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RESUME

Ce travail identifie et analyse les aspects variés et concomittants que prennent les

caractéristiques quantitatives et qualitatives de l'eau souterraine du bassin sédimentaire

de la Santa Lucia, Uruguay. Ce bassin comprend le bassin hydrologique de la partie

basse des rivières San José et Santa Lucia, et la région côtière adjacente au Rio de la

Plata.

Les données physiques et chimiques sont documentées d'une façon systématique

et les relations observées décrites en conséquence. Les informations rassemblées par les

diverses méthodes inter-disciplinaires sont aussi intégrées. Des structures plus

simplifiées sont données sous forme de modèles conceptuels descriptifs et de modèles

mathématiques.

La disponibilité de ressources suffisantes en eau souterraine a été établie par

l'étude de la potentialité de l'aquifère (formation sédimentaire) en se basant sur les

caractéristiques comme la perméabilité, la transmissivité et la productivité spécifique.

Tous ces paramètres ont été présentés sous forme de carte d'isovaleur et une zone

relativement favorable est indiquée du côté sud-est, sur ces cartes. La fluctuation des

niveaux d'eau souterraine a été analysée à partir des enregistrements du niveau d'eau

effectués au cours d'une période de huit mois (1987 et 1988). Des réseaux

d'écoulement ont été construits à partir de ces données. La variation moyenne du

niveau statique de l'eau observée entre les mois de l'année 1988 est de 0.35 cm. L'écart

entre les niveaux moyens des puits aux minimum et maximum pour la même année est

de 1 à 3 mètres. L'écoulement souterrain local se fait vers les vallées. L'écoulement

régional est du nord vers le sud.

Les différents facteurs hydrologiques contribuant à l'arrivée et à l'écoulement de

l'eau sont comparés. Une évaluation de la recharge nette de l'aquifère a été établie à

partir de calculs de bilans hydrologiques. Les données (1980-1988) ont indiqué un

surplus d'eau dans 80% des régions considérées.

La réaction de l'aquifère au pompage de l'eau (30 m3/jour) a été analysée selon un

modèle en écoulement transitoire, pour une région spécifique située au sud-est de la

zone étudiée. Le modèle indique un rabbattement de 38 centimètres pour une période

de 365 jours.



Les caractères isotopique et chimique des eaux souterraines sont étudiés. Les

raisons des groupements chimiques des échantillons d'eau sont discutées par analyse

factorielle en mode Q et par d'autres méthodes d'analyse classique des données. Les

paramètres chimiques les plus importants, comme les nitrates et les chlorures sont

présentés sous forme de carte d'isovaleur. Une carte de qualité de l'eau souterraine est

préparée par la superposition de ces cartes d'isovaleur. En somme, la qualité des eaux

souterraines ainsi que des eaux de surface est à l'intérieur des limites acceptables, sauf

pour les nitrates qui sont très élevés dans plusieurs des puits.

Deux problèmes principaux associés à la contamination des eaux souterraines,

l'un artificiel (usage excessif d'engrais), l'autre naturel (l'intrusion "d'eau de mer"

provenant du Rio de la Plata) sont traités d'une façon détaillée. L'effet, à long terme,

de l'usage constant d'engrais (contamination par les nitrates) a été analysé à l'aide d'un

modèle conceptuel dit de "source diffuse". Le problème d'intrusion et le risque possible

associé à l'exploitation d'eau souterraine dans les zones côtières sont discutés; des

solutions pratiques sont proposées à l'aide des paramètres physiques et chimiques

analysés dans cette étude. Présentement, on nva pas trouvé d'indication sérieuse de

contamination de l'aquifère par l'intrusion de l'eau salée, sauf pour la contamination de

l'eau souterraine ainsi que l'eau de surface aux alentours de Delta del Tigre, à cause de

la migration du Rio de la Plata vers l'amont de la rivière Santa Lucia.

Une carte des ressources d'eau a été réalisée en superposant la carte de la qualité

de l'eau et les autres cartes comme la carte géologique, la carte de transmissivité et la

carte de débit spécifique. Cette carte résume les évaluations portant sur la quantité et la

qualité de l'eau souterraine dans la zone d'étude. Les zones de captage potentiel sont

sélectionnées en se basant sur de telles évaluations. On en tire les applications pratiques

de cette étude. Les développements des ressources en eau souterraine sont aussi

discutés. On peut affirmer par ce travail l'existence d'un aquifère, vers le sud,

contenant une eau souterraine suffisante en quantité et de qualité acceptable pour

l'exploitation à grande échelle.
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RESUMEN

Este trabajo identifica y analiza los aspectos inseparables y variados de las

caracteristicas cuantitativas y cualitativas del agua subterrânea de la cuenca sedimentaria

del rio Santa Lucia, Uruguay. Esta cuenca comprende la cuenca hidrologica de la parte

baja de los rios San José y Santa Lucia y la region costera adyacente al Rio de La Plata.

Los datos fisicos y quimicos se documentaron sistemâticamente y las relaciones

observadas son descritas en consecuencia. Se integraron las informaciones recogidas

por les diversos métodos interdisciplinarios. Algunas estructuras mâs simplificadas se

presentan bajo forma de modelos conceptuales descriptivos y de modelos matemâticos.

La disponibilidad de recursos suficientes en agua subterrânea fué establecida

mediante el estudio de la potencialidad del acuffero (formaciôn sedimentaria), basândose

sobre las caracteristicas como la permeabilidad, la transmisividad y la productibilidad

especffica. Todos estos paramétras son representados graficamente, en forma de cartas

de isovalor. Se identified una zona relativamente favorable que se encuentra indicada en

el lado sud-este, en estas cartas. La fluctuation de los nivelés del agua subterrânea se

analizo a partir de los registros del nivel del agua efectuados en un periodo de ocho

meses (1987-1988). Las redes de filtraciôn fueron elaboradas a partir de estos datos. El

promedio de la variation estâtica observada entre los meses del ano 1988 es de 0.35

cm. La diferencia entre los promedios de nivelés minimos y los nivelés mâximos de los

pozos por el mismo ano es de 1 a 3 métros. La filtraciôn subterrânea local se dirige

hacia los valles. El flujo regional se produce del norte hacia el sur.

Se compararon los diferentes factores hidrologicos que contribuyen al aporte y a la

filtraciôn del agua. Se estableciô una evaluation del recargo neto del acuffero a partir de

los câlculos de prèsupuesto hidrolôgico. Los datos (1980-1988) indican que existe un

superâvit de agua en 80% de las regiones consideradas.

Se analizô la reaction del acuffero al bombeo del agua (30 m3 /jour), segûn un

modelo de flujo transitorio, en una region especffica situada hacia el sur. El modelo

indica una disminuciôn de 38 centûnetros por un periodo de 365 dias.
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Se estudio la caracterisaciôn isotôpica y quimica de las aguas subterrâneas. Los

resultados del muestreo de agua fueron reagrupados en grupos quimicos (modo Q) y se

présenta una discusiôn sobre las razones que justifican los reagrupamientos quimicos de

los muestreos de agua y de los agrupamientos obtenidos a través de otros métodos de

anâlisis clâsico de datos. Se presentan cartas de isovalor de los parâmetros quimicos

mas importantes, como los nitratos y los cloruros. El mapa de calidad de las aguas

subterrâneas fué preparado superponiendo las cartas de isovalor. En resumen, la calidad

de las aguas subterrâneas asi como de las superficiales se encuentran al interior de los

limites aceptables, a exception de la concentration de nitratos que es muy elevada en

varios pozos muestreados.

El trabajo analiza detalladamente dos problemas asociados a la contaminaciôn de

aguas subterrâneas, uno de origen artificial, ligado al uso excesivo de fertilizantes y el

segundo de origen natural, ligado a la intrusion del agua de mar proveniente del Rio de

La Plata. Analizamos por medio de un modelo conceptual Uamado de "fuente difusa", el

efecto a largo plazo del uso constante de fertilizantes (que provocan la contaminaciôn por

nitratos). El documento discute el problema de intrusion y las posibilidades de riesgo

asociadas a la explotacion del agua subterrânea de las zonas costeras; se proponen

soluciones prâcticas a partir del anâlisis de los parâmetros fisicos y quimicos

encontrados en este estudio. No se encontraron indicaciones sérias de contaminaciôn del

acuffero à partir de la intrusion del agua salada, a excepcion de la zona situada en torno

al Delta del Tigre, a causa de la migration del Rio de la Plata contra la corriente del rib

Santa Lucia. En esta zona existe contaminaciôn por agua salada tanto en el agua

subterrânea como en el agua superficial.

Superponiendo la carta de calidad del agua, la carta geolôgica, la carta de

transmisividad y la carta de débito especffico se produjo una carta de recursos de agua.

Esta carta resume las evaluaciones sobre la cantidad y la calidad del agua subterrânea en

la zona de estudio. Las zonas potenciales de captage fueron seleccionadas basândose

sobre estas evaluaciones. Se discute el desarrollo de recursos de agua subterrânea y las

aplicaciones prâcticas de este estudio . A partir de este trabajo, se puede afirmar que

existe en el sur, un acuffero que contiene agua subterrânea en cantidad suficiente y en

calidad aceptable para la explotacion en gran escala.
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ABSTRACT

This work identifies and explicitly reports the various inseparable aspects of

quantity and quality characteristics of the groundwater in the Santa Lucia Sedimentary

Basin, Uruguay. This basin comprises the lower parts of the hydrologie basin formed

by the San Jose and Santa Lucia rivers and the coastal zone adjacent to the Rio de la

Plata.

The various physical and chemical inputs and outputs are systematically

documented and the relations observed accordingly described. The informations

gathered by various interdisciplinary methods are integrated. Simplified frameworks are

provided in the form of descriptive conceptual models and mathematical models.

The availability of adequate groundwater resources has been assessed by

studying the potentiality of the aquifer (sedimentary formation) from the point of view

of its hydraulic properties, like permeability, transmissivity and specific yield. All these

parameters are presented in the form of contour maps, which indicate a relatively

favorable zone towards the south eastern part of the basin. The fluctuation of

groundwater levels has been studied from water level records of eight months (1987 and

1988). Flownets have been constructed from the data. The average change in static

water level between two consecutive months for the year 1988 had been 0.35 cm. The

difference between the average minimum and the average maximum water levels of the

wells for the same year varied between 1 and 3 meters. The directions of the local

groundwater flows are mostly towards the valleys. The regional groundwater flows are

north to south.

The different hydrologie factors contributing to inflow and outflow are compared.

Net recharge into the aquifer has been assessed from hydrologie budget calculations.

The nine years (1980-1988) data have shown water gain in 80% of the region

considered.
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The response of the aquifer to pumping has been analyzed by applying the

calculated parameters, such as permeability, infiltration and specific yield into a transient

groundwater flow equation. A model has been applied to a specific region in the south

eastern part of the studied area; a drop of head of 38 centimeters has been calculated

corresponding to groundwater pumpage of 30 m3/day over a period of 365 days.

The isotopic and chemical behavior of the groundwaters and some surface waters

are intensively studied. The reasons for the chemical groupings of the water samples are

discussed from Q - mode factor analysis and other methods of classical hydrochemical

data interpretations. The most important chemical parameters, like nitrates and chlorides

are presented in the form of contour maps. A groundwater quality map is prepared by

superposing these contour maps. In general, the quality of the groundwater and also the

surface water are within the acceptable range, except for the high nitrate (100 - 200

mg/1) in a number of wells.

Two main problems, associated with artificial (intensive use of fertilizers) and

natural ("seawater" intrusion from Rio de la Plata) contamination of the groundwater are

dealt with in detail. The effect, in time, of constant use of fertilizers (nitrate

contamination), has been studied by a non-point pollution conceptual model. The

problem of seawater intrusion and the possible risk associated with exploitation of

groundwater in the coastal areas are discussed, with solutions given to practical

examples in using the physical and chemical parameters found from the study.

Presently, no contamination of the aquifer has been detected by salt water intrusion ,

except for the surface water and groundwater contamination around Delta del Tigre due

to the upward migration of Rio de la Plata along the Santa Lucia river.

A water resource map has been prepared by the superposition of water quality

map with other maps, like geological map, transmissivity map and specific yield map.

This map summarizes the assessments made on the general groundwater quantity and

quality of the area. Potential well field areas are selected based on such assessments.

Practical applications of the study are extracted and groundwater resource developments

discussed. This study affirms the existence of an aquifer, towards the south, which

contains an appreciable quantity of groundwater of a reasonable quality that could be

used for large scale exploitation.
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Chapter 1

INTRODUCTION

1.1 The Major Hydrogeological Problems

This study forms a major part of the joint study program (geology and

hydrogeology of the Lower Santa Lucia Basin, Uruguay) conducted by the

DI.NA.MI.GE. (Direccion National de Mineria Y Geologia), Uruguay and UQAM

(University du Quebec à Montréal), Canada.

The absence of a comprehensive hydrogeological investigation, prior to this

study, has necessitated a systematic hydrogeological survey including a clear

description of the hydrogeological phenomena.

This work integrates the essential hydrogeological elements in the evaluation of

possible groundwater resource areas, both from the point of view of quantity and

quality. It provides recommendations on development and proper utilization of

groundwater. Immediate solutions to various hydrogeological problems, such as

groundwater pollution problems associated with the use of fertilizers is accorded prime

importance. The problems of " sea water intrusion" are also discussed and solutions

provided. This work will assess and predict the possible hydrogeological problems

associated with the exploitation of groundwater in the sedimentary formations, where

numerous wells are in operation, with the view to analyze the budget of natural

balanced inflow-outflow patterns.
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This study can be used as a base for future target - oriented studies, such as bore

well constructions, irrigation plans, construction of dams, etc.

1.2 Objectives

The main objectives of this study are:

. To develop a scientifically sound methodology, which enables to obtain the

maximum possible hydrogeologic information in a situation where data are scarce;

. To upraise scientific understanding of the natural phenomena that govern

groundwater quantity and quality;

. To evaluate the potentiality of the sedimentary unit (Raigon Formation) from

the point of view of large scale groundwater exploitation in order to supply the desired

amount of groundwater of a reasonable quality for the city of Montevideo, as well as

the rural population;

. To provide recommendations on the most efficient use of the available

groundwater resources of the area.

1.3 Location and Accessibility

The study area lies in the south western part of Uruguay, which includes the

southern part of the "department" of San Jose and small segments of the departments

of Montevideo and Canelones.



The area is divided into two parts:

1) The southern part of Santa Lucia river basin, which includes the southern

extremities of rivers San Jose and Santa Lucia and 2) the adjacent coastal zone, whose

southern limit is Rio de La Plata.

Figure 1.1 shows the location of the country of Uruguay, Santa Lucia river basin

and the study area. The total area covered in this study is about 3000 square

kilometers.

The area is traversed by asphalted roads, "ruta 1" in the south and "ruta 11" in

the north, joined by "ruta 3" and "ruta 5" respectively. Almost every part of the area is

accessible by dry weather roads.



Atlantic
Ocean

Study area

The Southern Part of
Santa Lucia and San
Jose River Basin

34°3d

The Coastal zone

Santa Lucia and /^A
San José River BasinLj/'

Rio de la Plata

32e

34e

Rio de la
Plata Montevideo

Fig. 1.1. Location map of the study area

1.4 A General Overview of the Previous Work and Present Work

The geology of the area has been extensively studied, since 1987, by

DI.NA.MI.GE. geologists (M. Perez, M.J. Spoturno, J. Da Silva, C. Suarez, R.

Arriguetti, and E. Medina) and their UQAM collaborators (G. Pnchonnet and J. La

Haye).
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The hydrogeology of the area has been studied since 1987, by the hydrogeology

team of the DI.NA.MI.GE. (L. Cardoso, M. Staff and R. Carion) and by UQAM -

Marc Durand and the author with the participation of C. Hillaire-Marcel and P. Page in

isotope hydrology and hydrochemistry respectively.

Some groundwater studies have previously been conducted by various

governmental institutions and international organizations. Although these studies were

carried out for other reasons, some relevant hydrogeological information was obtained.

In particular, groundwater feasibility studies of the present area have been carried

out by OEA (Organizacion de los Estados Americanos), IGU (Instituto Geologico del

Uruguay) and OSE (Obras Sanitarios del Estado). Most of the well information,

referred to as drilled wells in this report (see Table 1 in the appendix) were obtained

from IGU and OSE.

In conjunction with this work, the hydrogeology team of the DI.NA.MI.GE. has

independently executed several field work programs, such as collecting water samples

for chemical and isotopic analyses and water level measurements.

The author has, in collaboration with the DI.NA.MI.GE., spent about six and

half months in the field as follows: May - June 1988, November-December 1988 and

July - November 1989. Water samples were collected from selected wells and surface

waters, with particular preference given to those areas which have groundwater

pollution problems. Geological and hydrogeological observations were made.

Pumping tests from borewells and from large diameter wells* and well tests were also

conducted.

*Pumping tests of large diameter wells are refered to in this text as being equivalent to "slug test",
after Kruseman and de Ridder, 1979.



Comparable Studies in Other Parts of the World

Several studies similar in nature to the present work are being held in different

parts of the world. However, the hydrogeological problems encountered in this study

being diverse (groundwater contamination from agricultural and industrial waste, "salt

water intrusion", etc.), a methodology, that is capable of solving all the problems has

been envisaged. No work has so far been encountered, that coincides with all the

problems encountered and the method of approach discussed in this study. However,

this study can be considered similar to other hydrogeological basin studies in its basic

approach and system of analysis. For example, the Regional Aquifer-System Analysis

Program of the U.S. Geological Survey are studying regional aquifer systems in order

to establish background information of geology, hydrology and geochemistry of the

important aquifer systems in the United States. Such information is needed to develop

an understanding of groundwater flow systems and support groundwater resources

management (Reston, 1986). In most of these studies, groundwater flow systems are

studied by simulation techniques and the potentiality (quantity and quality) of the

aquifer system analyzed.

The purpose of the present study is basically similar to the above mentioned

program. However, it is different in the scope of understanding and the degree of

precision of the information envisaged. In this thesis, more precise information is

required from an area which has presumably less information than most of the regional

aquifer studies in the United States. This study tries to overcome all the shortcomings

due to data shortage by using alternative methods and comparing informations drawn
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from various investigatory methods. Any method if used in an appropriate way could

be of some help. The disadvantage to using different methods is perhaps associated

with the amount of effort involved. However, this thesis is a proof that it can be done

if it should. This study has necessitated the analysis of hydrologie factors based on

sub-division of the area into minor hydrogeologic sub-domains (for example, Bajar,

1971, Haile-Meskale, 1983). On top of this, hydrochemical and isotopic factors are

incorporated. Due to the complexity of the hydrogeological problems considered and

the absence of relevant background informations a wide variety of data had to be

handled. This required a strict methodology, which develops a scientific

understanding while at the same time provides the required informations.

1.5 Methodology

A variety of hydrogeological problems were tackled during this study and a great

deal of information collected. Development of a basic methodology or strategy has

thus become a priority task for an effective use of the information needed to solve the

particular hydrogeological problems in question.

This work attempts to implement and integrate various interdisciplinary aspects

related to hydrogeology, with the aim of drawing the maximum possible information

from each, studying the interrelationships and extracting the most valuable for practical

usage.

The major interdisciplinary aspects integrated into the comprehensive model

discussed in this report are: geology, hydrology, geomorphology, climatology,

isotope hydrology and hydrochemistry.



The major information gleaned from each and their inter-relationships are

presented in a simplified form as in the following flow chart (see Fig. 1.2).

| Geology) [Hydrology ||Geomofphology || Climatology 11 Isotope Hydrology|| Hydrochemistryl

_L
I

Aquifer
characteristics

1
Water level
records

Geomorphk
units

Hydrogeologic
parameters

J

Hydrogeologic
sub-domains

Water balance

� Numerical simulation

Groundwater quantity
evaluations

Climatic
factors

Isotopic
parameters

Chemical
parameters

Chemical balance

Conceptual model |

I
Groundwater quality
evaluations

Groundwater resources
development

Fig. 1.2. A simplified flow chart of the methodology followed in an integrated study

of the quantity and quality of groundwater in the lower Santa Lucia Basin.
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The types of informations envisaged from the major interdisciplinary aspects are

briefly discussed:

Geology (in chapter 2): The main informations drawn from the geological data

are grain size distributions of the lithologie units which can be used to distinguish

between the potential aquifer (Raigon Formation) and the aquicludes or aquitards.

Aquifer parameters like permeability are qualitatively evaluated based on the general

stratigraphie descriptions of the formations, whereas further detailed description of the

geologic logs has enabled quantitative evaluation (estimations) of permeability values.

The structural data have helped in determining the potentiality, direction and the

movement of groundwater (see chapter 4).

Hydrogeomorphology (in chapter 3): The major landforms which influence the

occurrence and movement of groundwater are identified. The major groundwater

regions are deduced from a geomorphological map (see Fig. 3.1).

A base map was compiled from nine topomaps at 1: 50,000 scale, from which

important features like rivers, roads, towns and the topographic contours were traced

(see Fig.3.2). Additional information, such as possible location of springs (or

seepages), small dams and marshy areas have facilitated hydrogeomorphic

interpretations. The identification of marshy areas and vegetated regions is an

important step in the calculation of the amount of water loss by upward seepage from

groundwater evapotranspiration.
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Hydrology (chapters 4 to 7): Aquifer characteristics, such as permeability,

storativity and transmissivity, were determined from pumping tests in bore wells and

large diameter wells and well tests (see chapter 4). A number of hydrologie

parameters, such as groundwater discharge and groundwater velocity were determined

from the water level measurements (see chapter 5).

Climatic factors have been statistically analyzed and used to separate relatively

dry periods from relatively wet periods (see chapter 6). Parameters, such as actual and

potential evapotranspiration were calculated from climatological data.

Evaluations of the quantity of groundwater becomes possible after integrating the

different parameters. Some of the hydrogeologic parameters, such as groundwater

discharge deduced from geology and hydrology, were used in conjunction with

climatic factors, in calculating water balance in each of the hydrogeologic subdomains

(see chapter 7). The hydrogeologic subdomains (see Fig.7.1) were constructed by the

superposition of the geomorphic units with the average water level map.

The changes in storages obtained, from the water balance calculations at each

hydrogeologic subdomain, were used as input values while numerically simulating

transient groundwater flows. The resulting groundwater model has been evaluated and

rechecked by comparing its output with the measured water levels.

Evaluation of the quantity of groundwater was made by observing the response

of the model to possible climatic changes and/or to a given quantity of groundwater

removal, that would meet the requirements of possible future use.



11

Isotope hydrology (in chapter 8): The stable isotopes of oxygen-18 and carbon-

13 and the radio isotopes of carbon-14 and tritium were analyzed. The stable isotopes

were used mainly to obtain information on the source of the waters. The radio isotopes

were used mainly in determining the ages of groundwater.

Hydrochemistry (in chapter 9): The major ions determining the chemical

characteristics of the waters, at various seasons, were analyzed both in the field and in

the laboratory. The information thus obtained were analyzed with the aim of

understanding the groundwater pollution problems. Groundwater quality evaluations

(see chapter 11) were made from the analyses of the chemical parameters.

Conclusions and recommendations are made regarding future groundwater

resource development, based on the above mentioned quantity and quality evaluations.

1.6 General Background

1.5.1 Geological Setting

The lower Santa Lucia Basin forms a part of a large geostructural intracratonic

depression known as the Santa Lucia graben. The study area is located in the western

part of this graben, where the sedimentary formations filling the graben are relatively

thin (not exceeding 100 meters) in the western part (Oligocène to Pleistocene) when

compared to the ones in the eastern part (Cretaceous to Pleistocene) which attain a

thickness of 1000 meters or more.
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Basement rocks, consisting mainly of gneisses, amphibolites, micaschists and

micaceous quartzites (Preciozzi, 1985) are exposed in the northern part of the area.

The sedimentary formations, consisting mainly of Oligocène - Pleistocene deposits, are

of continental and marine (marine to brackish) origin. They unconformably overly the

basement rocks and, are themselves overlain locally by recent, unconsolidated surficial

deposits (eolian, fluvials and colluvials).

The sedimentary formations gently dip towards the south east, where they attain

their maximum thicknesses. In general, the sedimentary formations pinch out towards

the north. Concentration of coarser materials (small pebbles, rock debris up to large

boulders) were locally observed at the base of the formations.

The basin is limited in the south by Rio de La Plata, which is an important

continental outlet discharging its fresh water to the Atlantic Ocean. Some important

seepages (springs ), including Luis Pereyra, San Grigorio, Mauricio and Rio Del

Tigre, emerging from the western part of the surface water divide, supply a large

quantity of fresh water to the Rio de La Plata.

Later geomorphic events have divided the sedimentary basin into two distinct

parts: An area dominated by the Rio de La Plata (the coastal zone) and an area

dominated by the two young river valleys of Santa Lucia River and San Jose River

(the southern part of the Santa Lucia Basin). A major surface water divide separates

the later from the coastal areas.
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1.5 .2 Climate

The country of Uruguay, being located between 30 to 35 degree south and 53 to

58 degree west, is a tropical region with a hot to temperate climate (Martinez , 1985).

The climatic factors in the study area are, more or less, similar to the rest of the basin

with some modifications being caused by proximity to the ocean. The mean annual

rainfall is about 950 mm. The mean annual temperature is about 17 ° C , with minor

fluctuations in the monthly averages, the maximum being 24 ° C in January and the

average minimum 11° C in July.

1.5.3 Water Requirements

The total population in the study area, according to the 1985 census is 66,412.

The total number of animals including cows, oxen, horses and sheep is about 585,000.

The main occupation of the rural population is agriculture and livestock. The

principal crops are corn, oats, potatoes, orange and citrus fruits. Most of the industries

are located along the road one "ruta uno".
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The major water supply of the people for domestic, agricultural and livestock

purposes is largely from groundwater. A number of excavated wells and deep

borewells (several hundred) have been drilled in the sedimentary formations, most of

which are concentrated along road "ruta 1". The well information compiled from old

wells are presented in a table (see Table 1 for the descriptions and Fig. 1.3 for the

locations). The total depth of most of the wells is between 30 and 40 meters, and the

static water level between 10 and 12 meters. Most of these shallow wells are excavated

by hand and are tapped either by hand pumps, or by wind pumps. Centrifugal pumps

are often used for wells less than 7 meters of depth to water. Relatively deeper wells

are equipped with submersible pumps.

Other sources of water supply include rivers and small ponds. The average

discharge of the two important rivers of Rio Santa Lucia and Rio San Jose is 732

million m^/year and 683 million m-fyyear respectively (UNESCO, 1979). Ponds have

been built in depressions, where rain water is collected along small dry streams

supplementing the water needs of the people.

The total population of Montevideo is about one and half million. Since 1973,

there has been a rapid increase in the growth of industry, while the water supply,

especially in some parts of Montevideo has deteriorated. Some wells have run dry and

it has become more and more difficult to obtain new wells with appreciable yield. The

major part of the water supply for the city of Montevideo is from surface water at

Aguas Corrientes, where about 450, 000 m^ of water per day is piped after passing

through various stages of purification systems. The towns between Aguas Corrientes

and Montevideo also benefit from this water.
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1.5.4 Groundwater Pollution Problems

The danger of groundwater pollution has become a serious problem in the Santa

Lucia Basin in recent years. The major sources of contamination are related to the use

of fertilizers, pesticides and fungicides. Some local contamination is also caused by

domestic and industrial wastes.

It has been observed in the field that wells used for drinking purposes are located

adjacent to and at times within farm areas, such as potato farms where fertilizers are

intensively used. Some of these wells were also observed to be close to animal barns

and drainage wastes.

Due to the scattered population pattern (a group of one or two families living at a

farm and other small groups living at another farm), the consequence of high nitrate

levels on the health of the population might not have been felt very acutely. However,

it is apparent that the health of some of the farm dwellers is affected and may continue

to be affected, unless preventive measures are taken to solve groundwater pollution

problems of the area. These preventive methods will be given towards the end of this

thesis, and it is hoped that the authorities concerned will act accordingly.



Chapter 2

GEOLOGY

2.1 The Structural Development of the Santa Lucia Basin

Several authors, including Martin etal. (1978), Goni and Hoffstter (1964) have

presented a general framework for the structural development of the Santa Lucia basin.

Figure 2.1 shows the general outline of the geology of the Santa Lucia basin.

The Precambrian rocks of Uruguay belong to the South American Platform,

which is one of the oldest tectonic region in South America. It is limited in the south,

in Argentina, by the Patagonian Platform, which is a relatively young platform,

whose basement stabilized from the middle Paleozoic onwards.

Martin et al. (1978) have indicated that the greatest stability of the South

American Platform was marked by marine sedimentation during the Silurian and

Devonian, mixed character during the Carboniferous, followed by continental during

the Permian and Triassic. The basement of the South American Platform consolidated

between the end of Precambrian and the Cambrian.

Severe tectono-magmatic reactivation took place from Jurassic and possibly from

Triassic onwards. This gave rise to faulted basins, located in particular near the coast.

These basins were then filled with marine sediments from the Albian-Aptian onwards.

Intense tholeiitic magmatism occurred over all the platform, with particularly well

preserved lava flows ( Martin et. al.. 1978).



Figure 2.1

A simplified Geological Map of the Lower Santa Lucia Basin.
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The formation of the Santa Lucia basin could be associated with the tectonism

that affected the South American Platform. Van Der Hammen (1959) has made a study

of fossils and age determinations from drilled logs at Castellanos (east of Las Piedras).

According to this study, the Santa Lucia tectonic depression probably started towards

the end of Jurassic or Lower Cretaceous (145 -140 million years ago).

Larson & Ladd (1973) relate the creation of this intracratonic depression to the

opening of the south Atlantic (crustal separation of the continent of Africa from South

America began between 125 and 110 m.y. ago).

Post Cretaceous tectonism has produced, at some places, eruptive lavas

(hypersthinite basalts). The fact that these lavas have pillow structure and are rich in

sulfides indicates submarine flows ( Goni and Hoffstter, 1964).

This tectonic activity, which produced lava flows, is most probably related to the

formation of Santa Lucia depression. The basaltic lava flows belong to the Puerto

Gomez Formation. They are found filling up the lowest parts of the depression

interstratified with the sediments; outcrops of the Puerto Gomez Formation are found

towards the eastern limit of the Santa Lucia graben, towards Minas town.

The graben was filled with continental deposits known as the Miguez

Formation, followed by successive continental and marine deposition. The later

constitute the sedimentary deposition of the area studied.



20

The Miguez Formation, which consists of fine to medium grained, stratified,

argillaceous sandstones (Preciozzi, 1985), constitutes a major part in the eastern part

of the basin. Deep bore holes drilled by the IGU (Institute Geologico del Uruguay)

and ANCAP (Administracion Nacional de Combustibles, Alcohol Y Portland) indicate

thicknesses of 2400m, at Sauce (north east of Montevideo), and 1636m, at

Castellanos, both in the "department" of Canelones.

Although the Miguez Formation forms a pile of thick sediment, at certain sites

within the graben, it is totally absent at other parts; for example, it is not encountered

in the western part of the basin. Basement outcrops are encountered within the graben

in the eastern part of the basin.

The Santa Lucia depression could then be viewed as a major tectonic depression

which embodies other tectonic faults of secondary importance producing minor

grabens and horsts within the major depression. Gravimetric surveys and thickness

measurements of sediments from deep borehole drillings indicate the existence of such

graben horst relations.

The longitudinal and transverse dimensions of the Santa Lucia tectonic

depression is 120 Km. by 45 Km. respectively (Bossi & Umpierre, 1975). The

eastern extension of the graben goes up to Minas, where it is interrupted by north-

south running faults. Its western limit goes up to Arazati, or may even extend further

west, towards Colonia.
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Gravimetric survey, as well as drill informations, indicate progressive thinning

of the total bulk of sediments towards the west (study area). In particular, the thick

continental Cretaceous sediment belonging to the Miguez Formation is probably

absent, or occupies very limited (lowermost) parts of the depression. The overlying

Oligocène Fray Bentos Formation is observed, at places in the north (around the town

of San Jose) in contact with the basement rocks.

Such progressive thinning of the lowermost Miguez Formation towards the west

may be explained by eastwardly plunging graben, which progressively deepens

towards the east; the graben and horst relations within the main graben are

compartmented by north-south faults.

A possible fault running north - south along the Santa Lucia river at Parador

Tajes has been deduced from a step forming topography. It should be noted that

although the present topography and thickness of sediments are largely influenced by

the morpho-tectonics of the basement topography, the sediments themselves remain

unaffected by tectonism, since the tectonic events occurred during the Lower

Cretaceous. Post tectonic erosion and deposition have obscured the basement

topography, filling up its irregular parts, thus resulting in a more or less uniform and

gently dipping, flat topography.

However, the topography of the basement rocks could be viewed with reference

to the tectonical activities discussed above. The thicknesses of the the sedimentary

formations is largely dictated by the underlying topography of the basement rocks.
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2.2 Litho-Stratigraphie Units and Their Relative Permeabilities

The geological units in the western part of the Santa Lucia Graben are Oligocène

to Pleistocene sedimentary units, overlying crystalline basement rocks. The

sedimentary units are covered, in very restricted zones, by recent unconsolidated

surficial deposits (marine, eolian and alluvials).

In the foregoing discussion, concise description of each of the sedimentary units

will be given, with particular reference to their permeability characteristics. Most of

the geological details are obtained from the works of Preciozzi (1985), Prichonnet ej

ah (1987) and La Haye (1988).

2.2.1 The Basement Complex (Precambrian)

The basement rocks outcrop towards the north of the study area (north of San

Jose town) and towards the south east, around Montevideo. The most widely

occurring basement rocks are those of the Montevideo Formation, which are

composed of gneisses, amphibolites, micaschists and micaceous quartzites. Some of

these basement rocks, like the late post-tectonic granitoids, exposed towards the

southwest of the town of Florida, are relatively poor in fractures, hence they are

considered as groundwater barriers.
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The undifferentiated granitoids and the Paso del Dragon Formation, which occur

towards the north are separated by northeast to southwest running faults. In general,

the principal fault directions within the basement rocks run northeast to southwest.

These faults may divert groundwater from entering into the sedimentary formations.

However, the existence of north-south joints and/or faults of secondary importance (as

has been inferred from landsat images), may help in facilitating easy entrance of

groundwater into the sedimentary formations.

The basement rocks were observed to be highly weathered towards the north

(north of the town of Florida). Relatively thick (up to 2 meters), residual soils were

observed in contact with the unweathered part of the basement rocks.

Towards the south, the altered products of the basement rocks are transported

and deposited mostly along river courses, where a thickness of up to 3 meters was

observed. The debris of materials derived from the basement rocks and reworked

recent materials are also extensively distributed over the alluvial plain, towards the

south.

The materials of the altered basement rocks consist of poorly sorted, rounded to

sub-rounded boulders, gravels and pebbles with clayey silt. They contribute an

additional secondary porosity to the basement rocks.
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From the point of view of permeability, the altered basement rocks facilitate the

percolation of groundwater. Due to their limited areal extent and vertical thicknesses,

however, they are not considered as forming a separate aquifer unit. In general, it

would be logical to expect a certain amount of horizontal groundwater leakage into the

adjacent sedimentary formations due to the fracture systems and intensity of

weathering of the basement rocks.

2.2 .2 The Fray Bentos Formation (Oligocène)

This formation consists of very fine, well sorted sandstone and loess with

argillaceous and calcareous cement. It is characterized by its fleshy red to brown

colour. Some calcite concretions occur (north west of Canelones) in its upper part.

This formation is largely exposed towards east of Santa Lucia river. At Parador Tajes,

the formation is locally lithified to compact quartzitic sandstone. This formation is also

exposed around the town of San Jose, where it unconformably overlies the basement

rocks. The deposition of this formation took place in continental semi-arid

environment (Preciozzi, 1985). Its thickness varies from few meters up to ninety

meters. The semi consolidated materials of this formation are highly weathered in

some places.

Due to the predominance of fine materials (> 60% of lutites, Perez, 1990), the

Fray Bentos Formation can be regarded as semi-permeable to impermeable.
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2.2.3 The Camacho Formation (Miocene')

This formation consists of fossiliferous, massive and poorly sorted fine to

coarse sand. It outcrops towards the western part of the study area near Arazati, where

it is characterized by its well defined beds of clayey silt and sometimes by few beds of

fossiliferous limestone in borehole 1394/1 (Prichonnet et al., 1987). This unit has

also been identified by Perez (1990) from lithological descriptions of two other bore

hole logs (see geologic cross-section in Fig. 2.2 ).

Legend
L= Libertad
R=Raigon
C= Camacho
F= Fray Bentos
B= Basement

4 Km.

Scale

Fig. 2.2. A north to south (from south of San Jose town to Rio de la Plata) geological

cross section and the position of average water table for the year 1988 (see Fig.2.3 for

the location of the section).

The thickness of this formation (around 10 meters) diminishes towards the

eastern part, where Fray Bentos Formation is observed to directly underlie the Raigon

Formation.
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Due to the absence of extensive clayey materials within the Camacho Formation,

it may have a better permeability than that of the Fray Bentos Formation. In general,

this formation can be regarded as permeable to semi-permeable. However, it is not an

important water bearing aquifer unit in the area due to its limited thickness and lateral

extent, and also according to the shape of the electrical and y ray logs registered in

borehole 1394/1 bv Prichonnet et al.f 1987\

2.2.4 The Raigon Formation (Pliocene)

The Raigon Formation generally consists of moderate to poorly sorted

conglomerate and sand with some clayey interbeds. Lithological description of logs

from several boreholes indicate various dimensions of sand grains ranging from fine to

medium to coarse grains. Relatively coarse grained sandy units (3 to 4 meters) are

observed towards south east of San Jose. Alternating layers of silt and sand with

pebbles and gravels are frequently encountered ( La Haye, 1988). Along the coast, at

the base of the formation, few partially cemented beds (calcite) have been observed

(Prichonnet, personal communication)

This formation outcrops at Raigon (east of San Jose) and along the valley

slopes, along the San Jose river. La Haye (1988) has pointed out the existence of

many sedimentary structures, in outcrops along the slopes, suggesting that the Raigon

Formation is thicker than previously believed. The thickness of this formation varies

from few to tens of meters. At Libertad, it attains a thickness of about 50 meters. It

has a more or less uniform thickness along the cliffs of the coast, ranging from 10 to

about 20 meters.
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The Raigon Formation is considered as a potential aquifer. The lithologie

descriptions so far obtained indicate the possibility of relatively high permeabilities.

The existence of considerable thicknesses of sand and gravel contributes to its high

permeability, whereas, semi-confining situations may, as well, be expected wherever

clayey silty layers persist.

2.2.5 The Libertad Formation (Pleistocene)

The Libertad Formation consists of grayish brown, at times calcareous, fine

grained sand, silt and clay. It overlies the Raigon Formation, where altered products

obscure a clear contact. This formation merits to have its own litho-stratigraphic unit

due to its distinctiveness in appearance (La Haye, 1988).

The top parts of the surface water divide, along "ruta 1", consists of fine and

massive facies, which is mapped as the Libertad Formation. In the north, towards the

town of San Jose, it grades into a more coarser facies resembling that of the Raigon

Formation, where inter-connected vertical channels (root casts) were observed near the

surface. Other fractures of micro channels can also be observed, in other parts in this

formation, favoring the vertical percolation of rain water. Some calcite concretions

were also observed at this place, reflecting pedogenetic activities in a semi - arid

environment. Although coarse grains of sand (diameter = 2mm) were observed in the

Libertad Formation, the proportion of gravelly materials is not as frequent as in the

Raigon Formation (La Haye, 1988).
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From the point of view of permeability, this formation can be regarded as semi-

permeable to permeable. It may partly confine the aquifer below (Raigon Formation),

wherever its permeability is reduced by its fine grained character. However, the

vertical permeability being significative, unconfined water table situations are favored.

2.2.6 Dolores Formation (Pleistocene)

The Dolores Formation consists of mudstones and very fine brown argillaceous

sandstone. It is a secondary depositional product derived mainly from the previous

formations. This formation is encountered in the relatively flat area, towards the

mouth of the Santa Lucia river (Tropas Viejas - Delta del Tigre).

The lithological character of the Dolores Formation is very close to that of the

Libertad Formation. However, its characteristic may vary from place to place within a

small area.

The presence of mudstone lowers the permeability of this formation, wherever it

may persist. In general, this formation can be considered as semi permeable to a

permeable unit.

2.2.7 Recent Sediments

The recent sediments are divided into fluviatile, and coastal deposits. The fluvial

sediments which consist of unconsolidated fine to coarse sand, pebbles and gravels are

exposed mostly along the rivers. Sheet wash deposits consisting of fine to medium

grained materials including some coarser material (up to gravelly beds) are deposited

along valley depressions.
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The coastal deposits are well sorted fine to medium grained coast developed

sands (mainly eolian, covering few hundred meters in places), which are restricted to

the coastal areas.

The grain size distributions within the alluvials are distinguished from the grain

size distribution within the rest of the basin by the absence of fine grained matrices

(La Haye, 1988). Such characteristics render the alluvials a relatively high

permeability. However, due to their limited areal extent and very small thickness (2 to

3 meters), they are not regarded as potential aquifers, but they can still be considered

as local zones of groundwater accumulation.



Chapter 3

HYDROGEOMORPHOLOGY

The major landforms are grouped based mainly on topographic aspects:

Along the main rivers of San Jose and Santa Lucia the topography (10 -40

meters) is relatively lower than the rest of the area (see topographic map in Fig.

3.2 ). It rises along the sides of these rivers, towards the high rising ridges,

where the altitude attains 40 to 50 meters. Towards the west of these rivers, a

surface water divide separates the Santa Lucia river basin from the Rio de la

Plata basin. The topography becomes relatively flat, towards the west of this

surface water divide, except along rivers, where it slopes down toward the

rivers. The geomorphic situation of the area can be viewed from such broad

topographic categorization. In this study, the area has been divided into major

geomorphic units reflecting mainly the above mentioned major land forms.

Accordingly, a geomorphic map has been prepared (see Fig. 3.1 ). The purpose

of such geomorphic subdivision is to subdivide the area into groundwater

zones; the geomorphic units are believed to reflect distinct groundwater

situations. In the following, the groundwater characteristics are studied based

on five geomorphic units, namely: 1) The interfluvial zone 2) The seepage zone

3) The coastal zone 4) The valley bottom and 5) The fluvio-coastal zone
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The géomorphologie units are limited in the east by a relatively elevated

area, Las Piedras (see Fig. 3.1), by the Rio de La Plata in the south and by the

relatively ragged basement topography in the north and north west

Other characteristics like swamps and scarps are also included in the

géomorphologie map.

3.1 Geomorphic Units and Groundwater Table Conditions

3.1.1 The mterfluvial zone

The interfluvial zone is a relatively flat area, with slightly undulating

topography. In general, it is inclined towards the south east, where the

sediments attain their maximum thicknesses. The average angle of slope is less

than 2%.

The average static water level in the interfluvial zones varies from about 50

meters above sea level towards the north west to about 20 meters towards south

east.

The existence of groundwater divide is highly correlated with the surface

water divide, which separates the coastal zone from the Santa Lucia Basin.
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3.1.2 The Seepage Zone

Small valleys formed as a result of the combined effect of groundwater

seepage and surface erosion constitute distinct géomorphologie units. These are

located along the rivers of Luis Pereyra, San Gregorio, Mauricio and del Tigre.

They all have a characteristic feature of relatively narrow gorge in their tipper

parts with flat and wide marshy region in their lower parts.

Numerous seepages have been observed to emerge from the sides of these

valleys. The discharges of the seepages gradually increase downwards along

the river valleys.

The local direction of groundwater flow is towards the respective rivers.

The seepages emerge from the shallow aquifers.

3.1,3 The Coastal Zone

The coastal zone is a relatively flat region (average slope <1%) adjacent to

the Rio de La Plata. Well marked scarps are found along the coast and, leveled

ground (due to later erosion) wherever rivers embouch their waters to the Rio de

La Plata.

The calcareous incrustations on the wall of a scarp at Kiyu (see Fig. 3.1)

indicate seepages of an ancient water level. Lowering of the water table is

evidenced by the presence of wetland vegetation, which is presently about 10

meters below the level of the calcareous incrustation.
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The average static water level in the coastal zone varies from 5 to 15

meters above sea level and the general groundwater flow direction is north -

south (towards Rio de La Plata).

3.1.4 The River Vallev Bottom

The valley with its adjacent slopes along the lowermost limits of the rivers

of San Jose and Santa Lucia is considered as a single distinct geomorphological

unit. The topography slopes gently from the surface divides, along "ruta 1" and

"ruta 3" towards the two large rivers, where dense natural vegetation covers

the valley bottoms. The groundwater levels» along the slopes, were observed to

follow the topography. In general, groundwater flows towards the valley

bottom and also along the rivers.

During the wet season, numerous seepages and flowing streams emerge

from the soil cover along the slopes of the valley and feed the rivers of San Jose

and Santa Lucia. During the dry seasons, the seepages and flowing streams

dry out.

3.1.5 The Fluvio - Coastal zone

The area between Santa Lucia river and Rio de La Plata (Delta del Tigre up

to Tropas Viejas) is referred to as fluvio - coastal zone (see Fig. 3.1). The

topography is flat with average altitude of about 15 meters. I t is poorly

cultivated. Marshy and inundated regions are found along the borders of the

Santa Lucia river and Rio de La Plata
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Marine environment might have reached up to Parador Tajes, or even

upstream, up to Âguas Corrientes, where the land unit seems to attain a more

or less similar feature. When the ocean started to recede southwards, the fluvial

action of the Santa Lucia river became important, thereby flowing directly

southwards through Tropas Viejas at first, and following its present "S" shaped

course at a later stage (J. Da Silva, 1989, personal communication ).

The aquifer unit in the fluvio - coastal zone must have been affected by fluvial

deposits mainly from Santa Lucia river (gravels and sand) and probably from buried

stream (gravels and sand) due to an abandoned river course. The water level in this

region being very close to surface (5 to 15 meters above sea level) could be susceptible

to contamination from industrial wastes as well as from the Rio de La Plata, especially

at places where pumping can create a significant drawdown.



Chapter 4

THE AQUIFER SYSTEM AND EVALUATION

OF AQUIFER PARAMETERS

A formation, group of formations or part of a formation may constitute an

aquifer system, depending on the availability of saturated permeable aquifer material

yielding an appreciable amount of groundwater.

The individual formations have been described, in section 2.2, from the point of

view of their permeabilities. The characteristics of the grain size distributions have

also been studied and permeability values estimated towards the end of this chapter.

It is appropriate to clearly establish the aquifer system (the most permeable unit,

and its impermeable or semi-permeable boundaries), before entering into groundwater

hydrology. It will be demonstrated later (see figures 4.16a to Fig.4.16e) that the

permeability of the Raigon Formation is by far superior than the permeabilities of the

other formations.

The grain size distributions within the Raigon formation varies from place to

place. As can be seen from the logs (Fig. 4.16a to Fig. 4.16e ), relatively

impermeable units may, at times, be embodied within the permeable units. Although

the permeability values of the formations (other than Raigon) are generally low, setni-

confieed to unconfined situations may prevail depending on the lateral and vertical

permeability variations that may exist from place to place. Confining situations are not

attributed to formations, but rather to small lenses of clayey or silty layers that are
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embodied within the formations. According to the informations gathered from the

drillers files at DLNA.MI.GE., the water levels first encountered while drilling wells

was in many cases few meters lower than the levels when drilling terminated. Such

occurrence of groundwater at relatively shallow levels in relation to the supposed

aquifer indicates confined or semi-confined groundwater situation. However, the

general response of groundwater to precipitation (see chapter 5 ) reflects unconfined or

semi-unconfined situations.

In conclusion, the Libertad - Raigon Formations can be considered as a complex

aquifer system constituted of various layers, some of these layers acting as leaky or

semi - confining layers. The underlying Fray Bentos Formation is considered as semi -

permeable to impermeable unit

4.1 The Aquifer Boundaries

The area bounded by the surface water divides around the aquifer system marks

the surface boundaries from which surface water inflow starts. The surface water

inflows coming from the northern part of the Santa Lucia Basin are attributed to the

rivers San Jose and Santa Lucia.

The basement rocks in the north form a flow - controlled boundary, because

some quantity of groundwater reaches the aquifer system by underground recharge

through the fracture systems and weathered zones within the basement rocks (see

section 6.1). On the other hand, the Precambrian basement rocks underlying the

sedimentary formations are considered as zero-flow boundaries. The Fray Bentos

Formation overlying the basement rocks can also be considered forming a zero-flow
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boundary, so that the only outlet of surface water and groundwater from the aquifer

system would be towards the Rio de La Plata.

All streams crossing the groundwater basin are hydraulically connected to the

aquifer system. Therefore, they are considered as head controlled boundaries.

Finally, the Rio de la Plata and the lower estuary of the Santa Lucia river form another

head controlled boundary.

4.2 The Aquifer Thickness and its Lateral Extent

The thickness of the aquifer system has been extrapolated from existing bore

well data. Accordingly a contour map (isopach map) has been constructed (see Fig.

4.1 ). The potentiality of the aquifer system could be deduced from the isopach map

which partly expresses the amount of water that can be stored in the aquifer. As in the

figure, the thickness of the aquifer system is around 40 meters towards the south and

between 20 to 40 m towards the north. The maximum aquifer thickness is

encountered towards the southeast, where a thickness of around 50 meters is attained.

4.3 The Saturated Aquifer Thickness

In unconfined aquifer system, the saturated aquifer thickness is marked by its

static water level. The average static water level calculated from the monthly water

level records could therefore be used as a measure of its saturated thickness. Since

there are not enough well log informations to deduce the actual saturated thickness, it

is found by subtracting the average depth to water from the isopach map. A saturated

aquifer thickness map is accoidingly constructed (see Fig. 4.2). The information from



this map is used in the calculation of transmissivity values. It is worth noting that the

saturated aquifer thickness also increases towards the south east, where the maximum

saturated aquifer thickness of about 35 meters is attained.
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4.4 Analyses and Interpretation of Data from Pumping Tests

One standard pumping test with an observation well, three well tests (without

observation wells) and two pumping tests of large diameter wells have been conducted

during the month of December 1988. A map showing the location of the tests is

prepared (see Fig.4.3 ). The analyses and interpretations of the data are presented.
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4.4! Pumping test

A pumping test was conducted on a well N2 742 (TORYAL S.A. located at 34

km from Montevideo along "Ruta 1"). Measurements were conducted on the well, as

well as on the piezometer which is located at 61 meters from the well. Pumping was

started at 7:34 on December 16 and was continued at a more or less constant discharge

of 578.88 m^/day for seven hours and forty five minutes. The drawdown was

measured both on the well and on the piezometer. Measurements of water level

recovery continued for six hours and forty two minutes, until 21:50. The data obtained

are presented in Table 3, in the appendix.

Before analyzing the pumping test data, additional informations, like well and

piezometer construction and geological log informations were investigated (see also

Fig. 4.16a to Fig.4.16e).

- The well is fully (about 37 meters) penetrating the aquifer system; the silty

clay layer (Fray Bentos formation) below the bottom of the well is considered as

impermeable (see Fig. 4.4).
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- An abandoned well which is cloaged at 18 meters below ground has been

used as an observation well; it has been considered as partially penetrating. Since the

distance of the piezometer from the pumping well is about two times the thickness of

the aquifer, the effect of radial flow into the piezometer, in affecting the drawdown,

may be considered insignificant.

- The main aquifer is sand occurring at two different horizons; the clayey sand

layers can be considered as semi-pervious. Therefore, vertical (upward and

downward) leakage is expected. Hence the sand layers can be considered as being

semi-confined.

The flow has decreased during the test, but a constant discharge rate can be

assumed, since the rate of decrease is negligible.

Like in most methods of interpretations, the foEowing assumptions were made:
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- The aquifer has infinite aerial extent

- The aquifer is homogeneous, isotropic and of uniform thickness.

- The piezometric surface is horizontal before pumping.

The above information is found to be sufficient to choose a suitable method of

interpreting the data. Accordingly, the method of Walton (1962) has been used for the

interpretation. The procedures of these methods can be found in Kruseman and de

Ridder (1979).

Walton's Method

The transmissivity value (KD) was calculated from the following formula:

s = Q(W(u,r/L))/4îiKDt (4.1)

where u = r2s/4KDt (4.2)

Where, s = drawdown, Q = discharge, W(u, r/L) represents the well function

for semi-confined aquifer, L = leakage factor, r = the distance between the well and the

piezometer, K = Permeability, D = saturated aquifer thickness, S= storage coefficient

and t = time.

- W(u,r/L) versus 1/u was plotted for different values of r/L (see Fig. 4.2)

- s versus t was plotted on another sheet of double logarithmic paper of the

same scale (see Fig. 4.6).

- The observed data curve (see Fig. 4.6) was superimposed on the family of

type curves

- A match point was selected for which the values of W(u,r/L), 1/u, s and t

were read.
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T h e values of s = 0.35 m and t = 0.06944 days were found after choosing

W(ujr/L.) = 1 and 1/u = 100 as a match point; the plotted points fall along the curve r/L

= 0.1. These values are inserted into equations 4.1 and 4.2.
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Hence, KD = Q W(u,r/L)/4ns = (578.88 m3/day x l)/4 x 3.14 x 0.35 = 132 m

2 / day.

S = 4KDt u / r2 = (4 x 132 x 0.06944 x .01)/ 61 2 = .0001

Inspite of our previous assumptions, the storaiivity value obtained indicates a

confining situation. However, such descrepancy could be attributed to having used a

cloaged well. We shall therefore keep this data for comparing with other methods.

Since r/L = 0.1, L = 610 meters.

The hydraulic resistance c, can be calculated from the following equation:

c = L2 /KD = (610)2 /132 = 2819 days

The Hydraulic Conductivity of the Semi-pervious Layers (K'>

From the value of hydraulic resistance c, the hydraulic conductivity of the

semi-pervious layers (K') can be calculated. The hydraulic resistance c, is expressed

as the ratio of the saturated thicknesses of the semi-pervious layers and hydraulic

conductivity of the semi-pervious layers; ie., c=D'/K* where D' is the total saturated

thickness of the two semi-permeable (clayey sands) layers at t he bottom and in

between the permeable (sand) aquifers.

By substituting the value of c to the above equation we obtain,

2819 days =13/K', Hence, K'= 0.0046 m/day
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Recovery Method

Since piezometers are scarce in the study area, we shall take advantage of the

data from the pumping test for other methods that are generally osed for wells which

are not equiped with piezometers, so that the accuracy of the other methods can be

compared with the interpretations of the pumping test

The recovery method has the advantage that the rate of flow of water into the

well is constant and is equal to the mean pumping rate. Hence the results of the

analysis of the pumping test data can be checked by this method. The recovery

method is hereby employed for the pumping well instead of the piezometers. The

same procedure has been employed for other wells which are not equiped with

piezometers.

The residual drawdown is plotted versus t/t* on semi-logarithmic paper and a

straight line is fitted through the points (see Fig. 4.7 ) .
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T = 2.3Q/4jcAs;where, As = the difference of maximum drawdown per log

cycle, T = transmissivity and Q = discharge of the well.

T = 23(578.88)/4ÎC = 106 m2/day

Reasonable agreement is observed between the traasmissivity values calculated

by the above two methods. However, the coefficient of storage cannot be calculated in

this method, because well loss is appreciable.

4.4.2 Well Tests

Well tests are pumping tests performed on pumping wells where piezometers

are absent. Approximate transmissivity values can be obtained from weË tests. The

drawdown and recovery of three wells have been observed during well tests

performed between 8 to 16 of December 1988.

Before analyzing the well test data, we shall seek for more informations from

the existing logs. Although well log informations have not been obtained for all wells,

the possible log descriptions can be deduced from the available logs near the wells

examined. From the lithologie wells (see Fig. 4.16a to Fig.4.16e), it can be observed

that all wells are either semi-confined or semi-unconfined.

The procedures of calculating the transmissivity values are the same as the

recovery method previously employed. The plots of the points from the recovery data

and the corresponding calculations are hereby presented.
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T = 2.3{Q)/4ÎIAS

T = 2.3(316.224 m3/day)/4îi(0.25 m)

= 231.5
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Fig. 4.10. Analysis of recovery data from well 591

T = 2.3(Q)/4nAs

T = 2.3(518.4 m3/day)/4iï(0.3 m)

= 3 16

4.4.3 Pumping tests of large diameter wells

Pumping tests have been performed on two large diameter wells which were

excavated by hand. Their diameters are around 1.5 m. The interpretation of pumping

tests of large diameter wells were based on the following assumptions:

- The aquifers are either confined or semi-confined
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- Flow to the wells is unsteady

- Well losses are negligible

- Significant amount of storage is expected in the well due to its large
diameter.

The method employed for the interpretation is that of Papadopulos-Cooper's

method as given by Kraseman and de Rider (1979).

The family of Papadopulos-Cooper's type curves: F(uw3) versus 1/u were

plotted (see Fig.4.11 ) for different values of B, from the table of values of the function

F(uw3) whose numerical values can be found in hydrogelogical text books. The

observed data of s versus t was plotted (see Fig.4.12 & 4.13) on logarithmic paper of

the same scale. The values of F(uw,B)> 1/u, s and t were then obtained by

superposition of the data curve on the type curve; the value of B of the type curve

which best matches the data curve is also noted.
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Fig. 4.12 Analysis of pumping test of large diameter wells data from well 59

The transmissivity values calculated by this method are given below:

B = 0.1, t = 10, s = 1, 1/u = 300, F(uw,B) = 15

The above values are substituted into the following equation:

T = Q(F(UW,B))/4ÎC(S) (43)

T = [172.8 m3/day(10)]/4ît(l m)

= 138 m2/day

Since the well losses are negligible in large diameter wells, the value of storage

coefficient may be obtained from equation 4.4.

S = [4T(t)(uw)]/r2w (4.4)

S = [4(138 m2/day)(0.0069444 days(O.0O333)]/(O.4)2

= 0.08
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Fig. 4.13. Analysis of pumping test of large diameter wells data from well 116.

The transmissivity values calculated by this method are shown below:

B = 0.1, t = 10, s = 1, 1/u = 300, F(uw,B) = 10

The above values are substituted into equation 4.3

T = Q(F(uw,B))/4jt(s)

= [302.4 m3/day(5)]/4ît(l m)

= 120 m2/day

The storage coefficient is found in using equation 4.4.

S=[4T(t)(uw)]/r2w

= [4(120 m2/day)(0.0069444 days(0.00333)]/(0.465)2 =0.05

The storage coefficient values in both the above cases indicate semi- confined to

unconfined or semi unconfined situations (the storage coefficient for unconfined

aquifers is between 0.02 to 0.3, whereas, for confined aquifers, it is between 0.00001

to 0.001).
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4.5 Specific Capacity and Approximate Transmissivity Values

Specific capacity of wells, defined as Q/Sw , where, Q = discharge and Sw =

the maximum observed drawdown, are related to transmissivity values. However,

specific capacity is affected by well loss and partial penetration. Since these factors

have adverse effects on specific capacities, the actual transmissivity computed from

pumping test will be greater than the transmissivity computed from the specific

capacity data.

Boonstra and de Ridder (1981) give a simplified formula which can be used to

estimate transmissivity values. The formula assumes that after sometimes of pumping

from a small diameter well, a steady flow condition is obtained. Based on

modification of the Thiem's equation, the order of magnitude of transmissivity can

also be calculated by using Logan's method of approximation as given by Kruseman

and de Ridder (1979).

T=1.22(Q)/SW (4.5)

Where T= transmissivity, Q = discharge, S w = and (Q)/Sw � specific

capacity

For unconfined aquifers, the corrected value of the drawdown must be used:

S 'w = Sw . (S2W / 2D) (4.6)

where D is the saturated aquifer thickness



57

The specific capacity varies with logarithm of 1/ r^w (Walton, 1969).

Therefore, large increase in the radius of a well results in comparatively small increase

in specific capacities.

In using the above information, the approximate transmissivity values have

been computed from the specific capacity of small diameter wells from the old wells.

Since the aquifer system represents semi - confined to unconfined situations a factor of

1.2 was chosen instead of 1.22 as in equation 4.5. The validity of the chosen factor

was verified from the transmissivity factors so far obtained Hence the specific

capacity values of the small diameter wells have been multiplied by 1.2 and the

approximate transmissivity values obtained.

In the absence of sufficient data, one should resort to using all the possible

means and making the maximum use of the available data, in order to arrive at real

values. We have sufficient specific capacity data, and less data on aquifer tests.

Therefore, the specific capacity data has been used in order to have a wider coverage

of transmissivity values. The approximate transmissivity values obtained are mapped

as in Figure 4.14.
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Fig.4.14 Approximate transmissivity map of the aquifer system in the Lower Santa

Lucia Basin,

4 .6 Determination of Hydraulic Conductivities

The hydraulic conductivities of the sedimentary deposits a t the wells were

obtained in using the following methods:
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a) By dividing transmissivity values obtained from a pumping test, well tests

and pumping tests of large diameter wells by the total saturated thickness of the

aquifer.

b) By estimation from grain size distributions

c) Flow net method

4.6.1 Grain size Distributions and Quantitative Evaluation of Permeability Values

In chapter 2, the relative permeabilities of the litho-stratigraphic units have been

examined. This is a very broad categorization that may only be used as a starting point

in identifying the potential aquifer from a non-potential aquifer. Although,

permeability values seem to be generally affected by lithe-stratigraphy, some

variations, in particular grain size distributions, within the stratigraphie units

considered, largely dictate the occurrence and movement of groundwater. Therefore,

it would be necessary to study in detail the character and grain size distributions of the

sediments with particular reference to parameters affecting permeability, like porosity,

sorting and content of particles less than 0.016 mm and particles greater than 2mm.

Some granulometric analyses conducted by geologists working in the basin since

1986 is given by Prichonnet et al.(1987). Some permeability values were obtained

from granulometric analyses by La Haye (1988). The range of permeability values

that were obtained by Jean La Haye and the corresponding standard permeability

values of natural soils are given below:-

Kiyu 0.06 - 216 m/day (silt to gravel)
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South east of Raigon 0.000216 - 77.8 m /day (clay to sand)

In the following discussion, the grain size distributions as observed from the

lithologie logs will be used to estimate permeability values.

A map showing regional distribution of K values would be a pre-requisite to

modeling the ground water of a basin. Unfortunately, it has not been possible to

obtain sufficient K values, due to lack of sufficient number of piezometers to

conducting pumping tests. However, attempts are made to have reasonable coverage

of permeabilities by employing estimation method from grain size. Figures 4.16a to

Fig.4.16e (see also Fig. 4.15) show grain size distributions as observed from

lithological bore hole descriptions.

Permeability, which depends on the property of the fluid and property of the

medium, can be expressed (derivation from the Hagen-Poiseuille equation -

Domenico, 1972) as:

K = [PwgNd2]/^ (4.7)

Where, p w is fluid density, g is the acceleration due to gravity, N is a

dimensionless-shape factor related to the geometry of the pore space, p, is viscosity

and d is the diameter of the particle.

Pwg/fi characterizes the properties of the fluid. Nd^ which characterizes the

properties of the medium is called intrinsic permeability (k). There are various

formulae expressing the intrinsic permeability (k) as a function of parameters like pore

diameter and porosity. The most common of these equations is that of Kozeny-Carman

(Verruijt, 1970).
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k = [cd2 n%(l-n)2 (4.8)

Where, n is the porosity of the soi and, the coefficient c, which ranges from 0.1

to 0.8, accounts for irregularities in the geometry of the pore space.

It can be seen from the above equations that k depends on the square of the

diameter of grains. Taking the specific surface (U-value) which is the inverse of d, as

a parameter for the grain size distribution, and pwg/^ as being constant, the hydraulic

conductivity (K) may be expressed from the Kozeny-Carman's equation as:

K = c/[U2 (n3/(l-n)2] (4.9)

It would be reasonable to apply Kozeny-Carman's formula to calculate

permeability values, provided that some precautions are made: Since relatively

accurate values can only be obtained from field tests (pumping test ), the results of K

values obtained from the analysis of grain size distributions should be compared with

available data on pumping tests.

The formula could then be adjusted, with the purpose of arriving at reasonable

estimates of K values.

Three factors largely influence the effective porosity (hence permeability) of

sand. These are: the sorting of sand, the presence of small particles less than 16

microns and the presence of gravel. If corrections are made for these factors, then

permeability values could best be estimated from the following formula given by

Boonstraand deRidder(1981).

K=mU" 2 CsoCclCgr (4.10)

where U = specific surface,
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C s o - correction factor for the sorting of sand

Ccl = correction factor for the presence of particles smaller than 16 microns,

Cgr = correction factor for the presence of gravei,

and m is a proportionality factor that can be adopted according to the particular

characteristics of the aquifer considered.

For 40% of sand, J. Boonstra and N. A . de Ridder (1981) have shown from

various investigations that m varies from 31x10^ to 71x10^ �

Table 4 .1 . Permeability values of natural soil in meters per day (Walton. 1962)

Clays < 8.64 xlO'5

Sandy clays 8.64 xlO "5 - 8.64 x 10"4

Silt 8.64 x 10"4 - 8.64 x 10"3

Very fine sands 8.64 x 10"2 - 8.64 x 10" 1

Fine sands 8.64 x 10"1 - 8.64

Coarse sands 8.64 - 86.4

Gravels > 86.4

The permeability values in table 4.1 give indications of the range of permeability

values o f defined grain sizes. In nature, however, the possible combinations of the

above are infinite. Therefore, it becomes very important to give due considerations to

the above mentioned factors (sorting of sand, presence of small particles less than 16



63

microns and the presence of gravel), which would take care of the real situation. An

m value of 30 x 10^ was chosen after several trials (comparison of grain size

characteristics with measured values). The particle size limits and their corresponding

specific surface (U-values ) are classified (see Table 4.2).

Table 4.2. The classification of sandy materials, grain size limits, and corresponding

specific surface (U) after Boonstra and de Ridder (1981).

particle size limits (micron)

dl d2 U=l/2(l/di+l/d2)

Silt

Very fine sand

Fine sand

Moderately fine sand

Moderately coarse sand

Coarse sand

Very coarse sand

Extremely coarse sand

16

63

83

125

200

333

500

1000

63

83

125

200

333

500

1000

2000

390

140

1ÛO

6 5

4 0

2 5

15

7.5

The value of the correction factors needed for the formula have been represented

on graphs by Boonstraand de Ridder (1981). The range of values of the correction

factors axe grouped from the graphs as in Table 4.3.
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Table.4.3. Correction factors for equation 4.10. after Boonstra and de Ridder (1981).

.Sorting Correction factor (C$n)

High (70-90% ., .....................0.99 -1.6

Medium (50-70%) 0.567-0.99

Low (40-50%)...... 0.44-0.567

Particles < 0.016mm) Correction factor

High (5-7%). ......0.19-0

Medium (3-5%) 0.433-0.19

Low (0-3%) 0.98-0.433

Gravel >2 mm Correction factor (Çgr)

High (40-60%) 1.33-1.97

Medium (20-40%).... 1.8-1.33

Low (0-20%) 1-1.8

The U values are obtained from Table 4.3. The estimates of permeability values

are then calculated by plugging the correction factors into equation 4.10.
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Table 4.4. Permeability values calculated from equation 4.10 and using the lithologie

log descriptions (see Fig.4.16a to Fig.4.16e).

N°- on legend

i
i

2
3

4

5

6

7

8

9

10

11

12

13

14

25

390

390

25

100

390

390

25

40

100
�

140

65

U

0.4

0.4

0.4

0.4

0.8

0.8

0.4

0.8

0.8

0.4
�

0.4

0.8

Cso

0.8

0.1

0.05

0.1

1.0

1.0

0.1

1.0

1.0

1.0
�

0.1

1.0

(Ccl) (C

1.6

1

1

1

1

1

1

1

1

1

�

1

1

îgr) K=3Q,QOÛU-2 CscAlCgr

27.65 m/day

0.014 m/day

0.007 m/day

3.46 m/day

4.32 m/day

0.28 m/day

0.014 m/day

69.12 m/day

27.0 m/day

2.16 m/day

0.00 m/day

0.11 m/day

10.22 m/day
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soil(l)

sand with gravel (2)

l%%%\ clayey silt (3)

Hm silty clay (4)

RfrriiSa coarse sand with clay (5)

Itfltlf f|ne grained sand (6)

E H 3 sat (7)

sandy clay (8)

coarse sand (9)

fine to coarse sand (10)

siltysand (11)

clay (12)

clayey sand (13)

sand (14)

Fig.4.15. Legend used in the lithological borehole descriptions.

m. as!.
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-20

-40 V

Permeability in m/day

Permeability 7 1 R ,, ,W,3P PermeabiBty in m/day

1394/4
Kiyu

Fig. 4.16a. Lithologie log descriptions compiled from the works o f UQAM and DI.
NÂ. MI. GE. (1986 to 1989) and the corresponding permeability values quantitatively
evaluated. See Fig. 4.3 for location of boreholes (see also legend in Fig.4.16b).
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Permeabiiîy in m/day H. _

2 1.02

S = SOIL
L - L1BERTAD FORMATION
R - RAIGON FORMATION
C = CAMACHO FORMATION
F = FRAYBENTOS
FORMATION

J

946-1

Permeability in m/day

2 1.0 20'� 3D 40

"D

Fig. 4.16b. Lithologie log descriptions compiled from the works of UQAM and DI.

NA. ML GE. (1986 to 1989) and the corresponding permeability values quantitatively

evaluated. See Fig. 4.3 for location of boreholes. The stratigraphie formations

marked as R, L, etc. are the only ones for which we were sure at the time.
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Fig. 4.16c & d. Lithologie log descriptions compiled from the works of UQAM and
DI. NA. MI. GE. (1986 to 1989) and the corresponding permeability values
quantitatively evaluated. See Fig. 4.3 for location of boreholes (see also legend in

Fig. 4.16b).
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1 1 > i 1 1 1 1 11394/3

Permeability in m/day

261

Permeability in m/day
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mull HI*

L?

754

. . .X
R

Fig. 4.16e. Lithologie log descriptions compiled from the works of UQAM and DI.

NA. MI. GE. (1986 to 1989) and the corresponding permeability values quantitatively

evaluated. See Fig. 4.3 for location of boreholes (see also legend in Fig. 4.16b).

The average permeability of each log is obtained by multiplying the permeability

values obtained, by the respective thicknesses. Accordingly, the average

permeabilities obtained are presented in table 4.5.
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Table 4.5. Permeability values calculated from lithoIogicM (fegcriptions

Log No.

1394-1

1394-2

946-1

1125-1

1155-1

924

775

716

1394-4

1394-3

754

261

1393-1

591

284

K values (average)

13.40 m/day

6.40 m/day

2.27 m/day

2 .00 m/day

0.54 m/day

2.4 0 m/day

3.60 m/day

10.00 m/day

8.53 m/day

1.87 m/day

2.80 m/day

6.90 m/day

6.60 m/day

11.00 m/day

22.00 m/day

Finally, it can be observed from Table 4.5 that the K values obtained by the

estimation method from the grain sizes are fairly close to the permeability values

obtained from wells for which field measurements (pumping tests, well tests and

pumping tests of large diameter wells) were made.



4J.2 Determination of Permeability Values From Flow Net Method

So far, some permeability values have been obtained for some parts of the

area. Here, the permeability values where data were missing have been

calculated from the average water table map.

71

Fig. 4.17. A portion of a flow net, after Bear, 1978

In the absence of recharge and discharge conditions, the amount of water

that enters A equals the amount of water that goes out of it and enters B (see

Fig. 4.17). Hence considering the discharge Q per unit thickness in an

inhomogeneous aquifer, the discharge in area A would be AQA = K A AniA«f>A

/Asi and the discharge in area B would be AQB = KB Ani A0B /As2.
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Where K A and K B are permeabilities in the respective segments, A ni

and An2 are the average widths of the respective segments, Asi and As2 are the

average lengths of the respective segments and A $ A and AfB are the potential

drops (gradients) of the respective segments.

Hence considering the discharge Q per unit thickness in an inhomogeneous

aquifer, the discharge in area A would be equal to discharge in B so that,

KA = KBAn2/Ani(Asi/As2) (A<]>B/A<S>A) (4.11)

In using equation 4.11, the permeability values of the area where data are

missing have been obtained.

A permeability map has been prepared (see Fig. 18). and finally a transmissivity

map has been possible from the saturated aquifer thickness map and permeability map

(see Fig.4.19).
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Fig. 4.18 Permeability map of the Lower Santa Lucia Basin
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Fig.4.19. Transmissivity map of the Lower Santa Lucia Basin



75

4.6.3 Comments on Determination of Aquifer Characteristics

All the analytical solutions that describe the response of an aquifer to pumping

and, from which various interpretations are made to calculate K, T and S, represent

very idealized aquifer configuration. It should be noted, however, that aquifers are, at

almost no times, homogeneous and isotropic. Aquifers are seldom perfectly confined

or perfectly unconfined. The complex geologic processes in nature usually result in

irregular stratigraphy, such as interfingering of aquifers and aquitards. It would

therefore be unrealistic to expect accurate values for K,T and S.

Few wells were investigated in this study. The absence of piezometers has been

a major handicap to the analysis of aquifer parameters. But other methods have been

employed. For example, the approximate method of finding transmissivity values

from the specific capacity of the wells gave values close to the values obtained by

other methods. Finally, it can be said that the order of magnitude of the values

obtained could be reasonable for the study of this basin, while more precise values

would be anticipated when more piezometers will be installed in well field areas

recommended in chapter 11.

4.7 Porosity and Specific Yield

The property of the aquifer system may be considered as heterogeneous and

anisotropic, but we may assume a more or less uniform porosity.

The grain size properties of the aquifer being defined, and permeabilities

obtained, it would be possible to extract porosity and specific yield factors from the



relationsMp between known permeability, porosity and specific yield values of clay,

silt, sand and gravel. These relationships are plotted on a graph (see Fig.4.20).

0 .0001 .001 .01 .1 1 10 100

Permeability in meters per day

Fig,4.2O. Relationship between permeability specific yield and porosity, after Walton

1962.

The porosity and specific yield of the fifteen logs were obtained from the

permeability values corresponding to each lithologie unit in Fig. 4.16a to Fig. 4,16e .

A weighted mean method is used, whereby the specific yield obtained for the

corresponding permeability value is multiplied by the corresponding thicknesses of the

units and the weighted average calculated from the total thicknesses.
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Table. 4.6, Average Porosity and Specific yield values of the corresponding wells.

Log'No

1394-1

1394-2

946-1

1125-1

1155-1

924

775

716

1394-4

1394-3

754

261

13934

591

284

Porositv (%)

34

36

37

33

37

37

36.8

35

36

37

37

36

36

35

33

Specific vield (%)

26

24

22

23

18

22

22.5

25

24

22

22.3

24

24

25

23

In confined aquifers, storativity (S) is the volume of water released from storage

per unit area and per unit decline. This value is calculated from pumping tests. In

unconfined aquifers, storativity is referred to specific yield, which is sometiiiies caled

effective porosity. Porosity represents the sum of specific yield and specific retention

(the amount of water retained against gravity by hygroscopic and capillary forces).

The specific yield of the aquifer system is one of the parameters which will be used in

modeling transient groundwater flow. Therefore a contour map (iso - specific yield) is

drawn from the table of values in Table 4.6 (see Fig. 4.21).
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Fig. 4.21 Specific yield map of the Lower Santa Lucia Basin



Chapter 5

FLOWNETS AND OTHER HYDROGEOLOGICAL ASPECTS

S.I Construction of Flownets

Flownets (hydrologie maps) have been constructed from a monthly water level

record of October 1986, and from seven months water level records (December 1987 to

November 1988). Contour maps representing equipotentiai lines are prepared for each

month from the water level measurements. The groundwater flow directions are drawn

perpendicular to the equipotentiai lines, reflecting direction of groundwater movement

(see Fig. 5.1a to 5. In). The average water level map is shown on Fig. 5.1L

In the absence of source or sink, in a steady flow situation and in homogeneous

isotropic medium, the equipotentials are everywhere perpendicular to the stream lines.

However, these conditions are rarely met in nature. Therefore, assuming the porous

medium of the aquifer unit as being homogeneous, but anisotropic, short arrows

indicating flow directions are drawn in the water table maps instead of long stream

lines.

Figures 5.1a to 5.1 h represent the water table maps constructed from the monthly

data. From these figures and also from Fig 5.2, it can be confirmed that the monthly

variations in the water levels are too small to cause any noticable shrinkage or

relaxation in the equipotentiai lines.
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� Hie general directions of the groundwater movements and the position of the

groundwater divide do not seem to change from month to month.
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Fig. 5. l a A monthly water level map of the lower Santa Lucia Basin (October 1986)
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Fig. 5.1b A moiithly water level map of the lower Santa Lucia Basin (December

1987)
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Fig. 5. l e A monthly water level map of the lower Santa Lucia Basin (March 1988)
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Fig. 5. If A monthly water level map of the lower Santa Lucia Basin (August 1988)
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1988)
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5.2 Flownet Data Interpretations and Some Related Hydrogeological

Aspects

Careful investigation of the flow regime in the aquifer unit has revealed some

useful informations which are indispensable for groundwater studies. In this section,

we shall look at some hydrogeological aspects deduced from flownet data

interpretations. Groundwater fluctuations principally reflect short and long term effects

caused by one or more of the following:

- Dry and wet periods.

- Fluctuations of water levels in rivers which are connected to the aquifer system.

- Extraction of water by pumping or recharge by irrigation water.

- Water losses by evapotranspiration.

In the following discussion, the groundwater measurements are considered as

reflecting the average effect of the particular month for which measurements were

taken. By doing so, it would be possible to compare the water level measurements

with other parameters, like precipitation of the corresponding months. It is assumed

from the previous discussion, in chapter 4, that the water level measurements represent

a watertable situation which is everywhere the same for the same aquifer (i.e.the

Raigon plus the Libertad Formations).
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5.2.1 Response of the Aquifer to Effective Precipitation

The aquifer system is replenished from above by water from precipitation and

irrigation. Water in the soil zone moves downwards through the unsaturated zone with

supply of water at the soil surface. The soil water zone extends from near the ground

surface downward through the root zone (50 - 200 cm.). It should be noted that

pollutants are also transported down to the groundwater system by such infiltrating

waters.

The response of the aquifer to precipitation can be observed from the bar graph

showing the monthly precipitation values and the average static water levels for the

corresponding months (see Fig. 5.2). Due to the gap in the available water level

records (only six months for the year 1988) it may not be possible to affirm the

existence of immediate response of the aquifer to precipitation. However, we may not

expect significant variations in water levels, since the distribution of rainfall in the area

is more or less constant throughout the year; the calculated mean change of water level

variations between two consecutive months is about 35 centimeters.
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Fig. 5.2 Bar graph showing the monthly precipitation values and the average static

water levels for the corresponding months. Note that precipitation was very high (460

mm) in March 1988.

Since precipitation may not be equally distributed over the whole region, all parts

of the aquifer may not respond simultaneously and at the same rate. The factors like

topography and infiltration capacity of the soil influence the response of the aquifer.

Hence, precipitation and water level relationships were examined for two of the

environments having different lumped effect on geology, pedology and

geomorphology (see Fig. 5.3).



92

ç

W
at

er
 le

v*

�

20-

�

�

10-|�, j ,
o

o o
PPT.

° o
CM CO

in mm

�

�

�

i

well

� 29
� 76
�11

n

%

Is
 in

 m
W

at
er

 le
vé

26|�

24

22-

20

18.

16-

14

v

A

m

o

10
0'

20
0'

PPT.in

g g
CO Tf

mm

�

1

50
0"

well

�

m

os

83
85
88

Fig. 5.3. Monthly precipitation (from the data of 1988) versus the corresponding water

levels in representative wells from the coastal zone (left figure) and interfluvial zone

(right figure).

As in Fig. 5.3, the water levels in wells seem to have some relation with

precipitation. The abrupt water level fluctuations on particular wells are not related to

natural phenomena. The fact that all the graphs are asymptotic towards the right

obviously indicates aquifer saturation limits. Apart from what can be observed from

Fig. 5.3, the response of the aquifer to precipitation in the interfluvial zones greatly

varies between wells located few meters apart. This could be explained by the

heterogeneity of the soil cover affecting the infiltration rates. Better response may be

expected in the coastal zones where the pedology is relatively constant
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5.2.2 River Aquifer Relationships

From the hydrologie maps, influent and effluent situations can be distinguished

from the shape of the equipotentials. In general, all rivers seem to be recharged by the

aquifer. However, it would be hasty to assume such situation as permanent

characteristics. The groundwater divide along "ruta 1" seem to be a major recharge

zone, while all the rivers are discharge zones except the lower estuaries of the Santa

Lucia river which could also be sources of groundwater recharge.

The possibility of interconnection of river water with that of the regional

groundwater is an important aspect in groundwater resource evaluations, which can be

understood by comparing river drainage map with depth to water map. Figure 5.4

shows the depth to water table map of the area, which is constructed from the average

water level depths. The possibility of a two way interconnection (effluent and influent )

of the rivers with the aquifer system is higher in areas where surface water is closer to

groundwater. It is worth mentioning that this map could be of great help for

development plans especially when the need to protecting the groundwater from

contamination become crucial.
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95

The possibility of interconnection of rivers with the aquifer system can be

understood better if we analyze water level measurements taken at different times.

Figures 5.5a and 5.5b show four sections across the main rivers. It can be observed

from these sections, representing maximum and minimum water levels, that a drop in

water level actually occurs during the driest months. Considering the average water

levels of the months, it can be seen from figure 5.2 that the difference between the

maximum water level record (May 1988) and minimum water level record (Nov. 1988)

is around 1.5 meters. However, the difference between the maximum and minimum

water levels in the individual wells vary from place to place (1 to 3 meters) depending

largely on the character of the aquifer.

Fig. 5.5a. Two sections south of San Jose town representing maximum and minimum

water levels in wells (see Fig.2.3 for locations).
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Fig. 5.5b. A section east of river Pereyra (upper) and a section across rivers of San

Gregorio and Mauricio (lower) representing maximum and minimum water levels in

wells, (see Fig. 2.3 for locations).

Since all the rivers along the coastal zone (Luis Pereyra, San Gregorio, Mauricio

and del Tigre) emerge from the aquifer and are all the times contributing to negative

storage, they reflect the situation of the aquifer on surface. That is, one may tell if the

aquifer suffers from draught periods by observing the water level in these rivers. They

could, in a way, facilitate the groundwater movement, thereby receiving some water

from the aquifer upstream and giving it back to the aquifer downstream (towards Rio

de la Plata).
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Quick Flow and Base flow Components

The quantification of aquifer recharge rates by the rivers or discharge rates of

rivers requires discharge measurements at different places along its course.

Unfortunately, no such data exists. For the present, the available long term discharge

measurement of the San Jose river at San Jose town will be given for the sake of

comparing the quick flow and base flow components. This relationship is presented as

in figure 5.6.
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Fig. 5.6. Monthly flows of San Jose river in meter cube per second; base flow

components are separated from quick flow components, from the data obtained from

"Direccion Nacional de Hidrografia, Division Recursos Hidricos, Departmento de

Hidrologia", 1988.
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The base flow versus quick runoff relations of the San Jose river reflect the general

characteristics (drainage density, relief, soil moisture content, permeability, etc.) of the

basin north of San Jose town. Without going into detail, some important points can

be obtained from figure 5.6.

- The relatively wet periods are 1975 up to 1977.

- The relatively dry periods are 1985 up to 1988.

- The flow variations between individual months is not great.

- Base flow component (for the years 1959 -1988) of San Jose river varied between

0.5 to 1.5 meter cube per second which may be regarded as a potential for the

groundwater recharge into the lower estuaries of the Santa Lucia river.

5.2.3 Areas of Groundwater Loss

Apart from the previously mentioned rivers, loss of groundwater occurs by

evapotranspiration, where groundwater is close to the surface. The fact that the marshy

areas are connected to the regional groundwater, hence are contributing to additional

groundwater loss due to drainage of water directly from the water table by roots of

plants, can be verified by superposing the geomorphological map on the depth to water

map.
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The presence of certain hydrologie features, like source (a well may be recharged

by artificial replenishment from adjacent irrigated field at the time of measurement ), or

sink (a pumping well may not have been fully stabilized at the time of measurement),

have an insignificant effect to the present scale of mapping.

5.2.4 Direction of Groundwater Row

In the last chapters, the two major sources of groundwater into the aquifer

system, namely precipitation and recharge from the upper parts of the basin have been

discussed. Local and regional groundwater flow directions can be identified from the

water table maps by taking into account all the possible sources of recharge into

consideration. The local groundwater flow directions, corresponding mainly to

recharge by precipitation, are directed towards valley bottoms: The principal directions

of local groundwater flows are east to west and west to east which are reflected mainly

on either sides of the banks of San Jose river.

On a regional scale, the principal groundwater direction can be regarded as north

- south. This direction corresponds to the general direction of all the rivers (conduits of

groundwater gain and/or conduits of groundwater lose). Again on a regional scale,

some groundwater enters into the area in the north and leaves the area in the south,

corresponding to the regional groundwater flow directions.



Chapter 6

HYDROLOGIC PARAMETERS AND CLIMATIC FACTORS

6.1 Groundwater Recharge

The possible sources of recharge are analyzed with the aim of quantifying the

amount of groundwater inflow into the area. The amount of groundwater outflow is

calculated from the average water table map. Three possible sources of recharge into

the aquifer system could be identified. These are a) direct recharge by precipitation, b)

recharge by rivers and c) groundwater recharge from the upper part of Santa Lucia

basin. A part or whole of the aquifer system could, at any time, be recharged by one

or the combination of two or three of the above.

In the evaluation of groundwater recharge and discharge, the areas which

correspond respectively to groundwater recharge and groundwater discharge zones

should first be defined. This is actually a question of scale. Considering the whole of

Santa Lucia basin, the study area could be considered as groundwater discharge zone,

whereas the rest of the basin would be groundwater recharge zone. In this respect,

inflection points (boundary between recharge and discharge) can be marked all along

the contact between the basement rocks and the sedimentary formations. On the other

hand, considering only the study area, the topographically higher places would,

correspond to groundwater recharge zones, whereas the topographically lower areas

correspond to groundwater discharge zones.
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The possibility of recharge from the upper part of the Santa Lucia basin has been

analyzed from interpretation of landsat images in 1: 100,000 scale, and some general

hydrogeological investigation conducted in the upper part of the Santa Lucia basin.

During the interpretation of the landsat images, all linear features related to

groundwater flow were marked (see Fig.6.1). Thin residual soil, covering the

basement rocks, obscure most of the lineaments. However, some subtle linear

features can be observed on the thin soil cover. Taking into account the predominance

of humid climatic environment, all linear features, including alignment of thick natural

vegetation, may be considered as being related to near surface or deep groundwater

movement. The drainage pattern of rivers, probably being closely related to

lineaments, may reflect the general trend of groundwater movement. Although the

primary trend of the lineaments is east - northeast to west - southwest, some north -

south trending lineaments of secondary importance traverse the former. Hence the

entrance of groundwater into the area would ultimately be facilitated by the north -

south trending lineaments. In fact, this trend is the direction of the regional

groundwater movement. Apart from lineaments, intense fracturing and residual

weathering of the basement rocks were observed in the northern part of the basin,

which could play a role in conducting groundwater to the lower Santa Lucia basin.
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So far, the possibility of groundwater recharge from the upper part of the basin

has been analyzed. It would be difficult, without studying in detail the upper part of

the basin, to quantify groundwater recharge into the area. However, it can be assumed

that groundwater recharge equals groundwater discharge. The later is calculated from

the average water table map and transmissivity maps (see the following section).

6.2 Groundwater Discharge

The flow through the entire thickness of the aquifer system is calculated in using

the following formula :

Q = (TAnA(t>) / As (6.1)

where, Q = total discharge, T = transmissivity, An = the average width between

the stream lines, A<j) = the potential drop between two equipotential lines, As = the

average length between the two equipotential lines.

The groundwater discharge (Q) of the study area as calculated from equation 6.1

is given below:

a) Along the valley bottom of San Jose and Santa Lucia rivers Q = 12000 m3 /

day. b) Along the rivers of del Tigre, Mauricio and San Gregorio Q = 2700 m3 / day.

c) Along river Pereyra Q = 4500 m3 / day.
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6.3 Pumpage and Upward Seepage by Plants

The amount of water pumped from the daily use of the people in the area have

been estimated. On average, the pumping rate of wells which are operated by wind

pumps is about half a liter per second. The pumping rate of wells which are operated

by hand pumps is also considered to be in the same order. On average, the pumping

rate of wells which are operated by submersible pumps varies from 5 liters per second

to 15 liters per second.

The amount of water extracted from the wells (see Table 7.1) was estimated by

multiplying the average pumping rate, by the average duration of pumpage (eight hours

in most cases) and by the number of wells in each of the hydrogeologic regions

considered. The values thus obtained were compared with the possible water usage

which was obtained by multiplying the daily consumption of water of people and

animals (150 liters per day per person and 25 liters per day per animal) by their

respective number's (Direccion General de Estadistica y Censor Republica del

Uruguay, 1985) in each of the hydrogeologic regions considered.

The amount of water continuously extracted by the roots of plants in the marshy

areas, where the roots of plants reach the groundwater table, is estimated from the

relationship between the amount of groundwater contributed to the roots of plants and

depth of water table below the root zones, for different soil types as given by

Boonstra and de Ridder (1981). The upward seepage value for the marshy areas

considered is found to be around 1.5mm. / day.
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6.4. Climatic Factors

6.4.1 Temperature

The only available complete data on temperature is that of Libertad. Therefore,

the same data have been employed for the calculation of evapotranspiration in the

whole area. The mean monthly temperatures for the years 1980 to 1988 are

graphically presented in Fig. 6.2. The relatively cold months are May, June, July,

August and September (11°C - 14°C), while the relatively hotter months are January,

February, March, November and December (18°C - 23°C).

Fig.6.2 Mean monthly temperature at Libertad (for the years 1980 -1988).
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6.4.2 Potential Evapotranspiration

Mean monthly potential evapotranspiration was calculated from the temperature

data based on Thornthwaite's formula:

PET = (160t/I) a

Where PET = potential evapotranspiration in mm.

t = mean monthly air temperature in °C.

I = annual heat index, obtained by adding the twelve monthly heat indices, each

of which is defined by:

i = (1/5)1-514

a = a factor which is expressed as in the following:

a = (6.75 I3 x 10-7)- (7.71 I2 x 10"5)+ (1.792 I x 10"2 ) + 0.49239

The potential evapotranspiration values obtained by Thornthwaite's method were

adjusted for the mean possible duration of sunlight hours in the southern hemisphere at

35° latitude according to the following correction factors expressed in units of 30 days

of 12 hours each, Griffiths (1966).

J F M A M J J A S O ND

1.23 1.04 1.06 0.94 0.89 0.82 0.87 0.94 1 1.13 1.17 1.25
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6.4.3 Precipitation

Complete data on precipitation for the towns of Libertad and Colorado were

obtained for the years 1980 - 1988. The missing data for that of San Jose was

completed in using 1.07 as a factor of multiplication to the data of Libertad (this factor

was obtained by comparison of the general data from the respective stations).

The mean monthly precipitation and evapotranspiration values of Libertad for

the years 1980 to 1988 are graphically presented on Fig.6.3. As can be seen from

this graph, most of the months have surplus precipitation, while deficit occurs during

the months of December and January.

j F M A M J J A

Months starting from January

S O N D

Fig.6.3 Graph showing mean monthly precipitation and mean monthly potential

evapotranspiration values of Libertad for the years 1980 -1988.



Chapter 7

WATER BALANCE AND AN AQUIFER MODEL

In the previous chapters, the various inflow and outflow components have been

discussed. In order to quantitatively evaluate the available water resources of the area,

water balance (hydrologie budget) calculations were made, from which the factors

affecting water gain and water loss were enumerated. The water balance was done on

a yearly basis for the whole region and on a monthly basis for a specific place in the

coastal zone (hydrogeologic region number 33, see Fig.7.1). The main purpose of

performing the monthly water balance calculations was to estimate the "net infiltration"

values, which have been used in groundwater modeling, the monthly water balance

was calculated for the year 1988, for which monthly groundwater level measurements

were obtained.

The yearly water balance was calculated from the nine years average (1980 -

1988) values of precipitation and evapotranspiration. The area was divided into a

number of hydrogeologic regions, so that it would fit into discretization procedure of

modeling the basin, in the future. These hydrogeological regions (see Fig.7.1) have

been constructed by the superposition of the geomorphological map (Fig. 3.1) with the

average water table map (see Fig.5.1i).



85 90 95 00 05 10 15 20 25

40

Figure 7.1

85 90 45 50 55 60 65



110

7.1 Yearly Water Balance

A yearly water balance was performed from the available data (see Table 7.1).

The change in storage was obtained from the following hydrologie budget equation:

As = P-(PET + Q + Sup + S.F + O.F) (7.1)

Where, As = Change in storage in groundwater, P = Precipitation, PET =

Potential evapotranspiration, Q = Pumped abstraction, Sup = Upward seepage by roots

of plants, S.F = Stream flow (for the rivers of Pereyra, San Gregorio, Mauricio and del

Tigre), O.F = Overland flow.

The only stream flow data available, for streams emerging from the aquifer

system, is that of San Gregorio, even then, the data is not complete for the years 1980 -

1988. Assuming that stream flow is directly proportional to precipitation, the complete

data of Santa Lucia was used in generating data for San Gregorio (the comparative

ratios for the respective years were used). Assuming same aquifer properties enclosed

by the drainages of the respective rivers and, other factors like topography being

constant, the discharge of other rivers with no data was generated by multiplying the

ratio of their respective areas with the discharge of San Gregorio.
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Apart from the gage stations at San Jose and Aguas Corrientes, no data was

obtained at the outlet of Santa Lucia river, therefore, it has not been possible to know

the net surface water input by these rivers into the area. For the present, surface water

inflow is assumed to be equal to surface water outflow. However, the overland flow

within the drainage area of the rivers of San Jose and Santa Lucia may contribute a

significant outflow from the area. The overland flow data were estimated from the

possible proportionality values of the stream flow data with precipitation, which

happens to be within the range of 2%; this value is within the range of possible values

for relatively flat areas. The values of the different components in the calculation of the

water balance is given in Table 7.1.
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Table 7.1 The values of the yearly water balance components (see Fig.7.1 for the

hydrogeological regions - H.R).

H.R. Area Climatic P PET Pumpage Seepage S.F O.F AS

No. (km£) zone ( mm -)

11 68 San Jose 1335.52 815.38 0.27 0 21.67 0.00 498.20

12 60 San Jose 1335.52 815.38 0.37 0 19.14 0.00 500.64

13 56 San Jose 1335.52 815.38 0.26 0 0.0022.04 497.85

14 24 San Jose 1335.52 815.38 0.30 0 0.00 9.35 510.49

15 25 Libertad 1248.15 815.38 0.29 0 7.98 0.00 424.50

16 60 Libertad 1248.15 815.38 0.49 0 0.0022.47 409.82

17 16 Libertad 1248.15 815.38 0.91 0 16.40 0.00 415.46

18 21 Libertad 1248.15 815.38 12.17 0 6.69 0.00 413.92

19 32 Libertad 1248.15 815.38 7.98 0 0.0011.23 413.55

110 229 San Jose 1335.52 815.38 2.55 0 0.0093.49 424.11

21 113 San Jose 1335.52 815.38 2.58 0 36.05 0.00 481.51

22 84 Libertad 1248.15 815.38 0.87 0 26.80 0.00 405.10

23 56 Libertad 1248.15 815.38 0.65 0 57.60 0.00 374.52

24 16 Libertad 1248.15 815.38 0.68 0 5.10 0.00 426.99

25 65 Libertad 1248.15 815.38 0.28 0 0.0024.96 407.53

31 200 Libertad 1248.15 815.38 0.37 548 63.80 0.00 -179.39

32 105 Libertad 1248.15 815.38 0.52 0 33.50 0.00 398.75

33 36 Libertad 1248.15 815.38 1.62 0 36.90 0.00 394.25

34 54 Libertad 1248.15 815.38 0.47 0 17.22 0.00 415.08

41 196 San Jose 1335.52 815.38 2.79 548 0.0080.13 -110.78

42 336 Colorado 1217.37 815.38 1.09 548 0.00120.52-267.61

43 108 Colorado 1217.37 815.38 3.38 548 0.0038.96 -188.34

44 112 Colorado 1217.37 815.38 6.52 548 0.0040.17 -192.70

51 48 Colorado 1217.37 815.38 3.80 0 0.0017.04 381.15
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The yearly water balance as computed for the different hydrogeologic regions

gives us an idea of the order of magnitude of the water gain or loss. As can be seen

from Table 7.1, 80 % of the hydrogeologic regions have water gain of 40 to 50 cm.

Water losses of around 20 cm, in the rest of the area, are due to the additional losses,

as a result of upward seepage by the roots of plants. The present level of near surface

groundwater in the marshes of those areas, are maintained by the adjacent recharging

rivers and / or seepage from the adjacent aquifers.

7.2 Monthly Water Balance

The monthly water balance for the coastal zone (hydrogeologic region number 33)

has been presented in Table 7.2. The procedure in calculating the average monthly

water balance is as follows:

The calculation procedure starts from the wet month, whereby the soil moisture of

the antecedent dry month is assumed to be zero. If precipitation is less than potential

evapotranspiration and, if there is some water in the soil, then the actual

evapotranspiration will equal precipitation plus some value evaporating from the soil;

actual evapotranspiration can not be greater than potential evapotranspiration. If soil

moisture equals zero, or soil moisture deficit occurs, precipitation still being less than

the potential rate, then actual evapotranspiration should equal precipitation. If

precipitation is greater than potential evapotranspiration, then actual evapotranspiration

should equal potential evapotranspiration. Water surplus occurs when the soil is fully

saturated (over 150 mm.). The available water capacity of the root zones of 150 mm

was chosen according to the procedure of Thornthwhaite and Mather (1954).
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For the monthly water balance calculations of the period 1980 to 1988 (see

Table 7.2), the calculation starts on February when the soil moisture of the antecedent

month is assumed to be zero. For the monthly water balance calculations of the year

1988, the calculation starts on January. The soil is assumed to be fully saturated on

December 1987 (the data for this year and month indicate higher value of precipitation

compared to evapotranspiration). The monthly water balance gives the change in

storage in moisture. The values (indicated in italics in Table 7.2 and 7.3) were obtained

by subtracting the actual evapotranspiration from precipitation (a possible situation

where soil horizon is absent and no runoff exists). These values have been used, in the

following sections, to calculate the change in head in a homogeneous square aquifer,

with arbitrary pumping rates.
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Table 7.2. Mean monthly water balance for the year 1980 - 1988, wet month starting

on February, for a coastal zone ( H.R.33) with available water capacity of 150 mm.

J F M A M J J A S O N D TotalfYeart

P 85 119 151 96 120 85 94 100 89 125 122 62 1248

PET 132 108 98 62 39 24 26 29 38 62 85 112 815

P-PET -47 11 53 35 81 60 68 71 51 63 36 -50 432

AcPotWls-97 0 0 0 0 0 0 0 0 0 0 - 5 0

Sm 0 11 64 99 150 150 150 150150 150 150 100

dSm 0 11 53 35 51 0 0 0 0 0 0 - 5 0

AET 85 108 98 62 39 24 26 29 38 62 85 112 768

D 0 0 0 0 0 0 0 0 0 0 0 0 0

S 0 0 0 0 30 60 68 71 51 63 36 0 379

Ip 0 11 53 35 81 60 68 71 51 63 36 0 529

Table 7.3. Mean monthly water balance (from the data of 1988 ), for a coastal zone

(H.R.33) with available water capacity of 150 mm, wet month starting on January.
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Where, P = Precipitation, PET = Potential evapotranspiration, AcPotWls =

Accumulated potential water loss, Sm = Soil moisture, dSm = Change in soil moisture,

AET = Actual evapotranspiration, D = Soil moisture deficit, S = Soil moisture surplus,

Ip = Possible infiltration where the soil-water region is connected to the groundwater

and no surface runoff occurs.

7.3 An Aquifer Model

In this section, we shall try to integrate the numerical values of the major

parameters (ransmissivity "net infiltration" and specific yield) under known scientific

laws (equations) that govern the movement of groundwater, and give recommendations

as to the quantity of groundwater available (from infiltration alone) for future

exploitations. In view of our objectives and present scope of work, it has been

appropriate to select an area for a groundwater model consideration. It can be seen

from the previous chapters, that the coastal zones have relatively favorable values on

aquifer thickness, permeability, specific yield, specific capacity, etc. It would then be

reasonable to consider a small area (10000 m^) from the coastal zone, for which

monthly water balance have been calculated, and try to forecast the water level

situations over long periods of pumping by applying an aquifer model.

The main purpose of such a model is to examine the behavior of watertable if

certain plans for the use of groundwater would be implemented. For example, if a

certain amount of groundwater is required from the area considered, the effect of

pumping on the water levels could be examined from the model. If the water level may

not be allowed to be lower than a certain level (safe yield), then the amount of water to

be pumped could be adjusted in such a manner that the safe yield limit will be respected.
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The objective behind such simulation technique is to understand and to predict the

natural hydrogeological phenomena in a given area. It is an attempt to imitate reality by

the use of a mathematical model.

The Finite differencess Method

In this study, a simple transient groundwater flow model has been applied by

using the principle of finite differencess method. The change in head with time, with

variable pumping rates has been studied by using this model. The position and nature

of the boundary conditions, the initial conditions and the inputs into the system have

been determined. Following the principle of finite differences method, the region under

consideration has been divided into a finite number of square blocks, each having a

node at the center, where variables like hydraulic heads representing the entire block are

defined (see Fig. 7.2).

Let us consider a steady state situation where the groundwater flow equation is

described as:

a2h/ax2+a2h/ay2 =o (7.1)

The following finite differences algorithm (Bear & Verruijt, 1987) can be used in

the approximation of the partial derivatives:

The function F(x,y) is approximated by the central finite differences method as

3F / 3x = [F (x +1/2 Ax, y) - F(x - l/2Ax, y) ] / Ax (7.2)

Where,
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The derivative of the first derivative is given as

32F /3x2 = [F (x +Ax, y) -2F(x, y) +F(x -Ax, y) ] /(Ax)2

2Fij + F i . i j ] /(Ax)2

Taking equal intervals in the x and y directions (Le.Ax = Ay = A), the steady state

groundwater flow equations are thus approximated as in the following:

(7.3)

The differential equation of 7.1 can then be approximated by

hij = 1/4 (hi. i j + hi + i j + hi j .i + hi J + i ) (7.4)

Equation 7.4 is the basis for the finite difference method. It states that the value at

the node must equal to the average of the values of the four neighbouring nodes. The

correct solution is approximated by iteration procedure (Bear & Verruijt, 1987).

The Transient Groundwater Flow

Transient groundwater flows are defined by a general mathematical model. This

is a partial differential equation established for a transient (an unsteady ) flow in an

aquifer. It is expressed by Bear and Verruijt (1987) as:

-N (7.5)

Where T = transmissivity and N(x,y,t) = source or sink term at a given time.
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For unconfined aquifers , N has been defined by Boonstra & de Ridder (1981)

as:

-N = R -Pm-Syah /9 t (7.6)

Where, R = net rate of recharge, Pm = net rate of pumpage, and Sy = specific

yield.

Considering an unconfined aquifer, and using equation 7.6, equation 7.5

becomes,

T(32h / 3x2 + 32h / 3y2 ) +1 = Sy3h / 3t (7.7)

Where, I = Pm -R represents the net infiltration.

An application of Finite Difference Method to Modeling Transient Groundwater

Flow in the Coastal Zone (Lower Santa Lucia Basin)

First, a specific area has been chosen from the coastal zones, where all the

necessary and relatively more reliable data were obtainable. This area is also

considered to be of future interest for groundwater exploitation. For the present, the

area around well 109 (see Fig.8.8) has been considered, since the water level

measurements at this place are more complete than at other places.

In the foregoing discussion, the problem of homogeneous infiltration in a square

aquifer (100 by 100m), where all boundaries arc impermeable except where the head is

specified at the nodes (see Fig.7.2) will be addressed.
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Ay=10m
Ax=10m

Pumping well

Initial head

Final head

Fig. 7.2 An area of 100 m by 100 m for which the time and head variables are shown

in Fig.7.3.

Boundary Conditions and Initial Conditions

In this model the following assumptions are made:

. Only one aquifer (Raigon Formation) is treated;

The flow in the aquifer is a two dimensional flow system;
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. The aquifer has an impermeable bottom (a zero - flow boundary);

. The upper boundary of the aquifer is a free water table (at t = 0 h = h°).

In the spatial approximation, there are several possibilities of using the two values

of head at node i, j . The procedure followed in our case is the implicit method.

Accordingly, the head value at node i, j is expressed in terms of initial node and the four

other unknown head values surrounding that node (see Fig.7.2). The unknown values

are simultaneously determined (hence the term implicit) from a system of linear

equations by a successive iteration Gauss - Seidel (or relaxation) method (Bear and

Verruijt, 1987). The new values of h^j are then determined by iteration procedure, on

the basis of an initial estimate (see computer Program in the Appendix).

Method of Approach

In this model, the transient groundwater flow equation (eq.7.7) has been utilized,

in order to calculate the change of head due to a homogeneous infiltration in a square

aquifer. The numerical solution to this equation, which gives the distribution of head in

time, has been executed by using a computer program, after Bear and Verruijt, 1987 .
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The value of I in equation 7.7 was replaced by the change in storage value (dSm),

for a non-pumping situation, and by Ip, for a pumping situation (see Table 7.3). In a

homogeneous aquifer, where no pumping is envolved, the water table rise and fall may

be related to the soil moisture variations, especially when the water table is relatively

shallow. Since the Ip values at the bottom of Table 7.3 assume 100% percolation, the

calculated head values would be exaggerated. This has been proved, while calibrating

the model (comparing the calculated head with the measured head). This model

assumes no groundwater inflow into the aquifer, since all the boundaries are assumed

to be impermeable. Therefore, it would be appropriate to use the Ip values, where the

reaction of the aquifer to "net infiltration" (recharge minus pumpage) has been

considered.

From the previous chapters, the transmissivity and storativity of the aquifer

around well 109 has been found to be 225 m^/day and 0.24 respectively. The monthly

dSm values were converted to daily values. The following dSm values have been

replaced for I in equation 7.7.

M A M J J A S O N D

dSm (month) 7 9 - 3 8 4 -12 17 29 0 0 0 -20

dSm (per day) 2.63 -1.26 .1333 -.4 .567 .97 0 0 0 -.67
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Excecution of the Program and Results

The initial head for the area around well number 109 has been supplied from the

measured head value of March 1988, which was then 6.7 m. The time period for a

single simulation was one month (30 days). In the implicit method of iteration, a time

step of 0.1 and number of time steps of 10, will provide the following days: 0.1, 0.2,

0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6 and 51.2, from which the 30 t h day can be obtained.

The following input values were used in the computer program (see Computer

Program in the Appendix ):

Dimension in the x - direction = 100 m, subdivisions = 10 m, dimension in the y

direction = 100m, Subdivisions = 10m, initial head = 6.7 m.a.s.l (for march),

infiltration rate = 0.00263 m / day (for march), transmissivity = 225 m^/ day,

storativity = 0.24, time step = .1 day, number of time steps = 10, number of iterations

= 20, relaxation factor =1.5

The execution of this program gives head values as indicated on Fig. 7.3.
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Fig. 7.3 A graph representing the solution of equation 7.7 (the distribution of head in

one month ); here no groundwater extraction has been considered.

7.4 Calibration of the Transient Groundwater Flow Model

Since the applicability of this model is subject to the accuracy of the values like T,

S y and I, first the model has been calibrated with the available data. In the process of

calibration, the outputs of the computer program (the theoretical or calculated values)

have been compared with the actual values. The water level measurements have been

considered to be the actual values. The relative closeness of the calculated values with

the actual values is a measure of the reliability of the model. It should be noted that this

closeness depends on the aquifer parameters obtained from field measurements and the

water balance calculations, as well as the reliability of the water level measurement

itself.



125

Method of Approach

The measured value at well 109 during March 1988 was used as an initial

condition. After the first simulation, the final head at the 30m day of March 1988, was

obtained (see Fig.7.3). This value was used as an initial condition for April, and the

program was run for the second time. The final head obtained for this month was used

as an initial head for the month of May and the program was run for the third time, and

so on for the following months. The calculated head values, thus obtained, were

compared with the actual measured values. Figure 7.4 shows the result of the

combined nine simulations.
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Fig. 7.4 Graphs showing the calculated head values from the model as compared to the

measured values at well 109 (from March 1988 to December 1988).
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As in figure 7.4, the discrepancy between the measured values and the calculated

values is on average 0.1 meter. Since the water levels were measured from wells,

instead of from piezometers, they may not represent the real situation; better results

could have been obtained if the water levels were measured at smaller intervals (for

example 15 days instead of 30 days).

7.5 Prediction of Head With Arbitrary Pumping Rates

As in equation 7.5, the only variable that changes in time, in a confined aquifer, is

the head. The aquifer model considered exhibits such changes according to the

previously mentioned input parameters.

In using the above "calibrated" model, we shall plug in various possible figures

for the values of I and examine the corresponding response of the model.

First, an arbitrary pumping rate of 30 m3 per day, from an area of 100 by 100

meters has been considered. For an effective porosity of 0.24, the corresponding drop

in head as a result of pumpage can be calculated as follows:

Drop in head = Pumpage / [Porosity x Area] = 30m3 /day / [0.24 x 104 m] =

-0.0125 m

The drop in head as a result of pumpage has been added to the Ip values, so that

the "net infiltration" parameter be obtained in the transient groundwater flow equation.



127

Assuming that net natural recharge for the future years would be close to the net

natural recharge of the nine years (1980 - 1988), for which the mean monthly water

balance has been calculated, it would be logical to use the Ip values from Table 7.2 as a

basis of prediction. Thus, the net infiltration rates for one artificial year were obtained

by subtracting 12.5 mm (discharge rate ) from the daily Ip values as in the following:

nm J F M A M J J A S O N D

Ip (month) 0 11 53 35 81 60 68 71 51 63 36 0

Ip(perday) 0 0.3667 1.766 1.66 2.7 2 2.27 2.37 1.7 2.1 1.2 0

l(perday) -12.5-12.133 -10.73 -10.84-10.1 -10.5 -10.23 -10.13-10.8-10.4 -11.3-12.5

Input Values

Dimension in the x - direction = 100 meters, subdivisions = 100 meters,

dimension in the y direction = 100m, Subdivisions = 10m, initial head = 6.7 m.a.s.l

infiltration rate = -0.0125 m / day, transmissivity = 225 m^/ day, storativity = 0.24,

time step = 0.1 day, number of time steps = 10, number of iterations = 20, relaxation

factor = 1.5.

The output values for this particular input have been plotted on a graph (see

Fig.7.5.
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Fig. 7.5 Graph showing the distribution of head in time, where groundwater extraction

has been considered.

In order to predict the head in one year, the program was executed twelve times.

As mentioned earlier, the final head of the first month has been taken as the initial head

for the second month, and so on for the twelve months. The final heads corresponding

to each month have been plotted as in Fig.7.6. This model depicts that, precipitation

being the only source of groundwater supply, a pumpage of 30m3/day from an area of

10000 m^ would cause a drop of head of 38 centimeters, in one year.
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Fig.7.6 Graphs showing the calculated behavior of the water level in one year.

Discussion

The transient groundwater flow equation has been applied, in order to examine

the effect of the aquifer properties, the climatic conditions and/ or pumpage on the

groundwater fluctuations in the Santa Lucia Basin .

As in Fig.7.3 & 7.4, the "net infiltration" due to the available precipitation would

cause a constant rise in groundwater level, whereas a pumpage of 30m^ from an area of

10000 m2 could lower the groundwater level by 38 centimeters in one year time (see

Fig.7.5&7.6).
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The analysis and evaluation of quantity of groundwater in the Lower Santa Lucia

basin encompasses an understanding of the amount of water available for pumping,

that is determination of the maximum possible pumping compatible with potentiality of

the aquifer and pumping rate.

Todd (1959) defined safe yield as the amount of water which can be withdrawn

from a groundwater basin annually without causing undesirable results like sea water

intrusion and changes in quality of groundwater. These undesirable results are

discussed in the next chapters. It should be noted that the predicted head from the

aquifer model assumes a situation whereby groundwater is fully exploited with

numerous wells. But this does not happen due to economic reasons. From the model,

no significant lowering of the water level has been observed, for few months. But few

wells can be used, with greater drawdown than what has been obtained from the model,

to attain the required amount of groundwater. Therefore, It should be clear that a

detailed analyses of safe yield from the point of view of pumping cost and other

management aspects should be considered before exploitation of the groundwater

takes place.

Groundwater modeling is a way of simplifying nature, in which the complexity of

nature is mathematically treated after a number of assumption and simplifications.

During the process of calibration of the model, the various investigatory methods

(pumping test, water balance, etc. ) have been tested by comparing their results with

one another. Therefore, this modeling technique has, in a way, helped to check the

work. In our model, the water level measurements were considered to be real, while all

the other values (infiltration, transmissivity, etc.) are subject to various types of error.
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The small difference (0.1 m) between the theoretical and practical values (see Fig.7.3)

reflects the errors in general. However, we should also consider the fact that the water

level measurements have not always represented the situation in the aquifer, since the

water level measurements were taken from wells instead of from piezometers.

Therefore, more data on accurate water level measurements from piezometers and

reliable data on aquifer characteristics are indispensable for better results.



Chapter 8

ISOTOPE HYDROLOGY

In this chapter, the isotope data will be analyzed and their application in

the present investigation will be discussed. The main reason for the study of the

stable isotopes in groundwaters was to identify the possible sources of water

entering the aquifer system and to study the processes that may have, since

then, affected the isotopic and chemical nature of the water. Such data were

also used to monitor the advancement and retreat of saline water of the Rio de

la Plata in relation to the adjacent groundwater and surface water (Santa Lucia).

Similar analysis of water samples, collected along Santa Lucia river (see Fig.

8.4 ), were performed in order to find the recharge and discharge conditions

between precipitation, river water and groundwater in the basin. Finally, ^C

and 3 H activities in groundwaters were measured with the objective to assess

their "age".

8.1 The Stable Isotope (18O) Composition of Waters From

Rivers and Wells in the Lower Santa Lucia Basin

Eighty seven water samples were collected in January - February 1987

from selected wells and along rivers (see Fig.8.8 for the locations).

The isotopic ratios of 18Q/16O w e r e determined by mass spectrometry.

The method followed is that of Epstein & Mayeda (1953):
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Isotopic composition is expressed in delta units:

3°/ 0 0 = (R sample - R standard) (103) /R (standard)

Where, R = isotopic ratio

The standard used in the measurements of the ^ O of the water samples

is V-SMOW (Vienna-SMOW), which is a standard water whose composition is

almost identical to that of the standard Mean Ocean Water (SMOW: Faur, 1977)

Some of the reasons to the variations of isotopic compositions in water

samples are as follows:

- Water vapor formed by evaporation of liquid water is enriched in

and 1H, while the remaining water is enriched in ^O and

- Rain drops formed by condensation of water vapor are enriched in

as opposed to the remaining vapor phase. The isotopic composition of the first

rain drop from clouds formed over the ocean is near that of ocean water

(around -4 °/00). As condensation continues, the 8 ^ O in the water vapor

progressively becomes more negative and consequently, the d value in the

liquid or solid water that precipitates becomes progressively lower.

General theoretical discussions on isotopic variations of waters are given

by several authors, for example Epstein & Mayeda (1953), Frcidman, Machta

& Soller (1962), etc.

The heavy isotope content in precipitation decreases with progressive

condensation which is reflected by:
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- A global latitudinal zonation with depleted values in areas of higher

altitude.

- More depleted values usually occur with increased altitude.

- More depleted values are found during cold months and heavier values

in warmer months (seasonality), due to an increase in fractionation with lower

temperatures.

In nature continuous segregation of isotopes takes place. Therefore, in

light of the above discussion and from the data of the isotopic composition at

hand, we could draw valuable hydrogeologic informations.

Figure 8.1 shows the range of 9 ^ 0 values for the eighty seven water

samples that were collected in January - February, 1987.

Fig.8.1 Frequency histogram of 9180/V-SMOW of the samples collected in

January - February, 1987.
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The mean and standard deviation of the 8180 values from the data are -

5.2 and 0.46 respectively. The minimum and maximum values are -5.7 and -

3.4 respectively; the analytical uncertainity is ± 0.1 / 00

The values of these particular months do not reflect the situation over a

period of the year. However, we could still compare these values with the

mean monthly isotopic composition of precipitation. The 318(3 data obtained

from Buenos Aires (about 100 Km to the south) indicates maximum and

minimum values of -2 and -8 / 0 0 respectively, for the years 1961-1963 (W.

Dansgaard, 1964). According to the International Atomic Energy Agency

report (1981), the average value of d^O for the years 1965 up to 1978 for

Porto Alegre, southeast of Brazil (at the border with Uruguay), was around -

5 / 00. Taking an average value of -5 / 0 0 as representative of the area, we

could possibly say that the d^O composition of the waters is closely related to

precipitation.

The d^O values are around -5.2 along the rivers of San Jose and Santa

Lucia. They seem to increase very slightly towards northeast (see Fig. 8.2).
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Fig. 8.2 The Geographic locations of the well water samples collected in

January - February 1987 and the corresponding 3 ^ 0 values.

The relatively low 3 ^ 0 values (around -5.4) along the Libertad Plain

could be related to a dominant meteoric signal.
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Although the waters may all be related to precipitation, the origin of these

waters and the isotopic transformations which they underwent are different

from one another. The main recharge into the aquifer system being by direct

infiltration from precipitation, the prédominent isotopic characteristics observed

are most probably dominated by the isotopic composition of rain water.

Significant temporal variations were observed. However, it should be noted

that, apart from a number of geo - hydrologie factors which change in time, the

composition of rain water too may change in time and, we can not, under the

present level of investigation discuss, further the relationship between

precipitation and groundwater recharge.

Separating the samples according to their source, the statistical relations

in Table 8.1 were observed:

Table 8.1 Statistical relations of the of the waters from different sources.

Source

Drilled wells

Excavated wells

Rivers

Mean

-5.4

-5.205

-3.75

Std. Dev

0.24

0.359

0.7

Variance

0.08

0.129

0.49

Minimum

-5.7

-5.7

-4.8

Maximum

-5.1

-3.7

-3.4
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From Table 8.1, we observe that surface waters have relatively higher

values compared to the groundwater. Drilled wells have more or less the

same isotopic composition as excavated wells. However, we observe from the

table that the standard deviation for the excavated wells is greater than the

standard deviation for the drilled wells. This could, by itself, give a clue to the

susceptibility of groundwater to isotopic changes due to evaporation as

groundwater becomes shallow (excavated wells are generally shallower than

drilled wells). However, no statistically significant relation has been observed

between static water level, depth to water and total depth and 3 ^ O ( see

Fig.8.3).

52
2 60i
o

ra 4 0 -

swl
� total depth
« depth to water

RA2 = 0.088

depth to water
RA2 = 0.006

-5 -4
The Isotopic composition of Oxygen -18 in 3 units

Fig.8.3. The relationship of total depth, static water level and depth to water

with the corresponding 3 ^ 0 values.
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The regression lines representing the static water level and depth to

water data are horizontal (constant). The uprising slope of the regression line

for the total depth may suggest the sensitivity of the aquifer in shallow wells

(mostly the excavated wells) to direct replenishment.

Since water samples were not collected from different depths in wells, it

is not possible to know whether or not the aquifer represents a single body of

water with a constant isotopic composition along its vertical thickness.

8.2 The Stable Isotope (18O) Composition of Waters From

Some Selected Wells in the Lower Santa Lucia Basin, From Santa

Lucia River and Rio de La Plata .

The isotopic variations in waters collected in January 1987 have not

shown considerable variations. During the later months, limited number of

samples were collected over a relatively wider area. Some water samples were

collected from the Atlantic ocean, the Rio de la Plata, the Santa Lucia river and

and from some wells in the Lower Santa Lucia basin, during May - June,

1988, November - December, 1988 and September 1989. Figure 8.4 shows

the location of the sampling points.
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Fig.8.4. Location map showing the points along Rio de la Plata and Santa

Lucia river from which water samples were collected for ^O analysis.

The analysis of ^ O for the samples collected at the locations given in

Fig.8.4. is presented in Table 8.2.
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Water Samples From Rio de la Plata Alone the Coast

Table 8.2. The values along the coast (see location map in Fig.8.4)

Location

Pereyra
Kiyu
Playa Pascual
Montevideo
Atlantida
Piriapolis
Punta del Est

Mean
Standard deviation

9 U May - June
1988

-5.9
-5.5
-5.8
-5.1
-4.5
-4.1
-1.2

-4.586
1.633

^ 8ONov.-Dec .
1988

-2.1
-2.8
-2.3
-2.1
-1.3
-0.7
1.2

-1.443
1.354

18
9 O Sept. 1989

-5
-5
-4.9
-4.7
-2.9
-1.3
-1.1

-3.557
1.772

The 3 ^ O values ( see Table 8.2) clearly indicate that the isotopic

composition of Rio de la Plata increases towards the sea, reflecting both

evaporative effects and mixing with sea water, as also shown by seasonal

variations in isotopic compositon of the waters. The isotopic composition of

Rio de la Plata at Pereyra during November - December, 1988 has been higher

than the isotopic composition of Rio de la Plata near Piriapolis during the

month of May-June, 1988. The consequence of such a big increase has been

physically observed, near the coast , at Pereyra, where thousands of fresh

water fish were found dead during this period of time.

The direct relations of oxygen isotope with salinity, chlorinity and TDS

(see section 8.1.2 ) would further confirm the possibility of detecting the

hazardous consequences which are related to temporal chemical changes in the

composition of Rio de la Plata.
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Water Samples From Wells

The seasonal changes that occurred in the isotopic composition of some

selected wells is given in Table 8.3.

Table 8.3 The 9 ^ 0 values for water samples from wells (see location of

wells in Fig.8.8)

Well No.

24
23
76

127
86

151

Mean
Standard
deviation

a^May - June )
1988
-5.1
-5.5
-5.4
-5.3
-5.2
-5.1

. . . - 5 . 2 6 7 . . . . .

0.163

Well No.

90
108
152
159
163
39
52

115
85
47

^ ( N o v - D e c )
1988
-5.3
-5.1
-5.0
-5.2
-5.2

-5_.1_6.__,

0.114

3%(Sept.)
1989
-5.7
-5.8
-5.3
-5.7
-5.7
-5.6
-5.5
-5.6
-5.5
-5.6

-5.6

0.141

In contrast to the conspicuous seasonal isotopic variations that occurred

for the waters along Rio de la Plata, no significant isotopic variations were

observed for the water samples from the wells.
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Water Samples From Rivers

River waters showed significant seasonal variations (see Table 8.4).

The direct relations of oxygen isotope with distance from Rio de la Plata

along Santa Lucia river (Passo Paché, Aguas Corrientes, Parador Tajes, Las

Brujas and Delta del Tigre, See Fig. 8.4) can be related to the mixing of fresh

water with salt water from Rio de la Plata and to evaporation.

Table 8.4. The

map in Fig.8.4).

values for water samples from the rivers (see location

Location

San Gregorio
del Tigre
Pereyra
San Jose
Canelon Grande(Dam)
Santa Lucia (Up Stream
Santa Lucia (D. Stream)
Mean.
Standard deviation

)18O(may-June
1988

-5.2
-4.6
-5.5
-5.3
-7.8
-6.7
-5.6

_-5.,8J4
1.079

Location

Passo Paché (S.L)
Aqua Corrientes (S.L
Parador Tajes (S.L)
Las Brujas (S.L)
Delta del Tigre (S.L)

9 Wtov-Dec)
1988
-2.5
-2.5
-2.4
-3.0
-2.8

-2.64".m

From Table 8.4, we observe that significant seasonal isotopic variations

in 18o composition occurred for water samples from rivers.

For the sake of simplicity, all the mean values previously discussed are

summarized as in figure 8.5.
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Fig.8.5. Diagram showing the means in d^O of all the waters sampled from
wells, rivers and Rio de la Plata during the particular months indicated in the
figure.

As can be observed in figure 8.5, surface waters are highly affected by

seasonal changes, while groundwaters are hardly affected. In general,

increasing contents in oxygen -18 are related to relatively dry months, while

decreasing contents in oxygen - 18 are related to relatively wet months.

During November-December 1988, the discharge of the surface waters has

been observed to decrease as a result of less precipitation.

In conclusion, the reasons to the increase in isotopic composition of

oxygen in the rivers are the interrelated parameters of precipitation,

evaporation and migration of salt water from the Rio de la Plata upstream along

the Santa Lucia river.
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The comparatively very slight response to temporal isotopic variations in

groundwaters is indicative of a recharge restricted to the period of heavy rains

and negligible evaporative or mixing effects.

As seen from Table 8.5 and the geographical location of the sample

points given in figure 8.3, no distinct pattern of increase or decrease in d ^ O

can be observed in the upper part of Santa Lucia river. The variations seem to

be directly related to the intensity of evaporation in relation to the quantity of

available water. For example, Santa Lucia Chico river (s.02, s.03, s.04 in

Table 8.5) has a comparatively small discharge (hence higher d^O) compared

to Santa Lucia river (s.01, s.05, s.06, s.07 in Table 8.5) which has relatively a

greater amount of water (hence lower 3^O). The very high value at Cerro

Colorado (s.04) probably corresponds to high evaporation from seepages,

whereas lower values at Minas reflect lower evaporation compared to the total

volume of the available water. The slight increase of the 3 ^ O downstream

along Santa Lucia, then corresponds to equal quantity of water and

comparatively higher rate of evaporation.
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Table 8.5. The d^O values and the corresponding conductivity and TDS

values along river Santa Lucia (upper and lower basin) from water samples

collected in September 1989 (see Fig. 8.4 for location).

Sample No.

SI1

Sl2

s.01

s.02

s.03a

s.03b

s.04

s.05

s.06

s.07

8180

-4.1

-4.7

-4.3

-3.2

-4.3

-3.6

-2.1

-4.2

-3.7

-4.1

Conductivity

(microsiemens")

5190

1540

170

370

140

270

470

270

250

190

TDS

fmg/1)

1300

740

82

160

60

130

220

120

120

90

No correlation exists except that of TDS with conductivity. Normally,

when the total volume of rivers decreases the conductivity and TDS values

increase accordingly. If this may be the case, one should expect the

corresponding increase in isotopic composition of oxygen. In the Santa Lucia

basin, however, the volume of water increases away from the source, due to

contributions from the aquifer.
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We have observed in the previous sections that the aquifer has lower

contents of oxygen - 18 compared to the river waters. Therefore, the lower

values encountered, irrespective of high evaporation, are due to effluent

discharge from the aquifer adjacent to the rivers. The general tendency of the

negative correlation between oxygen - 18 and TDS and conductivity values

agrees with the above argument.

The above discussion provides some information as to the possibility of

the interconnection of groundwater with surface water. However, more

isotopic evidences are needed on seasonal isotopic variations and the

corresponding variations in water levels and discharge of surface waters.

The Oxygen -18 Isotope as Groundwater Quality Indicator

The determination of some critical parameters like TDS, conductivity, Cl

and SAR helps in detecting groundwater quality. It should be remembered that

it is very difficult to find relations between oxygen - 18 and the water quality

indicators, if the type of waters we are dealing with have undergone mixing

with waters of different origin having distinct isotopic signals. For example,

the 3*8(3 values of waters from the rivers and waters from Rio de la Plata

differ from one another in as much as their chemical compositions are different

Whenever we envisage the above mentioned relationships these distinct waters

("fresh" and "saline") should be handled differently. Otherwise, we would be

studying not only the interrelation but the property of mixing these two ("fresh"

and "saline") waters.



In the following, relations are envisaged between d^O of the waters and

certain characteristics like salinity, chlorinity of the mixed (saline and fresh)

waters of the Rio de la Plata.
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Fig.8.6. Relationship between oxygen -18, salinity (7°°) and chlorinity (700) of

the waters from Rio de la Plata from the water samples collected in November

1988.

Figure 8.6 shows the relation between oxygen - 18 and salinity and

chlorinity of the waters from Rio de la Plata. These waters have a distinct

property which is manifested by their increasing salinity and chlorinity values.

A correlation coefficient of 0.636 was found in both cases.



149

Since the above mentioned water quality parameters (TDS, conductivity, SAR,

salinity, chlorinity and chloride) are all interrelated chemical parameters which

behave conservatively, the determination of one of these parameters could be

used to have an idea of the order of magnitude of the other parameters.

Previously we have seen the effect of seasonal change on the isotopic

composition of Rio de la Plata and Santa Lucia river. These changes are related

to the encroachment of the Rio de la Plata upstream along Santa Lucia and

probably also affecting the adjacent coastal aquifer.

8.3 The Stable Isotope of Carbon (l3C)

Twelve water samples were collected from wells, during the months of

January - February, 1987, for the determination of isotopic composition of

carbon -13 in dissolved carbon (see Fig.8.8).

The purpose of the analysis was to trace the source of dissolved

carbonate species, which would help in deciding whether or not the age

determinations made by ^ C need any age adjustments.

The variations in isotopic composition between the isotopes of carbon is

measurable by mass spectrometry being expressed in delta per thousand

compared to the known international standard PDB (Pee Dee Belemnitella).

The 313C was analyzed in the GEOTOP laboratory at UQAM. The

procedure, in brief, is described in the next page.
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The water samples were introduced into vacuum flasks in such a way

that no air can enter the flasks. The samples were acidified by phosphoric acid

and stirred magnetically, thus allowing only the inorganic CO2 to be extracted.

The inorganic carbon dioxide then passed through various stages of purification

(elimination of unwanted gases like N2, O2 and of H2O traces) before the

samples were finally taken to the spectrometry for analysis. The results of the

analysis are given in Table 8.6.

Table 8.6. Values of different isotopic parameters of the water samples

collected at different times between 1987 tol988 (see Fig.8.8 ).

Well sample

Number

9

28

53

54

90

108

115

140

152

153

159

163/1

9C-13

(PDB)

-8.2

-10.9

-11.3

-14.3

-8.3

-10.4

-11.2

-10.2

-10.1

-10.1

-15.6

-10.3

TritiumUnits

TU

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

Carbon-14

(Act. % and age in years BP)

105±7% (recent)

94.3±5%(470±130)

86±5% (1200±100)

107±7% (recent)

98.5±9 (recent)

117.6±6% (recent)

78.1±7%(2050±15)

115.7+8% (recent)

92.5±6%(620±130)

78.5±7%(1950±10)

103.3±9% (recent)

103.3±9% (recent)



151

The Sources of Dissolved Carbonate Species in Groundwater

In the following, the possible sources of dissolved carbonate species

will be discussed in relation to the values obtained from the laboratory

analysis. The purpose of understanding the source of dissolved carbonate

species is to have an idea of the amount and proportion of the different sources

of carbonate species that join the groundwater circulation system. By doing

so, we will be able to trace the sources of 14 C that join the groundwater

system and, depending on the type of data obtained, we will be able to make

corrections to the 14 c measurements, in order to determine the correct relative

groundwater ages.

Decomposition of organic material in the soil (humus) or root respiration

in the un saturated zone produces CO2. The CO2 produced can dissolve soil

carbonates. The atmospheric CO2 can also cause dissolution of soil

carbonates, but is present to a lesser degree. If the soil contains considerable

amount of humic acid, the calcium carbonate in the soil can be dissolved by the

reaction between the humic acid and the limestone, which produces bicarbonate

and carbon dioxide.

Figure 8.9 shows the relative positions in the isotopic compositions of

the various reservoirs of the CO2 cycle, after Duplessy (1972) and Pilot

(1970). The relative position in the isotopic composition of the waters analyzed

is drawn on the figure so as to visualize the possible ways in which dissolved

carbonate species can enter into the groundwater system.



152
It should be noted that the measured d^C is that of the total inorganic

carbon content (TIC) in the solution, consisting of dissolved CO2, HCC»3' and

CO3" � ions.

Carbonate
of

Carbonate of

fresh water More frequent
composition

bicarbonate
of sea water

Atmospjferic

co2

Less frequent
composition

Absorption
and
carbohydrate
formation

From Humus

Range of values of the isotopic
composition of the waters analyzed1

Terrestrial Plants

Fig.8.7. A simplified carbon cycle, and the relative position of the isotopic

composition of the waters analyzed, after Duplessy (1972) and Pilot (1970).

The 3 l^c of atmospheric carbon dioxide is -7.5 °/°° at a partial pressure

of about 10"3-5. During the process of photosynthesis, plants assimilate

CO2. Consequently, the (d^C) of the plants (particularly those belonging to

the Calvin-Benson photosynthetic metabolism) is reduced by 18 °/00

compared to d^C of atmospheric carbon dioxide.
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The partial pressure of carbon dioxide is much higher in the soil than

in the atmosphere, due to the emanations of CO2 from respiration of plant

roots and decay of plant debris. In a well developed soil (non-arid, temperate

climate), the soil CO2 is isotopically equivalent to that of plants with

25 °/°° (Pearson and Hanshaw, 1970).

The composition (9^C) of marine carbonate minerals being 0 7 0 0 and

913C of -25 7°° for the soil - derived CO2, a solution with d13C of -12 °/°°

could be expected (Pearson and Hanshaw, 1970). Because dissolution

produces bicarbonates coming in equal proportion from the solid carbonate (0

°/oo)andthegas(-25 700).

In unsaturated horizons, isotopic exchange between HCO3 (liquid) and

CO2 gas occurs in the soil-air horizon, where, soil, plant roots, dead plants,

mineral, air and water coexist

The reaction between CO2 containing water with carbonate mineral can

be expressed as:

CO2 +H2O+CaCO3 ��*

The carbonate from the aquifer may also establish isotopic exchange

with the CO2.

-liquid - 313CO2 gas = 9.5 7°°, at 10° C.

Finally, the range of 313C values of the waters being between -8.2 7 0 0

and -15.6700, the source of carbonate in the waters analyzed appears to be

biological carbon and carbonates (see Fig. 8.7).
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The relatively low 8 1 3 value of -15.6 7°° and -14.3 7°° for wells 159 and 54

respectively could be due to depletion caused by isotope exchange in the unsaturated

zone with an excess of soil CO2.

The 8*3 values of the rest of the waters is relatively stable (around -107°° ) which fit

to the explanations forwarded.

8.4 The Radioactive Isotope of Carbon ( 1 4 C)

Twelve water samples collected from wells (see Fig.8.8 ), during August

1987, were analyzed for carbon-14. The main purpose of such analysis is to have

an approximate idea of the ages of groundwater in the region.

Initially, several grams of inorganic carbon were recovered in the form of

BaCO3 from the water samples (field work by C. Hillaire - Marcel, M. Durand and

G. Prichonnet from UQAM and L. Cardozo, S. Marcel and R.Veloso from

DI.NA.MI.GE.).

The age of groundwater is the amount of time that groundwater was cut off

from the atmospheric carbon dioxide reservoir. In other words, it is the time of

groundwater circulation, since its entrance as recharge in the aquifer.

Some 14CO2 is produced in the soil zone during root respiration and plant

decay and mixed with 14c free inorganic carbon from soil carbonates, then

transfered to the groundwater system. This moment is considered in ^C - dating,

as the time of recharge (to). From this time onwards, it is assumed that the total



155

dissolved carbon isolates itself from the atmosphere, and its ^ C starts to decay in

closed system.

8.4.1 Dating of Water

The composition of ^C is indirectly measured from B-particle emissions

which accompanies its disintegration. The standard of reference used, as a standard

of activity for the laboratory analyses, is that an oxalic acid from NBS which has

14c activity slightly superior to the nineteenth century trees. The amount of ^C is

then expressed in terms of percentage of activity of the sample in relation to a

reference value of 13.6 dpm/g carbon. Thus, the age of the water samples were

obtained (see Table 8.6) from the following equation:

t = [Ti/2/Log 2] [LogAo/A] Where, Ti/2 is taken as 5568 years (the Libby's

l^C half life) and AQ/A as the ratio of activities.

8.4.2 Adjustment of Ages

It has been observed, on the previous pages, that some of the carbon

dissolved in the bicarbonate could come from gaseous CO2, while some could come

from the calcareous part of the aquifer. The carbon originating from limestone

contains no ^C. In other words, the activity in ^C of the calcareous part of the

aquifer is 0% (dead carbonate). It is clear, then, that the bicarbonates of the waters

could, from the start, be highly affected by the dead carbonate activity. Therefore,

the age estimated from the ^C content of the water would be greater than the true

age.

The presence of calcareous cement in between sand grains have been observed
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while acid testing some of the log samples. Therefore, some of the water samples

may have been affected by calcareous material.

From the discussion in section 8.3 and also from some evidences gathered

from the field, it would be logical to assume the presence of some carbonate

minerals affecting the true age of the waters.

8.5 The Radioactive Isotopes of Tritium

Twelve water samples, corresponding to samples analyzed for carbon - 14

and carbon -13, were collected from wells in November - December, 1988 for the

analysis of tritium isotopes (see Fig.8.8 ). The analysis was conducted in the

GEOTOP laboratory at UQAM. The results of the analysis is given in Table 8.6.

Tritium levels are usually expressed in tritium units.

= T /H=1O" 1 8

The tritium isotopes are brought to the surface by precipitation after being

oxidized. Since the effect of the earth's magnetic field on the particles charged by

cosmic rays is higher in areas of higher latitudes, higher tritium units are expected in

the northern hemisphere than in the south (Fontes, 1976). Artificial tritium was

introduced in the atmosphere during atmospheric tests of thermonuclear devices in

1952. Tritium levels have tremendously increased from 1952 to 1963 and are

constantly declining since 1963. Again tritium levels would be relatively higher in

the northern hemisphere than in the south, since the tests were carried on in the

northern hemisphere. The effect of atmospheric circulations between the northern
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and southern hemisphere being minimal, tritium levels in the southern hemisphere

remain low. Waters which have continental origin have higher tritium compared to

those waters of marine origin. This is because the isotopic exchange of oceanic

waters lowers the tritium content of the atmosphere above it. The absence of large

continental masses in the southern hemisphere, would therefore, attribute to its low

tritium level. Low tritium and high deuterium occur in coastal regions. As the

moisture moves inland, it picks up more tritium from the atmosphere and is depleted

in deuterium by preferential condensation of 2H2O (Brown, 1970).

The study area being in the southern hemisphere and at the same time near

coast, it would be unlikely to expect high tritium levels. Table 8.7 shows the

progressive decrease in tritium levels of precipitation water from 1965 to 1978 at

Porto Alegre. Since the study area has, a more or less, similar geographic set up to

that of Porto Alegre, similar data could be expected and, following the same trend of

decrease till the year 1988, tritium units of less than 10 would be a likely

occurrence. However, due to seasonal variations of concentrations, maximum

values are expected in late spring and early summer and minimum values in winter

(Payne, 1974).
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Table 8.7. Isotope values from precipitation water at Porto Alegre, Brazil (Lat.

3O.O8°S Long. 51.18°W Alt 7 msl.), after International Atomic Energy Agency,

Vienna, 1981.

Year

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

TU

67

54.2

46.5

42.1

33.2

38.6

31

25.1

20.1

28.5

20.9

16.4

14

14.3

Deuterium

-26.5

-25.9

-18

-28

-26.5

-19.4

N/A

-84.9

-25.2

-30.9

-29.9

-23.3

-22.9

-28

Q-18

-4.9

-4.49

-3.13

-5.26

-4.69

-3.7

-5.27

-6.59

-5.14

-5.46

-5.42

-4.91

-4.31

-4.27

Tritium levels in groundwater could be higher than the values given in Table

8.7, because tritium concentration could take place during particular season when

tritium levels are high, for example in late spring.
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In conclusion, l^C activities of total inorganic dissolved carbon (TIDC)

indicate recent recharge. Their variability in groundwaters may simply respond to

more or less complete 14CO2 - TIDC exchange in the unsaturasted zone of the

soils.

All the waters analyzed have tritium levels less than 8 TU. Even those

from wells 108 and 140 which show ^ C activities above 100% indicate very

recent recharge, due to the very low ^H in signal in meteoric waters from the

southern atmosphere, this should be seen as contradictory.
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Chapter 9

HYDROCHEMISTRY

In this chapter, analyses and evaluation of the chemical aspects of the

groundwater are considered. Water samples were collected from drilled wells, hand

dug wells and surface waters, during different seasons, for chemical analyses. The

chemical data which were obtained from the field and laboratory analyses of the water

samples are hereby examined with reference to theoretical considerations.

The following chart shows the samples collected during different seasons:

Number

98

48

24

month of sampling

January and February 1987

August 1987

May and June 1988

collected bv

DI.NA.MI.GE.

DI.NA.MI.GE.

DI.NA.MI.GE.& author

22 November and December 1989 DLNA.MI.GE.& author

Some of the parameters like alkalinity, pH, Eh and temperature of air were

measured on the site during the sampling process. Laboratory analyses of all the

samples were conducted at the UQAM chemical laboratory, where the major cations

(Ca, Mg, Na, K) were analyzed by the atomic absorption method and the major anions

(SO4, Cl and NO3) by the ion chromatographic method. The major cations of the forty

eight samples collected during the month of August 1987 were also analyzed by the

chemical laboratory at DI.NA.MI.GE.; the results have shown to be reasonably close to

those analyzed at the UQAM laboratory (see Tables 4 & 5 in the Appendix).
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9.1 Chemical Parameters Measured in the Field

9.1.1 Temperature of the air

The temperature of the air was measured by a simple glass thermometer.

A number of chemical variables in natural waters, like pH and Eh, are greatly

affected by fluctuations on temperatures. This is why certain parameters, like pH and

Eh, have to be performed at the site during the field investigations. Although the

temperature of the groundwater was not measured, the depth to water in most cases is

shallow enough to expect a significant relation between temperature of air and

temperature of groundwater.

The temperature of the air affects evaporation rates, which in turn will have an

impact on a number of parameters, like total dissolved solids, S.A.R (sodium

adsorption ratio), electrical conductivities, etc.

9.1.2 Electrical Conductivity

The electrical conductivity or specific conductance (reciprocal of resistivity) of the

waters was measured in the field by a conductivity meter. The values are expressed in

micro - Siemens/cm.

No significant variations in conductivity values have occurred between

measurements performed in January-February 1987, and August 1987. In both cases,

the range of values are mostly between 500 and 900 micro - Siemens/cm.
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Electrical conductance values are related to the type concentration of ions present

in waters. Certain groundwater situations could be understood from conductivity

values alone, provided that antecedent comprehensive studies indicating the

relationships with other parameters are available.

9.1.3 Alkalinity

The alkalinity values (bicarbonate-carbonate character of waters) were analyzed in

the field by slowly adding 0.02 normal (N) sulfuric acid solution to 100 ml of samples

of water and reading the resultant changes in pH. Highly alkaline samples were titrated

to a pH of 8.3, in which case, the hydrogen ions from the acid combine with the

carbonate ions to form bicarbonates; the excess hydrogen ions lower the pH until a pH

of 8.3 is reached, where all carbonates are converted to bicarbonates. Titration to this

point (where phenolphthalein turns from pink to colorless), represents alkalinity as

carbonate. For the waters with initial pH less than 8.3, the samples were titrated to a

pH of 4.5 representing alkalinity as bicarbonate.

Alkalinity values reflect the acid neutralizing capacity of aqueous carbonate

system, and are directly related to bicarbonate concentrations. The total alkalinity

values thus obtained according to the above mentioned procedure of field measurements

were used to determine the total carbonate content of the waters.

9.1.4 Hydrogen-Ion Activity (pFD

The hydrogen ion activity (pH) values were measured in the field by a pH-meter

equiped with temperature adjustments and calibration devices.
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The pH values for the samples collected in August 1987 have been found to show

relatively higher values (with mean value of 7.66 and standard deviation of 0.64)

compared to the ones collected in January-February, 1987 (with mean value of 7.31

and standard deviation of 0.33). In general, all the waters analyzed have pH values

within the range of natural waters.

In an aqueous solution, the hydrogen-ion activity is controlled by interrelated

chemical reactions, whereby some ions combine with [H+] or [OH"]. An example of a

common chemical reaction where hydrogen ions are produced is given below

(Matthess, 1982):

CO2(g)+H2O(i) ** H2CO3(aq)

H2CO3(aq) '��H++HCO3-

HCO3- «=* H++CO3"

In the first step CO2 is dissolved with water, hydrogen ions are produced in the

second and the third steps. An example of hydrogen ion consumption is given below:

CaCO3 +H+ «=* Ca+++HCO3-

which may also be expressed as

CaCO3 +H2O *=* Ca+++HCO3-+OH-
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The small pH variations between 5 and 8 of the waters in the area, may be

explained by a situation whereby the dissolved CO2 and the hydrogen carbonate ions

form a buffered system with the carbon dioxide. However, the variations observed on

pH values of water samples could be due to one or to the combination of the following

two reasons:- a) Some waters might contain free acids like carbonic acid or organic

acids (eg. humic acid), b) The pH values could be raised due to escape of CO2 from

solutions.

The influence of pH values on the chemical characteristics of the waters can be

understood from the ongoing discussion.
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9.1.5 Eh - Measurements

Measurements of redox potentials were conducted in the field by an Eh-meter.

The apparatus consists of a platinum inert electrode and a reference electrode. The inert

electrode acts as a donor or acceptor of electrons from the ions in the measured water

sample, depending on whether or not the potential of the half-cell containing the ions,

is greater or lesser than that of the reference electrode. The potentials are related to the

standard hydrogen electrode (SHE). The potential values obtained from the

measurements (Eh values) are electrochemical potentials relative to SHE, which indicate

the nature and rates of reaction at electode surfaces. They represent energy gained in

the transfer of one mole of electron from an oxidant to H2- The Eh values read from

the Eh - meter are reduction or oxidation potentials measured in volts as compared to

that of hydrogen which is arbitrarily set at 0.00 volts. Increasing positive Eh values

may then indicate increasing redox potentials. Natural waters with large quantities of

oxidizing or reducing agents give measurements of high and low Eh values,

respectively (Stumm and Morgan, 1967).

The application of the Eh measurements will be given in the next section.

* Half-cell is the relative electrode potential of an electrode defined as the
electromotive force of a cell where the electrode on the left is a standard hydrogen
electrode and that on the right is the electrode in question (Stumm and
Morgan,1967).
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9.2 The Redox Conditions in the Waters

The relative state of reduction or oxidation in the waters is quantitatively

deduced from the measurement of reduction-oxidation (redox) potential, denoted

by the symbol Eh. The redox potential can also be expressed by relative

electron activity which is defined by pE=-log[e]. Large positive pE values

indicate low electron activity which represent oxidizing conditions; smaller

values correspond to reducing conditions. pE values are related to Eh values

according to the following formula:-

pE=Eh(F/2.3RT)

Where F= Faraday's constant, R= Universal gas constant,

T= temperature (° Kelvin).

The Eh values obtained from the field measurements were converted to pE

values in using the above formula. The values obtained lie between 2 and 3

which indicate a slightly oxidizing situations. In the forgoing discussion, the

measured Eh values will be used instead of the calculated pE values.

In using the field measurements of pH and Eh, the nature of the

environment in which the waters occurred can be understood. In order to have a

clear idea of this environment, we shall first consider the stability of natural

waters with respect to all possible pH and Eh values, including the extremes. A

stability field diagram has accordingly been constructed (see Fig. 9.1). Then,

the pH versus Eh values of the waters have been plotted (see Fig. 9.2) and

superimposed on the stability field diagram.
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While considering the stability of the measured water samples with respect

to the stability field of natural water, we assume that the solutions (water

samples considered) have pH and Eh values inside stability field of water under

equilibrium.

We shall first consider the two extreme cases of oxidation and reduction of

natural water and later represent the pH and Eh values of the measured water

samples with respect to these extreme cases of oxidation and reduction.

In the case of reduction , water is decomposed to hydroxyl ions and

hydrogen.

2H2O + 2e «=* H2 + 2OH-

The equation that describes the Eh-pH link (Garrels and Christ, 1965) is

given by:

Eh = -0.059 pH

(9.1)

In the case of oxidation, water is decomposed to give gaseous oxygen and

hydrogen ions.

2H2O «=* 02 + 4H++ 4e

The equation that describes the Eh - pH link is given by:

Eh = 1.23 - 0.059 pH (9.2)
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Equations (9.1 & 9.2) are the two limiting reduction-oxidation equations.

The upper and lower limit of water stability are obtained from these equations by

substituting pH values of natural environment ranging from 1 to 12. The

resulting stability of water and the possible environments are plotted (see

Fig.9.1).

-0.4-
-0.6-
-0 .8-
-1.0

Upper limit of water stability

Environment in contact

Transitional environme
� � � .

Environment isolated

Lower limit of water stability

2 4 6 8
PH

10 12 14

Fig.9.1. Approximate position of some natural environments as characterized

by pH and Eh (after Garrels and Christ, 1965). The hatched rectangle inside

the diagram represents the pH - Eh limit of the water samples analyzed and the

solid rectangle corresponds to the Eh - pH limit of common sedimentary

associations referred to in figure 9.4.
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As in figure 9.1, oxidation is favored in environments close to the

atmosphere having relatively lower pH values, whereas reduction is favored in

environments far from the atmosphere having relatively higher pH values.

Under natural conditions, there exists no pH value where environments in

contact with the atmosphere can be reduced, whereas reduction is possible for

all values between 1 and 12, provided that the environments are far enough

from the atmosphere.

Having considered the possible occurring natural environments, we shall

compare the pH and Eh values of the water samples analyzed with reference to

the stability diagram of water.
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Fig.9.2. Distribution of Eh-pH measurements of the water samples analyzed.
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The position of the water samples, with respect to their pH-Eh values is

represented as in figure 9.1 (the hatched rectangle), from which we observe that

almost all waters lie in between the transitional environment and environment in

contact with the atmosphere. Since all the waters have Eh values above 0 volts,

it can be said that all waters lie within the zone of oxidation. The variations may

be classified as slightly oxidizing (Eh values between 0.00 and 0.2 volts) to

moderately oxidizing (Eh values of 0.2 to 0.3 volts) and strongly oxidizing (Eh

values greater than 0.3 volts). According to such classification, surface or near

surface waters happen to have relatively higher Eh values compared to the

groundwaters. Normally Eh values decrease with depth. The Eh values of the

wells is mostly between 0.1 and 0.25 volts. Depth versus Eh diagram in figure

9.3 shows a decrease of Eh values with depth for some of the data. This may

especially be true for the shallow aquifers.
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Fig.9.3. Depth versus Eh diagram of water samples collected in January-

February, 1987.
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One of the major influencing factors for an oxidizing or reducing condition

is the presence or the absence of free oxygen in groundwater. The air in the

unsaturated zone (ground air) contains higher proportion of carbon dioxide and

water vapor. Although the amount of oxygen above the water table is less than

normal atmospheric air, oxidizing situations are normally encountered, unless

the aquifer is completely isolated from the atmosphere. Reducing situations

prevail in confined groundwater situations, or in deep groundwaters where the

unsaturated zone lacks oxygen. Moreover, the composition of the ground air

and the degree of oxidation depends on geomorphology and climate.

The fact that most of the water samples were collected from relatively

shallow aquifers (10-20m) may explain the relative abundance of oxygen for the

oxidizing conditions encountered. On the other hand, some parts of the aquifer

being semi-confined, dissolved oxygen may have been carried by vertical

leakage from the semi-confining layer on top.

The composition of the granular aquifers in the study area being mostly

sand, silt and clay, where dispersion and diffusion phenomenon are prevalent,

oxygen in the ground air may dissolve at the interface of the water table and be

carried to a deeper level.

Figure 9.4 shows the possible sedimentary associations within specific

pH and Eh conditions. By superimposing figures 9.4 and 9.1, the possible

mineralogical associations in the area can be identified with respect to the

measured pH-Eh values.
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Fig.9.4. Sedimentary associations in relation to environments with specific pH

and Eh, after Krumbein and Garrels (1952).

As can be seen from figure 9.4, the possible mineralogical associations in

the area are above the organic matter fence. It can be said, from the pH - Eh

limit of the waters alone, that the possible source of CO2 in the area are calcite

and organic matter.
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Considering the evolution of chemical quality of groundwater, dissolution

of soil and sub soil minerals takes place in the upper zone (local groundwater

zone). In this zone the water is relatively acidic. This is because CO2 is

constantly being produced in the soil by soil bacteria, by decomposing soil

organic matter (Krumbein and Garrels, 1952). The partial pressure of CO2 is

then increased. This results in the production of more hydrogen ions, hence

reducing the pH values of the soil and of the shallow groundwater. The acidic

water then produced percolates through the unsaturated zone and, on its way,

reduces various substances from their less oxidized state. For example, Fe + + +

may be reduced to Fe+ + , or NO3" to NO2", etc. However, the sedimentary

associations as can be deduced from figures 9.1 and 9.4 do not indicate any

possibility of reduction.

Contamination of the groundwater in the area due to the fertilizers used

will be discussed in the coming chapters; in the meanwhile, let us keep in mind

the importance of the interrelationship between depth of groundwater, Eh and

pH conditions in relation to oxidation and reduction as discussed above.
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9.3. Chemical Equilibrium, Ionic strength and Activity Coefficient

In order to withdraw from the chemical analysis data, valuable

informations like salinity, chlorinity and saturation state of waters with respect

to calcite and dolomite, some chemical equations have to be used. These

equations are based on the general rules governing thermodynamic equilibrium,

as discussed in many text books, for example Matthess (1982), and Garrels and

Christ (1965).

The driving force of a chemical reaction is related to concentrations of the

reacting constituents and concentrations of the products of reaction:

aA + b B ^ c C + dD

Where, a,b,c,d are the number of moles of the chemical constituents

A,B,C and D respectively.

From the law of mass action,

K=[C]c[D]d/[A]a[B]b

Where, K is a coefficient known as thermodynamic equilibrium constant

or the stability constant. The brackets represent the thermodynamically effective

concentrations which are referred to as the activities.

Solute concentrations can be expressed as activities,

ai = miâ

Where, ai is the activity of the solute species i, mi is the molality, and â is

the activity coefficient.
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The solubility of minerals depends both on the property of the mineral and

the property of the water that comes into contact with the mineral. If the

solubility of minerals in pure water is compared with the solubility of minerals

with high salt content, it can be observed that the solubilities increase in

proportion to the salt content in the waters. This is known as ionic strength

effect.

The magnitude of solute and solute-solvent interactions are dependent,

among other factors, on the ionic concentrations and ion electrical charge. The

ionic strength combines the effects of these two major factors, hence it is a

measure of the intensity of the electrical field due to ions in solution.

Ionic strength is defined as half the sum of the terms obtained by

multiplying the molality of each ion in the solution by the square of its valence.

n

1 = 0.5 * X m i Z i 2 (9.3)

Were I is the ionic strength, mi are the respective molalities and Zi are the

respective valences.

The ionic strengths of all the samples collected at different seasons were

calculated in using the above formula.
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Fig.9.5. Graph showing ionic strength (I) versus conductivity and total

dissolved solids (TDS) of the water samples collected in August '87.

As we can see in figure 9.5, The ionic strengths are directly related to

conductivity and total dissolved solids.

The activity coefficient â as a function of ionic strength is given as in the

following Debye-Hiickel (1923) expression:

Log â = -AZi2Vl/l+àiBVl

(9.4)
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Values of the Ion-Size parameter ai for the ions are given below:-

aixlpS ions

3.0 K+, Cl", NO3-

4.0 SO42-

4.25 Na+, HCO3-

6 Ca2+

8 Mg2+

The parameters A and B at 1 bar and for an average temperature of 15°C is

given as A = 0.5042 and B= 0.3273 xlO"8 � The values of A and B for

different temperatures can be found in text books dealing with the subject, for

example, Freeze and Cherry (1979). The values corresponding to 15°C have

been considered as appropriate for the area.

The above theoretical considerations and calculations will be used in the

calculation of saturation states of the waters with respect to calcite and dolomite.
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9.4 Saturation State of the Waters With Respect to Calcite and

Dolomite

The saturation states of the water samples with respect to calcite and

dolomite have been calculated. The procedure followed in the calculation is

adopted from Domenico (1972). The analysis results of two samples (N°.l and

N°. 2) collected in August 1987 are hereby considered as an example to the

procedure followed in calculating the saturation state of the waters. The ionic

compositions of the ions in milli-equivalents per liter for the corresponding

samples considered are given below:

No Ca Mg Na K HCO3 Cl SO4 NO3

1 1.29 1.13 4.51 0.12 4.56 1.75 0.49 0.58

2 2.22 1.92 6.88 0.07 7.15 2.63 1.80 0.81

The steps to be followed are as in the following:

a) The chemical analyses data are first converted to the concentrations in

moles per liter (which is the approximate equivalent of molality ).

Molality = ppm x 10'3/formula weight in grams

or, molality = (meq/valence) x 10"3
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For the two samples considered, the calculated molalities are as follows:

M(Ca) M(Mg) M(Na) M(K) M(HCO3) M(C1) M(SO4) M(NO3)

6.44E-04 5.67E-04 4.51E-03 1.21E-04 4.56E-03 1.75E-03 2.43E-04 5.84E-04

1.11E-03 9.62E-04 6.88E-03 6.70E-05 7.15E-03 2.63E-03 8.98E-04 8.10E-04

b) The second procedure is to calculate ionic strength. By using the

fonnula given for the ionic strength (equation 9.3) the ionic strengths of the two

samples were calculated :

Sample No. I (ionic strength)

1 8.67E-03

2 1.47E-02

c) The third step is to calculate the activity coefficient â as a function of the

ionic strength from the Debye-Huckel expression (equation 9.4 ). The activity

coefficients of the ions thus calculated, are given below:

â(Ca) â(Mg) â(Na) â(K) â(HCO3) â(Cl) â(SO4) â(NO3)

6.96E-01 6.75E-01 6.84E-01 6.75E-01 6.84E-01 6.75E-01 6.82E-01
6.75E-01

6.37E-01 6.07E-01 6.20E-01 6.07E-01 6.20E-01 6.07E-01 6.17E-01 6.07E-
01

d) The fourth step is to find the dissociation constants of calcite and

dolomite. The carbonate dissolution reactions are:

Calcite : CaCO3 «�� Ca+ + + CO3"

Dolomite : CaMg(CO3)2 '"* Ca+++Mg+++ 2CO3"
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In terms of the dissociation constants,

KCaC03 ^ a(Ca++)xa(C03--)

KCaMg(CO3)2 *=* a(Ca++) a(Mg++) a*2(CO3")

The bicarbonate dissolution reactions are:

HCO3- *"� CO3- + H+

Therefore,

KHCO3" �"� (a(CO3~) aH+)/aHCO3-

aCO3" � * (KHCO3-aHCO3")/aH+

By substituting this last expression for aCO3", into the dissociation

constants of calcite and dolomite, we obtain the following working equations:

KCaCO3 *** a(Ca++) (KHCO3" aHCO3-)/aH+ 0-5)

KCaMg(CO3)2 ^ (a(Ca++) a(Mg++) (KHC03- aHCO3-)/aH+)A2

(9.6)

The right hand side of these equations represent the ionic activity product

Kiap. The value of aH+ is taken as 10'P1*. From laboratory determinations at

22°C and 1 bar, the equilibrium constants Keq of calcite and dolomite are given

as:

KCaC03 = 0.415.10-8; KCaMg(CO3)2 = 0.117x10"!6,

KHCO3=0.439xl0-10

represents undersaturation
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represents saturation

iap > Keq represents oversaturation

The Kiap values can be calculated from the above equations. In order to

facilitate interpretations, however, percent * saturations can be calculated:

Calcite: 100/KcaCO3 (a(Ca++)(KHCO3" aHC03-)/aH+) (9.7)

Dolomite: 100/KCaMg(CO3)2 ((a(Ca++) a(Mg++) (KHCO3" aHCO3-)/aH+)A2) (9.8)

The percent saturation values, calculated in using equation 9.7 & 9.8, for

the previous two water samples are:

Sample No calcite dolomite

1 59.17 29.9

2 79.5 53.8

From the above figures, it can be observed that both the samples are

undersaturated with respect to calcite and dolomite, however, sample 2 is closer

to equilibrium than sample 1.

The above procedure has been followed in dealing with all the water

samples collected at different seasons. The geographical distribution of percent

saturation with respect to calcite has been plotted on a map from the calculated

values (see Fig.9.6).

The saturation index SI, is another standard for comparing the saturation
states of waters, (SI=0 represents equilibrium state, as opposed to 100% as in
percent saturation)
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Fig.9.6. Map of percent saturation with respect to calcite calculated from the

water analysis data of January - February 1987. (Note, the map shows the

general trend and may not reflect the exact situation within the individual wells).

The solubility of the waters indicates that most of the waters arc undersaturated

with respect to calcite or dolomite. Apart from geology and chemistry such

undersaturation of the waters may indicate a short residence time (days or weeks),

similar to "conduit type" of springs. Waters which have residence times measured in

months may approach saturation.
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Undersaturated waters containing excess of CO2 may corrode pipes and pumps,

whereas strongly supersaturated waters may form calcite incrustations. The desired

situation where no corrosion or incrustation takes place is slight supersaturation where

deposition of calcite protects the pipe from corrosion (Mandel and Shiftan, 1981). The

percentage of saturation of the waters with respect to calcite and dolomite have shown

to be within the desirable limit

9.5 Chemical characteristics and origin of the ions

In studying the cause of the present chemical composition of groundwater in the

region, the possible sources of groundwater should be traced. Except for the soil water

region, relatively deeper aquifers may have solute concentrations originating from the

basement rocks in the north. Water flowing from north to south may undergo several

stages of chemical changes (dissolution, precipitation), thus reflecting at every stage,

antecedent geological conditions. The basin is considered as the only possible initial

source of solute concentrations. Towards the south (the coastal zone), the source of

solute concentrations may have some relation with Rio de la Plata basin and the Atlantic

ocean. All these will be analysed in the foregoing discussion.

Different methods like ionic ratios have been employed to trace the possibility of

mixing of groundwater with waters from Rio de la Plata. The sequence of processes

through which the water acquired its present composition will be studied with reference

to theoretical chemical characteristics of ions. It will be attempted to identify the

significant changes in the chemical composition of the groundwater along its flow path.
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Considerable variations in chemical compositions were observed for water

samples collected during different seasons. However, these variations are uniform;

the waters are either diluted or concentrated with proportionate amounts of the ions (the

ratios between the ions are the same in all cases). To avoid unnecessary repetition,

only the water samples collected during January - February 1987 are used for the

ongoing discussion, while comparisons are also made with samples collected during

August 1987.

Calcium

The major sources of calcium in waters which originate from the basement rocks

are calcium bearing minerals like plagioclase. The calcium ions could be picked up

from the decomposition of plagioclase as the groundwater moves along the basement

rock fractures. Except the Camacho Formation which is of marine origin, all the rest of

the sedimentary formations are of continental origin, among which the Raigon

Formation is specially rich in plagioclase (G. Prichonnet, personal communication).

Apart from the above, the amount of calcium in the sedimentary formations

depends on the availability of the following:

- Carbonates- calcite (CaCC>3), aragonite (CaCC>3), dolomite CaMg(CC>3)2,

magnesite (MgCC>3), nesquehonite (MgCC>33H2O), and siderite (FeCC>3).

- Limestones (calcite with admixture of magnesium carbonate and other

impurities).

- Gypsum (CaSC>4.2H2O), anhydrite (CaSCU) and fluorite (CaF2).
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The presence and the amount of the above minerals in the sedimentary formations

depend not only on the original deposition of the sedimentary formation, but also on

other factors like paleoclimatic and paleogeomorphic situations. The above mentioned

minerals were found in abundance in the Camacho Formation. Therefore, the source

of calcium could be the basement rocks and/or the sedimentary formation. The relative

importance of the two sources on the concentration of calcium in the water samples

will be examined: As can be seen in figure 9.7, no relations exists between total ions

and calcium or magnesium ions. Compared to the other ions, calcium precipitates very

easily, hence for a long travel distance of water there could be a relatively higher chance

of calcium precipitation before the waters become rich in total ions.
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Fig.9.7 Total ions versus Mg and Ca cations for waters collected in Jan.-Feb.,'87

On average, the amount of calcium in the waters ranges from 20 to 60 mg/1 (see

Fig.9.7). This is relatively small amount suggesting non- existent or relatively small

amount of carbonates.
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The composition of the sedimentary formations is mostly sand, silt and clay.

Some calcite cement have been observed when testing the log samples with HC1 acid.

In the Raigon Formation which is fluviatile and deltaic in origin, calcite occurs as

partial filling of interstices of the sand grains indicating secondary deposition. Some

calcite concretions were observed at some localities (Kiyu, near Rio de la Plata and near

the town of San Jose) incorporated within the Formation. These concretions were

deposited in an arid environment where evapotranspiration had been relatively high.

The supersaturation of the waters at the time of deposition of the calcite concretions

might have been caused by an environment favoring the growth of algae which increase

the pH of waters.

The calcium ions enter into groundwater by the dissolution of calcium bearing

solids in waters containing CO2. Hence, calcium has more chances (usually in

shallow groundwaters) to occur in the form of bicarbonates than in other forms.

Calcium ions being susceptible to ion exchange with sodium ions and vice-versa,

the exchange of sodium for calcium reduces the quality of the water for agriculture in

the irrigated areas. In the coastal areas, the sodium brought by the advancing salt water

may be exchanged for calcium (the effect of mixing due to saline water is discussed in

chapter 10).
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Magnesium

Magnesium is a common alkaline earth metal which is essential in plant and

animal nutrition. Magnesium ions enter into groundwater by the dissolution of

carbonates, dolomite or ferromagnesian minerals. According to Mandel and Shiftan

(1981), the origin of waters may be inferred from the following ionic ratios between

magnesium and calcium.

0.5-0.7 Limestone

0.7-0.9 Dolomite

> 0.9 Fresh water from silicate rocks

A water passing through dolomite should dissolve equal amounts of magnesium

and calcium before it reaches saturation with respect to either calcite or dolomite. The

average range of values of Mg: Ca ratio for the water samples is as represented in

figure 9.8.

Q 0 .9 -
0.7 -
0.5

Water samples

Fig.9.8. Mg:Ca ratios from chemical analysis of waters sampled in January - February,

1987.
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No definite source area could be marked as to the origin of the magnesium.

However, from the Mg: Ca ratios, it can be said that about half of the waters originate

from fresh water silicate rocks, or from environments poor in limestone or dolomite,

the source of the other half being limestones or dolomites.

Normally, long residence times of water would also produce [Mg]:[Ca] ratios

above 1.0 and high pH, both of which tend to increase along the flow path. Long

residence times should then be attributed to waters coming from the basement rocks, in

which case the magnesium ions might have originated from altered rocks bearing

chlorite and serpentinite. In our case, however the plot of [Mg]:[Ca] ratio as a function

of pH and residence time (percent activity of carbon - 14) did not confirm the idea of

waters coming from the basement. This agrees with the fact that the waters are

relatively young.

Sodium

Sodium is one of the alkali metals which occurs in igneous rocks, in evaporite

sediments and in solution in the ocean, in various proportions. The major source of

sodium in the waters may be inferred by using the ionic ratios between sodium and

potassium. From figure 9.9, we observe that about thirty samples have lower ratios (<

30), about twenty samples present intermediate ratios (between 30 and 55), a

significant number of samples (about forty) have relatively high ratios (between 55 and

140) and few (seven) samples present extreme ratios (greater than 140).
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Fig.9.9. Frequency histogram of the [Na:K] ratio of the water samples collected

within the months of January and February 1987.

These ratios can be compared with the following ratios, given in text books, like

Mandel and Shiftan (1981): - In sea water the Na:K ratio is 47, in rain water it is less

than 10 and in most types of aquifers the Na:K ratio is between 15 and 25. According

to the ratios obtained from the analysis, and in comparison to the above ratios, most of

the water samples exhibit relatively high Na:K ratios. The reasons are explained

below.

It can be said that the waters which showed lower values are waters which may

have some sort of contact with the surface waters and/or are directly related to shallow

groundwater circulations with short lived residence time.
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- The negative charges that prevail in crystal lattice of many minerals like clays

attract cations. Adsorption and ion exchange proceed until the exchange capacity of the

mineral is exhausted (thermodynamic equilibrium is reached between the water and the

reacting mineral). In this way, much of the sodium could be retained by adsorption on

clayey mineral surfaces that occur within the formations. Hanshaw (1964) showed that

clays may preferably adsorb sodium when compacted and may adsorb calcium when

dispersed in water.

- The low ratios, less than 15, may also be attributed to advanced stage of sodium

calcium exchange, whereby sodium ions are decreased during mixing of waters

(sodium ions are decreased from waters due to substitution for calcium).

- When Rio de la Plata gets invaded by sea water, during the relatively dry

seasons, the fresh water from the river, rich in calcium, comes in contact with sodium

ions, whereby the sea water gains calcium while losing sodium. This mixed water

could penetrate into the aquifers of the coastal zone (see chapter 10), where the same

process of adding sodium into the aquifer takes place. In the zone of mixing, sodium

may be depleted while calcium gets enriched.

Sodium being much less abundant than potassium in sediments, we would expect

to have lower Na:K ratio. However, the relatively higher values observed, could be

attributed to one or the combination of the following reasons :-

- Adsorption of potassium on clays decreases the K-content of waters hence

increasing the ratio.
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- Waters which originated from the basement rocks may have higher proportion

of Na than K compared to waters from sediments. However, higher proportion of Na

could also be caused by irrigation. During cation exchange processes, sodium ions

tend to replace calcium or magnesium in fresh water, hence increasing the Na:K ratio.

The above argument can be broadened further and, even distinctions could be

made between irrigation waters and waters coming from basement rocks, by using the

relationships between total dissolved solids and sodium concentrations.

500

200 400 600 800 1000 1200 1400 1600
Total ions (mg/l)

Fig.9.10. Total ions in mg/l versus Na ions in mg/l for waters collected in January -

February, 1987.

Direct relation can be observed from figure 9.10, between total dissolved solids

(TDS), and sodium ions; correlation coefficient of 0.88 has been obtained.
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Since residence times are related to total dissolve solids, it can be said that, in

waters with high Na:K ratio, if the total dissolved solids are low (residence time is

low), the increase in Na:K ratio could be due to irrigation (increase in sodium

adsorption ratio). On the other hand, if both Na:K ratio and total dissolved solids or

residence times are high, then the waters must have originated from the basement

rocks. It should be noted here that significant amount of sodium is also being induced

into the groundwater region due to the use of fertilizers.

Near recharge areas, [Ca+Mg]:[K+Na] ratios usually exceed unity. Further

downstream, increase in alkali metals result from ion exchange, hence the ratio is

decreased. Figure 9.11 shows the [Ca+Mg:Na+K] ratio of the water samples

analyzed during January and February 1987; most of the waters have ratios below

unity. Therefore, the recharge area is further away from the point of sampling. This is

a supporting evidence to the idea that some waters may have their origin from the

basement rocks, unless we attribute the calcium content to the Raigon Formation.
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Sample numbers

Fig.9.11. Diagram showing the water samples which are relatively near to the

recharge areas as opposed to those which are further away in using [Ca+Mg]:[K+Na]

ratios of the waters sampled in January February, 1987.

Potassium

In contrast to sodium, potassium is liberated from silicate minerals with greater

difficulty and has a strong tendency to be reincorporated into clay minerals (Hem,

1983). Potassium being an essential element for plants, the fertility of soil is retained

by adding K onto the soil. These reasons may explain why the concentration of K ions

is relatively small compared to other ions.
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The average amount of potassium in the water samples collected in January was

about 6 mg/1. In August, the average amount was about 8 mg/1. January and February

are relatively dry periods of the year. However, these months are the growing seasons

of plants. Hence the lesser amount of K ions during these months could be due to

extraction of K ions from the soil by the plants. On the contrary, the soil is left barren

during August, which may account for the difference of 2 mg/1 in excess of K during

this month.

Bicarbonate

From the plot of the water types on a Piper's diagram (see Fig.9.18), we observe

that most of the waters are of bicarbonate type. The predominance of bicarbonates over

the other ions will be explained below:

Although calcite and dolomite are only slightly soluble in water, they form

bicarbonates in waters containing CO2.

CaCO3 + H2O + CO2 «"� Ca(HCO3)2

Ca (HCO3)2 ��* Ca+2HCO3

The simultaneous reaction of CO2 with water yields the following:-

CO2 + H 2 O ** H2CO3 «=* H+HCO3 «=* 2H+CO3
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Carbonate concentrations may also come from biological activity of plant roots or

from oxidation of organic matter. Figure 9.12 shows the relationship of the total ions

with the carbonate concentrations; a correlation coefficient of 0.88 has been obtained.

The significance of this relationship is that constant increases in carbonate

concentrations are observed from rain water to surface streams to groundwaters.

200
200 400 600 800 1000

Total ions in mg/L

1200 1400 1600

Fig.9.12. Total ions in mg/1 versus bicarbonate in mg/1 for waters collected on January-

February, 1987.

Chloride

The occurrence of chloride in the area can be explained by the whole or part of

the above mentioned possible ways, depending on the general geomorphological and

geographical situations.
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1) Precipitation of chloride takes place when the concentrations exceed that of sea

water. When a thin layer of water from the Rio de la Plata or the Atlantic ocean

evaporates, the tiny crystals of salt (mainly sodium chloride), which have precipitated

from the ocean, get blown up high in the air as spray of dust. These tiny crystals may

then dissolve in rain and subsequently be transmitted to groundwater.

2) These tiny crystals of salt may also reach the land by dry fallout

3) Some local concentrations of chloride in the groundwater (see Fig.9.14 ) may

have resulted from human and industrial wastes.

4) There is be a possibility that halite and other evaporite minerals get

incorporated into the aquifers, from which groundwater picks its chloride from

solutions.

6) Chloride concentrations may increase by evapotranspiration from the shallow

water table.

The iso - chloride map in figure 9.14 gives a general overview of the zones rich

in chloride. It has been very difficult to detect general trends of chloride concentrations

in the area. However, some localities with exceptionally high chloride concentrations

can be observed from the figure, which could be due to deposition of wind blown tiny

crystals of salt from the ocean to the adjacent coast.

Chloride concentrations increase with depth, residence time, and total ions which

are all interrelated. Figure 9.13 shows the relationship between total ions and chloride

concentrations; a correlation coefficient of 0.65 has been obtained.
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Fig.9.13. Total ions versus Cl in mg/1 for waters sampled in Jan. - Feb., 1987.

The increase of chloride concentrations with total ions can be related to

groundwater movement, which is generally towards the south. As the groundwater

becomes enriched with total ions along its course, chloride ions are progressively

picked.

The average chloride content of the waters is about 60 mg/1, which is far below

the maximum allowable chloride concentration (250 mg/1). The salt levels may not be

detected by tasting, for chloride levels less than 1000 mg/1, if the chloride is present as

calcium or magnesium salts.

The iso - chloride map in figure 9.14 shows the development of salt creep.

Actually, the danger of salt creep is not acute for the present time, however, some areas

like Delta del Tigre are very susceptible to this type of pollution due to different

sources of pollution, like agricultural, industrial, domestic pollution and contamination

from Rio de la Plata.
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Temporary Solutions to Anticipated Chloride Problems

An immediate solution to a salt creep could be flushing by fresh water. A

mathematical explanation of the effect of flushing phenomenon is given as in the

following:

Let the effective porosity of the aquifer in the Delta del Tigre area be equal to 20

% , where development of a salt creep is likely to occur due to industrial and domestic

wastes. Considering an area of 1000 m 2 and 20 meters of thickness, the volume of

the salty solution (brine) would be 4,000 m3. Supposing that the brine contains

20,000 kg of dissolved salt, if we flush the aquifer with fresh water at the rate of 20m3

per minute and the mixture runs out at the same rate, we can calculate how much of salt

will be left out at the end of one hour. The assumption of complete mixing is unlikely

in porous media, but the figures should give the relative order of magnitude of the

effect of mixing.

Let x be the number of kilograms of salt in the aquifer at the end of t minutes.

The concentration c would be (x/4,000 ) kg per m3

In the time dt, 20 dt m3 of fresh water comes in and 20 dt m3 of brine containing

20c dt kg of salt goes out, so that, the amount of salt in the aquifer would be:-

dx = - 20cdt = -(20x/4,000)dt,

After dividing by x and integreting, the amount of salt at the end of 1 hour would

be:

x 60

|dx/x= -(20/4,000)1 dt

20,000 0
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60

Therefore, In x/20,000 = -(1/200) J dt = -60/200 = -0.3

0

Hence, x = 20,000 (e"3) = 14816.4 kg

The amount of salt left in the aquifer at the end of one hour would be 14816.4 kg

and 14.9 kg at the end of one day, and almost nothing (0.01 kg) at the end of the

second day.

The theoretical approach considered helps to realize the importance of

flushing. However, the amount of time needed to completely flush out the salt

from the aquifer would be much greater than in the above case, since complete

mixing does not occur in aquifers.

Sulfate

Sulfur occurs in oxidation states ranging from S2" to S6+. Sulfates are often

present in evaporites: Anhydrite (Ca SO4), Baryte (BaSÛ4) and gypsum

(CaSO42H2O). In reducing (low oxygen) environment it occurs in sulfide veins, such

as chalcosite (CU2S) and pyrite (FeS2). The chemical behavior of sulfur is therefore

related to the redox properties of the aqueous systems (Hem, 1983). S2- ions forming

sulfides with metals occur in sedimentary rocks in a reduced state. When these sulfide

minerals are weathered, the sulfur is oxidized to yield sulfates; SO42- anion is formed

in most highly oxidized form. Sulfite is not normally present in natural waters, since it

readily oxidizes to sulfates.
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From the Eh - pH diagram (see Fig.9.1), it can be observed that most of the

waters favor state of oxidation rather than state of reduction. Hence, the Eh - pH

conditions of the waters favor the formation of SO42- instead of S2- (the fields of

dominance of sulfur ions in different states is given in many text books dealing with

hydrochemistry).
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Fig.9.15. Relationship of total dissolved solids with sulfate in mg/1.

Although evaporitic sediments were not observed at the present, they might

probably have existed in ancient closed valleys and depressions, where evaporation

was favored. The present sulfate content of the waters may be associated with some

relics of these evaporites, being incorporated into the sediment. Direct relationship has

been observed between the total dissolved solids and the amount of sulfate ions in mg/1

(see Fig.9.15). A correlation coefficient of 0.8 has been obtained.
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Nitrate

The nitrate content of some waters (see table 4 & 5 in the appendix and location

of polluted wells in Map 8 ) have been found to be beyond the acceptable limit for

drinking purposes. Ten samples, collected in January - February 1987, have shown

nitrate concentrations between 100 and 200 mg/1. The mean nitrate concentration of

the waters is more than 50 mg/1 (the internationally accepted upper limit). The map in

Fig. 9.17 shows the relative position of the areas where nitrate levels are elevated. It

should be noted that all the aquifer indicated by the iso-nitrate lines are not

contaminated. A detailed map of such kind could possibly indicate the migration of

plumes.

The transport of solutes through the unsaturated zone is generally considered to

be slow. However, the unsaturated zone is relatively small, or is absent in some

places, hence groundwater could be easily affected by addition of nitrate species. The

possible sources of nitrate in the groundwaters of the area are hereby considered.

Nitrate is the most common representative of the nitrogen species in

groundwater. Small concentrations of nitrogen compounds are produced in the

atmosphere by the oxidation of nitrogen, by electrical discharge and combustion of fuel

(Hem, 1970). The four primary forms of nitrogen are nitrogenous organic matter such

as protein, ammonia nitrogen, nitrites and nitrates. Some other forms such as cyanide

(CN) may occur in water affected by waste disposal (Hem 1970).
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The cycle of nitrogen containing organic compounds is controlled by bacterial

oxidation and reduction (Garrels et al. 1975). Man's interference would further

complicate the situation. The cycling of N between organisms and inorganic species is

schematically represented as in figure 9.16.
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.nitrification N H 4 ~
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Fig.9.16 Schematic N cycle, after Garrels, Mackenzie and Hunt (1975).

Biological decomposition of organic matter (ammonification) yields ammonium.

Nitrates (NÛ3') can be produced as end products from nitrification of ammonium.

Denitrification is another process whereby NO3" is reduced to NO2 or N2, under high

pH and low Eh conditions. Ammonium is transformed into ammonia gas under basic

conditions.
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The basic chemical reactions involved in bacterially controlled reactions (Garrels

et al.. 1975) are given below:-

Nitrogen fixing bacteria (Azobacter)

2N2 + 6H2O4NH3 (organism) + 302

decay

4NH3 ( organisms) = 4NH3 gas + other decay products

hydrolysis

4NH3 gas + 4H2O = 4NH4++ 4OH-

bacterial nitrification (Nitrosomonas)

4NH4+ + 6O2 = 4NO2" + 8H+ + 4H2O

bacterial nitrification (Nitrobacter)

4NO2- + 2O2 =4NO3"

nitrification (Pseudomonas)

4NO3- + 2H2O = 2N2 + 5O2 +4OH-

assimilation

4NO3- + 8H2O = 4NH3 (organisms) + 8O2 + 4OH\

In order to asses the amount of nitrate attributed by fertilizers and animal waste

matter, the nitrate content of the fertilizers frequently employed in the area were

analyzed for the major ions. The amount of ammonium content of the waters was

measured in the field. Among the other ions detected from the fertilizers, nitrate

concentrations were found to be the highest (see section 9.7).
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The occurrence of nitrate in groundwater of the area is mostly attributed to one or

both of the following:- a) Drainage from organic wastes and b) Leaching of fertilizers.

High levels of nitrate can cause infant methemoglobinemia (blue baby disease).

In young babies, less than three months old, the consumption of nitrates may deprive

them oxygen, which may result in death.

In order to trace the exact source of nitrates in the area, simultaneous field

measurements of ammonia and nitrates were conducted in September 1989 from the

water samples in wells which showed high nitrate values. TDS and Conductivity

measurements were also taken at the same time.
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Usually contamination from septic tank effluents are detected by the presence of

high levels of NH4. In our case, all the ammonium measurements have indicated to be

minimal. However, this does not exclude the possibility of contamination from septic

tanks, because all the NH4 present in the groundwater could have been oxidized under

high Eh conditions. Keeping this in mind, the wells which are located near septic

tanks or animal barns were visually inspected. It has been found that fertilizers are

used in the vicinity of almost all the wells. If all the wells are located within the

agricultural field areas and are at the same time exposed to contamination from septic

tanks and or animal wastes, then there is no doubt that nitrate contamination in the area

would be caused by both drainage from organic wastes and from leached fertilizers.

The relatively high nitrate levels then reflect the intensity of the use of fertilizers and the

degree of contamination by organic wastes, which is in accordance with what has been

observed in the field. However, the relative importance of each could further be

investigated by nitrogen -15 isotope method. The degree of organic waste

contamination could better be assessed with additional data from bacteriological tests.
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9.6 Hydrochemical Data Analysis

The data from chemical analysis of the water samples collected in January -

February 1987 are hereby interpreted and analyzed. In this section the parameters will

be dealt with as groups, while attempting to extract the maximum possible information.

The classical hydrochemical data processing methods are employed with careful

selection of only the most appropriate. Statistical methods, like cumulative frequency

and factor analysis are also included.

9.6.1 Hydrochemical Faciès

The general relationships between the chemical characteristics of the

groundwater, the lithology and the regional flow pattern could be deduced from the

hydrochemical facies. Mapping of these faciès could be a good base to study the

chemical behavior of waters.

Trilinear diagrams (Piper's diagram) of the water chemistry are constructed (see

Fig. 9.18). The concentrations of the cations and anions in meq/1 % are separately

plotted in two equilateral triangles. In trilinear diagrams, the ionic solutions are treated

as though they contained only three cation groups and three anion groups; K is added

to Na, and NO3 is added to Cl. The meq/1% of the ions are extended from the two

triangles into the diamond shaped part, thus representing the combined chemical

characters of the waters (hydrochemical facies or water types). It is worth noting that

waters that fall on the same straight line represent mixing.
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Plotting of meq/1 % data on trilinear diagrams is one way of grouping data. Such

groupings can also be obtained by extracting ratios as shown in Table 9.1.

Table 9.1. Percentage milli equivalent ratios and the corresponding water types.

Na+K/Ca+Mg HCOVCl+NCft+SCU Water Type

<1 >1 Ca(HCO3)2

<1 <1 CaSO4

>1 <1 NaCl

>1 >1 NaHCO3

If one wishes to know water types, the extraction of the above ratios could be

sufficient. The Piper's diagram helps to view the exact position of the meq/1 % of

each sample with respect to the 100% of the ions, so that their groupings constitute

different water types according to their relative positions in the diagram.
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Ca+Mg

Ca 50% Na+K H C 0 3 50% CI + NO3

Fig.9.18 Piper's diagram showing the Ca(HCO3)2, NaHCO3 and NaCl water types

The chemical analysis data as plotted on the Piper's diagram, indicate that most

of the waters are of the sodium bicarbonate type. Few waters belong to the calcium

bicarbonate type and, even fewer, to the sodium chloride type. No sample has been

observed to fall into the calcium sulfate type. The regional distribution of the water

types are represented on a map (see Fig.9.22 ).
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Some of the shortcomings (Shceller, 1962) of trilinear diagrams are the

following:

1) All the cations must be reduced to only three groups, likewise all the anions

must be reduced to only three groups; in consequence to this, the individual effect of

the lumped ions cannot be assessed.

2) The percentage values may at times correspond to proportional amounts of

cations and anions of more than one sample which plot as a single point.

These shortcomings can be overcomed by adopting the following method:

Cumulative frequency of the meq/1 % of the water types

This method is similar to the ion-concentration percentage - frequency relations

given by Sen and Al-Dakheel (1983). However, the methodology used here is

different from theirs. In this method, first the water types are extracted by using ratios

as criteria (see Table 9.1). Once the water types are grouped in this way, the

cumulative frequency (instead of just the frequency) of the percent milliequivalents of

the individual ions are plotted for each water type. Hence for the three water types

already established, the meq % cumulative frequency of the seven ions (including NO3

as a separate ion) are plotted. Accordingly, twenty one cumulative frequency

histograms have been obtained. In order to visualize the importance of each ion in the

different water types, three cumulative frequency histograms representing a single ion

of the three water types are superimposed to one another (see figures 9.19 and 9.20 ).
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Fig.9.19 Cumulative frequency histograms of the cation percentage values from the

water samples collected in January - February, 1987.
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Figures 9.19 and 9.20 include almost all informations that can be obtained from

the Piper's diagram. One of the merits of this method is that any number of individual

ions can be handled. It is relatively easier to read the percentage values of the

individual ions from the figures, compared to the Piper's diagram. The percentage of

ions that are particularly dominant in certain type of waters can easily be observed.

The figures indicate the cumulative frequency of water samples falling within a certain

percentage value from which the number of samples that belong to the water types can

be known. One of the interesting features of the figures is that the importance of each

ion can easily be compared in each type of water. In conclusion, the use of the above

cumulative frequency method is strongly recommended especially when more than six

ions are considered.

The following important informations are extracted from the figures:

- The relative magnitude of the type of waters can easily be compared (thirty six

samples are of Na HCO3 water type, twelve samples are of Ca (HCO3)2 water type,

and six samples are of NaCl water type).

- Na+K ions are dominant (more than 50%) over the other ions in the bicarbonate

and sodium chloride waters.

- HCO3 ions are dominant (more than 50%) in the bicarbonate and Ca (HCO3)2

waters.

- All the other ions occur in smaller proportions (less than 50%) in all types of

waters.
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- Na + K ions are relatively weak in the Ca (HCO3)2 waters, whereas

magnesium ions are relatively strong in the Ca (HCO3)2 waters.

- SO4 ions and NO3 ions are relatively strong in the NaCl waters. The fact that

NO3 ions are associated with Nacl waters suggests the influence of pollution.

All the above informations are important in the interpretation and analysis of

hydrochemical data. Before relating the above hydrochemical informations to

hydrogeological data, however, we shall consider similarities of the waters, which are

also important in the understanding of hydrological processes. The water types and the

similarity groups are both plotted on a map (see map in Fig.22 ).

9.6.2 Similarities of the waters

In order to group waters that are similar to one another, the data are plotted on the

semi - logarithmic diagrams of Schceller (1935,1938). The concentration of the ions

(in meq/1) are plotted on a vertical axes in logarithmic scales. The waters which are

most similar are grouped together. Usually, plotting of meq/1 values on a semi-

logarithmic scale is a simple thing, but grouping together of the most similar waters

could be long and cumbersome job, especially if the number of graphs are too many.

In order to avoid such inconvenience, the following method has been established:

First, calculate the ratios of the ions from the data and extract the similarity groups

according to the criteria indicated (see Table 9.2); then plot on the same graph the

corresponding groupings obtained.
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Table 9.2. Table of ionic ratios that are used to facilitate extraction of similarity groups.

Na+K/HCO3 SO4/C1 C1/NO3Group Ca/Mg

1 <1 <1 <1 <1

2 >1 >1 >1 >1

3 <1 <1 <1 >1

4 >1 <1 <1 >1

5 <1 >1 <1 >1

6 >1 >1 <1 >1

7 >1 <1 >1 <1

8 <1 >1 >1 >1

9 >1 >1 >1 <1

As in the above table, nine groups of similar waters have been arranged (see

Fig.21a to 21i). It should be noted that the number of combinations (criteria) to be

chosen depend on the possible combinations that may exist.

Ca

Group I

Na+K HC03 S04 N03

->� 0 . 1

� - 12 - 0 - 1 3 17 �*� 22 x- 44 �*- 52

Fig.9.21a Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87. The numbers at the bottom of the figure are sample numbers listed in Table 4 in
the appendix.
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Ca Mg
Group I I

Na+K HCO3 Cl S04

-J- 0.1

��- 4 o- 9 19 -*- 28 ^ - 47

Fig.9.21b Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87.

CA Mg Na+K
Group III

HC03 Cl

� - 23 o- 41 � - 81 a- 83 * - 91

Fig.9.21c Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87.
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Fig.9.21d Sh�ller's diagram from analysis of water samples collected in Jan.- Feb.
'87.

Ca
Group Y

Na+K HC03 CI S04 N03
IOC

x....

��- 26 o- 39 �- 59 -a- 76 ^ 7 9 * - 109 -x- 140

Fig.9.21e Sh�ller's diagram from analysis of water samples collected in Jan.- Feb.
'87.
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Fig.9.21f Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87.
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Fig.9.21g Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87.
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Fig.9.21h Sh�ller's diagram from analysis of water samples collected in Jan. - Feb.
'87.

Ca Mg
Group I X

Na+K HC03 Cl S04

1 yZ-.�.�WL----.

��- 14 o- 118 �- 130 a- 131 �*- 147 -a- 152 x- 156

Fig.9.21i Sh�ller's diagram from analysis of water samples collected in Jan. - Febr.
'87.
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The list of ratios on Table 9.2 has enabled us to group the waters according to

their similarities, from which a map of similar water groups is constructed (see

Fig.9.22). The map is constructed according to the following procedure:

The nine groups are again summarized into only three. Hence, group I, VIII and

IX particularly having high sodium plus potassium and high chloride contents are

regrouped in GROUP 1. Groups I, III and IV having particularly less sodium and

potassium are regrouped as GOUP 3. The rest (groups V, VI, VII) are intermediate

between the two and are regrouped in GROUP 2 (see map in Fig.9.22).
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Fig.9.22 Map showing the similarity groups of waters and the water types.

An interesting aspect of the similarity groupings is that the major group divisions

are more or less perpendicular to the regional groundwater flow lines. The same type

of situation can be observed from the map produced from Q- mode factor analysis (see

Fig.9.27).
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The application of Shceller's diagram to grouping similar waters is a way of

classification system from which the following important informations have been

deduced :-

1) The most similar waters have their graphs parallel to each other (equal ratio).

2) Graphs which are parallel and at the same time closer to one another represent

waters having the same chemical and recharge conditions.

3) Graphs which are parallel and distant from one another represent waters with

the same chemical composition but different recharge conditions.

Dilution of groundwater is possible due to additional recharge by precipitation or

seepage from streams. In the case where seepage from streams dilute groundwater, the

groundwater closer to the river should be more diluted with respect to the one further

away. Based on the above argument, it was attempted from the chemical analysis data,

to detect the following conditions:

1) If at a certain point along the course of a stream, both effluent and influent

situations occur at different seasons with low and high levels of streams respectively,

then the stream water level is connected to the regional groundwater level.

2) If only either one of the two conditions (effluent or influent) are encountered at

a certain point along the course of a stream, then the stream water is not connected to

the regional groundwater table.
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The graphs representing the individual samples from the group were compared in

relation to sample locations with respect to the streams. However, no logical

conclusions could be reached in regards to the above points, since the available data did

not represent seasonal chemical variations which can be compared to seasonal climatic

and hydrologie data.

9.6.3 Factor Analysis, the "Alternate" Method

So far, we have classified the waters according to their type and similarity. In

factor analysis, other parameters like pH, alkalinity, etc. can also be considered.

Factor analysis is a technique of data analysis, whereby a large array of data can be

dealt with, creating new variables that are few in number, representing the original data

and, at the same time, reflecting its characteristics. Factor analysis can be used to

study the relationships between variables (R-mode factor analysis) and the relationship

between the objects (Q-mode factor analysis).

In both cases, the purpose of factor analysis is to interprète the structure within

the variance-covariance matrix of the multivariate data collection (Davis, 1973). This is

done by the extraction of the eigen values and eigen vectors from the variance-

covariance matrix. Since the data we are dealing with are not all directly comparable, it

would be necessary to convert all of them to a standard form. One way of doing this

would be subtracting from each observation the mean of the data set and dividing by

the standard deviation. However, the variance-covariance matrix of a standardized data

is the same as the correlation matrix. Hence, the correlation matrix is used as a base

from which the eigen vectors and eigen values are extracted (see Table 9.3).
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Representation of Vectors in N - Dimension

The data we are dealing with contains 89 by 14 = 1246 informations items. In

factor analysis, we consider each sample from the data as defining a coordinate axis of

geometric space. As an example, let us consider only three samples with only two

variables (see Fig.9.23).

Sample B

/

/

/

n

Ca

/

Sample C

Sample A

Fig.9.23 Diagram showing the relationship of two variables in space of three

dimensions.

The dimension of the space can be analytically extended to N- dimensions, all at

right angles to one another, providing representation of all samples. We may then

imagine 14 variables plotted as vectors in an imaginary space of 89 samples

(dimensions). Or, we may imagine 89 samples plotted as vectors in an imaginary

space of 14 variables.
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As in Fig.9.23, the angle between the vectors is the measure of the relationship

between the characteristics of the samples. In the present case, we have considered the

correlation matrix as a matrix of similarity coefficients. These coefficients represent

comparison between the variables or between the samples. The values of the

coefficients are all between -1 and 1 which may be considered as the expression of

cosines of the angles between pairs of vectors of unit lengths. If the vectors are close

to one another, then the variables they represent have closer relationships. When the

angles between the vectors are perpendicular, then the variables they represent are not

correlated. When the angles are greater than 90° then the relationship is negative; an

inverse relationship is represented by an angle of 180°. The interrelationship of the

variables in the data can then be inspected by looking at their position represented by

the vectors in space.

Following the principle of extraction of eigen values and eigen vectors from the

data of the 14 by 14 matrix of correlation, 14 vectors can be extracted. However, the

relationship among the vectors can be simplified by projecting lines from the vectors

onto arbitrarily oriented new axes that are perpendicular to one another (see Fig.

9.24). These axes are called factor axes and the projections onto these factors are

referred to as factor loadings. The factor axes are commonly fitted by the principal

component method. In this method, the position of the first axis maintains the

maximum sum of the squares of the loadings. The next factor axis, which is at right

angles to the first, also follows the same principle. The position of the factor axes can

be geometrically viewed as axes placed at the center of gravity of the vectors.
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Fig.9.24. Representation of four vectors by only two factors

In figure 9.24, vector one and vector four are made to coincide with the two

factor axes, and the other two vectors are represented by the loading values on the two

factors. Likewise, it could be possible to represent a large number of vectors by few

factor axes.

The sum of the squared factor loadings is called communality (h^). The

communality values indicate if the factor axes are well placed. If h^=1.0, then the

factor loadings completely represent the relationship in the matrix. It should be noted

here, that if we increase the number of factor axes, then the degree of representations

will increase (h^ will increase).
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R- Mode Factor Analysis

In using the above principles of factor analysis, a computer program has been

executed for both R - mode and Q - mode factor analysis. The number of factor axes

that best represent the data were carefully chosen after several trials (the minimum

possible factor axes with the maximum possible communality, h^* were chosen). For

the R - mode factor analysis, it has been observed that all combinations of the four

factor axes (the unrotated factor axes of one vs. two, one vs. three, one vs. four, two

vs. three, etc.) gave very good results; that is, groupings can clearly be observed. The

diagram in figure 9.25 shows one of these combinations. The relationships among the

variables can clearly be observed from this diagram.

CM

8 - . 6 - .4 - . 2 0 .2 .4 .6 .8 1
-1

-1

Fig.9.25 Unrotated orthogonal plot : Factor 1 vs. Factor 2
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Interpretation of the R - mode factor analysis results

The fourteen variables can be visualized in the vector space of eighty nine

samples (dimensions). The interrelations within the vectors (their closeness to one

another) are represented by the correlation matrix. In accordance to the previous

discussion, the fourteen vectors are represented by only four factor axes. A graphical

representation of one of the combinations of the factor axes is given in Fig.9.25. From

the table of the communality summary (computer output), we can deduce that the four

factor axes would more or less represent the variables, that is the communality values

are close to 1 (complete representation).

From figure 9.25, we observe three groups of clusters in relation to two factor

axes (factor one and factor two). The other pairs of factor axes are purposely omitted,

since we can see clearly three distinct cluster groupings from the two axes:-

- Ca, Mg and nitrate are close to one another in relation to other variables.

- Although temperature, K, Eh and pH are not close enough to one another, they

could be considered as having separate grouping when compared to the other variables.

- Na, Cl, HCO3, SO4, TDS, alkalinity, and S.A.R are relatively close to one

another, hence forming a distinct group.
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The fact that some of the variables belong to the same group does not necessarily

mean that they are closely related. However, those that are closely related to one

another can surely be grouped together. For example, all the variables in group II are

closely related; the plots of HCO3 and Na do overlap. It can be seen from the

correlation matrix on Table 9.3, that all the variables within this group have relatively

high correlation coefficients among one another.

Let us keep in mind that the result of the execution of the factor analysis

program, has nothing more to offer, but a synoptic view of the variables on a plane

sheet of paper. To draw conclusions from such a view, without actually doing the

proper data interpretations, may give erroneous or far fetched results. In short, factor

analysis does not replace classical data interpretations, like Piper's diagram or

Shceller's diagram, but it adds to the scope of understanding. However, it could be a

"short cut" at times, provided that a prior understanding of the general hydrochemistry

exists. It may be wise to compare, or tally the results obtained from factor analysis

with the classical interpretation methods. Before doing so, however, we shall consider

Q - mode factor analysis.

Q - Mode Factor Analysis

In the Q - mode factor analysis, the relationships between the individual samples

are compared. Otherwise, the principle is exactly the same as R - mode factor analysis.
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As opposed to a 14 by 14 correlation matrix, in the R - mode factor analysis,

eighty nine by eighty nine correlation matrix was extracted from the data matrix while

executing the Q - mode factor analysis program. From the correlation matrix, the eigen

values and eigen vectors were extracted, then represented by only four factor axes,

after several trials of comparing the number of factor axes with the maximum possible

communality. No significant differences were observed between the rotated factors

and the unrotated factors. However, some combinations of factors, like factor one and

two of the unrotated factors did not allow to see distinct groupings. Factor II vs. factor

IV was the only combinations that enabled the best groupings (see Fig.9.26).
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Fig.9.26. Q - Relationship between samples as depicted by Q - mode factor analysis
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We observe from figure 9.26 that all the samples are closely related to one

another. However, we may arbitrarily group them into three groups. These groupings

of the samples are represented on a map (see Fig.9.27).
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Fig.9.27. Representation of sample groupings on a map from Q - mode factor

analysis.
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Similar maps representing iso - factor lines with respect to the other factors were

plotted. But all the maps showed similar features. Plotting of iso - factor lines with

respect to factor axes gives a more or less similar result. It is up to the researcher to

choose the ones that best represent the situation.

General hydrogeological informations deduced from the chemical data

So far, different methods of chemical data interpretations have been employed. It

can be said, in the final analysis, that the variations within the chemical data are not so

significant. That is, in fact, when different interpretation methods will be most

needed. No interpretation could ever be complete without being tested by different

methods, since no single method is perfect in itself. It would therefore be wise to

compare different methods. However, not all methods can be employed under all

circumstances. It is therefore up to the hydrogeologist to judge and choose the best

methods to employ depending on the type of data, the type of work required and the

amount of time and money at his disposal. Once this is accomplished, the next and

most important step would be to draw valuable informations from these methods and

integrate these informations with other informations from the interrelated disciplines

like hydrologie parameters and mineralogy of the environment.

Chemical analyses data could be interpreted and analyzed in various ways and

yet, a great deal of valuable information could still remain hidden, due to improper

ways and inefficient method of data interpretation. After having considered different

methods of data interpretation, it would be appropriate to tackle the most difficult task

of extracting relevant hydrogeological informations.
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The concept of hydrochemical faciès includes zonation controlled by depth of

circulation, sedimentological zones and climatic factors (Shceller,1962). Chebotarev

(1955) has dealt with vertical zonation in large bassins as influenced by the dynamic

aspects of the natural water including velocity movement, recharge- discharge

relations, intensity of movement with depth and residence time. For example, salinity

increases as the movement deteriorates with depth, with distance from recharge areas,

with nearness to the sea and duration of contact

The well known sequence of Chebotarev states that all waters tend towards the

composition of the sea water.ie:

HCO-3 �» HCO-3 + SO42- �» SO42- + HCO-3 �» CI+SO42- �» SO-4+CI- �» Cl-

This sequence is applicable to large basins. Although this study has presently

concentrated in ther lower part of the Santa Lucia Basin, Chebotarev's sequence could

be applied if we consider the whole basin.

Chebotarev's sequence can be viewed as three vertical zones of faciès

development:

The uppermost zone :- Water in this zone is of the bicarbonate type and low

mineralization. It is characterized by high intensity of circulation through well leached

rocks.

The intermediate zone:- Water in this zone is of the sulfate type with less

intensive circulation and high mineralization.

The lowermost zone:- Water in this zone is of the chloride type in a near stagnant

condition, unleached rocks and high mineralization.



2 3 7

The above sequence can be explained by the fact that least soluble salts precipitate

first and the most soluble salts precipitate last, at any given time and at any distance

from the intake area (Chebotarev, 1955).

Following the method of data discrimination, the chemical data of the distinct

water types were compared with depth informations. But since most of the wells are

shallow, no significant variations in depth actually exists. The relationships observed

between depths and chemical characteristics are weak. However, from the different

hydrochemical maps so far constructed, and superposing these maps on depth to water

map in figure 5.4, the following informations were deduced:-

1) The bicarbonate waters which occur over a larger part of the area correspond

to shallow groundwater circulations.

2) Intermediate groundwater circulations are nonexistent, since no sulfate type of

waters exit.

3) The presence of sodium chloride type of water is not associated with deep

groundwater circulation, but may rather be attributed to other factors like deposition of

small salt crystals by the wind, or other source of natural and/or artificial

contamination.



238

The three groups of water as depicted in the map of the Q - mode factor analysis

(see Fig.9.24) give a synoptic view of the effect of fourteen parameters on the

samples. These groups divide the area into three distinct zones which seem to be more

or less perpendicular to the flow lines and at the same time coinciding, more or less, to

the distinct geomorphological divisions of the area:- the eastern and northern highs,

the rivers and valley bottoms and the central interfluvial zones. Again these divisions

coincide, more or less, with the geology of the area. Group I coincides with the

Libertad and/or Raigon Formation, Group II coincides with the recent alluvials,

whereas Group III coincides with the basement and the Fray Bentos Formation. It is

worth to note that the groupings mapped from the Q - mode factor analysis are more or

less similar to the groupings mapped from the Sh�ller's diagram.

From the above circumstantial evidences and, using the Q - mode factor analysis

as a basis, we could say that the geology and geomorphology of the area have some

influence on the chemical variations of the waters. However, excepting the effect of

the basement rocks which are limited towards the north, no distinct mineralogical

differences actually prevail in the area. The geomorphology of the area too, is not so

significative. The two big rivers of Santa Lucia and San Jose may not play an

important role in affecting the quality of the ground water . But it can be observed

from the Fig. 11.2 that the chemical quality of the waters around these rivers is

different than other places. The coastal zone too seems to exhibit a different chemical

quality than the rest of the area. How did the groundwater of these three areas become

different from one another? The answer to this question will be given in the next

section.
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9.7 The Geochemical Cycle and Human Activity

In the last section, we have observed three distinct environments ( the valley

bottoms, the coastal zones and the rest) which are related to three different groups of

waters. These groups are not necessarily water types nor waters similar to one

another, but simply groups reflecting three distinct chemistry of waters. It would be

appropriate, at this stage, to study the environment that may have influenced the

present chemical composition of the waters. In doing so, we will be able to know

how the chemical quality of groundwater of one area differs from the chemical quality

of groundwater of another area. We could, at the same time, clearly distinguish those

chemical constituents that are contributing to pollution. The information gathered in

this way may also help in the management and control of pollution problems.

We shall look at the possible source and chemical evolution of groundwater. In

order to reconstruct the path of the geochemical evolution, the chemico - dynamical

situations that exist between circulating water and mineralogy of the environment have

to be considered. This is known as the geochemical cycle (Domenico, 1972).

Geochemical cycles are often constructed for large reservoirs, however their

applications may not be restricted to size, as long as general understanding, instead of

accurate results, is envisaged. With this in mind, a general geochemical cycle which

may be applicable to the study area has been constructed.



Atmosphere-Nitrogene, Oxygen, Carbondioxide dissolved

Evaporation

Precipitation

Runoff

Ocean- Chlorides and sulfates
of sodium, magnesium, calcium
and potassium earned with

water vapour

Evapotranspiration
Minerals retained

Soil water - CO2 added, bicarbonates
formed, SO4 dissolved, colloïdals
precipitated and exchange of cations.

Seepage and subsurface outflow
carry minerals back

Groundwater - Cation exchange,
sulfate reduction substitution
of bicarbonate for sulfate

Fig.9.28. An example of the geochemical cycle, after Domenico (1972).
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The geochemical cycle represented in figure 9.28 resembles that of the

hydrological cycle. It can be used to asses the inputs and the outputs of the chemical

components in a basin.

The inputs and the outputs in the geochemical cycle represent quantities and types

of chemical constituents. Each component is subject to chemical or physico-chemical

process and transformation. Therefore, the inputs will always chemically differ from

the outputs during the course of groundwater movement

The inputs into the basin are chemical components associated with atmospheric

deposition, rainfall, groundwater recharge, and chemical deposition by human

activities. The outputs from the basin are chemical components associated with direct

runoff, effluent seepage from soils, and discharge from groundwater into the ocean.
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If input exceeds output, then the change in the deposition of chemical

components becomes positive. Positive storage in the chemical composition of

groundwater can be considered as an alarm and, if it reaches a certain critical condition,

the groundwater may not be of any use.

It is not intended, in this study, to quantify the change in chemical deposition (the

balance between inputs and outputs of the chemical components) of the area. We

shall, however, examine the chemical input by human beings

The chemical composition of groundwater is affected by the influence of human

beings on the environment. A number of factors like diversion of water courses, the

replacement of open lands by structures and paved areas in settlement regions affect

solute - circulation rates (Hem, 1972). In the study area, solutes are directly added to

groundwater in the form of wastes from industries, domestic and agricultural wastes.

It is not intended, in the present study, to deal in detail with all the types of

solutes introduced by human beings. Therefore, we shall concentrate only on one of

the major agricultural wastes, namely fertilizers, which are introduced in the

agricultural areas.
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In order to arrive at a reasonable estimate of the amount of solute leached from

fertilizers and dissolved in the groundwater, a sample of a fertilizer, frequently utilized

in the field (brown in color, usually called triple - 15 , that is, 15% N, 15% P and

15%K ) was brought to the UQAM laboratory, in June 1988, for chemical analyses.

Synthetic waters were prepared from this sample, on September 21, 1988, by mixing

the sample with different quantities of distilled water. First, a standard solution was

prepared. Nine grams of the sample was mixed in hundred milliliter of distilled water.

This solution was let to stay for few days. It was then diluted with distilled water

before analysis.

The proportion of the synthetic water with distilled water in preparing the

solutions (from the sample, triple -15) and the analyses results (in milligrams per liter)

are given below:

Solutions Ca Me Na K Cl SCXi NCh TDS

10 ml in 50 ml 29.28 13.20 45.86 321.06 2083 557 5524 8544.12

lOmlin 100ml 21.22 6.58 27.12 207.22 982 282 2845 4371.14

10 ml in 200 ml 14.77 3.46 15.54 162.40 450 141 1532 2189.17

In order to obtain the amount of the chemical constituents leached from the

fertilizers and dissolved in groundwater as soluble ions, the proportionate amount of

these dissolved ions are extrapolated from the linear curve obtained by plotting

concentration of ions versus the corresponding proportions. This relation simply

reflects the effect of dilution with respect to the accuracy of the laboratory analysis.

From the curve, the concentrations corresponding to one gram of fertilizer in one liter

of water were extrapolated.
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By using the concentrations obtained and assuming linear relations, the

proportionate amounts for different weights of fertilizers in different volumes of water

were extrapolated.

For the present, we shall refer to the total concentrations of the ions analyzed as

the total amount of chemical constituents dissolved in the groundwater. The values

obtained for the total concentrations are represented as in figure 9.29.

10 -3 10
-2 10 -1 10 10

Weight in kilograms
10

Fig.9.29. Graph of weight of fertilizers in kilograms versus total concentration

of ions in mg/1. Note that this figure is more useful to obtain weight of fertilizers than

its physical meaning.
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The type and amount of fertilizers used in the Santa Lucia basin is given by

Censo General Agropecuario (1980). According to this report, different types of

fertilizers containing nitrogen (N), phosphorus (P) and potassium (K) are used. The

amount of fertilizers used in kilograms per hectare, for the year 1980, as extracted

from this report, is as follows:

Superphosphates Phosphates Other Phosphates Urea

197.7 207.6 184.1 113.8

The annual application of fertilizers greatly varies from region to region and

from crop to crop. Generally, nitrogen applications (expressed as N) vary from about

100 to 500 kg/ha/year (Freeze and Cherry, 1979). The amount of triple - 15 used in

the area is not specifically known. Knowing that the use of fertilizers is increasing

year by year, the minimal average annual use of fertilizer could be taken as 200 kg per

hectare. If we assume the same figure for triple - 15, the amount of total dissolved

solids (TDS) deposited in the area as a result of the use of fertilizer, can be calculated in

the following way:

- For the year 1988, the average annual rainfall in the area was 1088 mm. The

volume of water corresponding to this rainfall in one hectare would be 108.8* 10^

liters.

- From the graph in figure 9.27, the amount of total dissolved solids

corresponding to 200 kg of fertilizer equals 90kg per hectare.
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The amount of TDS that would be available in groundwater after dilution by rain

corresponding to 108.8 x 10^ liters of rain (distilled water) would be

90kg / 108.8 x 104 liters = 82.721 mg/1

If 82.721 mg/1 of total dissolved solids are being added into the Santa Lucia

basin every year, then undoubtedly this could cause distinct chemical groupings: so,

human activity has changed the natural environment.

The amount of other ions that are brought into the groundwater system due to

fertilizers can be calculated in the same manner. It is worth noting that chemical

components, other than nitrates, like chlorides and sulphates, which are also

introduced into the groundwater system due to application of fertilizers, do accentuate

the contamination of groundwater in the lower Santa Lucia basin.

We shall now proceed to calculate the amount of nitrate brought into the

groundwater system due to fertilizers.
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Fig.9.30. Graph of total concentration of nitrate ion in mg/1 versus weight of fertilizers

in kilograms, for 1 liter of distilled water.

From the graph in figure 9.30, the amount of NO3 corresponding to 200 kg of

fertilizer equals 40kg per hectare. The amount of NO3 that would be available in

groundwater after dilution by rain corresponding to 108.8 x 10^ liters of rain (distilled

water) would be

40kg / 108.8 x 104 liters = 36.76 mg/1.

If 36.76 mg/1 of NO3 is being added into the Santa Lucia basin every year, then

this could explain the historical increase in nitrates, at least since the year 1980. This

means that the depositional rate outweighs the leaching rate. What would be the effect

of constant addition of nitrate in the area? This question will be answered in chapter

11.



Chapter 10

"SEAWATER" INTRUSION

In this chapter, we shall examine the possibility of environmental pollution

caused by "seawater" intrusion along the coast of Rio de la Plata and the lower

estuaries of Santa Lucia river.

Under natural undisturbed conditions fresh groundwater is discharged into

the ocean from coastal aquifers, whereby a state of equilibrium is maintained

with a stationary interface between the freshwater and seawater. However, due

to pumping in excess of replenishment, the water table (or the piezometric

surface) is lowered to the extent that the interface starts to advance inland until a

new equilibrium is reached. This phenomenon is called seawater intrusion.

Mixing with small quantities of seawater (about 4%) makes freshwater unfit for

consumptive uses (Mandel and Shiftan,1981). When the advancing interface

reaches inland (towards pumping well field areas) seawater may contaminate the

aquifer, and it might be very difficult to reverse the situation.

We shall first examine the possibility of saline water intrusion in the

coastal aquifers of the lower Santa Lucia basin and later provide solutions to

realistic examples adopted to existing situations. The numerical data obtained

from the study made so far on the quantity and quality of groundwater in the

area will be used in conjunction with mathematical equations describing the

migration of saline water inlandwards.
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10.1 Identification of "Seawater" Intrusion Along the Coastal

Areas of Rio de la Plata

In order to control the contamination of saline waters, it would be

important to identify, find out the source of salinity in groundwaters, and

understand the actual path of its movement. It should be noted that salinity

problems in coastal aquifers are not always caused by seawater intrusion. For

example, other sources of salinity could be wind born dust of salt, which may

be integrated in the aquifer. Irrigation waters may also attribute to salinity

problems. It is attempted, in this study, not to have any bias towards neglecting

the possibility of seawater intrusion, or exaggerating the likelihood of its

occurrence. Rather, the above mentioned possibilities for saline waters are set

aside and the relation of saline water from the side of Rio de la Plata examined.

The concept of seawater intrusion in the area should be looked at, as a

time and depth dependant mixture of saline water from the Atlantic ocean and

freshwater from the rivers. The following table shows the classification of

water based upon the total dissolved solids concentrations according to the US

Geological Survey, Bowen (1970).

Type Concentration of total dissolved solids

Fresh 0 1,000

Brackish 1000 10, 000

Salty 10,000-100,000

Brine More than 100,000
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According to the classification given in the previous page, the average total

dissolved solids of the water samples collected along the Rio de la Plata during

three different seasons indicate freshwater from Pereyra to Kiyu, brackish water

from Kiyu to Montevideo and "seawater" from Montevideo up to Punta del Est.

As mentioned earlier, this situation is not permanent. Moreover, the water

samples were collected only from the top surface of the Rio de la Plata. Even

with the presence of wave action, which may affect the upper two meters,

freshwater would always float over the dense and salty water from the ocean.

Therefore, it is believed that some dense salt water could possibly exist in

permanence under the freshwater, all along the Rio de la Plata, up to Colonia.

We may possibly conclude from this that there could still arise the problem of

sea water intrusion in these coastal aquifers whenever the pumping rate passes

beyond the safe limit.

10.1.1. Salinity. Chlorinity and 18O as Indicators of Freshwater - "seawater"

Mixing

Since relatively higher chlorinity and salinity is expected for waters mixed

with seawater, chlorinity and salinity distributions are indicative of seawater

intrusion. In the following, the chlorinity and salinity characteristics of Rio de

la Plata will be examined.
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Water samples were collected at three different seasons (May - June,

1988, November - December, 1988 and September 1989) from the ocean water

at Punta del Est and from the mixed waters (ocean - fresh) at Piriapolis,

Atlantida, Playa Rodriguez (Montevideo), Playa Pasqual, Kiyu and Pereyra.

The isotopic behavior of these waters has been discussed in chapter 8. In this

section the major constituents that normally occur in natural waters were

analyzed in the water samples collected from the above mentioned places. The

chemical nature of these waters could grossly be viewed from the point of view

of certain characters like salinity, chlorinity and ionic strength.

Salinity

Salinity is related, but not exactly to the total salt content

(Pytkowicz,1983). Salinity (S °/C0 ) is measured by a salinometer, which

actually determines the electrical conductance in relation to a defined electrical

conductance value of a solution at 15°C. The conductance values are converted

into salinity values according to the salinity scale which is defined as a function

of conductivity ratio (conductivity of the sample / conductivity of the solution).

The salinity S °/00 value for Standard Seawater, is nearly 35.000 (Pytkowicz,

1983).

Since ionic strengths were calculated from the chemical analyses data,

salinity values of the ocean water and the mixed (sea and fresh) waters were

obtained by using the following interconvertion equation (Pytkowicz, 1983):

I = 0.00147 + 0.019885 S 0/00 + 0.000038 (S 0/C0)2
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Where, I is ionic strength and S is salinity expressed in parts per

thousand. Neglecting the last term, the approximate salinity values are

calculated from the following:

S °/00 = (I-0.00147)/0.019885 (10.1)

From Table 10.1, we observe that salinity values have tremendously

increased in November compared to that of May. A great deal (thousands) of

dead fish were observed at Kiyu, at the time (November 15, 1988) when the

water samples were collected. The dead fish were carried in small lenses of

fresh waters. They died downstream when they could no longer support the

saline water mixture (G. Prichonnet, pers.comm.). The salinity of Rio de la

Plata around Kiyu, which caused the death of these fish, at the time of visit,

have been determined to be around S °/C0 = 3.7. As in the above discussion,

salinity parameters are considered as good reflectors of ocean waters and are

used as indices to localize the intrusion of seawater.

Chlorinity

Jacob sen and Knudsen (1940) defined chlorinity as the weight of silver

necessary to precipitate the chloride bromide and iodide in 0.3286707 kg of

seawater (Pytkowicz, 1983). Chlorinity, in a way characterizes the electrolyte

content of ocean and related waters. It therefore reflects the salt content of the

waters. Since ionic strength and salinity are related, chlorinity and salinity are

also related by the following formula:

Cl °/00 = S°/CO/1.80665 (10.2)
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The chlorinity values calculated from the above formula are given in table

10.1. Again, the transitional chemical nature of Rio de la Plata can be observed

from chlorinity values which gradually increases from about 0.5 at Pereyra to

about 18 at Punta del Est.

Table 10.1. Table of ionic strength, salinity and chlorinity of waters collected

in May, 1988 calculated from the corresponding equations (10.1&10.2) The

values in italics are for waters collected in November, 1988.

Locality Ionic Strength salinity chlorinity

Pereyra 0.005,0.021 0.146,7.007 0.081,0-557 -5.9,-5

Kiyu 0.007,0.077 0.254,3.752 0.141,2.093 -5.5,-5

PlayaPasqual 0.004,0.225 0.121,11.219 0.010,6.210 -5.8,-4.9

Montevideo 0.033,0.427 1.549,27.090 0.857,77.674 -5.1,4.7

Atlantida 0.129,0.456 6.409,22.547 3.547,72.644 -4.5,2.9

Piriapolis 0.141,0.557 6.992,29.744 3.870,76.755 -4.1,-7.5

Punta del Est 0.425,0.656 21.276,57.905 11.777,77.659 -1.2,7.7
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Oxygen -18 Isotope

Contrasting salinity sources may exhibit isotopic differences which may

be observed from differences in isotopic composition of Oxygen-18 in waters of

varying salinity (Tan and Pearson, 1975). The relation between salinity and

chlorinity with d^O has been examined in chapter 8. This relationship can also

be observed from table 10.1. It is quite evident that the 3 ^ O values

progressively increase towards the ocean, thus reflecting the degree of mixing of

the freshwater with "seawater" from the ocean.

Undoubtedly, the composition of the stable isotope of oxygen - 18 could

be used to trace and predict the migration of "seawater" in the aquifer if it exists.

However, comparison of the composition of the stable isotope of oxygen-18

from Rio de la Plata with that of the groundwater along the coast has not

shown any remarkable evidence of "seawater" contamination. The d^O of

groundwater shows very little temporal changes in 3 ^ 0 corresponding to the

isotopic changes of the Rio de la Plata.

10.1.2 The meq/1 Values of the Ions as Indicators of Freshwater - "seawater"

Mixing

Before dealing with the physical aspects of the intrusion, we shall examine

the chemical nature of the Rio de la Plata in relation to the adjacent fresh

groundwater. The fundamental aspect of the phenomenon of seawater intrusion

is based on the fact that a hydrostatic equilibrium exists between two fluids of

different densities. The relative densities of the two fluids, on the other hand,

depend on the amount and concentrations of ions in solutions in the fluids.



254

These two fluids in our case are the relatively light groundwater flowing

from north to south and the relatively dense water of the Rio de la Plata. The

chemical characteristics of the former have been considered in detail. We shall

now consider the chemical characteristics of the Rio de la Plata from its

relatively freshwater at Pereyra to the relatively salty water at Punta del est.

Temporal chemical variations of a whole year have not been obtained,

however, relatively contrasting variations were obtained from two different

seasons (May - June and November - December, 1988).

Shoeller's Diagram

Salinity distribution and possible mixing of water from Rio de la Plata

with freshwater of the aquifer can be detected by plotting the meq/1 values on

Shoeller's diagram.

Similarity in the major ions of the waters from Rio de la Plata with that of

groundwater may indicate the possibility of salt water intrusion. Therefore, the

chemical characteristics of the groundwater in the coastal aquifer is compared

with the chemical nature of Rio de la Plata.

In the Shoeller's diagram (see Fig. 10.1) the numbers from 1 to 7 refer to

the waters from Rio de la Plata near River Pereyra, Kiyu, Playa Pascal, Playa

Rodreguez (Montevideo), Atlantida, Piriapolis and Punta del Est respectively,

and wells 108,159 and 163.
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Fig.10.1. Sh�ller's diagram representing the meq/1 values of the waters

collected in November, 1988, ranging from relatively salty water (sample N°-7

to relatively freshwater (sample N°- 1) and the mixed groundwaters (108, 159,

163).
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The following important informations are observed from the Sh�ller's

diagram: a) The similarity of the graphs is an indication of progressive dilution

of seawater by the freshwater from Rio de la Plata (better results could have

been obtained if the distances between the sampling stations were kept

constant), b) The fresh groundwaters plot parallel (in the lower part of the

diagram), indicating similarity to the ocean water (mixing).
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It has been observed that the supposedly fresh groundwaters (sample N°-

23 and N°-24 from wells near river Pereyra) appear to have higher

concentrations than the Rio de la Plata, indicating no contamination from Rio de

la Plata during May - June, 1988 . Normally, the intruding seawater should be

denser than the floating freshwater, but, the density of groundwater for samples

no. 24 and 23 clearly indicates the reverse phenomenon. This can be explained

by the fact that the density of groundwater usually remains constant throughout

the different seasons, while the density of surface water (Rio de la Plata)

changes due to dilution effects of flood and precipitation.

Calcium to Chloride Ratio

The calcium to chloride ratio of seawater, which is normally in the order

of 4.8, could be compared with the calcium to chloride ratio of groundwater at

various depths (Mucci and Page, 1987). The calcium to chloride ratio of

groundwater is compared with the "seawater - saltwater mix" from Rio de la

Plata (see Fig. 10.2). As can be seen from the graph, there is some resemblance

of the calcium to chloride ratio of groundwater with the calcium to chloride ratio

of Rio de la Plata. The calcium to chloride ratio of the surface waters is also

presented in figure 10.2, for the sake of comparison. From the chemical and

isotopic data so far considered, nothing definitive could be said about the

existence of seawater intrusion.
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15,

Fig. 10.2 Ca / Cl ratios of groundwater, Rio de la Plata and surface waters

from chemical analyses data of November, 1988.

10.1.3 Relative Volume of Freshwater and "seawater" Along the Rio de la Plata

Apart from chemical variations in time, chemical variations in depth would

play an important role in determining the degree of freshwater - saltwater mixing

along Rio de la Plata. It is not intended to deal with the matter intensively, but a

general overview of the geometry of Rio de la Plata would help to a better

understanding.
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Fig. 10.3. Transversal sections (AA' to FF') and a longitudinal (GG1) section

along the Rio de la Plata (after Servicio de Oceanografia y Hidrografia de la

Republica O. del Uruguay y Hidrografia de la Republica Argentina, 1974).



259

The transversal sections and a longitudinal section along the Rio de la

Plata are shown in figure 10.3. As can be observed from the cross sections,

the real ocean water begins at Punta del Est (east of section FF'). However,

considering the cross sectional area of Rio de la Plata, it would be unrealistic to

imagine freshwater all along its depth. In fact, if we compare the sizes of river

Uruguay and river Parana (the two main fresh water contributors to Rio de la

Plata), it would rather be logical to assume very thin freshwater floating over

the ocean water.

It can be seen from figure 10.3 that, on average, the total depth of Rio de

la Plata does not exceed 10 meters. However, there could be significant salinity

variations within the ten meters of depth. The true picture of "seawater"

intrusion can only be understood by incorporating the data of the vertical

changes with the horizontal. Unfortunately, no such data have been obtained.

After considering the geometry, the available data on the general

chemistry, salinity chlorinity and oxygen - 18 values, it has still become a

difficult task to trace a definite line across the Rio de la Plata beyond which the

problem of seawater intrusion may prevail.

10.1.4 Effect of Tidal Action on the Rio de la Plata and its influence on Santa

Lucia river

It has not been possible to obtain data on fluctuation of water level on the

Rio de la Plata. Therefore, the local impacts in the estuaries of Santa Lucia may

reach tens of kilometers upstream (from three to five meters above sea level).
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A small barrage had been built at Aguas Corrientes to protect the

freshwater upstream from surface water contaminations by the envading

"seawater" of the Rio de la Plata. We have so far attempted to identify

"seawater" intrusion in the coastal aquifers of the Raigon formation and also

along the Santa Lucia river. However, the problem of seawater intrusion do

not seem to be crucial west of San Gregorio river, it could be a potential problem

between the Rio del Tigre and the Santa Lucia river. In the following

discussion, the problem of seawater intrusion will be considered within the

context of the particular (physical and chemical ) nature of Rio de la Plata.

10.2 The Distribution (Shape and Position) of the "Seawater" Intrusion

The Ghyben-Herzberg's model (Todd, 1980) of an interface in a coastal

phreatic aquifer is represented as in Fig. 10.4.

Ground surface

Sea water

Interface

Fig. 10.4. The Ghyben - Herzberg interface model in an unconfined coastal

aquifer.
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In the Coastal cross-section of an unconfined aquifer (see Fig. 10.4), the

total hydrostatic pressures at A and at B are as in the following (Todd, 1980):

pA = Â"gZ

pB = Â(gh+ Â'gZ

where, A" = seawater density, A'=freshwater density, g=acceleration of

gravity, h = height of the water table from sea level and Z = height of the

interface below the sea level.

Since pA=pB,

Â"gZ= Â'gh + Â'gZ (10.3)

From equation 10.3, we obtain the Ghyben- Herzberg relation, ie.,

Z= (Â'h)/(Â"- Â') (10.4)

If we substitute 1.025 g/cm^ for the density of seawater, we obtain Z =

40h. This implies that if the water in the unconfined aquifer is lowered by one

metre, then the seawater interface will rise by forty metres.

For variable densities we can deduce from equation 10.4,

Z=hQ (10.5)

where Q = density contrast (A1 / A"- A1 ) between freshwater and salty

water.
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In order to be able to apply the above formula for the problem of

"seawater" intrusion in the coastal aquifer of the lower Santa Lucia basin, the

density of the mixed saltwater - freshwater of the Rio de la Plata and the

density of the relatively fresh groundwater should be determined and the density

contrast (Q) evaluated.

The difficulty of tracing a definite line across the Rio de la Plata, beyond

which the problem of seawater intrusion may prevail, has been mentioned

earlier. However, it is obvious that the Q value for the area considered should

be between 1 and 1.025 g/cnA Although significant chemical variations occur

on the concentrations of dissolved solids, during different seasons and years, a

choice should be made in using the available chemical analyses data.

The relationship of Ichiye (1966) states that the increase of density with

salinity is approximately 8 x 10~4 g/cm^ for each 17°° increase (Stewart and

Plaford, 1986). Taking a salinity of 32 for the seawater its density would be

1.0256 g/cm3.

The salinity of Rio de la Plata varies from 1.007 at Pereyra to 31.903 at

Punta del Est (see Table 10.1). Taking half way in between, salinity of 16

would correspond (according to Ichiye's relationship) to density 1.0128.

Using equation 10.5 and substituting 1.0128 g/cm^ for the density of

mixed fresh - ocean water, we obtain, Z = 79 h. This implies that if the water in

the unconfined aquifer is lowered by one metre, then the "seawater" interface

will rise by 79 metres.
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Nature of the "Seawater" - Freshwater Interface

The interface between freshwater and seawater being parallel to the

flowlines, theoretically no flow should occur across it. However, relatively

small thickness ( a few meters or more) of mixing zone prevails at the interface.

The fact that this mixing zone is small relative to that of the fresh and "seawater"

bodies is the basis for the "sharp" interface approximation of flow in coastal

aquifers (Jackson, 1983). Nonetheless, the reasons for mixing at the interface

are given below:

a) The flow of freshwater is a way of returning the solutes back to the sea

which disperse in porous media flow.

b) Fluctuations in the interface are produced by tides. Flushing of

"seawater" by freshwater creates small movements of seawater called Nomitsu

current (Jackson, 1983). The magnitude of these currents determine the

thickness of the mixing zone.

c) Seasonal water table fluctuations affect the thickness of the mixing

zone.

d) Molecular diffusion plays a lesser important factor, because the velocity

component is dominant over molecular diffusion towards the interface.

e) Aquifer exploitation, or freshwater injection increases the thickness of

the mixing zone.
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The Shape and Position of the Interface

The toe of the interface is situated at the point where the height from the

sea level to the interface, in unconfined aquifers (or the aquifer thickness in

confined aquifers) equals to the depth of the impermeable base (see Fig. 10.5).

In the landward direction, away from the toe, the aquifer contains only

freshwater. The seaward freshwater flow ( Q L ) at this point is the difference

between the total replenishment (R) of the aquifer and the withdrawal.

Pumping well

Base of aquifer

^ % ~ Upconing �+r

Fig.10.5. An example of a coastal cross section with pumping well at the sea-

ward part of the interface.

The relationship among the length (L) of the seawater intrusion, the

discharge (Q) to the sea and the piezometric head (h) above the toe is expressed

by the following relation (Bear, 1979).

QL=Kh2/2Q (10.6)



265

or, F=Kh2/2QQ

(10.7)

From equations 10.6 and 10.7, the following can be deduced: a) as the

difference between the total replenishment (R) of the aquifer and the withdrawal

(in other words, inflow of groundwater (Q) into the ocean ) increases, the extent

of seawater intrusion expressed by L decreases; b) when Q decreases (due to

groundwater extraction), the interface moves towards the inland position.

Therefore the management of the coastal aquifers requires a knowledge of the

behavior of L with different Q.

Verruijt (1968) gives the following two equations which express the

position of the interface :

h =V[2QQ' /K(l+Q)x] (10.8)

Z =-V[Q'2/(Q2K2)(l-n/ l+Q)+2Q'x/QK(l+Q)]

(10.9)

Where Q' is the flow of freshwater into the sea per unit length of aquifer,

Z is positive upwards, x is the distance with the origin at the seashore, being

negative away from the shoreline, K is permeability and Q is the density

contrast.
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The Position of the Interface With Constant Discharge as Obtained from

Field Values of Transmissivitv

Let us consider an aquifer at the coastal plain, for example at Colonia

Wilson. Let us assume that no groundwater is extracted from this area.

- The average aquifer thickness at this place is about 30m.

- The hydraulic gradient, i = 0.001

- Transmissivity = 300 m 2 / day

Since Q' = i x T , where, i = gradient, T = transmissivity, the values of T

can be substituted in equations 10.8 and 10.9 to obtain the specific discharge

(Q1) from the aquifer into Rio de la Plata. From the previous discussion the

difference between density of Rio de la Plata and the density of freshwater

could be taken as Q = 0.0128.

The average discharge (Q!) flowing into Rio de la Plata is

Q ' = T x i = (300m2/day)(0.001) = 0.3 m2/day

K = T/aquifer thickness = (300 m2/day)/30m =10 m/day

For different values of x (distance from the shore) the different values of h

and Z were generated by programming Verruijt's equations (10.8 & 10.9).
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Graphs of x versus h, and x versus z have been plotted from the

calculated values of h and Z for the fixed values of the different parameters

given above, with respect to x values which were made to vary (see Fig. 10.6a

& 10.6b). From these figures, we can deduce not only the parabolic shapes, as

indicated by Verruij A. (1968), but also the various distances and depths which

vary in accordance with the parameters considered in the formula.

-50 100 200
x (distance from Rio de la Plata in meters)

300

Fig. 10.6 a) A water table curve of the fresh groundwater from the coastal

aquifer
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"seawater" of the Rio de la Plata.
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We can observe from figures 10.6 a & 10.6 b the relations between the

distance up to the toe of the interface (L) and specific discharge Q'. We have

previously mentioned that the two are inversely related. We note from

Fig. 10.6b, that for Q' = 0.3 m^/day, the contact (toe) of the impermeable bed

with the interface (since the aquifer thickness considered is 30 metres) is at x =

193.3 metres. The outlet of the interface goes up to -1.16 metres in the

"seaward" (Rio de la Plata) direction. These figures indicate no danger of

seawater intrusion to coastal aquifers.

Let us now examine the possible situation for a different Q1. Since K,T,

Q, and b are constants, the only way we can change Q' would be by adding or

subtracting a certain quantity of water into the aquifer.
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The Position of the Interface With O' Ten Times Less Than the Original O'

Let us suppose that a number of wells will be drilled, along the coastal

aquifer, thus reducing the inflow of freshwater into the sea. Let us assume a ten

times reduction of the original Q' considered. By using the same formula and

by choosing x, for all values of h greater than zero and for all values of Z

between 0 and -30, we obtain different values of h an Z. Let us suppose that

the value of Q' has become 0.03 m^/day, due to pumping.

Obviously, the water table must lower. In the previous case, the water

table was at h = 0.39m for x = 193.3 m.. But in this case, the water table is at

h = 0.116 for x = 193.3m. Due to such lowering (0.284m) of the water table,

seawater has penetrated a considerable distance into the aquifer (see Fig. 10.7a

and 10.7b).

-500 0 1000

x (distance from Rio de la Plata in meters)

2000

Fig. 10.7a. A water table curve for groundwater discharge ten times less than

the previous.



10

o �

-10"

£ -20-
N

-30

-40

i Shore

Salt water

Limit of the impermeable base

L= 1945 meters

-500 0 1000
x (distance from the shore in meters)

2000

Fig. 10.7b. A curve of the interface for groundwater discharge ten times less

than the previous.
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At the shore, the interface boundary starts at -0.12m, while in the previous

case, it started at x = -1.16 metres. On the other hand, the intersection of the

impermeable bed with the interface is at x = 1945 metres, which means that the

interface has moved a considerable distance into the aquifer (about ten times the

first distance).

The above examples indicate the possible consequences related to

extraction of groundwater from coastal aquifers. However the real situation

may be better understood by a model study.
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10.3 Effect of Wells on the "Seawater" Intrusion

Let us now examine what actually happens when we extract groundwater

from coastal aquifers; the possibility of fixing L (toe of the interface) by

controlling Q' will be discussed in this section.

If groundwater exploitation takes place at the landward of the toe, the

interface will move inland depending on the intensity of exploitation of the

aquifer. In order to illustrate the situation, let us consider a single pumping well

(see Fig. 10.8) with a constant discharge (Qw), located in a homogeneous

aquifer with a uniform flow at a constant specific discharge rate Q'. The flow

net for this situation is shown in figure 10.8b.

Fig. 10.8a. Location of the interface for a well near the coast, Bear (1979).
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1

Fig. 10.8b. Location of the interface in the x-y plane for a well near the coast,

Bear (1979).

The two main features of this flow net are groundwater divide and

stagnation point. The groundwater divide marks the limit of the influence of the

discharging well. The stagnation point (S) is the point (along the water divide

and, in the x-direction) where the resultant velocity, produced both by the

pumping well and the natural flow in the aquifer vanishes (Bear, 1979).
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In figure 10.8b, Point G represents the toe of the interface, zone I in

figure 10.8a represents the area under the influence of the sea, and zone II

represents a free zone which is neither influenced by the sea nor by the well. As

discharge from the well (Qw) increases, the influence of the well widens (the

water divide defined by S moves towards the sea) and the interface moves

towards the inland. Zone II narrows and finally disappears. Point S and point

G will approach one another until they finally merge to a single point (stagnation

point), with toe of the interface directly below the divide, creating unstable

critical situation. Once this critical situation is reached any further increase in

pumping rate will produce further drawdown of the water table with the

consequent inland migration of the interface which may result in upconing (see

Fig. 10.12).

Actually the critical discharge occurs when the toe of the interface

coincides with the stagnation point (point G and point S respectively). We can

obtain xs (the location of the interface in the x-y plane, the dashed line in figure

10.8b) by applying Strack's (1976) formula (Bear 1979):

For the stagnation point :

xs = xw{ 1 - Q W / T C Q X W } 1 / 2 (10.10)

Where, xw refers to the location of the interface with respect to the well
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10.4 Prediction of the Influence of a Well

If we have a line of fully penetrating wells, say at a distance 500 metres

from the coast, it would be necessary to know the following points.

- the maximum distance of the toe of the interface at which the wells can

be pumped without any danger of "seawater" intrusion,

- how much water can be pumped from the wells without "seawater"

passing this maximum distance and contaminating the aquifer.

From the previous discussion, this maximum tolerable distance is the

location of the stagnation point xs with respect to the coast, and the critical

discharge (Qc) is the discharge of wells at the stagnation point. If we assume

that the critical distance (stagnation point) is located at 300 meters from the

shore, in order to protect the wells, the bottom of the interface should be kept at

300 meters, so that z = -30 m, for x = 300m. What would be the critical

discharge of wells in this situation?

The critical discharge (Qc) can be obtained from equation 10.9.

Taking the same parameter values as in the previous example, then

Q'c2(l-Q)/QK +2xQ'c - Z
2QK(1+Q) =0

= 7.7125Q'c2+ 600Qc - 116.675 = 0

Q'c = 0.193952 m2/day

In the case with no pumping, Q' was 0.3 m2/day, the present Q1 is 64.65

% of the first Q', which means that we could extract 35.34 % of the initial

aquifer flow to Rio de la Plata before we reach the critical situation.
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The aquifer specific discharge for this critical situation is then,

0.3534(0.3)m2/day = 0.10602 mVday

If we want to keep a distance of 300 meters between each well then each

well can yield less than (0.10602 mVday x 300m) = 31.806 m^/day . The

critical discharge of wells in this situation would be about 0.41/s for 300m of

interval.

The above example indicates the possibility of extracting groundwater

from the coastal aquifer, even at a distance of 500 meters from the shore,

without having the problem of intrusion of saline water. However, water must

not be pumped from the seaward part of the coastal aquifer between the toe of

the interface and the shore, otherwise the problem of upconing may arise.

Problem of Upconing

If the pumped well is situated on top of the interface, then the cone of

depression around the well will cause a corresponding upconing of the interface.

If upconing continues beyond a certain critical rise, then the seawater will be

drawn into the well (see Fig. 10.9 ). This is a dangerous situation, whereby the

well could be ruined due to very high salt content. The problem could arise even

before the actual "cone" reaches the bottom of the well, due to widening of the

zone of transition by hydrodynamic dispersion (Mandel and Shiftan, 1981).
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Fig. 10.9. Upconing of the freshwater - saltwater interface beneath a pumping

well, after Me Whorter and Sunada (1977).
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According to the Dupuit-Forchheimer approximation, the piezometric head

on a vertical line is constant (Me Whorter and Sunada, 1977). Therefore,

An = - Â7Q(Ah) (10.11)

Where An represents the change in the distance to freshwater - seawater

interface, and Ah is the change in piezometric surface elevation in confined

aquifers or change of elevation of the water table in unconfined aquifer.

The above equation shows the inter-relationships between the interface

and piezometric surface or water table; a rise of the interface corresponds to a

drawdown in a pumping well.
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Theoretical considerations and field evidences have shown (Me Whorter

and Sunada, 1977) that the critical rise equals, approximately, one half of the

distance between the interface and well bottom. In order to be on a safer

situation, therefore, the position of the well screens have to be kept as much as

possible high up, above the interface and drawdowns have to be kept relatively

small.

The steady discharge for a well is given by Me Whorter and Sunada

(1977):

Q = -27cK(b-s-n)rds/dr

(10.12)

Where, b is the undisturbed fresh water thickness, s is the drawdown n is

the interface elevation above the original level and r is the radial distance

In the case where the length of the screened portion of the well is small in

relation to the depth, the steady state interface beneath the well would be (Me

Whorter and Sunada, 1977):

n w = QÂ72jt (b-l)QK (10.13)

Where, 1 is the distance between the top of the aquifer and the well

screen. Using the condition that the interface should be kept at one third of the

distance between the bottom of the well and the original interface elevation, the

maximum safe discharge is obtained from the following equation :

. Qm = 2ji/[3(b-l)2(Q/Â')K] (10.14)
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If we consider a well 16m in length having lm of screen at the bottom,

where the original (undisturbed) interface is at 32m below the water table, and if

K is 10 m/day, the maximum discharge by which we could pump without

causing the "seawater" to intrude into the well can be calculated by using

equation 10.14:

Qm =[27t(32-16)2 (0.0128)(10)] /3 = 205.887 m3/day = 2.41/s

10.5 Prevention and Control of the "Seawater" Intrusion

Before concluding this chapter, some points will be given regarding

prevention and control. No serious problem of saline water intrusion have so

far been detected in the coastal aquifers of the studied area, but problems may

arise in the future, when the need to intensive exploitation of groundwater in the

coastal aquifers become inevitable. The following points may then serve for

future use.

Reduction or Modification of Pumping Pattern

Intrusion of seawater can be controlled by reducing the amount of

groundwater extracted. This should be done in accordance with the water need

and availability of other sources of water supply.
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Rearrangement of the pumping pattern may also be an alternative solution:

If pumping is concentrated towards the inland areas, the free zone area between

the toe and the well widens. As a consequence, the time of reaching the

stagnation point will increase significantly.

Artificial Recharge

If additional source of water become available, for example flood during

rainy seasons, an artificial recharge by spreading can be employed. In this

case, the fresh waters of San Gregorio, Mauricio or del Tigre can be used for

spreading purposes. With such procedure, fresh groundwater discharge into

Rio de la Plata could be augmented, which will push the salt water away from

the aquifer, thus preventing any undesireable effect of salt water encroachment

Temporary salinity problems can be reduced by a line of wells parallel and

near the coast pumping the "seawater", at a rate which will prevent the

encroachment of the saline water landwards.



Chapter 11

DEVELOPMENT OF GROUNDWATER RESOURCES

Having considered all the major aspects related to the quantity and quality of

groundwater, the next step would be to extract only those informations which are

relevant to development aspect. Since a great deal of informations have been

represented in the form of maps, a good way of extracting the informations needed

would be to superimpose these maps and trace the salient features from each.

Accordingly, a water resource map has been prepared which can be used for

development of groundwater resources (see Fig. 11.8).

This study has revealed that there is not a free zone where groundwater could

be developed safely, without having to care about the groundwater quality of the

adjacent land. Therefore, analysis of the water quality becomes a necessary

prerequisite for groundwater resources development

11.1 Groundwater Quality Evaluations

11.1.1 Quality of Groundwater for Drinking Purposes

In this section, we shall examine, only the critical chemical parameters which

indicate the deterioration of the quality of groundwater. The chemical quality of the

groundwater for drinking purposes are compared with the internationally accepted

quality standard, as given by the World Health Organization, and quality standards for

drinking purposes in Uruguay, as given by OSE (Administracion de las Obras

Sanitarias, 1986).
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Table 11.1. Drinking Water Standards in Uruguay, after OSE (1986). The values in

parenthesis are for European standard, after the World Health Organization (Freeze and

Cherry , 1979).

pH

Total Hardness

Chloride

Sodium

Sulfate

Nitrate

Total dissolved solids

6 to 9

500 mg/1 as CaCO3

300 (250) mg/1

200 mg/1

400 (250) mg/1

45 (50) mg/1

1000 (500)mg/l

The mean and standard deviation of the ions in the water samples analyzed are

represented on a diagram (see Fig. 11.1). From the average data of January - February

1987, only nitrates were found to have concentrations beyond the drinking standard

(50 ppm). The mean and standard deviation of the ions give a general idea of the water

quality. But they do not reflect the situation over the area.

High concentration (beyond objectionable limit) of some ions are known to exist

at some places. The geographical locations of the areas affected by some of the most

important water quality parameters like nitrate and chloride are represented on contour

maps (see Fig. 9.14 and Fig. 9.17). It is, therefore, essential to consult these maps in

order to identify areas with particular ion concentration.
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Fig. 11.1. Mean and standard deviation of the major cations and anions from the water

analysis data (98 samples) of January - February, 1987.

The total dissolved solids pass beyond the desirable limit (1000 ppm) in most

places. A water quality map has been prepared by the superposition of the most

important water quality parameters in the area, namely TDS and nitrate (see Fig.

11.2).
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Fig. 11.2 Map showing a general overview the groundwater quality of the Lower

Santa Lucia basin based mainly on TDS and nitrate data of January - February 1987.
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We can see from Figure 11.2 that a large part of the groundwater in the aquifer

are within the objectionable limit for drinking purposes. When the concentration of the

contaminant attain objectionable level, the groundwater is said to be polluted. It should

be noted that not all of the aquifer indicated on the map in Figure 11.2 is contaminated.

Repeated analysis have indicated the presence of polluted groundwater from some of

the wells examined. These wells are marked on a map (see Fig.8.8).

11.1.2 Quality of Groundwater for Agricultural Purposes

Normally fresh waters contain less sodium than calcium and magnesium. But in

most of the waters analyzed, the sodium cations represent the highest percentages

among the cations. This may be due to the precipitation of calcium and magnesium

cations by evaporation from irrigation waters that have high bicarbonates, thus

allowing proportionate amount of sodium to remain in the water. The waters in the

irrigated areas may have been used and reused. As a consequence, the content of

sodium becomes elevated. This raises the problem of sodium hazard.
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As plants withdraw water from the ground by osmosis, favorable balance must

be maintained between salts within plants and salts within solution. The structure of

soil particles is affected by high concentration of sodium in soil solutions relative to the

concentration of calcium and magnesium. Flocculation of soil particles occurs due to

relatively high concentration of calcium and magnesium, compared to the concentration

of sodium, whereas defloculation of soil particles occurs due to relatively higher

concentration of sodium compared to the concentration of calcium and magnesium.

Flocculation provides good circulation of air and water, while defloculation prevents

free movement of water and air. The sodium adsorption ratio (S AR) is an index which

is used to predict the sodium hazard of water (degree of flocculation produced by

sodium). It is defined by the following relation (Walton, 1970):-

SAR = Na/0.5(Ca + Mg)

Where, the ion concentrations are expressed in equivalents per million (epm).

High SAR values indicate the possibility of sodium in the water which can

replace the calcium and magnesium in the soil. SAR values smaller than 10 are

considered as low, intermediate between 10 and 18, and high exceeding 18.

Generally, it can be said that most of the waters are within the safe SAR limit.

However, at some localities and in particular months, when irrigation practices are at

their peak, the sodium hazard could possibly create problems to the growth of plants.
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Fig. 11.3 Suitability of the groundwater for irrigation in the Lower Santa Lucia basin

(data from the January - February, 1987), cf.Walton (1970).

Figure 11.3 shows the position of the groundwaters in relation to sodium

adsorption ratio and conductivity. As some plants are specifically sensitive to salinity,

the quality of the groundwater will depend on the type of plants grown. The use of

Figure 11.3 then depends on the salt tolerance of the type of crops planted. The iso -

SAR map (see Fig. 11.4) indirectly reflects the quality of the land for agricultural

purposes .
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11.1.3 Quality of Groundwater for Industrial Use

Each industry may have its own water quality specifications depending on the

type of industrial product it manufactures. But , in general, the quality of

groundwater from the point of view of its hardness seem to be a universal characteristic

affecting any industry.

Hardness of water is caused mainly by the presence of calcium and magnesium.

The two types of hardness are carbonate or temporary hardness (Ca and Mg

carbonates and bicarbonates) and non carbonate or permanent hardness (Ca and Mg

sulfates, chlorides and nitrates).

The total hardness values are usually used as a measure of the hardness property

of waters. Total hardness which is the total concentration of calcium and magnesium

expressed in milliequivalent per liter is given by Freeze and Cherry (1979):

Total hardness = 2.5 (Ca2+) + 4.1(Mg2+)

The total hardness of the waters was calculated from the above formula and

represented on a table (see Table 6 in the Appendix). There are a number of hardness

scales and various hardness quality standards. Generally, hardness of less than 100

mg/1 is considered to be suitable. Hardness between 100 and 150 is considered to be

hard, while hardness greater than 150 is very hard. In this respect, few waters were

very hard, most waters were found to be hard, some waters were intermediate and few

waters soft.
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11.2 Groundwater Pollution

We have observed in the previous sections, that most parts of the area are

affected by groundwater contamination. In fact, groundwater quality has passed

beyond the acceptable limit and groundwater pollution has become a threat. The major

sources of pollution in the area are agricultural pollution, industrial pollution and

domestic pollution.

The areas affected by point source pollution are marked on a map (see Fig. 11.6).

It is not intended to deal with all these sources of pollution. However, some aspects

will be given from the point of view of groundwater development.

11.2.1 Nonpoint Pollution Conceptual Model

The source of pollution caused by human beings can be classified as point or

nonpoint source of pollution.

Point sources are discrete, have identifiable locations and can usually be

measured or quantified (Nostony and Chesters, 1981).

Nonpoint sources, such as application of fertilizers do not have distinct point

sources where measurements can be conducted (see land use map in Figure 11.6).

Unlike point sources, they are derived from non - continuous applications and,

apart from the intensity of the applications, they depend on other factors like

climatic events and geological conditions. Therefore, they enter into groundwater

at intermittent intervals.
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A proper understanding of the quality of groundwater and pollution problems,

requires an understanding of the path of the geochemical evolution through which the

waters may have undergone before attaining their present composition.

The composition of water is a result of a large number of factors and processes

that are interrelated. The hydrochemistry of groundwater reflects the source of water,

the lithology of the aquifer and the local chemical conditions like temperature, pressure,

redox, etc.(Matthess, 1982). Consequently, the occurrences of dissolved chemical

species in groundwaters are due to chemical reactions in the atmosphere and the

combination of physical and chemical processes in geological formations (Domenico,

1979).

Modeling the nonpoint pollution caused by fertilizers would actually mean

modeling the whole or part of the watershed. In any case, a detailed study should

be done in analyzing all the factors which affect the transport of contaminants.

The two basic approaches to modeling nonpoint pollution are lumped

parameter models and distributed parameter concept (Novotony and Chesters,

1981). In lumped parameter models, the watershed is treated as one unit, while in

the distributed parameters approach the watershed is divided into preferred units,

depending on a number of factors like soil, topography etc., whereby each unit is

modeled separately.
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The principal source of nonpoint pollution in the Santa Lucia basin is

agricultural pollution. Fertilizers are employed over the entire area of the lower

Santa Lucia basin, excepting the marshy areas along the major rivers. Rain water

and imgation water dissolve and carry fertilizers, herbicides and pesticides down

through the unsaturated zone and replenish the aquifer with contaminants (see Fig.

11.5).

Adsorbed or dissolved

Pollutants
Discharged to
Rto de la Plata prrry
by surface flow

Precipitation
Plant N-uptake

Fertilizers

Dissolved pollutants
Discharged to g^ r
Rto de la Plata
by groundwater flow

(�O o.O O O.O O O.O O O.I
,OMO,é.Q\Q.O.Q.O.Q.Q.Q.Q.O,O,i _ . . .
o o.o.p ojo.o 0,0.0 o 0.0 o 0.1 baturateci zone
O.O.O.b&.O.O.O.O.Q.O.o'.Q.O.O.i
.O.O.O.O.O.O.O.O.O.O.O.Q.O.O.O.i

irrigation

Soi! water zone

Unsaturated zone

Fig. 11.5 A simplified model of nonpoint pollution applicable to the study area.
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In chapter 9.7, we have calculated that about 36.79 mg/1 of nitrate is being

dissolved into the groundwater system every year. This is the amount of nitrate

that have originated from fertilizers. However some nitrates could also have been

caused by domestic pollution, whereby some quantity of nitrate is introduced into

the groundwater system by percolation of organic waste from septic tanks and / or

animal dung. Apart from this, some nitrate could come from background (natural)

groundwater quality caused by a leachate from the upper soil layer, or originating

from minerals. Some of the nitrate values detected in the groundwaters arc brought

about by plants which fix the atmospheric nitrogen in their roots.

In the soil water zone, some nitrogen is taken by plants, while some nitrogen

dissolves as nitrate to reach the groundwater system passing through the

unsaturated zone. In the process, some nitrogen is being lost due to denitrification

processes. From the point of view of transport of contaminants, the behavior of

dissolved nitrate in the saturated zone will follow the behavior of the water itself.

Therefore, in the soil zone molecular diffusion becomes important, whereas in the

groundwater zone advection becomes important.

The contaminants are discharged in various ways depending on the

hydrogeomorphological situation. In chapter nine, the different ways in which

groundwater is being discharged out of the basin have been discussed. It would be

enough to mention that contaminants also follow the same path. However, we

should note that, as there is no groundwater inflow of contaminant from the

northern part of the basin, contaminant outflow exceeds contaminant inflow from

the lower Santa Lucia basin.
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In short, a proper understanding of the path and amount of nitrate in the

groundwater would require a detailed study of the various parameters including the

property of soil (texture, composition, erodibility), crop and vegetation cover, crop

yield, type of crop, growth stage of crops, etc. The distributed parameters

approach would be most appropriate to modeling nonpoint pollution, whereby the

watershed is divided into preferred units, depending on the factors mentioned

above.

In spite of the above procedure, a rough estimate of the total amount of

nitrate leached from the land surface to join the groundwater system can be

obtained:

If we consider an agricultural area of one hectare producing a type of crop

with nitrogen uptake of 20 kg/tonne of nitrogen, the amount of nitrogen uptake can

be calculated from the amount of total crop production. According to "Censo

General Agropecuario", the amount of crop production for the year 1980 varies

from 3 to 6 tonnes per hectare.

Let us assume an average crop production of 4 tonnes per hectare for the

year 1989. According to Novotny & Chester (1981) the amount of nitrogen

uptake is

= (crop yield x nitrogen content) / growing period

If we assume a growing period of 120 days, the total nitrogen uptake of the

crops would be

UPN = 4(tonnes / hectare) x 20 (Kg / tonnes) /120 days



= 0.67 kg / day per hectare

If we assume that the area was irrigated every day for 2 hours, the rate of

infillration (for a sandy loam the rate of infiltration is about 30 mm per hour) of the

irrigated water would be 60 mm per day. If the water contained 10 mg / liter of

nitrogen, then the plants would obtain

0.06(m/day) x 10,000 (m? / hectare) x 10 g / m3 = 6 kg / day

On top of the 6 kg / day obtained from irrigation water, the plants also get

some nitrogen from fertilizers. The amount of nitrate leached from fertilizers is

40 kg per year per hectare which is equivalent to 9.1 kg of nitrogen per year per

hectare (see section 9.7). It is probable that all the 9.1 kg of nitrogen from the

fertilizers become consumed during the growing season of plants (during the 120

days). The amount of nitrogen that the plants receive from fertilizers would then

be 0.08 kg per day.

The amount of nitrogen leached can be obtained by subtracting the nitrogen

uptake by plants from the sum of nitrogen added by irrigation water and fertilizers.

Nitrogen leached = (6.08 - 0.67) = 5.41 kg per day per hectare.

The nitrogen concentration in the leachate is equal to the nitrogen leached

divided by the total volume of water. Here, we have to take the amount of

evapotranspiration into consideration. The average amount of evapotranspiration

during the growing seasons for the year 1989 was about 3 mm / day. Therefore,

the nitrogen concentration in the leachate is:

C N = (5.41 kg per day) / ( (0.06 - .003) x 10,000) = 9.5 tngfl per hectare
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The above figures give an idea of the amount of nitrate that could possibly

dissolve in the groundwater system of the Lower Santa Lucia basin. However,

other parameters like biological nitrogen (from organic wastes) and nitrogen from

the atmosphere, fixed by certain plants, have not been considered.
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Fig. 11.6 Map showing land use and major sources of the industrial and domestic

pollution in the Lower Santa Lucia Basin.
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11.3 Grotindwater Quality Protection and Improvement

An aquifer can be considered as protected if no vertical infiltration occurs to

contaminate the water. The aquifer (Raigon Formation) is naturally unprotected. In

this type of situation, the most effective means of preventing the undesirable

consequence of contamination would be the control of pollutant emission:

- The extensive use of fertilizers should be restricted by law.

- Settlement areas should be equiped with underground pipe or drain (sewer

system) for carrying of waste matter. Proper treatment and storage facilities should be

constructed for individual detached homes.

- The dumping of other sources of pollution (industrial, domestic) should be

done in accordance to laws protecting natural environment. Most rales and regulations

require that landfill areas be located in low permeability soils and in socially acceptable

sites. Novotny et al. (1981) give several methods of leachate control. However the

application of each depends on their effectiveness and cost. A method of preventing

leachate from contaminating the aquifer is shown on Fig. 11.6.
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Leachate to evaporation

Surface lining
or disposal

Fig. 11.7. Control of groundwater pollution by creation of landfills, after Vladimir

Novotny et al. (1981).

As in Fig. 11.7, infiltrating water could be restricted by placement of an

impermeable layer over the landfiË. If the aquifer becomes highly contaminated, wells

may have to be drilled by the sides of the landfills from which the leachate could be

pumped out from the aquifer. This is an expensive procedure and the only way to

avoid it would be to operate a landfill site properly, where municipal, industrial or

private waste could be disposed compacted and clay capped in an appropriate manner.

The chances of nitrate contamination could be reduced by replacing the hand dug

wells with deep bore wells. Direct infiltration from the surface around the well casing

could be avoided by cementing the upper part (up to few meters below the soil water

region).
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The portion of the aquifer that is contaminated should be restricted. A method of

improving the contaminated water would be drilling a line of wells or constructing

drainage ditch (for shallow aquifers) at some distance from the recharge area and taking

out the contaminated water from the aquifer. Such an application may not be required

for the present problem in the Santa Lucia basin. However, it may be an important

aspect to consider if the worst situations may arise.

It may be a difficult task to restrict the use of fertilizers. Solbe (1986) suggests

the use of cover plants as alternative methods to reducing nitrate concentration from

groundwater. Cover plants with high capacity of nitrogen uptake (green manure crops

or catch crops) can be introduced between crops. The cover plants must be sown at the

time of harvesting the main crop or at the time of ploughing. These cover plants could

also be applied around perennial crops, fruit trees and vineyards. This method could

easily be applied in the Lower Santa Lucia basin.

Biological treatments of nitrates by denitrification process is another method of

reducing nitrate content in groundwaters. The rate and degree of denitrification are

influenced by four factors Solbe (1986): oxygen content, moisture content, pH, and

carbon content. In general, denitrification is activated by lack of oxygen, increase of

moisture content, high pH and adequate carbon. The introduction of carbon by

discing or ploughing has proved to be very effective method of in situ denitrification

Solbe (1986). Such method could also be applied in the Lower Santa Lucia basin.
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11.4 Recommendations on Development of Groundwater Resources

One of the main objectives of this work being provision of

recommendations for future development of groundwater resources, a water

resource map has been prepared so that the most relevant informations for

practical applications come into focus (see Fig. 11.8). The water resources

map is prepared by the superposition of water quality map with other maps,

like geological map transmissivity map and specific yield map. This map

helps to geographically locate areas of interest; it expresses the overall

assessments made on the general groundwater quantity and quality of the

area.

The most favorable areas for the development of groundwater are the

coastal plains. Well field areas (111** in Fig. 11.8) have been chosen for

future development of groundwater. Obviously, legal and administrative

matters should be settled as to sharing of groundwater with the local farmers

before commencing large scale groundwater exploitation. Although the

groundwater quality of some part of the coastal plain ( 312! in Fig.l 1.8) is

poor, it could be a potential groundwater resource area if some provision be

made to improve the groundwater quality. The second well field areas chosen

for future groundwater development are located between the surface water

divide along "ruta 1" and San Jose river. Local groundwater productions

could continue in the rest part of the area with precautions taken to avoid

contaminated regions. Exploitation of groundwater is not recommended in

the areas susceptible to saltwater contamination (122+ in Fig.l 1.8).
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More detailed hydrogeological work is recommended in the chosen well

field areas; systematic, continuous monitoring of the resource should be

conducted. Exploration boreholes (piezometers) should be drilled in the well

field areas equiped with small diameter casing and screen. These boreholes

should be spaced uniformly with an average spacing of two kilometers.

Some of these boreholes could even be used as observation wells while

pumping tests are conducted. Monthly water level records are sufficient for

the present. However, automatic water level recorders may be installed, if

continuous monitoring of water levels may be desired.

The water quality could be monitored from water samples taken from

exploited wells. Measurement of electrical conductivity could be taken more

frequently while full chemical analysis could be done once or twice a year.

The information withdrawn from the chemical characteristics of the waters

alone is not sufficient to state the potability of groundwater. It would

therefore be an essential task to undergo bacteriological analysis especially on

some of the shallow excavated wells with high nitrate content
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GENERAL CONCLUSIONS

This study has revealed some important hydrogeological aspects that are

indispensable for groundwater resources development:

The Lower Santa Lucia basin is part of a large graben which embodies minor

grabens and horsts, which are filled with Oligocène to Holocene sediments. The

aquifer system consists generally of a sandy unit (Raigon Formation) whose

permeability ranges from about 5 to 30 m/ day. Some small lenses of clay and silt are

embodied within this formation, thus creating confined to semi-confined situations.

The aquifer unit is covered, at places, by a relatively less permeable unit (Libertad

Formation with an average permeability of 2 to 5m/day). In general, the response of

the aquifer to precipitation shows free water table situations. The "potentiality"

(permeability and thickness) increases towards the south. The transmissivity values

range between 200 to 300 m^ per day towards the coastal areas. Some groundwater is

being discharged from the aquifer along rivers whose seepages commence near the

main surface water divide (along "ruta 1" and "ruta 3"). The groundwater discharge

along these river courses produces a considerable loss of groundwater from the basin.

Potential loss of groundwater also occurs by evapotranspiration from the swampy

areas along the lower courses of the rivers. On the other hand, some evidences like

north - south fracture systems on the basement rocks indicate replenishment of the

sedimentary formation by groundwater inflow from the upper part of the basin.
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The water balance calculations (see chapter 7) based on nine years (1980 to

1988) climatic data showed negative change in storage in the hydrogeologic regions

which are dominated by marsh. The present level of near surface groundwater in these

regions is accounted by the inflow of groundwater from the adjacent rivers as well as

from high level groundwater in the adjacent aquifer. In general, the change in storage

in most regions is positive (around 400mm/year).

It has been attempted to forecast the water level situations over long periods of

pumping in the coastal areas. An area of lOOOOm^ in the coastal zone has been

considered as an example for which monthly water balance was calculated. The

application of transient groundwater flow model for this area showed a drop of head of

38 centimeters in one year, corresponding to transmissivity value of 225 m^ /day,

pumping rate of 30 m^ /day and "net infiltration" as obtained from the average monthly

water balance of nine years (1980 to 1988). The exact rate of present pumpage within

the area considered is not known. However, with discharge of 30 m^ /day from a

lOOOOm^ area the sustained yield by replenishment will keep the water level to a "safe"

level (not more than 38 centimeters in one year.

The analyses of the stable isotope of 1^0 have revealed the importance of

precipitation as being a major source of groundwater supply to the aquifer. The

isotope analyses of saltwater from Rio de la Plata showed clear relationship between

31^0 and TDS, conductivity salinity and chlorinity. The 3 ^ O values have not

indicated possibility of mixing of surface water from Rio de la Plata with the

groundwater of the coastal aquifers. However, the clear relations of the d^O with the
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above mentioned characteristic parameters of saltwater proves the importance o

to monitoring saltwater intrusion.

The Eh and pH relationships of the water samples reflects the transitional

environments from which the water samples were collected. The common

sedimentary association corresponding to this environments reflect oxidizing situation.

The ion content of the waters (from the chemical analysis of the water samples

collected in January to February, 1987) indicate that most of the waters are

undersaturated with respect to calcite and dolomite. However, most of the waters

were found to be moderate to hard.

It has also been attempted to trace the origin of the waters from the chemical

analyses. Several methods, like magnesium to calcium ratio, sodium to potassium

ratio, and calcium plus magnesium to potassium plus sodium ratio were employed. It

has been possible to conclude from these methods that relatively small amount of water

could possibly enter into the aquifer system from the basement rocks. In general, the

concentration of calcium in the waters (on average less than 50 mg/1) and the hardness

properties (between 100 and 150 mg/1) do not suggest carbonate origin of the waters.

The possible origin of the waters have been more precisely understood from the

different hydrochemical data interpretation methods employed. The grouping of the

water samples according to their hydrochemical facies shows that most of the waters

are of NaHCO3 type, some waters Ca(HCO3)2 type, and few waters NaCl type.

The geographical distribution of the water samples from the point of view of

their general chemical characteristics have been analyzed by Q - mode factor analysis.
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The similarity of the waters too have been plotted on a map. The conclusion drawn

from these methods are:

Basically, the chemical quality of the waters has resulted from the composite

effect of the basement and sedimentary deposits. The chemical qualities of the fresh

waters from the upper courses of Santa Lucia and San Jose rivers may have some

influence on the groundwater towards the lower parts of the basin. The iso - nitrate

contour map and iso - TDS contour maps show that the areas around these rivers are

free from high nitrates and high TDS. Although the lower part of the basin could be

affected by recharge coming from thé upper part, the influence of man's activity, in

adding fertilizers onto the alluvial plain will also contribute to the groupings observed;

the effect of point source pollution, like domestic and industrial pollution would

intensify the situation. In the coastal areas, the chemical quality of the groundwater

may have been influenced by saltwater from Rio de la Plata; the presence of sodium

chloride type of waters suggests deposition of wind-born salt crystals from the

saltwater in the south.

This study has not shown any clear evidence of aquifer contamination due to

saltwater intrusion associated with pumping in the coastal areas. However, the areas

around Delta del Tigre do not escape from such fate, because the surface water of

Santa Lucia is also affected by the salinity of the Rio de la Plata whose effect reaches

up to Aguas Corrientes during high tide. Lowering of the groundwater level by few

centimeters may then cause saltwater movement towards the aquifer from the saltwater

body (Santa Lucia and Rio de la Plata which surrounds Delta del Tigre).
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Although the chemical quality of most of the groundwater in the lower Santa

Lucia basin has been within the limit of acceptable standard for agricultural and

industrial purposes, it is vulnerable to contamination, due to the general unconfined

situation. The very high nitrate content (100 to 200 mg/1 in a number of hand dug

wells) renders groundwater unsuitable for drinking purposes.

The major findings in this study have been summarized in the form of a

water resources map. Practical applications to groundwater resources

development could be implemented based on this map. However, monitoring of

water levels and groundwater quality control are essential to check any possible

danger of hazard (seawater intrusion, aquifer damage, etc.).

This study has shown that quality of groundwater, in the Lower Santa Lucia

basin is at a critical stage. Therefore development of groundwater resources would

require improving the quality. The different ways of improving water quality are given

in section 11.3. In the practical life, it may not be desired to wait until the groundwater

in the area gets improved; the need to exploiting groundwater of a reasonable quantity

and quality may become crucial at a given time. This study affirms that the desired

amount of groundwater (for drinking, agricultural and industrial purposes) can be

obtained from the Santa Lucia Basin, provided that a great deal of care is given to the

protection of its quality. People must be aware of the possible hazard that the

deterioration of groundwater may cause to the health of human beings. A major effort

should be taken to protect and improve the groundwater quality in the Lower Santa

Lucia Basin.



307

REFERENCES

Back, W. and A. R. Freeze, editors, 1983, Chemical Hydrogeology,

Stroudsburg, Pennsylvania, Hutchinson, Ross Pub. Co., Distributed

world wide by Van Nostrand Reinhold Co. 416 p. (Benchmark Papers in

Geology /73).

Bajard, Y., 1971, Contribution à la Recherche Méthodologique D'établissement

des Bilans Hydrologiques et Hydrogéologiques Régionaux et Sub-

regionaux, Thèse de Doctorat Es-Sciences Naturelles, Université

Scientifique et Médicale de Grenobole.

Bear, J. and A. Verruijt, 1987, Modeling Groundwater Flow and Pollution, D.

Reidel Publishing Company.

Bear, J., 1972, Dynamics of Fluids in Porous Media, New York :Elsevier

Pub. Co.

Bear, J., 1979, Hydraulics of Groundwater, Mcgraw-Hill Series in Water

Resources and Environmental Engineering, London, New York,

International Book Company, 567 p.

Bonnet, M., 1982, Méthodologie des Modèles de simulation en hydrogéologie.

Document du BRGM, série documents No. 34.

Boonstra, J. and N. A. de Ridder, 1981, Numerical modelling of groundwater

basins. ILRI publication No. 29.



308

Bossi, J. and M.Umpierre, 1975, Magmatismo Mesozoico del Uruguay y Rio

Grande del Sur; sus recursos minérales asociados y potenciales. U

Congr. Iberoamericano, Geol, Econom,, 2: 119-142; Buenos Aires.

Botteri, A., 1970, Aqua Subterranea en Las zonas de Libertady Balnearios de

Canelones, Oficino de la Balnearios de O. E. A. en Uruguay,

unpublished report.

Bowen, R., 1970, Ground Water, Applied Science Publishers LTD, London,

Halstad Press Division, John Wiley and Sons, New York.

Brown, R. M. , 1970, Isotope hydrology. Proceedings of a symposium,

Vienna, IAEA, UNESCO.

Burk, C. A., C. L.Drake, 1974, The geology of continental margins, Springer

- Verlag, New York, Heidelberg, Berlin.

Butler, J.N., 1964, Solubility and pH Calculations, Addison-Wesley,

Reading, Mass.

Canter, W. L., C. R. Knox, and M. D. Fairchild, 1988, Groundwater Quality

Protection, Lewis Publishers.

Cairo, O., 1987,. Géochimie Isotopique des Milieux Naturels, l è r e partie,

Annexe Technique : Isotope Stables, Lecture note.

Castagnino, C. W., Ingenierio de la Oficina Sanitaria Panamericana

(OSP/OMS), Julio, 1966, Evolucion de los Recursos Hidrolicos del

Uruguay, Documento de trabajo (para uso Interno), CEP AL, Programa

de recursos Naturales y Energia.



309

Cazes, P., P. Solety and Y. Vuillaume, 1970, Exemple de traitement statistique

de données hydrochimique. Extrait du Bulletin du BRGM. - Deuxième

série - no 4 . B.R.G.M.

Chebotarev, I. L, 1955, Metamorphism of natural waters in the crust of
weathering. Geochim. Cosmochim. Acta. v. 8, pp. 22-48.

Chow, V. T., editor, 1964, Handbook of Applied Hydrology, McGraw-Hill.

Custodio, A., A. Gurgui, J. P. L. Ferreira, 1987, Groundwater Flow and

Quality Modeling, D. Reidel Pub. co.; Norwell, MA, U.S.A.

David, M. and G. Woussen, 1977, Correspondence Analysis: A New Tool for

Geologists, Unpublished report.

Davis, J . C, 1973, Statistics and Data Analysis in Geology, with Fortran
programs by Robert J. Sampson, New York: Wiley, 550 p.

Domenico, P. A., 1972, Concepts and Models in Groundwater Hydrology ,

Me Graw-Hill international series in the earth and planetary sciences.

Drever, I.J., 1982, The Geochemistry of Natural Waters, Prentice-Hall,
Englewood Cliffs, N. J. 07632.

Eagleson, S.P., 1970, Dynamic Hydrology, New York: McGraw Hill Inc.
462 p.

Edelman, J. H., 1972, Groundwater Hydraulics of Extensive Aquifers,
International Institute for Land Reclamation and Improvement, ILRI,
Wagningen, The Netherlands, Bulletin 13.



310

Eriksson, E., 1985, Principles and Applications of Hydrochemistry, London;

New York: Champman and hall. 187 p.

Faure G., 1977, Principles of Isotope Geology, New York; Tronto, Smith and

Wyllie Intermediate Geology Series, 464 p.

Faust, S.D., O. M. Aly, 1981, Chemistry of Natural Waters, Volume 1 John

Wiley & Sons.

Fontes, J. C, 1976, Les isotopes du milieu dans les eaux naturelles, Université

Pierre et Marie Curie, Paris, La Houille Blanche /No. 3/4.

Fontes, J. C. et J.M. Garnier, 1979, Determination of the initial 14C activity

of the total dissolved carbon: a review of the existing models and a new

approach, Water Resource, Res., 15: 399-413.

Freeze, R. A. and J. A. Cherry , 1979, Groundwater, Prentice-Hall Inc.,

Englewood Cliffs.

Frind, E.O and M.G.Matanga, 1985, The dual Formulation of flow for

contaminant Transport Modeling, Water Resources Research Vol. 21.

No.2 pp. 159-182.

Frind, O.E., 1980, Sea water intrusion in continuous coastal aquifer-aquitard

systems. Proceedings of the third international Conference on Finite

Elements in Water Resources (University of Mississippi).

Garrels, R. M., and C. C. Christ, 1965, Solutions, Minerals, and Equilibria.

New York: Harper & Row Publishers, 450 p.



311

Garrels, R. M., F. T. Mackenzie, and C. Hunt, 1975, Chemical Cycles and the

Global Environment: Assessing Human Influences, William Kaufmann,

Los Altos, Calif., 206 p.

Goldschmidt, V. M., 1954, Geochemistry, Alex Muir, Ed. (Oxford, England:

Clarendon Press).

Goni, J. C. and R.Hoffstetter, 1964, Lexique Stratigraphique International.,

Congrès géologique International- commission de Stratigraphie,

Amérique Latine.

Gougenheim, A., R. Gibrat and J.P. Zahn, 1985, Marées, Encyclopedia

universalis, Corpus II, Libye - Mesures pages 725 to 731.

Guillaume, A., 1977, Introduction à la Géologie quantitative. Masson, Paris.

Haile-Meskale, M., 1983, Hydrogeology of South Afar and Adjacent Areas,

Ethiopia., Msc. thesis, I.T.C., The Netherlands.

Hand, D. G., 1981, Discrimination and Classification. John Wiley & Sons

Ltd.

Hart, S., 1966, Radiometric ages in Uruguay and Argentina, and their

implications concerning continental drift; presentado en Geol. Soc. Ame.

annual meeting, San Francisco, USA.

Heathcote, J.A. and W.J. LLoyd, 1985. Factors affecting the Isotopic

Composition of Daily Rainfall at Driby, Lincolnshire, Journal of

Climatology, Vol. 6,97-106.



312

Hem, J. D., 1970, Study and Interpretation of the Chemical Characteristic of

Natural Waters. U. S. Geol. Sur., Water - Supply Pap. 1473.

Hillaire-Marcel, C. et C.Causse, 1987, Isotopique des Milieux Naturels,

Méthodes Radiochronologiques, note de cours, 2 e partie, UQAM.

Hillaire-Marcel, C , 1987, Géochimie Isotopique des Milieux Naturels: Les

Principes de base en Géochimie des Isotopes Stables, note de cours, l e r e

partie, UQAM.

Hoefs, J., 1973, Stable Isotope Chemistry, Springer-Verlag New York,

Heidelberg, Berlin.

Horst, P., 1965, Factor Analysis of Data Matrices, Holt, Rinehart and

Winston, Inc.

I.A.E.(International Atomic Energy, Vienna), 1981, Statistical Treatment of

Environmental Isotope Data in Precipitation, Tecnical Reports Series

No.206.

Jack, J., 1972, Groundwater Management., ASCE-Manuals and reports on

Engineering Practice No.40.

Jackson, R. E., 1980, Aquifer Contamination and protection, Project 8.3 of

the International Hydrological Programme, Paris: UNESCO, 440 p.

(Studies and reports in hydrology. 30).

Jenne E. A. and J. W. Ball, 1979, Chemical Modelling in Aquous systems,

American Chemical Society, Symposium series No. 93, Washington:.



313

Jolliffe, F.R., 1986. Principal Component Analysis. Springer - Verlag, New

York Inc.

Kitano, Y., editor, 1975. Geochemistry of water, Distributed by: Halsted

Press, A Division of John Wiley & Sons, Inc.

Krauskopf, K., 1967, Introduction to Geochemistry . (New York: Me Graw-

Hill Book Co.).

Kruseman, G. P. and N.A. De Ridder, 1979, Analysis and evaluation of

pumping test data. ILRI publications, The Netherlands.

La Haye, J., 1988, Géologie Du Cénozoique du bassin de Santa Lucia,

Uruguay, Cartographie et Sédimentologie, MSc. thesis, UQAM.

Larson, T.E., and A.M. Buswell, 1942, Calcium Carbonate Saturation Index

and Alkalinity Interpretations, J. Amer. Waterworks Assoc., 34, 1664.

Linsley, K. R., M. A. Kohler and J. L. H. Paulhus, 1982. Hydrology for

Engineers, Third Edition, Me Graw Hill Book Company.

Mandel, S.and Z.L.Shiftan, 1981, Ground-water Resources: Investigation and

Development, New York: Academic Press, 269p.

Martin, C. F., O. F. Evaldo and G. Furque, 1978, Tectonic Map of South

America, Explanatory note, UNESCO, Brasilia, Ministry of Mines and

Energy, National Department of Mineral Production.

Martinez, I. R, 1985, Geografia del Uruguay, Ciclo Basico 2do ano, tomo H.



314

Matthess, G., 1982, The Properties of Groundwater, A Wiley-Interscience

Publication, JohnWiley & Sons.

Maxey, B.G., 1969, Subsurface water - Groundwater in The progress of

Hydrology, Proceedings of the First International Seminar for Hydrology

Professors, Volume II, University of Illinois at Urbana - Champaign

Urbana, Illinois, USA.

McWhorter, D.B. and D. K. Sunada, 1977, Ground-water Hydrology and

Hydraulics, Fort Collins: Water Resources Publications.

Mook, W. G., 1970, Stable Carbon and Oxygen isotopes of natural waters in

the Netherlands. Isotope hydrology, Proceedings of a symposium,

Vienna, IAEA, UNESCO.

Mook, W. G., 1980, Carbon-14 in hydro geological studies, Handbook of

Environmental Isotope Geochemistry, Elsevier, Amsterdam, The

Netherlands

Morgan, J. J.,1967, Principles and Applications of Water Chemistry. S.D.

Faust and J. V. Hunter Eds. ( John Wiley & Sons, Inc., New York).

Morris, J.C., and W.Stumm, 1967, Equilibrium Concepts in natural water

system., Advances in chemistry, series 67, Washington: American

Chemical Society.

Mucci, A. and P. Page, 1987, The Water Chemistry of 85-036 on Bras d'Or

Lake, Cape Breton island, Nova Scotia, Project 730072, Atlantic

Geoscience center, Dartmouth.



315

Novotny , V. and G.Chester, 1981, Handbook of Nonpoint Pollution,
Sources and Management, Van Nostrand Reinhold Company.

O.E.A. en Uruguay, marzo, 1970, Aqua Subterranea en las zonas de Libertady

Balnearios de Conelones, Inform de reconomiento, Unpublished report.

O.S.E (organizacion de los estados Americanos), Oficina Sanitaria
Panamericana, Uruguay, 1970, Cuenta del Rio Santa Lucia, Desarrollo

de los Recursos hidricos, Unidad Tecnica, Gobierno de la Republica

oriental del Uruguay, Oficina de Desarrollo regional.

O.S.E (organizacion de los estados Americanos), Oficina Sanitaria

Panamericana, Uruguay, 1986, Normas de Calidad de aguas Potables,

Unpublished report, Administracion de Las Obras Sanitarias se Estados.

Olive, P., 1977, A Propos de la Datation des Eaux par le Radiocarbone,

publication N2-190, Académie de Paris, Université Pierre et Marie Curie,

Centre de Recherches Geodynamiques.

Payne, B., 1972, Isotope Hydrology, Advances in hydroscience, International

Atomic Energy Agency, Vienna, Austria, volume 8-1972, Academic

Press.

Pearson, FJ . and Jr. B.B.Hanshaw, 1970, Sources of Dissolved Carbonate

Species in Groundwater and their effects on carbon -14 dating, U.S.

Geological Survey, Washington DC,USA.

Perez, M., 1990, Sedimentologia y Estratigrafia de las Formaciones Raigon y

Libertad (Plio - Pleistocene) del Sudoeste de San Jose - Cuenca del Santa

Lucia - Uruguay, Msc. Thesis, Université du Québec à Montréal.



3 1 6

Pourbaix, M., 1966, Atlas of Electrochemical Equilibria in Aquous Solutions,

Elmaford, NX: Pergamon Press, Inc.

Preciozzi, R, J. Spoturno, W. Heinzen and P. Rossi, 1985, Carta Geologica

Del Uruguay a Escala 1:500,000, Texto explicative Ministerio de

Industria Y Energia, Montevideo.

Preciozzi, F., J. Spoturno, W. Heinzen and P. Rossi, 1985, Carta Geologica

Del Uruguay a Escala 1:500,000. Ministerio de Industria Y Energia,

Montevideo.

Prichonnet, G., J. La Haye, J. Da Silva J. Spoturno, E. Medina, M. Perez, 1.,

1987a, Les altérations et érosions Plio (?) - Quaternaires du bassin de

Santa Lucia, Uruguay, Problèmes et perspectives, Ottawa, XIIe

Congrrès international de l'INQUA.

Prichonnet, G., M.Haile-Meskale, C. Velozo, E. Medina, M. Perez, J. Da

Silva, J. H. Molfino, L.Cardoso, J. Spoturno, 1987b, Etude

Hydrogéologique du Bassin de Santa Lucia, URUGUAY, Rapport

intérimaire, présenté au CIID/CRDI.

Prost, M. T., 1982, Héritages quaternaires et évolution géomorphologique des

bords du Rio de la Plata en Uruguay, Thèse de doctorat en

Géomorphologie, soutenu à Paris, 576p.

Pytkowicz, M.R., 1983, Equilibria, Nonequilibria, & Natural Waters, Volume

I, John Wiley & Sons.

Rankama, K., and T.G.Sahama, 1950, Geochemistry, Chicago, IL:

University of Chicago Press.



317

Reston, R. J. S., editor, 1986, Regional Aquifer-System Analysis Program of

the U. S. Geological Survey Summary of Projects, 1978-84, U.S.

Geological Survey Circular 1002, U.S. Geological Survey.

S. G. O. E. A. (Secretaria General de la Organizacion de los Estado

Americanos), 1971, Cuenca del Rio de la Plata, Desarrollo de los

Recursos Hidricos, Washington, D.C.

Sch�ller, H., 1962, Les Eaux souterraines, Hydrologie dynamique et

chimique, recherche, exploitation et évaluation des ressources, Masson &

, éditeurs, Paris.

Seigel, R.F., 1970, Applied Geochemistry, A Wiley-Interscience Publication,

John Wiley & Sons.

Sen, Z. and A. Al-Dakheel, 1985. Hydrochemical Faciès Evaluation in Umm

Er Radhuma Limestone, Eastern Saudia Arabia. Groundwater, vol.24,

No. 5.

Servicio de Oceanografia E. Hidrografia de la Republica O. del Uruguay E

Hidrografia de la republica Argentina, 1974, Carta de Acceso al Rio de la

Plata, escala 1:1^00,000.

Servicio Geografico Militar, 8 de Octobre 1968, 1969, Reprinted in 1981,

Topographie maps, scale 1:50,000.

Servicio Geografico Militar, 1974, Carta Geografica del Uruguay, escala 1:

500000.



318

Solbe, J. F., Effects of Land Use on Fresh Waters, agriculture, forestry,

mineral exploitation, urbanisation, Water Research Center, Elis

Horwood Limited, Publishers-Chichester.

Sprechmann, P., J. Bossi, J.Da Silva, 1981, Cuencas Del Jurasico y

Cretacico del Uruguay. Comité Sudamericano del Jurasico y Cretacico:

Cuencas Sedimentarias del Jurasico y Cretacico de America del Sur, Vol.

1, ps. 239 - 270.

Stewart, M.K. and F.R.Plaford, 1986. Hypersaline Gradients in two Canadian

High Arctic Lakes. Canadian J. Fish. Aquat. Sci. Vol. 43: 1795-1983.

Stumm, W. and J. J.Morgan, 1970, Aquatic Chemistry, An Introduction

Emphasizing Chemical Equilibria in Natural Waters, New York: John

Wiley & Sons, Inc.

Tan, F.C. and G. J. Pearson, 1975, Stable Isotope Ratios as Water Quality

Indicators, Water Quality Parameters, ASTM STP 573, American

Society for Testing and materials, pp.543-549.

Thornthwaite C.W. and J. R. Mather, 1954, The Computation of Soil

Moisture, Publ. in Climatology, Centetron, N. J., vol. 7.

Todd, K.D., 1980, Groundwater Hydrology, seccod edition, John Wiley &

Sons, London, Chapman & Hall Ltd.

Torrens - Ibern, 1972. Modèles et méthode de l'analyse factorielle. DUNOD.

Turcotte and Schubert, 1982, Geodynamics, Application of Continum Physics

to Geological Problems, John Wiley and Sons, New York, 450 p.



319

UNESCO, 1979, Conservation y Mejora de Ployas., M.T.O.P (Ministerio de

Transporte y Obras Publicas), Programa de las Naciones Unidas para el

Desarrollo - Uni. 73.007, Uruguay.

Verruijt, A., 1969, Theory of Groundwater Flow, Delft University of
Technology, The Netherlands, Gordon and Breach Sience Publishers.

Vogel, J. C, 1970, Carbon -14 Dating of Groundwater, National Physics
research Laboratory Pretoria, South Africa, IAEA-SM-129/15.

Walton, C.W., 1970. Groundwater Resource Evaluation., Me Graw-Hill
Series in Water Resources and Environmental Engineering.

Wang, H. F., P. M. Anderson, 1982, Introduction to Groundwater modeling,

Finite difference and finite element methods, W. H. Freeman and
Company San Francisco.

White, D.E., 1963, Chemical composition of Subsurface Waters.. "Data of
Geochemistry" U.S. Geological Survey Prof, paper 440-F, Washington,
D.C.



APPENDICES

Table 1 List of drilled Wells 321

Table 2 Monthly water level records 328

Table 3 Pumping test data from well 742 334

Table 3b Table of recovery data (well) 335

Table 3c Table of recovery data (piezometer) 336

Computer Program - Transient flow by implicit

finite differences method, after Bear and Verruijt, 1987 337

Table 4 Chemical analysis data (January - February 1987) 339

Table 5 Chemical analysis data (August 1987) 350

Table 6 Hardness of the water samples 354



321

Abréviations utilized in the Appendices

x, y = Geographical co-ordinates

z = Elevation above sea level

D = Diameter of well

Date = Date of drilling, water level measurement and sampling

T.D. = Total depth

SWL = Static water level

DWL = Dynamic water level

Q = Discharge

Q/s = Specific discharge

S. No. = Sample number

e = Excavated wells

p = Drilled wells

meq/1 = Milliequivalent per litre

mg/1 = Milligram per litre

mS/cm = Micro Siemens per centimetre

TDS = Total dissolved solids

SAR = Sodium adsorption ratio
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Table 1
W. No.
946/1
946/2
1322
1163

1177/2
1177/1

748
591/1
591/2
591/3
591/4
591/5
591/6
284
840

149/3
1284

1130/1
1130/2
1138

1170/1
1202

1331/1
1331/2
794/1
794/2
924

1109/2
1109/2
1117
1371
111
858
716

149/4
1016
1155
149/5
C90
C487
C489
C496
C502
C497

List of drilled wells
X

431.8
431.8
432.2
427.7
427.7
427.7
434.5
430.1
430.1
430.1
430.1
430.1
430.1
425.2
425.2
424.5
426.2
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
420.5
417.5
409.6
414

420.2
403.5
416.8
405.6
405.6
405
405
405
405

426.5

I Y
6162
6162
6162
6166
6166
6166
6163
6161
6161
6161
6161
6161
6161
6168
6168
6168
6166
6166
6166
6166
6166
6166
6166
6166
6168
6168
6168
6168
6168
6168
6168
6161
6166
6170
6172
6180
6173
6176
6176
6182
6182
6182
6182
6166

I z
22 m
22 m
18 m
35 m
35 m
35 m
14 m
34 m
34 m
34 m
34 m
34 m
34 m
32 m
32 m
35 m
30 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
26 m
9m
10m
28 m
45 m
18m
16m
42 m
42 m
30 m
30 m
30 m
30 m
37 m

| Date
25-sept-44
25-octO-44
20-sept-61
26-OCtO-54
21-sept-55
10-dece-55
2-déce-31
19-avri-33
9-mars-33
23-janv-38
iO-août-33
4-nove-33
15-déce-33
10-mai-21
15-avri-41
21-janv-10
10-avri-60
8-juin-58

27-août-53
29-août-54
26-janv-55
31-mai-58
4-mai-62

17-août-60
26-mars-39
10-sept-39
26-janv-40
16-avri-52
25-juin-52
15-sept-52
16-déce-65
14-sept-48
26-mai-41
4-mars-31
25-mars-10
25-nove-47

�
17-juin-10

�
�
�
�
�
�

Drilled by
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE
DINAMIGE

COPERPOA
COPERPOA
COPERPOA
COPERPOA
COPERPOA
COPERPOA

| T.D.
93.0 m
19.0 m
22.0 m
23.5 m
38.4 m
21.0 m
30.0 m
42.1 m
29.2 m
40.2 m
23.8 m
44.0 m
48.0 m
51.1 m
35.9 m
14.5 m
28.6 m
33.3 m
36.5 m
35.5 m
40.6 m
47.8 m
29.0 m
31.8 m
27.8 m
45.9 m
56.0 m
37.0 m
41.0 m
31.0 m
34.6 m
38.9 m
11.9 m
35.7 m
41.0 m
25.2 m
37.0 m
27.0 m
31.0 m
18.4 m
22.5 m
20.5 m
19.0 m
38.0 m

I D

155mm
184mm
152mm
216mm
216mm
172mm
150mm
115mm
150mm
150mm
200mm
295mm
245mm
285mm
184mm
194mm
152mm
152mm
152mm
153mm
156mm
194mm
194mm
172mm
146mm
167mm
170mm
209mm
152mm
194mm
232mm
146mm
152mm
184mm
210mm

�
184mm

�
�
�
�
�
�

Continued..
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Table 1 List of drilled wells
Well No.
946/1
946/2
1322
1163

1177/2
1177/1

748
591/1
591/2
591/3
591/4
591/5
591/6
284
840

149/3
1284

1130/1
1130/2
1138

1170/1
1202

1331/1
1331/2
794/1
794/2
924

1109/2
1109/2
1117
1371
111
858
716

149/4
1016
1155
149/5
C90
C487
C489
C496
C502
C497

SWL
�

12.3 m
8.9 m
17.3 m
24.6 m
20.0 m
-8.3 m
10.8 m
20.0 m
13.5 m
22.8 m
26.4 m
11.5m
13.1 m
11.9 m
24.7 m
21.9 m
-0.2 m
0.8 m
-0.7 m
0.8 m
5.8 m
8.0 m
10.4 m
12.0 m

�
5.7 m
-1.3 m
1.0 m
7.4 m
-0.7 m
-14.0 m
4.3 m
9.8 m
13.0 m
11.3 m
-11.0 m
26.0 m

�
�
�
�
�
�

| DWL
�

6.9 m
1.5 m
14.8 m
18.9 m
18.0 m
-14.6 m
-4.5 m
10.1 m
-5.1 m
13.2 m
16.3 m
0.8 m
-9.9 m
7.6 m
�

18.2 m
-1.6 m
-2.8 m
-3.7 m
-2.5 m

-13.4 m
5.2 m
7.1 m
4.0 m

-12.0 m
2.9 m
-4.3 m
-6.8 m
5.0 m
-1.2 m

-26.5 m
-4.7 m
0.8 m
�

7.8 m
-16.5 m

�
�
�
�
�
�
�

I (Q)
�

8.3m3/h
6.3m3/h
4.4m3/h
22.7m3/h
10.5m3/h
30.0m3/h
50.0m3/h
31.2m3/h
36.0m3/h
28.0m3/h
90.0m3/h
88.0m3/h
14.4m3/h
16.0m3/h
4.0m3/h
19.3m3/h
22.0m3/h
13.0m3/h
14.3m3/h
8.0m3/h
6.6m3/h
16.5m3/h
20.3m3/h
26.4m3/h
15.8m3/h
16.1m3/h
17.8m3/h
15.8m3/h
13.8m3/h
9.3m3/h
22.4m3/h
19.8m3/h
14.3m3/h
7.0m3/h
19.8m3/h
6.6m3/h
7.0m3/h
4.4m3/h
22.0m3/h
22.8m3/h
20.3m3/h
17.3m3/h
16.5m3/h

| Q/s
�

1.5 m2/h
0.9 m2/h
1.8 m2/h
4.0 m2/h
5.4 m2/h
4.8 m2/h
3.3 m2/h
3.2 m2/h
1.9 m2/h
2.9 m2/h
8.9 m2/h
8.2 m2/h
0.6 m2/h
3.7 m2/h

�
5.3 m2/h
15.7 m2/h
3.6 m2/h
4.8 m2/h
2.4 m2/h
0.3 m2/h
5.9 m2/h
6.2 m2/h
3.3 m2/h

�
5.8 m2/h
5.9 m2/h
2.0 m2/h
5.8 m2/h
18.6 m2/h
1.8 m2/h
2.2 m2/h
1.6 m2/h

�
5.7 m2/h
1.2 m2/h

�
�
�
�
�
�
�

Continued^
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Table 1
W.No.
C454
B788
B211
B789
B112
B306
B30
B944
B996

B1181
E366
E364
E352
E350
E355

E360/1
E360/2
E360.3
A149/6
C134
A751
C90

H 283
H286
H41
H42
H88
17

K15/1
K15/2
K112
N4/1
N4/2
N4/3
P35
R16
R18
R42
N7
N5

B62
C250

AB62/1
A1362/2

List of drilled wells
X

430.8
411

410.3
410.3
408.8
412
412
432
432
432

430.1
425.4
425.2
423.5
404.2
401
401
401

392.9
396.4
423.1
420.5
413
413

420.5
420.5
420.5
406.7
408.8
408.8
421.3
411.6
411.6
411.6
404.7
428
413
428

420.9
419.6
412.7
433.5
403.7
403.7

I Y
6162
6178
6178
6178
6180
6163
6163
6156
6156
6156
6161
6166
6168
6169
6174
6174
6174
6174
6192
6189
6169
6172
6161
6161
6168
6168
6168
6171
6179
6179
6170
6166
6166
6166
6176
6165
6161
6165
6170
6171
6192
6181
6183
6183

| Z | Date
31 m �
48 m �
50 m �
50 m �
37 m �
25 m �
32 m �
4m �
4 m �
4 m �
34 m �
35 m �
32 m �
48 m �
42 m �
38 m �
38 m �
38 m �
� 1-sept-06
� �

52 m �
40 m �
42 m �
42 m �
26 m �
27 m �
27 m �
27 m �
28 m �
28 m �
41 m �
30 m �
30 m �
30 m �
35 m �
42 m �
42 m �
42 m �
35 m �
47 m �
45 m �
15 m �
16 m 14-nove-60
16 m 14-nove-60

| Drilled by |
COPERPOA

Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Hidrotecnica S
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A
Pike YCIA.S.A

Dinamige
Coperpoa
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige

T.d. J D
31.8 m �
33.5 m �
25.0 m �
31.0 m �
37.5 m �
36.7 m �
34.7 m �
12.8 m �
14.4 m �
25.5 m �
31.0 m �
28.5 m �
66.3 m �
34.5 m �
35.3 m �
48.5 m �
36.8 m �
32.8 m �
22.5 m 184mm
36.7 m �
45.0 m �
31.0 m �
53.0 m �
68.3 m �
31.0 m �
42.7 m �
56.0 m �
23.0 m �
41.8 m �
39.8 m �
51.1 m �
34.0 m �
40.0 m �
45.0 m �
31.0 m �
60.0 m �
10.0 m �
55.0 m �
44.0 m �
53.0 m �
16.8 m �
45.0 m �
55.5 m �
56.5 m �

Continued.
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Table 1 List of drilled wells
W.NO.
C454
B788
B211
B789
B112
B306
B30
B944
B996

B1181
E366
E364
E352
E350
E355

E360/1
E360/2
E360.3
A149/6
C134
A751
C90

H 283
H286
H41
H42
H88
?17

K15/1
K15/2
K112
N4/1
N4/2
N4/3
P35
R16
R18
R42
N7
N5

B62
C250

AB62/1
A1362/2

SWL
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-7.4 m
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
,�
�
�
�
�

9.2 m
10.8 m

DWL (Q) Q/s
� 15.8m3/h �
� 5.2m3/h �
� 3.5m3/h �
� 19.6m3/h �
� � �
� 1.8m3/h �
� 2.7m3/h �
� 1.8m3/h �
� 2.0m3/h �
� 2.2m3/h �
� 6.0m3/h �
� 5.4m3/h �
� 5.0m3/h �

' � 1.2m3/h �
� 3.8m3/h �
� 9.0m3/h �
� 7.5m3/h �
� 8.0m3/h �
� 2.5m3/h �
� 3.7m3/h �
� 18.0m3/h �
� 12.0m3/h �
� 5.0m3/h �
� 1.6m3/h �
� 7.0m3/h �
� 9.0m3/h �
� 6.0m3/h �
� 3.0m3/h �
� �
� � �
� 5.5m3/h �
� 3.0m3/h �
� 5.0m3/h �
� 10.0m3/h �
� 3.5m3/h �
� 16.0m3/h �
� 6.0m3/h �
� 24.0m3/h �
� 15.0m3/h �
� 5.5m3/h �
� 4.0m3/h �
� 5.0m3/h �

2.2 m 10.0m3/h 1.4m2/h
-2.6 m 9.3m3/h 0.7 m2/h

Continued.
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Table 1
W.No.
A971/1
Ac 43
A942
H325
K96
K 98
A 747
A990
Ac 52

5
12
11
18
20
21

E362
E351

A971/1
A971/2
A 971/3
X Po8
A 476
A538
A816
A490

A 1196
A 756
H 192
H194
H121
H127
H116
K208
K337

E353/1
E353/2
E358

B1179
K327

CPO1

List of drilled wells
X

437
445.2
445.2
448.1
435

434.6
418.1
418.8
419.9
420.4
414.9
420

415.1
425.7
420
416
432

428.9
428.9
428.9
425.1
445.8
448.9
447.5
440.6
439.7
441.4
450.6
450.6
443.4
443.4
446.3
448.4
442.5
443.4
443.1
441.4
440.1
443.4
439.6

I Y
6195
6206
6206
6200
6215
6217
6200
6201
6200
6202
6201
6201
6199
6199
6199
6199
6197
6197
6197
6197
6199
6167
6166
6165
6173
6170
6181
6185
6185
6190
6190
6182
6166
6165
6190
6190
6181
6184
6190
6157

I z
45 m
55 m
55 m
31 m
65m
55 m
25 m
23 m
35 m
28 m
35 m
30 m
35 m
42 m
25 m
38 m
42 m
35 m
35 m
35 m
35 m
21 m
26 m
35 m
11 m
8m
20 m
9m
9 m
15m
15m
16m
18m
7m
15m
17m
20 m
22 m
15 m
15m

Date
11-avri-42

�
�
�
�
�

21-janv-44
24-sept-42
5-nove-16

�
�
�
�
�
�
�
�

11 -avri-42
9-avri-42

16-juin-42
�
�
�
�
�
�

25-janv-34
�
�
�
�
�
�
�
�
�
�
�
�
�

Drilled by
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige

Cados Froritto
Cados Froritto
Cados Froritto
Cados Froritto
Cados Froritto
Cados Froritto

Pike 1 CIA
Pike 1 CIA
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Dinamige
Stella S.A
Stella S.A
Stella S.A
Stella S.A
Stella S.A
Luis Girino
Luis Girino
Pike y CIA
Pike y CIA
Pike y CIA

Hidrtecnica
Luis Girino
Coperoa

Tot.dep. | D
62.0 m �
44.5 m �
31.5 m �
54.0 m �
27.2 m �
22.0 m �
34.1 m �
53.3 m �
25.3 m �

� �
18.0 m �
63.0 m �
29.0 m �
29.5 m �
42.5 m �
35.7 m �
49.3 m �
52.0 m �
21.5 m 162mm
20.5 m 152mm

� �
100.0 m �
80.0 m �
30.0 m �
116.2 m �
116.0 m �
53.0 m �
38.7 m �
37.9 m �
19.7 m �
57.0 m �
32.0 m �
51.0 m �
20.2 m �
99.0 m �

� �
70.6 m �
26.8 m �
16.5 m �

� �
Continued.
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Table 1 List of drilled wells
Well No.
A971/1
Ac 43
A942
H325
K96
K 98
A 747
A990
Ac 52

5
12
11
18
20
21

E362
E351

A971/1
A971/2
A 971/3
X Po8
A 476
A538
A816
A490

A 1196
A 756
H 192
H194
H121
H127
H116
K208
K337

E353/1
E353/2
E358

B1179
K327

CPo1

SWL
39.6 m

�
�
�
�
�

20.7 m
11.8m
20.5 m

�
�
�
�
�
�
�
�

29.6 m
30.0 m
30.9 m

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
.�
�
�

| DWL
�
�
�
�
�
�

1.3 m
-25.8 m
10.7 m

�
�
�
�
�
�
�
�
�

28.0 m
27.9 m

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

I (Q) I Q/s
� �

5.7m3/h �
4.8m3/h �
1.0m3/h �

� �
8.0m3/h �

6.0 m 0.3 m2/h
3.5 m 0.1 m2/h
2.5 m 0.3 m2/h

10.0m3/h �
1.5m3/h �
3.0m3/h �
1.0m3/h �
2.0m3/h �
1.0m3/h �
5.7m3/h �
4.0m3/h �
4.0m3/h �
22.0m3/h 11.0 m2/h
23.0m3/h 7.7 m2/h
12.0m3/h �
0.8m3/h �
5.5m3/h �
2.0m3/h �
8.0m3/h �
6.0m3/h �

� �
2.3m3/h �
2.3m3/h �
2.6m3/h �
4.2m3/h
17.0m3/h �-
1.5m3/h �
15.0m3/h �
5.3m3/h �

� �
4.8m3/h �
3.0m3/h �
4.0m3/h �

� �
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Table
S.N.

1
2
4
5
7
9

10
11
12
14
15
17
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
68
69
74
76
77
78
79
82

2 Monthly water level records
Topo-Map |
San Jose
San Jose
San Jose
San Jose
San Jose
San Jose
San Jose

Arazati
Arazati
Arazati
Arazati

Cagancha
Cagancha

Arazati
Arazati

PtaJesus Ma.
Pta.Jesus Ma.
PtaJesus Ma.
PtaJesus Ma.
Pta.Jesus Ma.

Sangregorio
Sangregorio

Cagancha
Cagancha
Cagancha

Arazati
Arazati
Arazati

Cagancha
San Jose

Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Cagancha
Ccgancha

San Gregorio
San Gregorio
San Gregorio
San Gregorio

Propriator |
EchemeNDi.F

Cabrera
Maidana.R

Barbe
Fabre.R

Acosta.E
Perez,E
VegaJ

Fabre.S
Artagabeitia

FabreJ.A.
Rapetti.P
Maccio,A
Perez.L
Berriel.L

Regusi.B
Aserradero

Rodriguez.S
Sellanes.D

Calleros Hno
Maccio.F
Travieso

Calleros.A
Guerra

Chacon.V
Rapetti.C

FabreJ
Escuela 91

FabreJ
MachiJ
Diaz,W

Fernandez,!.
Bentancour.N

Lema.A
Perez.N
Perez.N
Perez.C

Esteche.M
Viera.W

Acuna.R
Mora Tambo

Cabrera.N
Britos.N

Rodriguez
Cabrera.A

Garcia.N

TY-
e
e
e
P
P
P
p
P
e
P
P
e
e
e
e
e
e
e
e
P
P
e
e
e
e
P
P
e
P
e
e
e
e
e
e
P
e
e
e
e
P
e
e
e
e
e

I X
417.50
417.90
415.30
407.80
406.60
404.80
402.20
395.90
388.70
393.80
394.60
404.10
402.10
397.50
393.30
392.50
389.90
395.30
399.20
401.00
404.40
405.10
407.00
404.90
401.80
398.50
398.10
396.30
404.50
412.20
411.90
408.70
416.70
419.40
422.50
420.50
425.50
413.85
416.70
420.50
418.00
413.20
416.90
406.80
413.30
423.40

I Y |
6206.10
6214.40
6208.70
6200.80
6197.60
6197.20
6195.20
6190.70
6183.50
6186.20
6189.00
6180.60
6179.90
6179.40
6177.50
6175.10
6176.10
6173.90
6172.50
6174.10
6174.40
6171.80
6180.70
6182.40
6185.50
6187.20
6187.10
6183.80
6192.50
6196.70
6187.70
6188.20
6191.50
6185.10
6180.80
6184.60
6176.80
6181.85
6182.85
6177.30
6177.3

6168.00
6167.30
6162.60
6162.80
6166.00

Alt. L
46.00
55.00
46.00
74.00
61.00
59.00
53.00
24.00
12.00
41.00
44.00
27.00
29.00
12.00
33.00

5.00
5.00

22.00
37.00
40.00
45.00
33.00
28.00
31.00
12.00
40.00
44.00
29.00
42.00
55.00
46.00
36.00
36.00
18.00
21.00
22.00
18.00
45.00
33.00
42.00
36.00
30.00
35.00
28.00
46.00
33.00

T.d.
15.70
18.30
19.80
43.50
20.90
33.00
23.60
45.30

8.10
31.35
33.80
13.30
14.10
22.00
17.00
8.80

12.40
10.10
23.20
22.00
33.30
12.20
5.90

15.00
5.37

40.00
40.20
21.00
30.00
13.30
15.73
21.00
21.20
15.40
11.30
32.37

9.00
16.38
11.20
20.20
25.00
15.40
20.85

7.90
38.00
16.00

Continued.
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2 Monthly water
Date I

juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88
juil-88

S.W.L. |
19.29
24.66
16.86
7.09

29.63
25.09
27.78
22.79
6.75

19.02
9.8

5.62
4.32
4.66
6.73

ND
20.81
14.48
36.86
50.08
59.87
24.08
31.31
30.18
22.38
19.87
4.77

29.65
25.5

28.28
41.02
50.77
16.86
21.47
20.92
36.03

ND
25.86
17.69
7.85

level record
Datel

août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88
août-88

S.W.L.
19.26
24.90
15.77
7.07

29.61
25.03
27.81
22.58
7.53

18.75
10.11
5.53
4.29
4.55
6.49
7.39

20.74
14.10
36.50
49.50
60.02
23.99
32.13
30.51
22.33
20.24
4.22

29.65
25.55
28.42
41.53
49.96
15.82
21.44
21.00
35.76
34.50
25.47

ND
7.77

I Date I
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88
sept-88

S.W.L.
19.83
24,34

16.2
7.18

29.69
25.15
27.75

22.3
7.09
18.7
9.88
5.98

4.2
4.57
6.61

7.4
20.92
12.88
37.46
49.35
57.96
25.79
31.5

30.58
ND

20.08
7.21

ND
25.74

ND
41.44
51.49

17.2
21.45
20.58
35.25
34.22

24.9
ND
7.8

Datel
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88
nove-88

S.W.L.
19.68
24.46
17.77
4.95
29.6
25.1

27.68
22.18

ND
18.58

9.7
ND

4.22
4.5

6.53
7.35

20.82
13.2
36.9
49.4

58.75
24.1

31.65
30.45

ND
15.97

ND
ND

25.56
ND

41.48
50.77
17.12
21.42
20.42

ND
34.1

ND
ND

7.71
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Table 3a. Pumping test data from well 742 (TORY AL S.A. - Ruta uno - Km. 34

Pumping well
Time (minuted
(cm.)
0
1
6
7
8
9
10
20
30
60
120
150
180
240
310
360
420
465

0
11.86
12.55
12.58
12.6
12.62
12.64
12.68
12.69
12.74
12.79
12.81
12.8
12.84
12.81
12.8
12.85
12.86

Drawdown (m.)

10
20
30
40
51
60
90
150
210
270
300
330

piezometer
time (minute) Drawdown

1.6
7.6
12.8
17.7
21.8
24
30.8
37.3
57.6
61
62
66.6
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Table 3b Table of recoverv data f well)

t (time since
pumping started)
466
467
468
469
470
471
472
473
474
475
480
485
490
500
510
520
530
540
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

t' (time since
pumping stopped")
1
2
3
4
5
6
7
8
9
10
15
20
25
35
45
55
65
75
85
95
105
115
125
135
145
155
165
175
185
195
205
215
225
235
245
255
265
275
285
295
305
315
325
335
345
355

t/f
466
233.5
156
117
94
78
67
59
52.7
47.5
32
24
19
14
11
9
8
7
6.5
6
5.5
5
4.8
4.5
4.3
4.1
3.8
3.7
3.6
3.4
3.3
3.2
3.1
3
2.9
2.8
2.8
2.7
2.6
2.6
2.5
2.5
2.4
2.4
2.37
2.34

s1 (residual
drawdown)

8.32
8.16
7.85
7.64
7.38
7.18
7.07
6.97
6.85
6.75
6.33
6
5.69
5.38
4.81
4.47
4.23
4.17
4.12
4.04
3.99
3.95
3.89
3.83
3.78
3.74
3.69
3.65
3.56
3.36
3.07
2.84
2.63
2.45
2.17
1.99
1.86
1.72
1.6
1.49
1.36
1.24
1.13
1.01
0.92
0.8
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Table 3c Table of recovery data (Piezometer)

t (time since
pumping started")

6.50E+02
6.80E+02
7.10E+02
7.40E+02
7.70E+02
8.00E+02
8.30E+02

t1 (time since
pumping stopped")

175
205
235
265
295
325
355

t/f

3.71
3.32
3.02
2.79
2.61
2.46
2.34

s' (residual
drawdown)

6.81
6.2
5.27
4.51
4.1
3.65
3.45
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Computer program - Transient flow by implicite finite difference method after Bear

and Verruijt, 1987.

100 REM DEFINT :I-N:KEY OFF:GOSUB 460

110 PRINT"� Bear & Verruijt - Groundwater Modeling"

120 PRINT"� Non-steady Groundwater Row"

130 PRINT"� Implicit Finite Differences":PRINT"� Program 9.3"

140 PRINT"� Homogeneous infiltration in rectangular aquifer"

150 PRINT:PRINT:DIM F(50,50),FA(50,50):TT=0

160 INPUT"Dimension in x-direction : ";XT

170 INPUT" Subdivisions : ";NX:DX=XT/NX:A=1/(DX*DX)

180 INPUT'Dimension in y-direction : ";YT

190 INPUT" Subdivisions : ";NY:DY=YT/NY:B=1/(DY*DY)

200 INPUT'Initial head : ";H

210 INPUT'Infiltration rate : ";P

220 INPUT'Transmissivity : ";T

230 INPUT"Storativity : ";S:DT=S/(2*T*(A+B))

240 PRINT"Suggestion for time step : ";DT

250 INPUT'Time step : ";DT

260 INPUT'Number of time steps ... : ";NS

270 INPUT"Number of iterations ... : ";NI

280 INPUT"Relaxation factor : ";RX:GOSUB 460

290 FOR 1=0 TO NX:FOR J=0 TO NY:F(I,J)=H:FA(I,J)=H:NEXT J,I

300A=T*A:B=T*B:FF=2*A+2*B+S/DT:II=INT(NX/2+.l):JJ=INT(NY/2+.l)

continued
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Computer program - Transient flow by implicite finite difference method after Bear

and Verruijt, 1987.

310 FOR IS=1 TO NS:TT=TT+DT

320 FOR IT=1 TO NI:FOR 1=1 TO NX-1:FOR J=l TO NY-1

330C=A*(FA(I-l,J)-2*FAa,J)+FA(I+l,J))

340D=B*(FA(I,J-l)-2*FA(I,J)+FA(I,J+l))

350AA=P+C+D-S*(FA(I,J)-Fa,J))/DT:FA(I,J)=FA(I,J)+RX*AA/FF

360 NEXT J,I:FOR J=l TO NY-1:FOR 1=1 TO NX-1

370C=A*(FA(I-l,J)-2*FA(IJ)+FA(I+l,J))

380 D=B*(FA(I,J-1 )-2*FA(I,J)+FA(I,J+1 ))

390AA=P+C+D-S*(FA(I,J)-F(I,J))/DT:FA(I,J)=FA(I,J)+RX*AA/FF

400 NEXT I,J,IT

410 FOR 1=1 TO NX-1:FOR J=l TO NY-1:F(I,J)=FA(I,J):NEXT J,I

420 PRINT'Time : ";:PRINT USING "#######.###";TT;

430 PRINT" � Head in the center :";

440 PRINT USING "###.###";F(II,JJ):IF IS>1 THEN DT=2*DT

450 NEXT IS:END

460 PRINT" Finite Differences - 3 ";

470 PRINT:PRINT:RETURN
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Table 4
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

Chemicaj
X

417.5
417.9
415.3
404.8
395.9
388.7
391.2
393.8
394.6
404.1
402.2
402.1
397.5
393.3
392.5
389.9
395.3
399.2

401
404.4
405.1
407.0
404.9
401.8
398.5
398.1
396.3
404.5
412.2
411.9
408.7
416.7
419.4
422.5
420.5
425.5

413.85
411.4
412.9
416.7
420.5
413.2
416.9
406.8
413.3
421.5
424.1

analysis
Y

6206.1
6214.4
6208.7
6197.2
6190.7
6183.5
6184.2
6186.2

6189
6180.6
6180.2
6179.9
6179.4
6177.5
6175.1
6176.1
6173.9
6172.5

6174
6174.4
6171.8
6180.7
6182.4
6185.5
6187.2
6187.1
6183.8
6192.5
6196.7
6187.7
6188.2
6191.5
6185.1
6180.8
6184.6
6176.8
6181.9
6178.4
6177.9
6182.9
6177.3

6168
6167.3
6162.6
6162.8
6163.5
6193.3

> data (January
Date of

Sampling
10-Feb.-87
10-Feb.-87
10-Feb.-87
9-Feb.-87

27-Jan.-87
27-Jan.-87
27-Jan.-87
27-Jan.-87
27-Jan.-87
29-Jan.-87
29-Jan.-87
29-Jan.-87
29-Jan.-87
29-Jan.-87
23-Jan.-87
23-Jan.-87
23-Jan.-87
23-Jan.-87
31-Jan.-87
29-Jan.-87
31-Jan.-87
31-Jan.-87
29-Jan.-87
27-Jan.-87
27-Jan.-87
27-Jan.-87
27-Jan.-87
9-Feb.-87
9-Feb.-87

20-Jan.-87
20-Jan.-87
4-Feb.-87
4-Feb.-87
4-Feb.-87
4-Feb.-87
4-Feb.-87
4-Feb.-87

18-Jan.-87
4-Feb.-87
4-Feb.-87

20-Jan.-87
21-Jan.-87
21-Jan.-87
21-Jan.-87
21-Jan.-87
1-Feb.-87
6-Feb.-87

r - Febniar
Conduct.

MS/cm.
700.00
990.00
770.00

1020.00
750.00
520.00
700.00

1140.00
650.00
870.00
860.00
870.00

1230.00
940.00
890.00

1080.00
830.00

1140.00
740.00

1010.00
840.00
780.00

1080.00
800.00

1120.00
1020.00
1060.00
960.00

1040.00
1350.00
940.00
840.00
580.00
680.00
730.00
590.00
590.00

1590.00
780.00
480.00

1110.00
1670.00
760.00

1750.00
1320.00
950.00
650.00

V1987)
I Alkalini
| Total
227.00
330.00
266.00
361.00
267.00
189.00
344.60
489.20
235.90
285.00
321.00
310.00
461.00
336.00
343.50
407.20
327.70
372.70
298.00
380.00
340.00
449.00
358.00
319.30
543.30
332.40
439.10
394.00
358.00
398.80
294.30
345.00
222.00
230.00
254.00
200.00
232.00
407.00
315.00
185.00
308.70
353.90
339.70
432.10
419.80
362.00
222.00

Ph
Units
7.53
7.03

7.1
7.39
7.58
6.88
7.34
7.61
7.57
7.23
7.54
7.03
7.56
7.32
7.40
7.43
7.31
7.65
7.18
7.64
7.94
7.13
7.00
7.37
7.86
7.70
7.34

7.6
7.18
7.10
7.30
7.15
7.04
7.06

7.1
6.83
7.09
7.50
7.38

8.1
7.30
7.43
7.60
7.60
7.71
7.45
7.17

Eh
Mic.volt
119.00
152.00
173.00
207.00
170.00
216.00
195.00
190.00
269.00
240.00
180.00
215.00
184.00
213.00
218.00
240.00
234.00
209.00
140.00
283.00
134.00
180.00
205.00
257.00
212.00
180.00
220.00
202.00
151.00
234.00
214.00
217.00
207.00
190.00
190.00
235.00
171.00
280.00
204.00
207.00
236.00
302.00
320.00
340.00
298.00
246.00
220.00

Continued

PE
Units
2.02
2.59
2.94
3.54
2.88
3.66
3.29
3.18
4.54
4.05
3.06
3.66
3.11
3.60
3.73
4.10
4.02
3.60
2.38
4.78
2.24
3.05
3.46
4.36
3.59
3.04
3.72
3.45
2.58
4.00
3.67
3.66
3.47
3.19
3.21
3.98
2.90
4.78
3.47
3.49
4.03
5.18
5.49
5.81
5.14
4.21
3.76
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Table 4
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

Chemical analysis
T.(AIR)

23.0
24.8
23.0
22.0

31.00
35.00
34.20
33.50
30.50
37.00
30.00
30.80
33.20
38.00
23.00
22.00
23.00
22.00

25.5
33.00

25.5
26.7

36.00
35.00
35.00
37.00
35.80

22.0
21.0

29.00
33.00

34.7
34.7
34.7
34.7
32.3
32.0

29.50
30.5
32.0

28.00
22.00
24.00
25.00
24.00

25.5
30.5

180
d units
-5.40
-5.20
-5.00
-5.40
-5.70
-5.10
-5.30
-5.50
-5.10
-5.40
-5.60

ND
-5.20

ND
-5.70
-5.70

ND
ND

-5.70
-5.60

ND
-5.60
-5.60

ND
ND
ND
ND
ND

-5.30
-5.20
-5.00
-5.10
-5.30
-5.60
-5.30

ND
-4.60
-5.20
-5.20
-4.90
-4.90
-5.20
-5.30

ND
-5.40
-5.20
-5.00

i data (January - February
Ca

mg/l
25.31
32.98
32.98
56.37
22.28
24.20
25.00
25.20
32.14
36.56
40.10
33.46
26.30
28.80
16.60
3.38

35.53
3.36

32.98
47.85
34.19
62.82
22.45
15.70
30.87
37.87
24.40
32.26
66.09
47.98
38.24
13.53
22.34
22.58
27.79
17.05
27.29
19.41
42.94
28.03
18.52
49.18

6.28
14.00
23.59
36.26
20.00

Ca
meq/l
1.26
1.65
1.65
2.81
1.11
1.21
1.25
1.26
1.60
1.82
2.00
1.67
1.31
1.44
0.83
0.17
1.77
0.17
1.65
2.39
1.71
3.13
1.12
0.78
1.54
1.89
1.22
1.61
3.30
2.39
1.91
0.68
1.11
1.13
1.39
0.85
1.36
0.97
2.14
1.40
0.92
2.45
0.31
0.70
1.18
1.81
1.00

Ca
meq/l
18.96
15.63
22.61
29.33
17.41
22.67
16.22
10.40
26.42
22.48
23.66
19.11
11.17
16.02
9.95
1.72

20.84
1.60

20.20
23.78
20.40
35.82
10.92
10.89
13.92
18.87
13.40
16.75
38.09
20.58
21.24

8.49
19.08
18.08
20.77
12.91
23.49

6.73
28.85
29.10

8.26
16.94

4.61
4.52
8.56

16.84
14.78

1987)
Mg

mg/l
16.00
20.60
18.80
28.00
18.20
21.00
22.00
11.80
13.00
34.00
14.80
17.40
14.20
24.60
13.80
13.20
22.00
12.00
17.40
23.40
14.40
21.60
23.80
17.00
14.80
16.60
18.20
15.20
30.60
32.60
17.00
14.60
11.20
14.40
14.00
13.20
13.00
17.00
17.53
13.80
12.40
32.00
15.20
14.00
14.80
32.40
18.00

Mg
meq/l
1.32
1.69
1.55
2.30
1.50
1.73
1.81
0.97
1.07
2.80
1.22
1.43
1.17
2.02
1.13
1.09
1.81
0.99
1.43
1.92
1.18
1.78
1.96
1.40
1.22
1.37
1.50
1.25
2.52
2.68
1.40
1.20
0.92
1.18
1.15
1.09
1.07
1.40
1.44
1.13
1.02
2.63
1.25
1.15
1.22
2.66
1.48

Mg
meq%
19.75
16.10
21.24
24.01
23.43
32.42
23.53

8.02
17.61
34.46
14.39
16.38
9.94

22.55
13.64
11.09
21.26

9.41
17.57
19.17
14.16
20.30
19.08
19.44
11.00
13.63
16.47
13.01
29.06
23.05
15.56
15.10
15.77
19.01
17.24
16.48
18.44
9.71

19.41
23.61

9.11
18.16
18.40

7.44
8.85

24.81
21.93

Na
mg/l

90.40
163.40
91.00

100.80
85.40
51.00

102.00
224.00

74.00
75.80

117.00
126.60
210.60
117.80
141.80
190.00
106.60
212.40
112.80
126.60
123.00
84.80

135.60
111.20
188.20
150.20
144.80
152.60

60.60
149.60
128.40
139.00
84.00
88.00
91.40

106.00
76.40

273.80
85.20
49.40

210.60
211.80
116.40
310.00
258.20
139.00
96.00

Continued.
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Table 4
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

Chemica
Ma

meq/l
3.93
7.11
3.96
4.38
3.71
2.22
4.44
9.74
3.22
3.30
5.09
5.51
9.16
5.12
6.17
8.27
4.64
9.24
4.91
5.51
5.35
3.69
5.90
4.84
8.19
6.53
6.30
6.64
2.64
6.51
5.59
6.05
3.65
3.83
3.98
4.61
3.32

11.91
3.71
2.15
9.16
9.21
5.06

13.49
11.23
6.05
4.18

analysis
Na

meq%
59.02
67.53
54.39
45.71
58.16
41.64
57.71
80.56
53.03
40.63
60.17
63.04
77.99
57.12
74.12
84.42
54.50
88.10
60.23
54.86
63.97
42.15
57.50
67.25
73.98
65.25
69.32
69.07
30.44
55.94
62.16
76.05
62.55
61.44
59.54
69.98
57.32
82.73
49.91
44.70
81.87
63.59
74.53
87.17
81.69
56.29
61.86

> data (January - February
K

mg/l
5.91
3.05
5.01
3.57
2.51
6.81
7.63
4.84
6.99
7.70
5.91
5.01
4.12

15.10
7.43

10.58
11.30
3.67
6.36
8.60
4.84
5.91

50.10
6.81
4.75
8.78
2.87
4.39
8.15
1.98
3.67
1.12
5.95
3.57
6.38
1.62
1.71
4.66
5.30
4.87
3.32
7.43
6.54
5.28
4.84
8.66
3.79

K
meq/l
0.15
0.08
0.13
0.09
0.06
0.17
0.20
0.12
0.18
0.20
0.15
0.13
0.11
0.39
0.19
0.27
0.29
0.09
0.16
0.22
0.12
0.15
1.28
0.17
0.12
0.22
0.07
0.11
0.21
0.05
0.09
0.03
0.15
0.09
0.16
0.04
0.04
0.12
0.14
0.12
0.08
0.19
0.17
0.14
0.12
0.22
0.10

K
meq%

2.27
0.74
1.76
0.95
1.01
3.27
2.54
1.02
2.95
2.43
1.79
1.47
0.90
4.31
2.28
2.76
3.40
0.90
2.00
2.19
1.48
1.73

12.49
2.42
1.10
2.24
0.81
1.17
2.41
0.44
1.04
0.36
2.61
1.47
2.44
0.63
0.75
0.83
1.83
2.59
0.76
1.31
2.46
0.87
0.90
2.06
1.44

1987)
Na+K
meq/l
4.08
7.19
4.09
4.48
3.78
2.39
4.63
9.87
3.40
3.49
5.24
5.64
9.27
5.51
6.36
8.54
4.93
9.33
5.07
5.73
5.47
3.84
7.18
5.01
8.31
6.76
6.37
6.75
2.84
6.56
5.68
6.08
3.81
3.92
4.14
4.65
3.37

12.03
3.84
2.27
9.25
9.40
5.23

13.62
11.36
6.27
4.27

na+k
meq%)
61.29
68.27
56.15
46.67
59.16
44.91
60.24
81.58
55.97
43.06
61.96
64.51
78.89
61.43
76.41
87.19
57.90
88.99
62.23
57.05
65.45
43.88
70.00
69.67
75.08
67.49
70.13
70.24
32.85
56.37
63.20
76.41
65.15
62.91
61.99
70.61
58.07
83.56
51.73
47.29
82.63
64.90
76.99
88.04
82.59
58.35
63.29

HCO3
mg/l)

276.94
402.60
324.52
440.42
325.74
230.58
420.41
596.82
287.80
347.70
391.62
378.20
562.42
409.92
419.07
496.78
399.79
454.69
363.56
463.60
414.80
547.78
436.76
389.55
662.83
405.53
535.70
480.68
436.76
486.54
359.05
420.90
270.84
280.60
309.88
244.00
283.04
496.54
384.30
225.70
376.61
431.76
414.43
527.16
512.16
441.64
270.84

HCO3
meq/l
4.54
6.60
5.32
7.22
5.34
3.78
6.89
9.78
4.72
5.70
6.42
6.20
9.22
6.72
6.87
8.14
6.55
7.45
5.96
7.60
6.80
8.98
7.16
6.38

10.86
6.65
8.78
7.88
7.16
7.97
5.88
6.90
4.44
4.60
5.08
4.00
4.64
8.14
6.30
3.70
6.17
7.08
6.79
8.64
8.39
7.24
4.44

Continued.
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Table 4 Chemical
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

Na
meq/l
3.93
7.11
3.96
4.38
3.71
2.22
4.44
9.74
3.22
3.30
5.09
5.51
9.16
5.12
6.17
8.27
4.64
9.24
4.91
5.51
5.35
3.69
5.90
4.84
8.19
6.53
6.30
6.64
2.64
6.51
5.59
6.05
3.65
3.83
3.98
4.61
3.32

11.91
3.71
2.15
9.16
9.21
5.06

13.49
11.23
6.05
4.18

. analysis
Na

meq%
59.02
67.53
54.39
45.71
58.16
41.64
57.71
80.56
53.03
40.63
60.17
63.04
77.99
57.12
74.12
84.42
54.50
88.10
60.23
54.86
63.97
42.15
57.50
67.25
73.98
65.25
69.32
69.07
30.44
55.94
62.16
76.05
62.55
61.44
59.54
69.98
57.32
82.73
49.91
44.70
81.87
63.59
74.53
87.17
81.69
56.29
61.86

> data (January - February
K

mg/l
5.91
3.05
5.01
3.57
2.51
6.81
7.63
4.84
6.99
7.70
5.91
5.01
4.12

15.10
7.43

10.58
11.30
3.67
6.36
8.60
4.84
5.91

50.10
6.81
4.75
8.78
2.87
4.39
8.15
1.98
3.67
1.12
5.95
3.57
6.38
1.62
1.71
4.66
5.30
4.87
3.32
7.43
6.54
5.28
4.84
8.66
3.79

K
meq/l
0.15
0.08
0.13
0.09
0.06
0.17
0.20
0.12
0.18
0.20
0.15
0.13
0.11
0.39
0.19
0.27
0.29
0.09
0.16
0.22
0.12
0.15
1.28
0.17
0.12
0.22
0.07
0.11
0.21
0.05
0.09
0.03
0.15
0.09
0.16
0.04
0.04
0.12
0.14
0.12
0.08
0.19
0.17
0.14
0.12
0.22
0.10

K
meq%

2.27
0.74
1.76
0.95
1.01
3.27
2.54
1.02
2.95
2.43
1.79
1.47
0.90
4.31
2.28
2.76
3.40
0.90
2.00
2.19
1.48
1.73

12.49
2.42
1.10
2.24
0.81
1.17
2.41
0.44
1.04
0.36
2.61
1.47
2.44
0.63
0.75
0.83
1.83
2.59
0.76
1.31
2.46
0.87
0.90
2.06
1.44

1987)
Na+K
meq/l
4.08
7.19
4.09
4.48
3.78
2.39
4.63
9.87
3.40
3.49
5.24
5.64
9.27
5.51
6.36
8.54
4.93
9.33
5.07
5.73
5.47
3.84
7.18
5.01
8.31
6.76
6.37
6.75
2.84
6.56
5.68
6.08
3.81
3.92
4.14
4.65
3.37

12.03
3.84
2.27
9.25
9.40
5.23

13.62
11.36
6.27
4.27

na+k
meq%
61.29
68.27
56.15
46.67
59.16
44.91
60.24
81.58
55.97
43.06
61.96
64.51
78.89
61.43
76.41
87.19
57.90
88.99
62.23
57.05
65.45
43.88
70.00
69.67
75.08
67.49
70.13
70.24
32.85
56.37
63.20
76.41
65.15
62.91
61.99
70.61
58.07
83.56
51.73
47.29
82.63
64.90
76.99
88.04
82.59
58.35
63.29

HCO3
mg/l

276.94
402.60
324.52
440.42
325.74
230.58
420.41
596.82
287.80
347.70
391.62
378.20
562.42
409.92
419.07
496.78
399.79
454.69
363.56
463.60
414.80
547.78
436.76
389.55
662.83
405.53
535.70
480.68
436.76
486.54
359.05
420.90
270.84
280.60
309.88
244.00
283.04
496.54
384.30
225.70
376.61
431.76
414.43
527.16
512.16
441.64
270.84

HCO3
meq/l
4.54
6.60
5.32
7.22
5.34
3.78
6.89
9.78
4.72
5.70
6.42
6.20
9.22
6.72
6.87
8.14
6.55
7.45
5.96
7.60
6.80
8.98
7.16
6.38

10.86
6.65
8.78
7.88
7.16
7.97
5.88
6.90
4.44
4.60
5.08
4.00
4.64
8.14
6.30
3.70
6.17
7.08
6.79
8.64
8.39
7.24
4.44
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Table 4 Chemica
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

HCO3
meq%
66.80
67.18
69.32
69.02
65.35
70.23
82.60
81.66
74.15
64.28
75.10
68.53
70.72
67.76
77.33
76.03
77.37
66.21
77.50
72.99
78.65
86.24
65.83
70.27
67.30
65.61
82.09
77.38
61.91
57.03
66.52
79.89
74.98
69.22
72.81
70.75
79.79
55.91
79.46
75.19
59.37
48.84
84.80
59.77
62.65
67.80
68.10

analysis
Cl

mg/l
38.67
36.99
28.31
47.37
74.14
22.42
23.96
17.95
32.21
40.64
35.53
37.07
39.85
25.82
44.21
61.36
23.21
53.50
18.36
43.14
26.76
19.31
53.14
71.89

127.92
65.64
18.92
32.55
82.04

117.28
39.21
17.44
27.33
39.36
44.35
28.38
10.22
94.93
23.45
18.90
58.14

110.64
23.31

164.57
142.00
81.62
27.49

> data (January - Febraary
Cl

meq/l
1.09
1.04
0.80
1.34
2.09
0.63
0.68
0.51
0.91
1.15
1.00
1.05
1.12
0.73
1.25
1.73
0.65
1.51
0.52
1.22
0.75
0.54
1.50
2.03
3.61
1.85
0.53
0.92
2.31
3.31
1.11
0.49
0.77
1.11
1.25
0.80
0.29
2.68
0.66
0.53
1.64
3.12
0.66
4.64
4.00
2.30
0.78

a
meq%
16.05
10.62
10.40
12.77
25.59
11.75
8.10
4.23

14.28
12.93
11.72
11.56
8.62
7.34

14.04
16.16
7.73

13.40
6.73

11.69
8.73
5.23

13.78
22.31
22.35
18.27
4.99
9.02

20.01
23.65
12.50
5.70

13.02
16.71
17.93
14.16
4.96

18.39
8.34

10.83
15.77
21.53
8.21

32.10
29.89
21.56
11.89

SO4
mg/l

26.16
77.04
25.50
29.47
13.19
15.79
16.81
41.19
20.33
25.69
24.45
32.89
38.97
29.98
21.88
32.76
23.05
22.59
19.56
21.02
31.05
29.55
20.00
19.85
63.17
50.67
10.83
47.95
18.57
32.32
70.17
18.59
17.06
20.65
17.75
16.52
11.75

146.55
15.13
15.13
84.48
35.34
10.14
51.21
23.83
28.90
34.17

1987)
SO4

meq/l
0.54
1.60
0.53
0.61
0.27
0.33
0.35
0.86
0.42
0.53
0.51
0.68
0.81
0.62
0.46
0.68
0.48
0.47
0.41
0.44
0.65
0.62
0.42
0.41
1.32
1.05
0.23
1.00
0.39
0.67
1.46
0.39
0.36
0.43
0.37
0.34
0.24
3.05
0.32
0.32
1.76
0.74
0.21
1.07
0.50
0.60
0.71

SO4
meq%

8.02
16.33
6.92
5.87
3.36
6.11
4.20
7.16
6.65
6.03
5.96
7.57
6.22
6.29
5.13
6.37
5.67
4.18
5.30
4.20
7.48
5.91
3.83
4.55
8.15

10.41
2.11
9.81
3.34
4.81

16.51
4.48
6.00
6.47
5.30
6.09
4.21

20.96
3.97
6.40

16.92
5.08
2.64
7.38
3.70
5.64

10.91

NO3
mg/l

38.47
35.78
63.53
79.99
28.87
39.75
26.38
51.65
19.42
92.13
38.29
69.24

116.63
114.38
19.33
9.55

48.46
113.15
49.92
71.79
27.57
16.89

111.69
16.19
22.01
35.83
71.69
23.99

105.59
125.70
24.49
53.16
22.05
31.33
17.16
31.54
39.82
42.81
40.40
23.09
51.24

220.56
21.66
6.74

31.27
33.14
36.76

NO3
meq/l
0.62
0.58
1.02
1.29
0.47
0.64
0.43
0.83
0.31
1.49
0.62
1.12
1.88
1.84
0.31
0.15
0.78
1.83
0.81
1.16
0.44
0.27
1.80
0.26
0.36
0.58
1.16
0.39
1.70
2.03
0.40
0.86
0.36
0.51
0.28
0.51
0.64
0.69
0.65
0.37
0.83
3.56
0.35
0.11
0.50
0.53
0.59
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Table 4
Sample

No.
1
2
4
9

11
12
13
14
15
17
18
19
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
59
63
64
66
68
69
76
77
78
79
81
83

Chemica.
NO3

meq%
9.13
5.88

13.36
12.34
5.70

11.91
5.10
6.95
4.92

16.76
7.23

12.35
14.43
18.61
3.51
1.44
9.23

16.21
10.47
11.12
5.14
2.62

16.57
2.87
2.20
5.70

10.81
3.80

14.73
14.50
4.47
9.93
6.01
7.61
3.97
9.00

11.05
4.74
8.22
7.57
7.95

24.55
4.36
0.75
3.76
5.01
9.10

I analysis
T.anio
meq/l
6.66

10.53
7.28
9.59
6.39
5.33
7.69

12.10
6.07
8.11
8.46
8.74

11.75
8.97
8.32
9.79
8.51

10.49
8.15

10.04
8.36
8.75

10.26
7.19

11.07
10.01
9.09
9.61
8.66

11.63
8.99
7.95
5.84
6.23
6.68
6.59
5.80

14.40
7.43
4.81

11.19
14.49
6.79

15.47
13.75
10.74
6.75

» data (January - February IS
T.catton

meq/l
6.79
9.82
7.67

10.46
8.17
5.38
8.34

11.98
6.36
8.87
8.55
9.05

13.03
9.92
8.88

10.71
8.47

11.26
7.69

10.41
8.64

10.41
10.88
9.09

16.14
10.13
10.70
10.18
11.56
13.98
8.85
8.63
5.92
6.64
6.98
5.65
5.81

14.56
7.93
4.92

10.40
14.49
8.01

14.46
13.40
10.68
6.52

T.D.S.
mg/l

517.86
772.44
589.65
785.99
570.33
411.55
644.19
973.45
485.89
660.22
667.70
699.87
1013.9
766.40
684.12
817.61
669.94
875.36
620.94
806.00
676.61
788.66
853.54
648.19
1114.5
771.12
827.41
789.62
808.40
994.00
680.23
678.34
460.77
500.49
528.71
458.31
463.23
1095.0
614.25
378.92
815.31
1098.1
613.96
1092.6
1010.9
801.62
507.05

S.A.R.

3.46
5.50
3.13
2.74
3.25
1.83
3.59
9.23
2.78
2.17
4.01
4.42
8.23
3.90
6.23

10.44
3.46

12.16
3.96
3.75
4.45
2.35
4.76
4.63
6.97
5.12
5.41
5.55
1.55
4.09
4.34
6.24
3.62
3.56
3.53
4.69
3.01

10.95
2.77
1.91
9.29
5.78
5.73

14.02
10.27
4.04
3.75
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Table 4 Chemica
Sample

No.
84
85
88
90
91
92
93
94
96
97

101
106
107
108
109
112
114
115
116
117
118
120
126
127
130
131
133
134
135
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
159
163

X

426.5
426.9
424.6
427.2
424.7
431.5
431.5
429.1
423.0

431.75
428.55

433.9
416.9
417.6
420.5
426.7
422.0
417.1
432.1
431.7
431.2
426.9

411.75
407.9
422.5
422.3
429.5
432.7
438.0
442.6
441.2
437.2
436.8
436.4
434.4
434.3
436.3
435.8
436.7
440.9
442.9
432.2
432.2
428.4
425.2

446
437.6

[ analysis

6192
6190
6186
6181
6183
6191
6186
6187
6172
6172
6172
6168
6160
6161
6159
6163
6168
6172
6156
6180
6184
6157
6192
6191
6202
6207
6208
6213
6208
6197
6192
6191
6201
6197
6202
6207
6187
6182
6178
6186
6181
6196
6196
6196
6197
6153
6158.

Y

.7

.9

.5

.4

.7

.7

.2

.0

.9

.2

.5

.0

.0

.3

.6

.3

.1

.8
9
9
3
6
2
9
5
0
5
5
4
5
7
0
0
9
7
1
5
1
9
0
2
1
1
3
1
2
8

, data (January - February 1987)
Date of

sampling
6-Feb.-87
6-Feb.-87
6-Feb.-87
6-Feb.-87
6-Feb.-87
6-Feb.-87
6-Feb.-87
6-Feb.-87
3-Feb.-87
4-Feb.-87
2-Feb.-87
1-Feb.-87
i-Feb.-87
1-Feb.-87
1-Feb.-87
1-Feb.-87
1-Feb.-87

22-Jan.-87
1-Feb.-87
6-Feb.-87
6-Feb.-87
1-Feb.-87

24-Jan.-87
24-Jan.-87
10-Feb.-87
10-Feb.-87
i0-Feb.-87
10-Feb.-87
10-Feb.-87
11-Feb.-87
11-Feb.-87
11-Feb.-87
10-Feb.-87
10-Feb.-87
10-Feb.-87
10-Feb.-87
11-Feb.-87
11-Feb.-87
H-Feb.-87
11-Feb.-87
11-Feb.-87
7-Feb.-87
7-Feb.-87

10-Feb.-87
10-Feb.-87
13-Feb.-87
23-Jan.-87

Conduct.
mS/cm

980
1410
820

1630
750
970
610
760
790
990
720
910
300
940

1600
920

1420
910

1240
1350
1460

610
2250
1130
940

1250
910

1310
990
190
700

1200
1080
1030
540
940

2500.
1370
1300.
1620.
1330.

750.
1270.
1290.
1200.
710.
420.

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
00

.00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Total
Alkalin.
328
296
304
370
284
351
200
314
300
353
286
280
110
274
500
330
332
288
370
442
382
235
475
365
410
441

446
394
279
197
408
351
354
371
255
449
423

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
00
.00
00
00
00
00
00
30
80
00
00
ND
00
00
00
00
00
00
00
00
00
00
00

390.00
385
494.
308.
349.
429.
507.
234.
134.

00
00
00
00
00
00
00
20

Ph
units
6.89
6.93
7.22
7.17
7.11
7.16
6.86
7.13

7.3
7.09
6.86
7.0

6.56
7.39
7.52
7.08
7.55
7.41
7.36
7.23
7.5

7.08
7.70
7.34
7.84
7.57
8.38
8.07

7.4
7.38
7.09
7.28
7.44
7.36
7.28
7.02
7.48
7.24
7.66
7.32
7.56
7.61
7.27
7.31
7.38
7.63
6.60

Eh
m. volts
205
195
249
205
206
166
190
193
140

84
250
184
150
165
170
180
175
320
145
139
155
180
212
214
209
222
182
183
209
203
183
195
187
198
229
226
200
220
225
221
208.
198
192.
209.
187.
233.
285.

.00

.00

.00

.00

.00

.00

.00

.00

.00
00

.00
00

.00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

PE
units
3.48
3.29
4.18
3.46
3.49
2.78
3.23
3.23
2.38
1.42
4.28
3.14
2.59
2.82
2.89
3.09
2.95
5.49
2.49
2.36
2.64
3.09
3.62
3.64
3.53
3.75
3.06
3.08
3.54
3.40
3.06
3.26
3.17
3.37
3.89
3.82
3.39
3.73
3.81
3.74
3.52
3.37
3.28
3.53
3.19
3.91
4.94
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Table 4 Chemica
Sample

No.
84
85
88
90
91
92
93
94
96
97

101
106
107
108
109
112
114
115
116
117
118
120
126
127
130
131
133
134
135
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
159
163

T.(AIR)
<C

30.5
30.0
30.0
32.0
32.0
30.4
27.0
30.4
32.0
30.5
29.5
30.0
22.3
22.3
25.5
23.0
29.0

27.00
22.0
27.0
27.0
23.0

26.00
29.00

26.7
27.0
27.0
26.5
26.5
24.0
24.5
24.0
21.6
21.6
26.5
26.5
25.0
26.0
26.0
24.8
24.5
24.3
24.3
26.7
24.8
28.5

19.00

. analysis
180

3 Units
-5.30

ND
ND
ND
ND
ND
ND
ND
ND
ND

-5.40
-5.50
-4.80
-5.40
-5.30
-5.40

ND
-5.20
-5.40
-4.80
-5.00
-5.40
-5.20
-5.10
-4.50
-5.20
-3.70

ND
ND
ND
ND

-4.60
-5.20
-5.30

ND
-5.70
-5.00
-5.30
-5.00
-5.00
-5.00
-5.10
-5.00
-5.20
-5.00
-5.50
-5.40

, datei (January - February
Ca

mg/l
71
79
33
55
30
88
28
42
51
28
50
24

0
14
34
51
38
45
38
37
45
19
13
4

13
22
27
10
26
26

2
17
30
36
46
39
24
39
44
52.
32.
24.
49.
24.
17.
40.

3.

.39

.00

.09

.94

.07

.90

.99

.44

.87

.22

.03

.16

.51

.35

.42

.83

.72
23

.35

.87
21
19
05
16
30
81
43
23
40
36
19
00
35
00
80
12
74
12
20
14
74
74
44
74
97
37
79

Ca
meq/l
3
3
1
2
1
4
1
2
2
1
2
1
0
0
1
2
1
2
1
1
2
0
0
0
0
1
1
0
1
1
0
0
1
1
2
1
1
1
2
2
1
1
2.
1.
0.
2.
0.

.56

.94

.65

.79

.50

.44

.45

.12

.59

.41

.50

.21

.03

.72

.72

.59

.93

.26

.91

.89

.26

.96

.65
21
66
14
37
51
32
32
11
85
51
80
34
95
23
95
21
60
63
23
47
23
90
01
19

Ca
meq%
31
30
19
21
19
42
25
27
33
16
37
12

0
5

10
27
15
25
15
13
15
16

3
2
6
8

14
3

14
13

1
8

16
19
25
22

5
14
14
20.
10.
14.
20.
11.

7.
31 .

4.

.95

.81

.51

.09

.91

.18

.63

.81

.93

.94

.85

.42

.75

.85

.67

.26

.34
35

.01

.69
51
93
12
82
97
91
89
84
18
15
90
37
01
97
95
55
50
71
79
12
66
89
77
49
23
32
30

1987)
Mg

mg/l
40.60
26.00
17.20
40.00
18.60
21.80
13.00
13.80
16.60
14.80
19.60
13.20
0.64

13.60
24.00
17.40
24.80
22.60
17.40
20.80
21.80
10.40
19.20
31.20

7.60
12.20
16.20
7.40

20.40
18.40
10.60
18.00
19.00
26.00
22.20
15.60
20.80
21.00
24.00
25.60
18.40
10.60
22.00
23.40
8.80

26.40
7.20

Mg
meq/l
3.34
2
1
3
1
1
1
1
1
1
1
1
0
1
1
1
2
1
1
1
1
0
1
2
0
1
1
0
1
1
0
1
1
2
1
1
1
1
1
2
1

.14

.41

.29

.53

.79

.07

.13

.37

.22

.61

.09

.05

.12

.97

.43

.04

.86

.43

.71

.79

.86

.58

.57

.63

.00

.33

.61

.68

.51

.87

.48

.56

.14

.83

.28

.71

.73

.97

.11

.51
0.87
1
1
0
2
0

81
92
72
17
59

Mg
meq%
29.95
16.71
16.72
24.86
20.29
17.05
18.94
14.90
17.89
14.64
24.44
11.19

1.54
9.14

12.26
15.09
16.20
20.88
11.23
12.40
12.33
15.12
7.56

34.89
6.56
7.85

14.49
4.57

18.05
15.13
15.12
14.60
16.52
23.77
20.29
14.82
7.62

13.01
13.24
16.28
9.88

10.52
15.23
17.91
5.84

33.75
13.46

Na
mg/l

92
151
121
161
100
95
67
98
80

125
51

167
73

238
279
117
194
107
207
232
239

83

.40

.00

.60

.00

.80

.20

.20

.60

.60

.40

.20

.20

.40

.20

.20

.00

.40

.20

.40

.80

.40

.00
426.80
103
187
243
146
279
143
163
108
177
144
115
106
123
446
219
244
186
277
140
170
172
246

46.
79.

.60

.60

.20

.80

.20

.60
80
40
00
40
00
60
60
40
00
40
40
40
00
20
00
80
60
40

Continued.
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Table 4(
Sample

No.
84
85
88
90
91
92
93
94
96
97

101
106
107
108
109
112
114
115
116
117
118
120
126
127
130
131
133
134
135
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
159
163

Chemical
Na

meq
4.02
6.57
5.29
7.00
4.38
4.14
2.92
4.29
3.51
5.45
2.23
7.27
3.19

10.36
12.15
5.09
8.46
4.66
9.02

10.13
10.41
3.61

18.57
4.51
8.16

10.58
6.39

12.15
6.25
7.13
4.72
7.70
6.28
5.00
4.64
5.38

19.42
9.53

10.63
8.11

12.07
6.09
7.40
7.48

10.74
2.03
3.45

analysis
Na

meq%
36.05
51.33
62.51
52.92
58.17
39.38
51.79
56.33
45.96
65.63
33.77
74.95
93.68
84.66
75.44
53.65
67.16
52.38
70.78
73.38
71.60
63.82
88.86
61.29
85.70
82.80
69.46
91.29
67.22
71.23
81.79
75.95
66.42
55.60
51.52
62.10
86.56
71.78
71.30
62.70
78.77
73.46
62.34
69.62
86.56
31.51
78.54

i data (January - February
K

mg/l
8.95
5.73
4.15
5.87
4.80
5.73
8.02
2.85
6.63
9.05

10.16
5.46
5.37
1.70

10.23
14.82
6.38
4.84

14.82
2.87
3.21
9.16
3.85
2.87
2.85
2.20
4.15
1.55
2.00
1.91
2.69
4.30
3.85
2.33
7.88
1.80
2.78
2.60
3.94
4.57
4.12
3.67
7.70
4.12
1.80
8.60
6.36

K
meq/l
0.23
0.15
0.11
0.15
0.12
0.15
0.21
0.07
0.17
0.23
0.26
0.14
0.14
0.04
0.26
0.38
0.16
0.12
0.38
0.07
0.08
0.23
0.10
0.07
0.07
0.06
0.11
0.04
0.05
0.05
0.07
0.11
0.10
0.06
0.20
0.05
0.07
0.07
0.10
0.12
0.11
0.09
0.20
0.11
0.05
0.22
0.16

K
meq%

2.05
1.15
1.25
1.13
1.63
1.39
3.63
0.96
2.22
2.79
3.94
1.44
4.03
0.36
1.63
4.00
1.30
1.39
2.97
0.53
0.56
4.14
0.47
1.00
0.77
0.44
1.15
0.30
0.55
0.49
1.19
1.08
1.04
0.66
2.24
0.53
0.32
0.50
0.68
0.90
0.69
1.13
1.66
0.98
0.37
3.42
3.70

1987)
Na+K
meq/l
4.25
6.72
5.40
7.15
4.51
4.29
3.13
4.36
3.68
5.69
2.49
7.41
3.33

10.41
12.41
5.47
8.62
4.79
9.40

10.20
10.50
3.84

18.66
4.58
8.23

10.64
6.49

12.18
6.30
7.17
4.78
7.81
6.38
5.06
4.84
5.42

19.49
9.59

10.73
8.23

12.17
6.18
7.60
7.59

10.78
2.25
3.62

na+k
meq%
38.10
52.48
63.77
54.05
59.80
40.77
55.43
57.28
48.18
68.41
37.71
76.39
97.71
85.01
77.07
57.65
68.46
53.77
73.76
73.91
72.16
67.96
89.33
62.28
86.47
83.24
70.62
91.59
67.77
71.72
82.98
77.03
67.46
56.27
53.76
62.63
86.87
72.28
71.97
63.60
79.46
74.59
63.99
70.60
86.93
34.93
82.24

HCO3
mg/l

400.16
361.12
370.88
451.40
346.48
428.22
244.00
383.08
366.00
430.66
348.92
341.60
134.20
334.28
610.00
402.60
405.04
351.36
451.40
539.24
466.04
286.70
579.87
446.28
500.20

ND
441.64
544.12
480.68
340.38
240.34
497.76
428.22
431.88
452.62
311.10
547.78
516.06
475.80
469.70
602.68
375.76
425.78
523.38
618.54
285.48
163.72

HCO3
meq/l
6.56
5.92
6.08
7.40
5.68
7.02
4.00
6.28
6.00
7.06
5.72
5.60
2.20
5.48

10.00
6.60
6.64
5.76
7.40
8.84
7.64
4.70
9.50
7.31
8.20

NO
7.24
8.92
7.88
5.58
3.94
8.16
7.02
7.08
7.42
5.10
8.98
8.46
7.80
7.70
9.88
6.16
6.98
8.58

10.14
4.68
2.68

Continued.
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Table 4 Chemica
Sample

No.
84
85
88
90
91
92
93
94
96
97

101
106
107
108
109
112
114
115
116
117
118
120
126
127
130
131
133
134
135
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
159
163

HCO3
meq%
65.13
50.63
72.72
48.25
77.33
73.65
67.24
80.58
76.16
64.53
79.32
55.99

ND
49.69
62.59
72.39
51.51
66.92
61.69
65.37
53.10
79.16
46.24
59.93
83.18
68.62
75.74
66.32
73.88
54.15
53.31
60.98
58.53
61.02
66.72
55.32
43.95
62.71
50.98
50.51
70.60
81.09
57.93
60.60
78.43

ND
67.57

I analysis
Cl

mg/l
49.29
61.80
43.58

148.17
23.24
44.55
30.63
23.72
31.79

101.71
17.59
97.07
9.73

145.29
63.28
53.34

145.19
72.86
81.78
52.53
57.82
19.50

136.31
84.49
11.63
29.75
27.24
31.47
41.34
83.09
72.27
93.11

102.93
94.75
63.71
43.75

281.82
86.36

149.48
154.05
48.60
28.04
86.61
88.03
13.45
50.82
18.85

, data (January - February
Cl

meq/l
1
1
1
4
0
1
0
0
0
2
0
2
0
4
1
1
4
2
2
1
1
0
3
2
0
0
0
0
1
2
2
2
2
2
1
1
7
2
4
4
1.
0.
2.
2.
0.
1.
0.

.39

.74

.23

.18

.66

.26

.86

.67

.90

.87

.50

.74

.27

.10

.78

.50

.09

.05
31
48
63
55
84
38
33
84
77
89
17
34
04
63
90
67
80
23
95
44
22
34
37
79
44
48
38
43
53

a
meq%
13
14
14
27

8
13
14
8

11
26

6
27

37
11
16
31
23
19
10
11
9

18
19
3
6
8
6

10
22
27
19
24
23
16
13
38.
18.
27.
28.

9.
10.
20.
17.
2.

I
13.

.80

.91

.70

.25

.92

.18

.52

.58

.38

.22

.88

.37
ND
.16
.17
.50
77

.87
23
96
33
26
70
52
33
53
04
60
93
75
58
62
21
03
16
38
91
06
56
50
80
41
28
54
93
ĴD

38

SO4
mg/l

30
49
27
53
29
24
23
26
24
26
16
44

7
40
38
26
77
14
51
73

214
13

330
34
54

111
57

149
37
62
33
83
78
45
57

101
140.
71
74.
67.

114.
15.
29.
70.
81 .
11.
22.

.27

.29

.77

.26

.97

.47

.14

.53

.23

.30

.12

.17

.63

.42

.50

.42

.67

.31
88
36
92
48
17
66
05
79
87
19
60
72
99
40
07
78
52
36
12
27
53
52
06
20
30
74
48
51
09

1987)
SO4

meq/l
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
4
0
6
0
1
2
1
3
0
1
0
1
1
0
1
2
2
1
1
1
2.
0
0.
1.
1.
0.
0.

.63

.03

.58

.11

.62

.51

.48

.55

.50

.55

.34

.92

.16

.84

.80

.55

.62

.30

.08

.53
47
28
87
72
13
33
20
11
78
31
71
74
63
95
20
11
92
48
55
41
37
32
61
47
70
24
46

SO4
meq%

6.26
8.78
6.92
7.23
8.50
5.35
8.10
7.09
6.40
5.01
4.66
9.20

ND
7.63
5.02
6.03

12.55
3.46
9.01

11.30
31.10

4.73
33.44

5.91
11.42
18.11
12.61
23.10

7.34
12.68
9.58

12.98
13.55
8.22

10.77
22.89
14.28
11.00
10.14
9.22

16.97
4.17
5.06

10.40
13.12

ND
11.58

NO3
mg/l

92.46
186.21
29.31

164.25
23.89
46.24
37.36
18.08
29.58
28.78
40.85
46.11

ND
37.66

210.19
28.71
33.32
30.67
74.92

103.68
39.82
25.19
20.56

110.74
12.66
53.69
21.42
33.21
51.90
66.58
43.63
53.26
27.60
55.61
43.78
48.03
36.18
68.86

107.28
111.17
22.80
20.42

124.93
100.54
44.18

ND
18.38

NO3
meq/l
1
3
0
2
0
0
0
0
0
0
0
0

0
3
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
0.
0
2.
1.
0.

0.

.49

.00

.47

.65

.39

.75

.60

.29

.48

.46

.66

.74
ND
.61
.39
.46
.54
.49
.21
.67
.64
41
33
79
20
87
35
54
84
07
70
86
45
90
71
77
58
11
73
79
37
33
02
62
71
ND
30
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Table 4 Chemica
Sample

No.
84
85
88
90
91
92
93
94
96
97

101
106
107
108
109
112
114
115
116
117
118
120
126
127
130
131
133
134
135
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
159
163

NO3
meq%
14.81
25.69
5.66

17.28
5.25
7.83

10.13
3.74
6.06
4.24
9.14
7.44

ND
5.51

21.22
5.08
4.17
5.75

10.08
12.37
4.46
6.85
1.61

14.64
2.07
6.74
3.62
3.98
7.85

10.42
9.52
6.42
3.71
7.73
6.35
8.40
2.86
8.23

11.31
11.77
2.63
4.34

16.73
11.46
5.51

ND
7.47

. analysis
Tanion

meq/l
11.15
12.80
8.46

13.23
7.54

10.52
5.64
7.61
7.63
8.31
6.60
9.70
3.41

12.24
16.10
9.49

12.59
8.90

12.75
13.80
14.54
5.66

20.89
7.35
9.52

12.78
9.19

13.30
9.29

10.00
5.77

10.14
9.46
9.00
9.00
8.66

22.43
13.27
14.91
12.93
15.32
8.29

11.88
10.75
12.40
6.43
4.40

> data (January - February 15
T cation

meq/l
10.07
11.69
8.36

15.34
7.34
9.53
5.95
7.79
7.88

10.94
7.21

10.00
ND

11.03
15.97
9.12

12.89
8.61

11.99
13.52
14.39
5.94

20.55
12.20
9.86

12.85
9.56

13.45
10.66
10.30
7.39

13.38
11.99
11.60
11.12
9.22

20.43
13.49
15.30
15.24
13.99
7.60

12.05
14.16
12.93

ND
3.97

T.D.S.
mg/L

785.52
920.15
647.58
1079.9
577.85
755.11
452.34
609.10
607.30
764.92
554.47
738.97

ND
825.50
1269.2
712.12
925.52
649.07
937.95
1063.5
1088.2
466.62
1529.1
818.00
789.89
1013.6
742.75
1056.7
803.92
763.24
514.11
943.83
834.42
807.35
801.11
684.36
1500.2
1024.7
1123.3
1071.5
1120.0
618.43
915.96
1006.5
1033.2

ND
319.79

S.A.R.

2.16
3.77
4.27
4.02
3.56
2.35
2.61
3.36
2.49
4.76
1.55
6.80

16.16
10.82
8.94
3.59
6.00
3.25
6.98
7.55
7.32
3.79

17.58
3.83

10.17
10.22
5.49

16.24
5.10
5.99
6.73
7.14
5.06
3.57
3.21
4.23

16.00
7.02
7.35
5.29
9.62
5.93
5.06
5.95

11.93
1.40
5.53
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Table 5 <
Sample
Number

1
2
4

17
18
19
38
39
41
45
47
52
53
54
55
56
57
59
62
63
64
66
68
69
74
83
84
85
88
90
91
92
93
94

117
118
126
127
130
131
133
134
153
154
155
156

Uiemical analysis data (August 1987)
X

417.5
417.9
415.3
404.1
402.2
402.1

407
404.9
401.8

404.45
412.15
411.9
408.7
416.7
419.4
422.5
420.5
425.5
412.2

413.85
411.4

412.85
416.7
420.5

418
424.1
426.5

426.85
424.6
427.2
424.7
431.5
431.5
429.1

431.65
431.2

411.75
407.9
422.5
422.3
429.5
432.7
432.2
432.2
428.4
425.2

Y

6206.1
6214.4
6208.7
6180.6
6180.2
6179.9
6180.7
6182.4
6185.5
6192.5
6196.7
6187.7
6188.2
6191.5
6185.1
6180.8
6184.6
6176.8
6182.5
6181.9
6178.4
6177.9
6182.9
6177.3
6177.3
6193.3
6192.7

6191
6186.5
6181.4
6183.7
6191.7
6186.2

6187
6180.9
6184.3
6192.2
6191.9
6202.5

6207
6208.5
6213.5
6196.1
6196.1
6196.3
6197.1

Date of
sampling

21-Aug.87
21-Aug.87
21-Aug.87
18-Aug.87
18-Aug.87
18-Aug.87
16-Aug.87
16-Aug.87
8-Aug.-87
24-Aug.87
22-Aug.87
21-Aug.-7

21-Aug.87
13-Aug.87
13-Aug.87
13-Aug.87
13-Aug.87
14-Aug.87
18-Aug.87
18-Aug.87
16-Aug.87
16-Aug.87
13-Aug.87
19-Aug.87
19-Aug.87
23-Aug.87
23-Aug.87
23-Aug.87
23-Aug.87
23-Aug.87
23-Aug.87
12-Aug.87
12-Aug.87
24-Aug.87
12-Aug.87
13-Aug.87
21-Aug.87
19-Aug.87
20-Aug.87
22-Aug.87
22-Aug.87
24-Aug.87
12-Aug.87
12-Aug.87
20-Aug.87
20-Aug.87

Cond
mS/cm

670
1010
710
940
890
860
790

1140
840
960

1200
1400
930
ND
ND
ND
ND

590
840
590

1600
320
520

1070
500
630
920
126
800

1530
690

1005
830

1720
1350
970
ND

1020
850

1110
900

1200
760

1250
1230
1020

Total
Alkalin.
228.25
357.50
271.56
313.50
333.44
309.38
384.31
385.00
347.19
374.69
364.38
446.19
323.13
407.00
240.63
242.00
268.81

ND
ND

285.31
455.13
166.38
191.81
303.19
220.00
220.00
291.50
325.88
303.88
380.19
301.81
384.31

ND
349.94

ND
ND

508.75
405.63

ND
422.81
359.56
458.56
386.38
367.81
434.50

ND

T(AIR)
°C
15
15
16
10
12
11

7
7

11
16
18
13
12

18.5
18.5

17
18.5

11
10
10

6
6

15
10.5

9
16
13
18
19
22
20
18
17
22
13
15
14
9

11
20
17
17
18
18
11
11

Ph
units

7.3
7.87
7.15
7.36
7.61
7.03
7.82

7.5
7.37

7.5
7.11
7.12
7.37
7.32
7.17
7.17
7.45

8.9
8.47
7.36
7.75
7.94
8.01
7.34
7.27
7.36
7.12
7.09
7.22
7.53
7.19
7.35

8.6
7.28
8.46
9.53
7.69
7.53
9.79
7.75
7.46
7.91
7.68
7.37
7.99
9.14

Eh
m.volts

35
97
85
94
76

105
127
87
97

107
101
100
106
198
177
158
195
177
82
95

102
112
196

95
116
137
115

13
84

111
114
185
183
138
177
148
104
73
92

118
120
103
200
207
79
88

Continued.
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Table 5 Chemical

Sample
Number

1
2
4

17
18
19
38
39
41
45
47
52
53
54
55
56
57
59
62
63
64
66
68
69
74
83
84
85
88
90
91
92
93
94

117
118
126
127
130
131
133
134
153
154
155
156

Ca
mg/l

25.80
44.44
33.28
57.99
36.08
31.72
51.85
51.23
42.59
30.48

116.77
84.76
38.25
25.17
24.86
24.86
29.86
36.70
32.35
27.98
36.08
20.16
28.61
19.22
30.79
27.36
78.11
70.52
33.28
90.79
32.35
88.98
48.46
51.23
50.31
8.20

37.63
59.83
19.54
23.30
32.97
11.36
20.16
53.08
59.83
24.86

analysis
Ca

meq/l
1.29
2.22
1.66
2.89
1.80
1.58
2.59
2.56
2.13
1.52
5.83
4.23
1.91
1.26
1.24
1.24
1.49
1.83
1.61
1.40
1.80
1.01
1.43
0.96
1.54
1.37
3.90
3.52
1.66
4.53
1.61
4.44
2.42
2.56
2.51
0.41
1.88
2.99
0.98
1.16
1.65
0.57
1.01
2.65
2.99
1.24

data (August 1987)
Ca

meq%
18.26
19.99
21.83
32.52
19.66
17.12
30.57
23.70
24.91
15.18
52.27
28.69
20.22
13.73
19.69
15.99
18.63
31.17
17.48
21.83
11.20
24.19
24.76
8.39

27.76
22.33
40.58
26.64
19.84
27.54
20.82
42.85
27.64
28.00
16.57
3.84
8.11

27.46
9.49
8.58

17.19
3.97

10.63
21.90
21.88
10.87

Mg
mg/l

Mg
meq/l

13.80 1.13
23.40 1.92
18.00 1.48
27.20 2.24
16.80 1.38
17.40 1.43
22.00 1.81
26.60 2.19
19.00 1.56
13.80 1.13
34.80 2.86
33.20 2.73
15.60 1.28
12.80 1.05
12.20 1.00
11.80 0.97
15.20 1.25
12.60 1.04
15.60 1.28
14.00 1.15
18.60 1.53
8.60 0.71

13.80 1.13
11.20 0.92
15.20 1.25
11.80 0.97
29.60 2.43
27.20 2.24
15.80 1.30
44.80 3.68
17.40 1.43
17.60 1.45
19.00 1.56
15.20 1.25
18.20 1.50
5.80 0.48

21.00 1.73
30.80 2.53
8.20 0.67

14.00 1.15
17.00 1.40
6.80 0.56

10.40 0.86
21.60 1.78
27.20 2.24
12.80 1.05

Mg
meq%
16.09
17.35
19.46
25.14
15.09
15.48
21.38
20.28
18.32
11.33
25.67
18.52
13.59
11.51
15.92
12.51
15.63
17.64
13.90
18.00
9.51

17.00
19.69
8.06

22.58
15.87
25.34
16.94
15.53
22.40
18.46
13.97
17.86
13.69
9.88
4.48
7.46

23.30
6.56
8.50

14.61
3.92
9.04

14.69
16.39
9.23

Na
mg/l

103.65
158.2

100
82.2

133.8
140.4

90
135.8
107.2
166.8
52.4

177.4
141

156.2
90

125.2
117

65
141.6
87.4

290.2
50.4
70.2

217.2
59

84.8
70.2

168.2
121.8
185.4
105.2
99.4
104

118.6
254.4
223.2
447.2
120.6

196
255.8
148.4
300.8
172.2
172.2
190.8

208

Na
meq/l
4.51
6.88
4.35
3.58
5.82
6.11
3.92
5.91
4.66
7.26
2.28
7.72
6.13
6.79
3.92
5.45
5.09
2.83
6.16
3.80

12.62
2.19
3.05
9.45
2.57
3.69
3.05
7.32
5.30
8.06
4.58
4.32
4.52
5.16

11.07
9.71

19.45
5.25
8.53

11.13
6.46

13.08
7.49
7.49
8.30
9.05

Continued
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Table 5 Chemical
Sample

No.
1
2
4

17
18
19
38
39
41
45
47
52
53
54
55
56
57
59
62
63
64
66
68
69
74
83
84
85
88
90
91
92
93
94

117
118
126
127
130
131
133
134
153
154
155
156

Na
meq%
63.93
62.05
57.19
40.19
63.56
66.06
46.26
54.77
54.66
72.42
20.45
52.35
64.97
74.26
62.13
70.19
63.64
48.12
66.71
59.45
78.50
52.71
52.97
82.68
46.37
60.33
31.79
55.39
63.31
49.02
59.02
41.73
51.71
56.51
73.06
91.13
83.98
48.26
82.95
82.12
67.46
91.66
79.14
61.93
60.82
79.30

analysis
K

mg/l
4.74
2.62
4.50
7.46
6.06
4.83
5.90
5.24
7.05
4.18
7.05
2.53
4.50
1.80
5.57
4.01
6.56
7.05
6.88
1.80
5.00
9.92
5.82
3.85
7.13
3.52
8.61
5.32
4.34
6.72
5.16
5.90
9.51
6.39
2.86
2.29
4.18
4.18
4.01
4.26
2.78
2.53
4.42
7.05
4.83
2.70

data (August 1987)
K

meq/l
0.12
0.07
0.12
0.19
0.16
0.12
0.15
0.13
0.18
0.11
0.18
0.06
0.12
0.05
0.14
0.10
0.17
0.18
0.18
0.05
0.13
0.25
0.15
0.10
0.18
0.09
0.22
0.14
0.11
0.17
0.13
0.15
0.24
0.16
0.07
0.06
0.11
0.11
0.10
0.11
0.07
0.06
0.11
0.18
0.12
0.07

K
meq%

1.72
0.60
1.51
2.14
1.69
1.34
1.78
1.24
2.11
1.07
1.62
0.44
1.22
0.50
2.26
1.32
2.10
3.07
1.91
0.72
0.80
6.10
2.58
0.86
3.29
1.47
2.29
1.03
1.33
1.04
1.70
1.46
2.78
1.79
0.48
0.55
0.46
0.98
1.00
0.80
0.74
0.45
1.19
1.49
0.91
0.61

Na+K
meq/l
4.63
6.95
4.47
3.77
5.98
6.23
4.07
6.04
4.84
7.36
2.46
7.78
6.25
6.84
4.06
5.55
5.26
3.01
6.34
3.85

12.75
2.45
3.20
9.55
2.75
3.78
3.27
7.45
5.41
8.24
4.71
4.47
4.77
5.32

11.14
9.77

19.56
5.35
8.63

11.24
6.53

13.15
7.60
7.67
8.42
9.12

na+k
meq%
65.65
62.65
58.70
42.33
65.25
67.40
48.05
56.01
56.77
73.49
22.06
52.79
66.19
74.77
64.39
71.51
65.74
51.19
68.62
60.17
79.29
58.81
55.55
83.55
49.66
61.80
34.08
56.42
64.63
50.07
60.72
43.18
54.50
58.30
73.54
91.68
84.44
49.24
83.95
82.92
68.20
92.11
80.34
63.42
61.73
79.90

HCO3
mg/l

278.47
436.15
331.31
382.47
406.79
377.44
468.86
469.70
423.57
457.12
444.54
544.35
394.21
496.54
293.56
295.24
327.95
239.04
429.44
348.08
555.25
202.98
234.01
369.89
268.40
268.40
355.63
397.57
370.73
463.83
368.21
468.86
296.08
426.92
619.00
472.22
620.68
494.86
547.70
515.83
438.67
559.45
471.38
448.73
530.09
648.35

HCO3
meq/l
4.56
7.15
5.43
6.27
6.67
6.19
7.68
7.70
6.94
7.49
7.29
8.92
6.46
8.14
4.81
4.84
5.38
3.92
7.04
5.71
9.10
3.33
3.84
6.06
4.40
4.40
5.83
6.52
6.08
7.60
6.03
7.68
4.85
7.00

10.15
7.74

10.17
8.11
8.98
8.45
7.19
9.17
7.73
7.35
8.69

10.63
Continued
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Table 5
Sample

No.
1
2
4

17
18
19
38
39
41
45
47
52
53
54
55
56
57
59
62
63
64
66
68
69
74
83
84
85
88
90
91
92
93
94

117
118
126
127
130
131
133
134
153
154
155
156

Chemica
NO3

meq/l
0
0

.58

.81
0.98
1
0
0
0
1
0
0
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
0
3
0
0
1
0
1
0
0
1
0
0

.43

.59

.89

.22

.63

.26

.36

.54

.89

.35

.81

.32

.47

.21

.49

.78
64
.71
24
52
70
51
58
66
34
41
39
35
69
42
25
75
30
33
48
20
91

0.34
0.43
0.
1
1.
0.

31
94
61
30

analysis
NO3

meq%
7.92
6.54

12.21
14.08
6.24
9.41
2.40

12.94
2.79
3.37

19.06
17.83
3.42
8.03
4.66
6.24
2.51
8.14
7.63
9.28
4.01
5.98
9.23
6.17
9.11
8.29

15.90
28.99
4.39

19.27
4.25
5.73

14.34
2.53

10.46
2.57
1.34

12.00
1.85
6.74
3.42
3.06
3.27

14.23
11.25
2.50

datai (August 1987)
Total

cation
7

11
7
8
9
9
8

10
8

10
11
14
9
9
6
7
8
5
9
6

16
4
5

11
5
6
9

13
8

16
7

10
8
9

15
10
23.
10.
10.
13.
9.

14.
9.

12.
13.
11.

.05

.09

.61

.90

.16

.24

.46

.79

.53

.02

.15

.74

.44

.15

.30
76
00
88
23
40
08
16
77
43
54
11
61
21
37
45
75
36
75
13
15
65
16
87
28
55
57
28
47
10
65
41

Total
anion
7.38

12.38
7.99

10.19
9.53
9.41
8.96

12.60
9.45

10.60
13.35
16.21
10.14
10.05
6.84
7.58
8.19
6.04

10.23
6.88

17.78
3.99
5.62

11.39
5.55
6.97

10.42
14.99
9.27

17.61
8.35

12.12
9.89
9.94

16.69
11.77
24.46
12.36
10.95
13.55
10.00
13.88
9.62

13.63
14.28
11.79

T.D.S.
mg/L

612.18
952.33
667.14
811.62
789.53
786.44
756.67
983.62
770.91
869.23
1002.8
1256.7
813.13
857.02
575.12
648.62
676.79

502
819.54
611.67
1341.7
356.14
489.2

916.85
497.76
568.92
807.43
1164.5
745.51
1322.1
700.21
933.07
756.61
805.08
1308.2
956.29
1816.2
975.84
940.74

1134
825.61
1153.7
836.46

1061
1140.8
1025.5

S.A

4
4
3
2
4
4
2
3
3
6
1
4
4
6
3
5
4
2
5
3
9
2
2
9
2
3
1
4
4
3
3
2
3.
3.
7.

14.
14.
3.
9.

10.
5.

17.
7.
5.
5.
8.

k.R.

.10

.78

.47

.23

.61

.98

.64

.84

.43

.30

.09

.14

.86
32
70
18
35
36
12
37
78
37
70
74
17
41
72
31
36
98
71
52
21
74
82
59
49
16
39
34
23
44
76
04
14
45

SiO2
mg/L

64.20
57.80
57.80
70.60
66.30
68.50
59.90
72.70
70.60
64.20
59.90
70.60
62.00
70.60
64.20
72.70
70.60
49.20
55.60
70.60
68.50
32.10
55.60
68.50
59.90
57.80
51.30
68.50
68.50
72.70
72.70
68.50
53.50
66.30
64.20
70.60
66.30
66.30
74.90
83.40
62.00
55.60
79.20
77.00
68.50
70.60



354
Table 6 Hardness values from the chemical analysis of waters collected in Jan. - Feb.'87

S.No.
1
2
4
6
9

1 1
1 2
13
14
15
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
38
39
41
42
43
44
45
47
52
53
54
55
56
57
63

Hard.
128.85
166.91
159.53
374.25
255.75
130.32

146.6
152.7

111.38
133.65

230.8
160.93
154.99
111.68
123.97
172.86

98.08
62.57

179.05
57.6

153.79
215.55
144.55
245.61
153.75
108.95
137.85
162.75
135.62
142.97
290.65
253.61

165.3
93.685
101.77
115.49
126.85
96.745

S.No.
64
66
67
68
69
76
77
78
79
80
81
82
83
84
85
88
90
91
92
93
94
95
96
97

100
101
106
107
108
109
110
1 11
112
114
115
116
117
59

Hard.
128.85
166.91
159.53
374.25
255.75
130.32

146.6
152.7

111.38
133.65

230.8
160.93
154.99
111.68
123.97
172.86

98.08
62.57

179.05
57.6

153.79
215.55
144.55
245.61
153.75
108.95
137.85
162.75
135.62
142.97
290.65
253.61

165.3
93.685
101.77
115.49
126.85
96.745

S.No.
127
130
131
133
134
135
137
139
140
142
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
163

163/1
166
167
168
169
170
118
120
126

Hard.
128.85
166.91
159.53
374.25
255.75
130.32

146.6
152.7

111.38
133.65

230.8
160.93
154.99
111.68
123.97
172.86

98.08
62.57

179.05
57.6

153.79
215.55
144.55
245.61
153.75
108.95
137.85
162.75
135.62
142.97
290.65
253.61

165.3
93.685
101.77
115.49


