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RESUME

La présente étude a été réalisée dans le but d'en arriver à une meilleure compréhension de
l'influence des traitements thermiques sur lit de sable fluidisé sur les propriétés élastiques
ainsi que des indices de niveau de qualité des moules servant à la fonte des alliages A356.2
et B319.2. Pour des fins de validation, l'utilisation de fours à lit de sable fluidisé dans les
applications industrielles pour le traitement thermique des moules A356.2 et B319.2, les
propriétés élastiques et les indices du niveau de qualité de ces alliages sont corrélés avec
les paramètres métallurgiques les plus communs les influençant. L'étude de ces variables
comprend la modification de strontium, le raffinage du grain, le temps requis lors de la
mise en solution, les paramètres de vieillissement et des moyens utilisés au
refroidissement. La technologie traditionnelle de traitement thermique, s'appliquant au
système de circulation d'air des fours à convection, a été utilisée afin d'établir une
comparaison pertinente avec le lit de sable fluidisé pour le traitement thermique des
alliages étudiés dans le but d'obtenir des cycles de vieillissement T6 en continu ou cycles
multi-gradués. Un tableau de données qualitatives a été utilisé pour prédire et/ou
sélectionner les conditions optimales de traitement thermique ainsi que les techniques à
appliquer dans l'industrie afin d'obtenir les propriétés optimales requises pour les
applications en ingénierie notamment.

Les résultats ont révélé que les valeurs de résistance obtenues pour les alliages 319 et 356
en utilisant 16 sont plus sensibles au traitement thermique sur lit de sable fluidisé (FB) que
lors d'un traitement classique dans un four à convection (FC) pour des durées de traitement
en solution allant jusqu'à 8 heures. Au-delà de cette période, aucune différence notable
dans les propriétés n'a été observée avec les deux techniques. Une augmentation
significative de la résistance a été observée dans les échantillons traités thermiquement sur
lit de sable fluidisé, après un court temps de vieillissement situé entre de 0,5 et 1 heure et
même pouvant aller jusqu'à 5 heures. Les alliages 319 montrent des signes d'usure
prématurée après 8 heures de vieillissement à l'aide d'un four conventionnel, tandis qu'avec
un traitement sur lit de sable fluidisé, l'usure n'apparait seulement qu'après 12 heures.
L'analyse des propriétés d'élasticité en termes d'indice de qualité a démontré que les deux
alliages 319 et 356 modifiées et non modifiées ont le même niveau de qualité ou plus
élevé, après seulement 2 heures de traitement dans un lit de sable fluidisé,
comparativement à 10 heures en utilisant un traitement avec des fours à convection (FC).
Les indices de qualité des alliages 356 sont plus sensibles à la technique du lit de sable
fluidisé que pour les alliages 319 grâce à un temps de vieillissement plus long pouvant
aller jusqu'à 5 heures. Cependant, les alliages 319 traités thermiquement sur lit de sable
fluidisé démontrent de meilleurs indices de qualité que ceux obtenus avec un four à
convection après 0,5 heures de vieillissement et des temps de traitement en solution d'un
maximum de 5 heures. En ce qui concerne les tableaux de données qualitatives des alliages
319, les échantillons traités thermiquement montrent que l'augmentation du temps de
vieillissement atteint son niveau maximal de résistance après 8 heures dans un four à
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convection (FC) et après 12 heures sur un lit de sable fluidisé (FB), il y a donc une
augmentation du niveau de résistance de l'alliage avec une diminution de ses indices de
qualité pour la même durée de traitement thermique en solution. L'analyse statistique des
résultats révèle que la modification et le niveau de température de chauffage pour la
technique de traitement thermique ont le plus d'effets positifs sur les indices de qualité des
alliages 356. L'analyse des diagrammes d'interaction confirme que les indices de qualité
des alliages 356, comparativement aux alliages 319, sont plus sensibles à la technique de
lit de sable fluidisé qu'aux techniques de traitement thermique des fours conventionnels.
Les caractéristiques des particules Si des alliages étudiés démontrent que la plus petite
taille des particules est obtenue après un traitement thermique en solution en utilisant un lit
de sable fluidisé, la solution optimale de traitement thermique étant de 0,5 heure pour les
alliages modifiés et jusqu'à 5 heures pour les alliages non modifiés. Le traitement sur lit de
sable fluidisé résulte en des particules Si fragmentées en raison des effets du niveau de
température élevé associé à cette technique. En ce qui a trait aux caractéristiques de
durcissement des précipités, il existe une relation directe entre le niveau de température et
la dispersion des précipités pendant le traitement de vieillissement. Le niveau de
température dans un lit de sable fluidisé conduit à la formation des précipités plus stable,
ou des zones GP, pendant la phase de chauffage pour atteindre la température de
vieillissement. Ces précipités peuvent agir comme des zones propices pour la nucléation
hétérogène d'autres précipités.

L'utilisation d'un lit de sable fluidisé pour les traitements de refroidissement et de
vieillissement des moules destinés à la fonte des alliages A356.2 et B319.2 démontre des
rendements YS (limite élastique) et UTS (limite ultime) supérieurs par rapport aux alliages
placés dans les fours conventionnels. Les valeurs de résistance des alliages A356 et B319
qui ont été traités selon le traitement T6 sont meilleures lorsqu'ils sont immergés dans l'eau
comparativement à ceux trempés dans le lit de sable fluidisé et placés dans des fours
conventionnels. Alors que, pour les mêmes conditions de vieillissement (170 °C pendant 4
heures), l'immersion des alliages 319 et 356 dans un lit de sable fluidisé révèle de
meilleures valeurs de résistance que ceux trempés dans l'eau. En se basant sur les tableaux
de données qualitatives développés pour les alliages en condition d'immersion, nous
obtenons des indices de qualité supérieurs avec des alliages immergés dans l'eau et placés
dans des fours conventionnels pour alliages A356 et B319 immergés en solution de cycle
de vieillissement T6. Le facteur de modification a l'effet le plus significatif sur les résultats
de qualité des alliages étudiés pour tous les cycles de traitement thermique en lien avec les
autres paramètres métallurgiques. Les données recueillies pour alliages étudiés, soumis à
plusieurs cycles de vieillissement T7/T6, révèlent que les résultats sur les niveaux de
résistance obtenus après le traitement de vieillissement en continu T6 de l'alliage A356 ne
se sont pas améliorées avec des cycles de vieillissement à températures gradués, ce qui
indique que les propriétés optimales sont obtenues par le traitement de vieillissement T6.
Ainsi, les valeurs optimales de résistance pour les alliages B319.2 sont obtenues en
utilisant des cycles de vieillissement à températures multiples de type T7/T6 tels qu'à 230
°C pendant 2 heures suivi par 180 °C pendant 8 heures (SA32), comparativement à un
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traitement de vieillissement T6. Pour les cycles de vieillissement à température multiple
T7/T6, le facteur de modification a le rôle le plus important dans l'amélioration des valeurs
d'indice de qualité des alliages 356 et 319. Les alliages traités au lit de sable fluidisé ont
les valeurs de résistance les plus élevées pour tous les cycles de traitement thermique en
comparaison à ceux obtenues pour les alliages traités au four conventionnel. Le lit de sable
fluidisé n'a pas d'effet significatif sur les valeurs d'indice de qualité des alliages 319 en
comparaison au four conventionnel. En ce qui concerne les diagrammes d'interaction pour
les cycles de vieillissement à température multiple, les facteurs les plus importants qui ont
un effet positif sur les valeurs de l'indice de qualité des alliages 356 alliages sont la
modification et le cycle de vieillissement à température multiple T7/T6 appliqué à 230 °C
pendant 2 heures suivi par le vieillissement à 180 °C pendant 2 heures. L'analyse statistique
faite en utilisant le logiciel Minitab afin d'obtenir les graphiques « matrix plots » révèle
que le cycle à température multiple T7/T6, appliqué par le vieillissement à 249 °C pendant
4 heures et suivi par le vieillissement à 180 °C pendant 2 heures, est la condition optimale à
ce qui a trait à la température lors du traitement qui améliore les valeurs de qualité des
alliages 319. Les modèles de régression indiquent que la moyenne des valeurs de l'indice
de qualité pour les alliages B319 sont plus sensibles à l'absorption que les alliages 356 en
raison de la formation d'un plus grand pourcentage de zones GP dans alliages Al-Si-Cu-
Mg. Ces zones GP agissent comme des sites de nucléation hétérogènes pour les
précipitations et améliorent la cinétique de vieillissement.

La technologie de lit de sable fluidisé peut être potentiellement utilisée pour mettre en
solution, refroidir et vieillir les alliages A356 et B319 lors de la fonte afin d'obtenir la
solution la plus rentable au niveau des coûts entre la résistance des alliages et les niveaux
de qualité requis pour les applications spécifiques en ingénierie. Le lit de sable fluidisé a le
mérite d'améliorer la microstructure et les propriétés mécaniques ainsi que la qualité et la
performance des alliages étudiés.



ABSTRACT

The current study was carried out to arrive at a better understanding of the influences of the
fluidized sand bed heat treatment on the tensile properties and quality indices of A356.2
and B319.2 casting alloys. For the purposes of validating the use of fluidized sand bed
furnaces in industrial applications for heat treatment of 356 and 319 castings, the tensile
properties and the quality indices of these alloys were correlated with the most common
metallurgical parameters, such as strontium modification, grain refining, solutionizing
time, aging parameters and quenching media. Traditional heat treatment technology,
employing circulating air convection furnaces, was used to establish a relevant comparison
with fluidized sand beds for the heat treatment of the alloys investigated, employing T6
continuous aging cycles or multi-temperature aging cycles. Quality charts were used to
predict and/or select the best heat treatment conditions and techniques to be applied in
industry in order to obtain the optimum properties required for particular engineering
applications.

The results revealed that the strength values achieved in To-tempered 319 and 356 alloys
are more responsive to fluidized bed (FB) heat treatment than to conventional convection
furnace (CF) treatment for solution treatment times of up to 8 hours. Beyond this solution
time, no noticeable difference in properties is observed with the two techniques. A
significant increase in strength is observed in the FB heat-treated samples after short aging
times of 0.5 and 1 hour, the trend continuing up to 5 hours. The 319 alloys show signs of
overaging after 8 hours of aging using a conventional furnace, whereas with a fluidized
bed, overaging occurs after 12 hours. Analysis of the tensile properties in terms of quality
index charts showed that both modified and non-modified 319 and 356 alloys display the
same, or better, quality, after only a 2-hr treatment in an FB compared to 10 hours when
using a CF. The quality values of the 356 alloys are more responsive to the FB technique
than 319 alloys through long aging times of up to 5 hours. The 319 alloys heat-treated in
an FB, however, show better quality values after 0.5 hour of aging and for solution
treatment times of up to 5 hours than those treated using a CF. With regard to the quality
charts of 319 alloys, heat-treated samples show that increasing the aging time up to peak-
strength, i.e. 8 and 12 hours in a CF and an FB, respectively, results in increasing in the
alloy strength with a decrease in the quality values, for each of the solution heat treatment
times used. The statistical analysis of the results reveals that modification and heating rate
of the heat treatment technique have the greatest positive effects on the quality values of
the 356 alloys. Analysis of the interaction plots and of the main effects plots confirmed
that the quality values of 356 alloys, as compared to 319 alloys, are more responsive to the
FB than to the CF heat treatment technique. The silicon particle characteristics of the
alloys investigated show that the smallest particle size is obtained after solution heat
treatment using an FB, the optimum solution heat-treatment time being 0.5 hour for
modified alloys, and up to 5 hours for non-modified alloys. The FB treatment results in
more fragmented Si particles due to the effects of the high heating rate associated with the



technique. With regard to precipitation hardening characteristics, there is a direct
relationship between the heating rate and the radius of the clusters formed during the aging
treatment. The high heating rate in an FB leads to the formation of more stable clusters, or
GP zones, during the heating up stage to reach the aging temperature. These clusters can
act as suitable sites for the heterogeneous nucleation of further precipitates.

The use of a fluidized sand bed for the direct quenching-aging treatment of A356.2 and
B319.2 casting alloys yields greater UTS and YS values compared to conventional furnace
quenched alloys. The strength values of T6 tempered A3 5 6 and B319 alloys are greater
when quenched in water compared to those quenched in an FB or CF. For the same aging
conditions (170°C/4h), the fluidized bed quenched-aged 319 and 356 alloys show nearly
the same or better strength values than those quenched in water and then aged in a CF or an
FB. Based on the quality charts developed for alloys subjected to different quenching
media, higher quality index values are obtained by water-quenched To-tempered A356
alloys, and conventional furnace quenched-aged Tô-tempered B319 alloys, respectively.
The modification factor has the most significant effect on the quality results of the alloys
investigated, for all heat treatment cycles, as compared to other metallurgical parameters.
The results of alloys subjected to multi-temperature aging cycles reveal that the strength
results obtained after the T6 continuous aging treatment of A356 alloys are not improved
by means of multi-temperature aging cycles, indicating therefore that the optimum
properties are obtained using a T6 aging treatment. The optimum strength properties of
B319.2 alloys, however, is obtained by applying multi-temperature aging cycles such as,
for example, 230°C/2h followed by 180°C/8h, rather than T6 aging treatment. In the case
of multi-temperature aging cycles, the modification factor has the most significant role in
improving the quality index values of 356 and 319 alloys. The FB heat-treated alloys have
the highest strength values for all heat treatment cycles compared to CF heat-treated alloys;
however, the FB has no significant effect on the quality values of 319 alloys compared to
the CF. Regarding the interaction plots for multi-temperature aging cycles, the most
significant factors that have a positive effect on the quality values of 356 alloys are
modification and the 230°C/2h + 180°C/8h multi-temperature aging cycle. Statistical
analysis using matrix plots reveals that the 249°C/4h + 180°C/2h multi-temperature aging
cycle is the optimum heat treatment condition that improves the quality values of 319
alloys. The regression models indicate that the mean quality values of B319 alloys are
more quench sensitive than those of A356 alloys due to the formation of a greater percent
of clusters in Al-Si-Cu-Mg alloys. These clusters act as heterogeneous nucleation sites for
precipitation and enhance the aging process.

Fluidized-bed technology has the potential for being used for the complete heat treatment,
i.e. solutionizing, quenching and aging, of A356 and B319 castings alloys so as to obtain
the best possible economic-effective compromise between alloy strength and quality values
desired for a specific engineering application. As this study has shown, the fluidized bed
has the merit of improving the microstructure and mechanical properties as well as the
quality of these alloys.
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DEFINITION OF THE PROBLEM

1.1. INTRODUCTION

The increasing demand for weight reduction and low fuel consumption in the

automotive industry has had a marked effect on the judicious selection of materials.

Historically, the most common engine material has been grey cast iron because of its high

temperature strength, machinability and cost. However, cast iron with its high density is not

a material of choice for light weight design. Weight reduction objectives of the engine

designers has lead to efforts to replace grey cast iron blocks with lightweight materials such as

compacted graphite iron, magnesium alloys and aluminum alloys. The high strength to weight

ratio, high fluidity, low thermal expansion coefficient, and high corrosion resistance of

aluminum-silicon foundry alloys, typically B319.2 and A356.2, make them materials of

choice for the manufacture of automobiles especially when it concerns engine construction.

The microstructure and mechanical properties attainable in these alloys are strongly

influenced by the alloy composition, impurity elements, melt treatments, solidification

1 0 'X

characteristics, casting defects, and heat treatment. ' '

Heat treatment is the most common process used to alter the mechanical properties

of cast aluminum alloys. The heat treatment helps to obtain a desired combination of



strength and ductility values. Traditional heat treatment technology applies circulating air

convection furnaces for solution heat treating and aging for the purposes of obtaining a T6

or T7 temper. This treatment is applied with the intention of improving the mechanical

properties, microstructure, and residual stress states of Al-Si-(Cu/Mg) cast alloys through a

process known as precipitation hardening which consists of a solution heat treatment,

quenching (water, air or sand), and artificial aging. The solution heat treatment increases

the ultimate tensile strength and ductility as well as the quality of such Al-Si-(Cu/Mg) cast

alloys as A356 and B319.2 alloys, whereas aging increases the yield strength at the expense

of ductility. With regard to subsequent aging, the precipitation of Mg2Si and CuAk phases

occurs in alloys 356 and 319, respectively, through a series of stages, starting with the

formation of Guinier Preston (GP) zones which are enriched in solute. A further increase in

the duration time of the aging treatment results in the formation of coherent and semi-

coherent precipitates at the sites of the GP zones. 4> 5 '6

With conventional heat treating systems, however, prolonged solution heat

treatment and aging times of over 20 hrs are required for heat treatment of aluminum

casting alloys, entailing high energy costs. ' Commonly used air circulation furnaces offer

greater operational flexibility in operating temperatures, but their relatively slow heating

rates result in long heat treat cycles. The long cycle times required for heat treating with

conventional systems go contrary to industry requirements where the goal is to improve the

performance of the part and to reduce the time of manufacturing. The fluidized bed (FB)

heat-treating process makes it possible to reduce the time required for heat treating



significantly, while at the same time increasing the uniformity of the heat treatment

process. 9> 10

Over the last several years, fluidized beds have made a dramatic impact as furnaces

for the heat treatment of metals; this technique is energy efficient, versatile and non-

polluting. For the foundry industry, fluidized beds are used for several applications such as

preheating for burning and welding, stress relieving on small and large castings and

weldments, normalizing and hardening under protective atmospheres and tempering. The

fluidized bed exhibits remarkable liquid-like behavior, where fluidization is obtained by

transformation of solid particles into fluid-like state through suspension in a gas or an air.

The fluid like nature of the bed allows parts to be easily immersed and conveyed through

the media. The most desirable characteristic of a fluidized bed is that the rate of heat

transfer between a fluidized bed and immersed objects is high. u> 12

The use of fluidized beds is considered to be an innovative technology for the heat

treatment process of Al-Si cast alloys and appears to be more effective than conventional

furnace techniques. The beds can be used for solutionizing, quenching and aging heat

treatments. With the use of fluidized sand bed furnaces, the solution heat treatment time

required to obtain optimum mechanical properties may be reduced to six times less than

required in a conventional convection furnace. 13 Quenching with the fluidized bed is

considered as an alternative well suited for parts requiring low residual stresses and for

reducing susceptibility for part distortion compared to water quenching. The high heating

rate in a fluidized bed also plays an important role in increasing the kinetics of the aging

process by having an effect on the aging characteristics of Al-Si-(Cu/Mg) alloys. The high



heating rate of a fluidized sand bed heat treatment medium is known to produce premium

strength and optimum quality in Al-Si casting alloys.14

The quality of Al-Si castings plays a vital role in determining specific metallurgical

conditions for an alloy casting required to fulfill particular engineering applications. There

are several parameters affecting the quality of Al-Si castings such as alloy composition,

melt treatment, and heat treatment steps. 15 For specific engineering applications, good

alloy quality is achieved by reaching a suitable compromise between several parameters

involving maximum performance, minimum risk, and taking into consideration the cost

efficiency. It is possible to define the quality of aluminum-silicon castings using specific

mathematical equations, where tensile properties can be combined to express the alloy

quality using a single quality index value Q. 16 Two models of quality indices were used in

this study to correlate the quality of the Al-Si-(Cu/Mg) alloys investigated to the

mechanical properties of these alloys, as will be discussed later. Quality charts generated

using these equations are useful in deciding upon the optimum heat treatment conditions

required to obtain specific properties and/or quality in a particular casting.

An improvement in the performance of Al-Si-Cu/Mg alloys and an understanding of

its relationship to heat treatment parameters may be accomplished by applying statistical

techniques to the design of experiments (DOE). The selection of an experimental design

involves a detailed study of the process aiming at finding the variables affecting the proper-

ties. Design of experiments (DOE) is a powerful approach for discovering a set of process

or design variables which are most important to the process and then determine at what

levels these variables must be kept to optimize the response or quality characteristic of



interest. The effect of the independent variable (the factor), namely factor, on the dependent

variable (the response), namely response, is determined through applying an efficient

experimentaion technique (DOE), where the relation between these variables is illustrated

by means of a regression model using the experimental data. Some of the previously

developed DOE techniques were the random blocks, the Latin squares, the Greco-Latin

squares and the Hyper-Greco-Latin squares, limited to investigating a small number of

variables. 17 Another DOE, called Factorial design, was introduced with the aim of

increasing the number of variables to all possible levels of combinations. This DOE has the

advantage of investigating the interactions between the variables involved, but it requires a

large number of experimental trial runs as the number of variables increases. The

interactions may be investigated with only a fraction of the total number of runs by using

the Fractional Factorial design. Its construction is carried out by fractioning the Factorial

design using some high order interactions as a basis. Newly reported developments have

been the Mixture designs and Response surface designs, devoted to defining a

mathematical model applicable to the problem under investigation.

In this study, the statistical design of experiments approach has been used to

examine and control the performance of the A356.2 and B319.2 aluminum cast alloys and

also to develop regression equations between the metallurgical parameters studied (factors)

and the tensile results as well as the quality indices (responses).



1.2. OBJECTIVES

Due to the fact that the heat treatment process is the most important means for

improving the mechanical properties of Al-Si alloys, there is an emerging need to develop

novel heat treatment technologies and to establish a relevant comparison between these

techniques and the traditional ones. The present study was therefore undertaken to arrive at

a better understanding of the effects of melt treatment as well as solution heat treatment

time, quenching media, namely water, air and sand, and multi-temperature aging treatments

on the microstructure, tensile properties and quality of Tô-tempered A356.2 and B319.2

cast alloys heat treated using a fluidized sand bed furnace (FB) as opposed to a

conventional convection furnace (CF). The main objectives of this study may be

summarized as follows:

1. Studying the influence of metallurgical parameters on the tensile properties as well

as the quality indices of A356.2 and B319.2 aluminum castings including:

a) The effect of heating and cooling rates using two different heat treatment

techniques (FB vs CF).

b) The effects of strontium (Sr)-modification and (TiB)-grain refinement.

c) The effects of solution heat treatment time, quenching media, aging

temperature, and aging time.

2. Developing a fundamental knowledge base for the heat-treating of Al-Si-(Cu/Mg)

castings by using the new fluidized bed technology and comparing it with that

obtained with conventional furnaces.



3. Establishing a microstructure-property relationship of FB heat-treated castings

using optical microscopy, scanning electron microscopy (SEM), and field emission

gun scanning electron microscopy (FEGSEM).

4. Generating quality index maps of the tensile data as a tool for evaluating the tensile

properties and quality indices of the alloys investigated and for selecting the

optimum metallurgical conditions to be applied practically in A356.2 and B319.2

type casting alloys.

5. Using a statistical design of experiments (DOE) for the purposes of identification of

heat treatment parameters, optimization of selected levels, and establishing

regression equations by carrying out a mathematical analysis of the tensile and

quality data obtained for the two alloy types.
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CHAPTER 2

SURVEY OF THE LITURATURE

2.1. INTRODUCTION

Aluminum and its alloys have become competitive materials in engineering

applications from an economical point of view due to such advantageous features as their

light weight, attractive appearance; castability, physical and mechanical properties; and

excellent corrosion resistance in most environments. With the purpose of reducing vehicle

weight in the automotive industry, lightweight parts made of aluminum casting alloys have

virtually replaced iron and steel in several automotive parts including engine blocks,

pistons, transmission housings and cylinder heads. 19'20'21> 22> 2 '24

Aluminum alloys containing silicon as a major alloying element find widespread

application including the military, automobile, aerospace, and general engineering sectors

because of a number of distinct benefits. Such benefits include low specific gravity;

excellent cast-ability and fluidity; high resistance to wear; reduced thermal expansion

because of the presence of silicon; good wear and corrosion resistance; and adequate

physical and mechanical properties at elevated temperatures. 6 '25 '26 The presence of silicon

imparts good castability and resistance to hot tearing. Also, since silicon increases in

volume during solidification, the susceptibility of the casting to shrinkage defects is

reduced. Consequently, alloys containing silicon are ideally suited for high volume
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production in aluminum foundries; Al-Si castings represent as much as 90% of the total

aluminum cast parts produced. 5'7'27> 28> 29> 30> 31 According to their level of silicon content,

aluminum-silicon casting alloys are subdivided into hypoeutectic alloys (5-10% Si),

eutectic alloys (11-13% Si), and hypereutectic alloys (14-20% Si); Figure 2.1 shows the

phase diagram of the Al-Si binary system. 5' 6 '32 '33 Hypoeutectic and near eutectic Al-Si

alloys are more common commercially than the hypereutectic ones; the addition of copper

and magnesium greatly improves the strength of these alloys by improving their response to

heat treatment. In hypoeutectic alloys, the dendritic network a-aluminum are formed and

followed by the formation of eutectic Al-Si in the interdendritic regions. The eutectic

silicon phase in the alloy consists of brittle acicular flakes and plates, which affect the

mechanical properties of the alloy, namely its strength and ductility. Small additions of Na

or Sr can "modify" the morphology of the eutectic silicon from its acicular form to a fine

fibrous form which improves the mechanical properties.34'35> 36 Magnesium and copper are

the other major alloying elements that may be present in cast aluminum-silicon alloys.

Magnesium combines with silicon to from Mg2Si and provides the ability to heat-treat the

Al-Si-Mg family of alloys to high strength levels. Copper in aluminum-silicon alloys such

as 319 improves their as-cast and high temperature strength properties.

Two hypoeutectic A356.2 and B319.2 Al-Si casting alloys were investigated in the

current study to obtain a correlation between the metallurgical and processing parameters

with the resulting tensile properties and quality index values. Apart from solidification

conditions and the chemical composition of the alloy, heat treatment is also an important

means by which the mechanical properties and quality of the alloys may be improved.



12

Thus, with respect to the latter, an extensive investigation was carried out covering the heat

treatment of these alloys using a range of heat treatment conditions, as well as employing

conventional (furnace) versus more recent (fluidized sand bed) techniques for comparison

purposes.

I9OO-
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Figure 2.1. Aluminum-silicon binary phase diagram. 32

The current chapter will therefore concentrate on reviewing the heat treatment

regimes and techniques used for A356.2 and B319.2 aluminum-silicon casting alloys,

focusing on the fluidized sand bed heat treatment technique. In covering the heat

treatments, the metallurgical and microstmctural aspects involved in the different heat

treatment stages of solutionizing, quenching and aging of such alloys will be presented,

together with their effects on the resulting alloy properties. The mathematical concept of
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quality indices and the usefulness of quality charts in selecting specific alloy

conditions/properties for practical applications will be also reviewed.

2.2. HEAT TREATMENT SYSTEMS

The main goal of the heat treatment of aluminum casting alloys is to obtain the best

possible mechanical properties for meeting the standards required for specific industrial

applications. The mechanical properties are enhanced through a number of microstructural

changes which take place as a function of the applied heat treatment regime and the

designated thermal treatment parameters, namely temperature and time. Precise control of

the time-temperature profile, tight temperature uniformity, and compliance with industry-

wide specifications are required in order to achieve repeatable results and produce a high-

quality, functional product. In addition, heating and cooling rates of the heat treatment

media are also significant parameters that may affect the heat treatment performance of the

alloys.

2.2.1. Conventional Heat Treatment procedures

Heat treatment of Al-Si-(Cu/Mg) castings has the advantage of micro structural

homogenization; of residual stress relief; and of improved dimensional stability,

machinability and corrosion resistance. There are several steps involved in a conventional

heat treatment process. Table 2.1 details the most commonly applied heat treatments.

Among these, the T6 temper is commonly applied to Al-Si (Cu/Mg) alloys which

necessitates setting in motion a specific sequence of steps, namely, solution heat treatment,

rapid cooling in water (or quenching), and artificial aging. 7' '39 The T6 treatment refers
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to a phase transformation process known as precipitation hardening since the small

particles of the new phase which are formed may be termed precipitates. The highest

possible increase in mechanical properties for a given alloy is accomplished in two distinct

stages, namely solution heat treatment and age hardening. Age hardening is also used to

designate precipitation hardening since the strength develops with the passage of time. The

basic requirement for an alloy to be amenable to age hardening is a decrease in the solid

solubility of one or more of the alloying elements with decreasing temperature. 40' 41> 42' 43

Applying the appropriate heat treatment parameters (including control of the heating and

cooling rates) to Al-Si casting alloys may enhance the mechanical properties and quality of

these alloys as a result of their influence on the microstructure of Al-Si casting alloys.

Table 2.1. Common Al-Si-(Cu/Mg) heat treatments. 37'38' 39=4Oj 41> 42'43

Temper

T4

T6

T7

Solution Treatment

8-12 hours at 495°C for 319 alloys
5-8 hours at 530°C for 356 alloys
8-12 hours at 495°C for 319 alloys
5-8 hours at 530°C for 356 alloys
8-12 hours at 495°C for 319 alloys
5-8 hours at 530°C for 356 alloys

Quenching

Applied

Applied

Applied

Aging Treatment

At room temperature for
24-48 hours

180°C for 319 alloys
155°C for 356 alloys

240°C for 5 hours

2.2.1.1. Solution Heat Treatment

Solution heat treatment is carried out to dissolve a high amount of certain elements

present in the alloy such as Cu and Mg in the a-aluminum solid solution. The dissolution of

these elements will enhance the precipitation hardening during the artificial aging

treatment. Solution heat treatment includes the exposure of the casting to high temperature,

just below the solidus temperature of heat treated alloys, for a certain length of time to
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obtain a homogeneous supersaturated structure; holding time at a specific temperature

depends on the solubility of the various phases involved in the aluminum cast alloys. Since

the structures of aluminum-silicon casting alloys are relatively heterogeneous, much longer

solution treatment times will be required. The temperature of solution treatment should be

restricted to a range below the solidification point expected for the phases in the cast

structure so as to avoid the incipient melting of these soluble phases. 44'45 The solution heat

treatment time represents a compromise between the mechanical properties achieved, alloy

quality, and economic efficiency; shorter solution heat treatment times are required in

permanent mold castings than in investment or sand mold castings.46'47

The roles of solution heat treatment in Al-Si-(Cu/Mg) casting alloys are to obtain a

maximum dissolution of the hardening precipitates A^Cu and Mg2Si into aluminum

matrix, so as to homogenize the as-cast structure, and to cause a morphological change in

the eutectic silicon particles through coarsening and spheroidization. The soluble phases

and precipitates which form earlier during solidification are dissolved into the matrix by a

diffusion-controlled process. Maximum dissolution of these hardening elements, namely

Cu and Mg, in the aluminum matrix will enhance the precipitation hardening during the

artificial aging treatment. Figure 2.2 shows the solution heat treatment temperature, TSHT, at

which a supersaturated solid solution of a-Al is obtained, for a hypothetical alloy Al-Cu

with a composition Cx. The solute elements tend to segregate into networks of eutectic

constituents during dendritic solidification in the as-cast alloy; this segregation of alloying

and impurity elements may have an adverse effect on mechanical properties. The solution

heat treatment may cause a redistribution of the elements in the constituent phases when
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they dissolve and segregation is minimized. The dissolution of some constituent phases

such as iron-rich intermetallics which contain insoluble elements may change little by

solution heat treatment; however, the temperature and time of solution treatment may

determine the susceptibility of these iron-intermetallics to be fragmented and dissolved.6'7> 8
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Figure 2.2. Hypothetical phase diagram.6

The morphology of the eutectic silicon plays a significant effect on the mechanical

properties of aluminum cast alloys; the eutectic silicon particles are present in the form of

coarse needles, acicular structure, under normal cooling conditions. These needles act as

stress raisers and crack initiators which may have a negative effect on the mechanical

properties; fibrous Si particles may be obtained by using Sr-modifiers. The solution heat

treatment tends to spheroidize the silicon particles reducing the surface energy through
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fragmentation or dissolution of the eutectic silicon branches and spheroidization of these

fragmented particles. The change in the size and morphology of eutectic silicon takes place

through several stages during solution heat treatment; the acicular eutectic silicon platelets

undergo necking and separate into segments during the initial stage. Following this, the

average particle size decreases and the fragmented segments gradually spheroidize. 48'49> 50'

51 Depending on the solution heat treatment parameters, in particular, the heating rate to

attain the specified solution temperature, the spheroidization and the coarsening of the

eutectic silicon can occur during this stage. In modified structures, the fibrous eutectic

silicon particles undergo spheroidization at an early stage of solution heat treatment;

modification facilitates fragmentation of these acicular particles since it promotes eutectic

silicon branching. Li et al. 52 reported that the eutectic silicon particles in modified Al-Si

cast alloys are completely spheroidized after 1 hour of solution heat treatment, while in

unmodified alloys even after 12 hours some coarse needles of Si may be shown in the

microstructure. Figure 2.3 shows a schematic of the spheroidization and coarsening

process. 53 The globularization and coarsening process of the silicon particles is due to the

growth of larger particles at the expense of smaller ones and is known as Ostwald ripening

which explains why during the solution heat treatment, the number of silicon particles

decreases as their average size increases. The driving force for this process results from the

fact that the surface energy is higher in smaller particles due to their smaller radius

compared to larger particles, so that a concentration gradient exists from larger to smaller

particles; this difference in concentration gradient may cause the preferential dissolution of

smaller particles.54
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Solution heat treatment applied to Al-Si casting alloys at high heating rate

(temperature and time) may result in improving microstructural characteristics, as well as

enhancing mechanical properties and quality indices. The solution heat treatment increases

ultimate tensile strength and ductility (i.e. quality), while aging increases yield strength at

the expense of ductility. A quenching step is required in order to maintain the desirable

conditions, supersaturated solid solution, for obtaining precipitation hardening; solution

heat treatment followed by quenching may increase the strength through the solute solid

solution strengthing mechanism.

As-cast Breaking up Spheroidization & Coarsening

(a) Non-modified. Silicon

A.s-cast Spheroidization Coarsening

(b) Modified Silicon

Figure 2.3. Schematic diagram showing behavior of eutectic Si particles during solution
heat treatment in the case of: (a) non-modified and (b) modified Al-Si cast
alloys.53

2.2.1.2. Quenching

The objectives of quenching are (a) to retain the maximum amount of the

precipitating alloying elements in solution to form a supersaturated solid solution at low

temperatures; and to (b) obtain as many vacancies as possible within the atomic lattice
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which will act as initial potential sites for formation of precipitates during artificial aging

treatment. The cooling rate during quenching step may affect the optimum conditions

required for a successful precipitation process during the subsequent aging treatment. The

casting alloys may be quenched by cooling to lower temperature in water, hot air using an

air forced convection furnace (CF), or any other suitable quenching medium such as hot

sand using the fluidized sand bed technique (FB). The quenching step using any of the

different quenching media mentioned above aims mainly at preventing the precipitation of

equilibrium phases dissolved in the aluminum matrix such as A^Cu and Mg2Si as well as

reducing the residual stresses and distortions of alloys which might accompany the fast

cooling rate. The lowest level of induced residual stresses and the least distortion possible

at room temperature are suitable conditions for avoiding a decrease in the mechanical

properties of the final heat treated product.55> 56'57

In the quenching heat treatment step, the time delay in quenching and the quenching

rate parameters have a significant effect on the mechanical properties of Al-Si cast alloys. It

is recommended that the quenching step should be performed directly after solutionizing

heat treatment at high temperature for the purpose of minimizing the time delay in

quenching. 43> 58'59 An excessive delay in quenching may result in a temperature drop and

rapid formation of coarse precipitates in a temperature range at which the effects of

precipitation are ineffective for hardening purposes. For casting alloys, the delay in

quenching should not exceed 45 sec and a maximum quenching delay of 10 sec is usually

acceptable, as specified by ASTM standards. 43'60
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Rapid quenching increase response to age hardening, but it also creates residual

stresses and distortion; while slow quenching rates result in precipitation during quenching,

localized over-aging, loss of corrosion resistance at grain boundaries and lower response to

age hardening. Several studies 43' 61 suggests that most commercial quenching is

accomplished in water near the boiling point to avoid premature precipitation that is

detrimental to tensile properties and corrosion resistance. Cooling rates should be selected

to obtain the desired microstructure and to reduce the duration time over certain critical

temperature ranges during quenching in the regions where diffusion of smaller atoms can

lead to the precipitation of potential defects. 62 The quenchants used for quenching

aluminum alloys include water, hot air, and sand in a fluidized bed; the effectiveness of the

quench is dependent upon the quench media and the quench interval. To quench parts

quickly, the industry has traditionally employed water as a quenchant. Regardless of the

type of quenchant being used, cooling generally occurs in three distinct stages, namely

vapor stage, boiling stage and convection phase as shown in Figure 2.4. The vapor stage is

known by its slow cooling rate, where the heat transfer occurs by radiation and conduction

through the vapor blanket. In the boiling stage period, high heat extraction rates are

observed while in the final stage of cooling, the convection stage, heat is removed very

slowly.63'64
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Figure 2.4. Formation of the three stages of cooling process during quenching. 63,64

Water exhibits an excellent heat-transfer coefficient and is relatively simple to add

to the heat-treating process; for applications requiring high strength results, quenching with

water would be most advisable. It was reported, however, that the quenching capacity of

water is higher than necessary to obtain optimum properties, where the high internal

stresses resulting from rapid quenching are undesirable.63 The cooling rates of water as a

quenchant can be measured using probes instrumented with thermocouples; the mechanism

of water quenching can be explained using a graph of temperature against time as shown in

Figure 2.5, where the water quenching is considered as a three-phase process. Initially, as

the part is immersed in water, a vapor blanket envelops the heat-treated part; this vapor

blanket acts as an insulator resulting in a relatively slow cooling rate for the quenched alloy

as depicted by the phase I stage in Figure 2.5. As the quench process continues and the
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surface of the part begins to cool down, the vapor blanket starts to collapse and the

quenchant comes in direct contact with the part's surface. Thus, the Phase II or boiling

stage exhibits a dramatic increase in the cooling rate of the part; the final phase begins

where convection finishes the quenching process, where the surface temperature of the part

falls below the boiling temperature for the quenchant. 64 This complicated nature of water

quenching is responsible for such problems as part deformation and high residual stresses.

The disadvantage of water quenching is that for large parts and parts with complicated

geometries, the various phases which may precipitate may do so at different times, resulting

in large temperature gradients within the part. These gradients may manifest as high

residual stresses, part distortion, and cracking. In comparison, quenching in a fluidized sand

bed is an alternative well suited for parts requiring low residual stresses and for reducing

susceptibility of the part to distortion.

Figure 2.5. A typical cooling profile (S-curve) of a heat-treated part quenched in
water.64
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2.2.1.3. Aging

Ageing is the controlled decomposition of the supersaturated solid solution to form

finely dispersed precipitates in heat-treatable alloys, usually by soaking for convenient

times at one or sometimes two temperature levels. The decomposition is normally

complicated and occurs through several precipitate stages. These finely dispersed

precipitates have a dominant effect in raising yield and tensile strengths, and may also

affect other properties such as corrosion resistance and dimensional stability. Aging

temperature and aging time are the main parameters controlling the characteristics of the

phases precipitated during aging treatment as well as the mechanical properties of these

alloys. The precipitation process can occur at room temperature after direct quenching from

a high solution treatment temperature, namely T4 temper, or may be accelerated by

artificial aging at temperatures ranging from 90 to 260°C, namely T6 and T7 tempers, so as

to allow the diffusion of solute atoms and precipitation of secondary phases. 65> 66> 67

During the initial stages of artificial aging at low temperatures, a redistribution of

solute atoms within the lattice takes place to form ordered clusters or GP (Guinier-Preston)

zones which are enriched in solute atoms. GP zones may precipitate in different shapes:

rods, needles, spherical clusters; their form depends to a high degree on the specific alloy

system. There are several alloying elements that exhibit GP zones in Al alloys and their

formation requires the movement of solute atoms such as silver, copper, magnesium and

zinc, over relatively short distances so that they are finely dispersed in the matrix. The rate

of nucleation is influenced by the presence of excess concentrations of vacant lattice sites,

or vacancies, which are formed from the solution stage by quenching. These vacancies
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facilitate the transport of the solute atoms. Figure 2.6 shows a schematic illustration of

coherent, semi-coherent and non-coherent precipitates; where high strength will be

obtained in the transition (coherent and semi coherent) zones.69

Coherent particle Semi coherent particle Non-coherent particle

Figure 2.6. Schematic representation of precipitate coherency.69

The strength mechanism resulting from age hardening process can be explained by two

basic concepts which depend on the interaction between the moving dislocations and the

precipitated phases as well as the number and size of the precipitating particles. 69 An

increased number, or high volume fraction, of GP zones in the matrix increases the

distortion and thus also the stress required to move dislocations, since a single GP zone on

its own has only a minimal effect on impeding dislocation gliding. The strengthing effect

increases as the size of the precipitates increases, as long as the dislocations continue to cut

through the precipitates. This stage is regarded as the peak aging condition, i.e. where the

highest strength is achieved. As aging progresses, these particles grow, thereby increasing
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coherency strains, until the interfacial bond is exceeded and coherency disappears. As

precipitates grow and become more widely spaced, they can be readily bypassed by

dislocations forming loops around them, a phenomenon known as the Orowan mechanism

for dispersion hardening, and causing the strengthing to decrease, as shown in Figure 2.7.

69,70 j^-g Sfage j s caiieci overaging, which may occur by treatment at a higher temperature

and/or longer time than that used for a T6 temper, as in case of a T7 temper which is

applied at 240°C.70 Hard particles provide maximum hardening levels for the age-hardened

alloys while soft phases provide lower strength values. The strengthing effect which results

from hard particles depends on the volume fraction and size of these precipitates. The level

of hardening obtained also depends on the inter-particle spacing.

loop

particle

diç*io c atioaa

Figure 2.7. Orowan mechanism for dispersion hardening.69'70
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The Al-Si-(Mg/Cu) alloy system can be naturally aged at room temperature, where

the longer the natural aging stage, the more adversely affected the mechanical properties

will be. It should be noted, however, that the natural aging has a significant effect on the

tensile results obtained after subsequent artificial aging. Several studies55> 71> 72 on Al-Si-Mg

alloys have found that it is beneficial to use a pre-aging holding time of 24 h before

applying artificial aging, whereas another study reports that this is not effective except for a

slight increase in elongation; small additions of elements such as Cd, Sn, and Cu are

employed to inhibit natural aging in these cast alloys.73 The aging rate can be accelerated

by heat treating the product at higher temperatures of 150-200°C for specific times ranging

from 2-12 hrs to facilitate the diffusion of solute atoms and precipitation of secondary

phases; this process is known as artificial aging. A number of studies carried out on Al-Si-

(Mg/Cu) alloys using TEM revealed that besides the G-CuA^ and P-Mg2Si phases, certain

other precipitates exist such as the W (Al CU4 Mg5 Si4) and S (Cu AI2 Mg) phases.73'74'75

In the context of the current study, several parameters may affect the mechanical

performance of Al-Si-(Cu/Mg) cast alloys during aging treatment: (i) the various solution

heat treatment times as well as heating rates depending on the heating techniques used (CF

or FB); (ii) the quenching medium used such as water, or hot forced air using either a CF or

an FB; and (iii) the aging parameters. The heating rate plays an important role in increasing

the kinetics of the aging process by having an effect on the aging characteristics of Al-Si-

(Cu/Mg) alloys.
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2.2.2. Precipitation Hardening of Al-Si-(Cu/Mg) Castings

With respect to the precipitation hardening of Al-Si-(Cu/Mg) alloys, for each of the

Al-Si-Mg and Al-Si-Cu-Mg alloy systems, there exist optimum time and temperature

parameters to maximize the alloy strength and hardness. For Al-Si-(Cu/Mg) casting alloys,

the optimum temperature for solution heat treatment ranges from 495°C to 540°C and from

150°C to 200°C for aging temperature; the optimum time for all T6-heat treatment steps

may range from 15 to 20 hours when using a conventional convection furnace.76'77

2.2.2.1. B319.2-Type Aluminum-Silicon Casting Alloys

The cast B319.2 type (Al-Si-Cu-Mg) cast alloys display high strength values at the

expense of somewhat reduced ductility after the application of heat treatment; this

improvement in the strength may be related to the presence of the hardening elements such

as copper and magnesium. Based on the Al-Si system, the alloy contains 3-4 % copper and

0.4% magnesium as the main alloying elements. During the solidification of 319 alloys, the

first reaction observed is the formation of the dendritic network of a-aluminum; the Al-Si

eutectic reaction occurs next, followed by the precipitation of secondary eutectic phases

like CuAl2. The a-Ali5 (Mn,Fe)sSi2 and P-AlsFeSi iron intermetallics phases normally

formed after the a-Al dendrites have formed but before the appearance of the Al-Si

^JQ *7Q Qf\

eutectic, i.e., in a pre-eutectic reaction. ' ' The sequence of reactions during

solidification and the phases observed in both alloys are listed in Table 2.2. The

characteristics and compositions of these phases are provided in Table 2.3. The

intermetallic phases that Cu forms with Al during solidification are the block-like AI2CU
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and/or fine eutectic form as (Al + A12Cu) which depends on the levels of Cu, Fe, and Sr in

the alloy. It was noted that precipitation of the Cu phase is strongly dependent on the

possible sites available for nucleation of the phase, which is determined by the amount and

nature of the P-iron phase precipitation and the cooling rate. 81 In magnesium containing

B319.2 type alloys, the increased level of magnesium does not change the solidification

process significantly, except that an increased amount of the Q-AlsMgsQ^Siô phase is

observed. Figure 2.8 shows the optical micrograph of an Al-Si-Cu-Mg ingot sample,

showing the most common phases in this alloy.

Table 2.2. Sequence of phase precipitation during solidification of Al-Si-Cu-Mg cast
alloys.79

Isothermal reactions
Aluminum dendrites

Aluminum dendrites
and Ali5Mn3Si2
and/or AlsFeSi
Eutectic Al + Si

, Al5FeSi
and Mg2Si

Al + CuAl2 + Si + Al5FeSi
Al+CuAl2+Si+Al5Mg8Cu2Si6

Reaction type / T °C
Dendritic Reaction / 609°C

Dendritic
Post-dendritic /590°C
Pre-eutectic
Eutectic
Co-eutectic / 575°C

Post-eutectic / 525°C
Post-eutectic / 507°C

Table 2.3. Phases observed by optical microscopy, SEM, EDX in A319.2 alloys. 79

Phase

Characterization

a-Al

Dendrite

Si

gray

CuAl2

Pink
particles

Al5FeSi

needle

Ali5MnsSi2

Brown
Chinese
script

Al5Mg8Cu2Si6

Brown bulk
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4
Figure 2.8. The most common phases formed in Al-Si-Cu-Mg cast alloys: (1) P-Al5FeSi,

(2) blocky Al2Cu phase, (3) Al5Mg8Cu2Si6 phase, (4) acicular Si phase.81-82

The presence of magnesium with copper improves the strength after precipitation hardening

heat treatment due to the formation of several hardening phases such as P-Mg2Si and Q-

Al5Mg8Cu2Si6 in addition to the Cu-based phase, 6-CuAl2 phase. 81> 82 Figure 2.9 shows a

schematic skeletal phase diagram presenting four phases in equilibrium formed in the Al-

Si-Cu-Mg system, where the coexisting equilibrium three-phase fields expand into three

tetrahedral composition spaces.83

Most of the recommended heat treatments of Al-Si cast alloys that contain copper

restrict the solutionizing temperature below the final solidification point in order to avoid

the melting of the copper-containing phases. Solution heat treatment is usually carried out

at a temperature of 500°C to 505°C, and held for 8-12 hours at this temperature; quenching

is accomplished in water at 65° to 100°C. Aging (for T6 temper) is done at 150° to 155°C,

for times ranging from 2 to 5 hours. For solution heat treatment of 319 alloys, it was

observed that raising the temperature from 490 °C to 510°C results in a considerable



30

improvement in the tensile properties which are related to the microstructural changes

occurring when increasing the temperature. 84' 85> 86> 87 These improvements are due to

spheroidization of the eutectic silicon; the fragmentation and dissolution of P-iron platelets;

and the reduction in the amount of block like A^Cu phase; Figure 2.10 shows the

difference between the microstructures of an as-cast Al-Si-Cu-Mg alloys and a solution

heat treated one.

(AJ) �*� Q ;-6 f Mg2Si

Figure 2.9. Line diagram of stable equilibrium phase fields in Al-Mg-Si-Cu system at
room temperature.83
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Figure 2.10. Optical micrographs of (a) As-cast and (b) Solution heat treated samples of an
Al-Si-Cu-Mg.

Samuel et al. 88 reported that solution treatment at 500°C for 8 to 10 hours using a

conventional furnace appeared to be the best solution heat treatment recommended for high

Mg-content 319 alloys. It has been reported also that increasing the solution temperature in

the range of 480°C to 515°C for 2-24 hours may improve the ultimate tensile strength and

elongation values since this provides safe temperature range limits for dissolution of the

CuAl2. The dissolution of CuAb is accelerated with increasing solution temperature from

505°C to 515°C as well as with increasing solution heat treatment time as shown in Figure

2.11. 88' 89 Upon increasing the amount of dissolved AkCu, an enrichment of the

supersaturated solid solution structure in Cu may be observed; this leads to an enhancement

of the driving force for A^Cu precipitation during aging treatment, thereby multiplying the

tensile properties.89 Crowell et al.90 stated that the blocky Cu phase in B319 alloys may be

partially dissolved with increasing solution heat treatment time at the recommended
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solution temperature of 495°C. From most of the previous studies applied on 319 cast

alloys, it may be noted that high temperature and/or long time of solution heat treatment

may be required to achieve standard mechanical properties needed for a particular

engineering applications. The high temperature and/or long time of solutionizing process is

required for the purposes of fragmentation and dissolution of acicular eutectic Si particles;

and dissolution of P-Mg2Si, 0-C11AI2 and Q-AlsMgsCuaSie hardening phases in the

aluminum matrix.
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Figure 2.11. Effect of solution heat treatment on the amount of dissolved C1LA.I2 in 319
alloy. 89

The solution heat treatment should be followed by quenching from high temperature

to either the room temperature, using a fast cooling rate medium such as water, or the aging

temperature using direct quenching-aging media with lower cooling rates than water, such

as those of the CF and FB techniques. Byczynski et al. 91 studied the effect of the quench
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rate on the mechanical properties of 319-type alloys and determined that quenching in

water at 65 °C may be beneficial to the mechanical properties analyzed.

The aging treatment of Al-Si-Cu cast alloys results in the formation of various

forms of C11AI2 precipitates; the C11AI2 precipitation sequence is generally described as

follows:92'93'94

(X(sss)^ GP(i)Zones^GP(2)(e"(Al2Cu))-> Transition phase, 9'(Al2Cu) ->

Incoherent equilibrium phase 0 (AI2CU)

The sequence begins with the decomposition of the supersaturated solid solution and the

clustering of Cu atoms which lead to the formation of coherent disk-shaped GP (Guinier-

Preston) zones. GP zones provide an increase in the strength properties but reduction in

ductility. 68> 95 Increasing the aging temperature above 100°C and/or the aging time leads to

the GP zones being replaced by 0" and 0' precipitates, which probably nucleate and grow

within fee a-Al-matrix; the 0' precipitates germinate on fee matrix dislocations. 95 Figure

2.12 shows the SEM and TEM micrographs of 0' semi-coherent precipitates obtained after

aging treatment. 96> 97 The coherent and semi-coherent phases, 0" and 0' respectively,

contribute to increasing the strength of the alloys. At high aging temperature and/or after a

long aging time, the incoherent equilibrium precipitate 0 (CUAI2) is formed in the

aluminum matrix; this type of equilibrium precipitates results in diminishing the hardening

effect observed in the alloys due the 0" and 0' phases, as the coherency between the stable

phases and the metal matrix is lost. A high degree of coherency causes extensive

coherency-strain fields to arise, conferring peak strength the alloys at the corresponding

aging time. 92'96
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Figure 2.12. (a) SEM and (b) TEM micrographs of meta stable 6' precipitates. 96'97

The effect of Mg additions, specifically on the aging behavior of 319-type alloys, was

studied by Apelian et al. 5S, Ouellet and Samuel 98 and Wang et al. " A Mg level of 0.6 wt

pet leads to an increase in strength compared to the strength obtained in alloys with only

0.2 wt pet Mg. This is due to the increase in the formation of the (37-Mg2Si hardening

precipitates, with the increased amount of Mg in solid solution. It was also determined that

additions of 0.45% Mg enhance the response of the alloy to heat treatment, particularly in

the T6 condition where improvements of more than 40% in strength were obtained in

samples that contained 0.45% Mg, in comparison with samples treated at the same

temperature and time (8h at 180°C) containing very low levels of Mg, about 0.06%. 55>98'">

Typical mechanical properties for cast test bars of alloy 319.0 are summarized in Table

2.4. Regarding the age hardening of B319.2-type Al-Si-Cu-Mg cast alloys, it was reported

that a quaternary Q-phase is formed in addition to other hardening phases such as CuA^

and Mg2Si. '"' This Q-AlsMgsC^Sié phase, in addition to the latter phases, is also

responsible for the strengthening of B319.2 cast alloys. It has been reported, however, that
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the dissolution of this phase during solution heat treatment is much more difficult than that

of CuAl2.89> 102 In such cases, the high heating rate (to attain the solution temperature) may

be considered as an important factor affecting the dissolution of the phase, where the

morphology nature of such phases would also play a role in its dissolution.

Table 2.4. Typical mechanical properties of cast test bars of alloy 319.5> 6> ~1' 10°

Mechanical property

Tensile strength, MPa
Yield strength, MPa
Elongation, %
Hardness, HB

Permanent mold cast
As cast

235
130
2.5
85

T6
280
185
3.0
95

2.2.2.2. A356.2-Type Aluminum-Silicon Casting Alloys

As mentioned previously, A356.2 type alloys constitute an important series of Al-Si

alloys, which are age hardenable due to the presence of magnesium. Aluminum-silicon

alloys that do not contain copper additions are used when good castability and good

corrosion resistance are needed; magnesium can act as a substitute for copper. Magnesium

and silicon form the intermetallic hardening phase Mg2Si which precipitates in the a-

aluminum matrix and increases the yield strength. Suitable distribution of Mg2Si

precipitatesd can be obtained through a solution heat treatment, quenching and aging

procedure. The chemical composition of alloys with increased Mg content is given in Table

2.5.
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Table 2.5. Chemical composition of A356, A357 and AlSi7Mg0.8 alloys in wt%. 103

Alloy
AlSi7Mg0.3
AlSi7Mg0.5
AlSi7Mg0.8

(A356)
(A357)

Si
7.15
6.88
7.1

Mg
0.32
0.53
0.79

Fe
0.15
0.16
0.15

Mn
0.017
0.009
0.010

Cu
0.004
0.005
0.005

Ti
0.086
0.064

0.08

Be
0.002
0.002
0.001

Sr
0.031
0.031
0.028

The hardening phase Mg2Si has a solubility limit corresponding to approximately 0.45% to

0.7% Mg in the heat-treated condition at 555°C, so that no further strengthening will occur

beyond this limit. 1Cb' 104 The strengthening mechanism depends on the microstructural

morphology of the precipitates, which are generated by the interfacial and strain energies of

the precipitate/matrix system. The main isothermal reaction of Mg2Si phase precipitation

during solidification occurs at 555°C. The black particles of the secondary eutectic phase,

Mg2Si, appear in the microstructure on account of the high Mg content of the alloy, 0.3%-

0.7% Mg; Figure 2.13 shows the optical micrograph typically obtained from an as-cast 356

alloy. 105

Figure 2.13. Optical micrograph of as-cast Al-7% Si-0.4% Mg alloy. 105

The main sequence of phase precipitation during solidification is listed in Table 2.6. The

corresponding phases and their characteristics are given in Table 2.7.79
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Table 2.6. Sequence of phase precipitation during solidification of Al-Si-Mg castings.
79

Isothermal reactions
Aluminum dendrites

Aluminum-Silicon

Al + Al5FeSi
Eutectic (Al + Si)

+Al5FeSi
+Al8Mg3FeSi6

Al + Mg2Si + Si
Al+Si+Mg2Si+Al8Mg3FeSi6

Reaction type / T °C
Dendritic Reaction / 615°C

Eutectic / 575 °C

Eutectic / 575 °C
Pretectic / 567 °C
Post-eutectic / 555 °C
Post-eutectic / 554 °C

Table 2.7. Phases observed by optical microscopy, SEM, EDX in A356.2 alloys. 79

Phase

Characteristics

a-Al

Dendrite

Si

Gray

Al8Mg3FeSi6

Brown
Script

Mg2Si

Black

Al5FeSi

Needle

Figure 2.14 illustrates a pseudo-binary section through the system AlSiMg0.3; it may be

observed the formation of Mg2Si phase in addition to the a-Al matrix and Si phases. The

temperature interval of solidification is about 60°C and the semi-solid forming temperature,

TSS, at a liquid and solid fraction of 50% can be detected to ~580°C. 106 Compared to

B319.2 alloys, A356 alloys have a good control over amount of impurities, especially iron,

which is detrimental to the mechanical properties of the alloy.
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Figure 2.14. Pseudo-binary section of the system Al-Si-0.3%Mg. 106

For the To-conventional heat traetment of A356.2 type aluminum-silicon cast

alloys, the solution heat treatment is applied within a temperature range of 535° to 540 °C

for 8 hours while the aging treatment is applied at 150°C to 155°C for 3 to 5 hours. 55'56> 107

Taylor et al. 108 and Tiryakioglu 109 studied the influence of solution heat treatment

paramters on the microstructural characteristics of Al-Si-Mg cast alloys; it was observed

that homogenization of the cast structure is achieved after 6 hours solution heat treatment at

540°C. The content of Mg in the aluminum matrix was observed to increase from 0.44wt%

to 0.75wt% upon increasing the solution heat treatment temperature up to 555°C for 6

hours. 55> n o Magnesium which cannot be dissolved in the matrix is available for the
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formation of undesired intermetallics compounds. Figure 2.15 shows the solubility of Mg

and Si in the a-Al matrix after solution heat treatment at 555°C.55

�s

i
8

1.4

1.2

1.O

0.8

es

a.4

G.2

Ë
ef
.E

1
"H8
©3

0 . Oi.0
3QO 35© 4OÛ 450 SCO 550 ©0Q

temperature, T, |°Q

Figure 2.15. Solubility of Mg and Si in a-Al with concurrent presence of Mg2Si and Si in
equilibrium.55'110

It was observed that upon increasing the solution treatment time, the Si particles become

gradually rounded and coarsened. n o Li et al. 52 reported that spheroidization of eutectic Si

particles in Al-Si-Mg cast alloys was complete after 1 hr of solution treatment in modified

alloys, while in non-modified alloys, even after 12 hours, some coarse needles of Si were

still visible. It was reported that the optimum parameters affecting the microstructural

features and mechanical properties were 1-2 hours of solution heat treatment time at a

solution temperature of 540°C, however, a shorter solution heat treatment time may be

enough for complete dissolution of the Mg2Si phase in the aluminum matrix. ' 5 ' n

Nevertheless, a long solution treatment time may be required for fragmentation and/or
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spheroidization of the eutectic Si particles. Figure 2.16 shows typical microstructures of

A356.2 cast alloy samples in the as cast condition and after solution heat treatment at

540°C for 5 hours. A further increase in the solutionizing temperature, 560°C, is not

recommended to avoid incipient melting of the microstructural constituents; the heating

rate of the applied solution heat treatment may also have a significant effect on the

fragmentation and/or spheroidization of the Si particles. 46> 112

>' "'

# xf» *�� *

Figure 2.16. Effect of solution heat treatment on the non-modified eutectic Si at
magnification of 270x: (a) before heat treatment, (b) After solution heat
treatment at 540°C for 5 h. m

Quenching is the next critical step after solutionizing treatment at high temperature;

it has been reported that the water temperature affects significantly the mechanical

properties of 356 type alloys once the quenching takes place in hot water in a temperature

range of 60°-70°C. 113 Zhang et al. 114 studied the effect of quenching rates on the tensile

properties of A356.2 cast alloys; it was reported that increasing the quenching rate from

0.5°C/s to 250°C/s, using different quenching media and quenching temperatures, results in

an improvement in the tensile properties of the alloys investigated. Aging may occur if the
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alloys are kept in the quenched state for a long time; this type of treatment is called natural

aging, T4, produces an increase in the mechanical properties of 356 alloys with increasing

time, due to the formation of co-clusters and/or precipitates of Mg-Si as illustrated in

Figure 2.17. 113
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Figure 2.17. Schematic of a typical variation of the micro-hardness data with time during

the natural ageing of an A356.2 alloy sample at room temperature showing the
various critical stages in the precipitation reaction process. 113

The strengthening of Al-Si-Mg cast alloys can also occur through the application of

an artificial aging treatment at elevated temperatures, where the precipitation of Mg2Si

hardening phases takes place in a sequence of phase transformations. The phase

transformation sequence is related to the variation in the aging parameters of temperature

and time, applied during the aging treatment. Shivkumar et al. n o reported that the

improvement in strength of 356 cast alloys has been attributed to the precipitation of Mg-Si



42

containing phases from a supersaturated matrix; the precipitation sequence in T6 heat-

treated and aged 356 alloys may be described as follows:

a (sss)~^ GP Zones -> intermediate phase P"(Mg2Si) together with a homogenous

precipitation -> intermediate phase P' (Mg2Si) together with a heterogeneous

precipitation-^ equilibrium phase P(Mg2Si).

The GP zones appear in the form of -10 nm long needles , while the P (Mg2Si) phase

appears in the form of rods or plates (0.1 [im x 1 urn in size).115'116 During the initial period

of artificial aging at a specific temperature, the main change is a redistribution of solute

atoms within the solid-solution lattice to form clusters or GP zones that are much richer in

solute. The strengthening effect of the zones results from the additional interference with

the motion of dislocations when they cut the GP zones. At higher temperatures and/or

longer times the formation of intermediate phases takes place. In the Al-Si-Mg system

mentioned above, the GP zones are reported to be of spherical shape which convert to

needle-like forms near the maximum strength inflections of the aging curves. Further aging

converts the zones to rod-shaped particles. At higher temperatures, this transition phase

undergoes diffusionless transformation to the equilibrium Mg2Si phase. Strength continues

to increase as the size of these precipitates increases, as long as the dislocations continue to

cut the precipitates. 117' 118 The maximum alloy strength is achieved just before the

precipitaion of the incoherent P- Mg2Si platelets; the strength of Al-Si-Mg is related to the

amount of Mg2Si present in the alloy . The YS, after T6 tempers, increases almost linearly

with the level of Mg2Si content in the Al-Mg-Si cast alloys during aging at 180°C; the
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significant increase in YS values occurs after 5 hours of aging as illustrated in Figure 2.18.
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Figure 2.18. Effect of wt.% Mg2Si on aging behavior of T6-heat treated Al-Mg-Si alloys
aged at 180°C: (a) 0.63 wt.%; (b) 0.95 wt.%; (c) 1.26 wt.%. 118

Apelian et al. 55 studied the aging behavior of Al-Si-Mg cast alloys and observed

that the precipitation of very fine (3'-Mg2Si during aging leads to a pronounced

improvement in strength properties. Both aging temperature and time affect the final

properties; increasing the aging temperature by 10°C is equivalent to increasing the aging

time by a factor of two. 55 The high heating rate of aging treatment may have a significant

role in activating the precipitaion kinetics of hardening phases to form at an early stage of

aging and with high density.
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2.2.3. Heat Treatment Media

The majority of heat treating system depends on the the equipment required for heat

treatment operations such as heating furnaces, quenching systems, and atmosphere and

temperature control systems. In this subsection, modes of heat transmission in heating

furnaces will be covered since it significantly affects the performance of the heat-treated

Al-Si cast alloys.

Heat transfer during the heat tratment process may occur by three basic modes;

these modes of heat transmision are by conduction, convection and radiation. Conduction is

the most significant means of heat transfer within a solid or between solid objects in

thermal contact under the influence of a temperature gradient, and without appreciable

displacement of the material particles. The rate of heat transfer by conduction within the

material/alloy is relativly fast; the required time for continus heat flow until equilibrium is

reached will depend on the conductivity of the heat-treated alloys. The conduction mode of

heat transfer during heating in a fluidized bed (FB) plays an important role since the hot

medium is in direct contact with the heat-treated part. The convection mode refers to

transfer of heat from one point to another by the movement of fluids, and is usually the

dominant form of heat transfer in liquids and gases. This mode of heating would occur in a

forced air convection furnace (CF), where hot air is forced through the heating chamber. In

the case of heat transfer by radiation, the heating rate of the part being heat-treated would

depend on the surface of material, where a highly reflective materials would absorb heat at

lower rate compared to a part with a dark surface. Most heat treating furnaces used for

heating to a temperatures higher than 595°C are heated by radiation, whether they are
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heated by electrical resistance elements, or directly by means of radiation, or indirectly by

radiant tubes. In a fluidized bed, heating may occur by all three modes of heat transmission.

119,120 j k e gQjjçj panicles of s a nd m direct contact with the heat-treated part would provide

conduction heating, the use of air or gas for transferring heat from the electrical elements

beneath the sand bed would provide convection heating, as well as increase the heating

efficiency and temperature uniformity of the bed and workpieces.

The success of heat treatment depends on proper choice of heat treating furnace and

the type of atmosphere maintained in the furnace. The heat transfer media could be gaseous

as (air or vacuum), liquid- as in molten salt bath, or solid as with a fluidized sand bed

furnace. Two characteristics of heat processing furnaces that are of great importance are

heating rate and temperature uniformity, where the furnace user and the furnace

manufacturer strive to continuously improve these characteristics. Improved heating rate

reduces cycle time; improved temperature uniformity improves product quality and product

yield rate. Short cycle heat treatment of aluminum castings has been shown to be possible

in laboratory environments while the industry requires a production furnace that looks like

and operates like a conventional mass flow convection furnace; however, the higher heating

rate, heating rate uniformity and temperature uniformity of such furnaces render short heat

treatment cycles possible. Energy efficiency and cost of heat-treating operations are

substantially affected by the method of converting stored energy into molecular kinetic

energy (temperature) of the work-piece. For electric furnaces, high relative efficiencies

between 85 and 100% are feasible, but the cost of electric energy is substantially higher

than that of fuels such as natural gas. Consequently, gas-fired furnaces are often more
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economical than electrically heated ones, even though their efficiencies are generally lower

than the latter. 12°

Heat treatment of aluminum casting alloys may be carried out using salt baths, air

convection furnaces, induction heaters and fluidized bed furnaces, where each technique

has its advantages and limitations. The most commonly used air convection furnace (CF)

offers greater flexibility in operating temperatures and has no hazardous effects except that

its relatively slow heating rates results in long heat treatment cycles. Heating using molten

salt baths is comparatively faster and uniform with minimum distortion, but this technique

may be potentially hazardous and require special precautions. Induction heating is not used

in the case of aluminum, as the efficiency and power factors of the technique are

significantly low. A fluidized sand bed may be considered an efficient technique with lower

equipment costs than electrical and gas-fired furnaces; it may be also well suited to heat

treating of aluminum cast alloys and appears to be more effective than conventional

convection furnace technique since it has a higher heating rate.120'1 ' x Figure 2.19 shows

the relative heat transfer rates of different heating media. The fluidized sand bed can be

used for solution heat treatment, quenching and aging of Al-Si-(Cu/Mg) cast alloys, saving

time, energy and equipment that would be otherwise required for full heat treatment of such

alloys using conventional techniques.
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Figure 2.19. Relative heat transfer rates of different heating media. 122

2.3. FLUIDIZED BED TECHNOLOGY

As has been discussed in the previous section, the fluidized bed furnace has the

capability of replacing some of the traditional types of heat treating furnaces; it is capable

of improving both operating efficiency and process quality in various engineering

applications. The environmental and safety advantages as well as flexibility, simplicity, low

cost and economy of the fluidized bed technique make it one of the most useful techniques

avaialable for metallurgical processes such as those involved in the different stages of a

heat treatment procedure or temper. The use of fluidized beds is considered to be an

innovative technology for the heat treatment of Al-Si-(Cu/Mg) cast alloys in that the

fluidized bed heat treating process significantly reduces the time required for heat treating

and increases the uniformity of the heat treating process.
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2.3.1. Fluidization Phenomenon and Modern Fluidized Sand Bed

The fluidization process essentially consists of the transformation of solid particles

into a fluid-like state through suspension in a moving gas or an air that is fed upward

through a diffuser or distributor into the bed. The most desirable characteristic of a

fluidized bed is that the rate of heat transfer between a fluidized bed and the objects

immersed in it is high. The fluidized bed itself consists of a medium of dry and finely

divided solid particles (aluminum oxide, olivine sand, etc.) that is made to behave like a

fluid by a fluidizing gas (nitrogen based atmosphere and/or air). The air or gas is passed

through the media from orifices beneath the bed, where the moving air/gas separates the

particles enough to slide freely past each other as can be shown in Figure 2.20. 122> 123> 124
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Figure 2.20. Schematic drawing of the fluidized bed principle. The horizontal arrow refers
to direction of increasing gas flow rate. 124
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At a sufficiently high air-flow rate, the terminal velocity of the solids is exceeded, the bed

goes into motion, and the upper surface of the bed disappears. The fluid like nature of the

bed allows parts to be easily immersed and conveyed through the media. 123> 124 The

properties of solid and fluid alone determine the quality of fluidization, although other

factors such as bed geometry and gas-flow rate influence the rate of solid mixing in the bed.

In gas-solid systems, fluidized bed motion can be observed by using a dense gas at high

pressure with fine light particles; Figure 2.21 presents a schematic representation of the

principle of fluidization. 124

Figure 2.21. The fluidization principle. 123

With increasing flow rate of air or gas, large instabilities with bubbling are observed and

the movement of the solid particles becomes more vital; such a bed is called a bubbling

fluidized bed. The fluid-like behavior of solid particles with their easy movement and direct

contact with the gas is often the most important property recommending its use for
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industrial operations. The fluid-like flow produces close to isothermal conditions

throughout the reactor, thereby controlling the operations simply and reliably. Heat and

mass transfer rates between gas and particles are high and, consequently, between the

fluidized bed and immersed objects. 124j 125 High-efficiency heat transfer is an important

characteristic of fluidized bed which affects its performance. Actually, there are several

factors affecting the performance of a fluidized bed furnace including particle (sand)

diameter, bed material, fluidization velocity of gas/air and heating rates. The diameter of

the fluidized bed particles has the greatest effect; where the particles should be as small as

possible to increase the contact area between particles and the samples. On the other hand,

dense particle materials produce lower heat transfer coefficients. In the design of heat-

treating furnaces, the effect of temperature must also be considered. Figure 2.22 shows that

the flow of gas required for fluidization decreases rapidly with increases in temperature. 122
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Figure 2.22. Effect of temperature on the flow corresponding to minimum fluidization for
particles 0.1 mm in diameter having an apparent density of 2. 122
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The gas flow rate should be used to provide maximum heat transfer, where too high a flow

rate leads to particle entrainment, high gas consumption and poor heat transfer. On the

other hand, a flow rate that is too low leads to poor heat transfer and lack of temperature

uniformity of the bed.

Generally, the sand bed material has a negligible role on heat transfer. 12 For the

type of sand used in a fluidized bed, any type of sand can be used as bed material since the

thermo-physical properties of the sand have no significant role on heat transfer except that,

the use of silica sand is not recommended due to the toxicity of silica dust at high

temperature. In addition to staurolite sand, Fe2Al9Si4O22(OH)2, the bed materials that may

be used in a fluidized bed furnace are olivine sand and aluminum oxide; these materials

remain inert upon heating and will not break down or melt even at elevated temperatures

since the materials are physically and chemically stable. The heat transfer coefficient as

well as heating rate of FBs using staurolite sand bed, Fe2AlgSi4O22(OH)2, are affected by

the average particle size of the fluidized particles (80-120um), and the gas flow rate.122> 123'

126

In using the conventional fluidized bed for heat treating operations, two major

drawbacks are: (i) the inefficient heat transfer from the heat source to the fluidized bed due

to the use of a single hot air system to provide both heating and fluidization, and (ii) the

inefficient recovery of the temperature drop in the fluidized bed upon part loading. To

overcome these drawbacks, Girrell 126 and Fainshmidt 127 have modified the system to a

modern one. The modified modern fluidized bed is different in that the fluidizing air is

made to flow over heating elements before entering the furnace. The problem of the
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inefficient transfer of heat to the fluidizing medium was solved by using radiant heaters

which were immersed in the medium just downstream of the fluidizing air entrance to

allow this medium to be heated directly via conduction, radiation, and convection. The use

of immersed heaters makes it possible for very fast temperature recovery to occur as a

direct result of the efficient heat transfer to the specific medium. The faster heat transfer

rates in such FBs will simplify direct heat treatment thereby making energy savings

possible. Cast parts may also be submitted to heat treatment before they have fully cooled

down from the casting process, 127'128 which will ensure minimum heat loss from the bed

and excellent temperature uniformity.

The modern fluidized bed has been developed to continuously heat-treat via in line

solutionizing, quenching, and aging beds, which eliminates the traditional method of batch

processing. The heat treating unit is coupled with a robotic unit which is used for loading

the parts and continuously for in-line heat treating operations. The technique offers clean

and safe operations for each of the heat treatment stages involved, as well as low

maintenance costs. This type of fluidized bed was used for the heat treatment of the A3 56.2

and B319.2 type cast alloys investigated in this study; this technique offers clean and safe

operations during solutionizing, quenching and aging processes as well as low maintenance

cost. Alloys that respond particularly well to fluidized-bed solution treating, aging and

fluid-bed quenching are aluminum alloys with various amounts of silicon, copper, and

magnesium. The modern fluidized-bed furnace displays a uniformity of ±1.5°C and does

not generally overheat by more than ±1°C. The density of the fluidized bed supporting the
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aluminum casting minimizes the distortion which can occur at the high temperatures

associated with a typical heat treatment process such as the T6 or T7 tempers.

Figure 2.23 shows a schematic of FB reactor, 128 while figure 2.24 compares the

temperature profile of a part heated using a conventional furnace with that of a part heated

in a fiuidized bed. The fluidized bed offers excellent heat transfer of 120-1200 W/m2°C

which is higher than the 80-90 W/m2oC attained with the convection furnace. Besides a

high heat-transfer rate, fluidized beds offer precise temperature control to the cast part. 129

The high heating rates obtained by fluidized beds are a result of the high heat transfer

inherent in the system.

2. Blower
3. Resistance elements
4. Insulation
5. FluicSzing bed
6. Ru«*2iog gas
7. Top cover

Heat treatment (HT)
of alloys

- Soiuiionize

-Quench

Figure 2.23. Schematic drawing for a fiuidized bed technique. 128
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Figure 2.24. Comparison of temperature profiles for a part heated in a conventional
furnace to one heated in a fiuidized bed. 129

The excellent temperature uniformity and temperature control offered by the fiuidized bed

reduces part distortion during heating. One of the most important fiuidized bed parameters

is the minimum fluidization velocity, u.mf; which is a function of the particle diameter (d)

and particle mass (p) as shown in Equation 1. 122> 124

|imf = d p Equation 1

The effect of the temperature on the flow of the gas required for fluidization is also an

important consideration, where the gas flow decreases rapidly with increase in temperature.

The global heat transfer coefficient of a fiuidized sand bed is related to the temperature of

the heat-treated part in the bed through the following heat transfer and energy balance

equations:

Q(t) = h A (TFB - Tp(t)) = mcp dTp/dt Equation 2

Tp (t) = TFB + (Tp(0) - TFB) exp(- hAt/mcp) Equation 3
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where Q(t) is the heat flow rate, h is the heat transfer coefficient, A is the surface area of

the part, Tp(t) is the part temperature as a function of time, TFB is the bulk fluidized bed

temperature, m is the mass of the part, cp is the specific heat of the part, and Tp(0) is the

initial temperature of the part. 119'122'126'130

2.3.2. Development of Fluidized Sand Bed for Heat Treatment of Aluminum Alloys

Using fluidized beds is a relatively old technology which has, so far, had limited use

in manufacturing. Fluidized bed technology was once used in the steel industry primarily

for the hardening of tool steels over fifty years ago, although the process goes back even

further for more than 100 years, when, in 1879, a first patent demonstrated the excellent

1 T 1 T O O i T ' l

temperature uniformity of the fluidized bed for roasting minerals. ' ' Previously, the

solutionizing, quenching and ageing steps in a heat treatment process would take long times

to achieve the required properties in total over 20 hours. With the advent of fluidized bed

reactors (FB), heat treatment processing time has been reduced. For example, instead of

long solutionizing time in a conventional furnace (CF), the time required in an FB is less

than an hour. The rate of heat transfer in the fluidized bed is higher than in standard

furnaces, which permits the heating time to be shortened. 128' 129 Chaudhury et al. 131

observed that a sample heated in the fluidized bed reached the solution temperature six

times faster than one that was heated in a conventional furnace. The high heating rate in a

FB enhances both solutionizing, and precipitation kinetics; fluidized bed technique can be

used for direct quenching to the aging temperature using the same furnace/medium as that

used for quenching (termed quenching-aging medium). Quenching in a fluidized bed
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ensures minimal warping and internal stresses as compared to quenching in water, where

high internal stresses which occur during quenching are undesirable. 64'130 The advantages

of this fluidized-bed quench include a cooling rate sufficient to achieve the required

strength and ductility, but slow enough to minimize any risk of distortion or cracking; a

buoyancy factor to further minimize distortion; and the elimination of a wet quench.

Compared with water quenching, it was reported that FB quenching reduces residual

stresses by 70% in alloy A356 casting, where the residual stresses is quantified as von

Misses stresses. 132

The main goal of aging using a fluidized bed is to activate the precipitation process,

in which the precipitates may be formed in less time in stable and high density conditions

through the rapid heating rates obtained with the system. As well as effectuating solution

treatment, fluidized beds have the capacity to reach aging temperatures which are four to

six times faster than conventional furnaces. It should also be noted that a 10°C increase in

aging temperature makes it possible to decrease the aging time by a factor of two.55 '9 ' l l'

131 The use of fluidized beds is considered to be an innovative technology for the heat

treatment of Al-Si cast alloys and appears to be more effective than conventional furnace

techniques.

2.3.2.1. FB vs CF Heat Treatment Techniques for Al-Si Cast Alloys

With regard to solution heat treating, it has long been held in the industry that

several hours are required for adequate treatment using a convection furnace. Gauthier et

al. 133 and Samuel et al. 89 reported that the best solution heat-treatment time for high Mg-
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containing 319.2 cast alloys at 500°C is 8-10 hours using a convection furnace. Also, due

to the presence of the low melting point (515°-540°C) A^Cu phase, it is recommended that

fluctuations in solution temperature should be controlled to within a very narrow range. A

fluidized bed, on the other hand, provides excellent temperature uniformity with

satisfactory temperature control thereby reducing the allowance made for part distortion

during heating. Also, with the use of fluidized bed furnaces, the solution treatment time

required to obtain optimum mechanical properties is reduced to less than 1 hour instead of

the customary 8-10 hours necessary in a convection furnace.

Keist 129, Apelian and Chaudhury 134 and Van Wert et al. 13 have reported that the

fluidized bed heat treatment technique reduces the time required for heat treating.

Acoording to Bergman 12 for alloy A356, a solution heat treatment temperature of 554°C,

which is just 1.7°C below the solidus temperature, may be applied using a fluidized bed

because of its tight temperature control which would not have been possible with a

conventional convection furnace. Kiest and Bergman 135 observed that using the fluidized

bed technology for the heat treatment of 356 casting alloys results in a significant increase

in strength values after only 15 min of solution heat treatment at 540°C and 550°C.

Chaudhury and Apelian 136> 137 reported that the optimum solution heat-treatment times

required for modified and non-modified Al-Si-Mg alloys are 30 min and 60 min,

respectively, when using the fluidized bed technique, to achieve complete dissolution of

Mg2Si in the matrix as well as that of the greater part of the intermetallics present in the

microstructure. 136 In the case of 354 alloys, the optimum solution heat-treatment time

using the fluidized bed technique is 45 min at 527°C, for the complete dissolution of Mg2Si
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and Q-Al5Cu2MggSi6 phases. 137 There have been some reported cases of incomplete

dissolution for other formed phases such as A^Cu and Fe-rich intermetallics after solution

heat treatment using FB and CF techniques. A number of studies, such as those carried out

by Apelian et al. 55 and Shivkumar et al, 110 have reported on the kinetics of the rapid

dissolution of Mg and Si in 356-type cast alloys. At temperatures of 530-540°C, dissolution

of these two elements is complete after solution heat treatment for 30 min and 60 min,

using FB and CF techniques, respectively.

Several studies have shown that short solution treatment times at the specified

solution treatment temperature using a conventional furnace may provide adequate

mechanical properties. 131> 135' 138 For example, alloy 356 attained 90% of its peak tensile

strength after undergoing a solutionizing treatment for only 10 min at 540°C, but achieved

peak tensile properties after 50 min of solution treatment at 550°C. The reason for longer

solution times required in a CF may be attributed to the thermal modification of the acicular

Si phase which can occur over a period of up to 12 hours. 138' 139' 14°! 141 Shorter solution

heat-treatment times of 3�4 hours can be used with Sr-modified 356 cast alloys with a CF,

while the thermal modification of the Si phase during solution heat treatment is more rapid

in a fluidized bed furnace, i.e. 30-60 min.52'136'142 The Si flakes start to fragment into finer

Si particles within 15 minutes of solution heat treating using an FB; also the coarsening of

the eutectic Si particles takes place through the Ostwald ripening effect after 120 minutes of

solutionizing. In addition to the high heating rate of an FB, modification has a strong

influence on the spheroidization and coarsening kinetics of Si particles as reported by

Druge and Pantya. 143 The high heating rate during fluidized bed solution heat treatment
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causes faster fragmentation and spheroidization of the eutectic Si particles compared to that

obtained with conventional air convection furnaces.

The heating rate also plays an important role in increasing the kinetics of the aging

process by having an effect on the aging characteristics of Al-Si-(Cu/Mg) alloys. The main

goal of aging with a fluidized bed is to accelerate the precipitation process so that a high

density of precipitates may be formed in less time through the rapid heating rates obtained

with the application of this particular technique. As well as effectuating solution treatment,

fluidized beds have the capacity to reach aging temperatures which are four to six times

faster than conventional furnaces. 144'145> 146 It was reported by Chaudhury et al 145'146 that

the precipitation rate for hardening phases in both 357 and 354 cast alloys is greater in

fluidized bed furnaces due to the formation of a greater weight fraction and number density

of Mg2Si, CuAb, and AlsQ^MgsSio precipitates than that obtained with a conventional

furnace. The aging of solutionized samples of Al-Si-Mg cast alloys using an FB results in

small spherical Mg2Si precipitates in the 30-100 nm size range; on the other hand, CF

solutionized samples exhibit coarse Mg2Si needle-like precipitates with sizes in the range

of the 1000nm-2000 nm upon subsequent aging. 146

With regard to fluidized bed heat treatments, it was reported that the high heating

rate of the FB increases the kinetics of the precipitation rate of such phases as

Al5Cu2Mg8Siô and A^Cu during aging of Al-Si-Cu-Mg cast alloys. 147 From thermal

analysis of samples heated up to the aging temperature, no phase transformation or

dissolution of precipitates was observed when using the fluidized bed. It was reported that

the high heating rate in an FB leads to the formation of more stable clusters, or GP zones,
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compared to a CF during the heating up stage to reach the aging temperature. 147 The

correlation between the heating rate and the radius of the formed clusters is given by

Equation 4. 147 These clusters can act as suitable sites for the heterogeneous nucleation of

further precipitates.

dT 2yQ r*rm

�, -_ __^ _ _ x � � Equation 4
dt k2DXplnS r-rm

2.3.2.2. Fluidized Sand Bed Quenching Medium

Quenching is considered to be the critical step in the heat treatment process to

obtain a supersaturated solid solution as well as to achieve optimum mechanical properties

and alloy quality. The cooling rate during quenching determines the amount of

strengthening elements that remain in the solutionized matrix. Furthermore, the cooling rate

also has an important effect on the resulting vacancy concentration and phase formation in

the metal matrix. The resulting vacancies formed after quenching have an important role in

the diffusion process necessary for forming hardening phases in the subsequent age

hardening stage. Several studies, such as those carried out by Abubakre et al. and

Bycznski et al. 91, have reported that a lower vacancy concentration leads to slower aging

kinetics and to higher temperatures of phase transformation into GP zones during the aging

process. In addition, the vacancy concentration influences the precipitates size and

distribution in the matrix; clusters containing solute and vacancies act as effective

nucleation sites for GP zones, where these clusters also affect the distribution of GP zones.

Pedersen et al. 149 reported that a decrease in the quenching rate lowers the strength and
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increases the ductility of Al-Si-Mg alloys; low quenching rate leads to the precipitation of

Si within the aluminum metal matrix. The slow cooling rate associated with forced air

quenching reduces the peak strength due to the low rate of heat transfer as compared to that

obtained with water quenching. Water quenching medium displays an excellent heat-

transfer coefficient especially for applications requiring high strength values, although this

step involves a number of complex stages as well as high residual stresses when compared

to an FB quenching medium. It has been reported that the quenching capacity of water is

higher than necessary to obtain optimum properties, where the high internal stresses

generated from the rapid quenching are undesirable. 60 '61 '63 '64 One of the main concerns

with water quenching is the transition from the vapor blanket stage to the boiling one,

where temperature gradients are created along the surface resulting in part distortion. The

large thermal gradients are related to the vapor blanket that envelopes the part when it is

immersed in the water and acts as an insulator leading to a relatively slow cooling rate for

that particular part.63'64

As reported by Keist and Bergman, 15° a fluidized bed as a quenching medium lacks

any vapor barrier which is in nature predicted by water quenching. When the part is

immersed in the fluidized bed, the medium will come into direct contact with that part. The

same cooling conditions from one section of the sample to another will reduce temperature

gradients within the part resulting in a reduction in both residual stresses and in the

susceptibility to part distortion, as shown in Figure 2.25. 129 Thus, the fluidized bed is an

attractive alternative to forced air and water as quenching media; the internal stresses and
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resulting distortion of samples associated with water quenching can be minimized/avoided

by quenching in a fluidized bed.

Wateî - 2ï»C

Figure 2.25. Temperature gradients versus quenching time obtained from cooling curves
for A356.2. 12?

In another study 151 that investigated the quench sensitivity of Al-Si-(Cu/Mg) cast alloys

using fluidized bed quenching, it was reported that the change in the cooling rate during

water quenching was more drastic as compared to FB quenching, where the cooling rate

varied from 0 to -80 KS"1 in less than 8 seconds, whereas with FB quenching, the cooling

rate varied from 0 to -14 KS"1 in 18 seconds. 151 In addition, the FB quenching resulted in

the formation of metastable phases in Al-Si-Cu-Mg alloys which was not observed with

water quenching. The different cooling rates would affect the mechanical and quality

performance of Al-Si cast alloys.
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2.4. QUALITY INDICES

The quality of Al-Si alloy castings plays a vital role in determining specific

metallurgical conditions for an alloy required to fulfill particular engineering application

specifications. There are several parameters affecting the quality of Al-Si castings such as

alloy composition, melt treatment, and the applied heat treatment conditions. It is possible

to determine the quality of an alloy using specific mathematical equations, where both UTS

and elongation values can be combined to express the quality of alloys using a single

quality index value, Q. 152'153> 154 Quality charts generated using these equations are useful

in deciding upon the optimum heat treatment conditions required to obtain specific

properties or qualities in a particular casting. Such quality charts have often been used in

conjunction with heat treatment studies of aluminum alloys for the same reasons.

In the present study, an attempt was made to elucidate the effects of quenching-

aging media using FB versus CF heat treatment techniques on the quality results obtained

by means of quality index charts. The effects of cooling rate as well as heating rate - in

these heat treatment techniques - on the quality of the alloys studied will be investigated

employing a T6 heat treatment regime, using several heat treatment conditions. The results

will be evaluated using quality charts derived from two models of quality indices, namely,

those of Drouzy et al. 155 and Câceres. 16°

Drouzy et al. 155 first introduced the concept of quality index, Q, to better express

the tensile properties of the Al-Si-Mg alloys they examined, by means of which the

"quality" of an alloy could be determined using specific mathematical equations to generate
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iso-Q and iso-YS lines and subsequently to construct a quality index chart. The iso-Q lines

and iso-YS lines were generated using the following equations:

Q =
 PUTS + d log (Sf) Equation 5

P YS
 = a PUTS - b log (Sf) + C Equation 6

where Q is the quality index in MPa; PUTS is the ultimate tensile strength in MPa; S/ is the

elongation to fracture in pet; and d is a material constant (d = 150 in the case of the Al-Si-

Mg 356 type alloys used by the researchers). The coefficients a, b, and c are alloy-

dependent parameters; for Al-Si-Mg, the coefficients a, b, and c were determined as 1, 60,

and -13, respectively.

The quality chart generated using Equations 5 and 6 is shown in Figure 2.26. Such

charts are very useful in determining the best possible compromise between tensile

properties and quality of alloys investigated. The properties that may be obtained from the

quality charts constructed using the Drouzy quality index model are UTS, YS, and

elongation to fracture, and the quality index value, Q. In the quality chart shown in Figure

2.26, the dashed lines represent the iso-Q and iso-YS lines as determined using Equations 5

and 6 in which the iso-YS lines are identified by the yield stress value, while the iso-Q lines

are identified by the Q-value.155'156
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Figure 2.26. A quality index chart for alloy 356; the dashed lines are generated using

Equations 5 and 6. 155'156

Although the concept of quality index was developed specifically for alloys 356 and

357, it has occasionally been applied to other alloy systems as well.157' 158 A number of

studies on Al-Cu-Mg-Ag alloys, however, showed that in contrast with the linear behavior

of alloy 356, a plot of UTS vs Sf describes a curvilinear contour if the material has

undergone aging, as was observed to be the case for alloy 201. 15 ' 160 Furthermore, the

parameters involved in Equations 5 and 6 displayed different numerical values and varied

with the prevailing aging conditions. The curvilinear contour in the plots which is present

in the aluminum alloys containing copper implies that extending the quality index concept

to systems other than the Al-Si-Mg casting alloys requires determining the behavior of the

strength-ductility relationship as the material undergoes the aging process. These behaviors
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suggest that the curvilinear pattern may be a characteristic of Cu-containing aluminum

alloys. 161

The quality index, Q, proposed by Câceres 156' 162' 163 is the most widely used to

predict the quality of Al-Si cast alloys. In this more recent model, Câceres has developed a

theoretical approach which explains the physical significance of the quality index. The

analytical model for the quality index proposed by him assumes that the deformation curves

of the material can be described using the Holloman equation as follows:

5 = Ksn Equation 7

where 8 is the true flow stress, s is the true strain, K is the strength coefficient of the

material, and n is the strain-hardening exponent. The values of n and K may be calculated

from a log-log plot of true stress versus true strain, as shown in Figure 2.27. This strain-

hardening exponent value varies from n = 0 for perfect plastic material to n = 1 for elastic

material; most materials are known to have n values lying between 0.1 and 0.5. 164 The

strain-hardening exponent n correlates to the rate of strain hardening rate, da/de, through

the following equation:164'165

n = do x da/ds Equation 8

The tensile test samples may produce a certain amount of necking till fracture according to

their ductility; necking usually starts at the point of tensile instability when the strain

hardening rate and the true stress are equal. It may be considered that the necking will

begin when the strain hardening exponent (n) equals the true uniform plastic strain (s).
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Figure 2.27. A log-log plot of true stress versus true strain for calculating n and K values in
Equation 7. m

Câceres defined the ratio of nominal strain at fracture to the nominal strain at necking as the

relative quality index, q, which may be presented by iso-q lines. The proposed relative

quality index has the following form:

q = Sf / Su = Sf / n Equation 9

The true stress-strain curve may be obtained from Equation 7 by relating the true values of

the stress and strain, a and s, and the corresponding engineering values, P and s, by s =

ln(l+s) and P = a/(I+s), respectively. 157' 160' m If the elastic component of the strain is

disregarded and assuming that true and nominal strain are equivalent, which is a reasonable

assumption for casting alloys due to their limited ductility, then the nominal stress-strain



68

curve can be approximated by Equation 10. The iso-q lines in quality maps are generated

using Equation 10 as follows:

p = KS(s/q)e-s Equation 10

where P is the nominal stress and S is the nominal plastic strain. The iso-flow lines, n, in

the quality charts are determined by the following equation:

P = K Sn e "s Equation 11

where the relative quality index q may be expressed in terms of engineering stress and

strain by Equation 11 which results from Equations 9 and 10. In Figure 2.26, the solid lines

are flow curves identified by the n-value and iso-q lines are those identified by the q-value,

having been calculated using Equations 10 and 11, respectively, assuming K = 430 MPa

and the n values are varying between 0.08 and 0.2 for the different aging conditions.

Câceres assumed that the iso-q lines generated using Equation 10 are roughly equivalent to

the iso-Q lines generated by Drouzy et al. ; by correlating the relative quality index q with

the quality index Q, the slope of the iso-q lines is considered to be equivalent to the

parameter d in Equation 5. This slope of the iso-q lines may be determined by

differentiating Equation 10 with respect to the strain S when the q-value tends to 1,

resulting in the following correlation: I61'162'163'167

d = - dP / dS -0.4 K Equation 12

The Q-value is obtained by correlating Equations 9, 11 and 12 with Equation 5, and may be

calculated using Equation 13 as follows:

Q = K [1.12 + 0.22 In (q)] Equation 13
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The quality index charts, proposed by Casers, may be considered as an important tool that

provides several significant properties obtained from tensile test data. For each point

located in the chart, the tensile strength, plastic elongation to fracture, yield strength,

relative quality index (q) and quality index value (Q) may be obtained from the one chart or

plot.
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CHAPTER 3

METHODOLOGY AND EXPERIMENTAL PROCEDURES

3.1. INTRODUCTION

The experimental procedure designed for this specific work aimed at investigating

the influence of various metallurgical parameters on the tensile properties and quality

indices of B319.2 type Al-8%Si-3%Cu-0.25%Mg and A356.2 type Al-8%Si-0.35%Mg

casting alloys used in the automotive industry. The metallurgical parameters investigated

include heating rate; cooling rate; solution heat treatment time; aging time; and aging

temperature. The performance of these alloys has been studied after applying conventional

continuous T6-aging treatments and non-conventional ones including different heat

treatment media as well as multi-temperature aging cycles. In the present study, the

fluidized sand bed technique was employed to investigate its effect, as a heating and/or

quenching medium, on the heat treatment characteristics of the alloys studied. A relevant

comparison of the fluidized sand bed as the heat treatment medium was made with that of

conventional furnace heat treatment by using an air forced convection furnace for heating

and quenching; water was also used for quenching, in order to obtain different cooling

rates.

The relevant details concerning the alloys studied, heat treatment cycles applied and

the heat treatment technique used in this work are provided in the following subsections
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together with a description of the general melting and casting procedures applied. The

various techniques employed for microstructural characterization, namely, optical

microscopy, scanning electron microscopy, and field emission gun scanning electron

microscopy, and details of the tensile testing procedures applied for evaluating the

mechanical properties of the alloys investigated are also provided.

3.2. CASTING PROCEDURES

The 356 and 319 alloys received in the form of ingots were melted in a silicon

carbide crucible of 150-kg capacity, using an electrical resistance furnace; the melting

temperature was held at 740° ± 5°C. The molten metal was degassed for 30 minutes using

pure dry argon injected into the molten metal (at a flow rate of 30 ft3 h"1) by means of a

rotary graphite degassing impeller, rotating at a speed of 150 rpm for 30 minutes, in order

to minimize the hydrogen level of the melt, and to eliminate inclusions and oxides via

flotation. After degassing, the melt surface was carefully skimmed to remove the oxide

layers and prevent it from entering the casting mold during pouring.

Melt treatments viz., modification and grain refining were applied to half of the

molten metal used, to study the performance of modified and grain refined cast alloys,

coded K3 and K4, and compare them with their non-modified counterparts, namely Kl and

K2 alloys, following heat treatment using the FB vs the CF technique. For modification

purposes, 200 ppm Sr was added to the melt, in the form of rods of Al-10%Sr master alloy;

the melts of the modified alloys were then grain refined using Al-5%Ti-l%B master alloy,

added to the degassed melt prior to casting.
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Samplings for chemical analysis were taken from each alloy melt. The chemical

analysis was carried out using arc spark spectrometry at GM facilities in New Hampshire.

Figure 3.1 shows the Spectrolab Jr CCD Spark Analyzer that was employed for this

purpose. With respect to the alloy codes, Kl and K3 represent the non-modified and Sr-

modified A3 56.2 alloys, respectively, while K2 and K4 correspond to the non-modified and

modified B319.2 alloys.

Figure 3.1. Spectrolab Jr CCD Spark Analyzer used in the current study.

The actual chemical compositions of the alloys used in this study are shown in Table 3.1,

and represent the average composition of three readings taken per sample. The degassed

melt in each case was carefully poured into an ASTM B-108 type permanent mold

preheated to 500°C, to prepare tensile test castings; each casting provided two test bars. The

melt pouring temperature was 740± 5°C, with humidity in the range of 11-15%, and a melt

hydrogen level of 0.1 ml/100g. Five tensile test bars were used for each alloy/heat

treatment condition studied. Figures 3.2 (a), (b) and (c) show the actual standard mold used
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for casting and the corresponding casting, with the dimensions of the tensile test specimens,

respectively.

Table 3.1. Actual chemical composition of the 356 and 319 alloys investigated.

Alloys Type

A
llo

ys
 C

od
e

Kl
356/(Al-Si-Mg)

K2
319/(A1-Si-Cu-Mg)

K3
356/(Al-Si-Mg)+ Sr

K4
319/(A1-Si-Cu-Mg)+Sr

Chemical Analysis, wt%
Si

7.52

7.97

7.55

8.41

Cu

0.0186

3.323

0.042

3.193

Mg

0.364

0.266

0.329

0.218

Mn

0.004

0.245

0.004

0.256

Fe

0.075

0.418

0.088

0.347

Sr

-

-

0.013

0.007

Ti

0.121

0.131

0.205

0.216

B

0.0002

0.0002

0.006

0.019

Al

Bal

Bal

Bal

Bal

(a) (b)
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Figure 3.2. (a) ASTM B-108 permanent mold used for casting; (b) actual casting; and
(c) schematic drawing showing the dimensions of the tensile test specimens.

3.3. HEAT TREATMENT PROCEDURES

The samples obtained from the cast alloys K1-K4 were first solution heat-treated

and then quenched in different media, whether water or sand; the artificial aging treatment

was subsequently carried out by applying either T6 continuous or T7/T6 multi-temperature

cycles in the same furnace. A conventional forced air furnace (CF) as well as a fluidized
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bed furnace (FB), both shown in Figure 3.3, were used for heat treatment purposes to

establish a relevant comparison between the two heat treatment techniques. The convection

furnace used for conventional heat treatment is a Lindberg/Blue M electric resistance air-

forced furnace where the temperature may be controlled to within ±1 °C.

The heat treatment process using a Fluidized Bed Technique (FBT) was carried out

at General Motors (GM) facilities. The fluidized bed used in this study consists of finely

divided particles, usually sand, which are made to behave like a fluid. The sand bed

material is olivine sand which is free from silica. The fluidization gas is air drawn in from

the atmosphere and blown in through pipes beneath the electric heater tubes to be found at

the bottom of the fluidized bed. The main heat transfer mechanism, to transfer heat energy

into the sand bed, is the presence of indirect electric elements which heat the bed. This

method of energy transfer by radiation to the sand using the electric elements is efficient, in

addition to that utilizing the fluidization air to transfer the heat by convection. Heat-treated

samples submerged into an isothermal sand bed have complete free surface contact with the

sand, where the transfer of heat energy to the samples takes place by conduction,

convection and radiation modes through all contact surfaces. This fluidized bed technique,

as indicated in the literature, facilitates rapid energy transfer into the part, resulting in faster

times of less than 10-15 minutes to process solution treatment temperatures of 495-530°C,

compared to 30 minutes to process aging temperatures of 155-180°C using a convection

furnace as illustrated in Figure3.4.
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(a)

(b)

Figure 3.3. (a) Air forced convection furnace (CF); (b) fluidized sand bed furnace (FB).
Arrows point to bubbles in the fluidized sand bed.
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Figure 3.4. Temperature-time record of heat treated samples during heating using a CF
and an FB.

In the present study, three heat treatment cycles were applied to cover most of the

metallurgical parameters affecting the selected B319.2 and A3 56.2 type cast alloys. These

heat treatment cycles aimed at investigating the following variables: (i) solution heat

treatment time, (ii) quenching medium and (iii) multi-aging temperatures, as well as the

heat treatment technique type (CF vs FB), in relation to the tensile properties and the

quality indices of the alloys studied. Corresponding to the three sets of variables, the heat

treatment cycles were coded I, II, and III, respectively, and are described below in detail. It

is worth mentioning here that it was considered important to include the fourth variable,
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namely the heat treatment technique type, in this study, based on the fact that a comparison

between the results obtained with the more recently introduced fluidized bed technique (for

the heat treatment of aluminum casting alloys) with those of the conventional convection

furnace technique (used since decades for these same alloys) would provide a concrete

basis for, and put into proper perspective, the claims of the fluidized bed technique reported

in the literature.

(A) Heat Treatment Cycle I - Influence of Solution Treatment Time

This heat treatment cycle was applied to investigate the influence of solution heat

treatment time on the tensile properties and quality indices of Tô-tempered B319.2 and

a356.2 type aluminum-silicon cast alloys using both CF and FB heat treatment techniques.

The tensile test bars obtained from the cast alloys K1-K4 (see Table 3.1) were heat-treated

to a T6 temper as follows: Solution heat treatment was carried out in both CF and FB

furnaces for various times, namely 0.5, 1, 5, 8, 12, and 24 h, then quenched in warm water

at 60°C, followed by aging in both CF and FB furnaces for several durations of time,

namely 0.5, 1, 5, 8 and 12 h. The 356 (Kl and K3) alloys were solutionized at 530°C then

quenched in warm water at 60°C; after that they were pre-aged at room temperature for 24

h, followed by artificial aging at 155°C for the five aging times mentioned above. The 319

(K2 and K4) alloys were solutionized at 495°C, quenched in warm water at 60°C, and then

aged directly at 180°C for the same five aging times.
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(B) Heat Treatment Cycle II - Influence of Quenching Media

In this heat treatment cycles, the influences of quenching media, namely water, CF

(hot air) and FB (hot fluidized sand), on the mechanical properties and quality indices of

the K1-K4 alloys were investigated. Heat treatment was applied using several heat

treatment conditions in both CF and FB furnaces. Specifically, two fluidized bed furnaces

were used, for solution heat treatment, and for direct quenching-aging, respectively. These

heat treatment conditions were divided into three groups, namely B, C and D; group B

refers to the water quenched-T6 tempered alloys; group C refers to the alloys subjected to

direct quenching-aging either in hot sand using an FB or in hot air using a CF; and group D

corresponds to the alloys that were subjected to water quenching, followed by multi-

temperature aging, using both CF and FB. Accordingly, the results corresponding to this

part are expected to reveal how the tensile properties as well as the quality of the alloys

investigated, K1-K4, respond to (i) the effects of the different quenching media, whether

water, air or sand, (ii) the effects of direct quenching to the artificial aging temperature after

solution treatment, and (iii) the effects of multi-stage aging temperatures, using an

incubation time of 24 h between the two aging stages in the case of the 356 alloys. Table

3.2 shows in detail the various heat treatment conditions that were applied to the 356 and

319 alloys within the heat treatment cycle II, using both CF and FB techniques.
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Table 3.2. Heat treatment conditions/codes applied to A356.2 and B319.2 cast alloys
within Heat Treatment Cycle II.

HT
Code

A

Bl

B2

B3

Cl

C2

C3

Dl

D2

D3

Solutionizing
Temp-time*

As-cast

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

495(530)°C -5 h

Quenching
Media

-

32°C water

32°C water

32°C water

170°C sand/(air)"

190°C sand/(air)"

210°C sand/(air)"

32°C water

32°C water

32°C water

delay

-

24hr

24 hr

24 hr

0

0

0

24hr

24 hr

24 hr

Agel
T,°C -time,

h

-

170°C -4 h

170°C -8 h

170°C-12h

170°C -4 h

190°C -4 h

210°C -4 h

240°C -1 h

240°C -1 h

240°C -1 h

delay

-

-

-

-

-

-

-

24hr

24 hr

24 hr

Age 2
T, °c-
time, h

-

-

-

-

-

-

-

170°C -1 h

170°C-4h

170°C-8h

* Alloys 319 and 356 were solutionized at 495°C and 530°C respectively.
** Alloys 319 and 356 were quenched-aged in sand using an FB; and in air using a CF.

(C) Heat Treatment Cycle III - Influence of Multi-Temperature Aging

In this case, the alloy samples were solution heat-treated at specific temperatures,

corresponding to the alloy type, using both CF and FB techniques, then quenched

immediately in warm water at 60 °C; after that, the artificial aging treatment was carried out

using T7/T6 multi-temperature aging treatments, employing both CF and FB heat treatment

techniques. The conventional continuous To-standard aging was also applied to the alloys

investigated to establish a comparison with the alloys that were subjected to non-

conventional multi-temperature aging cycles. Details of the multi-temperature aging cycles

are summarized in Table 3.3. These aging cycles were designed using temperatures

typically employed in several foundries as well as in industrial applications.
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Table 3.3. Multi-temperature aging cycles employed in Heat Treatment Cycle III.

1

HT ID 1
SA32

SA34

SA51

SA52

SA54

SA71

T6

Heat Treatment Regimes
Solution

495 (530)°C
495 (530)°C
495 (530)°C
495 (530) °C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530) °C
495 (530) °C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C
495(530)°C
495 (530) °C
495 (530)°C
495 (530)°C
495 (530)°C
495 (530)°C

Quench
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water
60°C water

Agel
230°C -2h

230°C -4h

249°C -lh

249°C -2h

249°C -4h

270°C -lh

180°C-8h

Age 2
180°C-0h
180°C-2h
180°C-4h
180°C-8h
180°C-0h
180°C-2h
180°C-4h
180°C-8h
180°C-0h
180°C-2h
180°C-4h
180°C-8h
180°C-0h
180°C-2h
180°C-4h
180°C-8h
180°C-0h
180°C-2h
180°C-4h
180°C-8h
180°C-0h
180°C-2h
180°C-4h
180°C-8h

none

Greater hardening may be achieved if more uniform dispersions of one or more

type of precipitates are obtained, where this may have been one of the objectives of the

multi-stage aging treatments of Cycle III. In this subsection, six multi-aging treatment

cycles were applied in both CF and FB furnaces for the purposes of investigating the

effects, on the tensile properties and quality indices of the B319.2 and A365.2 types Al-Si
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cast alloys, of multi-temperatures aging without applying an incubation time between aging

stages.

3.4. MECHANICAL TESTING

Two tensile test bar castings were prepared from the non-modified and modified

A356.2 and B319.2 alloys using the standard ASTM B-108 permanent mold. Each casting

provided two test bars, each having a length of 197 mm, 70 mm gauge length and a cross-

sectional diameter of 12.8 mm; five test bars were prepared for each alloy/heat treatment

condition. All samples, whether as-cast, solution heat-treated, or aged, were pulled to

fracture at room temperature at a strain rate of l><10"4/s using a Servohydraulic MTS

Mechanical Testing machine, as shown in Figure 3.5. A strain gauge extensometer attached

to the test bar gauge section measured the percentage elongation as the load was applied. A

data acquisition system attached to the MTS machine recorded the tensile test data using

software program to control the test, from which the tensile properties, namely ultimate

tensile strength (UTS), yield strength (YS) and elongation, were determined. The

corresponding stress-strain curve obtained illustrates the mechanical behavior of each

specimen under the applied load. The average UTS, YS, and %Ef values obtained from the

five test bars used per alloy/heat treatment condition were considered as the values

representing that condition. A large number of test bars, approximately 3000 bars, were

cast in order to obtain a reliable evaluation of the influence of metallurgical parameters on

the tensile properties and the quality indices of the A3 56.2 and B319.2 casting alloys.
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Figure 3.5. The MTS Servohydraulic Mechanical Testing Machine.

3.5. MICROSTRUCTURAL CHARACTERIZATION

The microstructures of selected A356.2 and B319.2 tensile samples were examined

for the purpose of correlating their microstructural features with their mechanical properties

in (a) the as-cast condition, and (b) after various heat treatment cycles where both FB and

CF technique were employed for executing the heat treatment. Qualitative and quantitative

analysis of the microstructural features, namely porosity, eutectic silicon particles, grain

size and hardening precipitates, were carried out using an optical microscope-image
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analysis system, as well as scanning electron microscopy (SEM), and field emission gun

scanning electron microscopy (FEGSEM) for following the precipitation hardening

behavior during heat treatment.

For microstructural examination, metallographic samples of 10 mm height were

sectioned from the tensile-tested bars at a distance of 10 mm below the fracture surface,

individually mounted in bakélite using a Struers LaboPress-3 machine, followed by

grinding and polishing, using a Struers TegraForce-35 machine, to obtain the desired fine

finish. The grinding procedures were applied using a silicon carbide (SiC) wear papers of

various fineness numbers for abrasive materials, 120 grit to 1200 grit size, from more

abrasive papers to soft ones. The water was used as a lubricant in this stage of grinding.

Subsequently the first step of the polishing process was carried out using Struers diamond-

suspension, which contains a diamond particle size of 6 urn; further polishing was applied

through the application of the same suspension containing a smaller diamond particle size

of 3 urn. The lubricant used for this polishing stage is a Struers DP-lubricant. Mastermet

colloidal silica suspension, SiC>2, having a particle size of 0.6 jim was used for the final

stage of polishing, where water was used as lubricant. By the final stage of polishing, a

mirror-like surface samples was obtained to be ready for the microstructural examination.

The eutectic Si-particle characteristics as well as porosity percentage and grain size

were measured and quantified using an Olympus PMG3 optical microscope linked to a

Clemex image analysis system, for the samples subjected to first heat treatment cycles. The

set-up is shown in Figure 3.6.
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Figure 3.6. Clemex Vision PE4 image analysis system.

Quantitative measurements of the eutectic Si particle characteristics, viz, area, length and

aspect ratio, were carried out for as-cast and solution heat-treated samples of modified and

non-modified alloys. For each sample, fifty fields were examined over the entire surface of

the sample, by traversing it in a regular and systematic manner; the Si particle

characteristics were recorded for each field. Measurements were carried out at a

magnification of 500X and 1000X for the non-modified and Sr-modified alloy samples,

respectively. With regard to the A356.2 alloys, the eutectic silicon particles was carried out

Kl (non-modified) and K3 (modified) alloy samples after solution heat treatment using

both CF and FB techniques for 0.5, 5 and 12 h solutionizing times. Likewise, for the

B319.2 alloys, the measurements were carried out for K2 (non-modified) and K4
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(modified) alloy samples after solution heat treatment using both CF and FB techniques for

0.5, 5, 12 and 24h solutionizing times. These measurements, applied for A356 and B319

alloys, were carried out to investigate the influences of Sr-modification and the high

heating rate involved in the FB technique on the fragmentation, dissolution and

spheroidization of the eutectic Si particles after various solution treatment times.

For samples of A356 and B319.2 alloys subjected to first heat treatment cycles,

grain size measurements were carried out employing the optical microscope-image analysis

system, and using the line intercept method. The samples investigated were prepared from

the as-cast and solution heat-treated test bars corresponding to specific solution treatment

times. For grain size measurements, the polished samples were etched using a solution

containing 12.5 gm CrO3, 2.5 ml HF, 30 ml HC1, 40 ml HNO3, and 42.5 ml distillated

water for 3 minutes. The polished surface was swabbed until the contrast in revealed grains

was high enough. To better highlight the grain structure, filtered lights at different incident

angles were used; a combination of red, green, blue and yellow light gave an enhanced

contrast to the grain structure. At least 5 measurements were taken from each sample and

averaged; micrographs were also obtained from the polished samples using optical

microscopy. Porosity measurements were made using the same procedures as those used to

measure the Si particles characteristics. The average values of pore area, pore length, and

area percentage porosity were obtained for the samples of Kl, K2, K3 and K4 alloys in the

as-cast condition.

The precipitate characteristics were examined after various heat treatment cycles of

the A356.2 and B319.2 alloys using scanning electron microscopy (SEM) and field-
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emission gun scanning electron microscopy (FEGSEM). The aim of using electron

microscopy in this case was to examine the density and distribution of the hardening

precipitates formed under various aging treatment parameters/heat treatment cycles applied

in this study with the intention of comparing the influence of high heating rate as obtained

in an FB heat treatment technique with that obtained with a CF. A JEOL 840A scanning

electron microscope (SEM) attached to an EDAX Phoenix system designed for image

acquisition and energy dispersive X-ray (EDX) analysis was employed for this purpose,

using an accelerating voltage of 15 KeV for imaging, an emission current of 60 um, and a

beam diameter of less than 0.5 um. Figure 3.7 shows a photograph of this SEM.

Figure 3.7. The JEOL 840A scanning electron microscope.
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Compared to an SEM, an FEGSEM provides clear high-resolution images and good

contrast even at low voltages and very high magnifications. The FESEM used in this study

was the Hitachi S-4700 FEGSEM shown in Figure 3.8, which was sufficient to identify the

smaller size and grey color of the Mg2Si precipitates observed in the 356 alloy after aging

treatment using a fluidized bed. The FEGSEM produces images of 2.1 nm resolution at 1

kV and of 1.5 nm resolution at 15 kV. For precipitate characterization, polished samples

prepared from the gauge length of the tensile-tested specimens were subjected to a

chemical micro-etching process using a specific solution composed of 1 ml HF (48%) +

200 ml distilled water. The micro-etching process was applied to the heat-treated samples

at room temperature for 30 seconds and 90 seconds for the B319.2 and A3 56.2 alloys

respectively.

Figure 3.8. The Hitachi S-4700 field emission gun scanning electron microscope.
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CHAPTER 4

INFLUENCES OF MELT AND SOLUTION HEAT TREATMENTS ON ALLOY
PERFORMANCE

4.1. INTRODUCTION

The current chapter presents results and discussion to arrive at a better

understanding of the influences of several metallurgical parameters on the tensile properties

and quality indices of Tô-tempered A356.2 and B319.2 cast alloys using a fluidized sand

bed furnace (FB) for the heat treatment, as opposed to a conventional convection furnace

(CF). The metallurgical parameters studied are the effects of solution heat-treatment time,

aging time and melt treatment process using chemical modifiers. Modification and grain

refinement are commonly employed in producing aluminum castings in order to improve

their mechanical properties. Modification is carried out using Sr in the form of Al-10%Sr

master alloy whereas Al-Ti-B grain refiners are used for refining the grain size. In this

chapter, the tensile results and the quality index values of the alloy castings investigated are

correlated to the microstructural constituents and features resulting from the specific heat

treatment conditions investigated, with the aim of interpreting the results obtained.

Statistical analysis of the data will also be presented.
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4.2. CHARACTERIZATION OF THE MICROSTRUCTURE

The characteristics of the eutectic silicon particles, the grain size, porosity; and the

hardening precipitates observed under specific heat treatment conditions in the alloys

investigated are discussed in detail in the subsections that follow.

4.2.1. Characteristics of Eutectic Silicon Particles

The eutectic Si morphology plays a vital role in determining the mechanical

properties of Al-Si alloys, where the particle size and shape of the silicon particles are the

factors which greatly influence the alloy performance. In the present case, quantitative

measurements of the eutectic silicon particles were carried out on samples sectioned from

the B319.2 and A356.2 alloy castings obtained in the as-cast and solution heat-treated

conditions. Table 4.1 summarizes the silicon particle characteristics obtained for the alloys

solution heat treated for 0.5 h, 5 h, 12 h and 24 h, using FB and CF heat treatment

techniques. Both solution heat treatment conditions as well as Sr-modification result in

transforming the morphology of the eutectic silicon particles from acicular particles into

fibrous ones; increasing the duration of the solution treatment time produces further

improvement in the eutectic silicon morphology. 168'16 As may be seen from Table 4.1, the

smallest particle size was obtained after solution heat treatment using a fluidized sand-bed,

for which the optimum solution heat treatment time was 0.5 h for modified alloys and up to

5 h for non-modified alloys.
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Table 4.1. Average silicon particle characteristics.

Alloy Code

Kl

(356 non-modified)

K3

(356 modified)

K2

(319 non-modified)

K4

(319 modified)

ST.hr// HT Medium

As-Cast

0.5 // CF

0.5 // FB

5 // CF

5 // FB

12 // CF

12 // FB

As-Cast

0.5 // CF

0.5 // FB

5 // CF

5 // FB

12 // CF

12 // FB

As-Cast

0.5 // CF

0.5 // FB

5 // CF

5 // FB

12 // CF

12 // FB

24 // CF

24 // FB

As-Cast

0.5 // CF

0.5 // FB

5 // CF

5 // FB

12 // CF

12 // FB

24 // CF

24 // FB

Area

Av,

13.81

11.1

6.96

8.48

8.16

12.42

12.13

2.9

2.2

1.95

4.39

4.22

6.21

5.67

26.5

23

13.85

17.1

15.85

23.35

22.86

26.79

27

19.1

14.87

11.04

10.03

13.16

14.87

17.14

19.8

20

Average Si Particle Characteristics

SD

17.7

15

8.22

8.74

9.42

13.9

13.5

3.42

3.16

2.45

4.76

4.49

6.41

6.1

35.3

27.2

16.9

20.2

16.84

30.14

24.6

30.25

29.22

33.6

19.25

15.23

11.32

14.25

17.31

19.75

20.6

19.7

Length, |im

Av.

9.13

6.61

4.42

5.55

5.03

7.77

7.48

2.55

1.64

1.27

2.77

2.74

3.21

3.13

10.83

9.25

8

8.89

8.47

10.22

10.04

10.89

11.3

9.73

8.87

7.76

7.61

8.11

9

9.43

9.78

9.88

SD

9.1

6.53

3.34

4.08

4.54

6.22

5.6

2.3

1.25

1.13

1.71

1.8

1.98

2.03

10.9

8.56

7.58

6.84

6.19

9.78

8.71

9.24

9.56

10.2

8.93

7.32

6.14

6.33

7.26

8.44

8.18

7.1

Aspect Ratio%

Av.

3.1

2.65

2.01

2.29

2.06

2.97

2.8

1.71

1.31

1.14

1.75

1.61

1.79

1.72

4

3.57

2.96

3.57

3.15

3.51

3.45

3.87

3.93

3.58

2.97

2.87

2.77

3.07

3.13

3.23

3.63

3.83

SD

1.82

1.05

1.22

1.27

1.13

1.24

1.27

0.635

0.457

0.615

0.582

0.584

0.534

0.654

2.8

1.83

1.85

1.98

2.78

2.17

2.34

2.42

2.66

2.15

1.21

1.31

1.15

2.01

2.1

2.03

2.61

2.42

* Aspect ratio: Ratio of maximum to minimum dimensions of a Si particle; ST: Solution treatment time
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The average silicon particle length and area obtained after 0.5 h solution heat treatment in

an FB are smaller by 33-37% and 14-40% than the values obtained using a CF for the non-

modified 356 and 319 alloys, respectively, as shown in Table 4.1. In relation to the

modified condition, it may be noted that after a 0.5 h solution heat treatment using an FB,

the particle size is lowered by 23% and 12% for alloys 356 and 319, respectively, compared

to the values obtained using a CF, indicating that in comparison to the latter, the fluidized

bed has a greater effect in refining the Si particle size, since the particle size is reduced by

more than half after 0.5 h solution heat treatment compared to the as-cast condition. Upon

increasing the solution heat treatment time to 5 h in an FB, however, a coarsening of the

eutectic Si occurs which may be ascribed to the Ostwald ripening phenomenon. 17°

In general, the FB treatment produces smaller Si particle sizes than does the CF

through solution heat treatment time cycles of up to 12 h for non-modified 356 and 319

alloys. It should also be noted that, with the conventional furnace, the smallest Si particle

size for non-modified alloys was obtained after 5 h of solution heat treatment compared to

0.5 h with the fluidized bed. The high heating rate in fluidized beds promotes the

fragmentation and spheroidization kinetics of the eutectic Si particles. A longer solution

heat treatment time leads to a coarsening of the Si particles where the driving forces for the

coarsening have been related to the reduction of strain energy and surface energy of the Si

particles.

Modification has the strongest influence on the spheroidization and coarsening

kinetics of Si particles in Al-Si alloys. The silicon represents the hard phase of the alloy

which causes a discontinuity of the soft and ductile matrix of aluminum. Because a-Al is
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the softer phase and Si is the harder and less ductile one, stresses cause anisotropic

distribution of the plastic deformation, which is greater in the softer phase. The local plastic

constraint in the softer phase leads to a rapid strengthening of the alloy, with dislocations

piling up at the a-Al/Si interfaces. This can lead to the formation of cleavage microcracks

at these ductile-brittle sites. On such a basis, it is to be expected that differences between

the mechanical properties of the five tensile bars will be higher for the unmodified alloy.

As may be seen from Table 4.1, the Si particles are present in the form of coarse acicular

plates in the as-cast condition, with an aspect ratio of 3.1 and 4 for 356 and 319-type alloys

respectively. The addition of 150 ppm Sr reduces the aspect ratios to 1.71 and 3.58,

respectively, in the as-cast modified alloys. For alloy 356, the average particle area is

reduced from 13.81um2 to 2.9um2, i.e. by about 78%, and the average particle length from

9.13(j.m to 2.55um, i.e. by about 75%, with respect to the as-cast condition. The strontium

was observed to have a significant effect by changing the coarse, acicular eutectic silicon

into a fine, fibrous form thereby enhancing both the strength and the ductility of the alloys

investigated. 77> 170 For the alloys investigated in the as-cast condition, the variations

existing between the particles were estimated by means of the standard deviation, which is

used to assess the accuracy of the measurements under the same experimental conditions.

For the purposes of this examination of microstructures, the standard deviation was

considered to assess the structural uniformity of the silicon phase within the microstructure.

In the presence of strontium, the degree of modification was appreciable, and one of the

aspects of this was reflected by a narrowing of the deviations. The standard deviation

between the Si particle area decreased from ± 17.7 to ± 3.42 and from ± 35.3 to ± 23.2 for
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the 356 and 319 alloys, respectively, thereby showing the increase in the uniformity of the

microstructure associated with modification. Table 4.1 shows that the Si particles size

decreases with increasing solution heat treatment time of up to 5 h, irrespective of whether

the treatment is carried out in an FB or CF, indicating the effect of solutionizing time on the

mass transfer of silicon. This mass transfer causes the fragmentation and spheroidization of

eutectic silicon, both of which are dependent on the diffusion of solute and matrix atoms. In

the modified alloys, a high degree of spheroidization followed by coarsening occurs during

solutionizing at 5 h, 12 h and 24 h. The microstructural changes resulting from solution

heat-treatment originate from the instability of the interface between two phases. Plate-like

eutectics are more resistant to interfacial instabilities and subsequent spheroidization than

the fibrous kind. Thus, the rate of spheroidization is extremely rapid in modified alloys.

Spheroidization and coarsening of the discontinuous phase occurs at elevated

temperatures,171 because the interfacial energy of a system decreases with the reduction in

interfacial surface area per unit volume of the discontinuous phase. The reduction in

interfacial energy is the driving force for the spheroidization and the coarsening processes

which are also diffusion-controlled.172 It may be noted from Table 4.1 that the average Si

particles size values for the A356.2 modified alloys are smaller as compared to those

obtained for the B319.2 modified alloys; this difference in Si particle sizes may be related

to the presence of more Cu and Mg in the composition of B319.2 alloys. It may be noted

that increasing the level of Cu and Mg leads to an increase in the average length and area of

Si particles, due to the fact that both Mg and Cu react with the Si and Sr in the alloy to form

Mg2Sr(Si,Al) and Al-Cu-Sr compounds, respectively. 170; 171> 172 Thus, there is less Sr
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available to achieve the same level of modification in the eutectic Si particles than would

be expected with the amount added. Also the presence of Ali5Mn3Si2 and Al5FeSi, phases

formed in pre-eutectic reactions, as well as CuAl2 during solidification of B319.2 cast

alloys may hinder the diffusion of Si to the matrix leading to the presence of Si particles

with larger size after solidification as compared to the A356 alloys.

Figures 4.1 and 4.2 show the effects of the heating rate on the number of cracked Si

particles observed beneath the fracture surface of 356 and 319 alloy samples after 0.5h

solution heat treatment using fluidized bed and convection furnace techniques. It should be

noted that the high heating rate of the fluidized bed results in a greater number of fractured

Si particles after only 0.5 h of solution heat treatment than that obtained at the

comparatively lower heating rate of the convection furnace. For the 356 non-modified

alloy, the cracked Si particles may be seen clearly as indicated by the arrows and encircled

areas in Figure 4.1 (a) and (b); on the other hand, the fibrous morphology of the Si particles

in the modified alloy resists the fracture process, resulting in fewer cracked particles,

Figure 4.1(c) and (d). For alloy 319, after 0.5 h of solution heat treatment, there is no

significant difference to be observed in the density of the cracked particles between those

treated in the fluidized bed and those obtained from the conventional furnace. The high

heating rate of the FB enhances the fragmentation kinetics of the eutectic Si particles

through the generation of high thermal stresses owing to the thermal expansion mismatch

between the eutectic Si and the Al matrix. This thermal mismatch occurs as a result of the

thermal expansion coefficient of Si being much lower than that of Al. Generating thermal

stresses through the eutectic Si induces thermal elastic strains on the Si particles as well as
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the Al matrix; the brittle fracture of the particles will occur when the thermal strain exerted

on the Si exceeds its fracture strain.55'136> 137

Table 4.2 lists the number of cracked Si particles, total particles, and the area

density of cracked particles observed beneath the fracture surface of the non-modified 356

and 319 alloy samples after 0.5 h solution treatment using FB and CF heat treatment

techniques. The quantitative measurements were made over 50 fields at a magnification of

500X on the polished surface of samples sectioned perpendicular to the fracture surface of

the tensile-tested samples, using an optical microscope linked to a Clemex image analysis

system. It will be noted that the number of fragmented particles as well as the area density

of broken particles obtained for samples heat treated using an FB are greater than those to

be observed when using a CF for both 356 and 319 alloys. The overall percentage of

cracked Si particles beneath the fracture surface, however, shows no difference between the

fluidized bed and the convection furnace heat treatment techniques for the two alloys. The

difference in the actual overall percentage values of fragmented Si particles (22% for 356

alloys vs. 14% for 319 alloys) may be related to the difference in ductility between the two

alloys, namely, 12% for the 356 alloys vs. 3% elongation for the 319 alloys.
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Figure 4.1. Fractured Si particles beneath the fracture surface in samples obtained from
356 non-modified and modified alloys after 0.5hr solution heat treatment
(SHT): FB vs CF techniques.
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Figure 4.2. Fractured Si particles beneath the fracture surface in samples obtained from
319 non-modified alloys after 0.5 hr solution heat treatment (SHT) using (a)
CF, and (b) FB techniques.

Table 4.2. Effects of heating rate on Si particles beneath fracture surface of alloys 356
and 319 after 0.5 hr solution heat treatment using CF vs. FB techniques.

Alloy

Heat Tmt Technique

No. of cracked Si particles

Total No. of Si particles

% of cracked Si particles

Area density of fragmented
Si particles/mm2

356 non-modified (Kl)

CF

700

3256

22%

1321

FB

1056

4890

22%

1992

319 non-modified (K2)

CF

290

2045

14%

547

FB

425

3040

14%

800
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Figures 4.3 and 4.4 show the effects of solution heat treatment on the morphology

of eutectic Si for alloys 319 and 356, respectively, using CF vs FB techniques. Under

normal cooling conditions, eutectic silicon forms a network of interconnected irregular

flakes. As was observed, the eutectic Si may be chemically modified to a fine fibrous

structure. High temperature treatments and/or long time can also alter Si particle

characteristics. In recent years, both chemical and thermal modifications have been used in

conjunction with each other to produce the desired properties of the casting.

The figures show the observable effects of the high heating rate of the fluidized bed

on the fragmentation and spheroidization of Si particles. The Si particles start to become

fragmented into finer particles within 30 minutes of solution heat treatment in the fluidized

bed. It can be seen from Figure 4.3(b, c) that the high heating rate in the fluidized bed

results in an increased density of broken and more fibrous Si particles than occurs in a

convection furnace after a 0.5h solution heat treatment of the non-modified 319 alloys. Van

Wert et al. 13 reported that the solution heat treatment procedure using an FB results in

faster fragmentation and spheroidization of the eutectic Si particles. After 12 h of solution

heat treatment in a fluidized bed, the Si particles in modified 319 alloys display coarser

spheroidized particles than those obtained in a conventional furnace, as may be seen from

Figure 4.3. The increased spheroidization and coarsening of eutectic Si in the fluidized bed

heat-treated alloy is closely related to the high heat transfer rate which has an observable

effect on the diffusion rate of the Si particles. It has been reported that the reduction of

strain energy as well as the reduction in surface energy are the driving forces for the

coarsening of eutectic Si during solution heat treatment.
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Figure 4.3. Optical micrographs of (a-c) non-modified 319 alloy: (a) as-cast, (b) SHT-
0.5hr in CF, (c) SHT-0.5hr in FB; and (d-e) modified 319 alloy: (d) SHT-
12hrs in CF, (e) SHT-12hrs in FB.
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Figure 4.4. Optical micrographs of (a-d) non-modified 356 alloy: (a) as-cast, (b) SHT-
0.5hr in FB, (c) SHT-lhr in FB, (d) SHT-5hrs in CF; and (e-f) modified 356
alloy: (e) SHT-12hrs in FB, (f) SHT-12hrs in CF.
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These factors are dependent on the diffusivity of Si in the aluminum matrix. Figure 4.4

shows that the Si flake-like or acicular particles in the non-modified 356 alloy are

fragmented into finer particles within 0.5h and lh of solution treatment in a fluidized bed

versus 5h in a convection furnace. The mechanism of Si fragmentation in fluidized beds is

related to the generation of high thermal stresses at the eutectic Si/Al interface rather than

to a thermal mismatch between the eutectic Si and the primary Al. The thermal stresses

generated by the high heating rate in the FB impose an elastic strain on the Si particles. The

brittle fracture of the Si particles begins when this thermal strain is higher than the fracture

strain of the same particles. 12'135> 173 Figures 4.4 (e) and (f) show the fibrous form of Si

particles for the modified 356 alloy after 12 h of solution heat treatment in both the FB and

the CF, at which point the fluidized bed-treated sample shows more spheroidized Si

particles than that corresponding to the convection furnace.

The modification has a strong effect on the spheroidization and the coarsening

kinetics of Si particles; the CF produces slower fragmentation and spheroidization kinetics

of the eutectic Si. The rate of spheroidization is extremely rapid in modified alloys; the

spheroidization process of silicon through solution heat treatment takes places in two

stages: dissolution/separation of the eutectic branches and spheroidization of the separated

branches. In the first stage, the Si particles are separated into segments at the corners of thin

growth steps, but retain their flake-like morphology. In the second stage, the broken

segments spheroidize and the aspect ratio decreases. The dissolution stage has the greatest

effect on the time required to complete spheroidization and is strongly affected by the

morphology of the Si particles: the smaller the flake length, the greater the spheroidization.
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174, 175 ^ y process which promotes eutectic branching, whether modification or a higher

cooling rate, will speed up the progress of separation and spheroidization. Modification by

addition of impurities tends to refine the eutectic Si greatly, to promote twin branching, to

raise the energy state with its inhomogeneity, and consequently to promote the kinetics of

the spheroidization of the eutectic silicon.

4.2.2. Grain Size and Porosity Measurements

The average grain sizes for the as-cast and heat treated samples are given in Figure

4.5. From the results provided in Figures 4.5 and 4.6, it can be seen that the grain size of

the as-cast 356 alloy is smaller than that of the 319 alloy sample, although both the alloys

in their initial condition have the same residual titanium content of 0.12 wt%. This

difference in grain size can be related to the presence of copper in the 319 alloys which

hinders the process of grain refinement, as reported by Gruzleski. 17 On the other hand, the

results indicate that the presence of copper in the grain-refined 319 alloy samples does not

hinder the grain refining at a higher Ti content of 0.22 wt% than it does at the initial

content. It can be noted that the grain size of 319 alloy samples was refined from 1317 um

to 291 um by the addition of grain refiners. It has been reported by Qiu et al. 17 and

Marcantonio et al. 177 that, during the grain refinement of Al-Si based casting alloys when

the Si content exceeds ~2 wt%, a coarsening of the grains starts to occur and the extent of

the poisoning effect intensifies with increasing Si content. The addition of other elements,

such as Mg, or Sr, and so forth, has also been reported to counteract the poisoning effect of

silicon in an effective manner. Gloria reported that after the addition of 0.005wt% boron
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to alloy 356, the grain size remained constant at 400 um. On the other hand, the results

obtained for alloy 356 from this study show that the addition of 0.006 wt% boron to the

alloy refined the grains by more than 50%, from 442.7 um to 202.4 pun. Figure 4.5 also

shows how the grain size displayed by 356 and 319 alloys ia affected by the application of

high heating rates when using an FB at solution heat treatment times of 12 h and 24 h,

respectively. It should be noted that the high heating rate of an FB results in a larger grain

size than is obtained with a CF. Large grain sizes are related to faster growth velocities, and

small grain sizes correspond to slower growth velocities. The driving force for the

recrystallization of eutectic grains is the thermal stress which is directly proportional to the

heating rate.

Grain Size Meausrements

1400

1200

1000

K1(356-Not Grain Refined)-K3 (356-Grain Refined) & K2 {319-Not Grain Refined)-K4 (319-Grain Refined)
FB (Fluidized Bed) & CF (Conventional Furnace)

35

Kl.CF, Kl.FB, K3.CF, K3, FB,
12hrs 12hrs 12hrs 12hrs

K2,CF. K2.FB, K4.CF, K4.FB,
24hrs 24hrs 24hrs 24hrs

As Cast SHT time, Alloy 356 SHT time, Alloy 319

Figure 4.5. Grain size measurements for alloys 356 and 319.
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K2 after 24 SHT in CF K2 after 24 SHT in FB

K4after24SHTinCF

K3 after 12h SHT in CF

K4after24SHTinFB

K3 after 12h SHT in FB

Figure 4.6. Optical micrographs showing the grain size of B319.2 and A356.2 alloy
samples in the present study.
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Porosity is the most common defect found in Al-Si castings and is considered to be

the main cause for the rejection of such castings, since it often results in poor mechanical

properties. The formation of porosity in solidifying Al-Si castings can be related to the

shrinkage process during solidification, incorrect feeding, and the development of hydrogen

gas. 179 Table 4.3 shows the porosity measurements for as-cast alloys 356 and 319 in non-

modified and modified conditions. It should be noted here that in all of the cases, the liquid

metal was continuously degassed prior to casting in order to minimize the effects of gas-

and inclusion-related porosity. The Sr-modified 356 and 319 alloys (i.e. K3 and K4 alloys)

are characterized by a higher percentage of surface porosity level than the unmodified 356

and 319 alloys (i.e. Kl and K2 alloys) alloys as may be seen from Table 4.3. It is worthy of

note that the percentage surface porosity is, in fact, a multiple of the pore density and the

average pore size. Thus, the increase in percent porosity observed in the Sr-modified alloys

may be due to an increase in pore density and/or pore size.

The increased porosity of the Sr-modified alloys can cause a reduction in the

mechanical properties in contrast with the unmodified alloys, even though the eutectic Si

has been modified. As mentioned previously in the literature review, grain refining has

several advantages, including the redistribution and reduction of porosity. Grain refinement

of a casting may alter the amount and the morphology of pores in a casting; in many cases,

there is also an overall reduction in the amount of porosity in alloys containing small or

moderate amounts of gas. 140> 180'181 The combined addition of grain refiner and modifier to

the K3, K4 alloys causes no significant variation observable in the percentage surface

porosity, as shown in Table 4.3. For the average values of pore area and pore length, the
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modified and grain-refined 356 and 319 alloys are characterized by finer and more widely

distributed porosity than is the case for the unmodified alloys. Grain refinment in Al-Si

casting alloys improves the mass feeding characteristics during solidification, resulting in a

reduction in shrinkage porosity and the promotion of an improved porosity dispersion. 180

Table 4.3 shows that the pore size and area percent porosity for alloy 319 are higher than

those for alloy 356. The increase in porosity may be related to the presence of Cu in Al-Si

cast alloys, where copper leads to an increase in volumetric shrinkage during solidification

due to the accumulation of high levels of Cu in the eutectic liquid. 182

Table 4.3. Porosity measurements for
. � . � . . . . . . . . � . . � . � . . . . . �

1 : � : � : : . ' � ' : � . : : . : � . � ' � � � : : . . : � � ' . ' .

Kl (356 non-modified)

K3 (356 modified)

K2 (319 non-modified)

K4 (319 modified)

«il
As-Cast

As-Cast

As-Cast

As-Cast

alloys

Av.

8.83

2.89

35.2

16.2

356 and

A*e*ag

SD.

31.2

16.9

85.7

39.2

319m as-cast condition.

e'iijpoitositjslkleasi

Av.

2.5

1.68

6.7

4.26

SD.

4.45

2.32

8.82

4.44

jrements

Area%

Av.

0.043

0.065

0.064

0.114

SD.

0.052

0.059

0.058

0.285

4.2.3. Copper-Rich Intermetallics

In order to investigate the effects of solution heat treatment on the performance and

quality of B319.2 alloys, the surface fraction of the undissolved copper phase was

measured for various heat treatment conditions. The characteristics of Cu-intermetallic

phases observed in alloys K2 and K4 were examined using an optical microscope linked to
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a Clemex image analysis system. For each solution heat treatment time condition, 15 fields

were examined for each of the corresponding 319 alloy samples at 500X magnification; a

given average value of the undissolved copper phase was recorded as well as the standard

mean deviation. The surface fraction of the undissolved copper phase was measured at

various solution heat treatment times, namely 0.5 h, 1 h, 5 h and 8 h, for non-modified and

modified B319.2 type alloys.

Copper intermetallic phases may occur as a mixture of both block-like and eutectic

C11AI2 forms which are either partially or completely soluble. The C11AI2 and Mg2Si phases

are formed in the B319.2 alloys after solidification; however, quantitative measurements

were carried out for the CuAk phase only, since the undissolved Mg2Si phase, which

appears darker than the Al-matrix because of its smaller average atomic number, could be

identified easily. Figure 4.7 shows the effects of solution heat treatment time on the

amounts of undissolved G1AI2 phase for modified and non-modified B319.2 alloys using

both a CF and an FB. In general, it may be observed that the amount of undissolved O1AI2

phase decreases after solution heat treatment compared to the as-cast condition. These

phases dissolve during solution treatment by diffusing into the metal matrix thus forming a

supersaturated solid solution after quenching. It can also be observed that the FB causes

higher dissolution of the C11AI2 phase after 0.5h solution heat treatment than does the CF as

a result of the effects of the high heating rate prevailing in an FB. About 53.7% and 36.8%

of the total CuAl2 phase dissolved in the matrix after 0.5 h solution heat treatment in an FB

and a CF, respectively, for non-modified B319.2 alloys compared to the as-cast condition.

The modified B319.2 alloys show greater amounts of undissolved C11AI2 than non-modified
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alloys due to the segregation of the Cu phases in the modified condition thereby reducing

the dissolution of the CuA^ phase in the matrix.

The surface fraction of the percentage of the undissolved CuAk phase was observed

to decrease with an increase in the solution time of up to 5 h, as illustrated in Figure 4.7. It

will be observed that the dissolution rate of CuAk phases is relatively slow after lh of

solution heat treatment in an FB compared to a CF which shows a higher dissolution rate

between 0.5 h and 1 h of solution heat treatment time. Even after prolonged solution heat

treatment of up to 8 h duration, the surface fraction percentage of the undissolved CuA^

phase does not show any significant difference between alloys heat treated in either a CF or

an FB. The high heating rate in an FB significantly affects the amount of CuAl2 phase

dissolution in that better dissolution of the Cu-phase is obtained after a short solution heat

treatment time of 0.5 h. For longer solution heat treatment times of 1 h up to 8 h, there is no

observably significant effect of the high heating rate of the FB on the dissolution rate of

CuAl2, where the solutionizing time is now the main factor affecting the dissolution. In

comparison, the slow heating rate in a CF provides a better dissolution rate of CuAb after

longer solution heat treatments of 1 h-5 h.

The quality performance of the alloys investigated is affected by the amount of

undissolved CuAl2 which may result in a decrease in the quality values of the alloys

investigated after solution heat treatment and aging procedures. The main strengthening

phase in the B319.2 alloys investigated in the present study is the Q-Al5Cu2Mg8Si6 phase.

With respect to this phase, it has been reported that solution heat treatment of 319 alloys

using an FB results in complete dissolution of the phase in the Al matrix within 45 minutes.
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iy7 In the present study, also, the Q-phase was not observed in the solution heat-treated

alloy samples. Thus, it is reasonable to say that the performance/quality of the alloys will

be controlled by the amount of undissolved C11AI2 remaining after solution heat treatment,

which may result in a decrease in the quality values of the heat-treated alloys. It may be

noted from Figure 4.7 that the CuAk hardening phase is not completely dissolved in the

aluminum matrix of the solution heat treated B319.2 alloys using either CF or FB

techniques even after 8h of solution heat treatment.

Surface fraction of CuAI2,319 Alloys

DCF, K2 BFB, K2 BCF, K4 BFB, K*l

as cast

SHT Time, hr

Figure 4.7. Surface fraction (%) of undissolved C11AI2 intermetallic phase as a function
of solution heat treatment time.
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Figure 4.8 shows the FEGSEM micrographs of the non-modified B319.2 and

A356.2 alloys after 0.5 h solution heat treatment using both a CF and an FB. For B319.2

alloys which have been heat treated using an FB, the presence of the undissolved Mg2Si

phase may be observed in the matrix regions, appearing darker than the Al matrix, as

shown in Figure 4.8 (a). This amount of undissolved Mg2Si may be related to the fact that

the high heating rate in an FB does not provide sufficient time to dissolve as much as

possible all of the hardening intermetallics (CuAl2, Al5MggCu2Si6 and Mg2Si) present in the

B319.2 alloy matrix during the solution heat treatment. Thus, the presence of undissolved

amounts of CuAl2 and Mg2Si in the matrix of heat-treated samples using an FB, as well as

the Fe-intermetallics may affect the quality and ductility values of the 319 alloys

investigated. In the case of the A356.2 alloys, however, since Mg2Si is the main

intermetallic phase present in the alloy, one would observe the complete dissolution of

Mg2Si in the matrix. These observations are supported by the microstructures of Figures

4.8(c) and (e) which show that solution heat treatment of B319.2 and A356.2 alloys using a

CF and an FB, respectively, results in the complete dissolution of Mg2Si in the matrix. The

black spots in matrix (a) in Figure 4.8 correspond to undissolved Mg2Si while the bright

spots correspond to AI2CU precipitates; the clusters of white particles in the matrix of

Figure 4.8(c) correspond to fragmented Si particles, while the very fine light grey spots

observed in the inset in Figure 4.8(e) correspond to Mg2Si precipitates. Consequently, the

quality of A356.2-type alloys may be more responsive to the fluidized sand bed as

compared to the B319.2 alloys. In this context, the mechanical performance and quality of

alloys investigated will also be discussed in this chapter.
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319//FB, 0.5h SHT + 1 h Aging l.OO 2.0a 3. DO 4.O0

319//CF, 0.5h SHT + 1 h Aging

356//FB, 0.5h SHT + 1 h Aging

Figure 4.8. FEGSEM micrographs of 319 and 356 alloys after 0.5 h SHT and 1 h of
aging. Note that the black spots observed in matrix (a) correspond to
undissolved Mg^Si while the bright spots correspond to AI2C11 precipitates.
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4.2.4. Hardening Precipitates

The present subsection will discuss the influence of high heating rate in an FB on

the characteristics of hardening precipitates obtained after aging of 319 and 356 casting

alloys. The chemical composition of 319 casting alloys constitutes three hardening

elements, namely, copper, magnesium, and silicon. Age-hardening of such Al-Si-Cu-Mg

alloys results in the precipitation of the Q-phase and its precursors, which play an essential

role in the strengthening of this specific alloy system. In addition to the precipitation of the

Q-phase (AlsC^MggSiô), several others, such as O-A^Cu, p-Mg2Si, S-A^CuMg, cr-

AlsCuôMga and their precursors, are also expected to precipitate during age-hardening

treatment of B319 type Al-Si-Cu-Mg alloys; the Cu-containing precipitates such as Q-

phase and 9-AI2CU are the main strengthing particles obtained in the Tô-tempered B319.2

alloys investigated in this study. The composition of the 356-Al-Si-Mg alloys contains two

efficacious hardening elements, namely, magnesium and silicon. The objective of applying

aging treatment to these castings is to precipitate the excess Mg and Si out of the

supersaturated solid solution in the form of hardening phases containing Mg and Si; Mg2Si

is the main strengthing phase obtained in the To-tempered 356 casting alloys investigated.

The Mg2Si precipitates could be seen in the matrix of aged samples, and appeared as oval-

shaped grey particles; as shown in Figure 4.9, the oval shape being possibly related to

scanning beam diameter-related effects of the FESEM used to detect these precipitates.

The size and density of the precipitates formed at specific aging temperatures and

times for non-modified A356.2 and B319.2 alloys are shown in Figures 4.9 and 4.10,

respectively. The microstructures of both FB and CF aged alloys contain fine precipitates
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of Mg2Si and AlsC^MggSiô for the A356.2 and B319.2 alloys, respectively; these phases

were identified by their EDX spectra. Solution treatment and aging times were selected

based on results reported in an extensive study on the performance of Al-Si cast alloys heat

treated using an FB, where the fluidized bed heat treatment of 319 and 356 alloys produces

better strength values after solution heat treatment times of up to 5 h and aging times of up

to 5 h compared to those heat treated using a conventional furnace.147

Figure 4.9 shows FEGSEM images illustrating the characteristics of the Mg2Si

precipitates which were formed after 5 h solution heat treatment and 5 h aging using an FB

and a CF. Particles of Mg2Si were detected from the EDX spectrum shown in Figure 4.9 (c)

which indicates the presence of two Mg and Si peaks at a ratio of 2:1, together with the

presence of an Al peak which was picked out from the matrix. The EDX spectrum indicates

that the gray particles are Mg-Si containing precipitates which denote the presence of

Mg2Si phase, whereas the bright coarse particles are silicon precipitates formed during the

aging procedure in the final stage of phase transformation. The precipitation of silicon in

the Al-Si-Mg alloys was reported by Murayama et al. ni and Gupta et al.,118 where it was

observed that silicon precipitates form during the aging cycle in the final stage of the phase

transformation process. The microstructures reveal the Mg2Si as uniformly distributed

spherically-shaped particles; such spherical Mg2Si particles were also observed in other

studies.136'146

It is possible to show that the fluidized bed produces a large number of finely

distributed Mg2Si particles compared to the convection furnace; this difference in particle

density clearly implies the higher precipitation kinetics of aging in an FB. The lower
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number of Mg2Si particles after applying T6 temper using a CF may be related to the long

solution heat treatment at the low heating rate which consequently reduces the

concentration of defects such as dislocations; it should be noted that such defects act as

suitable sites for Mg2Si nucleation. From these observations, it is apparent that the

nucleation rate of Mg2Si is greater when aged using the FB in which it is much more

affected by the high heating rate than in the CF even if for a long aging time.

Figure 4.10 presents SEM images showing the microstructure of 319 alloys aged

using an FB versus a CF. The precipitation hardening of B319.2, or Al-Si-Cu-0.3%Mg,

alloys is a complicated process because of the variety of phases which are expected to

precipitate during aging. The precipitates that may be formed are P-Mg2Si, O-CuAk and Q-

Al5Cu2MggSi6. Figures 4.10 (a) and (b) illustrate that applying a heat treatment of 5 h

solution treatment followed by 5h of aging using an FB results in the precipitation of finer

and a greater amount of precipitates in the metal matrix than when using a CF. This

difference in precipitation rate may be related to the stability of the GP zones or the clusters

of Cu-Mg-Si during the heating-up stage before isothermal aging using an FB. The stability

of these zones/clusters is the result of the high heating rate of the FB which does not

provide sufficient time for the dissolution of the GP zones. It has been reported that there is

a direct relationship between the heating rate and the radius of the clusters during aging

treatment. The high heating rate in a fluidized bed leads to the formation of more stable

clusters, or GP zones, during the heating-up stage prior to reaching the aging temperature.

These clusters can act as suitable sites for the heterogeneous nucleation of further

� � 147

precipitates.
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(a)

(b)

(c)

l.M IM :.!ù 4.0S S.M CM ï ii =.02 ', s;

Figure 4.9. FEGSEM micrographs of 356 alloy after 5 h SHT and 5 h aging in (a) FB,
(b) CF, and (c) EDX spectrum corresponding to (a).
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(a)

4.BB

Figure 4.10. SEM micrographs of 319 alloy after 5 h SHT and 5 h aging in (a) an FB, (b)
a CF, and (c) EDX spectrum corresponding to (a).
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The EDX spectrum presented in Figure 4.10 (c) shows the composition of the phases

precipitated during the aging treatment of the 319 alloys, revealing that the precipitates

contain Cu, Mg, and Si in addition to Al. The precipitates shown are most probably those of

the Q-AlsCuaMggSio phase, although other phases such as CuAk and Mg2Si may coexist in

the matrix. The main objective for using SEM techniques in this study was to provide an

overview of the density and distribution of the precipitates under the effects of the high

heating rate in an FB.

4.3. TENSILE PROPERTIES

Tensile properties, UTS, YS and %Ef, were obtained for evaluating the influence of

metallurgical parameters on the mechanical performance and quality indices of To-

tempered B319.2 and A356.2-types casting alloys. These parameters include solutionizing

time, aging time, melt treatment and heating rate using two different heat treatment

techniques, namely FB and CF. The FB technique may speed up the heating rate, thus

reducing the time required to arrive at the selected solutionizing and aging temperatures. In

addition to saving heat treatment time using an FB, which is very useful from an

economical point of view, the high heating rate in an FB has a significant effect on the

density and uniformity of hardening precipitates as well as the eutectic silicon

characteristics as discussed previously in the subsection on microstructure characterization.

This subsection will aim at elucidating the microstructure-tensile property relationships

obtained for FB and CF heat-treated casting alloys.
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4.3.1. AI-Si-Mg Alloys

Figures 4.11 and 4.12 display the UTS and Y S values of non-modified and modified

356 alloys, respectively, for as-cast and all heat-treated conditions. As may be seen, both

UTS and YS values increase with an increase in aging time for all solution heat treatment

conditions/times studied. The continuous increase in the strength values with the progress

of aging time up to 12 h in both CF- and FB-treated samples may be attributed to the

natural aging step applied at room temperature for 24 h before carrying out artificial aging

at 155°C. This natural aging step leads to the formation of a high density of GP zones

which act as nucleation sites for the Mg2Si precipitates that form in the subsequent aging

step.55'183

It should be noted that the fluidized bed produces better strength results than the

conventional furnace after aging at 155°C for short aging times of 0.5 h and 1 h, as well as

for the longer aging time of 5 h. The fluidized sand bed shows a significant increase in

strength results through prolonged solution heat treatment times of up to 8 h; such results

can be explained by the high heating rate of the fluidized bed which activates the rate of

precipitate formation giving rise to a high density of precipitates. It has been reported 55

that the dislocation concentration in the matrix affects the aging kinetics of Mg2Si

precipitation; the slow heating rate in a CF annihilates the dislocations through recovery,

thereby reducing their density prior to reaching the aging temperature. The dislocations are

known to be potential sites for Mg2Si precipitates which would lead to a pronounced

improvement in mechanical performance following artificial aging procedures.55'5
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From Figures 4.11 and 4.12, it will be noted that both the UTS and the YS of 356

alloys which have been heat treated using an FB increase by 27-36% compared to the as-

cast alloy within 30 minutes of solution heat treatment and after 30 minutes of aging. In

addition, the strength results show that using the fluidized bed for a solution heat treatment

of 0.5h followed by aging for 0.5-1 h would provide similar strength values, or even

slightly better ones, compared to those obtained after long solution heat treatment times of

5 and 8 h followed by aging for 0.5-1 h using the conventional furnace. A fluidized sand

bed thus provides improved strength results while also saving on the heat treatment time

and energy consumption required for the heat treatment procedure since only 0.5-1 h of

solution treatment is required in a fluidized bed for achieving optimum strength values {cf.

8 h with a CF).

The fluidized sand bed also provides higher strength values than a CF does after an

aging time of up to 5 h. This difference in strength values can be explained by the

formation and stability of GP zones in the initial stage of aging as well as by the rapid rate

of aging kinetics in an FB which results in a greater nucleation rate of Mg2Si particles.

However, the difference in strength values between FB- and CF-treated samples loses its

significance after 8 h and 12 h aging for all solution treatment time cycles, particularly so

for the 8 h and 12 h solution treatment times; these observations may be related either to the

dissolution of meta-stable phases or to the faster coarsening rate of the Mg2Si precipitates

after 8 h of aging in the fluidized bed. 135 With regard to the yield strength, it will be

observed that the YS values were more responsive to artificial aging as demonstrated by a

nearly vertical rise in YS after 5 h of aging, as compared to the UTS values. This response
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is related to the tendency of the yield strength to be influenced more by the microstructural

condition of the alloy, and less affected by the soundness of the casting compared to the

ultimate tensile strength.77

In general, the aging behavior of the 356 casting observed when aging at 155°C is

related to the precipitation of the various precursors of the Mg2Si phase in the metal matrix

according to the aging time applied. The early increase in the strength of the alloy is related

to the formation of individual clusters of Mg and Si, as well as to co-clusters of the same

hardening elements, and to the GP zones. The peak-strength obtained at 12 h is related to

the formation of the coherent p "-precipitate which is considered to be the main causative

source of strength in the Al-Si-Mg alloys. 184; 185

Figures 4.12 and 4.13(b) indicate that the modified alloys produce better strength

and elongation results, respectively, than the non-modified ones; the nucleation rate of

Mg2Si particles is greater in the modified alloys than it is in the unmodified ones. 35 '49 '55

The acicular morphology of the Si platelets in the eutectic, as shown in Figure 4.4(a),

promotes the development of stress raisers at the edge tips in the softer phase, leading to

low ductility in the unmodified alloy. This is thought to occur by a simple void formation

mechanism at the needle edges of the eutectic Si particles, leading rapidly to crack

formation by void coalescence. The modification of the alloy through the addition of Sr

leads to the development of a spheroidized eutectic structure, as shown in Figure 4.4(e, f).

The Si phase in the eutectic develops into a globular structure and improves the mechanical

properties considerably by virtue of an even distribution of the stress around these hard

particles; this geometrical change also leads to the disappearance of stress raisers. The
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addition of Ti and Sr enhances the favorable effects of both elements in the microstructure,

thereby leading to a general improvement in the tensile properties compared to the

untreated base alloy.

Figure 4.13 shows the variation in elongation for 356 non-modified and modified

alloys, obtained after continuous aging over the same range of solution heat treatment

times. As shown in the figure, the elongation values are improved upon going from the as-

cast condition to the solution heat-treated one for all solution times studied, at an early

stage of aging, namely, 0.5 h. It is also seen that the FB treatment produces better

elongation results than the CF treatment over all the aging times imposed. The difference in

elongation results between FB- and CF-treated samples is more significant at solution

treatment times of 5 h and 12 h. The improvement in the elongation values of the modified

alloys is related to the fragmentation and spheroidization of the acicular Si particles and Fe

intermetallics through Sr-modification and through the high heating rate prevailing in the

fluidized bed. This high heating rate activates the process of the thermal modification of

eutectic Si and Fe intermetallics. 147 It may be observed from the plot that the elongation

values of alloys aged in an FB increase initially for the first 30 minutes of aging for all the

solution treatment times studied, and then they decrease steadily. The decrease in

elongation values may be related to the precipitation of Mg2Si, which hinders the

dislocation motion during tensile testing thereby reducing the ductility.

From the point of view of microstructure, the eutectic structure of Al-Si alloys

consists of Si particles, as a second phase, embedded in the Al matrix, implying that

particle size has a significant influence on the fracture strain. A theoretical analysis by
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Saigal et al. 186 showed that the stress or strain required to break a particle varied inversely

with the particle size, which would signify that the void nucleation strain is higher for fine

particles; failure takes place when the void grows to a critical size. Since the failure strain is

inversely proportional to void growth rate, it may be suggested that this growth rate is

lower in the modified alloys than it is in the unmodified ones. Thus, an increase in the void

growth strain should be expected, which would, in turn, increase the fracture strain. The

fine fibrous Si morphology of the modified alloys would thus influence the strain sustained

to fracture by increasing the void nucleation and void strain simultaneously.
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Figure 4.11. Average UTS and YS values for non-modified 356 alloys.
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Figure 4.12. Average UTS and YS values for modified 356 alloys.
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modified Kl alloy, and (b) modified K3 alloy.
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4.3.2. Al-Si-Cu-Mg Alloys

In general, an improvement in the mechanical properties of Cu- and Mg-containing

aluminum alloys is attributed to the formation of the age-hardening compounds AbCu and

Mg2Si, respectively, which precipitate from the solid solution during aging. The degree of

strengthening depends on the copper and magnesium content, and an increase in strength

due to higher copper and magnesium levels is always accompanied by a corresponding

decrease in ductility. The application of an aging treatment to these alloys causes an entire

range of precipitates to form according to the temperature and time applied.

Figures 4.14 and 4.15 illustrate the variation in the ultimate tensile strength and

yield strength values of non-modified and modified 319 alloys, respectively, as a function

of various solution heat treatment time cycles, from 0.5 h up to 24 h. The fluidized bed heat

treatment produces better strength values after 0.5 h, 1 h and 5 h aging than those obtained

by using the conventional convection furnace for solution heat treatment times of up to 8 h.

This difference in strength values is related to the high precipitation rate of AlsCuaMggSiô

and CuAl2 phase particles in the FB-treated samples as opposed to the CF-treated ones, as

also to the dissolution of GP zones during the heating-up period to the isothermal aging

temperature in the conventional convection furnace. 147

It may be observed that the optimum strength values for the heat-treated samples

using a CF are obtained after 8hrs of aging, followed by a slight decrease in strength as a

result of overaging, whereas with the FB treatment, a continuous increase in these values is

observed up to 12 h of aging. This upward trend in strength values may be related to the

stability of the GP zones and/or of the intermediate precipitates in the early stages of aging
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when using a fluidized bed. 145> 147 The peak strength attained after 8hrs aging in a CF or 12

h aging in an FB may be related to the presence of hardening phases such as 0 -CuA^ + Q'-

(AUCuiMggSis). 187> 188 The strength values obtained after 1 h solution heat treatment + 1 h

of aging using a fluidized bed show similar or slightly better values compared to the ones

obtained after long solution treatment times, namely, 8 h, 12 h, and 24 h, followed by 1 h of

aging using a conventional furnace. In general, the fluidized bed technique provides higher

strength values than a convection furnace does for solution heat treatment times of up to

8hrs; beyond that, no noticeable difference is observed between the two techniques.

From both sets of strength results, it will be observed that the UTS and YS of 319

alloys which have been heat treated using an FB increase by 20-34% compared to the as-

cast alloys after 30 minutes solution heat treatment and 30 minutes aging. On the other

hand, the UTS and YS results of 319 alloys which have been heat treated using a CF tend to

increase by only 6-8% compared to the as-cast alloys within the same short period of time.

The high heating rate of the FB has a significant influence on the heat treatment

characteristics of 319 alloys resulting in higher strength values after short heat treatment

times. The high rates of heat transfer upon increasing the heat treatment temperature makes

it possible to optimize and reduce treatment cycle times.

In regard to the general aging behavior of the B319.2 alloys investigated, the

increased strength when applying aging treatment at 180°C for up to 12 h is related to the

precipitation of the GP zones followed by the formation of coherent and semi-coherent

precipitates. These precipitation sequences result in an increase in the strength of the

castings up to the point of attaining the maximum level of strength at peak-aging, which
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occurs at 8 h using a CF and at 12 h using an FB. At 180°C, for an aging time beyond 8 h,

the decrease in the strength values of the 319 castings is attributed to the loss of coherency

strain surrounding the precipitates. The disappearance of the coherency strain accompanies

the formation of the incoherent equilibrium precipitates such as the plate-shaped (3, the

platelike 9, and the rod-shaped Q phases. The formation of these equilibrium phases results

in a reduction in the strength values of the alloys, as may be seen in Figures 4.14 and 4.15.

Figures 4.15 and 4.16 indicate that the modified and grain-refined alloys produce

better strength and elongation results than the non-modified ones by ~ 20 MPa and 0.6 %,

respectively. This observation indicates that the combined addition of grain refiner (Al-

5%Ti-l%B) and modifier (Al-10%Sr) to the base alloy refines the a-Al grains, and

modifies the eutectic plate-like silicon into finer, spheroidized particles which, together

with the fine eutectic-like A^Cu particles present in the interdendritic region result in

improved mechanical properties. Higher strength and ductility values of modified alloys

may be attributed to two significant factors which minimize the occurrence of voids and

limit cracks raisers. The first is achieved by developing microstructures capable of avoiding

stress amplification factors, namely, the absence of such stress raisers as acicular eutectic Si

and angular primary Si particles. The second factor responsible for retarding void

coalescence and crack propagation through the cross-section of a tensile specimen is the

grain size of the a-Al present. As the grain size decreases, secondary phases and porosity

become more widely dispersed, and as a result, a fine grain size results in an improvement

of the mechanical properties of the alloys. 6' 24> 164' 170 Figure 4.16 shows the elongation

values for the non-modified and modified 319 base alloys after T6 heat treatment for
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continuous aging cycles over the same range of solution heat treatment times. As can be

seen from this plot, elongation values are improved on going from the as-cast to the

solution heat-treated condition for various solution time durations followed by aging for 0.5

h. The improvement of elongation values in the modified alloy may be related to the

fragmentation and spheroidization of the Si particles and Fe intermetallics obtained through

Sr-modification and the high heating rate prevailing in the fluidized bed as discussed

previously. Figure 4.16 also shows that no noticeable difference in elongation values over

aging time is obtained using either technique, except that the FB-treated samples show

slightly better results than the CF-treated samples after 0.5 h aging. The elongation values

decrease thereafter, with further aging time; the loss of ductility may be related to the

strengthening effect associated with the precipitation of the Q'-ALjCuaMgsSis phase.

It may be seen from the tensile results that B319.2 casting alloy is significantly

stronger but less ductile as compared to A356.2 alloy; the noticeable difference in strength

and ductility values between the alloys investigated may be related to the higher Cu and Mg

contents of the B319.2 alloys which are the main source of the increased strength and the

decreased ductility of these castings when compared to the same properties in the A356

alloys after being subjected to the same aging treatments. With respect to the ductility

results of the alloys investigated, the presence of a higher Fe content in the B319.2 casting

alloys as compared to the A356.2 alloys, i.e. 0.4186 and 0.075 wt%, respectively, results in

the formation of a greater volume fraction of undissolved Fe-intermetallics which have

detrimental effects on the alloy properties, and reduce their elongation values.
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Figure 4.14. Average UTS and YS values for non-modified 319 alloys.
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Figure 4.15. Average UTS and YS values for modified 319 alloys.
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Figure 4.16. Average values of percentage elongation (%E1) for 319 alloys: (a) non-
modified K2 alloy, and (b) modified K4 alloy.
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4.4. ANALYSIS OF QUALITY CHARTS

In the present study, an attempt was made to elucidate the effects of FB versus CF

heat treatment techniques as well as melt treatment and heat treatment parameters on the

quality performance of A356.2 and B319.2 casting alloys using quality index charts. Such

quality charts have often been used in conjunction with heat treatment studies of aluminum

alloys, to make it possible to determine the optimum heat treatment conditions needed for

obtaining specific properties in a cast component. The evaluation of the results will be

carried out using the quality charts based on two models of quality indices, namely, those

of Drouzy et al. and Câceres. 155' 156> 157> 158 Accordingly, all the pertinent results will be

presented using two types of charts, based on the tensile properties available for each point

located in these charts. Generating these specific charts would provide a factual logic-based

evaluation of the effects which various parameters may have on the tensile properties and

quality indices of the castings under study. The effects of the heating rate corresponding to

each heat treatment technique on the quality of the alloys investigated will be studied

during a T6 heat treatment applied for several solution heat treatment time cycles.

4.4.1. Al-Si-Mg Alloys

Two models of quality charts were selected for evaluating the influence of

metallurgical parameters on the quality indices of non-modified and modified A3 5 6 casting

alloys. These charts are provided in Figures 4.17 and 4.18. Equations 5 and 6 were used to

generate iso-Q lines and iso-yield strength lines, respectively, in the quality charts shown in

Figure 4.17. Equations 10 and 11 were used to generate iso-jlow lines and iso-q lines,
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respectively, in the quality charts shown in Figure 4.18; the ^-values presented in these

charts were determined by applying Equation 13.

Figures 4.17(a) and (b) show the effects of modification and aging parameters on

the quality of A356 alloys after 0.5 h and 8 h solution heat treatment in a fluidized bed

versus a convection furnace. From the quality maps shown in Figure 4.17, generated using

equations (5) and (6), it may be observed that the modified 356 alloys show an

improvement in quality values by 50 MPa over the non-modified alloy for all aging times.

The main purpose of Sr addition to Al-Si-Mg alloys is to change the morphology of

eutectic silicon from an acicular form into a fibrous one resulting in improved ductility and

strength with high quality values. In addition to the effect of Sr, the fluidized sand bed has a

significant effect on Si particle size, reducing it to more than half after 0.5 h of solution

heat treatment as has been soundly discussed in an extensive study. 14 Figure 4.17 (a)

shows the positive effects of using a fluidized bed for heat treatment with regard to the

UTS and the quality values of the modified and non-modified alloys investigated, for which

the quality values produced by a fluidized bed are better than those obtained by a

convection furnace through aging times of up to 5 h. Also, it should be noted from the

preceding that the quality values produced after only 1 hr of aging using a fluidized bed are

better than those obtained after 5 h aging in a convection furnace for non-modified and

modified alloys. Figure 4.17 (b) shows that the fluidized bed heat treatment is more

effective than that of a convection furnace for producing high quality values through all

aging time periods of up to 12 h after a solution heat treatment time of 5 h. The high
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heating rate in a fluidized bed activates the precipitation rate and produces more

precipitates after a short aging time, as shown previously in Figure 4.9.

Figure 4.18 shows the effects of solution heat treatment time on the quality and

mechanical properties of a T6 tempered 356-type non-modified alloy. The quality charts in

Figure 4.18 were generated using Equations 10, 11, and 13. The main objectives of the

solution heat treatment procedure are to dissolve most of the hardening elements in solid

solution such as Mg2Si and to change the morphology of acicular eutectic silicon to

fragmented and spheroidized particles. The solution heat treatment is applied at specific

temperatures for specific periods of time to provide a chance for the fragmentation and

dissolution of undissolved phases, namely Fe-intermetallics, and to achieve a homogeneous

1RQ 1QA

structure for improving the ductility and the quality of Al-Si cast alloys. ' It may be

noted that the increase in solution heat treatment times of up to 8 h and 12 h provides an

improvement in the quality values for modified and non-modified alloys, respectively, as

shown in Figures 4.17 and 4.18. The effects of solution heat treatment time on the strength

values of T6 tempered alloys is not significant, considering that the strength values display

no major changes as the quality performance does upon increasing the solution heat

treatment time periods. The solution heat treated samples using a fluidized bed show better

strength and quality results after aging times of up to 5 h over all solution heat treatment

times as compared to heat treated alloys using a convection furnace.

With regard to the effects of aging time, it will be noted that there is no significant

change in the quality behavior over all the aging times studied. Aging behavior at 155°C

for up to 12 h is quasi-parallel to the iso-Q lines, as will be observed in the quality charts
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shown in Figures 4.17 and 4.18. This behavior illustrates that aging time up to peak-

strength does not affect the quality index values of the 356 castings. Such an observation is

related to the fact that increasing the aging time up to 12 h results in a continuous increase

in the strength of the casting at the expense of its ductility, although the increase

compensates for the reduction in ductility in accordance with Equation 5. Thus, the net

effect of this aging treatment ultimately leads to non-significant changes in the quality

index values. It has been reported that the quality index is not greatly dependent on the

tempering conditions compared to the strength values which depend on the aging

parameters. 167 The UTS and YS values increase with an increase in aging time over all the

solution heat treatment times studied for the non-modified and modified alloys. As it has

been mentioned before, this continuous increase in strength values throughout aging times

of up to 12 h in both CFs and FBs may be attributed to the natural aging step applied at

room temperature for 24 h before artificial aging at 150°C. This 24 h natural aging step

leads to the formation of a high density of GP zones which act as nucleation sites for the

resulting Mg2Si precipitates.

With regard to the quality charts for the 356 alloys shown in Figures 4.17 and 4.18,

it may be observed that both models of quality indices reveal similar behavior in the

strength and quality of the alloys investigated with respect to a specific application. The

difference between the charts in both figures is the accuracy in calculating the yield

strength. As may be seen in Figure 4.17, it may be concluded from the quality charts

generated using Equations (5) and (6) that the calculated yield strength values differ by a

specific percentage of error, 1-15%, as compared to the actual yield strength values
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obtained from tensile testing results. On the other hand, the calculated yield strength in the

quality charts shown in Figure 4.18 provides better accuracy values (ranging from 90 to

99%). This difference in yield strength values in Figure 4.18 may be related to the deviation

of the strength coefficient value of the material, the K-value, at each point corresponding to

a different set of heat treatment parameters from the average K-value for the same alloy.

The quality charts shown in Figure 4.18 were generated using Equations (11) and (13) with

an average K-value of 465 MPa, where the standard deviation for 356 alloys is + 23 MPa.

The quality charts are provided in order to select and recommend the optimum

conditions required for specific mechanical and quality properties. It will be noted that the

high heating rate in fiuidized beds has a positive effect on the improvement of strength and

quality values in addition to the positive effect of the other metallurgical parameters such as

melt treatment (modification) and solution heat treatment for specific periods of time. With

regard to the quality performance of the 356 alloy after aging times of up to 8 h, Figures

4.17 and 4.18 show that the quality results of the 356 alloy are more responsive to the FB

heat treatment technique than to that of a CF. It may be observed that the fluidized beds

provide an improvement in the quality values of the 356 alloys by 25-30 MPa after aging

times of up to 5 h, as compared to the conventional furnace.

With regard to the influence of solutionizing time, it may be noted from the quality

charts that a prolonged solution heat treatment time is observed to increase the strength and

the quality index values of both modified and non-modified alloys significantly as shown in

Figure 4.18. The improvements occurring in the strength and quality of the modified and

non-modified 356 casting alloys when increasing solutionizing times is related to the
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changes in the microstructural features, namely the homogenization of the cast structure;

the changes in the volume fraction percentage, size and morphology of the intermetallic

phases; and the changes in the size and morphology of the eutectic Si particles. As outlined

in section 4.2.1, increasing the duration of solutionizing time up to 12 h was seen to

produce advantageous changes in the size and morphology of the eutectic Si particles for

both modified and non-modified 356 castings; this will be clear from the optical

micrographs shown in Figures 4.4(a) through (f) for the 356 alloys, which reveal that the

size of the Si particles increases whereas their aspect ratio decreases upon increasing the

solution heat treatment time for both modified and non-modified 356 alloys.

The addition of strontium to 356 alloys, i.e. the K3 alloys, has been observed to

affect the response of these castings to solution heat treatment. The principal action of

strontium in this particular case is revealed in its effect on the length of time required to

attain certain mechanical properties and quality index values in the alloys under study since

most of the solutionizing time is spent in modifying the eutectic silicon particles. The

effects of Sr-modification as well as the high heating rate of the FB in the current case are

technologically significant from the economic point of view because of the need to reduce

the required time for heat treatments. The effects of Sr-modification on the quality values

response to solution heat treatment tend to decrease when the solutionizing time increases

up to 8 h, as will be clear from Figure 4.17 (b). Figure 4.18 (b) illustrates that increasing the

solutionizing times from 5 h to 12 h results in a continuous narrowing of the gap between

the quality index values of the unmodified 356 castings for each heat treatment technique.
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Figure 4.17. Quality charts generated using Equations 5 and 6, showing the effects of
modification and aging time on the quality and UTS of To-tempered 356-
type alloys solution heat treated for (a) 0.5h, and (b) 8 h.
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Figure 4.18. Quality charts generated using Equations 11 through 13, showing the effects
of solution heat treatment time: (a) 0.5h and lh, and (b) 5h, 8h and 12h on
the quality and UTS of T6 tempered 356 non-modified alloys heat treated
using CF and FB techniques.
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4.4.2. Al-Si-Cu-Mg Alloys

The present subsection will discuss the influence of heat treatment parameters and

melt treatment on the quality index values of the B319.2 casting alloys. The presence of

copper in 319-type Al-Si cast alloys contributes to an increase in strength and hardness

values although at the expense of ductility. The application of an aging treatment to these

alloys causes an entire variety of precipitates to form according to the temperature and time

applied. These different types of hardening phases result in a wide variation in strength

coefficient values, K, of the heat treated materials depending on the T6 temper parameters.

Such a variation in K values has a significant effect on the accuracy of calculated yield

strength values obtained from the quality charts compared to the yield strength values

obtained from tensile testing. So that, the K values are re-calculated for each heat treatment

condition taking the average K value to be used in the quality index values calculations. As

in the case of the 356 alloys, improvements in the mechanical performance and quality of

such 319 alloys may be obtained by applying Sr-modification (melt treatment) and the

application of a high heating rate using a fluidized bed for the relevant heat treatment

procedures.

Figures 4.19 through 4.21 show the effects of solution heat treatment time and

modification on the strength and quality of T6 tempered 319-type alloys using a fluidized

bed vs. a convection furnace. The fluidized bed heat treatment produces better quality

values than those obtained by using a convection furnace after 0.5 h aging and solution heat

treatment for specific times of up to 8 h for modified and non-modified conditions. The

quality was greatly affected by the solution heat treatment time and modification, in that the



145

quality values were significantly improved through increasing the solution heat treatment

time by up to 8 h, and as a result of the effect of Sr-modification which transforms the

morphology of acicular Si into a fibrous type. For the same solution heat treatment time,

the quality values of B319.2 alloys heat-treated in an FB are less than for those obtained

using a CF after lh aging and after long aging times. The FB heat-treated samples show

better quality and ductility values, after only a short aging time of 0.5 h, than do those

obtained in a CF for the same solution heat treatment times.

The low response of quality values of B319.2 alloys to an FB heat treatment, as

compared to 356 alloys, after solution heat treatment times > 0.5 h and aging times from 5

h to 12 h may be related to the high percentage of Fe in the alloy, namely 0.418 wt%,

which would form Fe-intermetallics which are know to be detrimental to the alloy

properties. These Fe-intermetallics are hardly dissolved even after prolonged solution heat

treatment times and/or at high heating rates using the FB heat treatment technique. In

addition, as illustrated in Figures 4.7 and 4.8(a), the undissolved C11AI2 and Mg2Si

intermetallics would also reduce the ductility and quality performance of the alloys

investigated. The heat-treated samples using a fluidized bed after 1 h of aging provide

better quality values compared to the values obtained after a long aging time, namely 5 h,

using a conventional furnace for the same solution heat treatment time cycles of up to 8 h.

For T6 tempered B319.2 alloys, the fluidized bed technique shows higher strength values

than a convection furnace does at solution heat treatment time cycles of up to 8 h; beyond

that there is no noticeable difference in strength and quality values between both

techniques, whether FB or CF.
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With regard to the aging behavior of the B319.2 alloy, Figures 4.19, 4.20 and 4.21

show that increasing the aging time up to peak-strength, i.e., 8 h in a CF and 12 h in an FB,

respectively, results in an increase in the alloy strength with a decrease in its quality values

for the same solution heat treatment time. However, the aging behavior of the A356.2 alloy

is quasi-parallel to the iso-Q lines as was described earlier and could be observed in the

quality charts shown in Figures 4.17 and 4.18. The aging behavior shows that increasing

the aging time does not affect the quality index values of the A356.2 castings which had

been heat treated in a CF and an FB. This quality behavior of B319.2 alloys with respect to

aging time may be related to the various types of hardening precipitates which affect the K-

values required to generate the quality charts; the K-values are affected significantly by the

different heat treatment conditions applied to the 319 alloys investigated. In regard to

quality, therefore, it may be concluded that the quality values of heat-treated samples of

B319.2 alloys are less responsive to an FB than A356.2 alloys after long aging times,

namely 5 h and up to 12 h, for all solution heat treatment time cycles.

The precipitation sequences in B319.2 alloys result in an increase in the strength of

the castings up to the point of attaining the maximum level of strength at peak aging, which

occurs at 8 h and at 12 h using the CF and FB heat treatment techniques, respectively. At

aging time beyond 8 h in a CF, a decrease in the strength with an increase in quality index

values of the 319 castings is observed, as may be seen in Figures 4.19 through 4.21. This

decrease in strength values may be attributed to the loss of coherency strain surrounding the

precipitates; the disappearance of the coherency strain accompanies the formation of the

incoherent equilibrium precipitates. The increase in the quality at the expense of strength,
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for aging times of 8 h and up to 12 h, may be related to the increase in elongation values

which has a significant effect on the Q-values as compared to the decrease in strength

values for this specific heat treatment condition using a CF, as may be seen from Equation

13.

The aging curves in the case of aging in a CF display curvilinear forms, in the 5-12

h region, as shown in Figures 4.19 and 4.20. This specific form of the aging curves is a

result of the overaging conditions which occur upon increasing the aging time for durations

longer than the specified peak-aging times. The aging behavior of FB heat-treated 319

alloys is observed to be quasi-parallel to the iso-Q lines in the same region, for solution

heat treatment times of up to 24 h as may be seen from Figures 4.19 through 4.21. This

behavior illustrates that aging time up to peak strength does not affect the quality index

values of the 319 castings. Such an observation is related to the fact that increasing the

aging time up to 12 h in an FB results in a continuous increase in the strength of the casting

at the expense of its ductility, although the increase compensates for the reduction in

ductility in accordance with Equation 13. Thus, the net effect of this aging treatment

ultimately leads to non-significant changes in the quality index values.

With respect to the quality values of B319.2 castings after solution heat treatment

time conditions of up to 8 h, the Q-index values are reduced by -45% and -30% when

aging in an FB and a CF, respectively, for aging times ranging from 0.5 h to 12 h as may be

seen in Figures 4.19 and 4.20. On the other hand, the 356 castings show no significant

change in quality through all the aging times using either a CF or an FB for the heat

treatment.
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Figure 4.19. Quality charts based on Equations 11 through 13 showing the effects of
solution heat treatment time: 0.5h and lh, and modification on the quality
and UTS of (a) non-modified, and (b) modified 319-type alloys.
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Figure 4.20. Quality charts based on Equations 11 through 13 showing the effects of
solution heat treatment time: 5h and 8h, and modification on the quality and
UTS of (a) non-modified, and (b) modified 319-type alloys.
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Figure 4.21. Quality charts based on Equations 11 through 13 showing the effects of
solution heat treatment time: 12h and 24h, and modification on the quality
and UTS of (a) non-modified, and (b) modified 319-type alloys.
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4.4.3. Selection of Metallurgical Parameters Using Quality Index Maps

The quality index is considered to be an efficient tool for selecting the best alloy

conditions required for a particular engineering consideration. An example is shown in

Figures 4.22 and 4.23 which show the effects of solution treatment/aging time

combinations and the heat treatment technique used on the quality index values obtained

for non-modified and modified B319.2 and A356.2 alloy samples (in terms of their UTS

and %E1 properties), identified by the eight points labeled A through H on the chart shown

in Figure 4.22. Only iso-Q lines have been plotted on the charts.

Figures 4.22 and 4.23 illustrate the way in which solution treatment/aging time

combinations, Sr-modification and the heat treatment techniques applied may have an

effect on the quality index values obtained for non-modified and modified B319.2 and

A356.2 alloy samples in terms of their UTS and %E1 properties. It should be noted that

only iso-Q lines were plotted on the charts. It may be observed that the Q-values of the

B319.2 and A356.2 alloys show improvement upon modification. It was reported by Jacob

152 that Sr modification enhances the strength and ductility, as well as the quality of Al-Si

alloys. Regarding the quality charts in Figure 4.23, the effects of Sr-modification in

addition to the high heating rate of the fluidized bed play a vital role in improving the

quality performance of the alloys studied. For both B319.2 and A356.2 alloys, whether

modified or non-modified, the Q-values obtained afterlhr of solution treatment + lhr of

aging using an FB are nearly the same or better than those obtained after 5hrs of solution

treatment + 5hrs aging using a CF. This observation clearly indicates the advantage of

using the fluidized bed heat treatment technique in view of the fact that the high heating
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rates associated with it help considerably in reducing the total heat treatment time needed

for improving the quality of a product compared to the much longer times needed with a

conventional convection furnace to achieve the same results. Based on the required tensile

properties, the quality requirements and the cost, several metallurgical parameters may be

selected from among these, namely the alloys investigated, heat treatment times and heat

treatment techniques, as the most suitable parameters for a specific engineering application.

Solution heat treatment and aging at higher heating rates using the FB technique

introduces a technologically useful strategy in that by applying a rapid aging treatment to

these particular alloy systems, it becomes possible to achieve a noticeable reduction in the

aging time required to reach peak-strength. This time reduction in relation to industrial

applications has several benefits including lower energy consumption, longer lifetime for

the heating furnaces, greater productivity, lower labor costs, and a number of other

analogous advantages.

The quality index values as well as the strength results will be re-plotted in different

formats such as main effect plots, interaction plots, contour plots and matrix plots by

applying statistical analysis as will be presented in the next subsection. This type of

analysis was applied, for several metallurgical parameters, to confirm the original analyses

and interpretations made using the quality charts regarding the response and/or

performance of the alloys investigated with respect to heat treatments using FB vs. CF

techniques.
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Figure 4.22. Quality index of T6-tempered Al-Si-Cu/Mg alloy systems using FB vs. CF
techniques.
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4.5. STATISTICAL ANALYSIS

Selection of an alloy with certain specific properties is extremely laborious and

time-consuming, particularly since classical methods have not always led to the

development of a quantitative relationship between the mechanical properties of alloys on

the one hand, and their composition or heat-treatment parameters on the other. Therefore, if

two or more variables are alternated or interchanged amongst themselves, it could become

difficult to quantify the effect that any interaction between different variables would have

on mechanical performance and quality. Experiments were made to determine the effect of

the independent variable (factor) on the dependent variable (response), while the

relationship between them was illustrated using a regression model involving experimental

data.

Statistical design of experiments (DOE) is widely used as an efficient

experimentation technique which has been applied to produce high quality products, to

facilitate the economical operation of a number of procedures, and to ensure the stable and

reliable progress of these same procedures. 17'191 Studies involving the application of DOE

methods have been made for more than four decades, and the advance of DOE applications

has been assisted by developments in the field of computer science. Mohamed et al. 192 and

Ganguly et al. l 3 used the statistical design of experiments to study and control the

properties and behavior of Al-Si alloys. Major et al. 194 applied fractional factorial design to

evaluate the microstructure of the Al-Mg2Si system in order to optimize alloy composition.
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Statistical design of experiments (regression analysis), as a method, has been put

into use in the current study to examine and control the properties and behavior of A356.2

and B319.2 alloys and to develop regression equations between the response variable and

the factor varied. These equations may be analyzed quantitatively to acquire an

understanding of the effects of the variables and their interactions on the quality index of

the alloys under investigation. Furthermore, within the variation range of the variables

studied, these mathematical equations may be used to predict the performance and/or select

the metallurgical parameters of alloys investigated which, after the requisite heat treatment,

would have the desired properties required for specific engineering applications. The

presence of strong interaction coefficients, as evidenced by non-linearity in the equations,

justifies the adoption of an appropriate higher order design.

A current and well-established system will be selected to examine the relevance of

this mathematical technique by correlating the results generated in this section with those

obtained experimentally by the conventional methods described in subsection 4.4. Four

parameters were selected as independent variables and tested at two levels in order to carry

out the factorial design. Table 4.4 represents the independent variables, factors, and

response variables studied together with the codes used to obtain the final regression

equations.
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Table 4.4. Independent variables, response variables, and their codes.

Independent variable

Modification effect, wt%

Solution heat treatment time, h

Aging time, h

Heating rates, HT techniques*

Code

Xi

x2

x3
X4

Response variable

Quality index (Q), MPa

Code

Y

* Heat treatment techniques represent conventional furnace (CF) and fluidize bed (FB)
parameters.

The data pertaining to the quality index value, Q, were analyzed using Minitab

software Version 15 to obtain the regression models, the main effects plot, and the

interaction plot, which describe the relationship between the independent variables studied

and the mechanical properties of the alloys investigated, as represented by Equation 14

shown below:

Y = bO + blXl + b2X2 + b3X3 + b4X4 +... Equation 14

where Y is the response variable (YS, UTS, %E1, or Q); bO, bl , b2, etc. are constants

representing the effects of the respective factors; XI, X2, X3 and X4 are the coded values

of the factors pertaining to modification effect, solution heat treatment time, aging time,

and heat treatment technique, respectively. In general, positive values of the coefficient

signify an increase in the property due to a concomitant increase in the individual

parameters and their interactions, whereas the magnitude of the coefficients signifies the

extent of the influence of individual parameters, or their interactions, on the response

variable. For example, positive and higher values of bl in Equation 14 would signify (i) an

increase in the response variable Y, and (ii) a greater effect of the factor XI on Y, in
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comparison to the other factors X2, X3, etc. Similarly, lower values of the coefficients

would suggest that the action of associated individual parameters, or their interactions, is

non-significant for a given response variable. By processing the data, regression Equations

15 and 16 were developed for Q values of A3 5 6 and B319 alloys, respectively, and the

variation of a number of different factors, as follows:

Y (A356 alloy) = 291.5 + 22* Xi + 7.23* X2+ 6.15* X3+ 24.4* X4 Equation 15

Y (B319 alloy) = 291.6 + 12.6* Xi + 10.62* X2-21.7 X3+ 7.61* X4 Equation 16

Figure 4.24 (a) and (b) shows the residual plots of Q values obtained by regression

analysis for alloys 356 and 319, respectively. The R2 values for Equations 15 and 16 are

98.61% and 95.32%, respectively; these values may be used for representing the degrees of

accuracy as well as estimating how well the model accounts for variations in the data set.

For example, when the R2 value equals 0.95, this means that 95% of the variation is

accounted for by the model and 5% is accounted for either by variables which are assumed

to be constant or by the inability of the data to be modeled by a quadratic equation. The R2

value for prediction is an estimate of how well the model will predict the response of new

data which falls within the bounds of the set variable ranges.

For the purposes of this study, it is recommended that the value of R2 should be

maximized. From these linear equations, one can easily notice that the response Y (Q

values of A356 alloys) is affected significantly by the heat treatment technique, followed

by modification and then by solution treatment time and lastly, by aging time. However, the

response Y (Q values of B319 alloys) is greatly affected by the modification factor and
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solution heat treatment time followed by a great negative effect of heat treatment technique.

The results obtained from these equations are in satisfactory agreement with the quality

index charts of A356 and B319 alloys.

Comparing the regression models for the alloys investigated, it may be noted that

the quality performance of A356 casting alloys is more responsive to variation in heating

rates during heat treatment using different techniques, as compared to the B319 alloys,

showing an impact factor of heating rate parameter of 24.4 versus 7.61 for B319 castings. It

may be suggested that the quality performance of B319 alloys is sensitive to some factor, or

group of factors, which do not lie within the scope of the statistical analysis study. The

most significant factor is the high volume fraction of undissolved phases Fe-intermetallics

and Si-Fe-Cu-Mg containing intermetallics which are not significantly affected by the

heating rate (temperature and time) of the applied heat treatment as discussed earlier in

subsection 4.2.3.

(a) Residual Plots for Q

Normal Probability Plot Versus Fits
99.9

99
1
:
I

1

_ u
1

_ _ JL
� l

1

�-M

:
:

i

l
i

i
i

t

J
t

i i

l i

r�i

20

_ 10

1 0

-10

-20

-20 -10 0
Residual

Histogram

10 20 3S0 37S 400 42S
Fitted Value

450

20?

10-

-10'

-20-

Versus Order

m
-20 -10 0

Residual
10 20 10 20 30 40 50 60 70 80 90

Observation Order



(b) Residual Plots for Q
Normal Probability Plot Versus Rts

300

200

100

0

-100

>-.:�?
� � � � « �

100 200

Histogram

300 400
Fitted Value

Versus Order

24

5 18

f :
0- Eh. -100

500

160

-75 0 7S 150
Residual

225 1 10 20 30 40 50 60 70 80 90 100 120 120
Observation Order

Figure 4.24. Residual plots of Q-regression values obtained for (a) 356 and (b) 319
alloys.

The main effects are assessed by an analysis of the level of average response of the

raw data. This analysis is carried out by averaging the raw data at each level of each

parameter and plotting the values in graph form. The average responses of the raw data

make it possible to analyze the trend of the performance characteristic with respect to the

variation in the factor under study. Figures 4.25 and 4.26 show the main effects of all the

four variables which affect the quality index values of A356.2 and B319.2 alloys,

respectively. The average values of each independent variable are compared within that

variable in order to observe its impact on the quality index. The more horizontal the line,

the less impact the independent variables have on the property. The presence of optimal

testing conditions with regard to these control variables can be easily determined from the

relevant graphs. As is evident from Figure 4.25, there is a significant change in the quality
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values of A356.2 alloys when the levels of solution heat treatment time and modification

are changed from low levels to mid or high levels, compared to the quality values of

B319.2 alloys for the same parameters, as shown from Figure 4.26.

It may be concluded from this observation that solution temperature at 530°C for 5

h is enough to complete the dissolution of the hardened Mg2Si phase in A356.2 alloys.

Solution temperature at 495 °C for 5 h, however, is not sufficient for the complete

dissolution of the hardened precipitated phases, e.g. AICU2 and Mg2Si, in B319.2 alloys. It

may also be noted that the quality values of A356.2 alloys display a significant response to

the fluidized bed heat treatment technique, as shown in Figure 4.25, compared to the

quality values of B319.2 alloys, as observed in Figure 4.26. It will be observed that the

quality values of the A3 5 6.2 alloys are slightly affected by the aging time, while the quality

values of B319.2 alloys display a significant decrease with increasing the aging times up to

8 h. These results obtained by statistical analysis are corroborated by the results obtained by

the quality charts in this study.

In order to examine the dual interaction effect of the individual factors, including all

of its levels, on the response Q-value, the detailed interaction plots for quality index values

of A356.2 and B319.2 alloys are provided in Figures 4.27 and 4.28, respectively. It may be

observed, from the interaction plot for the Q-value of A356.2 alloys, that the fluidized bed

heat treatment technique, coded by the digit 2, provides better quality values compared to

the convection furnace which is coded by the digit 1. With regard to the interaction plot of

the quality response using the technique factor, the fluidized bed technique shows better

quality values in interaction with the other factors, namely aging times of up to 5 h and
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solution heat treatment times of up to 8 h, for modified A356.2 alloys which are coded by

the digit 3. Figure 4.27 shows that the mean quality values are greatly affected by the

modification factor due to the significant effects of Sr which had been added to change the

acicular eutectic silicon to a fibrous form thereby improving the ductility and quality

values.

Liao et al. 195 observed that strontium enhances strength and ductility as well as the

quality of the alloys investigated. Also, it was observed that the mean quality values were

not significantly affected by the aging time factor which matches the results obtained

through the main effects plot. With regard to the interaction plot of quality response to the

heat treatment technique factor shown in Figure 4.28, the quality of A356.2 alloys, as

compared to B319.2 alloys, shows them to be more responsive to FB than to CF heat

treatment techniques.

The variation in quality values due to the variation of factors may be better

understood by showing surface and contour plots, thereby representing the effects of each

of the factors at different levels of variation. These plots, shown in Figures 4.29 and 4.30,

made it possible to predict the response for quality values of A356.2 and B319.2 alloys

which are based on the regression equations. Figures 4.29(a) and 4.30(a) portray the 3-D

response plots, while Figures 4.29(b) and 4.30(b) represent the corresponding 2-D contours

for the variables studied. These plots can facilitate predicting the way in which the response

reacts to changes in the modification, aging time, and heat treatment technique. As shown

in Figure 4.29(a), the surface plot indicates that the highest Q values of A356.2 alloys are

obtained when modification levels are high and the heat treatment technique used is a
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fluidized bed. Nevertheless, the influence of the modification factor is better than that of the

heat treatment techniques, indicating that the former has a better release-sustaining factor

for the Q values than the latter as may be also seen in Figures 4.29(a) and 4.25. With

reference to the Minitab program, the term release-sustaining factor refers to the

continuing influence of a specific factor on the response variable. In addition, it is possible

to acquire a general idea of Q values at various levels of the relevant factors.

The same conclusions may be deduced by the corresponding contour plot, shown in

Figure 4.29(b), illustrating the significant positive effect of modification factor on the

quality values of A356.2 alloys. Figure 4.30(a) reveals that the Q values of B319.2 alloys

are not greatly affected by the FB heat treatment technique. The corresponding 2-D contour

plot, shown in Figure 4.30(b), further clarifies the fact that the mean quality values decrease

through aging times of up to 8h in a CF and up to 12 h in an FB; the contour plot matches

the results obtained by quality charts as well as the interaction plot for B319.2 alloys.
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4.6. FB-HIGH HEATING RATE AND AGING CHARACTERISTICS

As was discussed earlier, the essential role of the FB heat treatment technique

involves reducing the total heat treatment time as well as obtaining higher strength values

than would be available with the use of a conventional furnace; this overall effect is related

to the high heating rate which usually characterizes a fluidized bed. This rate which

develops in an FB is associated with the higher heat transfer rate of the sand-bed heat-

treatment medium. Heating rate is known to have a considerable effect on aging

characteristics, where a high heating rate activates the precipitation rate of the hardening

phases in both 356 and 319 aged alloys. The amount of precipitates obtained in alloy

samples aged in a fluidized sand bed is significantly higher than it is for samples aged in a

conventional convection furnace. Fluidized bed-treated samples show higher strength

values than CF-treated ones, especially at earlier aging times of 0.5 h and 1 h; this

difference may be related to the stability of solute clusters, or GP zones, which tend to form

after quenching, and continue to do so up to the isothermal aging step. The effects of the

high heating rate in FBs on the stability of these clusters may be explained from the point

of view of thermodynamics and kinetics.

The stability of a solute cluster is highly affected by its radius at a given

temperature since the cluster particles are too small in size. The relationship between the

radius of the clusters and temperature is defined thermodynamically by the Gibbs-

Thompson equation as follows:

lyû
Equation 17

kr in 5
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where y is the interfacial energy, Q is the atomic volume, k is the Boltzmann constant, r is

the cluster radius, and S is the concentration of solute in equilibrium with small particles of

radius, r, relative to the equilibrium concentration of solute atoms.l '197

The radius of the solute clusters changes with the progress of time at a given

temperature; the kinetics of this change is defined as the Ostwald ripening effect. The

changes occurring in the cluster radius over time are given by the following equation:

dr _ kPXp
Equation 18

nn " rt

where D is the diffusion rate of solute atoms, Xp is the equilibrium concentration of solute

atoms, and rm is the mean radius of solute clusters. 198

The effect of the heating rate on this radius for stable clusters can be obtained by

taking the differential of Equation 17 by time and substituting for Equation 18 as follows:

dT _ 2yÛ ^ 1

dT 2yÛr
dt r ~ - � - x -

The last equation may be re-written in another form as indicated in Equation 4. From this

last equation, it will be noted that there is a direct relation between the heating rate and the

radius of the clusters. As the heating rate increases, the radius of the clusters formed will

increase in order to be more stable. The high heating rate in an FB thus leads to the

formation of more stable clusters, or GP zones, during the heating up stage to reach the

aging temperature. These clusters can act as suitable sites for the heterogeneous nucleation
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of further precipitates. The precipitation kinetics of such heterogeneously nucleated

precipitates is related to the concentration of defects. It was reported that the slow heating

rate in a CF leads to the formation of co-clusters of Si and Mg, not GP zones, in 356 alloys;

these co-clusters, however, retard the precipitation kinetics of Mg2Si during aging.146'147

4.7. CONCLUSIONS

The current study was carried out with a view to investigating the influence of

fluidized sand bed heat treatment on the tensile properties and quality indices of To-

tempered Al-7%Si-(Cu/Mg) casting alloys, namely B319 Al-7%Si-3.3%Cu-0.26%Mg and

A356 Al-7%Si-0.36%Mg. The variables investigated included solution heat treatment time;

aging time; and melt treatment. Quality charts as well as statistical analysis were used as

evaluation tools for selecting the optimum conditions to be applied in practice in order to

develop high strength and optimum quality in 356 and 319 castings for specific engineering

applications. From an analysis of the results obtained through this chapter, the following

conclusions may be drawn:

1. With regard to Si particle characteristics, the fluidized bed heat treatment displays

smaller Si particle size than the convection furnace through solution heat treatment

times of up to 12 hrs for non-modified 356 and 319 alloys. For modified and non-

modified 356 and 319 alloys, the smallest Si particle size was obtained after only

0.5 h solution treatment using an FB versus 5 h using a CF. The FB treatment

results in more fragmented Si particles due to the effects of the high heating rate

associated with the technique.



172

2. Grain-size results indicate that the presence of copper in the 319 alloy samples does

not hinder grain refinment at higher Ti contents of 0.22 wt%; the grain size is

refined from 1317 um to 291 urn by the addition of Al-5%Ti-l%B grain refiner.

The results from the grain size measurements for alloy 356, as obtained in this

study, show that with an addition of 0.006 wt% boron, the grains are refined by

more than 50% compared to the non-grain refined alloy, namely from 443 urn to

202 um.

3. The fluidized bed (FB) technique is more effective than the conventional convection

furnace (CF) technique in terms of the strength values achieved in To-tempered 319

and 356 alloys for solution heat treatment times up to 8 h; beyond this solution time,

no noticeable difference in properties is observed with the two techniques.

4. Fluidized bed heat treatment of 319 and 356 alloys produces better strength values

after 0.5 h, 1 h, and 5 h aging than those obtained using the conventional convection

furnace. This difference in strength may be related to the high precipitation rate of

the hardening phases such as AlsCuiMgsSiô, Mg2Si and C11AI2 in FB-treated alloy

samples as opposed to CF-treated samples.

5. The difference in the strength values of 356 alloy samples obtained from the

fluidized bed loses significance compared to those obtained from the conventional

furnace, at aging times between 8 h and 12 h for all solution treatment times, due to

the faster coarsening rate of the Mg2Si precipitates.

6. For the 319 alloys, FB-treated alloy samples show a continuously increasing trend

in the strength values with a delay in overaging of up to 12 h resulting from the
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stability of the intermediate precipitates, whereas in CF-treated samples, overaging

occurs after 8 h.

7. With regard to the quality charts of 319 alloys, heat treated samples show that

increasing the aging time up to peak-strength after 8 h and 12 h in a CF and an FB,

respectively, results in an increase in the alloy strength with a decrease in its quality

values for the same solution heat treatment time.

8. The quality values of the 356 alloys are more responsive to the fluidized bed

technique than 319 alloys through long aging times of up to 5 h; the 319 alloys heat

treated in an FB, however, show better quality values than those obtained by a CF

after 0.5 h aging time. The low response of 319 alloys to an FB heat treatment may

be related to the amount of undissolved Cu intermetallics, namely G1AI2, during

solution heat treatment, where the high heating rate in an FB has no significant

effect on the dissolution of these intermetallics, except at 0.5 h solution treatment

time.

9. An analysis of the quality charts for 319 and 356 alloys reveals that, for the same

solution heat treatment time, the FB-treatment provides better quality values after

only 0.5 h and 1 h aging times using the fluidized bed versus 5 h aging in the

convection furnace.

10. The FB treatment provides similar or slightly better alloy quality after only 1 h of

solution heat treatment plus 1 h of aging compared to that obtained after 5 h of

solution treatment and 5 h of aging with a CF treatment. A fluidized sand bed thus
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provides improved strength results while also saving on the heat treatment time and

energy consumption required for the heat treatment procedure.

11. With regard to statistical design of experiments, analysis of the results reveals that

modification and heating rate of the heat treatment technique have the greatest

positive effects on the quality values of the alloy 356. Analysis of the interaction

plot as well as of the main effects plot shows that the quality values of 356 alloys,

as compared to 319 alloys, are more responsive to FB than to CF heat treatment

techniques.

12. Equations developed on the basis of thermodynamic concepts, indicate that there is

a direct relationship between the heating rate and the radius of the clusters during

aging treatment. It is proposed that the high heating rate in a fluidized bed would

lead to the formation of more stable clusters, or GP zones, during the heating up

stage to reach the aging temperature. These clusters could act as suitable sites for

the heterogeneous nucleation of further precipitates.



CHAPTER 5

INFLUENCES OF QUENCHING MEDIA, AND AGING ARAMETERS



176

CHAPTER 5

INFLUENCES OF QUENCHING MEDIA, AND AGING PARAMETERS

5.1. INTRODUCTION

Subsequent to solution heat treatment, castings are quenched using several media

with different cooling rates. These cooling rates can be controlled by varying certain

quenching parameters (e.g. bath temperature, degree of agitation, etc.). Varying these

parameters changes the heat transfer rates and the ability to increase or decrease the cooling

rate to achieve certain mechanical properties as well as eliminate distortion and the

possibility of cracking.

An immediate outcome of quenching is the formation of a supersaturated solid

solution, where in the given cooling rate applied during quenching dictates the resulting

vacancy concentration and possible phase formation. Generally, the faster the cooling rate,

the higher the potential alloy strength after aging. Water is the preferred quenching medium

which exhibits an excellent heat-transfer coefficient. However, water quenching raises

concerns regarding the unpredictable nature of the transition from the vapor blanket stage

to the boiling stage, resulting in large temperature differences between the surface and the

center of the quenched part. Temperature gradients are created along the surface, resulting
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in part distortion. Therefore, it is of utmost importance to control the transition from the

vapor blanket stage to the boiling stage.

For large cast parts, as well as parts with complicated geometries, large temperature

gradients may develop within the part. These gradients manifest as high residual stresses,

part distortion and cracking. One possible remedy to reduce distortion it to use a fluidized

sand bed (FB) as a quenching medium in order to improve the part's mechanical

performance and quality. Water and hot air quenching are used to establish a relevant

comparison with FB quenching. It was reported that the change in the cooling rate was

more drastic for water quenching, where the cooling rate varied from 0 to -80 Ks"1 in less

than 8 seconds, as compared to FB quenching, where the cooling rate varied from 0 to -14

Ks"1 in 18 seconds; the quenching rate of the CF medium is 1.8 Ks"1.149'151

The aging stage follows quenching, where excess solute atoms in the solid solution

precipitate and strengthen the alloy; the degree of precipitation is dependent upon the

time/temperature applied to the casting. The T6 aging treatment (i.e. peak aging) is

preferred in the case of Al-Si-Mg and Al-Si-Cu-Mg alloys, producing very high levels of

strength. However, this is often met with a corresponding reduction in ductility. In some

cases, the T7 aging treatment (i.e. overaging) is considered a better alternative. Here, the

alloys are aged at temperatures in the range of 200-240°C. The T7 aging treatment aims at

reducing residual stress while increasing the performance of the alloy, particularly in high

temperature applications. The maximum hardening response occurs when an alloy

microstructure contains a combination of GP zones and well-dispersed, semi-coherent,

intermediate precipitates. Greater hardening is possible provided an increase in the uniform
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dispersion of one or more of these phases is attained. This is possible with the use of multi-

temperature aging treatments. In this study, multi-temperature aging cycles (involving T7

and T6 aging conditions), as compared to a standard T6/peak-aging cycle, were applied

using both a FB and a CF.

This chapter discusses the influences of the quenching media (water, air and sand)

and the age-hardening parameters (multi-temperatures, time) on the tensile properties and

quality index values of A3 56.2 and B319.2 casting alloys heat treated using both a CF and

an FB. Details of applied heat treatment cycles are provided in Tables 3.2 and 3.3.

5.2. TENSILE PROPERTIES

The following subsection show and discuss the results regarding the effects of

quenching conditions and aging parameters on tensile properties (UTS, YS and elongation)

of A356.2 and B319.2 alloys heat treated using FB and CF. Fluidized sand bed is

considered as an economical/suitable heat treating technique for aluminum casting alloys.

The heat transfer involved in an FB is highly uniform and the heat-transfer coefficient is an

order of magnitude greater than that of a convection furnace. For quenching and multi-

temperature aging cycles, the FB technique may speed up the heating rate, so as to reach

the required temperature during heating/quenching. This has a significant effect on the size,

density and uniformity of hardening precipitates, which will, in turn, influence alloy

strength and elongation.
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5.2.1. Al-Si-Mg Casting Alloys

5.2.1.1. Effects of quenching media (FB, CF, and water)

Figures 5.1 and 5.2 display the effects of FB, CF and water quenching media on the

strength of non-modified and Sr-modified T6-aged A356.2 type alloys, respectively. For

comparison purposes, the as-cast alloy strength results are also included (see Table 3.2 for

process details).

As seen from Figures 5.1 and 5.2, the strength (UTS, YS) values of the CF and FB

quenched modified and unmodified T6-aged alloys (Cl, C2, C3) are lower than those

quenched in water (Bl, B2, B3). The high cooling rate from water quenching results in the

greatest concentration of vacancies; these vacancies act as nucleation sites for precipitates.

Conversely, hot air quenching with a CF provides the lowest strength values due to the low

cooling rate and low heat transfer rate. The air quenching-CF technique has been employed

for automobile castings such as cylinder blocks which are fitted with cast iron liners, where

the slow air-quench is suitable due to the difference in the quench characteristics of iron

and aluminum.

Several factors affecting the feasibility of air quenching, such as air flow, air quench

temperature and casting configuration. 199 When conventional techniques such as the CF

system are used, the materials lose a certain amount of energy on cooling (i.e. being

quenched) from the solution to the aging temperature inside the furnace. In contrast, it is

possible to heat treat materials immediately in an FB system after processing, without any

intermediate cooling or loss of energy. This offers great opportunities for the saving of
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energy, space and time rather than improving the tensile properties as compared to a CF

and/or water quenching media.148'199'200 With respect to strength results, heat-treated alloys

using an FB or a CF for direct quenching-aging (Cl, C2 and C3), the strength decreases

with increased aging temperature (170, 190 and 210°C). This decrease in strength results is

related to over-aging, which occurs after the peak aging point (at 170°C).

The reduction in strength results with a reduced quenching rate is related to the

lower hardening Mg2Si precipitates formed, which, in turn, may be related to the amount of

vacancies present. Upon quenching from the solution temperature, vacancies are retained in

the Al matrix. The lower the vacancy concentration, the slower the resultant aging process

and the higher the related transformation temperature for GP zone formation and

precipitation.148 Thus, it is likely that a lower vacancy concentration or lower fraction of

clusters/GP zones/metastable phases gives rise to the observed aging process during FB

heat treatment.

With regard to the same aging parameters at 170°C/4 h, the FB-quenched alloys

show slightly better strength results (Cl-FB condition) than the water-quenched alloys

followed by aging using a CF (Bl-CF condition). The direct quenching to aging

temperature using an FB results in the formation of greater amount of some clusters or GP

zones. The density of precipitates responsible for strengthing may be affected by the

heterogeneous nucleation sites such as those cluster and/or meta-stable phases. 1)0 The

direct quenching-aging process using an FB has several advantages such as saving heat

treatment time as well as obtaining optimum combination of high strength and elongation

values. For water-quenched alloys(Bl, B2, B3), it can be seen that both UTS and YS values



181

increase with aging time, up to 12 h. The continuous increase in strength with aging time

for both CF- and FB-treated samples can be related to the natural aging applied at room

temperature for 24 h before artificial aging. This natural aging step leads to the onset of a

high density of clusters or GP zones, which serve as nucleation sites for the Mg2Si phase

which form in the subsequent aging step. 147 It should be noted that the fluidized bed heat-

treated samples, water quenched or sand quenched, produce better strength results than the

conventional furnace-treated samples for all heat treatment conditions (B, C, D). Such

results of water-quenched alloys heat treated using an FB, can be explained by the high

heating rate of the fluidized bed which activates the rate of precipitate formation giving rise

to a high density of precipitates. The dislocation concentration in the matrix affects the

aging kinetics of Mg2Si precipitation; the slow heating rate in a CF annihilates the

dislocations through recovery, thereby reducing their density prior to reaching the aging

temperature. The dislocations are known to be potential sites for Mg2Si precipitates the

presence of which would lead to a pronounced improvement in mechanical properties

following artificial aging. 147

For the water quenched alloys subjected to multi-temperature aging conditions (Dl,

D2, D3), it may be observed that the T6-aging conditions (Bl, B2, B3) yield higher

strength values than almost all of the multi-temperature aging cycles using both CF and FB.

The low strength values for multi-stage aging cycles may be related to the formation of co-

clusters of Mg and Si. These elements lead to the nucleation of a coarser dispersion of

precipitates after aging at elevated temperature ( 240°C) resulting in lower significantly

response to the following second stage of T6 aging, compared to a single step T6 treatment,
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as well as high ductility. 117' 1 5 In general, the fluidized bed heat treated alloys (water

quenching, followed by two aging steps) demonstrate slightly better strength values than

those heat-treated with a CF. It was reported by Polmear et al. that the maximum

strengthening by age hardening is achieved for alloys that contain precipitates that are large

enough to resist shearing by dislocations, yet too finely spaced to be bypassed. The

maximum response to hardening occurs for a microstructure that contains a combination of

GP zones/co-clusters (24 h pre-aging at room temperature after quenching) and relatively

widely-dispersed, semi-coherent, intermediate phases.202 This combination of different

precipitates can be achieved by applying multi-stage aging treatments to get a compromise

between high strength and high ductility. The modified alloys demonstrate a better level of

strength than the unmodified alloys, for all heat treatment conditions (B, C and D).
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Figure 5.3 shows the variation in elongation for A356 non-modified and modified

alloys, obtained after continuous aging and multi-temperature aging, for quenching carried

out in water, air and sand. As shown in Figure 5.3, the elongation values obtained by multi-

temperature treatments of group D are higher than those obtained by the T6 treatments of

group B, for both FB and CF. The elongation of modified and non-modified A356 alloys is

greater when the alloys are FB-quenched, as compared to when they are water-quenched.

For water-quenched alloys, it was seen that the FB treatment produced better elongation

results than the CF treatment for all aging times imposed for B and D heat treatment

conditions. The high heating rate of the FB results in faster fragmentation and

spheroidization of the Si particles, as well as the distribution and dissolution of micro-

constituents in the matrix, thereby increasing the ductility. 136 The highest values of

elongation were obtained with the air quenching/T6-aging cycles of group C using a CF,

which is to be expected due to the lowest strength values exhibited by these alloy samples.

The improvement in the elongation of the modified alloys is related to the fragmentation

and spheroidization of the acicular Si particles and iron intermetallics through Sr-

modification and the high heating rate prevailing in the fluidized bed. This high heating rate

activates the process of the thermal modification of eutectic Si and Fe intermetallics. I47

The decrease in elongation values, with increasing aging time, for water-quenched alloys,

may be related to the precipitation of Mg2Si, which hinders the dislocation motion during

tensile testing, thereby reducing the ductility.
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5.2.1.2. Multi-temperature aging treatments (FB Vs CF)

The T6 treatment is usually preferred when heat treating Al-Si-(Mg/Cu) castings;

this standard treatment produces the highest strength achievable with, however, a

corresponding reduction in ductility. In some cases the T7 treatment is considered a better

alternative, where this treatment leads to artificially overaging the alloy at high

temperatures in the range of 200°C-240°C. The T7-overaging produces reduction of

residual stresses, increased performance, as well as stabilization of the alloy, particularly in

applications which involve exposure of the casting to elevated temperatures and thermal

fatigue. The multi-temperature aging cycles in this work were divided in two categories

starting with T7 temper (230, 249 and 270°C) and followed directly by a T6 (180°C)

treatment, for various times. The current subsection will discuss the effects of T7/T6-type

multi temperature aging treatments on the tensile properties of the A356.2-base alloys (Kl

and K3). The aging temperatures/times applied to these alloys are shown in Table 3.3. The

application of multi-temperature aging treatments aims at producing strength levels

comparable to those obtained from a T6 temper, yet with increased ductility, equal to or

greater than that attained from a T7 temper. The aging treatment is to precipitate an excess

amount of Mg and Si out of the supersaturated solid solution in the form of hardening

phases containing Mg and Si. According to the temperature and time applied to the A356.2

castings, the decomposition of the supersaturated solid solution may involve the formation

of independent clusters of Si and Mg, followed by co-clusters of both Si and Mg, coherent

needlelike GP zones, coherent needle-shaped (3", coherent rod-shaped P", and the

incoherent plate-shaped (3-Mg2Si phase. 115'116> 117
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Figures 5.4 and 5.5 compare the tensile strength and elongation values, respectively,

obtained with the T6 continuous aging treatment (180°C/8 h) with those obtained from the

multi-temperature aging treatments. From Figure 5.4, it is seen that the T6 treatment yields

higher strength values than nearly all of the multi-temperature aging cycles. This decrease

in strength may be attributed to an increase in the inter-particle spacing between

precipitates, which makes dislocation bowing much easier. 203 The multi-temperature aging

cycles produce an increase in strength values with increasing T6-aging times (namely 2, 4

and 8 hours, at 180°C), as compared to a T7 temper alone (i.e. with no subsequent T6 aging

stage). At the temperature of second aging stage (180°C), the T7-treated alloy

microstructure may have been refined by, the T6 treatment, into a fine dispersion of semi-

coherent clusters of Mg2Si strengthening phase. 117> 118 The difference in strength values at

2 h in the second T6 aging step, and that obtained at 8 h, may be that the incoherent

precipitates appearing after 2 h and disappearing later due to the dissolution of the

precipitates and homogenization of the matrix. However, as diffusion/precipitation

processes are affected by the aging temperature, the precipitates appear in the aluminum

matrix only after an extended aging time. 117'118> 196 In general, the strength values of heat

treated alloys decrease with increase in T7 temperature of the multi-temperature aging

treatment, due to overaging. The decrease in the strength of the 356 alloy, accompanying

the overaging, is related to the loss of the coherency strain surrounding the precipitates

through the formation of incoherent, stable P-Mg2Si phases. In addition this the loss of

coherency, the longer aging time results in the coarsening of the large precipitates at the

expense of the small ones. This coarsening effect produces a lower density of the widely
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dispersed, coarse precipitates. These changes in the precipitates the features reduce the

resistance to dislocation motion through the metal matrix and lead to a deformable soft

matrix. Figure 5.4 shows that the FB heat-treated alloys produce higher strengths, as

compared to those obtained by CF, for all heat treatment cycles. Such results can be

explained by the high heating rate of the FB which activates the rate of precipitate

formation, giving rise to a high precipitates density. It was reported that the FB produces a

large number of finely distributed Mg2Si particles, compared to the CF. This difference in

particle density explains the higher precipitation kinetics of aging in an FB. 204

Additionally, the dislocation concentration in the matrix affects the aging kinetics of Mg2Si

precipitation. The slow heating rate in a CF annihilates the dislocations during recovery,

thereby reducing their density prior to reaching the aging temperature.55'56'204
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There is a direct relationship between the heating rate and the radius of the clusters

during aging treatment. 147' 204 The high heating rate in the FB leads to the formation of

more stable clusters, or GP zones, during the heating up stage to reach the aging

temperature. These clusters can act as suitable sites for the heterogeneous nucleation of

further precipitates. 147 As Figure 5.4 demonstrates, the modified A356 alloys essentially

behave in the same way as the mechanical behavior of unmodified alloys except for that

fact that they exhibit higher strength values than the unmodified alloys for all heat

treatment cycles studied.

Likewise, as Figure 5.5 shows, the modified A356 alloys demonstrate higher

elongation values than the unmodified ones; this is attributed to the effect of Sr on the Si

particles morphology. From a comparison of elongation values obtained from the T6

continuous aging and the multi-temperature aging treatments, it may be seen that the

ductility is improved after the multi-temperature treatments. This behavior is to be

expected since the corresponding strength values are lower, compared to the To-treated

samples. As was explained earlier, the noticeable reduction in the strength values of the

356 alloys, upon increasing the aging temperature and/or applying the first stage of aging

at high temperatures (T7), is related to the formation of coarser precipitates with a lower

density in the matrix, and displaying large inter-particle spacing. These changes facilitate

dislocation motion and results in softening effects, thus producing increased ductility, as

compared to To-single stage aging. The second stage of the aging (T6-aging) is applied to

the T7 heat treated alloys to improve the strength results, achieving a compromise between

strength and elongation values and affecting the quality of the alloys.
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For the tensile results of unmodified A3 5 6 alloys, the multi-temperature heat

treatment cycle corresponding to SA32 (see Table 3.3), viz., 230°C/180°C for 2h/8h using

an FB shows a UTS of 278.3 MPa and elongation of 3.9% versus 351 MPa UTS and 3.1%

elongation values obtained by applying a single-stage T6 aging treatment using an FB.

According to the required mechanical properties for specific engineering applications,

suitable heat treatment parameters may be selected for these particular alloys. Since the

cost of heat treatment play a major role in the selection of type and route for heat-treating

an alloy, the T6 treatment using an FB remains the most economical temper in terms of

strength for the A356.2 alloy studied.

5.2.2. Al-Si-Cu-Mg Casting Alloys

5.2.2.1. Effects of quenching media

Figures 5.6 and 5.7 illustrate the effects of quenching media (water, air, sand) on

the strength of non-modified and modified B319.2 To-treated alloys. For water-quenched

alloys (i.e. B and D heat treatment cycles), the fluidized bed heat treatment produces better

strength values compared to those obtained with a conventional furnace, for all aging

times. The difference in strength values is related to the high precipitates density of Cu-

containing phase particles (i.e. AlsC^MgsSiô and CuA^ phase particles) in the FB-treated

samples, as opposed to the CF-treated ones, as well as the dissolution of clusters or GP

zones during the heating-up period to the isothermal aging temperature in the conventional

convection furnace. 147' 204 In this work, the optimum strength values for CF heat-treated

samples were obtained after 8 h of aging, (followed by a slight decrease in strength from
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overaging), whereas with the FB treatment, a continuous increase in these values was

noted. This is related to the stability of the clusters/GP zones and intermediate precipitates

in the early stages of aging when using an FB. The peak strength attained after 8 h aging in

a CF or 12 h aging in an FB may be related to the presence of hardening Cu-phase

147 proposed by others as corresponding to GCuAb + QALiO^MgsSis ' !precipitates,147 proposed by others as corresponding to G-CuAb +

The FB heat-treated samples display better results than the CF heat treated samples, for all

quenching media and heat treatment conditions. The high heating rate in an FB leads to the

formation of more stable clusters, or GP zones, during the heating-up stage to reach the

aging temperature; these clusters act as suitable sites for the nucleation of further

precipitates, where the precipitation kinetics are related to the concentration of defects.

It was reported that the slow heating rate in a CF leads to the formation of co-

clusters of Si and Mg, not GP zones, in 356 alloys; these co-clusters, however, retard the

precipitation kinetics of Mg2Si during aging. 146 In general, the strength values of water

quenched 319 alloys (conditions B2 and B3) treated to T6 temper using CF and FB are

higher than sand- and air-quenched samples (conditions C2 and C3) using both FB and CF,

respectively. The high cooling rate due to water quenching, results in a high concentration

of vacancies which act as nucleation sites for precipitates during aging stage. The density

of precipitates is controlled through these heterogeneous nucleation sites.
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Comparing the fluidized sand bed and water as quenching media, for the same T6

conditions (Bl, Cl) at 170°C/4 h, the strength values of FB-quenched samples (Cl; FB

condition) are higher than those quenched in water, and followed by aging in an FB or CF.

The direct quenching-aging treatment process using an FB results in the formation of

greater numbers of clusters/GP zones which hinder the dislocation motion and

consequently increase the strength values. 150> 151 The increase in YS when quenching is

done in an FB versus in water is attributed to the formation of clusters and/or metastable

phases that may be formed due to the slower cooling rate of FB quenching, while the low

UTS exhibited by FB quenched-aged samples can be related to their relatively low

elongation (Cl; FB condition) compared to that exhibited by the water-quenched samples

(Bl-FB/CF). Both UTS and elongation values depends on the ease of dislocation mobility

whatever the type of obstacles present in the matrix (clusters and/or Co-Clusters) formed

due to the low cooling rate of the FB quenching medium (sand). The YS values depend on

the size, density and distribution of precipitates formed in the final stage of the aging

treatment process. 130> 132'147'150j 151 It may be noted from strength results that the 319 alloys

are more responsive to the fluidized bed quenching, as compared to water quenching, than

the 356 alloys. The relatively low cooling rate involved in FB quenching results in the

formation of greater number of clusters and/or GP zones which by role act as nucleating

sites for the hardening precipitates formed during aging with a high heating rate using the

same fluidized quenching bed (direct quenching-aging). So that, for the same heat

treatment conditions, the direct quenching-aging treatment applied to the 319 alloys using

an FB results in marginally higher UTS and YS values than water quenched alloys treated
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to T6 temper using either an FB or a CF. It was reported that a greater amount of GP zones

are formed by applying T4 temper to Al-Si-Cu-Mg (354) alloys in the case of FB

quenching; whereas no GP zones or other meta-stable phases are formed in FB quenched

Al-Si-Mg (357) alloys as predicted by the CCT (continuous cooling transformation) and

TTT (time-temperature transformation) diagrams. 130'132'150> 151 The formation of GP zones

and/or meta-stable phases plays a vital role in the subsequent aging properties of the alloy

and significantly affects the tensile properties of T6 treated alloys. Another study applying

FB quenching on Al-Si-Cu-Mg alloys 151 reported that there is no significant differences in

UTS and YS values are observed between FB and water quenched alloys. On the contrary,

the tensile results shown in Figures 5.6 and 5.7 demonstrate that the strength of FB-

quenched B319.2 alloys is higher than those quenched in water. Regarding the strength of

heat-treated alloys using an FB or a CF for direct quenching-aging treatment (Cl, C2, C3),

the values decrease with increased aging temperature (170°C, 190°C, 210°C). This decrease

in strength results is related to overaging. Overaging occurs after the peak strength aging

temperature (190°C) is reached, using either CF or FB for direct quenching-aging

treatment.

For the water quenched alloys subjected to multi-temperature aging conditions (Dl,

D2, D3), it may be observed that the T6 treatment cycles (groups B and C) yield higher

strength values than almost all of the multi temperature aging cycles using both CF and

FB. For multi-temperature treatment cycles, the FB-treated samples show better strength

results than those obtained with the CF, where the high heating rate of the FB results in the

formation of a high density of stable GP zones that act as nucleation sites for precipitates.
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Also the formation of clusters resulting from the 24-hr delay at room temperature after

quenching may promote the formation of existing precipitates. 91> 205> 206 The significant

response of B319.2 alloys to FB multi-temperature aging heat treatment cycles, compared

to that of A3 56.2 alloys, may be related to the formation of several types of precipitates

such as Cu-containing phases and Mg2Si, with different sizes during multi-stage aging in

the B319.2 alloys. Maximum strengthening by age hardening will be achieved for alloys

that contain large precipitates to resist shearing by dislocations and yet are too finely

spaced to be by-passed. The maximum response to hardening occurs in a microstructure

containing a combination of co-clusters/GP zones (after 24 hours pre-aging at room

temperature after quenching) and relatively widely dispersed, semi-coherent, intermediate

phases. 203' 204' 205> 206 This combination of different precipitates may be achieved by

applying multi-temperature aging treatments to get a compromise between high strength

and high ductility.

The modified B319.2 alloys show the same mechanical behavior as the unmodified

ones for all heat treatment cycles, as shown in Figure 5.7. The modified alloys show

slightly better strength results than the unmodified alloys for all heat treatment conditions

(B, C, D).

Figure 5.8 illustrates the variation in elongation values of Al-Si-Cu-Mg alloys,

obtained with different heat treatment cycles, and using both CF and FB. Elongations for

the FB quenched-aged samples were lower than those quenched in water. In general, the

CF heat treatment cycles show better ductility than those employing the FB. This is

expected for 319 alloys containing Mg due to maximum strengths achieved with FB heat
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treatment. The greatest elongation values were obtained with the air quenching-aging, T6

cycles (group C) using a CF, given that these samples also exhibit the lowest strength

values. The improvement in ductility for the modified alloy may be related to the

fragmentation and spheroidization of the Si particles and Fe intermetallics obtained

through modification and the high heating rate prevailing in the FB as discussed

previously. For water-quenched alloys, heat treated using both CF and FB, Figure 5.8

shows that no noticeable difference in elongation values with aging time is obtained using

either technique; however, CF-treated samples show slightly better results than FB-treated

samples, for all aging times. Elongation decreases with further aging time; this loss of

ductility is related to the strengthening effect associated with the precipitation of the Mg2Si

and Cu-containing phases. It may be noted that the multi aging cycles (Dl, D2, D3)

produce either better or similar elongation values, compared to T6 temper cycles (Bl, B2,

B3) for either FB or CF. The main objective of multi-temperature aging cycles is to

achieve a compromise of high strength and elongation, required for a specific engineering

applications.
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5.2.2.2. T7/T6-type multi-temperature aging treatments (FB Vs CF)

The chemical composition of B319.2 casting alloys contains three hardening

elements, namely, copper, magnesium, and silicon. The addition of Mg greatly enhances

the artificial aging response of the 319 alloys. Age-hardening treatment of Al-Si-Cu-Mg

alloys, results in the precipitation of the quaternary g-phase and its precursors, which play

an essential role in the strengthening of this specific alloy system. In addition to the

precipitation of the £>-phases, several others, such as ^-A^Cu, /?-Mg2Si, S-AkCuMg, a-

Al5Cu6Mg2 and their precursors, are also expected to precipitate during age-hardening

treatment of B319.2 (Al-Si-Cu-Mg) alloys. 94' 207 As previously mentioned, T7/T6-type

multi-temperature aging treatments permit the precipitation of uniformly dispersed, semi-

coherent, intermediate precipitates, with the aim of producing strength levels equal to those

of the T6 temper but with a ductility equal to or greater than that of the T7 temper. In this

work, the multi-temperature aging cycles were divided in two categories, starting with T7

temper (230, 249, 270°C) and followed directly by T6 temper (180°C) treatments for

various times. The current section will discuss the effects of these multi-temperature aging

treatments on the tensile properties of the B319.2-base alloys (K2 and K4). The aging

temperatures and times applied to the alloys are shown in Table 3.3.

Figures 5.9 and 5.10 compare the tensile strength and elongation values,

respectively, obtained with the T6 continuous aging treatment (8 h at 180°C) with those

obtained from the T7/T6 multi-temperature aging treatments. It may observed that the T6

treatment yields higher strength values than almost all of the multi-temperature aging

cycles, with the exception of treatment cycles SA32, SA34 (consisting of aging at 230°C
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for 2h and 4h, respectively, followed by aging at 180°C for 8 h). With the use of these heat

treatment cycles, the strength values attained are almost identical to those obtained after T6

treatment (397.3 MPa for the T7/T6-type multi-temperature aging treatment versus 400

MPa for the T6) as shown in Figure 5.9. It can be noted from the strength results that even

at prolonged aging times (8 h), the strength values of FB-treated multi-temperature aged

alloys are still high for heat treatment cycles up to SA54 (aging at 249°C/4 h, followed by

aging at 180°C). On the other hand, the strength values of CF-treated multi-temperature

aged alloys show signs of overaging after 4 h of aging at 180°C for multi-temperature

aging/heat treatment cycles applied up to SA54. The continuous increase in these values

may be noted, related to the stability of the GP zones and of the intermediate precipitates in

the early stages of aging when using a fluidized bed. The peak strength attained after 4 h

aging in a CF or 8 h aging in an FB may be related to the presence of hardening elements

such as 9-CuAl2 + Q-AUQ^MggSis. 147 The high heating rate in an FB leads to the

formation of more stable clusters, or GP zones, during the heating-up stage to reach the

aging temperature. These clusters can act as suitable sites for the heterogeneous nucleation

of further precipitates. The precipitation kinetics of such heterogeneously nucleated

precipitates is related to the concentration of defects.

For the heat treatment cycle SA71 which consists of aging at higher temperature of

270°C for lh followed by aging at 180°C, the strength values of heat-treated 319 alloys

show overaging at an earlier T6 aging time of 2 h using an FB and at zero T6 aging time

(viz., directly after T7 aging) using a CF (Figures 5.9 and 5.10). Such a decrease in strength

and increase in the ductility of the alloy is related to the softening which occurs as a result



206

of the over-aging conditions at which the equilibrium precipitates form, leading to the loss

of coherency strain between the precipitates and the matrix. In addition, over-aging also

result in the continuous growth of large precipitates at the expense of the smaller ones,

ultimately leading to coarse precipitates with less density in the metal matrix having large

inter-particle spacing. All these changes which accompany over-aging contribute to a

decrease in the strength of the castings. It may be noted that the modified 319 alloys have

the same mechanical behavior as unmodified ones except that the strength values of

modified alloys are higher than those obtained by unmodified alloys for all heat treatment

cycles. In general, the fluidized sand bed heat treated alloys show higher strength values

than those obtained by heat treatment using the CF for all heat treatment cycles; this is

confirming the significant effect of an FB technique for applying T7/T6 multi-temperature

aging treatment cycles of B319.2 alloys as well as A356.2 alloys.

Regarding the strength results of B319.2 cast alloys, when compared to A356.2

castings, it may be noted that these alloys were more responsive to T7/T6 multi-

temperature aging treatment cycles using an FB (namely SA32 and SA34 cycles), showing

the same or slightly better strength as those obtained when applying T6 standard treatment

(Figures 5.9 and 5.10). The aging behavior observed when applying the second (T6) aging

step at 180°C is related to the precipitation of the Cu- and Mg-containing phases in the

metal matrix. The size of these precipitates varies according to the aging time applied to

the castings.
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The increased strength observed in the early stages of aging is related to the redistribution

of the excess solute atoms which thus form clusters of Cu-containing phases. Chakrabarti

and Laughlin, 83 Yao et al., and Wolverton 207 have reported these to be the coherent,

metastable, rod-shaped Q-phase.

From Figures 5.9 and 5.10, it may be noted that increasing the aging temperature,

from 230°C (SA32) to 270°C (SA71), results in reducing the time required to reach peak-

aging, observed at 8 h and 2 h using, respectively, using an FB. This specific form of the

aging curves is a result of the overaging, occurring with increasing aging temperature

and/or time. Applying an aging temperature of 270°C results in an increase in alloy

strength, where the aging time required to reach peak strength, in this case, was 2 h. This

aging treatment is related to the high rate of atomic diffusion accompanying high heating

rate (high temperature, low time) and the direct precipitation of the coherent and semi-

coherent phases, which are the main causative source of peak-strength. Aging at 270°C is

expected to be higher than the solvus temperatures for the precipitates and zones which

usually form during the early stages of aging. Consequently, the time spent in the

precipitation and dissolution of these precipitates at lower aging temperatures will be

reduced when increasing the aging temperature to 270°C. Any further increase in the aging

time results in a further decrease in the alloy strength and an expected increase in

elongation values.

Figure 5.10 shows the elongation values obtained for the B319.2 alloys when

subjected to the T6 and T7/T6 multi-temperature aging treatments. It may be seen that the

percentage elongation values obtained from the multi-temperature treatments are closely
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similar to the T6 treatment values. Although the treatment cycles SA52, SA54 and SA71

produce better elongation values as compared to T6 treatment. Overall, taking into

consideration both strength results and elongation values, the multi-temperature aging

treatments may be considered to be more advantageous for the B319.2 (Al-Si-Cu-Mg) cast

alloys. According to the tensile properties obtained in this study, the treatment cycles SA32

and SA34 may be selected for B319.2 alloys used for particular engineering applications

that require a compromise of high strength and ductility values as compared to the standard

T6 temper treatment. As shown in Figure 5.10, the modified 319 alloys show higher

elongation values than the unmodified ones which is related to the effect of Sr on the

morphology of Si particles. The improved elongation following the multi-temperature

treatments are to be expected as the corresponding strength values are lower compared to

those of the To-treated samples. The noticeable reduction in the strength values of the 319

alloys, upon increasing the aging temperature and/or applying first stage of aging at high

temperatures (T7), is related to the formation of coarser precipitates with lesser density in

the matrix having large inter-particle spacing (the objective of T7-first stage aging). These

changes facilitate dislocation motion and results in softening effects producing higher

ductility values as compared to T6-single stage aging. The second stage of T6-aging is

applied to the T7-temper heat treated alloys to improve the strength results, thus achieving

a compromise between strength and elongation values and affecting the quality of alloys.
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5.3. QUALITY INDICES

Quality indices represents a significant tool for evaluating, selecting and predicting

the most appropriate metallurgical conditions to be applied to Al-Si-(Mg/Cu) casting alloys

with a view to obtaining specific properties. Accordingly, all pertinent results will be

presented using two types of charts, based on the type of alloys investigated: (i) charts for

356 alloys based on Drouzy's approach, and (ii) charts for 319 alloys based on Casers'

approach. Generating these charts provides a logical evaluation of the effects various

parameters may have on the tensile properties and quality indices of the castings in

question. The results in each case were re-plotted using scatter-plots and contour plots to

confirm the original analyses and interpretations made using the quality charts. These

parameters include the effects of quenching media and multi-temperature aging cycles on

the quality performance of A356.2 and B319.2 cast alloys heat-treated using FB and CF

heat treatment techniques.

5.3.1. Al-Si-Mg Casting Alloys

Figures 5.11 compares the effects of modification, quenching media and aging

parameters on the quality of A3 5 6 alloys after a solution heat treatment at 530°C/5h,

carried out in a fluidized bed versus a convection furnace. From the quality maps shown in

Figure 5.11 (b) generated using Equations (5) and (6), it may be observed that the modified

356 alloys show an improvement in quality values by 45 MPa over the non-modified alloy,

for all heat treatment cycles. The main purpose of Sr addition to Al-Si-Mg alloys is to

change the morphology of the eutectic silicon from an acicular form into a fibrous one
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resulting in improved ductility and strength with high quality values. The addition of the

appropriate amount of Sr improves the mechanical properties, specifically, the ductility

and the quality index of Al-Si casting alloys. Closset and Gruzleski studied the

influence of Sr-level on the quality index of A356-T6 casting alloys which had been

subjected to three cooling rates. They observed that the strontium range of 0.005%-0.015%

is the optimum amount which may be added to A356 alloys to improve their mechanical

properties and quality index values. The mechanism of eutectic silicon modification is

based on two concepts: (i) the restricted nucleation and (ii) the restricted growth

mechanisms of eutectic silicon particles in the presence of a modifying agent.51>208 Lu and

Hellawell209 proposed that the modifying agent is adsorbed at the silicon-liquid interface

and results in growth twins and branching of silicon particles. In addition to Sr, the

fluidized sand bed has a significant effect on Si particle size, reducing it by more than half

after 0.5-5h of solution heat treatment times as discussed in section 4.2.1.

For water-quenched alloys treated to T6 temper (Bl, B2, B3 conditions), the

quality values exhibited by FB-aged samples are 50 MPa greater than those obtained by a

CF, for all aging times, Figure 5.11 (a). The high heating rate in an FB activates the

precipitation rate, producing more precipitates after a short aging time, resulting in higher

strength and quality values. This difference in quality values between the CF- and FB-aged

samples is reduced to 15 MPa due to the significant effect of modification, compared to the

effect of high heating rate in an FB, Figure 5.11 (b). Figure 5.11 (a) shows that the water

quenched alloys treated to T6 temper using an FB (Bl, B2, B3 conditions) produce better

quality values than those obtained by FB and CF quenched-aged alloys (Cl, C2, C3). For
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the same aging parameter conditions (aging at 170°C/4h), the FB quenched-aged alloys

(Cl-FB condition) show nearly the same or better quality values than those obtained by

water-quenched/CF-aged alloys (Bl-CF condition), as shown in Figure 5.11 (a). With

regard to the water-quenched samples, the aging behavior of 356 alloys treated to T6

temper is quasi-parallel to the iso-Q lines as may be observed in the quality charts of

Figure 5.11 for the B series. These charts also show that increasing the aging time does not

affect the quality index values of the 356 castings which had been heat treated in a CF and

an FB. This type of aging behavior may be related to the continuous increase in the

strength of the alloy at the expense of its ductility; the reduction in ductility compensates

for the increase in strength according to Equation 5, so that the Q values essentially remain

the same. In general, It should be noted that using water as quenching medium results in a

marked improvement in strength and quality values due to the faster cooling rate achieved

by using water as opposed to hot air using a CF. However, the FB quenched-aged samples

ensure a reduction of residual stresses, as well as better strength and good quality,

compared to alloy samples quenched with water or air.
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For sand and air quenched-aged alloys, the modified 356 alloys show a noticeable

decrease in quality values with an increase in the aging temperature from 170°C to 210°C

(Cl, C3 conditions). The decrease in quality values is not significant, however, for non-

modified 356 alloys; this is related to the fact that increasing the aging temperature up to

210°C results in a continuous decrease in the strength with a continuous increase in

ductility. The net effect of this aging treatment thus produces a non-significant decrease in

the quality index values of non-modified 356 alloys. For the same heat treatment cycles

(C-conditions), the FB quenched-aged alloys produce better quality and strength results

than CF quenched-aged alloys; the hot air quenched-aged alloys using a CF show the

lowest quality and strength values due to the lowest cooling and heat transfer rates

associated with the hot air quenching medium. The slowest cooling rate obtained in a CF

quenching medium allows formation of coarser precipitates with lesser density in the

matrix displaying large inter-particle spacing resulting in softening effects and reducing the

quality values in this case (Cl, C2, C3; CF conditions), where the decrease in strength

values is more significant than the increase in ductility.

For water-quenched alloys treated to multi-temperature aging cycles, the FB heat-

treated samples show higher quality values than those heat-treated using a CF. The

combinations of different precipitates which may occur from multi-stage aging treatments

would result in a compromise between strength and ductility, and thus affect the quality.

The water-quenched alloys treated to T6-temper conditions (Bl, B2, B3) show better

quality values than those treated to multi temperature aging cycles, namely Dl, D2 and D3.

This difference in quality values may be related to the significant increases in UTS values
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for Tô-tempered alloys at the expense of the higher elongation values for multi-

temperature aged alloys. It should be noted that the quality values are affected by both

UTS and %E1 values as shown in Equation 5.

Figure 5.12 shows the effects of multi-temperature aging treatments on the quality

of A356.2 casting alloys; two heat treatment cycles, namely SA34 and SA54, were

selected to be discussed due to the common use of applied T7 temperatures (230°C/4h,

249°C/4 h) in industrial automotive applications. These treatments aim at producing

strength levels equal to those of the commonly used T6 temper but a high ductility which

is equal to or greater than that of the T7 temper. It can be noted from Figure 5.12 that the

modified alloys show better quality values than the non-modified ones heat treated using

both CF and FB. The heat treated alloys using an FB show better strength and quality

results than those treated using a CF for the selected T7/T6 multi-aging cycles. Regarding

to the aging behavior at 180°C for up to 12 h, the quality levels are quasi-parallel to the

iso-Q lines, as will be observed in the quality chart shown in Figures 5.12 for selected heat

treatment cycles. This behavior illustrates that aging time up to peak-strength does not

affect the quality index values of the 356 castings. Such an observation is related to the fact

that increasing the aging time up to 12 h results in a continuous increase in the strength of

the casting at the expense of its ductility, although the increase compensates for the

reduction in ductility in accordance with Equation 5. Thus, the net effect of this aging

treatment ultimately leads to non-significant changes in the quality index values.
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temperature aging cycles and modification on the quality of 356 alloys.

Increasing the aging temperature from 230°C for the SA34 heat treatment cycle to 249°C

for the SA54 heat treatment cycle, respectively, results in shifting the aging curve of the

356 casting alloys towards the bottom left-hand corner of the quality chart. This shift in the

aging curve indicates that lower level of strength and quality index for the 356 alloy were

obtained when increasing the aging temperature. As was explained earlier, the noticeable

reduction in the strength and quality index values of 356 alloys when increasing the T7

temperature may be related to the formation of coarse precipitates with lesser density in the

matrix at high temperature. The coarse precipitates formed with wide interspacing
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facilitate the motion of dislocations through these precipitates resulting in a ductility

increase and a strength decrease. In the case of the S A54 heat treatment, carried out at the

high temperature of 249 °C, the decrease in strength values, compared to the increase in

elongation, affects the net quality values so that they are -25 MPa lower than those

obtained using the S A3 4 heat treatment, performed at a lower temperature of 230 °C.

5.3.2. Al-Si-Cu-Mg Casting Alloys

The tensile results of B319 alloys, heat-treated using different quenching media,

were reused to generate the quality charts shown in Figure 5.13. This figure illustrates the

influences of quenching media and aging parameters (i.e., temperature and time) on the

quality values of 319 alloys. The strength of these alloys is improved via the formation of

Cu- and Mg-containing hardening phase, such as 6>-CuAl2 and/or Q-A15Mg8Cu2Si6 and /?-

Mg2Si. These phases can alter the strength coefficient or K values required to generate the

quality charts of the heat-treated materials subjected to the range of T6 temper parameters

investigated. Such a variation will affect the accuracy of calculated yield strengths

calculated from the quality charts, compared to those obtained from tensile testing.

In general, water quenched alloys (B cycles) demonstrate better quality values than

those FB-quenched alloys (C conditions; FB). For the same aging parameters, with an FB,

at 170 °C/4 h (Bl, Cl), the water quenched alloys show higher quality values (50-60 MPa)

than the FB quenched ones. The difference in quality values may be related to the negative

effect of FB quenching on the ductility of 319 alloys, where the FB-quenched alloys (Cl

condition) provide higher strength values, at the expense of its ductility, compared to the
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water quenched alloys (Bl condition). Compared to the effect on quality due to the

increase in strength, the reduction in elongation values of the FB-quenched alloys has a

marked effect on the net quality value of 319. For water-quenched/T6-aged alloys (Bl, B2,

B3 conditions), there is no significant difference in the quality values of FB and CF heat-

treated alloys, except that the FB heat treatment produces higher quality values (-15-20

MPa) than the CF for aging times of up to 4 hrs as shown in Figure 5.13. The FB heat-

treated samples show higher quality and ductility values, after 4 hours of aging, than the

CF treated samples, for the same heat treatment time. As for 319 alloys, after 8 and 12

hours of aging, the quality values are not as responsive to a FB as to a CF. The quality

values of FB heat-treated 319 alloys are nearly the same as the CF-treated alloys. For FB

samples aged for 8-12 hours (B2 and B3 conditions), the portion of the aging curves up to

peak-aging is parallel to the iso-Q lines, implying that, for this range of aging time, the

quality index values of the alloy do not display any significant change. However, the CF-

aged samples show an increase in quality values with increased aging time.

The FB shows a marked difference in strength values of heat-treated alloys,

compared to those treated in a CF, for aging times of up to 12 hours. This difference in

strength is related to the high precipitation density of Cu-containing phases/particles in

FBs, as opposed to CFs.
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The CF quenched-aged alloys show the lowest strength values; however, they also

show better quality values than FB quenched-aged alloys. Compared to water-quenched

alloys, the CF air-quenched ones show nearly the same or better quality values. The

increase in quality values of air quenched alloys is related to the highest elongation values,

compared to water and FB-quenched alloys (Figure 5.8). The significant increase in

elongation values of air-quenched alloys has a positive effect, compared to the reduction in

strength, on the net quality values (Figure 5.13). Thus, a specific heat treatment technique

(CF or FB) and/or quenching medium (water, or air/CF or sand/FB) can be selected for the

heat treatment of B319.2 alloys, depending on the strength and/or quality values required

for particular engineering applications at specific heat treatment conditions. The CF

quenching-aging technique may be selected for heat treatment of B319.2 alloys used for

engineering applications that require highest elongation and quality values at the expense

of strength while the water and FB quenching media may be suitable for applications that

require a compromise of high strength and good quality values. The FB quenched-aged

samples insure a reduction of residual stresses as well as better strength and good quality

as compared to those quenched using water or air as the medium. For air quenched-aged

alloys using a CF (C-cycles), it may be noted from Figure 5.13 that increasing the aging

temperature from 170°C to 210°C results in a reduction in the quality values by 25 MPa;

this reduction is related to the significant decrease in strength values (60 MPa) and the

slight increase in elongation values.

For water-quenched alloys treated to multi-temperature aging cycles (D

conditions), FB heat-treated samples show better strength results than those heat treated
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using a CF. There is no significant difference, however, in the quality values obtained by

either technique. The difference in strength values may be related to the formation of

various types of precipitates during the several aging temperature stages applied.

Regarding to the aging behavior of 319 alloys, the quality values decrease with increasing

the aging time for multi-temperature aging heat treatment cycles (D conditions) using a CF

and an FB. This reduction is expected due to the increase in strength values at the expense

of the elongation values. As compared to the 356 alloys, the quality values of 319 alloys

are more responsive to aging parameters where the aging behavior is not quazi-parallel to

the iso-Q lines for all heat treatment cycles.

In addition to the heat treatment parameters, Sr-modification has an effect on the

quality index values obtained for B319.2 alloy samples in terms of their UTS and %E1

properties as shown in Figure 5.13 (b). The improvement observed in the mechanical

properties and quality of such 319 alloys may be obtained by applying Sr-modification

through melt treatment, and using a high heating rate in the fluidized bed for the relevant

heat treatment procedures. The modified 319 alloys show better quality values (15-20

MPa) as compared to the non-modified ones for all heat treatment cycles. It should be

noted that Sr modification enhances the strength and ductility, as well as the quality of Al-

Si-(Cu-Mg) alloys for all heat treatment cycles. 147'204

Figure 5.14 illustrates the quality of B319.2 alloys subjected to two T7/T6 multi

temperature aging cycles, namely SA34 and SA54. It may be noted from the aging

behavior of B319.2 alloys, that the quality performance of these alloys are not responsive

to the fluidized bed technique for the applied multi temperature aging cycles as compared
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to the A356 alloys; there is no significant difference between the quality values of heat

treated alloys using a CF and an FB. The aging behavior of B319.2 alloys shows that the

quality values decrease with an increase in time of T6 second step aging form 0 h up to 8

h; such an observation is related to the continuous increase in strength at the expense of

elongation values. The continuous increase in strength values with increasing aging time is

related to the precipitation of the Cu- and Mg-containing phases in the metal matrix. The

features of these precipitates vary according to the aging time applied to the casting alloys.

A further increase in aging time at 180 °C results in the formation of coherent transition

phases which contribute to increasing the hardening level of these alloys. The FB heat

treated alloys show better strength results than those heat treated using a CF; the over-

aging conditions was reached when applying aging treatment cycles at 180 °C/4h using a

CF. Such a decrease in strength and increase in the ductility of the alloy is related to the

softening conditions and the loss of the coherency strain between the precipitates and the

matrix. In addition, the over-aging result in the growth of the large precipitates at the

expense of the smaller ones, ultimately leading to coarser precipitates with less density in

the metal matrix having large inter-particle spacing. All the changes mentioned which

accompany the over-aging condition contribute to a decrease in the alloy strength.

Overaging was not reached when using FB heat treatments, for up to 8 h, upon which the

maximum strength level was observed. This was attributed to the formation and stability of

both coherent and semi-coherent precipitates. Regarding to the applied heat treatment

cycles (SA34 and SA54) and techniques (FB and CF), there is no significant difference in

the quality values of heat treated B319.2 alloys. The significant difference in the quality
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values of alloys is attributed to the effect of Sr-modification parameter, where the modified

319 alloys show better quality values than the unmodified ones for all heat treatment

cycles (Figure 5.14).
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Figure 5.14. Quality charts using Equations (5) and (6) showing the effects of multi-
temperature aging cycles and modification on the quality of 319 alloys.

5.3.3. Statistical Analysis for Quality Results of Al-Si-(Cu/Mg) Casting Alloys

An improvement in the performance of Al-Si-Cu/Mg alloys and an understanding

of its relationship to heat treatment parameters may be accomplished by applying statistical

techniques using the design of experiments (DOE) approach. Statistical design of

experiments (regression analysis), as a method, has been put into use to develop regression
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equations between the response variables and the independent variables or factors. The

data pertaining to the quality index value, Q, were analyzed using Minitab software

(version 15) to obtain the regression models, the main effects plot, and the interaction plots

which describe the relationship between the independent variables studied and the

mechanical properties of the alloys investigated. Table 5.1 represents the independent

variables, or factors, and response variables studied together with the codes used to obtain

the final regression equations.

Table 5.1. Independent variables, response variables, and their codes.

Independent variable

Modification effect, wt%

Quenching medium*

Heat treatment technique*"

Aging temperature, T UC

Aging time, h

Code

X]

x2

x3

x4

x5

Response variable

Quality index (Q), Mpa

Code

Y

* Quenching medium represents water, air (CF) and sand (FB).
** Heat treatment techniques represent conventional furnace (CF) and fluidized bed (FB).

By processing the data, regression Equations 8 and 9 were developed for Q values

of A356 and B319 alloys, respectively, indicating the variation of a number of different

factors, as follows:

Y (A356 alloy) = 268.2 + 25.1* X! + 1.65* X2+ 8.3* X3+ 0.233* X4-1.04*X5 Equation 19

Y (B319 alloy) = 287.2 + 21.4* Xi + 38.4* X2- 52*X3- 0.251* X4+3.16*X5 Equation 20
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where Y is the response variable (YS, UTS, %E1, or Q); bo, bi, b2, etc. are constants

representing the effects of the respective factors Xi, X2, X3 and X4 which are the codes for

the factors representing modification effect, quenching medium, heat treatment technique,

aging temperature and aging time, respectively. The R2 values for Equations 19 and 20 are

97.41% and 95.21%, respectively. In general, positive values of the coefficient signify an

increase in the property due to a concomitant increase in the individual parameters and

their interactions, whereas the magnitude of the coefficients signifies the extent of the

influence of these individual parameters, or their interactions, on the response variable. For

example, positive and higher values of bi in Equations 19 and 20 would signify (i) an

increase in the response variable Y, and (ii) a greater effect of the factor XI on Y, in

comparison to the other factors X2, X3, etc. Similarly, lower values of the coefficients

would suggest that the action of associated individual parameters, or their interactions, is

non-significant for a given response variable.

From these linear equations, it may easily be noticed that the response Y (Q values

of A356 alloys) is affected significantly by the modification factor followed by heat

treatment technique and then by quenching medium. The response Y (Q values of B319

alloys), however, is greatly affected by the quenching medium factor followed by a

significant negative effect of heat treatment technique, where the 319 alloys are found to

be less responsive to FB heat treatment technique as compared to 356 alloys. The results

obtained from these equations are in satisfactory agreement with the quality index charts of

A356 and B319 alloys. It can be noted that the mean quality values of B319 alloys are

more quench sensitive than A3 56 alloys due to the formation of a greater percent of GP
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zones in Al-Si-Cu-Mg alloys. These GP zones act as heterogeneous nucleation sites for

precipitation and so enhance the aging process.

The matrix plots are assessed by level of average response analysis of the raw data.

This analysis is carried out by averaging the raw data at each level of each parameter and

plotting the values in graph form. The level average responses of the raw data make it

possible to analyze the trend of the performance characteristic with respect to the variation

in the factor under study. Figures 5.15 and 5.16 show the main effects of all variables

which affect the tensile results as well as the quality index values of A356 and B319

alloys, respectively. The average values of each independent variable are compared within

that variable in order to observe its impact on the quality index. The more horizontal the

line, the less impact the independent variables have on the property. The presence of

optimal testing conditions with regard to these control variables can be easily determined

from the relevant graphs. As is evident from Figure 5.15, there is a significant change in

the quality values of A3 5 6 alloys when the levels of modification are changed from low

levels to high levels, compared to the quality values of B319 alloys for the same

parameters, as shown in Figure 5.16.
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Figure 5.15. Matrix plots of various factors affecting the tensile and quality values of
A356 alloys.
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Figure 5.16. Matrix plots of various factors affecting the tensile and quality values of
B319 alloys.
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Regarding the heat treatment technique factor, it may be noted that the strength

values of both A356 and B319.2 alloys are significantly responsive to the fiuidized bed

heat treatment technique. The average quality values of A356 alloys display a non

significant response to the fiuidized bed heat treatment technique (Figure 5.15), compared

to the quality values of B319 alloys which display a negative response to an FB heat

treatment technique (Figure 5.16). The FB-quenched alloys display almost the same or

slightly better mean strength results and lower mean quality values compared to water

quenched alloys (Figures 5.15 and 5.16).

Regarding the aging parameters, the matrix plots illustrate the effects of the aging

temperatures and aging times applied for all heat treatment cycles on the strength and

quality index values of the 356 and 319 castings. As may be seen, increasing the aging

temperatures up to 210 °C results in a decrease in the strength values and an expected

increase in elongation values of the two alloys, and a slight increase ( for 356 alloys) or a

slight decrease (for 319 alloys) in their quality values. This trend is changed after applying

the multi-temperature aging cycles at 240 °C, followed by 180 °C for 356 and 319 alloys,

for all aging times, whereby the strength and quality values are increased. These

observations are in agreement with the evaluations made from the quality charts presented

for 356 and 319 alloys. For the multi-temperature aging cycles, applying T6 treatment after

T7 temper results in an improvement in the strength as well as quality values due to the

formation of fine and more density precipitates in addition to those, coarse and lesser

density precipitates, formed during the T7 first stage temper. The 356 and 319 casting
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alloys show a continuous increase in strength and quality index values with increasing the

aging time as shown in Figures 5.15 and 5.16.

The matrix plots as well as interaction plots shown in Figures 5.17 and 5.18

likewise correlate the properties of the 356 and 319 alloys with the studied parameters of

multi temperature aging cycles, namely aging Tl (T7), aging timel (T7) and aging time2

(T6), in addition to the heat treatment technique and modification factors. These plots

show that increasing the aging temperature of the T7 stage results in a decrease in the

mean strength and quality values whereas increasing the aging time of the second aging

stage (T6) results in an increase in the strength values and a decrease in the quality values.

As before, the matrix plots support the observations made from the quality charts presented

in Figures 5.12 and 5.14. According to the tensile results and/or quality values presented in

these matrix plots, specific aging parameters (temperature and time) could be selected for

multi temperature aging heat treatment cycles required for particular industrial

applications. The matrix plots also show that the modification factor is still the most

significant factors affecting the performance of alloys investigated. It may be seen that the

fluidized bed heat treatment technique affects significantly on the strength values as

compared to the quality index values. Figure 5.18 show the interaction plots for the dual

effects of independent variables on the quality values of 356 and 319 alloys; the modified

alloys show better quality values obtained for all other independent variables.
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Figure 5.17. Matrix plots of various factors affecting the tensile and quality values of (a)
A356.2 and (b) B319 alloys.
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Figure 5.18. Statistical analyses showing the interaction plot for mean Q values of (a)
A356-type alloys and (b) B319.2-type alloys.
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With respect to the dual effects of the T7 aging temperature of the first stage with

each of the other variables, an aging temperature of 230 °C is the most suitable parameter,

applied for 356 alloys, resulting in the highest quality values with all other independent

variables, namely modification, aging time and heat treatment technique. For 319 alloys,

the most significant variables affecting the quality values are the modification and heat

treatment technique factors; the modified alloys heat treated in a CF show better quality

values for all other independent variables. As mentioned earlier, the quality values of 319

alloys are not responsive to an FB heat treatment technique due to the presence of several

undissolved Cu and Fe containing intermetallics that are not affected by the high heating

rate of the FB. 204

The quality results of 356 and 319 alloys, subjected to multi-temperature aging

cycles, were re-plotted in the form of contour plots, as shown in Figures 5.19 and 5.20.

These plots re-illustrate clearly the dual effects of the most significant parameters, shown

in Figure 5.18, on the mean quality values of alloys investigated. It may be noted from

Figure 5.19(a) that increasing the aging temperature of the T7 first stage results in a

significant decrease in quality values. This reduction is expected and may be related to the

significant decrease in strength values of 356 alloys. For the 319 alloys, there is no

significant change in quality values with increase in the aging temperature of T7 stage.

These contour plots confirmed the significant role of the modification factor in improving

the quality values of the alloys investigated; the highest quality values may be obtained by

applying T7 first stage at 230°C for the modified 356 alloys as shown in Figure 5.19 (a).
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Figure 5.20 shows the dual effects of T7/T6 aging parameters (T7 temperature and

T6 time) on the quality performance of 356 and 319 alloys. For 356 alloys, it may be seen

that the highest quality values, of-505-510 MPa, may be obtained by applying T7/T6

multi-aging cycles at temperatures of 230/180 °C for T6 aging times of up to 4 hours. For

319 alloys, the contour area for quality values in the range of 310 to 320 MPa is significant

at 249/180 °C for T6 aging times period of 4 to 8 hours; the highest quality values, i.e.,

more than 330 MPa, may be obtained by applying multi-aging cycles in the temperature

range of 230-250 °C for the T7 stage, followed by the T6 stage for an aging time of 1 h as

may be deduced from the contour plot shown in Figure 5.20 (b).The contour plots, matrix

plots and interaction plots can be used as significant tools for determining and/or selecting

the suitable heat treatment parameters of multi-temperature aging cycles that could be

applied to the 356 and 319 alloys for obtaining the optimum quality and/or strength values

required for particular engineering applications. Multi-stage heat treatments have been

used to clarify transformation mechanisms and to provide a basis for obtaining improved

properties. Generally, the second stage of aging at reduced temperature (T6) results in the

evolution of the pre-existing precipitates formed during the primary ageing stage at a

higher temperature (T7), in addition to the nucleation of new precipitates characteristic of

the second ageing temperature. The temperatures and times of both first and second ageing

stages can be manipulated in order to promote the formation of the desired kind of

precipitates. The increase in strength values after applying the second aging stage at low

temperature is related to the presence of small, hard precipitate particles which, in addition

to the large particles formed at T7 resist the movement of dislocations. 201-210
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Figure 5.19. Contour plots showing the influence of aging temperature (T7) and
modification factors on the quality values of (a) A356.2 alloys and (b)
B319.2 alloys.
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Figure 5.21 shows the size and density of the hardening precipitates of To-

tempered A356.2 alloys under the effect of quenching-aging media in an FB versus hot

forced air in a CF. The scanning electron microscope (SEM) was used to identify the

precipitates observed in the 356 alloy samples which were subjected to direct quenching-

aging treatment at 170 °C/4 hours (Cl condition) using an FB versus a CF. The strengthing

of the 356 alloys during aging results from the precipitation of the (3-Mg2Si phase. The

EDX spectrum shown in Figure 5.21 (c) illustrates the fact that the gray particles are Mg-

Si containing phases which indicate the presence of (3-Mg2Si precipitates.

Based on the analysis made using the SEM, it was observed that the precipitation

density and the distribution of Mg2Si particles is high in the FB quenched alloys compared

to the air-quenched ones. This difference in precipitate density may be related to the slow

cooling rate associated with air quenching, which would lead to a low vacancy

concentration, and thus affect the formation of clusters/GP zones during the early stages of

aging. These clusters or GP zones affect the precipitate size and distribution. The CF

quenched-aged alloys show coarser precipitates, compared to FB quenched-aged alloys.

This indicates that the coarsening rate of the Mg2Si particles formed in aged alloys

subsequent to CF quenching is greater than that formed in FB-quenched 356 alloys.

Coarsening rate also depends on the vacancy concentration in the matrix: the greater

vacancy concentration, the greater coarsening rate of precipitates.59> *
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Figure 5.21. SEM images of T6 tempered A356.2 alloy quenched-aged in (a) a CF, (b)
an FB, and (c) EDX spectrum of Mg2Si for an FB quenched sample.
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Figure 5.22 shows a comparison of the effect of FB quenching versus air quenching

on the precipitation density of Cu-containing phase particles in 319 non-modified alloys.

That these precipitates were Cu-containing phase was detected using EDX analysis. The

EDX spectrum presented in Figure 5.22 (C) shows that these precipitates contain Cu, Mg,

and Si in addition to Al, which may indicate the presence/co-existence of the Q-

AlsCuiMggSiô, 6*-Al2Cu, /?-Mg2Si and S-AkCuMg particles in the matrix. All these types

of precipitates cannot be identified precisely using the EDX in conjunction with the SEM

technique because of their tiny size. In this study, the main purpose of using the SEM

technique was to provide an overview of the size and density of the precipitates under

various quenching-aging media/conditions applied to the castings.

From these micrographs shown in Figure 5.22 (a, b), it is evident that the FB-

quenched alloys show finer and denser Cu-containing precipitates as compared to those

obtained with the hot air quenching medium in a CF. The FB quenching medium also

provides a more uniform distribution of the precipitates in the Al matrix. This difference in

precipitates size and density between the two quenching-aging techniques explains the

significant difference in strength results of the 319 and 356 alloys subjected to direct

quenching-aging treatment at 170°C/4h. It should be noted that the finer and denser

precipitates formed at lower aging temperatures or shorter aging times have small inter-

particle spacing. This type of precipitates provides a strong resistance to dislocation motion

and the occurrence of Orowan looping becomes difficult leading to a hardening of the

materials and an increase in the overall strength.



243

(a)

(b)

(c)

Lu 4 JÏUJA Lj
^�..j>

Cu
> ' * " J ' � � � ' � - r - i �

1.00 2.00 3.00 4.00 S.00 COO 7.00 3.00 9.00

Figure 5.22. FEGSEM micrographs of 16 tempered 319 alloy quenched-aged in (a) a
CF, (b) an FB, and (c) EDX spectrum of Cu precipitates for an FB quenched
sample.
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5.4. CONCLUSIONS

The influences of quenching media and multi temperature aging cycles on the

tensile properties and quality indices of A356 and B319 casting alloys were investigated

and the results presented in this chapter. Accordingly, the following conclusions may be

drawn from these investigations:

1. In general, both UTS and YS values of T6 tempered A356 and B319 alloys are

greater when quenched in water as compared to those quenched in FB and CF. For

the same aging conditions (170°C/4h), the FB quenched-aged 319 and 356 alloys

(Cl condition) show better strength values than those quenched in water (Bl

condition).

2. The direct quenching-aging treatment of alloys (A356 and B319) in an FB yields

greater UTS and YS values compared to CF-quenched alloys. In contrast,

elongation values of alloys quenched in FB-quenched alloys (sand quenching) are

lower than those quenched in a CF (hot air quenching).

3. The fiuidized bed technique is more effective than the convection furnace with

respect to strength and quality values of water-quenched 319 and 356 alloys after

aging times of 4 and 4-8 hrs, respectively. Beyond these heat treatment times, there

is no noticeable difference in quality values between the two techniques.

4. For water quenched alloys, the aging cycles, Dl, D2 and D3, yield lower strength

and better elongation values than almost all of the T6 treatment conditions using

both CF and FB. The low strength values for multi-temperature aging cycles may
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be related to the formation of Mg and Si co-clusters which result in a coarser

dispersion of precipitates after aging at elevated temperatures.

5. The strength results obtained after the T6 continuous aging treatment of A3 5 6

alloys are not improved by means of multi-temperature aging cycles, indicating that

the optimum properties are obtained by T6 aging treatment.

6. The optimum strength properties of B319.2 alloys is obtained by applying T7/T6

type multi-temperature aging cycles, such as at 230 72h, followed by 180 °C/8 h

(i.e. SA32 condition), as compared to T6 aging treatment.

7. Based on the quality charts developed for alloys under effect of quenching media,

the higher quality index values are obtained by water-quenched/FB-aged alloys and

CF quenched-aged alloys for 356 and 319 alloys, respectively. The modification

factor has the most significant effect on the quality results of alloys investigated for

all heat treatment cycles, as compared to other metallurgical parameters.

8. For T7/T6 type multi-temperature aging cycles, the modification factor has the

most significant role in improving the quality index values of 356 and 319 alloys.

The FB heat-treated alloys have the highest strength values for all heat treatment

cycles, as compared to those obtained for CF heat-treated alloys. The FB has no

significant effect on the quality values of 319 alloys compared to the CF.

9. With regard to regression models, the mean quality values of B319 alloys are more

quenc-sensitive than A 356 alloys due to the formation of a greater percent of

clusters/GP zones in Al-Si-Cu-Mg alloys. These clusters or GP zones act as a

heterogeneous nucleation sites for precipitation and enhance the aging process.
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10. With respect to the interaction plots for multi temperature aging cycles, the most

significant factors that have a positive effect on the quality values of 356 alloys are

modification and the T7/T6 multi-aging cycle applied at 230°C/2h, followed by

aging at 180°C/2h.

11. Statistical analysis using matrix plots reveals that the T7/T6 multi-temperature

cycle of aging at 249°C/4h, followed by aging at 180°C/2 h, is the optimum heat

treatment condition that improves the quality values of 319 alloys.

12. The 319 alloys display higher strength levels when compared to the 356 alloys, for

all heat treatment cycles, at the expense of ductility, resulting in higher quality

values for the 356 alloys when compared to 319 alloys.

13. The FB is a significant heat treatment technique which may be used for

solutionizing, quenching and aging. This technique was applied to 356 and 319

alloys in the present study in order to obtain the best possible compromise between

alloy strength and quality values.
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RECOMMENDATIONS FOR FUTURE WORK

Based on the results obtained from this study it would be interesting and useful for

the aluminum industry to conduct further investigations along the following lines:

1. Use of high resolution transmission electron microscopy to investigate the effects

of (a) the rapid heating rate associated with the use of the fluidized sand bed, as

well as that of (b) the quenching medium following solution heat treatment by

monitoring the formation of GP zones. In the context of the latter, it should be kept

in mind that the casting would be in direct contact with the heating medium when

quenching in hot sand, whereas in case of quenching in a conventional furnace, the

casting would be heated by convection.

2. Applying the tensile test data obtained from the fluidized bed heat-treated test bars

used in this study to real complex shaped castings in order to adjust the heating,

quenching, and aging parameters to achieve superior properties compared to those

obtained using traditional heat treatments. This would essentially constitute a form

of technology transfer.
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Appendix A

STATISTICAL DESIGN OF EXPERIMENT
(REGRESSION ANALYSIS)

INFLUENCES OF MELT AND SOLUTION HEAT TREATMENTS ON ALLOY
PERFORMANCE
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Table A.l. Response surface regression analysis for quality values of A3 56.2 alloys.

Term
Constant
Modification
SHT, time (hr)
Aging time (hr)
HT Technique

Coefficient
291.528
22.030
7.234
6.149
24.394

P values
0.000
0.000
0.000
0.000
0.000

*P values (significance of input parameters) determine whether or not the regression model adequately fits
data.

Table A.2. Response surface regression analysis for quality values of B319.2 alloys.

Term
Constant
Modification
SHT, time (hr)
Aging time (hr)
HT Technique

Coefficient
291.647
12.632
10.627
-21.753
7.614

P values
0.000
0.493
0.005
0.003
0.843

*P values (significance of input parameters) determine whether or not the regression model adequately fits
data.
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Appendix B

STATISTICAL DESIGN OF EXPERIMENT
(REGRESSION ANALYSIS)

INFLUENCES OF QUENCHING MEDIA, AND AGING PARAMETERS
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Table B.I. Response surface regression analysis for quality values of A3 56.2 alloys.

Term
Constant
Modification
Quenching media
HT Technique
Aging T, °C
Aging time (hr)

Coefficient
268.253
25.142
1.653
8.324
0.233
-1.045

*P values
0.000
0.000
0.000
0.000
0.002
0.000

*P values (significance of input parameters) determine whether or not the regression model adequately fits
data.

Table B.2. Response surface regression analysis for quality values of B319.2 alloys.

Term
Constant
Modification
Quenching media
HT Technique
Aging T,°C
Aging time (hr)

Coefficient
287.163
21.478
38.462
-52.024
-0.251
3.167

P values
0.000
0.234
0.051
0.321
0.002
0.024

*P values (significance of input parameters) determine whether or not the regression model adequately fits
data.




