimum sizes of various elements used in 


the FEA model.  A surface-to-node contact using a hard contact algorithm was assigned 


in between the rectangular loading plate and the pipe wall during the loading process.  An 


elastic-plastic material model using von-Mises yield criterion and isotropic hardening 


with associated plastic flow rule was used in the finite element models.  







76 


 


 


Figure 4.5: Loading Plate 


 


The finite element model was calibrated with material properties obtained from tensile 


tests of coupon specimens and then validated with the load-deformation data obtained 


from compression tests of full-scale pipe specimens.  The comparison of the load-


deformation relationships for the pipe specimen between test and finite element analyses 


is shown in Figures 4.6.  A good agreement between the test and numerical behaviors was 


observed. 


Figure 4.6: Load-Deformation Behaviour Comparison 
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4.4 Estimation of Crack Growth Rate 


 


The fatigue crack growth rate is the incremental increase in crack depth per load cycle, 


which is found by calculating the slope of the crack depth versus number of cycles plot.  


An example of this plot is given for ‘B0’ specimens in Figure 4.7.  Two options existed 


for estimating the fatigue crack growth rate: average slope, and instantaneous slope.  In 


the average slope method, the slope is calculated as the difference in crack depth divided 


by the difference in the number of applied cycles between two points on the plot.  For 


example, 


 


P)
PM =


4.37	\\ − 3.64	\\
100,000 − 70,000 ≈ 2.433x10@V	\\/KaKbI 


 


However, this method was not suitable due to the scatter in the data.  In particular, the 


average fatigue crack growth rate was found to decrease in some sections compared to 


previous sections (such as 190 K to 210K compared to 150K to 190K) as the crack 


growth progressed, which is contradictory to what is believed in fracture mechanics.  


According to fracture mechanics, the fatigue crack growth rate increases at an increasing 


rate as the growth progresses.  Thus, the instantaneous slope method was chosen. 


 


 


Figure 4.7: Progression of Crack Depth in B0 Specimens 
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The instantaneous slope method involves quantifying the relationship between the crack 


depth and the number of applied cycles and calculating the slope of the tangent to this 


relationship at the desired location.  Previous research by Polak and Knesl (1975) fitted 


an exponential function to experimental data to describe the relationship between the 


number of fatigue cycles and the depth of the crack.  Further, in a study by Mohanty, et 


al. (2010), it was claimed that when the crack depth is plotted against the number of load 


cycles, the relationship is exponential in nature.  Thus, it was decided to use an 


exponential best-fit curve to fit the experimental data obtained in this study as well. 


 


Figure 4.8 shows the same data from Figure 4.7 fitted with an exponential curve.  The 


equation of the curve (Equation 4.1) was then differentiated to obtain an expression of the 


fatigue crack growth rate as a function of the number of applied cycles (Equation 4.2). 


 


) = 2.7889Ief��ghC         (4.1) 


 


B=
BC = 1.1156x10


@VIef��ghC        (4.2) 


 


Substituting the corresponding cycle count of each measured depth, the instantaneous 


fatigue crack growth rate was obtained.  The fatigue crack growth rates are summarized 


in Table 4.1.  Similar plots and summary tables are provided in Appendix A for the other 


specimen groups tested in this study. 
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Figure 4.8: Exponential Best Fit of B0 Crack Depth Data 


 


Table 4.1: Crack Growth Rates of B0 Specimens 


No. of Cycles da/dN 


0 1.12E-05 


70,000 1.48E-05 


100,000 1.66E-05 


150,000 2.03E-05 


190,000 2.39E-05 


210,000 2.58E-05 


230,000 2.8E-05 


 


 


4.5 Estimation of Stress Intensity Factors 


 


Previous research has employed experimentally derived solutions for development of the 


crack (dependent on the assumed crack shape) to calculate stress intensity factors.  


Mostly, semi-elliptical or semi-circular crack profile shapes were assumed in previous 


studies.  Examination of test specimens in the current study found a semi-elliptical crack 


shape development; however, this study did not follow the aforementioned approach.  
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Saxena, et al. (2009) found that using a semi-elliptical solution produces results which are 


not conservative and should not be used for a straight pipe with a constant depth crack 


profile.  This is the exact case presented by the current study; the initial notch is of 


constant depth, representing an initially rectangular crack profile which transitions into a 


semi-elliptical crack profile as the growth of the crack progresses.  Using any empirically 


derived solution assumes that the crack profile shape remains constant and thus, does not 


accurately model the crack growth observed in this study.  Assuming another crack 


shape, such as semi-circular, would also lead to significant error in the solution (Broek, 


1988).  Therefore, the current study opted to calculate the stress intensity factors with the 


aid of a finite element model. 


 


A total of five FE models were developed, with each replicating the measured crack 


depth and profile of a real specimen tested to a specific number of fatigue cycles.  All the 


support and boundary conditions were held constant, but the shape and size of the defect 


was varied between the FE models to simulate the measured crack profile of the real 


specimen being modelled.  A single cyclic load, matching the real applied loads, was 


applied to the specimen and the resulting stress intensity factors at the crack tip were 


numerically calculated by the FE model using a contour integral analysis.  These outputs 


from the model were then used to calculate the stress intensity factor range.  The stress 


intensity factors corresponding to the maximum (Kmax) and minimum (Kmin) loading were 


extracted from the model outputs and then the difference was calculated to determine the 


change in stress intensity factor (∆K). 


 


Five contours were modelled around the crack tip to obtain the stress intensity factor 


during loading the process.  With the exception of the first contour, which was the closest 


one to the crack tip, all contours showed path independency.  Table 4.2 shows the results 


obtained from finite element modeling.  Kmax represents the stress intensity factor for the 


maximum fatigue loading and Kmin represents the stress intensity factor for the minimum 


fatigue loading.   
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Of the five crack depths modelled, corresponding to actual test specimen crack depths, 


only three of the resulting stress intensity factors were used for further analysis.  For 


higher values of crack depth the calculated stress intensity factors began to decrease, 


which is contrary to what is expected in fracture mechanics; the stress intensity factor 


should increase until rupture.  This suggests that the compressive stresses due to the 


applied loadings were working against the flexure of the pipe wall and causing reduced 


crack opening and reduced tensile stresses at the crack tip.  However, this issue only 


manifested for crack depths above 7 mm.  The three useable stress intensity factors 


provided enough data to model the behaviour of the fatigue crack in Region II and could 


be used to estimate the behaviour in the other regions as well.  It is common to 


extrapolate the behaviour from Region II into Regions I and III as data in these regions is 


hard to obtain due to their much shorter duration relative to Region II. 


 


Table 4.2: Estimated Stress Intensity Factors 


Crack Depth Kmax Kmin ∆K 


3 975.133 542.883 432.25 


3.5 1127.26 627.576 499.684 


4.5 1376.21 766.175 610.035 


 


The results of the finite element models were also compared against the relative crack 


depth to study how the stress intensity factor changed with the depth of the crack.  It was 


found that the stress intensity factor varied linearly with crack depth for the depth ranges 


examined, as shown in Figure 4.9. 


 







82 


 


 


Figure 4.9: Variation of Stress Intensity Factor with Crack Depth 


 


4.6 Discussion on Crack Growth Behaviour 


 


Specimens designated as “0°” had initial notches and subsequent fatigue cracks oriented 


at 0° to the longitudinal axis of the pipe (Figures 3.1 and 3.2).  Fatigue crack initiation 


and growth were found to be supported in both the base and weld metals at this 


orientation.  For 45° specimens (Figures 3.3 and 3.4), fatigue crack initiation and growth 


were supported in both the base and weld metals as tested.  However, specimens with 


initial notches at 90° (Figures 3.5 and 3.6) did not support the initiation or growth of 


cracks in either the base or weld metals as tested.  The following sections will discuss the 


factors affecting and the aspects of fatigue crack growth in further detail. 
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4.6.1 Stress Analysis 


 


An elementary stress analysis of the pipe specimen was undertaken to obtain a general 


understanding of the forces at the initial notch and the conditions experienced by the 


fatigue crack.  This simplified analysis could not yield the actual crack tip stresses and 


hence, it was executed in a purely theoretical manner.  The analysis was undertaken for 


the three orientations shown in Figure 4.10, corresponding to the three crack orientations 


used in the experimental program.   


 


Figure 4.10: Stress Element at (a) 0°, (b) 45°, and (c) 90° Orientation 


 


The results showed that at a 0° orientation (Figure 4.10a) the stress in the direction of 


crack opening (Mode I), σy, was at a maximum with 100% of the applied loading 


contributing to it while all other stresses, σx and τxy, were at a minimum (zero).  A 


rotation of the element through 45° (Figure 4.10b), representative of the 45° cracks, 


resulted in all stresses being equal with an average magnitude.  In this orientation, 50% of 


the applied loading was contributing to crack opening, σy, while the other 50% was 


contributing to the tearing movement (Mode III) of the crack, σx.  A further rotation to 


the 90° orientation (Figure 4.10c) showed that the crack opening stress, σy, was at a 


minimum (zero), while the tearing stress, σx, was at a maximum.  At this orientation, 


100% of the applied loading was contributing to the tearing stress, σx. 
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4.6.2 Crack Displacement Mode Analysis 


 


Completion of the stress analysis resulted in knowledge of the loadings at the initial notch 


and subsequent fatigue crack.  In the case of 0° specimens, it was found that the loadings 


were all normal to the plane of the crack face, resulting in opening of the fatigue crack 


surface.  According to the definition of crack surface displacements, this corresponds to 


Mode I.  It was therefore concluded that the specimens subjected to cyclical fatigue 


loadings with notches oriented at 0° to the longitudinal axis experienced pure Mode I 


fatigue crack growth (as defined in Figure 2.2). 


 


In the case of 45° specimens, the applied loading was split into its components in the new 


coordinate system based on the orientation of the notch.  It was found that the rotation of 


the notch resulted in components of the applied force acting both normal and parallel to 


the plane of the crack face.  The component acting normal to the crack surface acted to 


open the crack, causing a Mode I crack surface displacement.  The remaining component 


acting in a direction parallel to the crack surface forced the two crack surfaces to slide 


with respect to each other in the direction perpendicular to the crack growth, resulting in 


a Mode III crack surface displacement.  It was therefore concluded that the specimens 


subjected to cyclical fatigue loadings with notches oriented at 45° to the longitudinal axis 


experienced fatigue crack growth under mixed Mode I and Mode III loading conditions. 


In the analysis of 90° specimens, it was found that the loadings were all acting in a 


direction parallel to the plane of the crack face; however, the loadings did not cause any 


crack surface displacements as defined by the three mode types.  Therefore, fatigue crack 


initiation and growth were not supported under these conditions as no fatigue crack 


surface displacements were experienced by the specimens. 
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4.6.3 Crack Depth Growth 


 


Growth of the fatigue crack depth was tracked by measuring the maximum depth of the 


crack in each specimen subjected to a different number of fatigue loading cycles.  This 


was achieved through destructive methods, as described in Section 3.12.4.  The 


measurements were then plotted against the corresponding number of fatigue cycles.  The 


measured depths were also compared on the basis of relative crack depth; that is, the 


depth of the crack relative to the pipe wall thickness.   


 


It was observed that there was no significant difference between the depths of the fatigue 


cracks in the base and weld metals of the 0° specimens.  As shown in Figure 4.11, both 


notches started at a depth of 3 mm and the subsequent fatigue cracks grew to depths of 


7.8 mm and 7.4 mm for the base and weld metals, respectively.  The difference of 0.4 


mm (~5%) can be easily attributed to data scatter and the general high variability in 


fatigue crack growth.   


 


On the basis of relative crack depth, it was observed that the initial notch depth as a 


percentage of the pipe wall thickness was different for the notches in base and weld 


metals of 0° specimens.  The weld seam of the pipe bulged out, causing the measured 


wall thickness for cracks in the weld metal to be approximately 9.25 mm on average, 


compared to the average wall thickness of only 7.9 mm for cracks in the base metal.  


Again, no significant difference in the growth of the crack depths was noted.  The larger 


difference in the final relative crack depths, as shown in Figure 4.12, is the result of the 


difference in initial notch depth combined with the varied wall thickness exacerbating the 


small difference in final crack depth. 
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Figure 4.11: Crack Depth for 0° Specimens 


 


 


 


 


Figure 4.12: Relative Crack Depth for 0° Specimens 
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In the case of 45° specimens, it was observed that there was no significant difference 


between the depths of the fatigue cracks in the base and weld metals.  As shown in Figure 


4.13, both notches started at a depth of 3.5 mm and the subsequent fatigue cracks grew to 


depths of 6.2 mm and 7.2 mm for the base and weld metals, respectively.  The difference 


of approximately 1 mm (~14%) is within the general range of expected error (~20%) for 


fatigue testing results. 


 


In terms of relative crack depth, it was observed for 45° specimens that the initial notch 


depth as a percentage of the pipe wall thickness was slightly different for the notches in 


base and weld metals; this was again due to the difference in wall thickness at the two 


locations.  No significant difference in the growth of the crack depths was noted.  The 


convergence of the relative crack depths to a ratio of 0.78, as can be seen in Figure 4.14, 


suggests that any small difference in the rate of crack growth was negated by the 


increased wall thickness at the weld seam. 


 


 


 


Figure 4.13: Crack Depth for 45° Specimens 
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Figure 4.14: Relative Crack Depth for 45° Specimens 


 


As shown in Figure 4.15, a significant difference in the rate of crack depth growth 


between orientations was determined by comparison of crack depth in the base metal.  


Both orientations in the base metal exhibited crack growth, but cracks in 0° specimens 


grew at a faster rate and to depths almost the full thickness of the wall in much fewer 


loading cycles.  In fact, 0° cracks reached a depth equal to 80% of the wall thickness in 


less than 190,000 loading cycles, while cracks at 45° needed more than 625,000 to reach 


the same depth. 


 


In the case of cracks in the weld metal, comparisons revealed a large difference in the rate 


of crack growth between orientations.  Figure 4.16 shows the percentage of crack 


penetration through the wall thickness.  It is clearly shown that 80% penetration is 


achieved in 0° cracks at a much smaller number of loading cycles than in 45° cracks, 


230,000 compared to 625,000, respectively. 
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Figure 4.15: Relative Crack Depth for Base Metal Specimens 


 


 


 


 


Figure 4.16: Relative Crack Depth for Welded Joint Specimens 
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4.6.4 Crack Length Growth 


 


Growth of the fatigue crack length was determined by measuring the maximum length of 


the crack at the surface of the pipe for each specimen.  The measurements were then 


plotted against the corresponding number of fatigue cycles.  A second order polynomial 


relationship proved the best fit to the data. 


 


It was observed that the growth in crack length was higher in the base metal than in the 


weld metal of 0° specimens.  From an initial notch length of 100 mm the cracks in the 


base and weld metal grew to final measured lengths of approximately 117 mm and 107 


mm, respectively.  The comparison of 0° crack length is shown in Figure 4.17. 


 


For 45° specimens, no significant difference was observed in the amount of growth in 


crack length between cracks in the base and weld metals.  As shown in Figure 4.18, the 


initial notch length of 100 mm grew to a final crack length of 102 mm and 105 mm for 


the cracks in the base and weld metals, respectively.  It was also noted that there was less 


growth in length of the crack at the 45° orientation than the 0° orientation. 


 


 


Figure 4.17: Crack Length for 0° Specimens 
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Figure 4.18: Crack Length for 45° Specimens 


 


Cracks in the base metal of the pipe specimens showed large differences in the growth of 


crack length for different orientations.  Cracks in the base metal at a 0° orientation grew 


from 100 mm to 117 mm while cracks at 45° grew to only 102 mm in length.  Not only 


was there a large difference in the growth of the crack length, but the number of loading 


cycles to achieve such growth was also very different.  As seen in Figure 4.19, 0° cracks 


experienced 17 mm of crack growth in as little as 230,000 cycles, yet 45° cracks required 


625,000 cycles to achieve only 2 mm of crack growth. 


 


Cracks in the weld metal did not show such a disparity in the extent of growth of the 


crack length.  As seen in Figure 4.20, cracks in the weld metal grew from 100 mm to 107 


mm and 105 mm in length for the 0° and 45° orientations, respectively.  However, it was 


again observed that the rate of crack growth was much lower for 45° cracks than 0° 


cracks. 
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Figure 4.19: Crack Length for Base Metal Specimens 


 


 


 


 


Figure 4.20: Crack Length for Welded Joint Specimens 
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4.6.5 Crack Aspect Ratio Development 


 


The crack aspect ratio is calculated using the following formula: 


 


�jkIKJ	6)Jlm = 	 #S=          (4.3) 


 


In Equation 4.3, the term ‘c’ is the half crack length; therefore, two times ‘c’ is the full 


crack length and ‘a’ is the crack depth.  Hence, the aspect ratio is defined as the ratio of 


the crack length to the crack depth.  The crack aspect ratio was calculated for each 


specimen and plotted against the corresponding number of cycles applied to the 


specimen.  A comparison of aspect ratio, 2c/a, to crack depth, a, was also used to evaluate 


the difference in development of the aspect ratio between specimen variants. 


 


It was observed that the aspect ratio of 0° cracks reduced with the increase of applied 


loading cycles, N, in a similar manner in both the base and weld metals, as shown in 


Figure 4.21.  When compared on the basis of crack depth, a, it was again noted that 


aspect ratio developed in a very similar manner in both locations (Figure 4.22).   


 


 


Figure 4.21: Aspect Ratio for 0° Specimens 
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Figure 4.22: Aspect Ratio Change with Depth for 0° Specimens 


 


The aspect ratios of cracks at 45° developed in a slightly different manner at the base and 


weld metal locations when compared based on the number of applied loading cycles, N 


(Figure 4.23).  However, much like cracks at 0°, cracks at 45° presented almost identical 


aspect ratio development when compared based on crack depth, a (Figure 4.24). 


 


 


Figure 2.23: Aspect Ratio for 45° Specimens 
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Figure 4.24: Aspect Ratio Change with Depth for 45° Specimens 


 


The change in the crack aspect ratio for cracks in the base metal was observed to occur at 


varying rates.  Figure 4.25 shows that the change of the aspect ratio occurred much faster 


in 0° cracks than in 45° cracks; however, Figure 4.26 reveals that based on a crack depth 


comparison, the aspect ratios of the two locations developed in an identical manner. 


 


 


Figure 4.25: Aspect Ratio for Base Metal Specimens 
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Figure 4.26: Aspect Ratio Change with Depth for Base Metal Specimens 


 


Figures 4.27 and 4.28 depict the results for cracks in the weld metal and the same can be 


said for this location as the base metal location: the change in aspect ratio occurred at a 


much faster rate for 0° cracks; however, when compared on the basis of crack depth, the 


aspect ratios developed in an analogous manner. 


 


 


Figure 4.27: Aspect Ratio for Welded Joint Specimens 
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Figure 4.28: Aspect Ratio Change with Depth for Welded Joint Specimens 


 


4.6.6 Crack Profile Development 


 


The shape of the crack front, or the profile, was determined by measuring the actual depth 


at various points along the length of the crack and connecting the plotted points.  This 
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which allowed the development of the profile to be observed.  It should be noted that the 


initial notch is considered part of the fatigue crack as any fatigue surfaces emanating 


from the notch will act with the notch.  For instance, a Mode I crack surface displacement 


opening the notch will also open the cracks emanating from the notch simultaneously.  


Therefore, the depth of the crack includes the notch when measuring the crack profile.  In 


fact, the initial crack profile was dictated by the shape of the initial notch.  Due to the 


destructive methods used in examination of the specimens after testing, the fatigue 


surface was also able to be studied throughout the development of the crack.  


Photographs were taken of the fatigue surface of each specimen to document the profile 


shape, crack aspect, the development of any steps or fissures, etc. 


 


For 0° specimens, fatigue cracks began with a rectangular profile (Figures 4.29(a) and 


4.30(a)).  In both the base and weld metals, growth of the fatigue crack initiated from the 
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bottom of the notch, at the center, in a semi-elliptical shape (Figures 4.29(b) and 4.30(b)).  


As the number of cycles applied to the specimen increased, the fatigue surface grew from 


the bottom edge of the notch in both depth and length, keeping its semi-elliptical profile 


(Figures 4.29(c) and 4.30(c)).  After the initiation of growth from the bottom of the notch, 


a fatigue surface also initiated from each side of the notch at the surface of the pipe, 


growing in the longitudinal direction (Figures 4.30(d) and (e)).  These fatigue surfaces at 


the sides of the initial notch were also semi-elliptical in shape, growing more quickly in 


depth than length.  Finally, these three fatigue surfaces coalesced near the corners of the 


initial notch to form one continuous fatigue crack surface which was semi-elliptical in 


shape (Figures 4.29(d), (e), (f) and 4.30 (f)).  This process can be followed in Figure 4.29 


and Figure 4.30 for the base and weld metals, respectively.   


 


The development of the profile was measured and the resulting plots also showed this 


progression of the crack surface.  A semi-elliptical shape was evident in the plotted 


profiles of Figure 4.31 and Figure 4.32 for the more developed cracks (measurements 


provided in Appendix B).  The growth of the fatigue surface from the sides of the initial 


notch (in the longitudinal direction of the pipe) at later stages in the growth process is 


also shown in the measured profile plots.  Profiles from early in the fatigue crack growth 


process showed growth in the depth of the crack, but not in the length as seen in profiles 


from more developed cracks. 
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Figure 4.29: Progression of Crack Profile in B0 Specimens (NTS) 


 


 


 


 


Figure 4.30: Progression of Crack Profile in W0 Specimens (NTS) 
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Figure 4.31: Measured Crack Profiles for B0 Specimens 


 


 


 


 


Figure 4.32: Measured Crack Profiles for W0 Specimens 
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The fatigue crack surfaces of the 0° specimens were generally flat and smooth in aspect; 


however, specimen B0-05-100x3-210K exhibited a stepped crack surface, as shown in 


Figure 4.33.  This stepped surface was thought to be the result of crack initiation along 


different edges of the initial notch.  Although a v-shaped notch was desired, in practice it 


was impossible to achieve as the element used in the EDM process has a finite width.  


Therefore, a very small flat surface existed at the bottom of the notch, which presented 


two edges along which a fatigue crack could initiate (Figure 4.34).  Initiation at different 


edges of the notch at different points along the crack length explains the stepped crack 


surface. 


 


 


 


Figure 4.33: Stepped Crack Surface of B0-05-100x3-210K (NTS) 


 


 


 


 


Figure 4.34: EDM Notch Cross-Section 
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Specimens with cracks at 45° began with an irregular, semi-rectangular profile which had 


one corner at one end of the notch while the other end tapered to meet the surface of the 


pipe (Figures 4.35(a) and 4.36(a)).  The irregular shape of the initial notch was due to the 


curvature of the pipe and practical limitations of the EDM process used to create it.  Due 


to the irregular shape, the maximum initial notch depth of 3.5 mm was skewed slightly 


towards the end of the notch with the corner.   


 


As with 0° degree notches, the growth of the fatigue crack initiated from the bottom of 


the notch and later from the sides of the notch, finally coalescing into one fatigue crack 


surface.  However, the initiation of crack growth from the bottom of the notch in 45° 


specimens presented numerous fatigue surfaces which grew in the direction of the 


longitudinal axis of the pipe and not in the direction of the initial notch (Figures 4.35(b), 


(c) and 4.36(b), (c)).  These individual coplanar cracks developed in planes which 


experienced pure Mode I conditions.  The later crack initiation from the sides of the notch 


also grew in the direction of the longitudinal axis of the pipe (Figures 4.35(d), (e) and 


4.36 (d), (e)).   


 


As the cracks grew they eventually merged into a single fatigue crack which turned into 


the direction of the initial notch (Figures 4.35(f) and 4.36(f)).  Essentially, the initial 


cracks were oriented at 0° to the longitudinal axis with numerous cracks “stacked” on top 


of each other along the entire length of the 45° initial notch.  Continued growth of the 


cracks led to a transformation from Mode I at 0° to mixed Mode I and Mode III fatigue 


crack growth at 45°.  This growth process can be followed in Figure 4.35 and Figure 4.36 


for the base and weld metal variants of the 45° orientation, respectively. 


 


The profile development of the 45° specimens was also measured and plotted, the results 


of which are shown in Figure 4.37 and Figure 4.38 for the base and weld metals, 


respectively.  A skewed, semi-elliptical profile is evident, which mimics the skewed 


location of the maximum depth of the initial notch. 
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Figure 4.35: Progression of Crack Profile in B45 Specimens (NTS) 


 


 


 


Figure 4.36: Progression of Crack Profile in W45 Specimens (NTS) 
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Figure 4.37: Measured Crack Profiles for B45 Specimens 


 


 


 


 


Figure 4.38: Measured Crack Profiles for W45 Specimens 
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The fatigue crack surfaces of 45° specimens varied depending on the extent of crack 


growth.  Cracks exposed to fewer fatigue cycles (200,000 to 350,000) were generally 


rough in aspect and presented a rounded saw-tooth pattern near the initial notch (Figure 


4.39).  The rounded “saw-teeth” were actually the semi-elliptical initial Mode I cracks.  


When the specimen was bent open for inspection, these coplanar crack surfaces became 


visible.  As the crack growth progressed, the fatigue surface became smoother and flatter 


as initial Mode I cracks turned into the direction of the notch at 45° and merged into one 


fatigue surface (Figures 4.35(f) and 4.36(f)).  The cracks which were examined at a more 


advanced state of crack progression presented fissured crack surfaces (Figure 4.40).  The 


fissures in the more advanced cracks were the initial Mode I cracks which grew at 0°.  


This unexpected progression behaviour and uncommon fissured fatigue surface may be 


explained by two phenomena.   


 


 


 


Figure 4.39: Rounded ‘Saw-Tooth’ Profile Pattern 
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Figure 4.40: Fissured Fatigue Crack Cross-Section 


 


Firstly, the development of the initial cracks at 0° was attributed to the applied loadings 


being in-phase and proportional.  Under combined mode fatigue with in-phase, 


proportional loading conditions, the fatigue crack turns into a direction experiencing only 


Mode I (ASM, 1996).  The applied loading came from a single source, the hydraulic 


actuator; therefore, the loadings were in-phase.  An elementary stress transformation 


analysis of the rotated plane at 45° suggests that the loadings were also proportional; 


moving from 0° to 45°, the Mode I and Mode III components of the loading are equal.  


Thus, the required conditions were satisfied for Mode I dominance.   


 


Secondly, the transformation from Mode I to mixed Mode I and Mode III fatigue crack 


growth was thought to be explained by the maximum shear stress criterion.  Fatigue crack 


growth under the maximum shear stress criterion is characterized by the development of 


coplanar cracks, which at high stress intensity factor ranges turn to grow in slip planes 
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where plastic deformation occurs along lines of high shear stress.  The growth pattern of 


the 45° fatigue cracks suggested that at a certain extent of crack propagation, the stress 


intensity factor increased to a level exceeding the limit for maximum shear stress 


criterion, causing the change in direction of crack growth.  However, the maximum shear 


stress criterion is associated with non-proportional mixed mode loading conditions, 


which suggested that the proportionality of the fatigue loading components changed as 


the crack grew. 


 


4.6.7 Crack Growth Characterization 


 


The comparison of the fatigue crack growth rate, da/dN, to the stress intensity factor 


range, ∆K, is customarily used to characterize the growth behaviour of fatigue cracks.  In 


the current study, the estimated fatigue crack growth rates and the stress intensity factors 


resulting from the finite element analysis were used to plot this relationship for the 0° 


specimens in the base metal, as seen in Figure 4.41.   


 


 


Figure 4.41: Crack Growth Rate vs Stress Intensity Factor Range for B0 Specimens 
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when plotted on a log-log scale; however, according to Paris (1961), the relationship is 


mathematically described by a power function.  Using regression analysis, a best fit line 


following a power relationship was fitted to the data with a very good agreement; the R2 


value is almost one.  The linear look of the graph follows the expected trend for fatigue 


crack growth in Region II, or Paris regime.  As previously discussed in Section 4.5, only 


three points were used to characterize the fatigue crack growth; however, this was 


sufficient to accurately model the behaviour as evidenced by the near perfect linearity of 


the relationship.  This well described portion of the fatigue crack propagation process can 


be extrapolated to describe the behaviour throughout the entirety of Region II and 


estimate the behaviour in Regions I and III.  The fatigue crack growth is described by the 


following relationship: 


 


B=
BC = 3.046 × 10


@��∆��.o22#        (4.4) 


 


A similar plot for the weld specimens (W0) could not be determined as the FE model 


requires sophisticated thermal analyses to be completed to accurately simulate the 


residual stresses and change in microstructure in the weld and heat affected zones. 


 


The relationship of crack growth rate, da/dN, versus stress intensity factor range, ∆K, 


resulting from this study was compared with the relationships calculated in two previous 


research studies for the same stress ratio, R=0.5 (Figure 4.42).  The best fit equations 


(describing the crack growth rate in terms of the stress intensity factor range) reported in 


each study were used to plot the idealized relationships within the range of reported stress 


intensity factor ranges only.  Singh, et al. (2003) studied circumferentially notched pipes 


subjected to four-point bending.  Neves, et al. (2010) studied growth of cracks in the 


longitudinal direction using only compact three-point bending specimens.  Neither of the 


previous studies’ results are directly comparable to the results of the current study; 


however, it can be observed that the specimens of the current study were subjected to 


much higher stress intensity factor ranges than the specimens of the other studies.  


Interestingly, this did not equate to higher crack growth rates than all others. 
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Figure 4.42: Comparison of da/dN vs ∆K Relationships 


 


4.7 Effect of Weld 


 


The relative effects of the seam weld on the fatigue crack growth behaviour were 


determined from a direct comparison of the results from tests which altered only the 


location of the initial notch.  Cracks oriented at 0° and 45° to the longitudinal axis of the 


pipe were studied in the base metal (far away from the effects of the seam weld) and at 


the welded joint with all other test parameters held constant.  Hence, a comparison of the 


growth behaviour of “B0” with “W0” specimens and a comparison of “B45” with “W45” 


specimens was undertaken. 


 


Strain measurements taken before (ε1) and after (ε2) cutting along the seam weld of the 


pipe were used to determine whether residual stresses existed at the weld location.  The 


strain measurements were taken at the weld (Figure 4.43) on three different specimens 


with cracks at the 0° orientation, the results of which are presented in Table 4.3.  It was 


found that the change in strain (∆ε) was negative, indicating that the pipe material 


contracted after being cut along the seam weld.  This suggests that an average tensile 


residual stress of 115 MPa was present in the pipe wall at the welded joint. 
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Figure 4.43: Strain Gauge Location at the Welded Joint 


 


Table 4.3: Strain Measurements at the Welded Joint 


Specimen ε1 ε2 ∆ε ∆σ 
1 6936.2 6207.7 -728.5 -160.3 
2 7687.5 7074.4 -613.1 -134.9 
3 7571.2 7333.1 -238.0 -52.4 


AVG 7398.3 6871.7 -526.6 -115.8 
 


A comparison of the crack growth behaviour for the same orientation at different 


locations revealed that no significant difference existed between the growth behaviour for 


the two locations.  In fact, for both the 0° and 45° orientations the growth of the fatigue 


crack at the welded joint was nearly identical to the growth in the base metal, as shown in 


Figure 4.44.  Thus, the seam weld and residual stresses were found to have no significant 


effect on the fatigue crack growth behaviour for API 5L X-70 grade steel oil pipe at the 


tested stress ratio, R=0.5.  This may be due to the fact that the material characteristics are 


changed by the welding heat input which slows the fatigue crack growth while residual 


stresses increase the fatigue crack growth.  The observed result from the current study on 


full-scale pipes confirmed the findings of Neves, et al. (2010) and Xiong and Hu (2011) 


from their studies based on compact specimens. 


 


The development of the crack profile was also found to be nearly identical between the 


base metal and welded joint specimens.  As can be found in Figure 4.45, the shape of the 


curves are all similar, indicating the development of the aspect ratio with respect to the 
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relative depth of the crack was also similar.  The curves for the base metal specimens are 


translated to the right with respect to the welded joint specimen curves; this is due to the 


increased pipe wall thickness at the weld and difference in initial notch depth.  When the 


development of the aspect ratio was compared on the basis of nominal crack depth, as in 


Figure 4.46, it was noted that the curves for all specimens align.  Hence, the development 


of the cracks was not affected by the change in location from the base metal to the welded 


joint. 


 


 


 


 


 


Figure 4.44: Crack Depth for All Specimen Groups 
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Figure 4.45: Aspect Ratio Development with Relative Depth for All Specimen Groups 


 


 


 


Figure 4.46: Aspect Ratio Development with Nominal Depth for All Specimen Groups 
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4.8 Effect of Crack Orientation 


 


The effects of crack orientation on the fatigue crack growth behaviour were determined 


from a direct comparison of the results from specimens with an initial notch at various 


orientations.  Cracks located in the base metal and at the seam weld were studied at 


orientations of 0°, 45°, and 90° to the longitudinal axis of the pipe while all other test 


parameters were held constant.  Hence, a comparison of the growth behaviour of “B0” 


with “B45” and “B90” specimens and a comparison of “W0” with “W45” and “W90” 


specimens were undertaken. 


 


The crack growth behaviours at the same location for different orientations were found to 


present significant differences.  As the angle of inclination of the initial notch was 


increased from 0° to 45° and finally to 90°, the growth of the fatigue crack proceeded at a 


slower rate; in fact, at an inclination of 90° the initiation and growth of fatigue cracks 


never occurred.  A comparison of the fatigue crack growth behaviour for 0° and 45° 


orientations was made and is shown in Figure 4.44.  It was observed that to reach 80% 


through-wall crack growth the 45° specimens required approximately three times the 


number of load cycles required for 0° specimens.  It was also observed that initiation and 


propagation of fatigue cracks in the 45° specimens occurred in a different manner than in 


0° specimens.  It should be noted that the orientation itself does not directly affect the 


growth behaviour but rather as the orientation is changed the mode-mixity experienced 


by the crack changes which is the direct cause of the different growth behaviours.  Hence, 


it was found that the orientation of the initial notch changed the mode-mixity and thus, 


affected the fatigue crack growth behaviour greatly. 


 


Although the development of the fatigue cracks was retarded as the angle of the crack 


increased, the crack aspect ratio still developed in an identical manner.  A comparison of 


the aspect ratio with the relative crack depth, shown in Figure 4.45, indicates that cracks 


in the base metal at differing orientations developed in a very similar manner, as did 


cracks at the welded joint at differing orientations.  Hence, the orientation did not have 
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any effect on the development of the crack shape; it merely affected the rate at which the 


crack shape developed. 


 


A change in the orientation was observed to change the fatigue crack propagation 


mechanism by which the crack grew.  For 0° specimens, a mechanism like that described 


by Broek (1988) and depicted in Figure 2.4 was observed and pure Mode I crack surface 


displacement progressed the crack; however, for 45° specimens the maximum shear 


stress criterion described the crack propagation and Mode I and Mode III displacements 


were experienced by the crack.  For the 45° specimens which were subjected to mode-


mixity in the loadings the initiation was still dependent on Mode I displacements; the 


fissured 45° fatigue cracks first initiated as Mode I cracks in the longitudinal direction 


before turning into the shear stress plane.  This supported the findings of Broek (1988) 


that all crack propagation mechanisms were essentially the same as the mechanism 


depicted in Figure 2.4 which require crack opening.  Hence, the Mode I component of the 


applied loading experienced by the crack would have the largest effect on the crack 


propagation as it directly causes the opening of the crack.  This explains the retardation of 


crack growth for increased inclination of the crack; the component of the applied loading 


contributing to Mode I crack opening decreased with increasing inclination.  Therefore, a 


decreased Mode I component in 45° specimens caused a decreased propagation rate and 


the absence of Mode I crack surface displacements in the 90° specimens was the reason 


crack initiation never occurred. 


 


4.9 Summary 


 


This chapter discussed the results of the fatigue tests conducted on API 5L X-70 grade 


steel oil pipe with the objective of discerning the fatigue growth behaviour in the base 


metal and the welded joint at various orientations.  The major items of note and findings 


from the test results include: 


 


• A finite element model was developed to simulate the full-scale tests and 


calculate the stress intensity factors 
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• No significant difference was observed in the fatigue crack growth behaviour of 


cracks in the base metal and welded joint for the tested stress ratio, R=0.5 


• The differences in microstructure and residual stresses in the welded joint were 


found to have no significant effect on the fatigue crack growth behaviour for the 


tested stress ratio, R=0.5.  This supports the findings of Neves, et al. (2010) and 


Xiong and Hu (2011). 


• Orientation of the initial notch and subsequent fatigue crack was found to have no 


significant effect on the development of the crack shape or profile 


• Orientation of the initial notch and subsequent fatigue crack was found to have a 


significant indirect effect on the fatigue crack growth rate through the variation of 


the mode-mixity experienced by the crack 


• The number of cycles for the 45° specimens to develop an 80% through-wall 


crack was approximately three times the number required for 0° specimens 


• No fatigue crack growth occurred in the 90° specimens under the test conditions 


due to the absence of Mode I or opening crack surface displacements 
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CHAPTER 5 


 


SUMMARY, CONCLUSIONS, and RECOMMENDATIONS 


 


5.1 General 


 


The current study was conducted to investigate fatigue crack growth in NPS 20, API 5L 


X-70 grade, straight-seam steel oil pipes in the base metal and at the welded joint for 


various orientations.  Specifically, the main objectives were to discern the effect of the 


welded joint and crack orientation on the fatigue crack growth behaviour relative to a 


longitudinal crack in the base metal, and to gather and make available fatigue data from 


full-scale pipe tests that may be used to enhance existing fatigue life prediction models.  


In doing so, all aspects of crack growth were reported, discussed, and compared with 


existing fracture mechanics and fatigue theories.  This chapter summarizes the salient 


findings of the study and provides recommendations for future research. 


 


5.2 Summary 


 


A review of the literature found that existing knowledge on the fatigue behaviour of 


welded joints is based on the results of compact specimen testing and has not been 


verified by full-scale testing.  Further, the theory on non-proportional mixed-mode 


fatigue is still evolving and a generally accepted and validated solution method has yet to 


be determined.  Finally, it was noted that the application of existing models for fatigue 


life prediction is restricted to the specific conditions matching those under which the 


models were developed.  Hence, more data is needed to develop more widely applicable 


models. 


 


The experimental program consisted of constant amplitude fatigue tests with a stress 


ratio, R=0.5, at a loading frequency of 4.0 Hz.  The tests were conducted on 3 ft long, 20 


inch diameter, API 5L X-70 grade straight-seam steel oil pipes in the Structural 


Engineering Laboratory of the University of Windsor under room temperature conditions.  
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A total of 28 fatigue tests were conducted on six different types of test specimens.  Three 


crack orientations were studied at two different locations on the pipe.  Six specimens 


were included in the testing sequence for each orientation/location variant except for 90° 


specimens which only included two specimens for each variant.  Ancillary tests consisted 


of tension and compression tests to find the mechanical behaviour of the pipe material. 


 


From the test results, comparisons were made between the different location/orientation 


specimen variants to find the relative effects of the welded joint and crack orientation on 


fatigue crack growth behaviour.  Specimens tested at the same orientation altered only the 


location of the initial notch, which allowed for direct comparison of the results to discern 


the relative effects of the welded joint on the fatigue crack growth behaviour.  


Additionally, specimens tested at the same location altered only the notch/crack 


orientations which allowed for direct comparison of the results between 0° and 45° 


specimens to discern the relative effects of crack orientation on the fatigue crack growth 


behaviour.  The development of the cracks was documented by measuring the crack 


profiles of each specimen after the completion of testing.  This data was analyzed to 


calculate parameters which characterize the fatigue crack growth.  Regression analysis 


was used to find the relationship between characterization parameters in Microsoft Excel.  


A finite element model was created to simulate the real world tests and calculate the 


stress intensity factors.  The regression results finite element outputs were used to fully 


characterize the fatigue crack growth behaviour of longitudinal fatigue cracks in the base 


metal of the pipe specimens.  With the fatigue crack growth behaviour fully 


characterized, the results were compared to existing theories and findings in the literature. 


 


5.3 Conclusions 


 


From the results of the current study, the following conclusions were drawn.  It is 


important to note that these findings are known to be valid only for the specific 


conditions and loading characteristics used in this experimental program. 
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• No significant difference was observed in the fatigue crack growth behaviour of 


cracks in the base metal and welded joint for the tested stress ratio, R=0.5 


• The differences in microstructure and residual stresses in the welded joint were 


found to have no significant effect on the fatigue crack growth behaviour for the 


tested stress ratio, R=0.5 


• Orientation of the notch/crack was found to have no significant effect on the 


development of the crack shape or profile 


• Orientation of the notch/crack was found to have a significant indirect effect on 


the fatigue crack growth rate through the variation of the mode-mixity 


experienced by the crack 


• No fatigue crack growth occurred in the 90° specimens under the test conditions 


due to the absence of Mode I or opening crack surface displacements 


 


5.4 Recommendations 


 


Based on the results of the current study, the following recommendations for future 


research are provided: 


 


• Use the data collected from this study to extend and validate the application of 


existing fatigue life prediction models 


• Conduct further full-scale testing of NPS 20, X-70 grade, straight-seam steel oil 


pipe to reduce data scatter in the results and increase the accuracy of the fatigue 


crack growth characterization 


• Perform further finite element modeling and analysis for the remaining 


location/orientation variants tested in this study to fully characterize their growth 


behaviour 


• Conduct full-scale testing of identical pipe at different stress ratios to obtain a 


wider range in the test data pool 


• Conduct full-scale testing on various sizes of pipe and diameter-to-thickness 


ratios to validate or disprove the findings of the current study for a wider range of 


conditions 
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• Develop a stress intensity factor solution for fatigue life prediction which is 


applicable to a wider range of cracks in pipes, by incorporating as much of the 


previously collected data as possible  
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APPENDICES 
APPENDIX A 
 
Crack Depth Data & Growth Rate Estimation 
 
A.1 W0 Specimens 
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0 1.13E-05 
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160,000 2.15E-05 
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A.2 B45 Specimens 
 


 


 


No. of Cycles da/dN 
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A.3 W45 Specimens 
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APPENDIX B 
 
Fatigue Crack Profile Measurements 
 
B.1 B0 Specimens 
 


B0-01-100x3-70K B0-02-100x3-100K 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
-50 0 -50 0 
-50 3.14 -50 2.74 
-40 3.32 -40 3.42 
-30 3.50 -30 3.97 
-20 3.59 -20 4.27 
-10 3.64 -10 4.37 


0 3.64 0 4.37 
10 3.58 10 4.39 
20 3.42 20 4.29 
30 3.38 30 3.93 
40 3.13 40 3.56 
50 3.07 50 3.16 


50 0 50.59 0 
 


B0-03-100x3-150K B0-04-100x3-190K 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
-50 0 -55.34 0 
-50 3.17 -50 4.30 
-40 3.67 -40 6.00 
-30 4.20 -30 6.51 
-20 4.19 -20 6.71 
-10 4.30 -10 6.80 


0 4.50 0 6.87 
10 4.26 10 6.78 
20 4.02 20 6.82 
30 4.01 30 6.48 
40 3.70 40 5.93 
50 3.30 50 4.31 


50 0 54.67 0 
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B0-05-100x3-210K B0-06-100x3-230K 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
Position along Crack 


(mm) 
Crack Depth 


(mm) 
-57.24 0 -58.78 0 


-50 4.91 -50 5.23 
-40 6.43 -40 6.61 
-30 7.17 -30 7.24 
-20 7.24 -20 7.34 
-10 7.39 -10 7.68 


0 7.54 0 7.82 
10 7.31 10 7.58 
20 7.28 20 7.54 
30 7.13 30 7.23 
40 6.62 40 6.73 
50 5.44 50 5.71 


58.06 0 59.04 0 
 


B.2 W0 Specimens 


 


W0-01-100x3-70K W0-02-100x3-100K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-50 0 -50.84 0 
-50 2.79 -50 3.25 
-40 3.11 -40 3.76 
-30 3.08 -30 4.12 
-20 3.14 -20 4.44 
-10 3.18 -10 4.70 


0 3.24 0 4.75 
10 3.12 10 4.65 
20 3.07 20 4.38 
30 2.92 30 4.14 
40 2.98 40 3.76 
50 2.75 50 3.12 


50 0 50.88 0 
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W0-03-100x3-160K W0-04-100x3-175K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-51.27 0 -51.84 0 
-50 3.29 -50 2.98 
-40 3.63 -40 4.21 
-30 4.10 -30 4.98 
-20 4.50 -20 5.47 
-10 4.78 -10 5.70 


0 5.00 0 5.82 
10 4.99 10 5.76 
20 4.88 20 5.59 
30 4.64 30 5.12 
40 4.15 40 4.51 
50 3.23 50 3.25 


51.32 0 51.96 0 
 


W0-05-100x3-210K W0-06-100x3-230K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-52.62 0 -53.66 0 
-50 3.20 -50 3.99 
-40 5.07 -40 6.05 
-30 5.98 -30 6.72 
-20 6.40 -20 7.15 
-10 6.64 -10 7.30 


0 6.74 0 7.37 
10 6.64 10 7.31 
20 6.37 20 7.06 
30 5.80 30 6.63 
40 4.94 40 5.88 
50 3.46 50 3.90 


52.65 0 53.52 0 
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B.3 B45 Specimens 


 


B45-01-100x3.5-200K B45-02-100x3.5-275K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-50.70 0 -50.65 0 
-50 1.97 -50 1.68 
-40 2.95 -40 3.06 
-30 3.55 -30 3.90 
-20 4.01 -20 4.41 
-10 4.14 -10 4.68 


0 4.17 0 4.75 
10 3.69 10 4.54 
20 3.36 20 4.02 
30 2.20 30 3.15 
40 1.17 40 2.16 


50 0 50 0 
 


B45-03-100x3.5-350K B45-04-100x3.5-450K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-50.97 0 -51.50 0 
-50 1.34 -50 2.77 
-40 2.98 -40 4.52 
-30 3.91 -30 5.17 
-20 4.50 -20 5.40 
-10 4.83 -10 5.60 


0 5.23 0 5.46 
10 4.78 10 5.09 
20 4.46 20 4.51 
30 3.80 30 3.51 
40 2.64 40 2.39 


50 0 50 0 
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B45-05-100x3.5-553K B45-06-100x3.5-625K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-52.19 0 -52.11 0 
-50 2.66 -50 2.37 
-40 4.56 -40 4.61 
-30 5.35 -30 5.57 
-20 5.76 -20 6.04 
-10 5.82 -10 6.20 


0 5.78 0 6.16 
10 5.65 10 5.88 
20 5.00 20 5.31 
30 3.78 30 4.44 
40 2.04 40 2.82 


50 0 50 0.56 


50.00 0 
 


B.4 W45 Specimens 


 


W45-01-100x3.5-200K W45-02-100x3.5-275K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-50 0 -50 0 
-50 1.16 -50 0.91 
-40 2.09 -40 2.28 
-30 3.02 -30 3.33 
-20 3.40 -20 3.83 
-10 3.69 -10 4.24 


0 3.63 0 4.32 
10 3.47 10 4.18 
20 3.20 20 3.38 
30 2.37 30 2.88 
40 1.36 40 1.85 


50 0 50 0 
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W45-03-100x3.5-350K W45-04-100x3.5-450K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-50.62 0 -52.07 0 
-50 1.70 -50 2.43 
-40 3.05 -40 3.75 
-30 3.72 -30 4.84 
-20 4.19 -20 5.63 
-10 4.42 -10 6.16 


0 4.41 0 6.38 
10 4.04 10 6.16 
20 3.45 20 6.08 
30 2.60 30 5.16 
40 1.25 40 3.76 


50 0 50 0 
 


W45-05-100x3.5-553K W45-06-100x3.5-625K 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


Position along Crack 
(mm) 


Crack Depth 
(mm) 


-52.25 1.55 -55.15 0 
-50 2.92 -50 4.08 
-40 5.10 -40 5.57 
-30 5.79 -30 6.51 
-20 6.43 -20 6.81 
-10 6.99 -10 6.88 


0 6.90 0 7.25 
10 6.70 10 7.15 
20 5.84 20 6.50 
30 5.04 30 5.47 
40 3.49 40 3.64 


50 0.54 50 0 


50.00 0 
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