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RÉSUMÉ

Les véhicules aériens et terrestres sont constitués de systèmes bâtis complexes. La struc-
ture principale est généralement composée de panneaux légers renforcés par des éléments
rigides. Cette solution de conception est répandue parce qu’elle allie la force et un faible
poids. Cependant, on sait qu’elle offre des résultats vibroacoustiques médiocres, c’est à
dire que l’effet des perturbations externes qui touchent le système peut générer un niveau
de bruit excessif à l’intérieur de la cabine des passagers. C’est une préoccupation majeure
chez les fabricants, parce que ce niveau de bruit nuit sensiblement au confort ressenti par
les clients et peut causer de la fatigue chez les conducteurs et les pilotes. Pour cette raison,
les composants passifs constitués de matériaux dissipatifs assemblés en mode multicouche
sont généralement intégrés à la structure. Ces assemblées bordées intègrent surtout des
matériaux poroélastiques, qui sont plutôt répandus, grâce à l’agencement intéressant de
bonnes propriétés d’isolation sonore et de faible poids.

L’intégration en amont des traitements de contrôle du bruit au processus de conception
est la clé de succès d’un produit. Pour ce faire, des outils pratiques numériques en me-
sure de capter le comportement dynamique des systèmes vibroacoustiques impliquant les
structures, les cavités et les matériaux d’insonorisation sont requis. D’une part, la modéli-
sation de ces systèmes couplés en utilisant des procédés à base d’éléments finis peut être,
bien que précis, irréalisable pour des applications pratiques. D’autre part, les approches
analytiques telles que la méthode de matrice de transfert sont souvent préférées grâce à
leur facilité d’utilisation, même si elles manquent de précision en raison des hypothèses
rigoureuses inhérentes au cadre analytique. Dans ce contexte, les procédures de structura-
tion hybrides sont récemment devenues très populaires. En effet, les différentes techniques
de modélisation sont généralement recherchées pour décrire les systèmes vibroacoustiques
complexes arbitraires sur la plus large gamme de fréquences possible.

L’objectif du projet proposé est de mettre au point un cadre hybride offrant une mé-
thodologie simple pour tenir compte des traitements de contrôle du bruit dans l’analyse
vibroacoustique par éléments finis. A savoir, le modèle de calcul qui en découle conserve la
souplesse et la précision de la méthode des éléments finis en bénéficiant de la simplicité et
de l’efficacité de la méthode de matrice de transfert pour obtenir une réduction de la charge
de calcul pour la modélisation de composants acoustiques passifs. La performance de la
méthode pour prédire la réponse vibroacoustique de structures planes homogènes avec des
traitements acoustiques attachées est évaluée. Les résultats démontrent que la méthode
hybride proposée est très prometteuse, parce qu’elle permet une réduction de l’effort de
calcul tout en conservant suffisamment de précision par rapport à l’analyse complète par
éléments finis. En outre, la méthode de matrice de transfert proposée de modélisation des
traitements de contrôle des bruits est générale, comme on peut l’appliquer dans d’autres
cadres outre l’application de l’élément fini considéré dans ce travail.

Mots-clés : vibroacoustique, méthode des éléments finis, méthode matrice de transfert,
modélisation hybride, perte par transmission, absorption, traitement acoustique
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ABSTRACT

Aerial and terrestrial vehicles consist of complex built-up systems. The main structure is
typically made of light panels strengthened by stiffer components. Such design solution
is widely used as it combines strength and low weight. However, it is known to give poor
vibroacoustic performances, i.e. the effect of external disturbances acting on the system
may generate an excessive noise level inside the passengers cabin. This is a main concern
for the manufacturers, as it significantly affects the comfort experienced by the costumers
and may fatigue drivers and pilots. For this reason, passive components consisting of
dissipative materials assembled in a multilayer fashion are typically integrated within
the structure. These lined assemblies mainly involve poroelastic materials, which are
commonly used thanks to the appealing combination of good noise insulation properties
and low weight.

The early integration of noise control treatments in the design process is the key to a suc-
cessful product. For this purpose, practical numerical tools able to capture the dynamic
behavior of vibroacoustic systems involving structures, cavities and noise proofing materi-
als are demanded. On the one hand, modeling such coupled systems using finite element
based methods can be, albeit accurate, time consuming for practical applications. On
the other hand, analytical approaches such as the transfer matrix method are often pre-
ferred thanks to their ease of use, although they suffer from a lack of accuracy due to the
stringent assumptions inherent within the analytical framework. In this context, hybrid
substructuring procedures have recently become quite popular. Indeed, different modeling
techniques are typically sought to describe arbitrarily complex vibroacoustic systems over
the widest possible frequency range.

The aim of this thesis is to devise a hybrid framework providing a simple methodology to
account for noise control treatments in vibroacoustic finite element analysis. Namely, the
resulting computational model retains the flexibility and accuracy of the finite element
method while taking advantage from the simplicity and efficiency of the transfer matrix
method to obtain a reduction of the computational burden in the modeling of passive
acoustic components. The performance of the method in predicting the vibroacoustic
response of flat structures with attached homogeneous acoustic treatments is assessed.
The results prove that the proposed hybrid methodology is very promising, as it allows for
a reduction of the computational effort while preserving enough accuracy with respect to
full finite element analysis. Furthermore, the proposed transfer matrix based methodology
for noise control treatments modeling is general, as it can be used in alternative frameworks
besides the finite element application considered in this work.

Keywords: vibroacoustics, finite element method, transfer matrix method, hybrid mod-
eling, transmission loss, absorption, sound package
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CHAPTER 1

INTRODUCTION

This chapter aims at introducing the reader to the topic of this research, namely the

numerical modeling of vibroacoustic systems involving noise control treatments. First,

the industrial context is briefly described and the scientific problem is presented. Next,

a literature review is performed in order to define the state of the art concerning the

modeling techniques. The objectives of this work are then presented. The chapter ends

with the outline of the thesis.

1.1 Industrial context

Nowadays, the design of automotive and aerospace vehicles is driven by the twofold need

to reduce costs and respect eco-friendly requirements. Thus, to achieve both an abatement

of manufacturing costs and an increase of fuel efficiency while protecting the environment,

modern cars and aircrafts take advantage from lightweight structural designs involving

light panels strengthened by stiffer components such as beams. However, such design

solutions typically lead to poor vibroacoustic performances, as the effect of an external

disturbance acting on the system may generate an excessive noise level inside the aircraft or

car cabin. This is a main concern for the manufacturers. Indeed, the noise inside vehicles

significantly affects the comfort experienced by the occupants and may fatigue drivers and

pilots. As a result, the requirement of a safety and healthy environment is always an

essential part of the design specifications. In this context, a successful product depends

(i) on an accurate detection of the potential disturbances as well as (ii) on the design of

passive and/or active components which can guarantee the required noise insulation.

The experimental and mathematical characterization of the noise sources involved in prac-

tical applications is a very important topic. For instance, in the context of modern turbo-

jet aircraft, the overall noise is mainly due to (i) aerodynamic noise associated to the

Turbulent Boundary Layer (TBL) developing over the fuselage and lifting surfaces, and

(ii) engine noise associated to the exhausted flow. For typical automotive applications, the

aerodynamic noise is important at high speeds while the noise generated by power unit

and wheels may be an important source also at lower speeds because of the vibrations

mechanically induced to the car structural frame.

1
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The noise insulation properties of lightweight structures involved in aerial and terrestrial

vehicles can be enhanced by integrating passive or active solutions within the structure.

However, the complexity of the required components (i.e. sensors, actuators and source

of energy) together with the necessity of a robust design make active solutions, although

attractive, yet difficult to be integrated in practical systems. Thus, passive solutions are

rather preferred, thanks to their ease of use, range of possible designs and combinations.

In this context, highly dissipative materials such as viscoelastic and poroelastic materials

are typically employed to reduce the noise level. Such passive components are assembled

in a multilayer fashion and attached onto the structure. These assemblies of dissipative

materials are equivalently referred to as noise control treatments, acoustic trims or sound

packages.

Nevertheless, the enhanced acoustic performance of the passively treated vibroacoustic

system must be obtained by minimizing the overall weight. For this reason and because of

the strong coupling between the noise control treatment and the vibroacoustic system (i.e.

main structure and cabin), the early integration of such passive components in the design

process is the key to a successful product. To this end, numerical tools able to capture

the dynamic behavior of these multiphysics systems are needed. This latter aspect is the

main concern of this work.

1.2 Problem description

Without loss of generality, practical vibroacoustic systems described above mainly involves

three coupled domains, i.e. (i) an external acoustic domain (i.e. emission side), (ii) the main

structure and (iii) the interior environment (i.e. receiver side). The latter is the cabin where

specific noise level requirements must be satisfied. The disturbances are applied on the

emission side (e.g. TBL, engine noise) or directly on the main structure (e.g. vibrations

transmitted by wheels and engine). The dynamic response of such systems in the frequency

domain is of interest. Under these circumstances, the effectiveness of the noise insulation

design is evaluated in terms of vibroacoustic indicators based on global (i.e. averaged) or

local (e.g. pressure at a given location) quantities. Among all, the following indicators will

be considered in this work.

– Structural and acoustic vibrational energies in terms of space averaged quadratic velocity

and pressure, respectively.
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– Power radiated into the receiver domain, often presented in terms of Transmission Loss

(TL), defined on as the ratio between the incident (i.e. external source) and the radiated

powers.

– Noise transfer functions from the external source to the driver or passengers ear.

As already briefly discussed, the external sources are ideal models of the actual distur-

bances and may be of different kinds. For instance, acoustic-borne noise is modeled by

acoustic sources placed on the emission side. They represent the effects of external sources

(e.g. engine and wheels) as fluctuating pressure excitations, acoustic monopoles, dipoles

and quadrupoles. Air-borne noise paths mainly depend on the mass properties of the

structure-sound package system. Such non-resonant path typically depicts very good in-

sulation properties at high frequencies. In this context, double wall (DWL) configurations

are widely used to enhance the TL at low frequencies. Namely, the sound package is

made of an assembly of one or more dissipative layers with a heavy screen on top. Such

configuration results in a spring-mass behavior able to induce a decoupling frequency (i.e.

the DWL resonance) above which a satisfactory noise attenuation is obtained. Hence, the

noise control treatment can be designed by optimizing the position of the DWL resonance

depending on the specific needs.

On the other hand, structure-borne noise due to vibrating parts (e.g. engine mounts) is

usually modeled by displacement constraints or mechanical forces applied directly onto the

structural frame. Differently from the case of acoustic sources, the energy path involoved

in the structure-borne noise is due to the resonant coupling between the mechanical exci-

tation, the structure and the cabin. As a result, although DWL system are still effective,

the noise control treatment must also inhibit strong modal transmission paths, for in-

stance optimizing the damping performance of the structural and acoustic domains using,

respectively, viscoelastic layers and absorptive elements. In particular, the desired cabin

absorption is typically obtained by means of light acoustic treatments, involving one or

few layers of poroelastic materials which can give optimal damping performance over the

mid and high frequency range.

Therefore, the need for an effective design under various excitations and conditions implies

the use of fairly complicated sound packages. For instance, a DWL design strategy would

result in a satisfactory TL above the decoupling frequency, while no broadband absorption

would be provided to the cabin. Hence, the DWL configuration must be combined with

other solutions to retrieve the missing performance, for instance adding on the top of the

heavy screen other layers of poroelastic materials. However, while providing the desired
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acoustic performance, the volume of the sound package must be minimized to obtain the

highest possible noise-reduction-efficiency-to-weight ratio.

1.2.1 Poroelastic materials

As already mentioned above, poroelastic materials are widely used in noise control treat-

ments thanks to the combined acoustic efficiency and low weight. Such materials consist

of an elastic solid frame saturated by a fluid. In the context of this work, the solid phase

defines the structure of the material while air occupies the pores. The effectiveness of

poroelastic materials in noise control applications is related to the dissipation mechanisms

involved in the coupling between the two phases. Namely, the energy flowing through a

poroelastic media is dissipated by (i) structural damping provided by the solid frame itself,

(ii) viscous losses due to fluid-structure interaction phenomena at the pores level and (iii)

thermal coupling effects between the two phases.

The multiphysics nature of poroelastic materials along with the complexity of the small

scales involved in the aforementioned physical mechanisms suggest that a feasible math-

ematical description of these media may be obtained through the definition of an appro-

priate equivalent homogeneous material. In this context, the Biot theory [13–15] accounts

for the dissipative mechanisms listed above in a simplified manner, namely introducing a

macroscopic description of the two-phases medium. Since its first appearance, the Biot

theory has been improved and, nowadays, is widely used as a reliable mathematical model

of poroelastic materials. Moreover, it is possible to simplify further the Biot model when

the solid phase can be considered motionless or limp, in which cases the poroelastic domain

can be treated as an equivalent dissipative fluid. For a comprehensive documentation of

the modern theory of poroelasticity and its application to passive noise control the reader

can refer to the book by Allard and Atalla [3].

1.3 Literature review

The aim of this section is to present the state of the art in the numerical modeling of

vibroacoustic systems. First, the most widely used techniques are introduced and classified

according to their range of applicability. Then, the literature review is specified to the

case of vibroacoustic systems with attached noise control treatments involving poroelastic

materials, which is the subject of this work. The main concern of this section is to convey

that, broadly speaking, a unique methodology which can provide a feasible and reliable

full spectrum analysis (i.e. from low to high frequencies) of complex coupled systems



1.3. LITERATURE REVIEW 5

involving domains with very different physical properties (e.g. stiff and soft structures,

acoustic fluids, noise control treatments etc. . . ) can hardly be devised. Consequently,

the coexistence of various methodologies in a hybrid framework is presented as a possible

solution to such modeling issue.

1.3.1 Modeling strategies for vibroacoustic applications

Numerical methods in vibroacoustics have come a long way during the past decades (see the

overview in Ref. [100] for instance). They are usually classified as low and high frequency

approaches. Namely, deterministic methods are used in the low frequency range, i.e. when

the wavelength is long compared to the size of the system, while statistical approaches are

preferred at higher frequencies, i.e. when the wavelength is short compared to the system

dimensions. Alternatively, simple analytical methods are often employed to obtain quick

estimations and tendencies in the preliminary design stage. Besides, hybrid methodologies

involving different modeling techniques within the same built-up system are becoming

quite common to obtain fast and reliable results over the widest possible frequency range.

Deterministic methods

The Finite Element Method [10] (FEM), is the most common technique to model wave

propagation phenomena in complex multiphysics systems. Indeed, thanks to the element

based polynomial interpolation, the detail and flexibility provided by the FEM can be

hardly found in any other numerical or analytical method. This aspect makes the FEM

an almost universal methodology, in theory applicable to arbitrary complex systems. How-

ever, its strengths soon become weaknesses. Indeed, the fact that the mesh size must be

small enough compared to the wavelength of the physical phenomenon leads to practi-

cal limitations when the vibroacoustic response of large structures like cars, aircrafts and

trains is considered over a wide range of audible frequencies. Namely, as the frequency in-

creases, the wavelengths propagating in the physical domains become shorter and shorter,

leading to huge discrete models and thus rendering the FEM unfeasible in terms of required

computational time and resources.

Although several attempts have been made to enhance the efficiency of finite element

based techniques (e.g. hierarchical shape functions [117, 118] and hp-adaptivity [129]) and

to develop alternative approaches (e.g. Trefftz methods [36, 41, 42, 87, 113–116, 124–126]

and semi-analytical methods [39, 71, 82, 89]), the FEM is still the most common nu-

merical method used for industrial applications. The reason of this is twofold. First of

all, due to the complexity of practical systems, the use of more efficient methodologies is
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often prevented by poor geometrical flexibility and numerical issues (e.g. ill-conditioning

and cumbersome numerical integration of high order polynomials or oscillatory functions).

Second, well-established Model Order Reduction (MOR) techniques have been developed

and implemented in modern commercial softwares thus enhancing the computational effi-

ciency of standard finite element models (see Ref. [31] for a review of the most common

approaches). In this context, the most widely used MOR technique is modal synthesis.

Basically, the orthogonal modes of a conservative system are calculated solving the asso-

ciated eigenvalue problem and then the size of the discrete model is reduced by projection

onto the reduced order space spanned by the mode shapes. To successfully extend modal

techniques to complex coupled systems, the Component Mode Synthesis (CMS) has been

introduced (see for instance Refs. [27, 38, 121]). Essentially, the system is divided into

components, or subdomains, on which a modal synthesis is independently performed.

On the other hand, non modal techniques have been also attempted. In these approaches,

the reduced basis is found matching some meaningful properties of the original dynamic

model. In this context, Padé approximants by explicit and implicit moment matching

have been object of intensive research [8, 22, 55, 56, 70, 70, 88].

Among the others, another noteworthy MOR technique is the Patch Transfer Function

(PTF) method [7, 77, 83]. This substructuring technique allows for speeding up vibroa-

coustic finite element analysis by means of a substructuring approach based on a coarse

discretization of the subdomains interfaces into elementary areas called patches. The

methodology consists in studying each subsystem independently, in order to build a set

of transfer functions among the patches. Then, the final system is assembled by using

the superposition principle and continuity relations at the patches, leading to a downsized

problem and thus allowing for faster computations.

Statistical methods

Standard finite element methodologies based on substructuring and modal synthesis are

intrinsically limited to low frequency analysis because of the following reasons. First, as

already mentioned, the FEM is obviously not practical in the high frequency regime as

it leads to huge computational models. The second reason is instead phenomenological.

Namely, the dynamic response of a system in the high frequency range does not clearly

exhibit separated resonance peaks because of the overlapping of successive modes. Basi-

cally, a huge number of modes is computed but their contribution is not distinguishable

as the response of the system appears smooth. Consequently, the effectiveness of a modal

synthesis becomes questionable. Furthermore, it may be argued that the exact sequence of
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natural frequencies and associated mode shapes is very sensitive to small modifications of

the built-up system - which is inherently uncertain - raising doubts about the usefulness of

deterministic models when a large number of modes participate to the dynamic response.

For the reasons above, alternative approaches have been developed. Among all, Statisti-

cal Energy Analysis [73] (SEA) is the most widely used tool for high frequency analysis

in industrial applications. It relies on a substructuring methodology which assumes the

vibrational energy of each subsystem to be uniform in the space. Each subsystem is thus

assumed to be in a state of vibrational equilibrium, being its energy equally distributed

among its modes (analogously to the definition of thermal equilibrium in thermodynam-

ics). From a wave standpoint, such hypothesis is often referred to as the diffuse field

assumption [40]. Under these circumstances, the energies of each subsystem are consid-

ered the main variables of the methodology. Such energies are strictly averages over an

ensamble of subsystems, although the interpretation in terms of frequency and space aver-

age is often employed. Assuming light lossless coupling between adjacent subsystems (i.e.

the amount of energy dissipated within the subsystems is larger than that exchanged at

the interface) a simple law arises as the energy exchanged between two connected subsys-

tems is proportional to the difference between their internal modal energies. As a result,

the coupled response of the assembled system can be found by simply imposing the energy

balance (i.e. input power equals dissipated power) over each subsystem.

The most obvious advantage of the SEA is computational. Indeed, differently from the

FEM, the statistical model involves only few unknowns (i.e. the energies of each subsys-

tem), thus drastically reducing the cost of the calculations. Besides, the details of the

actual system (i.e. geometrical complexity) are neglected, resulting in a simplification of

the modeling problem. The model input are instead reduced to simple physical param-

eters, such as the subsystem Damping Loss Factor (DLF), Coupling Loss Factor (CLF)

and modal density. These parameters can be obtained by experimental procedures [21],

analytical solutions [73], or by means of a detailed numerical model of the subsystem. In

the latter case, the periodic structure theory has been successfully employed to find the

SEA parameters of complex two-dimensional subsystem (see Ref. [76] for an overview and

Ref. [24] for an application to typical aircraft panels). Alternatively, also the waveguide-

FEM [47] can be an efficient tool for the identification of SEA parameters in specific

cases. This methodology couples a standard finite element discretization of the waveguide

cross-section with the analytical wave solution in the propagation direction. A similar

approach has been developed in Ref. [39]. Some interesting applications can be found in

Refs. [9, 71, 72, 103].
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While imposing itself as a valuable prediction tool thanks to its ease of use, the applica-

bility and accuracy of the SEA is still subject of ongoing research. Conventional SEA is

indeed limited to (i) wide-band and uncorrelated excitations, (ii) large modal overlap, (iii)

equipartition of energy (i.e. diffuse wave fields) and (iv) light coupling. Strictly speak-

ing, these conditions are only met in the high frequency limit, for low damping and for

weakly coupled subsystems [74, 75]. Moreover, the validity of these assumptions may

be hard to verify for complex assemblies like cars and aircrafts, considering, in addition,

that the accuracy of an SEA model typically depends on how the subsystems are chosen.

Consequently, the reliability of full SEA models is often questionable.

For these reasons, alternative methodologies often interpreted as generalizations of the

energetic and statistical framework involved in the SEA have been developed. Among

all, much effort has been devoted to relax the diffuse field (or, from a modal viewpoint,

equipartition of modal energy) hypothesis in order to retrieve the spatial energy distribu-

tion in the subsystems. For instance, the approach proposed in Ref. [120] consideres modal

energies rather than global energies of subsystems. Conversely, other methodologies favor

a wave based approach leading to integral representations of the vibrational field (see for

instance Refs. [18, 119], [48, 128] and [67, 68]). Such attempts to retrieve the spatial dis-

tribution of the vibrational energy are however not costless, as the computational burden

generally increases with respect to standard SEA.

Analytical methods

An alternative to sophisticated deterministic and statistical approaches relies in fast ana-

lytical methodologies. Indeed, multilayered structures (e.g. main structure and attached

sound package) are often modeled by analytical approaches to perform almost costless

predictions and fast parametric studies. However, to solve analytically the coupled par-

tial differential equations governing the system, several assumptions must be introduced.

Namely, the multilayer system is assumed (i) homogeneous, (ii) flat and (iii) laterally un-

bounded. The system remains, instead, bounded in the thickness direction. Under these

conditions, the Fourier Transform can be employed to move from the physical space (x, y)

to the wavenumber domain (kx, ky). As a result, the boundary value problem can be re-

formulated as a set of ordinary differential equations in terms of the thickness coordinate

z. Given the set of interface conditions between different layers, the analytical solution for

each traveling wave (kx, ky) can be found. In this context, the Transfer Matrix Method [3]

(TMM) allows for a compact and general formulation leading to the solution of a small

linear system. This methodology is widely used to calculate transmission and absorption

coefficients of multilayered structures and, under the aforementioned hypotheses, provides
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quick and accurate estimations for the case of acoustic-borne noise [90, 93], i.e. when

modal transmission paths are not relevant. Besides, since the assumption of unbounded

layers is not justified at low frequency, a finite size correction has been developed [91] to

extend the prediction capability of the classical TMM.

The knowledge of the analytical solution in the wavenumber domain can also be used to

retrieve the acoustic impedance [3, 86] (or, from a mathematical standpoint, the Green

function) of an infinitely extended multilayer structure. Indeed, once the (kx, ky)-space has

been properly sampled, the inverse Fourier transform can be employed to find the solution

in the physical domain. This analytical procedure was used in Ref. [44] to calculate the

acoustic impedance of a sandwich panel. A similar methodology is proposed in Ref. [54]

to obtain the self and mutual piston impedances of a dissipative elastic layer radiating

in a semi-infinite fluid medium. As it will be argued later on, these simple and efficient

analytical approaches may find a potential application in the approximation of the acoustic

impedance of noise control treatments.

Hybrid methods

The transition between low and high frequency regime of a complex built-up system may be

hard to identify. Indeed, the physical properties (i.e. wavelength) of different components

of the vibroacoustic system may be such that in the considered frequency spectrum neither

deterministic nor statistical methods can be efficiently and effectively applied. Namely,

whilst a FE modeling of the entire system typically leads to complicated and huge nu-

merical models, a simple SEA model is not accurate enough to capture the physics of the

coupled system. As a result, hybrid techniques are typically required for the practical

modeling of real life systems.

A first attempt in modeling heterogeneous systems involving long and short wavelength

components in a hybrid framework can be found in the theory of structural fuzzy [107, 108].

Essentially, the system is described as a primary structure with secondary “attachments”.

The former is deterministically known and constitutes the long wavelength part of the

assembled structure. The secondary components are instead considered uncertain and/or

not accessible to conventional modeling strategies (e.g. FEM). Such subsystems are referred

to as structural fuzzy and they are assumed to be attached to the primary structure

by point connections. The fuzzy structural theory aims at defining the energy transfer

at the attachment points between the primary deterministic structure (e.g. modeled by

standard FEM) and the secondary imprecisely known subsystems by random impedance

operators. As in an SEA model, some physical parameters must be experimentally or
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numerically identified to fully define the impedance of the attached fuzzy part. The

extension to continuous fuzzy attachments can be found in Ref. [112] to answer to the

practical need of modeling efficiently complex heterogeneous structures whose dynamic

behavior is characterized by global (i.e. deterministic part) and local elastic modes (i.e.

imprecisely known details). An alternative methodology was proposed in Ref. [65], where

the local modes are instead modeled as SEA subsystems rather than fuzzy components.

The latter approach has been further developed in Ref. [104] to extend the range of applica-

bility of SEA towards lower frequencies. Essentially, this hybrid methodology is presented

as a possible solution to the following modeling problem. Let us consider two subsys-

tems, connected by a one- or two-dimensional junction. In this context, even though the

two subsystems alone meet the SEA requirements (i.e. diffuse wave field), the energy flow

through the junction (i.e. CLF) may depend on an amount of details that can be accurately

captured only by a deterministic model of the connection. In addition, the impedance of

the junction can also be a function of the subsystems geometry (i.e. boundary conditions)

in case their dimensions are comparable with the wavelength. Hence, it could happen that

one subsystem meets the SEA requirements, whereas a deterministic model of the other

subsystem and the junction must be accounted for to get reliable results. The solution of

this modeling problem relies on the reciprocity condition between the way the power is

injected from the deterministic connection into the statistical subsystem and the blocked

force acting on the deterministic degrees of freedom as a consequence of the resulting rever-

berant diffuse field in the statistical subsystem. Such theoretical result is often referred to

as diffuse field reciprocity relationship [64, 106] and provides the framework within which

deterministic (i.e. FEM) and statistical (i.e. SEA) modeling strategies can be employed

in the same computational model. Applications of such hybrid methodology can be also

found in Refs. [25, 66].

It may be argued that the fuzzy theory and the diffuse field reciprocity are two possible

answers to the following practical issues.

- A tradeoff between accuracy and computational efficiency in the numerical modeling of

typical vibroacoustic systems is sought to perform feasible and reliable analysis over a

wide range of audible frequencies.

- Some parts of the assembled system may be inherently unknown because, for instance,

associated to industrial process which cannot guarantee their deterministic knowledge

(e.g. mounting conditions, material uncertainties, etc. . . ).
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The arguments above may be generalized as follows. A practical predictive tool should

model each subsystem of a complex multiphysics system by means of the more appropriate

methodology. the latter is the one that allows to describe the subsystem with the minimum

amount of information while preserving “sufficient” accuracy. The resulting hybrid strategy

would avoid expensive (short wavelengths) or meaningless (unknown details) finite element

models of those components which do not actually need to be accurately modeled to

capture their “average” effect on the assembled system response.

In this context, several hybrid methodology have been proposed to combine the strengths

of different approaches within the same framework. For instance, in Ref. [59] the accurate

deterministic model of a long-wavelength main structure is coupled with simple analytical

tools to capture the effect of the uncertain and/or short-wavelength components. An

application of this hybrid modeling strategy to beam-stiffened plate systems can be found

in Ref. [60]. Another example of hybrid modeling is the methodology presented in Refs.

[49, 61], which allows to retain a detailed finite element model of the main structure while

taking advantage from an efficient Trefftz approach to model large acoustic cavities.

It is herein stressed that the generalized concept of hybrid modeling discussed above

perfectly embraces the motivations of the present work, as it will be clarified later on in

this chapter.

1.3.2 Noise control treatments modeling

In this section the modeling of vibroacoustic systems with attached noise control treat-

ments is specifically discussed through a review of the most common approaches. The

main issue in the approximation of the dynamic behavior of such acoustic components is

associated to the presence of highly dissipative and soft materials which require the use of

complex material models. As a result, the numerical approximation of the vibroacoustic

system may become cumbersome. For this reason, analytical approaches are typically

preferred thanks to their ease of use and computational efficiency, although accurate finite

element models of the full system (master structure, acoustic cavity and sound package)

are often needed to obtain reliable results for arbitrary configurations (e.g. cars and air-

crafts) in the low frequency range.

Analytical methods

A preliminary assessment of the noise control treatment insulation properties (i.e. TL and

absorption) is typically performed by means of the TMM. As already mentioned, due to

the stringent hypotheses inherent within its analytical framework, the TMM is limited
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to high frequencies and acoustic-borne noise. Moreover, the TMM is also widely used to

account for noise control treatments in SEA models. Indeed, sound packages cannot be

considered subsystems in the SEA sense because of the strong dissipation which prevent

the establishment of a diffuse field. Thus, the effect of acoustically treated parts on the

response of SEA models must be differently accounted for, for instance by modifying the

subsystems SEA parameters (i.e. DLF and CLF). This can be quickly done by solving

simple transfer matrix problems, as discussed for instance in Refs. [23, 90].

However, the assumptions of laterally unbounded systems is not justified at low frequency,

especially when structure-borne paths dominates the energy flow through the built-up sys-

tem (e.g. point forces). For this reason, attempts have been recently made to extend the

TMM framework in order to account for the modal behavior of the main structure. In

this context, it is noteworthy the methodology proposed in Refs. [90, 92, 93] to model flat

rectangular plates with attached multilayer treatments. The approach relies on a descrip-

tion of the structural displacement by superposition of orthogonal trigonometric functions

(i.e. Ritz method), while the effect of the noise control treatment on each mode is approx-

imated by solving small TMM problems. However, more accurate deterministic models

are typically needed in the low frequency range to capture the modal transmission energy

paths between an arbitrary complex main structure and the receiver acoustic domain (e.g.

passengers’ cabin).

Deterministic methods

Consequently, the presence of acoustic treatments has to be often included in a finite

element framework. In this context, the most practical way to account for the dynamic

effects of a sound package on the structural and acoustic domains (i.e. main structure

and cavity) consists in a costless impedance boundary conditions to be applied over the

acoustically treated surface (see for instance Ref. [37]). Typically, the impedance condition

is measured by testing a sample of the sound package in an impedance tube facility. On

the one hand, this approach has the undeniable advantage of simplifying the modeling

and avoiding the identification of the sound package mechanical and acoustic parameters.

However, on the other hand, it implicitly assumes that the behavior of the noise treatment

is local, meaning that the impedance at a given point of the multilayer treatment depends

only on the local values of displacement and pressure.

For this reason, accurate finite element models of acoustic materials in the low frequency

range are often required to obtain more accurate predictions. However, when poroelastic

materials are involved in noise control treatments, using finite element based method-



1.3. LITERATURE REVIEW 13

ologies can be, even if accurate, computationally expensive. Indeed, the Biot model is

typically taken into account to obtain a good accuracy [84] for general configurations and

a broad range of excitation frequencies. However, the (u, p) formulation [5] of the Biot

theory, albeit more efficient compared to other formulations (e.g. displacement based for-

mulation [85]), still needs four unknowns per node. Therefore, a large number of degrees of

freedom is necessary to describe short wavelengths and dissipation involved in poroelastic

materials. Furthermore, classical mesh criteria, i.e. six linear or four quadratic elements

per wavelength, do not provide a sufficient condition to get reliable results, due to the

coupling between the two phases and because of the dissipation mechanisms [30]. Conse-

quently, a large number of elements are always needed in order to capture the dynamics

of sound packages, especially as the frequency range of interest increases.

Several attempts have been made to alleviate this drawback. On the one hand, much

work has been devoted to improve the efficiency of the FEM for poroelastic materials

modeling. For instance, hierarchical formulations of the elements [57, 94], simplified 2D

models [19, 58] and enrichment methods [20] have been investigated. In addition, the com-

plex frequency dependency of the finite element matrices describing the coupling between

fluid and solid phases in poroelastic materials make standard eigenvalue solvers difficult

to apply. Despite several attempts to develop modal based MOR techniques for porous

materials [32, 33, 96], their effectiveness remains questionable as a huge number of modes,

whose participation to the global response of the system is not clear apriori [97], has to

be taken into account. The use of Padé-like approximants have also been attempted for

acousto-poroelastic problems [95], showing interesting performance.

Due to mathematical difficulties and questionable effectiveness of modal based MOR tech-

niques, a condensation of the acoustic treatment degrees of freedom is typically preferred

[53]. In this case, the final discrete model of the coupled system involves only the am-

plitudes of the master subsystems generalized coordinates (e.g. structural and acoustic

modal amplitudes). The effect of the acoustic treatment is, instead, held in an added

(boundary) operator which contains the effect of the condensed degrees of freedom on the

generalized coordinates. Such operator can be seen as an equivalent interface impedance

which, differently from the extremely simplified local impedance models discussed above,

accounts for the exact non local behavior of the sound package.

Alternatively, new approaches have been developed to avoid the difficulties arising from a

finite element discretization of the acoustic treatment. More specifically, wave based tech-

niques have been proposed. The rationale behind these methods consists in enriching or

replacing the piece-wise polynomials used in classical finite element analysis by piece-wise
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plane waves, as these are exact solution of the homogeneous problem. In this framework,

the Wave Based Method [36] (WBM) has been developed and applied to porous media

[35]. Also, the Discontinuous Galerkin Method (DGM) has been used for poroelastic ap-

plications [34]. Differently, the rationale of the enrichment methods is to combine the

strengths of finite element and wave based methodologies. In this context, an application

of the Partition of Unity FE Method [79] (PUFEM) to dissipative acoustic materials can

be found in Ref. [20].

Although the aforementioned wave based methodologies can achieve a drastic reduction of

the degrees of freedom compared to conventional finite element models, their application

to complex three-dimensional systems is still subject of ongoing research. Hence, the

FEM is still the most widely used prediction tool in an industrial context, thanks to its

accuracy and versatility. Such approach, although well-established for real life structures

(e.g. stiffened plates, junctions etc. . . ) and complex shaped acoustic domains, typically

leads to expensive and complicated models when noise control treatments are considered,

as discussed above. The main issues can be summarized as follows.

– First, several degrees of freedom are typically needed to capture the short and damped

waves travelling within the poroelastic layers, especially as the frequency range of in-

terest increases. Moreover, classical MOR techniques (i.e. modal synthesis) are not as

effective as for lightly damped structures and acoustic enclosures.

– Second, a preprocessing phase is always required to mesh all the layers involved in the

treatment. Thus, for each design of the acoustic trim, a new mesh must be created,

making the FEM not suitable for the early stage of the design process, when the optimal

configuration of the acoustic trim has to be identified.

– Third, noise control treatments can be quite complex systems, so that mounting condi-

tions might not be exactly known, hard to model in a finite element framework or, from

an industrial standpoint, vary for each realization of the system (e.g. assembled car).

Experimental methods

From an industrial standpoint, the characterization of the materials involved in typical

sound packages can be an important issue, also because mechanical and acoustic properties

may be modified when the noise control treatment is assembled. For this reason, it would

be preferable to directly characterize the acoustic impedance of the assembled noise control

treatment. In this context, an experimental PTF methodology has been proposed in Ref.

[127]. In this approach, the two sides of the sound package are divided in patches whose self

and transfer impedances are experimentally measured and coupled with the PTF models
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of the structural and acoustic domains. However, the experimental characterization is not

free of drawbacks. For instance, the patch size is limited by practical aspects, potentially

preventing the convergence of the PTF (as a matter of fact, the effect of the sound package

on the system might be filtered by a coarse discretization of the acoustically treated area).

In addition, non local effects (i.e. transfer impedances) may be hard to measure due to

dissipative effects, thus limiting the accuracy of the experimental methodology.

Hybrid methods

Ultimately, it may be argued that the most common methodology to account for noise

control treatments in finite element analysis is by means of a boundary operator accounting

for generalized stiffness, mass and damping added to the vibroacoustic system. On the

one hand, the calculation of such operator by a full finite element model of the noise

control treatment is, albeit accurate, computationally expensive, as already pointed out.

On the other hand, extremely simplified impedance models (e.g. plane wave impedance)

may be, although costless from a computational standpoint, inaccurate to describe the

actual behavior of typical sound packages.

Consequently, a question arises on how noise control treatments can be accurately mod-

eled while avoiding expensive finite element approaches as well as poor impedance models.

Namely, while standard finite element models of main structure and acoustic enclosure

are nowadays an industrial standard, different approaches must be devised for passive

acoustic treatments. Thus, the following scientific question may be raised: what is the

minimum amount of information (i.e. model complexity) that is needed to correctly cap-

ture the dynamic effects of an acoustic treatment while saving computational time and

virtual prototyping efforts? An understanding of the physical behavior of such dissipative

components is necessary to answer to this question.

A possible interpretation is proposed in Refs. [45, 46] and can be summarized as follows.

In addition to short wavelengths and dissipation, noise control treatments are also charac-

terized by variability of geometry, materials properties and mounting conditions (among

layers and at the interface with the main structure) induced by industrial process. This

argument suggests that the sound package may be effectively modeled as a structural

fuzzy component. Thus, the treatment is simply characterized by a random impedance

operator, whose parameters must be identified by experimental measurements and finite

element analysis. However, although the “fuzzy acoustic trim” perfectly fits a statistical

description and allows for system uncertainties to be accounted for in the context of a
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robust design, it still oversimplifies the mathematical model of the impedance operator,

which is essentially considered a stochastic one-dimensional spring-mass-damper system.

On the other hand, since the TMM has become an industrial standard in the design of

sound insulating materials, there is a growing interest in embedding a simple analytical

model of the sound package in vibroacoustic finite element analysis. Indeed, although

the hypotheses of laterally unbounded and flat system cannot be met at low frequency

for structural components or acoustic cavities, the short wavelengths and high damping

involved in the acoustic trim suggest that the TMM could be successfully employed for

such subsystems. The advantages of a hybrid Finite Element-Transfer Matrix Method (FE-

TMM) are twofold. The most obvious one is again computational. Namely, the sound

package is considered as an equivalent two-dimensional reacting surface, thus reducing

the number of degrees of freedom with respect to a standard finite element modeling.

Second, it provides a simple and automated (i.e. neither mesh nor measurements required)

procedure to characterize the sound package impedance, thanks to the use of the well-

established TMM. As a matter of fact, the latter advantage can be very important during

the design process, when an optimal configuration of the acoustic treatmet is sought.

Only a few finite element-transfer matrix models have been proposed in the past. They

may be classified as locally or non locally reacting models, depending on the assumed

impedance model. When the sound package is assumed to behave as a locally reacting

system, the transfer matrix between the two ends of the multilayer is used to calculate

the acoustic impedances (i.e. pressure over normal velocity) seen by the main structure

and the acoustic cavity. On the other hand, more sophisticated approaches are needed

to account for non local behavior. Essentially, the impedances are considered a function

of the space (or, equivalently, of the wavenumber) rather then a constant (like in locally

reacting materials). Under these circumstances, the mathematical problem can be formu-

lated in an integral form involving spatial convolutions of sources and Green functions.

The latter are calculated in the wavenumber domain by means of the TMM. Due to the

assumption inherent within the transfer matrix framework, the finite lateral extent of the

sound package, which is assumed to be homogeneous and flat, is neglected. As a conse-

quence, the non local surface impedance is approximated considering only the direct field

contribution to the sound package response, thus neglecting the reflected field emanating

from the lateral boundaries. Such apparently stringent assumption is justified, besides the

softness of acoustic materials, by the fact that waves impinging onto the boundaries of

the sound package quickly dies out after being reflected, because of dissipative phenom-
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ena. Hence, one can argue that the effect of the reflected field is likely negligible and the

dynamic response could be approximated only by the direct field contribution only.

In what follows the hybrid FE-TMM formulations available in the literature are briefly

described.

– Tournour et al. [122] proposed a simple hybrid model wherein the acoustic treatment is

accounted for in a locally reacting sense by the frequency dependent coefficients of the

multilayer transfer matrix evaluated at a given couple (kx, ky). Typically, the analytical

problem is solved for a normal plane wave excitation, i.e. kx = ky = 0, although an

average over different angle of incidence (e.g. diffuse fields) can also be considered. An

application of this methodology to an optimization problem can be found in Ref. [130].

Even though this hybrid model can achieve a drastic reduction of the computational

burden, its main drawback resides in the choice of the locally reacting impedance value

which is, generally speaking, hard to justify since typical sound packages do not exhibit

a local behavior (the most obvious example is perhaps the case of spring-mass layups,

usually employed in automotive applications). Nonetheless, it could be argued that the

choice would be partially justified only under particular cases of external disturbances,

such as plane waves.

– Shorter and Mueller [105] proposed a formulation in terms of self and mutual piston

impedances to couple the finite element model of a structure with a transfer matrix

model of the sound package radiating in a semi-infinite fluid medium. Consequently,

this methodology can account for the non local behavior of acoustic treatments. The

mathematical framework relies on a weak form of the integral equation (i.e. spatial

convolution between external excitation and Green function) in the wavenumber domain.

As a result the discrete piston impedances are directly calculated in the (kx, ky)-space by

numerical integration of the analytical kernel (i.e. Green function). The approach follows

the methodology proposed by Langley [63] to calculate the radiation impedance of a bare

structure (i.e. without noise control treatment). The main advantage of introducing

a set of shape functions (e.g. pistons) to approximate the displacement at the main

structure-acoustic trim interface is computational, as it avoids the exact calculation of

the inverse Fourier transform by filtering the integrand high wavenumber content and

thus preventing from the numerical integration of highly oscillating functions.

– Courtois and Bertolini [26] developed a similar integral approach which relies instead

on a standard finite element approximation of the integral equations. As a result, the

Green functions in the physical domain must be retrieved from the transfer matrix

calculations by means of the inverse Fourier transform. However, this methodology has
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some drawbacks. In fact, for generic sound packages involving poroelastic materials (i)

a slow convergence of the inverse Fourier transform is typically observed, leading to the

integration of a highly oscillating function at high wavenumbers, and (ii) singularities

may occur for some particular cases, leading to improper integrals to be evaluated. In

addition, once the analytical kernels in the physical domain are known, further numerical

integrations are required to calculate the finite element matrices, making this approach

less appealing from a computational standpoint compared to a full wavenumber domain

methodology.

It can be pointed out that, potentially, these hybrid FE-TMM formulations may be very ef-

ficient. Indeed, the sound package is entirely characterized by analytical kernels which can

be quickly evaluated at each frequency employing the TMM. Moreover, a three-dimensional

model of the sound package is no longer needed, saving time and resources during the pre-

processing phase. On the other hand, the methodology assumes the noise control treatment

to be homogeneous, flat and of infinite lateral extent.

However, the open literature on the accuracy and limitations of these hybrid methodologies

is lacking. Indeed, in the few works briefly described above, a comprehensive theoretical

background for the sound package model is not provided. Moreover, the generic properties

of such hybrid FE-TMMs (i.e. domain of validity of the approximation, accuracy and com-

putational efficiency with respect to well-established finite element based substructuring

procedures) can hardly be inferred. In particular, the effect of the infinite lateral extent

assumption, inherent in the TMM, is completely ignored.

1.4 Motivations and objectives

Numerical tools are necessary to optimize and validate the design of industrial products

(e.g. cars, aircraft, trains etc. . . ). However, as discussed in section 1.3, the modeling of

vibroacoustic systems is definitely not trivial. Namely, multiphysics (i.e. structural, acous-

tic and poroelastic domains interact with each other) and broadband frequency analysis

(the frequency of interest can run from few Hz to several KHz) make the development

of practical numerical tools quite challenging. As the literature review conveys, tradeoffs

(i) between accuracy and computational efficiency, and (ii) between flexibility and ease of

use, are the major key to a successfull modeling tool.

This work is mainly concerned with the low frequency modeling. In such frequency range

(e.g. up to 1 KHz for typical automotive applications) conventional finite element models

of the primary subsystems (i.e. main structure and acoustic cavities) constitute a well-
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established industrial standard. However, such methodology is not totally justified to

model passive noise control treatments, mainly due to practical reasons (among all, com-

plexity of typical sound packages and poor computational efficiency of the resulting model).

On the other hand, arbitrary complex sound packages can be easily and efficiently mod-

eled (under some specific assumptions) by analytical methods (e.g. TMM). This context

seems then to suggest the development of a hybrid framework combining (i) the accuracy

and flexibility of the FEM and (ii) the efficiency and ease of use of the TMM. These two

modeling tools are widely used and typically accessible in commercial and open source

softwares.

This work aims at developing a hybrid finite element-transfer matrix framework to tackle

the modeling of noise control treatments attached onto a main structure and radiating in a

bounded or unbounded acoustic domain. Because of the simplifications inherent within the

analytical model of the sound package, the behavior of the hybrid model must be carefully

studied. As a matter of fact, the feasibility and potentiality of this hybrid methodology

must be still fully assessed, as confirmed by the only few works available in the literature.

This is therefore the ultimate objective of this work. The latter can be summarized in the

following three tasks.

– Define the best strategy in terms of accuracy/efficiency tradeoff to integrate a transfer

matrix model of the noise control treatment in a finite element model of the vibroacoustic

system.

– Provide a comprehensive assessment (i.e. domain of validity) of the hybrid methodology

by considering different configurations and materials typically employed in practical

applications.

– Compare the accuracy and computational efficiency of the developed model with estab-

lished industrial standards, namely the FEM (accuracy standard) and locally reacting

impedance models.

The present work is concerned with the assessment of the main assumption behind the

hybrid finite element-transfer matrix methodology, that is the infinite lateral extent of the

noise control treatment. The effects of the other assumptions inherent within the use of

the TMM (i.e. homogeneous and flat configurations) are instead not studied in this thesis,

because considered as a further step in the assessment of the hybrid model. Under this

circumstances, the main outcome of this research is expected to be a critic overview of the

proposed hybrid FE-TMM and guidelines for its proper use.
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1.5 Outline

The thesis is organized in seven chapters. The main contributions of this work are con-

tained in four scientific papers. Chapters 2-3 gather early work, whose main contributions

are (i) the comprehensive presentation of the theoretical background behind the hybrid

FE-TMM and (ii) the preliminary assessment of its performance. In chapter 2, the main

theoretical part of this work is developed. This chapter consists of a scientific paper pub-

lished in the Journal of Acoustical Society of America, where a first application of the

hybrid methodology to the noise radiation of structures with attached acoustic treatments

is considered. Chapter 3 extends the formulation to plate-cavity systems. This analysis is

presented in the form of a scientific paper submitted to the Journal of Acoustical Society

of America.

Chapters 4-5 gather recent work, whose main contribution is the development of an en-

hanced formulation of the hybrid FE-TMM. In particular, chapter 4 introduces the new

framework, studying the effect of different mathematical formulations. A better under-

standing of the hybrid FE-TMM strengths and limitations is achieved within this chapter.

Its importance within the thesis is thus primary, as it collects the conclusions of chapters

2-3 (perhaps reinterpreted more consciously) while proposing further insight into the be-

havior of the proposed hybrid model. The content of chapter 4 is presented in the form

of a scientific paper, which is yet to be submitted. The latter is conceived as the Part I

of a two-parts paper, whose Part II is instead the content of chapter 5. Therein, a simple

correction is proposed to retrieve some of the accuracy that is inherently lost when the

finite lateral extension of the acoustic treatment is neglected.

Next, chapter 6 presents results concerning the application of the hybrid modeling strat-

egy to the radiation of structures into unbounded fluid domains. Indeed, this class of

problems requires a careful analysis since the numerical approximation become even more

burdensome due to the presence of the unbounded fluid. To this purpose, different hybrid

strategies based on the models presented throughout chapters 2-5 are discussed. Further-

more, their performance are compared for the case of a simplified automotive configuration.

Finally, chapter 7 summarizes the main conclusions of this work and its and perspectives.



CHAPTER 2

THEORETICAL FRAMEWORK OF THE HY-

BRID FE-TMM AND APPLICATION TO TRANS-

MISSION PROBLEMS

In this chapter the theoretical framework of the hybrid FE-TMM proposed in this thesis

is presented. Namely, the integral formulation employed to model the acoustic treatment

is introduced as well as its numerical approximation. The hypotheses inherent within the

mathematical framework are presented and discussed. The methodology is then employed

to predict the noise radiation of a vibrating structure with an attached noise control

treatment. This chapter mainly refers to the paper published on the Journal of Acoustical

Society of America (Ref. [1]). However, the contents of the original paper have been

slightly altered in order to include the analysis published on a later erratum (Ref. [2]).

Moreover, a final section (i.e. section 2.8) has been added to integrate the paper in the

context of the thesis.
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isée pour prédire la radiation de bruit de une structure vibrante avec un traitement

acoustique.

Résumé français: La modélisation de systèmes vibroacoustiques complexes, y compris

les matériaux poroélastiques, par des méthodes fondées sur des éléments finis peut être

impraticable pour des applications pratiques. Pour cette raison, les méthodes analy-

tiques telles que la méthode de matrice de transfert sont souvent préférées afin d’obtenir

une estimation sommaire des paramètres vibroacoustiques. Cependant, les hypothèses

fortes et inhérentes à la méthode de matrice de transfert conduisent à un manque de

précision dans la description de la géométrie du système. En conséquence, la méthode

de matrice de transfert est intrinsèquement limitée à la plage de haute fréquence. Au-

jourd’hui, les procédures de structuration hybrides sont devenues très populaires. En

effet, les différentes techniques de modélisation sont généralement recherchées à décrire

les systèmes vibroacoustiques complexes sur la plus large gamme de fréquences possi-

ble. Par conséquent, la souplesse et la précision de la méthode des éléments finis et

l’efficacité de la méthode de matrice de transfert peuvent être couplés au sein d’une

technique hybride pour obtenir une réduction de la charge de calcul. Dans ce tra-

vail, une méthode hybride est proposée. Les performances de la méthode pour prédire

les indicateurs vibroacoustiques des structures planes avec des traitements acoustiques

homogènes attachés sont évaluées. Les résultats démontrent que, sous certaines condi-

tions, le modèle hybride permet une réduction de l’effort de calcul tout en conservant

une précision suffisante par rapport à la solution complète des éléments finis.

Note: -

2.1 Abstract

Modeling complex vibroacoustic systems including poroelastic materials using finite ele-

ment based methods can be unfeasible for practical applications. For this reason, analyt-

ical approaches such as the transfer matrix method are often preferred to obtain a quick

estimation of the vibroacoustic parameters. However, the strong assumptions inherent

within the transfer matrix method lead to a lack of accuracy in the description of the

geometry of the system. As a result, the transfer matrix method is inherently limited to

the high frequency range. Nowadays, hybrid substructuring procedures have become quite

popular. Indeed, different modeling techniques are typically sought to describe complex

vibroacoustic systems over the widest possible frequency range. As a result, the flexibil-

ity and accuracy of the finite element method and the efficiency of the transfer matrix

method could be coupled in a hybrid technique to obtain a reduction of the computational
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burden. In this work a hybrid methodology is proposed. The performances of the method

in predicting the vibroacoustic indicators of flat structures with attached homogeneous

acoustic treatments are assessed. The results prove that, under certain conditions, the

hybrid model allows for a reduction of the computational effort while preserving enough

accuracy with respect to the full finite element solution.

2.2 Introduction

Passive acoustic treatments used to control the noise level generated by vibrating systems

typically involve dissipative materials assembled in a multilayer fashion. The acoustic

treatment, also called sound package or acoustic trim, can be attached to a structure

and be in contact with a fluid medium. One or more layers of these passive components

usually contain poroelastic materials. Such materials consist of a solid and fluid phase.

The coupling between these two phases causes dissipation by viscous and thermal effects

while structural damping is provided by the frame. The Biot theory [13–15] accounts for

these mechanisms and can be used as a reliable mathematical model [3]. Although it is

possible to simplify the Biot model when the solid phase can be considered motionless or

limp, for general multilayer systems and for a broad range of excitation frequencies both

phases must be taken into account to obtain a good accuracy [84].

Even though the numerical approximation of vibroacoustic problems is still an open issue

[100] and an optimal approach has not been devised yet, the Finite Element Method [10]

(FEM) is typically used to model arbitrarily complex systems in the low and mid frequency

range. However, when poroelastic materials are involved in passive treatments, using

finite element based methodologies can be, even if accurate, computationally expensive.

Indeed, a large number of degrees of freedom is necessary to describe the two phases

of the porous material; for instance, the (u, p) formulation [5] of the Biot theory, albeit

more efficient compared to other formulations (e.g. displacement based formulation [85]),

still needs four unknowns per node. Furthermore, classical mesh criteria, i.e. six linear

or four quadratic elements per wavelength, do not provide a sufficient condition to get

reliable results, due to the coupling between the two phases and because of the dissipation

mechanisms [30]. Therefore, a large number of elements are always needed in order to

capture the solution. Several attempts have been made to alleviate this drawback. On the

one hand, much work has been devoted to improve the efficiency of the FEM. Hierarchical

formulations of the elements [57, 94], simplified 2D models [19, 58], enrichment methods

like the Partition of Unity FEM [20] (PUFEM) and model reduction techniques [32, 53,

95, 96] have been investigated. Still, these methods remain computationally expensive



24
CHAPTER 2. THEORETICAL FRAMEWORK OF THE HYBRID FE-TMM AND

APPLICATION TO TRANSMISSION PROBLEMS

and may introduce further mathematical issues. On the other hand, new approaches have

been developed to avoid the difficulties arising from a full finite element discretization

of the system. For instance, the Wave Based Method [36] (WBM) has been applied to

poroelastic domains [35]. However, convergence issues due to bad conditioning of the

final system may appear for domains of arbitrary shape, limiting the application of the

WBM to simple configurations. Recently, a Discontinuous Galerkin Method (DGM) with

plane wave interpolants has been proposed by Dazel and Gabard [34] and applied to 2D

poroelastic domains. The approach has shown interesting properties, as an improved

conditioning of the final system is achieved compared to other wave-based methodologies

(e.g. WBM and PUFEM).

An alternative to these sophisticated numerical approaches relies in fast analytical method-

ologies. However, to solve analytically the coupled Partial Differential Equations (PDEs)

which govern the vibroacoustic system, several assumptions must be introduced. Namely,

the multilayer system is assumed homogeneous, flat and laterally unbounded. The system

remains, instead, bounded in the thickness direction. Under these conditions, the Fourier

Transform (FT) can be employed to move from the physical space (x, y) to the wavenum-

ber domain (kx, ky). As a result, the boundary value problem can be reformulated as

a set of Ordinary Differential Equations (ODEs) in terms of the thickness coordinate z.

Given the set of interface conditions between different layers, the analytical solution for

each traveling wave (kx, ky) can be found. In this context, the Transfer Matrix Method [3]

(TMM) allows for a compact and general formulation leading to the solution of a small

linear system. Once the solution in the wavenumber domain has been properly sampled,

the Inverse Fourier Transform (IFT) can be employed to find the solution in the physical

domain. This methodology can be used to construct the acoustic impedance of a multilayer

system, as well as, from a more mathematical point of view, its Green function. Faverjon

and Soize [44] considered this approach to find the acoustic impedance of a three-layer

system consisting in a poroelastic layer sandwiched between two plates. The experimental

set up considered to validate the analytical methodology exhibited a few discrepancies at

low frequencies, because of finite size effects. Later on, Hassan [54] used the analytical

approach to obtain the self and mutual piston impedances of a viscoelastic layer radiating

in a semi-infinite fluid medium.

Overall, although it can be argued that such analytical approaches capture the physics of

the system in the thickness direction, the assumption of unbounded layers is not justified

at low frequency. However, it can be stated that finite size effects are mainly confined

in the master systems, i.e. structures and cavities, whereas the acoustic treatment is less
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affected by the presence of physical boundaries. Indeed, (i) the dissipation provided by

poroelastic and viscous layers and (ii) the short waves propagating through these media

suggest that the information regarding the geometry could be neglected. In this context,

several approaches have been developed to couple a detailed description of the elastic and

acoustic domains with a simple analytical model of the acoustic treatment. For instance,

Rhazi and Atalla [92, 93] proposed a hybrid methodology to model flat rectangular plates

with attached multilayer treatments. The displacement of the simply supported plate

was described in terms of superposition of orthogonal trigonometric functions (i.e. Ritz

method) while the effect of the multilayer treatment on each mode was approximated using

the TMM. To model complex structures or cavities, attempts have been made to include

a simplified model of the acoustic treatment in a finite element framework. As a first

approximation, the acoustic treatment can be taken into account by its wall impedance

[3, 86], which can be determined experimentally or calculated by means of analytical

models such as the TMM. Since experimental approaches are not contemplated in the

present work, only the latter methodology is herein considered. In this context, Tournour

et al. [122] proposed a simple hybrid model wherein the acoustic treatment is accounted

for in a locally reacting sense by the frequency dependent coefficients of the transfer matrix

evaluated at a given couple (kx, ky). An application of this methodology to an optimization

problem can be found in the work of Yamamoto et al. [130]. However, to account for

complex sound packages, more accurate approaches based on integral formulations (i.e.

Green function) are typically sought. For instance, the approach proposed by Shorter and

Mueller [105] employs a formulation in terms of self and mutual piston impedances to

couple the finite element model of a structure with a transfer matrix model of the sound

package radiating in a semi-infinite fluid medium. On the other hand, the approach of

Courtois and Bertolini [26] uses the IFT methodology to explicitly find the exact Green

functions of the laterally unbounded acoustic treatment placed between a structure and a

cavity. Finally, note that simplified models to account for sound packages in finite element

analysis has also been proposed in a stochastic framework [45, 46].

Thus, it can be pointed out that, potentially, these hybrid Finite Element-Transfer Matrix

Methods (FE-TMMs) may be very efficient from the computational point of view. Indeed,

the sound package is entirely characterized by analytical kernels which can be evaluated

quickly at each frequency employing the TMM. Moreover, a 3D model of the sound package

is no longer needed, saving time and resources during the preprocessing phase. However,

the open literature on the accuracy and limitations of these hybrid methodologies is lack-

ing. Indeed, in the few works briefly described above [26, 105, 122], a complete theoretical

background for the analytical model of the sound package is not provided. Moreover,
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the assessment of the performances of the hybrid method is typically restricted to global

vibroacoustic indicators (i.e. TL, quadratic velocity or pressure). This work wants to

partially fill this gap by (i) providing a critical overview of the analytical modeling of

flat and homogeneous multilayer systems by means of the Green function formalism, (ii)

proposing an efficient methodology to use the analytical model of the multilayer acoustic

trim in a finite element framework and (iii) assessing the validity of the hybrid model by a

comprehensive analysis. In section 2.3 and 2.4 a hybrid methodology based on the Green

function formalism is proposed. The approach differs from the one proposed by Courtois

and Bertolini [26] by the fact that the sound package problem is entirely formulated in the

wavenumber domain, avoiding the issues related to the direct computation of the Green

function by IFT. On the other hand, the approach can be seen as a generalization of what

was proposed by Shorter and Mueller [105]. The Green function formalism is introduced

and discussed in section 2.3, giving an overview of the approaches proposed in other works

and showing the advantages of the methodology suggested by the authors. Although the

approach can be extended to couple the analytical model of the sound package with finite

element domains of different nature (e.g. fluid and solid media), this work is restricted

to the analysis of flat structural systems with an attached homogeneous acoustic treat-

ment radiating in an unbounded fluid domain. Thus, in section 2.4, the substructuring

approach to take into account the analytical model of the sound package into the finite

element model of a generic structure is presented. In section 2.5, two analysis are per-

formed to assess the accuracy of the hybrid methodology. First, the attention is focused

on the dynamic response of the acoustic treatment alone. Then, a second analysis aims

at assessing the accuracy of the assembled hybrid model for a treated structure excited

by acoustic and mechanical disturbances. The results in terms of typical vibroacoustic

indicators obtained by means of the FE-TMM are discussed and compared with the full

finite element solution. However, as already mentioned above, such analysis is typically

not sufficient (i) to provide a comprehensive understanding of the behavior of the hybrid

model and (ii) to identify its strengths and limitations. Therefore, to provide such answers,

further analysis are proposed.

2.3 Analytical formulation

In this section the Green function based formulation to model the response of generic

multilayer systems is presented. The system is assumed flat and of infinite lateral extent

(see Fig. 2.1). The two faces which define the finite thickness of the treatment are referred

to as side A and B. The planar coordinates x = (x, y) define the position of each point
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Figure 2.1 Geometry of the multilayer system. Through-the-thickness view of
the treatment (left) and top view of the excited surface S on side A (right).

over these faces. The normal displacements at side A and B are denoted by uA and uB,

respectively. Similarly, the normal stresses exerted on the two sides of the treatment are

σA and σB, respectively. All the displacements and stresses are functions of the space

variable x and of the circular frequency ω (i.e. the time dependency eıωt is implicitly

assumed). Without loss of generality, let the normal stress σA be the output of the system

when a displacement uA is applied over a finite area S (see Fig. 2.1) and a set of boundary

conditions are applied to side B (e.g. hard wall condition uB = 0, pressure release condition

σB = 0 or mixed condition ZBuB + σB = 0). In this context, assuming a homogeneous

system with respect to the planar coordinates x, the Green function formalism can be

employed to write the solution as

σA(x, ω) =

∫

S

d(x− x′, ω)uA(x′, ω) dx′ , (2.1)

where d(x − x′, ω) is the Green function of the problem. The domain S represents the

support of the normal displacement uA (i.e. side A of the multilayer is embedded into a

rigid planar baffle). The distance vector pointing from x′ to x is denoted by r. It should be

observed that, for a generic non-homogeneous system, the Green function depends on both

the planar coordinates x and x′, i.e. d(x,x′, ω). Then, assuming a homogeneous system

and boundary conditions over side B, the dependency from the absolute position over the

planar surface can be removed, leading the Green function to be a function of the relative

distance r only. Introducing some appropriate shape functions ψj(x), the displacement

can be expanded as

uA(x, ω) = ψj(x) aj(ω) , (2.2)
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where the sum over repeated index is implicitly assumed. The coefficient aj(ω) is the

participation factor of the jth shape function ψj(x). If the basis is such that uA(xj , ω) =

aj(ω), then aj(ω) is the nodal displacement UAj
(ω) (i.e. the basis has the Kronecker delta

property, as the finite element shape functions). Otherwise, an interpolation scheme is

sought to relate the coefficients aj(ω) to the nodal values UAj
(ω), like in intrinsic meshless

methods [81]. Using Eq. 2.2 in Eq. 2.1, premultiplying by ψi(x) and integrating over the

surface S gives

∫

S

ψi(x)σA(x, ω) dx =

∫

S

ψi(x)

∫

S

d(x− x′, ω)ψj(x
′) dx′ dx aj(ω) , (2.3)

which is the projection of Eq. 2.1 onto the finite dimensional space spanned by the selected

shape functions.

2.3.1 Formulation in the wavenumber domain

Let f(x) be a function of the 2D space. Its FT and IFT are defined as

f̂(k) =

∫

x

f(x)e−ık·x dx (2.4)

f(x) =
1

(2π)2

∫

k

f̂(k)eık·x dk , (2.5)

where k = (kx, ky) denotes the wavenumber domain coordinates and ı is the complex unit.

The direct application of the IFT formula to the Green function leads to

d(r, ω) =
1

(2π)2

∫

k

d̂(k, ω)eık·r dk . (2.6)

Assuming an isotropic system with respect to the planar coordinates x, the Green function

becomes a function of the distance only, i.e. d(|r|, ω) = d(r, ω). In this case, the IFT in Eq.

2.6 can be expressed in polar coordinates (k, φ) yielding to the following one-dimensional

integral

d(r, ω) =
1

2π

∫

∞

0

d̂(k, ω)J0(kr)k dk , (2.7)
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where k = |k| is the modulus of the wavenumber and J0(kr) is the Bessel function of zero

order of argument kr. Eq. 2.7 gives the Green function relating displacement and stress

for a given distance r over side A in terms of an infinite sum of wavenumber contributions.

The fundamental kernel d̂(k, ω) can be computed by simple analytical approaches, such

as the TMM. Therefore, one can be tempted to find back the Green function d(r, ω) of

a given multilayer by applying Eq. 2.7. This methodology was considered by Faverjon

and Soize [44] to find the Green function of a multilayer consisting of a poroelastic layer

sandwiched between two thin plates. However, it has some drawbacks. In fact, for generic

sound packages involving poroelastic materials (i) a slow convergence of the integral in Eq.

2.7 is typically observed, leading to the integration of a highly oscillating function at high

wavenumbers, and (ii) singularities may occur for some particular cases at r = 0, leading

to improper integrals to be evaluated (i.e. d̂(k, ω) might be unbounded as k →∞).

As a consequence, a more efficient procedure should be used in order to overcome the afore-

mentioned issues. Thus, employing the convolution theorem, with further manipulations,

Eq. 2.3 can be rewritten as

∫

S

ψi(x)σA(x, ω) dx =
1

(2π)2

∫

k

ψ̂∗i (k)d̂(k, ω)ψ̂j(k) dk aj(ω) , (2.8)

where it has been assumed that the displacement uA(x, ω) is zero outside the surface

S. This assumption allows to interpret the region S as the infinite plane at z = 0, so

that the FT formulas can be employed. The superscript ∗ indicates the conjugate of a

complex number. Let the basis of the approximation space be spanned by generic radially

symmetric functions obtained by translation and associated to a set of collocation points

xi, i.e.

ψi(x) = ψ(|x− xi|) = ψi(r) . (2.9)

Its FT reads

ψ̂i(k) = ψ̂(k) e−ık·xi , (2.10)

where

ψ̂(k) = 2π

∫ R

0

ψ(r)J0(kr)r dr . (2.11)
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In Eq. 2.11 it has been implicitly assumed that the function ψ(r) has a compact support

of radius R. Using Eq. 2.10 in Eq. 2.8 gives:

RAi
(ω) =

∫

S

ψi(r)σA(x, ω) dx =

=

[

1

2π

∫

∞

0

d̂(k, ω)J0(kr)k|ψ̂(k)|2 dk

]

aj(ω) = DAA(r, ω) aj(ω) ,

(2.12)

where RAi
is the normal stress projected onto the ith degree of freedom and DAA(r, ω)

is the discrete Green function based dynamic stiffness seen from side A of the flat and

laterally infinite multilayer system. Finally, r = |r| is the distance between the jth and ith

nodes. The definition of the discrete Green function DAA(r, ω) in Eq. 2.12 differs from the

analytical function d(r, ω) in Eq. 2.7 by the presence of the term |ψ(k)|2, which acts as a

filter on the system, cutting off the waves propagating above a certain wavenumber. As a

consequence, this choice would circumvent the issues related to the integration of Eq. 2.7.

On the other hand, Eq. 2.12 allows for the direct calculation of the projected (i.e. filtered)

Green function DAA(r, ω) (dimensionally a force, in the considered case), which differs

from the analytical function d(r, ω) (dimensionally a stress). It is finally noted that the

procedure showed above is general, as different projected Green functions can be defined

employing the desired input and output in Eq. 2.1.

2.3.2 Type of radially symmetric functions

Different types of shape functions ψ(r) have been used in the literature. The use of

cylindrical pistons has been investigated by Hassan [54] and by Shorter and Mueller [105].

However, the resulting filter may not be effective because of the high frequency content

related to the presence of a sharp edge at r = R. To avoid this issue a linear transition

region can be added, avoiding the discontinuity [54]. It is worth noting that, although

the finite aperture of the shape functions is able to filter the high wavenumber content

of the integral in Eq. 2.12, the convergence may still be problematic, since the cut-off

wavenumber generally depends on the considered system. To overcome this issue, Langley

[63] proposed the use of the jinc function (jinc(x) = J1(x)
x

, where J1(x) is the Bessel

function of first order of argument x). Such wavelet functions have the advantage to avoid

sharp edges and having a band-limited FT, removing the convergence issue. However, the

definition of the mapping between the amplitude of the wavelet (i.e. aj) and the related

physical variable (i.e. UAj
) is not straightforward for arbitrary geometries.
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In the present work, the authors investigate the performance of linear functions, i.e.

ψ(r) =







1− r

R
if r ≤ R

0 if r > R
, (2.13)

with FT

ψ̂(k) = 2πR2jinc(kR)− 2π

R

∫ R

0

r2J0(kr) dr , (2.14)

Eq. 2.13 provides a more effective filter compared to the cylindrical pistons. Moreover, it

allows to mimic the effect of classical finite element linear functions. Thus, in the present

work, the collocation points xi on the treated surface are associated to a structured FE

mesh which involves elements of the same size. Each nodal displacement defined on the

FE mesh is then approximated by Eq. 2.13. In this context, the compact support R of

the radial linear basis functions (Eq. 2.13) is chosen such that

∫

S

Ni(x) dx =

∫

S

ψ(x− xi) dx , (2.15)

where Ni(x) and ψ(x− xi) are the finite element and radially symmetric shape functions

associated to the same ith node. Consequently, in analogy with the finite element shape

functions, the coefficients aj are assumed to be the normal displacements UAj
associated

to each collocation point (i.e. node) of the meshed surface S, so that Eq. 2.12 can be

rewritten as

RAi
(ω) = DAA(r, ω)UAj

(ω) , (2.16)

where DAA(r, ω) is then the approximated boundary dynamic stiffness of the acoustic

treatment seen from side A for a given distance r between two nodes belonging to the

finite element mesh of the treated surface S.
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2.4 Hybrid finite element-transfer matrix model

Let the acoustic treatment be attached onto a structure over side A. The following approx-

imations are introduced to employ the analytical tool: the acoustic treatment is assumed

(i) isotropic and (ii) homogeneous in the plane (i.e. thickness, lay-up and material proper-

ties do not change over the surface S), (iii) flat (unwrapped if any curvature is present) and

(iv) of infinite extent (lateral mounting conditions are neglected). Under these assump-

tions, the surface S defines the treated interface between the structural domain and the

sound package. By a classical finite element approximation, the linear system describing

the dynamic of the master subsystem (i.e. elastic solid) is

K(ω)Us(ω) =

[

KAA(ω) KAi(ω)

KT
Ai(ω) Kii(ω)

]{

Us
A(ω)

Us
i (ω)

}

=

{

Rs(ω)

0

}

+ F(ω) , (2.17)

where the following partition of the master degrees of freedom has been assumed

Us(ω) =

{

Us
A(ω)

Us
i (ω)

}

. (2.18)

The vector Us contains the structural degrees of freedom, also called master degrees of

freedom. The vector Us
A contains the nodal normal displacements over the treated surface

S, while Us
i refers to the internal degrees of freedom. Matrix K is the dynamic stiffness of

the structure. F is the external load vector (i.e. the disturbance). Rs gather the interface

normal forces due to the presence of the acoustic treatment. A relation between the latter

forces and the master degrees of freedom Us
A is sought to account for the effect of the

sound package into the finite element model (Eq. 2.17). In what follows it will be shown

how to retrieve this relation using an analytical model of the sound package alone. Namely,

the Green function approach as presented in section 2.3 and the simplified locally reacting

approach [122] will be used to build the hybrid finite element-transfer matrix model.

2.4.1 Green function based FE-TMM

Given a set of nodes over the treated surface S, Eq. 2.16 can be rearranged in matrix form,

yielding

RA(ω) = DAA(ω)UA(ω) , (2.19)
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which gives, for a given boundary condition over side B, the interface forces RA due to

the displacements UA imposed over side A of the treatment attached onto the structure.

Assuming that the collocation points of the Green function formulation (Eq. 2.19) coin-

cide with the finite element nodes of the structural domain, continuity conditions on the

displacements and interface forces can be easily imposed. Thus, Eq. 2.19 can be assembled

into the finite element system in Eq. 2.17, leading to the following hybrid model

[

KAA(ω)−DAA(ω) KAi

KT
Ai(ω) Kii(ω)

]{

Us
A(ω)

Us
i (ω)

}

= F(ω) , (2.20)

where DAA(ω) can be interpreted as an added dynamic stiffness accounting for the presence

of the acoustic treatment. The efficiency of the assembled hybrid model in Eq. 2.20 can

be improved by projection onto the structural modal basis. It is worth noting that the

effect of an external fluid in contact with the sound package over side B is taken into

account in matrix DAA(ω), avoiding expensive boundary element formulations. However,

this methodology replaces the exact finite size radiation impedance seen by side B of

the laterally bounded sound package by a simple plane wave impedance, i.e. imposing

pB(k, ω) = ıω ρ0c0k0√
k2
0−k2

uB(k, ω) in the TMM when solving for d̂(k, ω) with ρ0 and c0 the

density and speed of sound in the unbounded fluid and k0 = ω
c0

the acoustic wavenumber

in the medium (see appendix A). On the other hand, when the fluid loading is neglected,

the pressure release condition pB(k, ω) = 0 is imposed in the TMM to calculate d̂(k, ω).

In any case, once the system in Eq. 2.20 has been solved, the power radiated Πrad can be

evaluated as

Πrad =
ω2

2 (2π)2

∫

k

û∗A(k, ω) Re
{

Ẑ∞(k, ω)
}

|d̂A→B(k, ω)|2 ûA(k, ω) dk =

=
ω2

2
Us∗

Ai
(ω)Zrad

ij (ω)Us
Aj

(ω) ,

(2.21)

where Ẑ∞(k, ω) = ρ0c0k0√
k2
0−k2

is the plane wave radiation impedance and d̂A→B(k, ω) is the

coupling Green function, i.e. the displacement at side B due to an imposed displacement

at side A. Again, d̂A→B(k, ω) is evaluated by means of the TMM and can account for the

effect of an external fluid at side B (see appendix A), as explained above. Eq. 2.21 can

be reduced to a one-dimensional integral as it has been shown in section 2.3 for Eq. 2.12.

The matrix Zrad
ij is the effective radiation impedance seen by the structure.
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2.4.2 Locally reacting FE-TMM

If the sound package is assumed to have a locally reacting behavior, the Green function is

approximated by a function independent of the wavenumber k, i.e. d̂(k, ω) = d̂0(ω). As a

result, all the waves are guided through the thickness of the treatment according to d̂0(ω),

irrespective of the particular wavelength. Thus, Eqs. 2.12 can be rewritten in the physical

domain, as the wave domain representation of the Right Hand Side (RHS) integral is no

more justified. A classical finite element approximation can be used instead, yielding to

the following hybrid model

[

KAA(ω)− d̂0(ω)CAA KAi(ω)

KT
Ai(ω) Kii(ω)

]{

Us
A(ω)

Us
i (ω)

}

= F(ω) , (2.22)

where CAA is the structural normal displacements self-coupling term. The computational

efficiency of such approximation is evident: the effect of the acoustic treatment is described

by a simple and frequency independent geometrical coupling term (i.e. CAA) involving

products of the finite element shape functions over the surface S. However, the choice of

the local kernel d̂0(ω) is, generally speaking, hard to justify. It could be argued that the

choice would be partially justified only for the case of external disturbances which force

a given wavenumber on the system (e.g. plane wave). In what follows, the local kernel is

chosen as d̂(kt, ω) in the case of a plane wave excitation (kt is the forced trace wavenumber

on the structural excited plane) and d̂(0, ω) in case of a mechanical excitation (e.g. point

force).

As explained in section 2.4.1, the effect of the fluid loading can be either considered or

neglected in the computation of the locally reacting Green function d̂0(ω). Then, in the

postprocessing phase, the power Πrad radiated by the sound package can be evaluated

using the locally reacting kernel d̂A→B0(ω) in Eq. 2.21, yielding

Πrad = |d̂A→B0(ω)|2 ω2

2 (2π)2

∫

k

û∗A(k, ω) Re
{

Ẑ∞(k, ω)
}

ûA(k, ω) dk =

= |d̂A→B0(ω)|2ω
2

2
Us∗

Ai
(ω)Zrad

bareij
(ω)Us

Aj
(ω) ,

(2.23)

where Zrad
bareij

is the radiation impedance of the bare structure. Therefore, the locally

reacting approximation is employed (i) to find Us
Aj

by solving Eq. 2.22 and (ii) to evaluate

the displacement at side B of the acoustic treatment using d̂A→B0(ω). Then, the power
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radiated by the resulting velocity profile is exactly evaluated (Eq. 2.23), as far as the case

of a flat surface S is concerned.

2.5 Results

In this section the performance of the Green function based FE-TMM presented in section

2.3 and 2.4 is assessed. For this purpose, two different analysis are proposed. First, the

added dynamic stiffness DAA(ω) approximated by the analytical method (Eq. 2.19) is

compared with the exact calculation obtained by a finite element model of the sound

package alone. This analysis is restricted to the acoustic treatment only, as the master

structure is not involved in the calculations. Next, an academic benchmark consisting in a

rectangular plate treated by two different sound packages and excited by an acoustical or a

mechanical source is considered to assess the accuracy of the hybrid methodology. Notably,

the Green function based FE-TMM is compared with the locally reacting FE-TMM and

with the FEM. The latter is considered as the reference model. Only flat systems will

be treated in the present analysis, as the effect of the curvature of the trimmed area is

beyond the scope of this paper.

It is noted in passing that in all the following cases, a thin air gap was placed at the first

layer of the treatment (e.g. between the master structure and a poroelastic layer) in order

to only take into account continuity of normal components over the treated surface S,

so that a meaningful comparison with the full finite element model can be established.

However, the hybrid methodology is not limited to such configurations, as the model

described in section 2.4 allows to handle generic layups as long as only the continuity of

normal displacement and stress is assumed at the interface with the solid. For instance,

if a solid phase domain (e.g. poroelastic or solid layer) is placed at the first layer of the

treatment (i.e. side A), the stress component lying on the surface S (i.e. shear component)

must be forced to zero in order to be able to solve the transfer matrix problem to obtain

the desired Green function. In other words, the state vector of the transfer matrix model

of the treatment at side A has to be reduced to normal components only (see appendix

A).

2.5.1 Assessment of the analytical model

This case involves a three-layers acoustic treatment of planar dimensions 0.8 × 1.7 m2

consisting, from side A, of a 1 mm air gap, a 2 cm poroelastic foam and a 1.2 kg/m2 heavy

layer (see Tab. 2.1 for the material properties). The latter was modeled as a 1 mm thick
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limp solid layer with Young’s modulus 1 MPa, Poisson’s ratio 0.3 and zero loss factor. A

pressure release condition is applied over side B of the sound package. The finite element

model of the acoustic treatment involves a mesh of 30×60 elements in the (x, y) plane while

one, three and one Hexa-8 fluid, poroelastic and solid elements are used along the thickness

direction. The finite element model is assumed to slide along its lateral boundaries.

The generic component (i, j) of matrix DAA(ω) comes from the integration in the wavenum-

ber domain of the kernel d̂(k, ω) for a given distance r between the ith and jth nodes (see

Eq. 2.16). The same component can be obtained by means of the finite element model

of the acoustic treatment described above. Figs. 2.2 and 2.3 show one element of matrix

DAA(ω) related to a nodes pair located approximately at the middle of the treated area

S, far from the boundaries. The figures show an extra-diagonal term (i.e. r = 0.1983 m)

for the case of a poroelastic (i.e. Biot) and limp model of the foam, respectively. Concern-

ing the Biot model (see Fig. 2.2), some discrepancies between the analytical model and

the FEM are observed around 800 Hz, where a peak controlled by the shear waves in the

poroelastic layer appears. Indeed, generally speaking, it has been found that the effect

of structural borne thickness resonances, such as the shear waves controlled peak in Fig.

2.2, is typically underestimated by the analytical model. Therefore, larger dimensions are

required for the finite size system to converge to the analytical solution of the laterally

unbounded treatment. The same analysis was also performed employing a limp model of

the foam (see Fig. 2.3). In this case the shear waves are neglected (i.e. the elasticity of the

solid phase is not accounted for) and an almost perfect correlation between the analytical

and finite element models is observed. Moreover, Figs. 2.2 and 2.3 show that no important

size effects are shown around the thickness resonance of the acoustic treatment at 300 Hz.

Overall, it can be pointed out that, for the considered system, the analytical solution for

the infinite system appears to approximate adequately the behavior of the actual bounded

system even at low frequency. However, it should appear clear that, as the nodes pair

(i, j) gets closer to the boundaries, more discrepancies between the analytical model and

the FEM are expected due to the effect of the reflected field. As a result, although the

present analysis can provide qualitative observations, it does not allow to fully assess the

global accuracy of the analytical model of the sound package. Thus, in order to do so, a

different analysis will be presented in the next section.

2.5.2 Assessment of the FE-TMM

The second analysis involves a 2 mm thick steel plate with an attached acoustic treatment.

Two different layups are considered for the sound package. Namely, a two-layers treatment
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Figure 2.2 Extra-diagonal term of the discrete Green function DAAij
(dynamic

stiffness). Real (Re) and imaginary (Im) parts. The distance between the two
nodes is r = 0.1983 m. The FEM solution refers to a nodes pair (i, j) placed
approximately at the middle of the treated surface S. Solution according to the
Biot model of the foam.
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Figure 2.3 Extra-diagonal term of the discrete Green function DAAij
(dynamic

stiffness). Real (Re) and imaginary (Im) parts. The distance between the two
nodes is r = 0.1983 m. The FEM solution refers to a nodes pair (i, j) placed
approximately at the middle of the treated surface S. Solution according to the
limp model of the foam.
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Table 2.1 Materials used in the numerical simulations.

Material
Properties

Acoustic Mechanical

Steel plate density = 8000 kg/m3

Young’s modulus = 200GPa
Poisson’s ratio = 0.33
loss factor = 0

Air density = 1.21 kg/m3

speed of sound = 342.2m/s

Melamine porosity = 0.99 density = 8.8 kg/m3

resistivity = 10900 kg/m3s Young’s modulus = 80 kPa
tortuosity = 1.02 Poisson’s ratio = 0.4
viscous length = 100µm loss factor = 0.17
thermal length = 130µm

Mass density = 1200 kg/m3

Young’s modulus = 103 kPa
Poisson’s ratio = 0.3
loss factor = 0

consisting, from the plate side (i.e. side A), of a 1 mm air gap and a 2 cm foam and (ii) a

three-layers treatment consisting, in the same order, of a 1 mm air gap, a 2 cm foam and a

1.2 kg/m2 heavy layer (see Tab. 2.1 for the material properties). Two different boundary

conditions are considered over side B of the sound package, namely, a radiation condition

into an unbounded fluid and a pressure release condition. In the finite element model, the

radiating side of the acoustic treatment is assumed to be embedded in a rigid baffle. In

this context, the impedance condition for the case of the radiating foam (i.e. the two-layers

lay-up) is modeled by the boundary formulation proposed by Atalla et al. [6]. Concerning

the hybrid model, the methodology explained in section 2.4.1 is employed to account for

the fluid loading. The radiated power is thus retrieved by means of Eqs. 2.21 and 2.23.

The untreated (i.e. excitation) side of the plate is assumed to vibrate in-vacuo. In what

follows, unless differently specified, the Biot model is employed for the poroelastic layer

involved in the two considered sound packages.

The first case refers to a simply supported plate of dimensions 0.4 × 0.85 m2 excited by

a plane wave impinging onto the structure with a 45◦/45◦ angle of incidence. The two-

layers treatment is attached onto the plate and radiates in the receiver domain, where

the presence of an unbounded fluid is modeled as explained above. The structure was

modeled with 55 × 110 linear quadrilateral plate elements. For the acoustic treatment

the same number of elements was used in the (x, y) plane while one and seven Hexa-8

fluid and poroelastic elements were used in the thickness direction to model the two layers
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of the acoustic treatment. The latter is assumed to slide along its lateral boundaries.

Figs. 2.4 and 2.5 show the space averaged quadratic velocity of the plate and the TL of

the system, respectively, predicted by the FE-TMM (Green function and locally reacting

based) and the FEM. The quadratic velocity (Fig. 2.4) is well captured by the Green

function based FE-TMM. On the other hand, the locally reacting approximation leads to

an overestimation of the dissipation at the peaks of the response. This is due the fact

that the plane wave radiation condition used in a locally reacting sense is not a reliable

approximation at low frequencies, as also observed by Atalla et al. [6]. Fig. 2.5 shows,

instead, the TL of the system. The hybrid models seem to overestimate the TL below

2 KHz (besides, it has been observed that the error increases as the treatment becomes

thicker while preserving the planar dimensions of the system), as a convergent behavior

towards the reference finite element solution can only be inferred at higher frequencies.

Therefore, the Green function based FE-TMM seems to be able to capture the kinetic

energy of the plate but it underestimates the power radiated by the back of the foam (i.e.

side B), leading to a higher TL prediction.

To understand this misbehavior, the resistive and reactive contributions seen by the plate

due to the added dynamic stiffness DAA(ω) are assessed in terms of energetic indicators.

Indeed, the resistive part of DAA(ω) is related to the power dissipated by the sound

package, i.e.

Πres = −1

2
Re

[

Vs∗

A (ω)Ts
A(ω)

]

=
1

2
Re

[

Us∗

A (ω) ıωDAA(ω)Us
A(ω)

]

, (2.24)

where Vs
A = ıωUs

A. The minus sign has been used for coherence with Eq. 2.20. On the

other hand, the reactive part of DAA(ω) is related to the imaginary part of the same

physical quantity, or, equivalently, to the real part of the potential energy associated to

the sound package itself, i.e.

Πrea =
1

2
Im

[

1

ω
Vs∗

A (ω)Ts
A(ω)

]

= −1

2
Re

[

Us∗

A (ω)Ts
A(ω)

]

= −1

2
Re

[

Us∗

A (ω)DAA(ω)Us
A(ω)

]

.

(2.25)

Fig. 2.6 (resp. 2.7) shows the difference between the resistive (resp. reactive) indicator

calculated by the FEM and the Green function based FE-TMM. It can be seen that, on

average, both the indicators lie within 0.5 dB over the observed frequency range. How-

ever, since the mass and stiffness added to the plate by the sound package are negligible
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Figure 2.4 Quadratic velocity of the simply supported steel plate excited by a
45◦/45◦ plane wave and attached to the two-layers lay-up. Comparison between
the FEM, the Green function based FE-TMM and the locally reacting FE-TMM.
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Figure 2.5 TL of the simply supported steel plate excited by a 45◦/45◦ plane
wave and attached to the two-layers lay-up. Comparison between the FEM, the
Green function based FE-TMM and the locally reacting FE-TMM.



2.5. RESULTS 43

compared with the reactive terms of the structure itself, the quadratic velocity is well

predicted (see Fig. 2.4). On the contrary, the TL (see Fig. 2.5) converges to the reference

solution only as the approximation of the reactive part becomes accurate enough.
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Figure 2.6 Difference between the resistive indicator Πres (Eq. 2.24) calculated
by the FEM and the Green function based FE-TMM. Simply supported steel
plate excited by a 45◦/45◦ plane wave and attached to the two-layers lay-up.
The effect of the fluid loading at side B is accounted for in both models.

Although the system described above cannot be accurately approximated neglecting the

pressure loading exerted by the fluid over the back of the foam, for the sake of argument,

the same analysis was run with a pressure release condition at side B of the foam. Only

the difference between the reactive indicator calculated by the reference and the hybrid

FE-TMM is reported in Fig. 2.8, as the resistive indicator exhibits the same accuracy. The

figure shows that, when a pressure release condition is applied on side B of the treatment,

the reactive effects are accurately solved (i.e. the difference is almost zero on average).

Therefore, the lack of accuracy experienced by the Green function based FE-TMM in

Fig. 2.5 indicates that the effect of an unbounded fluid is not accurately approximated

by the analytical model. This is basically due to the fact that the finite size system is
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Figure 2.7 Difference between the absolute value of the reactive indicator Πrea

(Eq. 2.25) calculated by the FEM and the Green function based FE-TMM.
Simply supported steel plate excited by a 45◦/45◦ plane wave and attached to
the two-layers lay-up. The effect of the fluid loading at side B is accounted for
in both models.
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actually baffled at the radiating side (i.e. side B), while the analytical model of the sound

package (Eqs. 2.19 and 2.21) requires only side A (i.e. the structural side) to be inserted

into a rigid baffle. Thus, a surface bigger than the treated surface S is in contact with the

unbounded fluid over side B of the sound package and, consequently, the effective fluid

loading is overestimated. Generally speaking, this effect is dominant below the coincidence

frequency, when the acoustic wavelength is longer than the structural wavelength. This

argument is confirmed by the results in Fig. 2.9, where the radiation impedance of two

representative plate modes (with clamped boundary conditions) calculated by means of

the Green function based FE-TMM (Eq. 2.21) is compared with the FEM prediction. It

is clear that the hybrid model is not accurate enough below the coincidence frequency

of each mode (i.e. when the acoustic wavelength equals the wavelength of the considered

plate mode). However, when the plate is excited by a plane wave with angle of incidence

θ, the acoustic trace wavenumber kt = (ω/c0)sin(θ) is enforced on the structure, so that,

after a low frequency region where the structural response is mostly modal, the structure

vibrates with a wavelength longer than the acoustic wavelength (being kt < k0). As a

result, the hybrid method converges to the reference solution before the critical frequency.

On the contrary, it was found that, when the structure is mechanically excited (i.e. point

force), discrepancies between the hybrid and the reference FEM solution must be expected

up to the coincidence frequency (with a maximum error comparable with that one in Fig.

2.5), due to the fact that the plate vibrates at each frequency according to its bending

wavenumber.

Consequently, the Green function based FE-TMM is expected to perform better when the

pressure loading at side B is neglected. To confirm this argument, the case of a sound

package involving an impervious mass attached at the back of the foam is now considered.

In fact, for this kind of layups, it is known that the fluid loading affects the plate-sound

package system at low frequency mainly adding damping around the double wall resonance.

Thus, if one accepts to neglect this effect, the dynamic response of the system system can

be solved in-vacuo and the radiated power can be retrieved in the postprocessing phase.

For this analysis, the same steel plate with doubled dimensions (i.e. 0.8×1.7 m2) attached

to the three-layers treatment (i.e. air gap-foam-mass lay-up) is considered. The plate is

clamped and excited along the z-axis by a 1 N point force applied at (0.0582 m, 1.6382 m).

Similar results were obtained for a plane wave excitation. However, a different excitation

and size are here used to illustrate the accuracy of the method for various excitations

and dimensions. As mentioned above, the effect of the fluid loading at the receiver side

is neglected in the FE-TMM and in the FEM. The structure was modeled with 55× 110

linear quadrilateral plate elements while one, three and one Hexa-8 fluid, poroelastic and
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Figure 2.8 Difference between the absolute value of the reactive indicator Πrea

(Eq. 2.25) calculated by the FEM and the Green function based FE-TMM.
Simply supported steel plate excited by a 45◦/45◦ plane wave and attached to
the two-layers lay-up. The effect of the fluid loading at side B is neglected in
both models.
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solid elements were used in the thickness direction to model the three layers of the acoustic

treatment. Figs. 2.10 and 2.11 show the space averaged quadratic velocity of the plate and

the radiated power, respectively, obtained by the hybrid FE-TMM and the FEM. A very

good agreement between the Green function based FE-TMM prediction and the reference

is now observed not only for the quadratic velocity but also for the radiated power. Few

discrepancies appear around the double wall resonance at 300 Hz and at the end of the

spectrum, where the shear waves resonance previously discussed occurs. Figs. 2.12 and

2.13 show the resistive and reactive indicators of the added dynamic stiffness DAA(ω) and

confirm that the hybrid model perform well when a pressure release condition is applied.

However, it is worth noting that the reactive indicator (see Fig. 2.13) is in better agreement

with the reference before the double wall resonance, suggesting that the mass effects (below

300 Hz) are better captured than the stiffness effects (above 300 Hz) for the considered

system. In fact, the effect of the three-layers treatment on the plate is approximately

equivalent to that of a spring-mass system, mass-controlled at low frequencies, damping-

controlled around the spring-mass resonance (i.e. 300 Hz) and stiffness-controlled at higher

frequencies. However, the stiffness added by the acoustic treatment is negligible compared

with the stiffness of the structure itself, so that the quadratic velocity in Fig. 2.10 is still

well captured despite the error observed in Fig. 2.13. Finally, it should be noted that the

locally reacting assumption (see Figs. 2.10 and 2.11) fails over the considered frequency

range for the three-layers sound package. Indeed, the mass at the top of the foam and the

strong modal response due to the mechanical disturbance excite particularly the non local

response of the treatment. As a result, this class of complex acoustic treatments cannot

be modeled as locally reacting subsystems, limiting the use of this simplification to simple

layups.
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Figure 2.10 Quadratic velocity of the clamped steel plate excited by a point
force and attached to the three-layers lay-up. Comparison between the FEM,
the Green function based FE-TMM and the locally reacting FE-TMM.
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Figure 2.11 Radiated power Πrad of the clamped steel plate excited by a point
force and attached to the three-layers lay-up. Comparison between the FEM,
the Green function based FE-TMM and the locally reacting FE-TMM.
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Figure 2.12 Resistive indicator Πres (Eq. 2.24) for the clamped steel plate ex-
cited by a point force and attached to the three-layers lay-up. Comparison
between the FEM and the Green function based FE-TMM.
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Figure 2.13 Absolute value of the reactive indicator Πrea (Eq. 2.25) for the
clamped steel plate excited by a point force and attached to the three-layers
lay-up. Comparison between the FEM and the Green function based FE-TMM.
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2.6 Implementation aspects

The efficiency of the Green function based FE-TMM resides mainly in the numerical

quadrature involved in Eqs. 2.12 and 2.21, as the calculation of the analytical kernels

d̂(k, ω) and d̂A→B(k, ω) can be performed quickly using the TMM. In the present work,

the following procedure is used for the evaluation of matrices DAA and Zrad. First, (i) a

preprocessing module is run to calculate the analytical kernels by means of the classical

TMM. Then, for each frequency step where the system in Eq. 2.20 has to be be solved,

(ii) the converged value of the integral is obtained by an adaptive numerical quadrature

algorithm (i.e. the open source QUADPACK library was used). The numerical integration

is performed at discrete values of the distance r, typically between rmin = 0 and rmax =

max(r), i.e. the maximum distance between two points lying over the treated surface S.

It should be noted that the convergence of the integral in in Eqs. 2.12 depends, for a

given sound package, on the decay rate of |ψ̂(k)|2 (see Eq. 2.12). However, depending

on the structural boundary conditions along the perimeter of the surface S, the global

displacement of the structure may provide a far more effective filter than the one provided

by the shape functions (i.e. | ˆψ(k)|2). As a result, the integral could be truncated before

its actual convergence, leading to a faster numerical quadrature. However, in this case,

a general truncation rule would be hard to define, as the displacement of the structure

is an unknown of the problem. For the two-layers (resp. three-layers) lay-up considered

above, the integration step was performed in about 1 s (resp. 2 s) at 100 (resp. 200) grid

points between rmin and rmax (data relatives to a serial implementation on a 2.2 GHz

AMD processor). Once the integral has been approximated between rmin and rmax, (iii) an

interpolation is performed to obtain all the independent (i, j) components of matrices DAA

and Zrad. This step strongly depends on the particular implementation (i.e. serial/parallel

and adopted interpolation routine). Thus, since the latter aspect was not optimized in

the current implementation, the computational time required to perform step (iii) is not

reported.

Finally, it should be noted that the computational time is only weakly dependent on the

frequency. Indeed, the acoustic treatment is solved analytically in the thickness direction,

so that steps (ii) and (iii) only depends on the number of nodes over the treated surface

S. On the contrary, a finite element model of the sound package requires a finer mesh in

the thickness as the frequency increases, leading to a larger system to be solved. However,

a direct comparison with the computational time required by the FEM is not provided.

Indeed, the efficiency of the in-house finite element code used in this work is not repre-
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sentative of the typical computational cost of modern finite element procedures based on

substructuring [53].

2.7 Conclusions

A hybrid FE-TMM has been proposed to couple the finite element with an analytical

model of the acoustic treatment. The analytical formulation is based on the Green function

formalism and assumes flat, laterally unbounded, homogeneous and isotropic treatments.

A first analysis has been performed to show that the analytical model can capture the

behavior of the actual bounded sound package even at low frequencies. It has been found

that poroelastic layers modeled by means of the Biot model exhibit size effects mostly at

the solid phase controlled resonances, which are typically underestimated by the analytical

model. Then, the accuracy of the FE-TMM has been assessed for a typical vibroacoustic

problem consisting of a plate treated by a sound package radiating in an unbounded

fluid medium. Two representative treatment layups were considered in the numerical

examples, namely a two-layers lay-up (i.e. air gap-foam configuration) and a three-layers

lay-up (i.e. air gap-foam-mass configuration). It has been found that, when the effect

of fluid loading on the sound package is taken into account, the power radiated in the

unbounded fluid estimated by the FE-TMM converges to the FEM calculation only at

higher frequencies. In the case of a plane wave excitation, the convergence is obtained

as soon as the structural response stops to be strongly modal. On the contrary, in case

of mechanical excitations (e.g. point force), no convergence can be expected before the

coincidence frequency. Nonetheless, the quadratic velocity of the plate is qualitatively

and quantitatively well captured for the considered sound packages. Conversely, when the

effect of the fluid on the back of the treatment is neglected, a very good agreement was

observed for both the considered indicators (i.e. space averaged quadratic velocity and

radiated power) in case of mechanical and acoustic excitations.

Other parameters have been found to affect the accuracy of the FE-TMM. For instance,

the ratio between the lateral dimensions and the thickness of the sound package as well as

the boundary conditions applied on the structural displacement (i.e. structural boundary

conditions) along the perimeter of the treated surface S may affect the accuracy of the

hybrid methodology. Nevertheless, for typical sizes, layups and boundary conditions, the

effect of the fluid loading over the back of the treatment was found to be the most critical

parameter for the considered systems. Overall, the FE-TMM has shown interesting per-

formances, revealing itself as an improvement over the locally reacting approach, which

confirmed, instead, its limitation to simple configurations. Finally, it should be stressed
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that, due to the strong assumptions considered in the hybrid formulation (i.e. the actual

finite size acoustic treatment is replaced by a baffled and laterally unbounded one), a per-

fect correlation with the FEM cannot be expected at low frequencies. Despite that, under

the conditions mentioned above, the FE-TMM provides a fast and reliable estimation of

the acoustic performance of a trimmed structure.

2.8 Further comments

The main conclusions of this chapter can be summarized as follows.

– The dissipation added to the structural domain due to the presence of the sound package

is typically well captured by the proposed hybrid methodology.

– The power transmitted to the fluid (i.e. receiver side) may be instead poorly captured.

The reason of the latter was found to be related to the modeling of the unbounded fluid.

Indeed, both the sound package and the fluid domain have been modeled by means of

the TMM. On the one hand, this strategy allows for an efficient approximation of the

unbounded fluid domain. However, on the other hand, it neglects the fact that only a

finite area S of the sound package is actually in contact with the fluid over side B. It was

found that this approximation introduces the following errors.

– The added mass due to the presence of a foam seen from the structure is overestimated

(Figs. 2.7 and 2.8).

– The radiation efficiency seen by the structure is poorly captured below the coincidence

frequency (Fig. 2.9). This is not surprising since the baffling condition is known to have

a non negligible effect over this frequency range.

As a result, in order to improve the accuracy, the presence of the fluid at side B must be

confined within the actual wetted surface S. To this purpose, the performance of the hy-

brid methodology in modeling noise treatments placed between a finite element structural

and acoustic domain must be assessed. This analysis will be comprehensively developed

throughout chapters 3-5. The acoustic radiation into unbounded acoustic domains will be

again considered in chapter 6 to formally conclude the analysis started in this chapter.
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CHAPTER 3

EXTENSION OF THE FE-TMM TO ACOUS-

TICALLY TREATED PLATE-CAVITY SYS-

TEMS

In this chapter, the hybrid FE-TMM is assessed for the case of treated plate-cavity systems.

The noise control treatment is thus placed between a finite element structure and acoustic

cavity. Hence, differently from the model considered in the previous chapter, a finite size

area is coupled with a finite element domain on both sides of the sound package. The

hybrid model is obtained as an extension of the framework developed in Chapter 2. The

paper submitted to the Journal of Acoustical Society of America follows. Furthermore, a

final section (i.e. Section 3.6) has been added to integrate the paper in the context of the

thesis.
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tiques. La modélisation numérique de ces systèmes à des fréquences basses et moyennes

repose généralement sur des méthodologies de sous-structuration fondées sur des mod-

èles d’éléments finis. À savoir, les sous-systèmes de base (c.-à-d. les domaines struc-

turaux et acoustiques) sont décrits par un ensemble fini de modes découplés, tandis

que les procédures de condensation sont généralement préférées pour les traitements

acoustiques.Cependant, bien que précise, cette méthode est coûteuse en ressources in-

formatiques lorsque les applications concrètes sont envisagées. Une éventuelle réduction

de la charge de calcul peut être obtenue par une approximation de l’effet du traitement

acoustique de sous-systèmes de base sans introduire de degrés physiques de liberté. Pour

ce faire, le traitement doit être présumé homogène, plat et d’une étendue latérale in-

finie. Sous ces hypothèses, des outils d’analyse simples comme la méthode de matrice

de transfert peuvent être utilisés. Dans cet article, on propose une méthode de matrice

de transfert de l’élément fini hybride. L’impact des hypothèses restrictives inhérentes

au cadre analytique est évalué pour le cas des systèmes de plaques cavité impliquant des

traitements acoustiques planes et homogènes. Les résultats démontrent que le modèle

hybride peut capter le comportement qualitatif du système vibroacoustique, tout en

réduisant l’effort de calcul.

Note: -

3.1 Abstract

Practical vibroacoustic systems involve passive acoustic treatments consisting of highly

dissipative media such as poroelastic materials. The numerical modeling of such systems

at low to mid frequencies typically relies on substructuring methodologies based on finite

element models. Namely, the master subsystems (i.e. structural and acoustic domains) are

described by a finite set of uncoupled modes, whereas condensation procedures are typi-

cally preferred for the acoustic treatments. However, although accurate, such methodology

is computationally expensive when real life applications are considered. A potential re-

duction of the computational burden could be obtained by approximating the effect of

the acoustic treatment on the master subsystems without introducing physical degrees of

freedom. In order to do that, the treatment has to be assumed homogeneous, flat and of

infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer

matrix method can be employed. In this paper a hybrid finite element-transfer matrix

methodology is proposed. The impact of the limiting assumptions inherent within the

analytical framework are assessed for the case of plate-cavity systems involving flat and

homogeneous acoustic treatments. The results prove that the hybrid model can capture
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the qualitative behavior of the vibroacoustic system while reducing the computational

effort.

3.2 Introduction

Typical vibroacoustic systems involve an acoustic cavity surrounded by structural compo-

nents, such as plates. In automotive and aeronautical applications, the use of lightweight

structures typically leads to poor vibroacoustic performances, as the structural frame vi-

brational energy produced by an external source is transferred significantly to the acoustic

fluid enclosed by the structure. As a result, the noise level inside the cavity may become

an issue, especially when the final product has to guarantee a healthy and comfortable

interior environment. Thus, passive acoustic treatments, also called sound packages, are

used to introduce dissipation in the system. They typically consist of highly dissipative

materials assembled in a multilayer fashion and attached onto the structure. One or more

layers of these passive components usually contain poroelastic materials. Such materials

are made up of a solid and fluid phase and can provide damping by the vibration of the

solid phase itself and by the coupling between the two phases. The Biot theory [13–15]

describes these complex phenomena for a homogeneous porous medium and can be used as

a reliable mathematical model [3]. Although it is possible to simplify the Biot model when

the solid phase can be considered motionless or limp (i.e. negligible structural rigidity),

for general multilayer systems and for a broad range of excitation frequencies both phases

must be taken into account to obtain a good accuracy [84].

Good modeling tools are essential to save resources during the design process. The Finite

Element Method [10] (FEM) is typically employed in the low frequency range. Namely,

substructuring solution strategies are used to improve the computational efficiency of

finite element analysis. On the one hand, the structural (e.g. plates) and acoustic (e.g.

cavity) domains that exhibit a modal behavior over the considered frequency range are

described by a finite set of uncoupled modes, computed from the respective finite element

models. Such subdomains will be herein referred to as master subsystems. On the other

hand, an optimal modeling strategy for the acoustic treatment has not been devised yet.

Indeed, the complex frequency dependency of the finite element matrices describing the

coupling between fluid and solid phases in poroelastic materials make standard eigenvalue

solvers difficult to apply. Despite several attempts to develop modal techniques for porous

materials [32, 33, 96], their effectiveness remains questionable as a huge number of modes,

whose participation to the global response of the system is not clear a priori [97], has

to be taken into account. As a consequence, a condensation of the acoustic treatment
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degrees of freedom is typically preferred [53]. Thus, the final discrete model of the coupled

system involves only the amplitudes of the master subsystems generalized coordinates (e.g.

structural and acoustic modal amplitudes). The effect of the acoustic treatment is, instead,

held in an added (boundary) operator which contains the effect of the condensed degrees

of freedom on the generalized coordinates. Such operator can be seen as an equivalent

interface impedance.

However, when poroelastic materials are involved in passive treatments, relying on a finite

element model of the sound package can be, even if accurate, computationally expensive.

Indeed, the (u, p) formulation [5] of the Biot theory, albeit more efficient compared to

other formulations (e.g. displacement based formulation [85]), still needs four unknowns

per node. Moreover, even at low frequencies, a very fine mesh is typically required to de-

scribe the shortest wavelength propagating inside the poroelastic media. Therefore, a large

number of elements are always needed in order to capture the solution. To alleviate this

drawback the use of hierarchical basis functions [57, 94] has been attempted. However, in

the last decade, most of the authors have converged on the idea that wave based method-

ologies should be considered for the efficient modeling of waves propagation phenomena

in vibroacoustic. Basically, the idea consists in enriching or replacing the piece-wise poly-

nomials used in classical finite element analysis by piece-wise plane waves, as these are

exact solution of the homogeneous problem. In this framework, the Wave Based Method

[36] (WBM) has been developed and applied, among others, to porous media [35]. Also,

the Discontinuous Galerkin Method (DGM) has been applied to poroelastic materials [34].

Differently, the rationale of the enrichment methods is to combine the strengths of finite

element and wave based methodologies. In this context, an application of the Partition

of Unity FEM (PUFEM) to dissipative acoustic materials can be found in the work of

Chazot et al. [20].

One could then argue that a possible way to improve the efficiency of finite element based

modeling strategies in vibroacoustic applications is by means of hybrid methodologies.

Thus, the subsystems characterized by geometrical complexity and longer wavelengths

are modeled by standard finite element schemes and modal synthesis, whereas the sub-

systems with much shorter wavelengths, such as the acoustic treatment, are modeled by

means of wave based techniques. Although the aforementioned wave based methodologies

can achieve a drastic reduction of the degrees of freedom compared to conventional finite

element models, their application to complex three-dimensional systems, possibly in a hy-

brid context, is still subject of ongoing research. Alternatively, a potential reduction of

the computational burden could be obtained by approximating the effect of the soft sub-
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structure (e.g. acoustic treatment) on the master subsystems without introducing physical

degrees of freedom. In order to do that, the subsystem which exhibits shorter wavelengths

has to be assumed homogeneous, flat and of infinite extent. These hypotheses allow to

use simple and fast wave based analytical techniques. Namely, the knowledge of simple

fundamental solutions (i.e. Green functions) is sufficient to approximate the behavior of

the considered substructure. For simple problems, the Green function in the wavenumber

domain is known analytically. For instance, in the work of Ji et al. [60], the effect of a

thin panel on a much stiffer beam is taken into account using the exact analytical solution

for the line impedance of the infinite plate. Unfortunately, the calculation of the Green

functions of complex multilayered systems cannot be carried out analytically. However,

the Transfer Matrix Method [3] (TMM) provides a powerful and efficient tool to obtain

the desired Green function for a given circular frequency and wavelength. For instance,

in the hybrid methodology proposed by Tournour et al. [122], the acoustic treatment is

taken into account in a locally reacting sense (i.e. wall impedance [3, 86]) by the fre-

quency dependent coefficients of its transfer matrix. An application of this methodology

to an optimization problem can also be found in the work of Yamamoto et al. [130]. The

approach proposed by Courtois and Bertolini [26] uses, instead, the Inverse Fourier Trans-

form (IFT) to explicitly find the Green functions of the acoustic treatment to be employed

in the boundary terms of a standard finite element approximation. These approaches may

be referred to as hybrid Finite Element-Transfer Matrix Methods (FE-TMMs). On the

other hand, Rhazi and Atalla [92, 93] proposed a different hybrid approach to model flat

rectangular plates with attached multilayer treatments. The displacement of a simply sup-

ported plate was described in terms of superposition of orthogonal trigonometric functions

(i.e. Ritz method) while the effect of the multilayer treatment on each mode was approx-

imated using the TMM. This approach, similar to the one proposed by Ji et al. [60] from

a methodological standpoint, may be referred to as a hybrid modal-TMM. Conversely,

the approach proposed by Fernandez et al. [45, 45] tackles the hybrid modeling from a

stochastic viewpoint, being the sound package modeled as a fuzzy system [107, 108].

This paper investigates how a transfer matrix model can be used to describe homogeneous

and flat acoustic treatments in standard finite element analyses of vibroacoustic systems.

In this context, the few works briefly described above do not provide a comprehensive

reference, as the generic properties of such hybrid FE-TMMs (i.e. domain of validity of

the approximation, accuracy and computational efficiency with respect to well-established

finite element based substructuring procedures) can hardly be inferred. The purpose of

the present paper is then twofold. (i) The theoretical formulation of the hybrid FE-TMM

recently proposed by the authors to account for the effect of acoustic treatments attached



62
CHAPTER 3. EXTENSION OF THE FE-TMM TO ACOUSTICALLY TREATED

PLATE-CAVITY SYSTEMS

onto a radiating structure [1] is extended to the radiation inside finite element acoustic

cavities. Here, the main objective is to provide a comprehensive theoretical framework

for this class of hybrid approaches. (ii) Numerical examples are then provided in order to

understand the behavior of the hybrid model and its domain of validity. The analysis is

limited to flat acoustic treatments, as the effect of the curvature is beyond the scope of

this paper.

The paper is organized as follows. In Section 3.3 the theoretical background is presented.

First, the boundary operator which accounts for the acoustic treatment in the modal

equations of a generic vibroacoustic system is introduced. Second, a finite element sub-

structuring procedure is briefly presented as an exact and well-established methodology

to retrieve the boundary operator. Then, the analytical framework involved in the hybrid

FE-TMM is introduced as an extension of the formulation proposed by Alimonti et al.

[1]. Moreover, it is shown how simplified models (i.e. modal [92, 93] and locally reacting

[122] approaches) can be deduced from the proposed model. In Section 3.4 the boundary

operators obtained by means of the analytical and finite element models are compared.

Next, a plate-cavity system is considered to assess the accuracy of the assembled hybrid

finite element-transfer matrix model.

3.3 Theoretical background

Ωa

Ωs

Ωt

Sst

Ssa

Sat

Ssa

Figure 3.1 Generic vibroacoustic system.

Fig. 3.1 shows a generic vibroacoustic system. The structural and fluid domains are

denoted by Ωs and Ωa, respectively, while Ωt refers to the volume occupied by the acoustic

treatment. The latter is attached onto the structure over the treated surface Sst. The

acoustic fluid may be in contact with the structure over the surface Ssa. The interface

between the fluid and the sound package is denoted by Sat. The boundary ∂Ωa−Ssa∪Sat

is assumed to be rigid.
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The response of the system in the frequency domain is herein considered (i.e. the time

dependency eıωt is implicitly assumed, where ω denotes the circular frequency and ı is

the complex unit). Given a finite element model of the structural and acoustic domains,

the linear system describing the dynamics of the master subsystems in terms of modal

amplitudes is





(

(1 + ıηs)ω
2
s,i − ω2

)

δij C̃

C̃
T

(

ω2
a,i

ω2 − 1
(1+ıηa)

)

δij





{

qs(ω)

qa(ω)

}

=

{

F̃s(ω)

0

}

+

{

R̃s(ω)

R̃a(ω)

}

,

(3.1)

where the unknowns qs and qa are the amplitudes of the Ns in-vacuo structural modes

and Na rigid-walled cavity modes, respectively. The symbol ωs,i (resp. ωa,i) refers to the

natural frequency of the ith structural (resp. cavity) mode, while δij is the Kronecker delta

symbol. The dissipation is introduced in Eq. 3.1 using a structural damping model for

both the structure (loss factor ηs) and the fluid (loss factor ηa). The superscript˜above a

matrix or vector indicates that it has been projected onto the modal subspace. Thus, C̃

is the classical modal coupling matrix which accounts for the fluid-structure interaction

over the surface Ssa. Vector F̃s accounts for the effect of external loads on the structural

domain. Finally, R̃s and R̃a are the interface forces due to the presence of the acoustic

treatment. They can be formally expressed in terms of modal amplitudes as follows

{

R̃s(ω)

R̃a(ω)

}

=

[

Ỹss(ω) Ỹsa(ω)

Ỹ
T

sa(ω) Ỹaa(ω)

]{

qs(ω)

qa(ω)

}

= Ỹ(ω)

{

qs(ω)

qa(ω)

}

. (3.2)

The three block matrices Ỹss, Ỹaa and Ỹsa constitute the boundary operator Ỹ. Namely,
1
ıω

Ỹss is the equivalent boundary impedance over Sst seen by the structural modes, ıωỸaa

is the equivalent boundary admittance over Sat seen by the acoustic cavity modes over the

surface Sat and Ỹsa is an added coupling operator. Thus, the final system reads

(

Z̃(ω)− Ỹ(ω)
)

q(ω) = F̃(ω) , (3.3)

where, for sake of conciseness, the modal amplitudes have been gathered in the vector q.

The definition of the generalized modal stiffness matrix Z̃ and of the external load vector

F̃ follows from Eq. 3.1.
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In the following sections, it will be shown how the boundary operator Ỹ(ω) can be (i)

exactly retrieved from a finite element model of the acoustic treatment or (ii) computed

approximately from an analytical model of the same acoustic treatment.

3.3.1 Full finite element substructuring

In this section, the matrix Ỹ is retrieved by means of a finite element model of the acoustic

treatment. The methodology is only briefly recalled as a detailed presentation is beyond

the scope of this paper. The reader can refer to the work of Hamdi et al. [53] for a

comprehensive derivation. In what follows, the (u, p) formulation for poroelastic elements

developed by Atalla et al. [5] is employed.

Let us consider a finite element model of a generic multilayer acoustic treatment, which

is assumed to involve solid, fluid and poroelastic domains. The nodal variables are the

displacements U (i.e. solid and porous solid phase displacements) and pressures P (i.e.

acoustic pressures and interstitial pressures) within the acoustic treatment domain. The

nodal unknowns are partitioned as follows:

U(ω) =

{

U2(ω)

Ui(ω)

}

, P(ω) =











P0(ω)

P1(ω)

Pi(ω)











, (3.4)

where U2 is a vector containing the nodal displacements over the acoustic treatment-

structure interface Sst, while P1 and P0 contain the nodal pressures over the impervious

and permeable subsets of the acoustic treatment-cavity interface Sat. The subscript i indi-

cates the remaining internal degrees of freedom. Similarly, the master degrees of freedom

at the interfaces are denoted by Us,2, Pa,0 and Pa,1. As a result, the continuity condi-

tions are U2 = Us,2 and P0 = Pa,0. Employing a set of Lagrange multipliers (i.e. normal

displacements W over the permeable subset of Sat) to ensure the pressure continuity over

the permeable interface, the finite element equations of the acoustic treatment seen as a

substructure can be written as
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











Zt,U2U2(ω) Zt,U2Ui
(ω) Zt,U2P(ω) 0

ZT
t,U2Ui

(ω) Zt,UiUi
(ω) Zt,UiP(ω) 0

ZT
t,U2P

(ω) ZT
t,UiP

(ω) Zt,PP(ω) −C0

0 0 −CT
0 0



































U2(ω)

Ui(ω)

P(ω)

W(ω)























=

=













C2 0 0

0 0 −C1

0 0 0

0 −CT
0 0























T(ω)

Pa,0(ω)

Pa,1(ω)











,

(3.5)

where matrix Zt is the dynamic stiffness of the whole acoustic treatment, while C0, C1 and

C2 are classical finite element coupling matrices involving the integral of shape functions

products over the interfaces Sat and Sst. Vector T contains the stress components over Sst.

In order to compute the response of the acoustic treatment as a function of the master

degrees of freedom Us,2, Pa,0 and Pa,1, Eq. 3.5 has to be rearranged to give







Zt,UiUi
(ω) Zt,UiP(ω) 0

ZT
t,UiP

(ω) Zt,PP(ω) −C0

0 −CT
0 0

















Ui(ω)

P(ω)

W(ω)











= −







ZT
t,U2Ui

(ω) 0 C1

ZT
t,U2P

(ω) 0 0

0 CT
0 0

















Us,2(ω)

Pa,0(ω)

Pa,1(ω)











,

(3.6)

where the continuity condition U2 = Us,2 has been explicitly applied. Formally, the

solution of Eq. 3.6 can be obtained as











Ui(ω)

P(ω)

W(ω)











= −Z
−1

t (ω)C(ω)











Us,2(ω)

Pa,0(ω)

Pa,1(ω)











= −Z
−1

t (ω)C(ω)V

{

qs(ω)

qa(ω)

}

, (3.7)

where the definition of matrices Zt and C follows from Eq. 3.6. The matrix V represents

the modal subspace which maps the modal amplitudes in the nodal variables over the

interfaces Sst and Sat. Once the response has been obtained, the acoustic treatment will,

in turn, generate a load on the master degrees of freedom, closing the feedback loop. It

can be shown [53] that the interface loads R̃s and R̃a acting on the structural and acoustic

modes can be retrieved as
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{

R̃s(ω)

R̃a(ω)

}

=

(

(C(ω)V)T Z
−1

t (ω) (C(ω)V)−
[

VT
U2

Zt,U2U2(ω)VU2 0

0 0

]){

qs(ω)

qa(ω)

}

=

= ỸFE(ω)q ,

(3.8)

where VU2 is obtained by a partition of the reduced basis V according to the definition

of U2. The matrix ỸFE is thus the boundary operator obtained by a finite element model

of the acoustic treatment. Eq. 3.8 shows that a linear system with multiple Right Hand

Sides (RHSs) must be solved at each frequency of interest to compute Z
−1

t (CV). Since

the finite element model of the acoustic treatment typically involves a huge number of

degrees of freedom, this methodology might be still computationally expensive.

In this work the linear solver PARDISO [98, 99] was used to perform the matrix operation

Z
−1

t (CV) at each discrete frequency where the solution of the modal system in Eq. 3.3

was of interest. The selected solver allows for parallel computing.

3.3.2 Green functions based hybrid FE-TMM

︸ ︷︷ ︸

multilayer treatment

z y

x

z

∞

∞

N21

σB
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. . .
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S

us uA uB ua

side B
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Figure 3.2 Geometry of the acoustic treatment. Through-the-thickness view
of the multilayer (left) and top view (right) of the treated surface S.

In this section some approximations are introduced in order to avoid the finite element

modeling of the whole acoustic treatment. The latter is, instead, modeled by means

of an analytical approach based on the Green functions formalism. In order to employ

this simplification, the acoustic treatment is assumed (i) isotropic, (ii) homogeneous in

the plane (i.e. thickness, lay-up and material properties do not change over the treated

surface), (iii) flat (unwrapped if any curvature is present) and (iv) of infinite extent (lateral

boundary conditions are neglected). As a consequence, the interfaces Sst and Sat formally
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coincide and will be referred to as the treated surface S. Therefore, the acoustic treatment

can be seen as an equivalent reacting surface in contact with the structure over its side A

and with the cavity over its side B (see Fig. 3.2). Only normal displacements and stresses

are considered at the two sides of the treatment.

Let uA(x, ω) and σA(x, ω) be the normal displacement and normal stress over side A of

the acoustic treatment. Similarly, uB(x, ω) and σB(x, ω) are the normal displacement and

normal stress over side B in contact with the acoustic cavity. The vector x indicates the

position over the surface S. Under these conditions, the response of the acoustic treatment

in terms of reactions σA and uB over the two sides of the surface S can be directly obtained

invoking the Green function formalism:















σA(x, ω) =

∫

S

gAA(r, ω)uA(x′, ω) dx′ +

∫

S

gAB(r, ω)σB(x′, ω) dx′

uB(x, ω) =

∫

S

gBA(r, ω)uA(x′, ω) dx′ +

∫

S

gBB(r, ω)σB(x′, ω) dx′
, (3.9)

where r is the module of the distance vector r = |x − x′| pointing from x′ to x. The

functions gmn(r, ω) (m = A,B and n = A,B) are the Green functions of the problem.

The domain S represents the support of uA and σB, i.e. they are assumed to be zero

outside the surface S. It is noted in passing that Eq. 3.9 can be rearranged to account

for different boundary conditions outside the area S at the two ends of the treatment.

However, in the present paper, the formulation above is adopted for its efficiency, as it

allows reactions σA and uB to be directly evaluated (i.e. avoiding any matrix inversion). A

set of radially symmetric shape functions obtained by translation is employed to expand

the normal displacement uA and normal stress σB in Eq. 3.9 as

uA(x, ω) = ψ(|x− xj|) aj(ω) = ψj(r) aj(ω) ,

σB(x, ω) = ψ(|x− xj|) bj(ω) = ψj(r) bj(ω) ,
(3.10)

where the sum over repeated index is implicitly assumed. The coefficients aj and bj are

the participation factors of the jth shape function ψj(r).

Under the aforementioned hypothesis, it is useful to continue the analysis in the wavenum-

ber domain, where the Green functions can be easily computed. Thus, substituting Eq.
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3.10 in Eq. 3.9, integrating over the surface S, projecting onto the shape functions subspace

and employing the convolution theorem yields [1]

{

RAi
(ω) = GAA(rij , ω) aj(ω) +GAB(rij, ω) bj(ω)

RBi
(ω) = GBA(rij, ω) aj(ω) +GBB(rij , ω) bj(ω)

, (3.11)

where rij = |rij| is the Euclidean distance between the nodes xj and xi over the treated

surface. RAi
and RBi

are the normal stress at side A and normal displacement at side B

projected onto the ith shape function (i.e. force and displacement flux, respectively). The

functions Gmn(rij , ω) (m = A,B and n = A,B) are defined as

Gmn(rij, ω) =
1

2π

∫

∞

0

ĝmn(k, ω)J0(krij)k|ψ̂(k)|2 dk , (3.12)

where k = |k| is the modulus of the wavenumber and J0(krij) is the Bessel function of

zero order of argument krij . The formalism f̂(k) indicates the radially symmetric Fourier

Transform (FT), i.e. Hankel transform, of the function f(r). The fundamental kernels

ĝmn(k, ω) can be sampled over the (k, ω) space using the TMM (see appendix A). The

coupling Green functions satisfy the reciprocity condition ĝAB(k, ω) = ĝBA(k, ω). Eqs. 3.9

and 3.11 come as a natural extension of what has been recently proposed by the authors

in Ref. [1] (see chapter 2).

In this work, linear shape functions with compact support R are employed, i.e.

ψ(r) =







1− r

R
if r ≤ R

0 if r > R
. (3.13)

This class of radially symmetric functions has been already used by the authors and has

shown good performances compared with a classical linear finite element approximation

[1]. Thus, in what follows, the collocation nodes xj on the treated surface S are assumed

to be associated to a structured finite element mesh which involves elements of the same

size. Each nodal displacement and pressure defined on the finite element mesh is then

approximated by Eq. 3.13. Consequently, in analogy with the finite element shape func-

tions, the coefficients aj and bj are assumed to be the nodal normal displacements UAj
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and stresses ΣBj
, respectively. This choice allows for a simple and direct approximation

of the boundary operator. Indeed, under these circumstances, if the collocation nodes

also coincide with the finite element nodes of the structural and acoustic domains, the

continuity conditions can be easily applied as Rs = RA, Ra = −RB, Us,2 = UA and

Pa,0/1 = −ΣB (see Fig. 3.2). Thus Eq. 3.11 can be rearranged in matrix form as

{

Rs(ω)

Ra(ω)

}

=

[

GAA(ω) −GAB(ω)

−GT
AB(ω) GBB(ω)

]{

Us,2(ω)

Pa,0/1(ω)

}

, (3.14)

where Rs and Ra are the nodal loads acting on the master degrees of freedom. The vector

Us,2 contains the displacements of the structural domain over S, while Pa,0/1 indicates that

the nodal pressures of the acoustic domain over S may refer to the permeable or impervious

subset given that the acoustic trim is assumed homogeneous (the latter interface condition

affects the calculation of the Green functions, but Eq. 3.14 remains formally unchanged).

It should be noted that, due to the assumptions inherent within the analytical framework,

Rs and Us,2 refer only to normal components. On the other hand, the exact finite element

methodology presented in Section 3.3.1 can account for various coupling conditions (e.g.

sound package glued or sliding onto the structure). Projecting Eq. 3.14 onto the modal

basis, one obtains

{

R̃s(ω)

R̃a(ω)

}

= VT

[

GAA(ω) −GAB(ω)

−GT
AB(ω) GBB(ω)

]

V

{

qs(ω)

qa(ω)

}

= ỸGFq , (3.15)

where ỸGF is the boundary operator obtained using the Green functions computed by

means of the TMM. Thus, the efficiency of the present hybrid FE-TMM resides mainly

in the numerical quadrature of Eq. 3.12, as matrix inversions are avoided. Moreover, the

evaluations of Gmn(rij, ω) for different values of rij are completely independent, making

the methodology suitable for parallel computing. However, in the present work, a serial

implementation was considered.

3.3.3 Interpretation of the analytical model and further approxi-

mations

Thanks to the use of radially symmetric shape functions obtained by translation, Eq.

3.12 involves a one-dimensional integration for a given distance rij between two nodes.
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However, in the case of generic functions (i.e. non radially symmetric), the (i, j) component

of Gmn(ω) is given by a full integration in the (kx, ky) space [1], i.e.

Gmn(ψi, ψj , ω) =
1

(2π)2

∫

k

ψ̂∗i (k)ĝmn(|k|, ω)ψ̂j(k) dk , (3.16)

where the superscript ∗ indicates the conjugate of a complex number. Functions ψ̂i(k)

and ψ̂j(k) can be, for instance, the FTs of the structural and/or cavity modes over the

surface S. The integration involved in Eq. 3.16 reveals that the response of the laterally

infinite acoustic treatment is given by a continuous set of waves, i.e. all the wavenumber

couples (kx, ky) are allowed to propagate through the thickness. On the other hand, as a

consequence of the presence of lateral boundaries, the response of the bounded system is

given by a discrete distribution of travelling waves, i.e. the planar modes of the finite size

acoustic treatment. Equivalently (and perhaps more suitably in the context of waves prop-

agation in dissipative media), an interpretation in terms of direct and reflected wave fields

[73] might help the reader. Namely, the analytical model (Eq. 3.15 and 3.16) accounts only

for direct field effects, as the reflections at the lateral boundaries of the sound package are

neglected. Although such approximation may be justified for passive acoustic treatments

(i.e. the reflected field is non diffuse), the reflected field might be still important close to

the boundaries of the treated surface S. For instance, at some frequencies, the interference

between direct and reflected fields may be non negligible, leading to modal resonances. In

such case, the analytical model will be able to capture the global behavior of the sound

package (i.e. global resonances, which are only functions of the thickness), while the local

behavior due to a single modal contribution (i.e. modal resonance) will be, if dominant,

missed. As a consequence, it can be argued that the two models are expected to converge

to the same solution as the response of the bounded acoustic treatment involves (i) a

“sufficient" number of traveling modes and (ii) “enough" dissipation. The impact of these

assumptions will be assessed in Section 3.4.

The interpretation of Eq. 3.16 in terms of structural and/or cavity modes allows for fur-

ther simplifications of the model. For instance, if the modal coupling is neglected (i.e.

Gmn(ψi, ψj , ω) = 0 if i 6= j), the integrand in Eq. 3.16 is modulated by |ψ̂i(k)|2, which

tends to exhibit a sharp peak around the dominating modal wavenumber component kt.

As a result, if one also assumes that the Green function varies slowly with k compared

to |ψ̂i(k)|2, then ĝmn(k, ω) can be sampled at kt = |kt| and carried outside the integral

yielding
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Gmn(ψi, ω) =
ĝmn(kt (ψi) , ω)

(2π)2

∫

k

|ψ̂i(k)|2 dk , (3.17)

which is the hybrid modal-TMM proposed by Rhazi and Atalla [92, 93]. However, the

approximation can be employed only for the diagonal blocks of ỸGF, since the coupling

between different modes is neglected. Moreover, the approach appears convenient only

when the modal shapes and their dominating wavenumber components are known ana-

lytically, that is, generally speaking, when trigonometric functions can be employed (e.g.

Ritz method).

Another approximation of Eq. 3.16 can be obtained if the Green function is assumed to

vary slowly over the entire wavenumber spectrum. In such case, the Green function can

be approximated by its value at a prescribed wavenumber k0, yielding

Gmn(ψi, ψj, ω) =
ĝmn(k0, ω)

(2π)2

∫

k

ψ̂∗i (k)ψ̂j(k) dk , (3.18)

which physically represents the behavior of a locally reacting system, whose acoustic

impedance [3, 86] is denoted by ĝmn(k0, ω) (with an abuse of notation since ĝmn(k0, ω)

does not have necessarily the dimensions of an impedance). However, the choice of the lo-

cal kernel ĝmn(k0, ω) is, generally speaking, hard to justify since typical acoustic treatments

do not exhibit constant Green functions over a wide wavenumber spectrum. However, this

approach is typically used for practical applications because of its efficiency. Indeed, the

wavenumber integral in Eq. 3.18 involves only the coupling between structural and/or

cavity modes and can be computed in the physical domain with negligible computational

effort. Therefore, Eq. 3.15 can be simplified to give

{

R̃s(ω)

R̃a(ω)

}

=

[

ĝAA(k0, ω) cs,iδij ĝAB(k0, ω) C̃

ĝAB(k0, ω) C̃
T −ĝBB(k0, ω) ca,ij

]{

qs(ω)

qa(ω)

}

= ỸLRq , (3.19)

where cs,i and ca,ij are coefficients which depend on the adopted normalization for the

structural and acoustic modal basis, while C̃ is the modal coupling matrix describing the
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fluid-structure modal interaction over the treated surface S. In what follows, the local

kernel is chosen by sampling the Green functions at k = 0.

3.4 Results

In this section numerical examples are provided to assess the performance of the hybrid

FE-TMM. First, some representative entries of the boundary operators ỸFE and ỸGF are

compared to quantify the impact of the assumptions inherent within the analytical model

of the acoustic treatment. Then, a plate-cavity system is considered to assess the accuracy

of the assembled finite element-transfer matrix model in terms of global indicators.

Fig. 3.3 shows the geometry considered for the numerical simulations. A 2 mm thick plate

of dimensions Lxp
× Lyp

m2 is clamped along its edges and excited by a point force. The

acoustic treatment, of uniform thickness ht, is attached onto the structure and radiates

inside an acoustic cavity of dimensions Lxc
× Lyc

× Lzc
m3. The plate is made of steel,

while the acoustic cavity is filled with air. The mechanical and acoustic properties of the

materials are listed in Tab. 3.1. A dissipation is introduced in the acoustic domain by a

structural damping model to represent the effect of other dissipative elements within the

acoustic cavity. The acoustic treatment can slide along its lateral boundaries, which are

assumed to be rigid (i.e. the normal component of the solid phase displacement is fixed)

and impervious (i.e. the flux through the boundary is zero). Only normal components are

involved in the continuity conditions at the interface between the plate and the acoustic

treatment.

3.4.1 Preliminary Assessment of the Green functions based FE-

TMM

In this section, the accuracy of the hybrid methodology is assessed at the substructure

level (i.e. matrix ỸGF). Namely, the response of the acoustic treatment obtained by the

Green functions methodology (Eq. 3.15) is compared with the reference finite element

solution (Eq. 3.8). It has been observed in Section 3.3.3 that the main difference between

the Green functions and finite element models of the acoustic treatment resides in the

number of waves which are allowed to propagate through the thickness, or, equivalently,

in the effect of wave reflections at the lateral boundaries. This particular aspect (i.e. finite

lateral extent) is discussed here.
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Figure 3.3 Plate-cavity system considered in the numerical simulations. Point
A defines the position of the plate over the (x, y) plane. B is the application
point of the mechanical force.

The acoustic treatment considered in this analysis has dimensions Lxp
= Lxc

= 0.4 m

and Lyp
= Lyc

= 0.8 m (see Fig. 3.3). Two different layups are considered. The first

(referred to as light treatment) consists of a one layer involving a 2 cm thick melamine

foam (poroelastic properties listed in Tab. 3.1). The second lay-up (referred to as spring-

mass treatment) consists, instead, of two layers, namely a 2 cm thick melamine foam and a

1.2 kg/m2 heavy layer. The latter was modeled as a 1 mm thick solid layer with negligible

stiffness (i.e. limp solid, see Tab. 3.1). The poroelastic layer is attached onto the structure

(i.e. side A), while the heavy layer is wetted by the fluid inside the cavity (i.e. side B).

Concerning the finite element model, nine Hexa-8 equivalent fluid or poroelastic elements

(depending on whether the solid phase is considered limp or not) and one Hexa-8 solid

element are used in the thickness direction for the modeling of the poroelastic and solid

layers, respectively. The choice of the mesh size over the (x, y) plane was driven by the

shortest wavelength exhibited in the considered spectrum by the master subsystems, while

the number of elements through the thickness of the acoustic treatment guarantees that

the shortest Biot wave is captured correctly over the frequency domain of interest (i.e.

eight elements per wavelength were used in the plane and the thickness direction).

The light acoustic treatment is first considered. The frame of the poroelastic material is

considered limp, thus the treatment is modeled as an equivalent fluid. Fig. 3.4(a) shows the

absolute value of the diagonal entry Ỹii corresponding to the 1st and 100th structural modes

(S1 and S100, respectively). The corresponding bending wavenumbers ks exhibited by the

plate modes are 12 rad/m and 70, 9 rad/m, respectively. A perfect agreement between
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Table 3.1 Materials used in the numerical simulations.

Material
Properties

Acoustic Mechanical

Steel density = 8000 kg/m3

Young’s modulus = 200GPa
Poisson’s ratio = 0.33
damping factor = 0.02

Air density = 1.21 kg/m3

speed of sound = 342.2m/s
damping factor = 0.1

Melamine porosity = 0.99 density = 8.8 kg/m3

resistivity = 10900 kg/m3s Young’s modulus = 80 kPa
tortuosity = 1.02 Poisson’s ratio = 0.4
viscous length = 100µm damping factor = 0.17
thermal length = 130µm

Limp solid density = 1200 kg/m3

Young’s modulus = 103 kPa
Poisson’s ratio = 0.3
loss factor = 0.5

the finite element and Green functions solutions is observed. Fig. 3.4(b) shows, instead,

the imaginary part (i.e. dissipative effects) of the diagonal entry Ỹii corresponding to

the 7th and 185th acoustic modes (A7 and A185, respectively). The in-plane acoustic

wavenumber ka exhibited by the cavity modes is 8.8 rad/m and 37 rad/m, respectively.

The figure shows that the Green functions approximation leads to a large overestimation

of the damping at low to mid frequencies. This behavior can be explained by the fact that,

unlike the case of the clamped plate, the dynamics of the acoustic cavity along the acoustic

treatment boundary is important (i.e. maxima of pressure and normal displacement always

occur in the considered configuration). As a consequence, finite size effects (i.e. reflected

waves) cannot be neglected without loosing accuracy. Moreover, this effect is particularly

pronounced for the geometry considered here, since, due to orthogonalities between the

limp layer and the cavity modes, the resonance at 500 Hz is due to one single modal

contribution. Thus, the number of propagating modes and the dissipation are not high

enough in the low frequency range to meet the requirements for the Green functions model

to give reliable results. However, at higher frequency, agreement between the finite element

and Green functions solutions is obtained, thanks to the increasing dissipative effects.

Moreover, shorter wavelengths (see higher order mode A185 in Fig. 3.4(b)) give a better

correlation. The same observations holds for a poroelastic model of the acoustic treatment,

since, for the considered problem (i.e. calculation of Ỹaa for the light treatment), the

structural frame is not particularly excited.
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Figure 3.4 Diagonal entry Ỹii of the boundary operator evaluated by the finite
element (FE) and the Green functions (GF) methodology. (a): absolute value
for structural modes S1 and S100. (b): imaginary part for acoustic modes A7
and A185. Results relative to the light acoustic treatment.

The spring-mass (i.e. foam-heavy layer) acoustic treatment is considered in Fig. 3.5(a).

The frame of the poroelastic material is, again, considered limp, so that only the stiffness

of the equivalent fluid is involved. Fig. 3.5(a) shows the absolute value of the diagonal

entry Ỹii corresponding to the 5th structural mode for a treatment of nominal and doubled

planar dimensions (i.e. 0.4× 0.8 m2 and 0.8× 1.6 m2, respectively). The thickness of the

treatment remains, instead, unchanged. The bending wavenumber ks exhibited by the

plate mode is about 20 rad/m (10 rad/m for the double size system). The results show

that the Green functions approximation suffers from a loss of accuracy around the global

peak between 300 and 400 Hz. The response of the sound package is, in fact, non local

at the resonance peak so that the effect of the lateral boundaries (i.e. reflected field) is

non negligible. Nonetheless, the average response is captured. However, Fig. 3.5(a) shows

that when the planar dimensions are doubled, the analytical model gets more accurate.

This is not surprising, since the larger is the system the bigger is the portion of acoustic

treatment unaffected by the reflected field emanating from the lateral boundaries.

Fig. 3.5(b) refers, instead, to the light acoustic treatment. The coupling between the

two phases is now considered within the porous media. Thus, the solid frame of the

poroelastic layer is directly excited by the displacement field imposed by the structural

domain over side A of the treatment. The same analysis performed above for the spring-
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mass acoustic treatment is carried out. However, in this case, the accuracy of the Green

functions model at the foam resonances does not improve when the size of the system

doubles. This is due to the fact that, for this configuration, the response of the acoustic

treatment is controlled by one structure borne wave (i.e. the same mode which would

travel through the thickness if the poroelastic layer was modeled considering only its solid

phase). Around the peaks, the Green functions model fails as the effect of one dominant

modal contribution (or, equivalently, of the reflected field) cannot be predicted by the

analytical model. Similarly, it could be shown that the resonances of the indirect coupling

term induced by the acoustic treatment (i.e. Ỹsa in Eq. 3.2) are underestimated as well.

Nevertheless, the global behavior of the system is always captured and the gap between

the two curves narrows as the frequency increases (thanks to dissipative effects). The

same behavior was observed for the spring-mass acoustic treatment, which is not shown

here for the sake of conciseness.
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Figure 3.5 Absolute value of the diagonal entry Ỹii of the boundary operator
corresponding to the structural mode S5 evaluated by the finite element (FE)
and the Green functions methodology (GF). Effect of the acoustic treatment
lateral dimensions. (a): spring-mass lay-up, limp model. (b): light lay-up,
poroelastic model.

Thus, one can conclude that, generally speaking, the larger are the lateral dimensions of the

trimmed area, the better is the accuracy of the analytical model. However, although typical

acoustic trim configurations seem to match the requirements for the Green functions model

to give reliable results (i.e. short wavelength and dissipation), the accuracy of the model
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may, in some cases, worsens. In fact, due to the nature of the coupling between the

structure (resp. acoustic cavity) and the sound package, it can occur that only few wave

components (one in the cases above) are excited by the master subsystem. Nevertheless,

the global behavior of the system is always captured.

3.4.2 Application to a plate-cavity system

The inaccuracies of the analytical model identified in Section 3.4.1 will consequently affect

the accuracy of the assembled hybrid model. Namely, when the boundary operator ỸGF

obtained by means of the Green functions model is used in Eq. 3.3 instead of the exact

operator ỸFE, discrepancies with the reference solution must be expected. The purpose of

this section is to illustrate the effect of the approximation introduced by the hybrid model

when the global vibroacoustic parameters of a plate-cavity system are of interest.

The system considered in the numerical simulations involves a structural plate of dimen-

sions Lxp
= 0.595 m, Lyp

= 1.554 m and an acoustic cavity of dimensions Lxc
= 0.8 m,

Lyc
= 1.7 m and Lzc

= 1 m. Point A (see Fig. 3.2) is located at (0.074 m, 0.056 m). The

system is excited by a point force acting on the structure along the z-axis at point B

located at (0.167 m, 0.187 m). The two acoustic treatments used in Section 3.4.1 (i.e. light

and spring-mass layups) are considered. The vibroacoustic system is solved in the fre-

quency range between 10 Hz and 1 KHz. Eight elements per wavelength were used to

mesh the structural and acoustic finite element domains. The finite element mesh along

the thickness of the porous layer involves five Hexa-8 poroelastic elements, while for the

heavy layer one Hexa-8 solid element is used. The mechanical and acoustic properties of

the plate and fluid are reported in Tab. 3.1. Three solution strategies are considered: the

full finite element substructuring methodology (referred to as FEM, this is the reference

solution for the considered analysis), the Green functions based FE-TMM (referred to as

FE-TMM(GF)) and the simplified locally reacting model (referred to as FE-TMM(LR)).

Fig. 3.6 shows the space averaged quadratic velocity of the plate when the light treat-

ment is placed between the structure and the cavity. A few discrepancies between the

FE-TMM(GF) solution and the reference finite element prediction are observed between

400 Hz and 600 Hz. In this frequency range, the structural frame of the poroelastic layer

strongly interacts with the dynamics of the plate (i.e. a thickness resonance of the sound

package falls very close to the resonance of some plate modes, so that the dissipation

introduced by the treatment is maximized). However, as already discussed, such effect

on the plate dynamics is underestimated by the FE-TMM(GF) for this particular con-

figuration (cf. Fig. 3.5(b)). Nevertheless, overall, both the hybrid models provide a good
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prediction of the plate vibrational energy. Conversely, Fig. 3.7 shows that the prediction

of the quadratic pressure in the cavity does not exhibit the same accuracy. Indeed, the

FE-TMM(GF) is known to introduce overdamping in each cavity mode at low frequency

(cf. Fig. 3.4(b)). Consequently, the quadratic pressure gets underestimated as soon as the

cavity modes start to participate to the response (first non null acoustic mode occurs at

100 Hz). However, as already observed in Section 3.4.1, a better correlation is observed

at higher frequencies, where a convergent behavior can be inferred. On the other hand,

the FE-TMM(LR) solution shows that the Green functions of the considered acoustic

treatment cannot be considered constant over the frequency band of interest, as a diver-

gent trend from the reference finite element solution is observed. The inaccuracy of the

FE-TMM(LR) (for both the structural and acoustic indicators) at higher frequencies was

confirmed by further analysis, where a smaller system was considered to allow for the

computation of the system response up to 3 KHz. However the results are not shown here

for the sake of conciseness.
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Figure 3.6 Quadratic velocity of the clamped plate. Comparison between the
FEM, the FE-TMM(GF) and the FE-TMM(LR). Results relative to the light
acoustic treatment.
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Figure 3.7 Quadratic pressure of the acoustic cavity. Comparison between the
FEM, the FE-TMM(GF) and the FE-TMM(LR). Results relative to the light
acoustic treatment.
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Fig. 3.8 shows the quadratic velocity of the plate when the spring-mass treatment is

considered. Now, the effect of the mass at the top of the foam leads to a strong resonance

(i.e. double wall resonance) at 350 Hz. The FE-TMM(GF) solution correctly follows the

reference, even though the strong interaction at the double wall resonance is, as already

observed in Fig. 3.6, only captured on average. On the other hand, the FE-TMM(LR)

fails, as neither the damping nor the mass effects introduced by the acoustic treatment are

captured correctly. Fig. 3.9 shows the comparison of the three solutions for the quadratic

pressure inside the cavity. Once again, it can be observed that the FE-TMM(GF) is

not able to capture accurately the structural frame effects at the transmission resonances

around 500 Hz and 900 Hz, where the power injected to the cavity is underestimated (and

so the quadratic pressure). Nevertheless, the qualitative behavior of the finite element

solution is always fulfilled. On the other hand, the FE-TMM(LR) solution confirms that

spring-mass treatments cannot be assumed to be locally reacting.

f [Hz]

q
u
a
d
ra
ti
c
v
e
lo
c
it
y
[d
B
]

0 200 400 600 800 1000
-80

-75

-70

-65

-60

-55

-50

-45

FEM

FE-TMM(GF)

FE-TMM(LR)

Figure 3.8 Quadratic velocity of the clamped plate. Comparison between the
FEM, the FE-TMM(GF) and the FE-TMM(LR). Results relative to the spring-
mass acoustic treatment.
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Figure 3.9 Quadratic pressure of the acoustic cavity. Comparison between the
FEM, the FE-TMM(GF) and the FE-TMM(LR). Results relative to the spring-
mass acoustic treatment.
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As already shown in Section 3.4.1, when the frame of the poroelastic layer is not directly

excited by the master structure (i.e. a limp model can be assumed), a better correlation

should be expected. Indeed, if the poroelastic layer of the spring-mass treatment is mod-

eled as an equivalent fluid, the quadratic velocity of the plate is very well captured by

the FE-TMM(GF) (see Fig. 3.10(a)). Also the prediction of the acoustic energy improves

(see Fig. 3.10(b)). However, the overall transmission is still underestimated by the FE-

TMM(GF), revealing that the effect of the reflected field at the thickness resonance is

important to capture the indirect coupling effects between the plate and the cavity. On

the other hand, the FE-TMM(LR) remains inaccurate in the observed frequency range.
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Figure 3.10 Comparison between the FEM, the FE-TMM(GF) and the FE-
TMM(LR). Results relative to the spring-mass lay-up (a limp model of the
poroelastic layer is assumed). Plate quadratic velocity (a) and cavity quadratic
pressure (b).

Finally and for the sake of completeness, information about the computational time is

provided here. All the calculations were performed on 48 2.2 GHz AMD processors. The

computational time needed by the reference finite element methodology to solve Eq. 3.7

at each frequency step is 177 s and 212 s for the light and spring-mass treatments (i.e.

solutions in Figs. 3.8-3.10), respectively. The linear system involves 64898 and 70208

degrees of freedom, respectively. On the other hand, the FE-TMM(GF) involves less

computations, as the computational time required to build the nodal boundary operator

(Eq. 3.14) is 7 s and 12 s, respectively, at each frequency step. For the light (resp. spring-

mass) treatment, this time refers to the integration of the three kernels (Eq. 3.12) over 100
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(resp. 200) grid points and the interpolation over the nodal distances rij (about 3 s for the

considered mesh of the treated surface). It has to be recalled that a serial implementation

of the FE-TMM(GF) was considered. A parallel implementation would further reduce the

computational time and lead to a fairer comparison with the parallel linear solver used by

the finite element solution.

3.5 Conclusions

A hybrid FE-TMM was proposed to couple the finite element models of structural and

acoustic domains with an analytical model of the acoustic treatment for efficient low to

mid frequency analysis. The analytical formulation employs the Green functions of flat,

laterally unbounded, homogeneous and isotropic acoustic treatments. Such fundamental

solutions are computed efficiently by means of the TMM, which accounts for the exact

wave propagation through the thickness of the treatment. The formulation is generic, as

simpler models formerly proposed by other authors can be recovered from the proposed

framework. Moreover, the proposed methodology is direct, in the sense that it avoids

expensive matrix inversions.

A preliminary analysis was performed to assess the accuracy of the analytical model. It

was shown that this approach can always capture the global behavior of the system. Such

behavior is a function of the thickness configuration (i.e. lay-up) and geometry (i.e. depth of

the treatment ht). Conversely, the effect of reflections at the lateral boundaries is neglected.

Despite this limitation, the proposed model provides a good approximation (especially

for large trimmed surfaces) as long as the effect of the reflected field is not dominant.

However, due to the particular configuration (geometry and/or mounting conditions),

the latter condition may not be met and the solution at low frequency might be poorly

approximated regardless of the size of the system.

The impact of these errors in the prediction of typical vibroacoustic indicators was as-

sessed for a plate-cavity system. It was found that the absorption in the cavity is typically

overestimated by the proposed hybrid model over the entire low frequency range. Never-

theless, convergence to the finite element solution is obtained as the frequency increases.

Moreover, when spring-mass layups are considered, the dynamic of the coupled system is

well captured far from the global resonances of the treatment, where the power transitted

to the cavity is typically underestimated. This effect was observed also for an equiva-

lent fluid model of the poroelastic layer, meaning that the effect of the reflected wave

field, even if localized, is important to capture the indirect coupling between structural
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and acoustic domains. Nonetheless, the proposed methodology can always predict the

qualitative behavior of the system reducing the computational burden with respect to

classical finite element approaches and avoiding time consuming preprocessing (i.e. mesh-

ing) phases. Moreover, it overcomes limitations and difficulties inherent within the use of

simple locally reacting models of the acoustic treatment.

3.6 Further comments

The main contribution of this chapter is a preliminary assessment of finite size effects

within the noise control treatment. To further study such effects and propose a correction,

an intermidiate step is however required. Namely, a more rigorous formulation is needed

to fully understand the behavior of the hybrid FE-TMM. Indeed, as observed throughout

this chapter, some arbitrariness seems to arise in the mathematical formulation of the

sound package response (Eq. 3.9). This aspect will be extensively discussed in the next

chapter.



CHAPTER 4

ENHANCED FORMULATION OF THE FE-

TMM

In this chapter an enhanced formulation of the transfer matrix based model of the noise

control treatment is presented. Namely, (i) the use of jinc functions in place of the linear

shape functions used in chapters 2-3 is proposed to generalize and simplify the construc-

tion of the computational model, and (ii) the effect of different baffling conditions at the

two ends of the sound package is studied. This analysis, together with those performed

in chapters 2 and 3, concludes the assessment of the hybrid FE-TMM by providing a

comprehensive overview of its computational advantages and accuracy limitations. The

chapter is presented in the form of a paper (Part I of a two-parts paper). However, the

manuscript has not been subitted yet.
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n’affecte pas sensiblement la réponse dynamique. Dans ces circonstances, la réponse du

traitement de contrôle du bruit peut être formellement obtenue par des intégrales de

convolution impliquant les noyaux analytiques simples (i.e. les fonctions de Green). De

telles solutions fondamentales peuvent être calculées de manière efficace par la méth-

ode de matrice de transfert. Toutefois, il y a un certain arbitraire dans la formulation

du modèle mathématique, d’où des conditions divergentes de cloisonnement aux deux

extrémités du traitement à prendre en considération. Ainsi, ce travail examine la possi-

bilité de différentes formulations (c.-à-d. les conditions de bafflage) dans le même cadre

hybride élément de matrice de transfert fini, la recherche de la meilleure stratégie en

termes de compromis entre l’efficacité et la précision. Des exemples numériques sont

proposés pour montrer les points forts ainsi que les limites de la méthodologie proposée.

Note: -

4.1 Abstract

This paper is concerned with the development of a simplified model for noise control treat-

ments to speed up finite element analysis in vibroacoustic applications. The methodology

relies on the assumption that the acoustic treatment is flat and homogeneous. Moreover,

its finite lateral extent is neglected. This hypothesis is justified by short wavelength and

high dissipation, which suggest that the reflected field emanating from the acoustic treat-

ment lateral boundaries does not substantially affect its dynamic response. Under these

circumstances, the response of the noise control treatment can be formally obtained by

means of convolution integrals involving simple analytical kernels (i.e. Green functions).

Such fundamental solutions can be computed efficiently by the transfer matrix method.

However, some arbitrariness arises in the formulation of the mathematical model, resulting

in different baffling conditions at the two ends of the treatment to be considered. Thus, the

paper investigates the possibility of different formulations (i.e. baffling conditions) within

the same hybrid finite element-transfer matrix framework, seeking for the best strategy

in terms of tradeoff between efficiency and accuracy. Numerical examples are provided to

show strengths and limitations of the proposed methodology.

4.2 Introduction

The numerical modeling of multilayered systems used for noise control purposes in aero-

nautical and automotive applications has met a growing interest in the last two decades.

Such components, also called acoustic trims or sound packages, are typically attached onto



4.2. INTRODUCTION 87

the main structure and/or coupled with an acoustic fluid in order to reduce the noise radi-

ated from the vibrating structure or generated within the fluid domain. Highly dissipative

materials, such as poroelastic media, are usually employed in one or more layers of the

acoustic trim. Nowadays, the prediction of the vibroacoustic response of such build-up

systems over a wide range of frequencies remains an open problem.

This work is mainly concerned with the low frequency modeling. In such frequency range

(e.g. up to 1 KHz for typical automotive applications), it is common practice to model

the whole system by means of the Finite Element Method [10] (FEM). Such approach, al-

though well-established for real life structures (e.g. stiffened plates, junctions etc. . . ) and

complex shaped acoustic domains, is not always suitable to model noise control treatments.

In fact, such subsystems involve typically several layers of soft and dissipative materials

like poroelastic media. As a results, two main issues arise from the use of the FEM. First,

several degrees of freedom are typically needed to capture the short and damped waves

travelling within the poroelastic layers [5, 30, 85], especially as the frequency range of

interest increases. Although several attempts have been made (for instance using hier-

archical formulations [57, 94] and reduced order models [33, 95, 97]), this aspect is still

an open issue. Second, a preprocessing phase is always required to mesh all the layers

involved in the treatment. Thus, for each design of the acoustic trim, a new mesh must

be created, making the FEM not suitable for the early stage of the design process, when

the optimal configuration of the acoustic trim has to be identified.

For the reasons above, simplified models of the acoustic trim are generally preferred. On

the one hand, it is common practice to measure the plane wave impedance [3, 86] of the

acoustic trim and use it in a standard finite element framework as boundary condition

over the acoustically treated area (see for instance Ref. [37]). However, this approach

implicitly assumes that the behavior of the acoustic treatment is local, meaning that the

impedance at a given point of the multilayer treatment depends only on the local values of

displacement and pressure. On the other hand, the fact that the wavelength in poroelastic

media becomes rapidly short even at low frequency suggests that high frequency techniques

could be successfully used to model such subsystems. In this context, hybrid techniques

involving classical finite element based approaches for structural and acoustic domains

and high frequency methodologies for the acoustic treatment have been developed. For

instance, Fernandez et al. proposed a structural fuzzy [107, 108] model for the acoustic trim

and applied it to the modeling of practical automotive applications [45, 46]. However, the

methodology would still require some input parameters to fully define the “fuzzy acoustic

trim” which necessitate experimental measurements and a finite element model of the
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acoustic trim itself. Hence, in order to simplify further the modeling problem, there is

a growing interest in embedding a simple analytical model of the sound package in the

finite element model of the vibroacoustic system. Indeed, the Transfer Matrix Method [3]

(TMM) is widely used to study and optimize arbitrarily complex multilayered structures.

The analytical formulation of the TMM relies on the assumptions that the system is

(i) homogeneous, (ii) flat and (iii) of infinite extent. Although hypotheses (ii) and (iii)

cannot be met at low frequency for structural components or acoustic cavities, the short

wavelengths and high damping involved in the acoustic trim suggest that the TMM could

be successfully employed for such subsystems. This would render the model of the acoustic

trim quick and simple, saving computational time and avoiding meshing phases.

In this context, Tournour et al. [122] proposed a simple hybrid model where the local

impedance of the acoustic trim is evaluated by means of the TMM rather than measuring

it experimentally. More sophisticated approaches able to account for the non local behavior

of the noise treatment were proposed by Shorter and Mueller [105], Courtois and Bertolini

[26] and Alimonti et al. [1] (and chapter 3). These methodologies aims at approximating

the wall impedance [3, 43, 44, 86] of the homogeneous and flat sound package by its direct

field contribution only (i.e. the response of the equivalent laterally infinite acoustic trim).

The latter is fully determined by the knowledge of a set of Green functions which can be

efficiently computed by means of the TMM. The reflected vibrational field arising from

the lateral boundaries of the treatment is, instead, neglected. Nonetheless, the results are

promising, as the Green functions based model of the trim can circumvent the limitations

of the local impedance model, as shown in Ref. [1] and chapter 3. However, although

conceptually similar, the construction of the analytical model (i.e. definition and evaluation

of the Green functions) and its integration in a finite element framework substantially

differs in the works mentioned above. Thus, the effect of different implementations should

be carefully studied, as the accuracy and efficiency of the simplified model of the trim may

depend on the adopted formulation.

In Part I of this paper the integral formulation based on the Green functions of the laterally

unbounded acoustic treatment is presented. The approach takes advantage from the use

of the jinc function [63] to calculate of the acoustic trim direct field response. This choice

simplyfies the formulation and allows for different baffling conditions at the two ends of the

acoustic trim to be easily accounted for within the same framework. Indeed, the acoustic

trim is assumed to be of infinite extent, so that a set of baffling conditions must be specified

outside the finite coupling area with the structural and acoustic subsystems. As briefly

discussed in chapter 3, such conditions potentially affect the computational efficiency of
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the Green functions based model. However, from the accuracy standpoint, it can be

argued that the effect of the baffling conditions on the response of the system may not be

important. Indeed, the Green functions of typical sound packages are strongly damped so

that baffling effects are likely localized along the boundaries of the coupling area. Hence,

it is important to study the impact of different formulations (i.e. baffling conditions) on

the accuracy of the acoustic trim model in order to identify the best strategy in terms of

tradeoff between accuracy and efficiency.

The paper is organized as follows. In section 4.3, the theoretical background is introduced

and the motivations of this work are discussed. In section 4.4, the discrete direct field

model of the sound package is obtained for two sets of baffling conditions by a standard

Galerkin procedure involving a wavenumber representation of the convolution integrals.

The models of the acoustic trim are integrated in the finite element equations of the

vibroacoustic system and the final hybrid model is assembled. Then, the limitations

of the simplified model of the acoustic trim are explicitly recalled and discussed. In

section 4.5, the accuracy of the two models is assessed for three typical vibroacoustic

applications. Namely, the radiation of a forced structure with an attached sound package

in a (i) bounded, (ii) unbounded fluid domain and the (iii) absorption provided by a

treated wall in an acoustic cavity are studied. Different combinations of layups, materials

and excitations will be considered in order to fully assess the accuracy of the proposed

direct field models of the acoustic trim.

4.3 Theoretical background

4.3.1 Wave based representation

The description of any vibrating system (or subsystem from a substructuring standpoint)

in the low frequency range typically employs a modal decomposition approach. Each mode

(i.e. standing wave) dominates the response at particular frequencies (i.e. the eigenfrequen-

cies). However, generally speaking, a modal behavior is not clearly observed in highly

dissipative systems such as sound packages. Besides the softness of the adopted materials,

the reason of this resides mainly in the fact that waves impinging onto the boundaries of

the system quickly dies out after being reflected, avoiding strong interference phenomena

with the incoming waves. Therefore, throughout this paper, a description of the sound

package response in terms of direct and reflected wave fields is rather preferred. The

direct field is the vibrational field generated by the external disturbance applied to the

system in the absence of boundaries (i.e. the response of the equivalent infinitely extended
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system). Then, the response of the bounded system is given by the linear superposition

of the direct field and the reflected field that emanates from the boundaries to restore

prescribed boundary conditions [73, 86]. Such viewpoint is typically employed in high

frequency analysis (for instance, see Refs. [64, 67, 106]).

In the context of this work, waves are strongly damped while propagating within the

acoustic trim. Hence, one can argue that the effect of the reflected field is likely negligible

and the dynamic response may be approximated by the direct field contribution only. Part

I of this paper relies on this very assumption to build the simplified model of the acoustic

trim and assesses its accuracy. The question is now how to formulate a model of the sound

package which can reproduce physically and mathematically the desired dynamic behavior

(i.e. no reflected waves). In what follows, the direct field contribution of the sound package

response is approximated starting from the knowledge of simple fundamental solutions,

i.e. the Green functions, which can be easily computed by means of efficient analytical

tools like the TMM.

4.3.2 Green functions of the acoustic trim

︸ ︷︷ ︸

multilayer treatment

z y

x

z

∞

∞

N21

σB

side Bside A

. . .

σAσs σa

cavity
side

structure
side

ΩaΩs

uA(x′, ω)

x
′

σA(x, ω)

x

x− x
′ = r

σB(x′, ω)

uB(x, ω)

S

us uA uB ua

side B
side A

Figure 4.1 Geometry of the acoustic treatment. Through-the-thickness view
of the lay-up (left) and top view (right) of the treated surface S.

The present analysis considers the harmonic vibrations of a dynamic system in the fre-

quency domain, i.e. the time dependency eıωt is implicitly assumed. This section serves as

an introduction to the analytical model of the acoustic trim. The latter is assumed to be

(i) homogeneous in the plane (i.e. thickness, lay-up and material properties do not change

over the trimmed surface), (ii) flat and (iii) of infinite extent (i.e. the lateral boundary con-

ditions are neglected). Although the analytical model can formally handle non isotropic

sound packages, the present analysis is limited to isotropic layups. No restrictions are

applied in the thickness directions, where several layers of arbitrary material and phase

can be employed. A generic multilayered system is sketched in Fig. 4.1. Let uA(x, ω) and
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σA(x, ω) be the normal displacement and normal stress over side A of the acoustic treat-

ment. Similarly, uB(x, ω) and σB(x, ω) are the normal displacement and stress over side

B. The vector x indicates the position over the surface S, whose boundary ∂S defines the

finite planar extension of the actual bounded acoustic trim. Under these conditions, the

response of the multilayer treatment can be obtained invoking the Green function formal-

ism. Thus, for instance, the normal stress σA at point x due to an imposed displacement

uA applied over the surface S is given by

σA(x, ω) =

∫

S

d(r, ω)uA(x′, ω) dx′ , (4.1)

where r is the module of the distance vector r = |x−x′| pointing from x′ to x. The function

d(r, ω) is the fundamental solution (i.e. Green function) of the considered problem. For

a given set of boundary conditions on the other side of the acoustic trim (e.g. hard wall

condition uB = 0 or pressure release condition σB = 0), it accounts for the exact solution

(i.e. wave propagation in the thickness coordinate z) when the system is assumed of infinite

lateral extent. Eq. 4.1 assumes that the displacement uA(x, ω) is zero outside the excited

surface S. The system is, thus, said to be baffled over side A. On the other hand, the

problem may be reformulated as

uA(x, ω) =

∫

S

g(r, ω)σA(x′, ω) dx′ , (4.2)

which, instead, assumes side A of the acoustic trim to be unbaffled (i.e. pressure release

condition outside the surface S). Generally speaking, for a given imposed displacement uA,

Eqs. 4.1 and 4.2 lead to different results, as the specified baffling conditions are different.

Moreover, Eq. 4.1 allows for a direct evaluation of the reaction σA whereas Eq. 4.2 requires

the inversion of the convolution operator (and vice versa if uA is the output of interest).

However, the choice between the two formulations is not arbitrary when a mathematical

representation of the direct field part of the system response is sought. For instance, if

the acoustic trim is assumed to be an equivalent fluid, the natural formulation accounting

for the wave propagation in the laterally unbounded treatment is that employed in Eq.

4.1. On the other hand, if the system in Fig. 4.1 is assumed to be a solid layer, then Eq.

4.2 would ensure the propagation of the disturbance in the homogeneous laterally infinite

solid layer.

Unfortunately, the arguments above can hardly be extended to a generic acoustic trim,

which may involve several layers of different phases (i.e. solid and/or fluid). However, it
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can be argued that, thanks to short wavelengths and dissipation, the effect of different

baffling conditions may be important only close to the boundary ∂S. Hence, if the surface

S is large “enough”, different conditions could be considered equivalent, so that the most

efficient approach could be employed circumventing any confusion in the definition of the

“exact” direct field formulation. It is worth noting that the argument above is a natural

consequence of the main motivation behind the proposed approach: if the effect of the

finite lateral extent is assumed to be negligible so must be that of the baffling.

4.4 Hybrid model of the vibroacoustic system

In this section, the response of the laterally unbounded acoustic treatment is obtained by

means of two different formulations. The first one can be seen as the “exact” methodology

to obtain the direct field response when the whole acoustic trim is assumed to behave

like an equivalent fluid. Namely, it considered both ends of the multilayer treatment

inserted into an infinite rigid baffle. As a consequence, the normal displacements uA

and uB are the variables on which the integral operator (i.e. convolution) applies (see

Eq. 4.1). For this reason, such formulation is herein referred to as (u, u) formulation of

the acoustic trim. The second methodology considered in this paper is, instead, simply

justified by its numerical efficiency, as it avoids the inversion of any integral operator. Such

formulation will be referred to as (u, σ) formulation of the acoustic trim, as uA and σB are

the variables on which the convolution integral applies. Although other two combinations

of baffling conditions were considered (i.e. (σ, u) and (σ, σ)), for the sake of conciseness, the

present analysis is limited only to (u, u) and (u, σ) formulations, as they can be justified

by physical and computational arguments, respectively. In the following sections, the

dynamic response of the acoustic trim according to the two considered formulations is

obtained and then embedded in the finite element model of the structural-acoustic master

system yielding the assembled hybrid model. Finally, for the sake of clarity, the limitations

of the proposed approach are briefly summarized and discussed.

4.4.1 (u, u) formulation of the acoustic trim

Referring to Fig. 4.2(a), the acoustic trim is assumed to be attached to a structural domain

over side A, while side B radiates into a fluid domain. The structure-trim and fluid-trim

coupling areas formally coincide and will be referred to as the treated (or trimmed) surface

S. The structural and acoustic domains are modeled by classical finite element based

procedures. To account for the acoustic trim in the discrete model of the vibroacoustic
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Figure 4.2 Baffling conditions for the (a) (u, u) formulation and (b) (u, σ) for-
mulation.

system, the coupling forces exchanged over the surface S between the master subsystems

(i.e. structure and/or fluid domains) and the acoustic trim must be expressed as a function

of the master subsystem degrees of freedom (see chapter 3). In this section, such relation

is obtained starting from the (u, u) formulation of the laterally infinite sound package, i.e.















σA(x, ω) =

∫

S

dAA(r, ω)uA(x′, ω) dx′ +
∫

S

dAB(r, ω)uB(x′, ω) dx′

σB(x, ω) =

∫

S

dBA(r, ω)uA(x′, ω) dx′ +

∫

S

dBB(r, ω)uB(x′, ω) dx′
, (4.3)

where functions dmn(r, ω) (m = A,B and n = A,B) are the Green functions of the (u, u)

formulation. The following approximation for the displacements over sides A and B is

employed

uA(x, ω) =
n
∑

j=1

2
J1(ksr)

ksr
aj(ω) =

n
∑

j=1

2 jinc(ksr) aj ,

uB(x, ω) =
n
∑

j=1

2
J1(ksr)

ksr
bj(ω) =

n
∑

j=1

2 jinc(ksr) bj ,

(4.4)

where J1(ksr) is the Bessel function of first order of argument ksr, r is the modulus of the

distance r = x−xj and ks is the maximum wavenumber content of the jinc function. Such

shape functions were successfully used by Langley [63] for the calculation of the radiation

impedance of a vibrating surface. The approximation in Eq. 4.4 can be seen as the discrete

form of the interpolation scheme used in the Smoothed Particle Hydrodynamics (SPH)

[80]. Given a generic mesh of the trimmed surface S consisting of n points, the jth jinc

function is associated to the grid point xj. Coefficients aj and bj are the corresponding

participation factors. Substituting Eq. 4.4 in Eq. 4.3, integrating over the surface S,
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projecting onto the shape functions subspace and employing the convolution theorem to

express the Green functions in the wavenumber domain (see Ref. [1]) one obtains







RA(ω) = DAA(ω) a(ω) + DAB(ω)b(ω)

RB(ω) = DBA(ω) a(ω) + DBB(ω)b(ω)
, (4.5)

where vectors RA and RB gather the projection on each shape function of the normal

stress on sides A and B, respectively. The (i, j) components of the generalized stiffness

matrices Dmn (m = A,B and n = A,B) are defined as

Dmnij
(ω) = Dmn(rij, ω) =

(

4π

k2
s

)2
1

2π

∫ ks

0

d̂mn(k, ω)J0(krij)k dk , (4.6)

where k = |k| is the modulus of the wavenumber, J0(krij) is the Bessel function of zero

order of argument krij and rij = |rij | is the Euclidean distance between the nodes xj and xi.

Eq. 4.6 implicitly assumes that the acoustic trim is isotropic in the plane. The formalism

f̂(k) indicates the radially symmetric Fourier transform, i.e. Hankel transform, of the

function f(r). The coupling Green functions satisfy the reciprocity condition d̂AB(k, ω) =

−d̂BA(k, ω). The procedure to calculate the fundamental kernels d̂mn(k, ω) by means of

the TMM is outlined in appendix A.

In order to integrate the model of the acoustic trim in the finite element equations de-

scribing the dynamics of the vibroacoustic system, a suitable mapping must be defined to

link the participation factors a and b to the structural and acoustic finite element degrees

of freedom over the interface S. The procedure to obtain such mapping is detailed in ap-

pendix B. Assuming that the nodes associated to each jinc function and those belonging

to the finite element structural and fluid domains coincide over the surface S, the following

continuity relations hold

a = HUns
,

RB = − ĤPa ,
(4.7)

where Uns
and Pa are the normal displacements and acoustic pressures, respectively, at

the finite element nodes over the trimmed surface S. Mapping operators H and Ĥ are
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defined in appendix B. Consequently, the interface forces acting on the structural and

acoustic finite element degrees of freedom are given by

Rs = HTRA ,

Ra = − Ĥ
T
b ,

(4.8)

respectively. Eq. 4.8 guarantees conservation of energy at the interface between the finite

elements domains and the two ends of the acoustic trim. The minus signs in Eqs. 4.7-4.8

come from the notation used in Fig. 4.1. Using Eq. 4.7-4.8 and Eq. 4.5, solving for Rs

and Ra, one finally obtains

{

Rs

Ra

}

=





HT(DAA + DABD−1
BBDAB)H −HTDABD−1

BBĤ)

−Ĥ
T
D−1

BBDABH Ĥ
T
D−1

BBĤ





{

Uns

Pa

}

, (4.9)

where the block matrix can be interpreted as the boundary operator accounting for the

structural stiffness, fluid admittance and fluid-structure coupling added to the vibroacous-

tic system due to the presence of the sound package (see chapter 3 for details). Note that

the frequency dependency has been omitted to lighten the notation. Eq. 4.9 reveals that

the calculation of the acoustic trim response by means of the (u, u) formulation requires

the evaluation of D−1
BB through the solution of a linear system with multiple right hand

sides. The dimension of the system to be solved is n × n, where n is the number of

trimmed nodes. It can be argued that, for large n, the presence of a matrix inversion

might jeopardize the efficiency of the model, as matrix DBB is fully populated.

4.4.2 (u, σ) formulation of the acoustic trim

The acoustic trim is now assumed to be baffled over side A and unbaffled over side B (see

Fig. 4.2(b)). Under these assumptions, the response of the laterally infinite acoustic trim

reads
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













σA(x, ω) =

∫

S

gAA(r, ω)uA(x′, ω) dx′ +

∫

S

gAB(r, ω)σB(x′, ω) dx′

uB(x, ω) =

∫

S

gBA(r, ω)uA(x′, ω) dx′ +
∫

S

gBB(r, ω)σB(x′, ω) dx′
, (4.10)

where functions gmn(r, ω) (m = A,B and n = A,B) are the Green functions of the (u, σ)

formulation. Following the same procedure employed in the previous section, the discrete

form of Eq. 4.10 is







RA(ω) = GAA(ω) a(ω) + GAB(ω)b(ω)

RB(ω) = GBA(ω) a(ω) + GBB(ω)b(ω)
, (4.11)

where the (i, j) component of matrices Gmn(ω) is formally equivalent to the definition in

Eq. 4.6, taking care of replacing d̂mn(k, ω) with ĝmn(k, ω). The reciprocity condition gives

ĝAB(k, ω) = ĝBA(k, ω). The continuity conditions now read

a = HUns
,

b = − HPa .
(4.12)

Consequently, the interface forces acting on the structural and acoustic finite element

degrees of freedom are given by

Rs = HTRA ,

Ra = − HTRB .
(4.13)

Using Eqs. 4.12-4.13 and Eq. 4.11 one finally obtains

{

Rs

Ra

}

=





HTGAAH −HTGABH

−HTGABH HTGBBH





{

Uns

Pa

}

. (4.14)



4.4. HYBRID MODEL OF THE VIBROACOUSTIC SYSTEM 97

Thus, Eq. 4.14 directly gives the boundary operator accounting for the effect of the acoustic

trim, avoiding any matrix inversion and allowing for saving computational time compared

to the model in Eq. 4.9. It is worth noting that the model of the sound package in Eq.

4.14 is formally equivalent to that proposed in chapter 3, where linear radially symmetric

shape functions were employed to approximate the displacements and pressures over the

two ends of the trim. In the case of a structured mesh with rectangular elements, it was

shown that such choice allows to approximate the mapping operator H with the identity

matrix. On the other hand, the formulation in terms of jinc functions employed in this

paper is generic, as no restrictions are applied on the topology of the trimmed area mesh.

4.4.3 Assembled hybrid model

The simplified models of the acoustic trim (Eqs. 4.9 and 4.14) are finally embedded in the

finite element equations of the vibroacoustic system, yielding (see chapter 3)

([

Zss(ω) Zsa(ω)

ZT
sa(ω) Zaa(ω)

]

−
[

Yss(ω) Ysa(ω)

YT
sa(ω) Yaa(ω)

]){

qs(ω)

qa(ω)

}

=

{

Fs(ω)

Fa(ω)

}

, (4.15)

where qs and qa are the degrees of freedom of the structural (i.e. displacements and

rotations or modal amplitudes) and acoustic (i.e. pressures or modal amplitudes) domains,

respectively. The boundary operator Y accounts for the effect of the sound package on the

vibroacoustic system (see chapter 3). With an abuse of notation if Eq. 4.15 is expressed in

physical coordinates, the block matrices Yss, Ysa and Yaa refer to those defined in Eqs.

4.9 and 4.14. It should be observed that the second equation can refer to an hard walled

as well as an open acoustic cavity. In the latter case, the radiation into an unbounded

acoustic domain can be modeled by adding an impedance operator to the block matrix

Zaa, for instance employing the Boundary Element Method [6] (BEM) or the Perfectly

Matched Layer [11, 12] (PML).

4.4.4 Numerical implementation

The numerical implementation of the acoustic trim model was carried out in MATLAB.

The parallel toolbox [123] was exploited in order to speed up the calculations. The imple-

mentation mainly involves the following steps.
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– Calculation of the Green functions. The functions d̂mn(k, ω) (or ĝmn(k, ω)) must be

evaluated by means of the TMM at each frequency step over a sampled wavenumber

space. A grid consisting of nk points between k = 0 and k = ks must be defined

guaranteeing a correct sampling of the oscillatory behavior of the integrand in Eq. 4.6.

This step can take advantage from a parallel implementation, as the transfer matrix

problems to be solved at each wavenumber grid point ki are independent.

– Integration of the kernels. The functions Dmn(rij , ω) (or Gmn(rij , ω)) are sampled at nr

grid points between r = 0 and r = rmax, where rmax is the maximum distance between

two points over the trimmed surface S. The integration of Eq. 4.6 at the nr radius

points can be also performed in parallel, as each calculation is entirely independent.

– Matrices assembly. The functions calculated in the previous step must be then inter-

polated to build the matrices of the adopted formulation. Although this step was not

optimized in this work, it was found that an efficient interpolation routine can make

the difference when a large number n of trimmed nodes is considered. After this step,

if the (u, σ) formulation is employed, the model of the acoustic trim (i.e. Eqs. 4.14) is

ready to be embedded into the finite element system.

– Solution of the linear system. If the (u, u) formulation is employed, a linear system must

be solved to obtain Eq. 4.9.

Finally, the choice of the maximum wavenumber content ks of the jinc functions must be

defined. In this work, the same approach proposed by Langley [63] was employed, i.e. ks is

uniquely defined by the shortest wavelength captured by the mesh of the trimmed surface

S.

4.4.5 Limitations of the model

Given a sound package covering an area S of the interface between a structure and a fluid,

the models developed in sections 4.4.1-4.4.2 can be employed if the sound package is (i)

flat, (ii) homogeneous and (iii) isotropic in the plane containing S. Conditions (i)-(ii)

are the hypotheses on which the analytical formulation is formally based, as they allow

to express the Green functions as functions of the distance r only. In turns, this also

allows to calculate the fundamental solutions by means of the TMM, whose analytical

framework is based on such assumptions. Nonetheless, it could be argued that the for-

mulation can be extended to moderately curved and non homogeneous sound packages,

assuming, respectively, the system to be locally flat and dividing the surface S in homoge-

neous patches [26]. However, these aspects are beyond the scope of the present work and

are not assessed here. Condition (iii) allows to express the entries of matrices Dmnij
(ω)
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and Gmnij
(ω) as one-dimensional integrals, since the Green functions depend only on the

module of the wavenumber k (i.e. the spatial Green functions becomes a function of the

module of the distance r). Non isotropic layups, can still be approximated using averaged

Green functions to remove the dependency from the heading angle φ.

If conditions (i)-(iii) are met, then the accuracy of the Green functions based model de-

pends only on the main assumption that finite size effects within the treatment are negli-

gible, i.e. the direct field part of the acoustic trim response dominates over reflected field

contribution. The impact of such assumption is of primary importance and must be fully

understood. To this end, only the equivalent fluid behavior of the acoustic treatment (i.e.

poroelastic layers are modeled according to the limp approximation [84]) will be considered

in this work. Such choice simplifies of the dynamic behavior of the system allowing for an

easier interpretation of the results. On the other hand, the effect of a full Biot model has

been studied in chapter 3 and is the subject of a specific application in chapter 5.

For the sake of completeness, it should be mentioned that the model of the acoustic trim,

as presented in section 4.4, can handle only the continuity of normal displacement and

stress at the interface with the structure. However, this is not an intrinsic limitation of the

methodology, since the formulation could be, in theory, extended to account for in-plane

components. Nonetheless, the assumption of normal continuity is widely used in real life

applications, due to practical mounting conditions.

4.5 Results

The accuracy of the hybrid model presented in section 4.4.3 is here assessed. To this end,

two different analysis are proposed. First the accuracy of the hybrid model according

to the (u, u) and (u, σ) formulations of the acoustic trim is assessed in terms of typical

vibroacoustic indicators, i.e. structural space averaged quadratic velocity, acoustic cavity

space averaged quadratic pressure and power radiated into an unbounded fluid. Second,

the effect of the material properties on the accuracy of the model will be assessed in terms of

difference between the vibroacoustic indicators obtained with two different acoustic trim

configurations. Throughout this section, the reference solution uses the substructuring

approach developed by Hamdi et al. [53], which employs a finite element model of the

sound package to calculate the boundary operator Y.

The considered benchmark involves a 2 mm thick rectangular steel plate of dimensions

Lx × Ly m2, clamped along its edges. The acoustic trim is attached onto the structure

and radiates either into a baffled semi-infinite fluid domain or into a rigid walled cavity
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of cubic shape with dimensions Lx × Ly × Lz m3. Two different layups are considered for

the sound package. Namely, a (i) one-layer lay-up (referred to as light trim) consisting of

a 4 cm foam and a (ii) two-layers lay-up (referred to as spring-mass trim) consisting of

a 2 cm foam with a heavy layer attached on top. The materials used for the poroelastic

layer are reported in Tab. 4.1, along with the structural properties of the plate and the

considered air conditions. The lateral boundaries of the acoustic trim finite element model

are assumed to be rigid and impervious (i.e. hard walled).

Table 4.1 Materials used in the numerical simulations.

Material
Properties

Acoustic Mechanical

Steel density = 8000 kg/m3

Young’s modulus = 200GPa
Poisson’s ratio = 0.33
damping factor = 0.02

Air density = 1.21 kg/m3

speed of sound = 342.2m/s

Melamine porosity = 0.99 density = 8.8 kg/m3

resistivity = 10900 kg/m3s Young’s modulus = 80 kPa
tortuosity = 1.02 Poisson’s ratio = 0.4
viscous length = 100µm damping factor = 0.17
thermal length = 130µm

Felt porosity = 0.98 density = 58 kg/m3

resistivity = 26514 kg/m3s Young’s modulus = 6 kPa
tortuosity = 1 Poisson’s ratio = 0.04
viscous length = 48µm damping factor = 0.15
thermal length = 144µm

Heavy layer density = 1.2 kg/m2

Young’s modulus = 103 kPa
Poisson’s ratio = 0.3
loss factor = 0.5

4.5.1 Assessment of the proposed models

The first case refers to an acoustic cavity of dimensions 0.8× 1.7× 1 m3. A proportional

structural damping model is used to introduce dissipative effects within the cavity (ηa =

0.01). Most of the absorption is instead provided by a 4 cm melamine foam attached onto

the 0.8× 1.7 m2 rigid wall at z = 0. A monopole with constant volume velocity is placed

at the corner (0 m, 1.7 m, 1 m). The response of the system up to 1 kHz is considered.

The finite element model of the cavity involves 24 × 50 × 30 eight-noded fluid elements.

The poroelastic layer, assumed to be limp, is modeled with 5 eight-noded equivalent fluid

elements along its thickness (same mesh of the acoustic domain in the plane). Fig. 4.3
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shows the quadratic pressure inside the acoustic cavity. It can be pointed out that a

similar behavior is observed for both the two considered hybrid models. Namely, as a

consequence of the infinite lateral extent assumption (i.e. direct field only), none of the

two formulations is able to capture the absorption provided by the actual (i.e. laterally

bounded) melamine layer in the low frequency range (below 600 Hz). However, as the

frequency increases, the effect of the reflected field within the light trim becomes less

important and the hybrid models converge to the reference solution. This behavior has

already been observed for a plate-cavity system in chapter 3 and it is confirmed by the

present analysis, which, in addition, shows that the low frequency absorption remains an

issue regardless of the considered baffling conditions. In fact, although it could be pointed

out that the (u, u) formulation captures better the qualitative behavior at low frequency

(note, for instance, the position of the resonances), the accuracy does not substantially

improve compared to the more computationally efficient (u, σ) formulation.
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Figure 4.3 Space averaged quadratic pressure of the acoustic cavity excited by
a monopole. A 4 cm melamine layer is attached onto the hard wall facing the
excitation point. Comparison between the finite element and the hybrid models
based on the (u, u) and (u, σ) formulations.
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The second case refers to a plate-cavity system of dimensions 0.4 × 0.85 × 0.5 m3. The

4 cm melamine foam is now placed between the plate and the cavity. The response of

the system driven by a point force applied on the plate at point (0.114 m, 0.147 m) is

considered. The upper limit of the observed frequency range is 3 kHz. The finite element

model of the plate and cavity involve 35× 75 four-noded plate elements and 35× 75× 36

eight-noded fluid elements, respectively. The melamine layer is modeled with 10 eight-

noded equivalent fluid elements along its thickness. The simulation refers to the case of a

5% damping provided by the cavity itself (i.e. ηa = 0.05). The quadratic velocity is very

well captured by both the hybrid models (confirming the results in Ref. [1] and chapter 3)

and thus not shown here for the sake of conciseness. The quadratic pressure in the cavity

is, instead, reported in Fig. 4.4. The previous analysis (Fig. 4.3) would suggest that, after

a low frequency region where the absorption seen from the cavity side is overestimated

(see, for instance, the acoustic resonance at 200Hz), the hybrid solutions should converge

to the reference curve. However, an offset from the reference solution is observed over the

whole considered spectrum, showing that the hybrid models cannot quantitavely capture

the power flow from the structure to the fluid domain through the acoustic trim. Indeed,

the contribution to the indirect fluid-structure coupling (i.e. extra-diagonal block matrix

in Eqs. 4.9 and 4.14) of the reflected field emanating from the lateral boundaries of the

foam is neglected and a perfect match with the reference solution cannot be expected.

Namely, part of the vibrational energy appears to be lost through the lateral extent of the

treatment. Nonetheless, the (u, u) and (u, σ) hybrid models follow very well the reference

and provide an accuracy within 3 and 2 dB, respectively. Moreover, the hybrid solutions

are very close to each other (within 1 dB), confirming that the baffling conditions produce

negligible effects.

The transmission issues are confirmed also for the case where side B of the sound package

is radiating into a fluid filled half-space (note that the latter is considered baffled regardless

of the formulation employed for the sound package). However, when the system is excited

by a plane wave, the accuracy of the hybrid models increases. This is shown in Fig.

4.5, where the power radiated into the unbounded fluid is reported for the same plate

considered in the previous simulation excited by a 45◦/45◦ plane wave. The gap between

the hybrid and reference solutions has reduced and a good approximation is obtained. This

is not surprising, since the effect of the plane wave is to force the system to vibrate with a

given wavenumber (i.e. the projection of the acoustic wavenumber onto the plate surface),

minimizing the finite size effects on the system response. As a consequence, an almost

perfect match between the two hybrid models is obtained, although few discrepancies are

still observed below 200 Hz (where the response is still markedly modal). Similar results
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Figure 4.4 Space averaged quadratic pressure of the acoustic cavity. The plate-
cavity system is mechanically excited by a point force. Result relative to the
light acoustic treatment lay-up (4 cm melamine). Comparison between the finite
element and the hybrid models based on the (u, u) and (u, σ) formulations.
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could be shown for the quadratic pressure if the plate-foam system is backed by a hard

walled acoustic cavity.

f [Hz]

ra
d
ia
te
d
p
o
w
e
r
[d
B
]

10
2

10
3

-90

-80

-70

-60

-50

-40 FEM

FE-TMM - (u,u)

FE-TMM - (u,σ)

Figure 4.5 Power radiated into the semi-infinite fluid. The plate is acoustically
excited by a 45◦/45◦ plane wave. Result relative to the light acoustic treatment
lay-up (4 cm melamine). Comparison between the finite element and the hybrid
models based on the (u, u) and (u, σ) formulations.

The analysis carried out in Figs. 4.4-4.5 is repeated in Figs. 4.6-4.7 for a larger system

acoustically treated by a spring-mass lay-up. The plate dimensions are 0.8× 1.7 m2 while

the acoustic cavity is 1 m deep. The finite element model of the plate and cavity involve

43×91 four-noded plate elements and 43×91×30 eight-noded fluid elements, respectively.

The mesh of the acoustic trim employs 5 eight-noded limp elements through the thickness

of the melamine layer, while the heavy screen is modeled with one layer of eight-noded solid

elements (see Tab. 4.1 for the structural properties). Figs. 4.6 and 4.7 show, respectively,

the quadratic pressure inside the cavity when the plate is excited by a point force at

(0.112 m, 0.131 m) and the power radiated into the fluid half-space (which replaces the

hard walled cavity) when the plate is excited by a 45◦/45◦ plane wave. The results show

that, at the double wall resonance of the system around 350 Hz, the reflected field in the
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acoustic trim cannot be neglected due to the pronounced non local behavior of the spring-

mass lay-up. Indeed, for the point load case (see Fig. 4.6), the hybrid models based on

the (u, u) and (u, σ) formulations underestimate the quadratic pressure peak by 4 and

3 dB, respectively. As a consequence, the difference between the two formulations are

also confined between 250 and 450 Hz, where a maximum gap of 2 dB is observed in the

narrow frequency band between 300 and 400 Hz. However, the qualitative behavior of the

reference solution is well reproduced. The structural energy of the plate is instead well

captured (see also chapter 3) and thus not shown here for the sake of brevity. On the

other hand, Fig. 4.7 confirms that the hybrid models perform better when an acoustic

excitation drives the plate.
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Figure 4.6 Space averaged quadratic pressure of the acoustic cavity. The plate-
cavity system is mechanically excited by a point force. Result relative to the
spring-mass acoustic treatment lay-up (2 cm melamine with 1.2 kg/m2 heavy
layer on top). Comparison between the finite element and the hybrid models
based on the (u, u) and (u, σ) formulations.

Finally, to give an idea about the computational cost of the two hybrid methods, the

spring-mass trim case is considered. Concerning the reference solution, the finite element

model of the acoustic trim involves 48032 degrees of freedom and requires 90 s to build
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Figure 4.7 Power radiated into the semi-infinite fluid. The plate is acoustically
excited by a 45◦/45◦ plane wave. Result relative to the spring-mass acoustic
treatment lay-up (2 cm melamine with 1.2 kg/m2 heavy layer on top). Compar-
ison between the finite element and the hybrid models based on the (u, u) and
(u, σ) formulations.
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the boundary operator Y (see Eq. 4.15) at each frequency step. This time refers to the

solution of the finite element linear system by means of the MKL based parallel solver

PARDISIO [98, 99]. On the other hand, the (u, u) and (u, σ) formulations requires 4.2

and 14.4 s, respectively. This information refers to the sum of the computational time

required to perform each step discussed in section 4.4.4 (see Tab. 4.2 for details). The

number of trimmed nodes is n = 4048, while nk = nr = 606 uniformly distributed points

were employed for the sampling of the analytical functions. All the computations were

performed on a desktop computer powered by an intel i7-2600 processor (8 nodes at

3.4 GHz).

Table 4.2 Computational time required to perform each step involved in the
(u, u) and (u, σ) formulations. MATLAB backslash operator was used to perform
the solution step.

TMM Integration Interpolation Solution Total Reference
Total

(u, u) 0.3 s 2.1 s 1.8 s 10.2 s 14.4 s 6.2

(u, σ) 0.3 s 2.1 s 1.8 s - 4.2 s 21.4

4.5.2 Effect of different materials

In the previous section it has been shown that, generally speaking, the reflected field within

the acoustic trim can play an important role in the response of the vibroacoustic system.

Its contribution is neglected by the simplified analytical model of the sound package, so

that a modeling error appears. It should be clear at this point that this error is a function

of the acoustic trim configuration. Indeed, this has been implicitly proved in the previous

section, where a different behavior of the hybrid models were observed for two different

acoustic trims. In this section the effect of different materials is assessed. Namely, for a

fixed lay-up (light or spring-mass), the results obtained by employing different poroelastic

materials are compared. The results are presented in terms of relative difference between

the response obtained with two different layups, i.e. , for the generic vibroacoustic indicator

X,

∆[X] = Xlay-up 1 [dB]−Xlay-up 2 [dB] . (4.16)

The first case refers to the plate-cavity system of dimensions 0.4 × 0.85 × 0.5 m3. The

quadratic pressure due to a point force excitation when the 4 cm melamine foam is attached

onto the plate has already been shown in Fig. 4.4. Fig. 4.8(a) shows instead the indicator

∆ for the quadratic pressure in the cavity when the performance of the melamine is
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compared with a felt layer (properties in Tab. 4.1) of the same thickness. A logarithmic

scale on the frequency axis is used to focus on the low frequency range. Moreover, a one-

third octave band averaging of the same result is reported in Fig. 4.8(b) to facilitate the

interpretation of the result. It can be observed that the hybrid models are able to predict

the difference between the two materials with an accuracy of 1 dB (on average) above

200 Hz. This difference is explained by the fact that the absolute accuracy of the hybrid

models increases when the felt layer is considered. Indeed, the felt is softer (in terms of

equivalent complex speed of sound c0(ω)) than the melamine, so that the reflected waves

emanating from the boundaries exhibit a faster decay rate. Moreover, it can be argued that

the (u, u) formulation gives a better quantitative (below 200 Hz) and qualitative (above

200 Hz) correlation with the reference solution. On the other hand, it can also be pointed

out that in terms of efficiency/accuracy tradeoff, the (u, σ) formulation gives satisfactory

results.
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Figure 4.8 Eq. 4.16 applied to the quadratic pressure in the acoustic cavity
considering a 4 cm melamine (lay-up 1) and a 4 cm felt (lay-up 2). The plate-
cavity system is mechanically excited by a point force. Comparison between the
finite element and the hybrid models based on the (u, u) and (u, σ) formulations.
Narrow band (a) and third-octave band average (b).

The same analysis is proposed in Fig. 4.9 for the case of a 45◦/45◦ plane wave excitation.

The hard walled cavity is replaced by an unbounded fluid domain and the indicator ∆ is

applied to the radiated power. Besides the fact that the plane wave excitation allows for

a better accuracy, the results confirm what already observed in Fig. 4.8. Moreover, it is

intersting to note that, for the plane wave excitation, the solution obtained by the hybrid
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models is in very good agreement (in terms of band averaging) with the classical TMM

above 300 Hz. This mainly corroborate the ability of the TMM to capture non resonant

transmission paths.
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Figure 4.9 Eq. 4.16 applied to the power radiated into the semi-infinite fluid
considering a 4 cm melamine (lay-up 1) and a 4 cm felt (lay-up 2). The plate
is acoustically excited by a 45◦/45◦ plane wave. Comparison between the finite
element and the hybrid models based on the (u, u) and (u, σ) formulations.
Narrow band (a) and third-octave band average (b).

Finally, the effect of the material properties on the spring-mass trim is assessed. The same

plate-cavity system discussed in Fig. 4.6 in section 4.5.1 is considered for this purpose.

Fig. 4.10 shows the difference ∆ in the quadratic pressure when the 2 cm melamine layer

is replaced with a felt of the same thickness. The acoustic trim finite size effects are

now confined around the double wall resonance of the system. As expected, the results

confirm that the error depends on the adopted material. Namely, on average a 2 dB gap is

observed between 250 and 450 Hz between the prediction obtained with the hybrid models

and the reference curve. As already pointed out, this is due the fact that the softer is the

poroelastic layer (i.e. felt softer than melamine) the more accurate are the hybrid models.

It is noteworthy that, although not shown here, the quadratic velocity is well predicted

for both the considered materials.
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Figure 4.10 Eq. 4.16 applied to the quadratic pressure in the acoustic cavity
considering a 2 cm melamine with 1.2 kg/m2 heavy layer (lay-up 1) and a 2 cm
felt with 1.2 kg/m2 heavy layer (lay-up 2). The plate-cavity system is mechan-
ically excited by a point force. Comparison between the finite element and the
hybrid models based on the (u, u) and (u, σ) formulations. Narrow band (a) and
third-octave band average (b).
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4.6 Conclusions

A simplified modeling strategy to account for acoustic treatments in vibroacoustic finite

element analysis was presented. The theoretical framework applies to flat, homogeneous

and isotropic acoustic treatments and assumes that finite size effects are negligible. As a

result, the response of the acoustic trim is approximated by its direct field contribution

only, which can be modeled by employing Green functions formalism. In this work, the

effect of different mathematical formulations of the direct field response of the acoustic

trim was assessed. These formulations differ by the selection of the boundary conditions

imposed outside the trimmed area at the end of the rims (i.e. baffling condition). The

considered methodology takes advantage from the use of the jinc function to simplify

the calculation of the discrete model matrices and their integration in the finite element

equations of the vibroacoustic system.

Two different combination of baffling conditions were considered, leading to the (u, u) and

(u, σ) formulations of the acoustic trim problem. The results showed that, for typical

acoustic treatments, the effect of the adopted formulation is practically negligible, as the

two models were found to give similar results. Namely, the same tendency of the modeling

error was observed for both models. Hence, from a practical standpoint, the direct field

response of the acoustic trim can be approximated by any of the two considered formula-

tions. This conclusion can be extended to other combinations of baffling conditions (i.e.

(σ, σ) and (σ, u) formulations), which were not discussed here for the sake of conciseness.

As a result, it can be argued that, given the accuracy that the hybrid models can achieve,

the formulation which minimizes the computational cost must be be preferred. In partic-

ular, in this paper it has been observed that the (u, σ) formulation allows for the fastest

assembly of the hybrid model when the acoustic trim is placed between a finite element

structural and acoustic domain.

As a final remark, this work also confirmed the limitation of the direct field model of the

acoustic trim (regardless of the adopted formulation) shown in previous publications (Ref.

[1] and chapter 3). Namely, although the qualitative behavior of the system is always well

captured, the effect of the reflected field must be retrieved if a good accuracy is required.

Such conclusion may be not surprising for spring-mass layups at the thickness resonances

(where the response is quite non local). This is however less obvious for simple sound

packages involving only one soft and dissipative layer (i.e. light layups). A correction to

account for finite size effects is proposed in the next chapter.
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CHAPTER 5

FINITE SIZE CORRECTION FOR THE FE-

TMM

This chapter in concerned with the development of a finite size correction. Namely, the

image source method is employed to retrieve the effect of the sound package lateral bound-

aries. The chapter is presented in the form of a paper (Part II of a two-parts paper),

although the manuscript has not been submitted yet. In addition, for the sake of com-

pleteness, further results have been added at the end of the chapter to show how the

mounting conditions between the noise control treatment and the structure can affect the

accuracy of the hybrid FE-TMM.
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il est démontré dans le présent travail que le procédé de la source d’image peut être

utilisé avec succès pour extraire les effets de taille finie. En effet, cette méthode est

reconnue comme efficace lorsque la réponse du système est une fonction lisse de la

fréquence, comme dans le cas des traitements de réduction du bruit fortement dissipatifs.

La principale préoccupation de cet article est d’évaluer l’exactitude et la faisabilité de

la méthode de la source de l’image dans le cadre de la modélisation de traitements

insonorisants. Des exemples numériques démontrent que les performances du modèle

hybride standard peuvent être sensiblement améliorées par la correction proposée sans

détérioration excessive de l’efficacité de calcul.

Note: -

5.1 Abstract

This work is concerned with the hybrid finite element-transfer matrix methodology devel-

oped in part I of this paper. The main assumption behind this hybrid method consists in

neglecting the actual finite lateral extent of the noise control treatment. Although a sub-

stantial increase of the computational efficiency can be achieved, the effect of the reflected

field (i.e. finite size effects) may be sometimes important, preventing the hybrid model

from giving quantitative meaningful results. For this reason, a correction to account for

wave reflections at the lateral boundaries of the noise control treatment is sought. For

this purpose, it is shown in the present paper that the image source method can be suc-

cessfully employed to retrieve such finite size effects. Indeed, such methodology is known

to be effective when the response of the system is a smooth function of the frequency,

like in the case of highly dissipative noise control treatments. The main concern of this

paper is to assess accuracy and feasibility of the image source method in the context of

noise control treatments modeling. Numerical examples show that the performance of the

standard hybrid model can be substantially improved by the proposed correction without

deteriorating excessively the computational efficiency.

5.2 Introduction

This paper is concerned with the low frequency modeling of vibroacoustic systems with

passive noise control treatments. Such acoustic components, often called acoustic trims

or sound packages, are typically made of several layers of highly dissipative materials (e.g.

porous media, rubbers, thin screens etc. . . ) assembled in a multilayer fashion and coupled

with structural and acoustic domains. In the low frequency range, the Finite Element
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Method [10] (FEM) is typically employed to model such coupled systems. However, two

main issues arise from the application of this methodology to the modeling of passive noise

control components. First, the acoustic trim involves soft and dissipative materials which,

despite the small volume occupied, typically require several degrees of freedom in order to

correctly capture the solution. This aspect may become a serious issue when poroelastic

materials are involved in the treatment lay-up [30] and simplified equivalent fluid models do

not guarantee reliable accuracy [84]. Second, the use of the FEM is intrinsically associated

to a preprocessing phase where each layer of the acoustic trim must be carefully meshed.

This can be time consuming when several configurations of the same system must be

simulated, like, for instance, in an optimization process. Therefore, although the FEM

can still be considered an accurate tool in the final validation stage, there is a need for

more efficient approaches.

Recently, several authors have proposed simplified modeling strategies for acoustic treat-

ments based on integral formulations [1, 26, 105] (see also chapters 3 and 4) involving

analytical kernels (i.e. Green functions) which can be efficiently computed by the Transfer

Matrix Method [3] (TMM). These methodologies allow to calculate the surface impedance

of the sound package to use in finite element analysis in order to take into account the ef-

fect of acoustically treated parts on the vibroacoustic response of a fluid-structure system.

The rationale behind these hybrid Finite Element-Transfer Matrix Methods (FE-TMMs)

is based on the assumption that size effects due to the finite lateral extent of the trim

are negligible. Essentially, the sound package is modeled as an equivalent reacting surface

whose dynamic response is given by its direct field contribution only. The reflected field

emanating from the lateral boundaries of the surface is, instead, not considered. Formally,

the approach assumes the layers involved in the acoustic trim to be flat and homogeneous.

Under these conditions, the analytical model of the acoustic trim has shown interesting

performance. Namely, the dynamic effects of the actual finite size treatment (i.e. mass,

stiffness and damping added to the master structural and acoustic domains) are always

qualitatively captured [1] (see chapter 3), thus overcoming the intrinsic limitations of sim-

ple local impedance models. However, the accuracy may be sometimes lacking. Indeed,

the finite size of the acoustic trim can play an important role at low to mid frequencies

depending on the considered materials and lay-up. This argument was confirmed in Part

I of this paper (i.e. chapter 4) for typical absorption and transmission problems involving

spring-mass as well as light trim configurations. Moreover, finite size effects are maximized

when the coupling between the structural and fluid domains with the acoustic trim is char-

acterized by geometrical orthogonalities among the modes, as shown in chapter 3. In such

cases, although the analytical model can still capture the exact position of the acoustic
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trim resonances, the accuracy at low frequency may be jeopardized. As a result, it can

be concluded that the reflected vibrational field emanating from the lateral boundaries,

even though confined in a thin region, may be important if a good accuracy is required.

Therefore, a correction is needed.

The problem of accounting for the reflected field in mathematical models which neglect the

presence of boundaries has been an active subject of research in the past two decades. Most

of these works are mainly concerned with the high frequency analysis of vibrating systems

in the context of the Statistical Energy Analysis [73] (SEA). Essentially, the system is

assumed to be lightly damped, so that the reflected waves emanating from the boundaries

actually give rise to a chaotic vibrational field due to multiple consecutive reflections and

short wavelengths. A reflected field so characterized, is often called reverberant or diffuse

and can be studied with statistical tools [64, 106]. However, this approach cannot be

employed in the present analysis. Indeed, dissipative effects dominates within the acoustic

trim, so that the resulting reflected field is rather non reverberant and non diffuse, as it

dies out within few (or none) oscillations before being reflected again by other boundaries.

Although other approaches have been proposed to relax the diffuse field hypothesis (a

comprehensive overview can be found in Ref. [68]), their application is not straightforward

in the context of arbitrary sound packages, because of the complexity of the multilayered

treatment in the thickness direction.

On the other hand, the Image Source Method [86] (ISM) is often employed in acoustics to

obtain the solution in a bounded domain from the formulation of an equivalent unbounded

problem. The classical ISM consists in representing wave reflections at the boundaries by

introducing virtual sources in the unbounded domain. Such fictitious sources are mirrors of

the original source with respect to the boundaries of the system. The ISM is widely used in

room acoustics [4, 16, 78, 101] and has also been applied to structural vibrations [28, 29, 51,

52]. In acoustic applications, the amplitudes of the image sources are given by the product

of the amplitude of the original source and the reflection coefficient of the boundary at

which the reflection occurs. For constant reflection coefficients (e.g. hard wall conditions in

closed acoustic cavities) the method exactly reproduce the prescribed boundary conditions

on straight edges. In structural applications, the ISM is not always as powerful, since only

few boundary conditions can be reproduced by simple images of the actual source [52].

Unlike the FEM, the efficiency of the ISM increases with short wavelengths and high

damping, suggesting that this methodology could be efficiently employed for the acoustic

treatments modeling. Indeed, as previously observed, the reflected field within the acoustic
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trim is non reverberant so that only few reflections (i.e. few mirror sources) are expected

to be important.

The purpose of this work is to provide a first assessment of the ISM in the context of

noise control treatments modeling. Namely, the ISM is employed to correct the analytical

model for laterally unbounded, flat and homogeneous sound packages proposed in chapter

4. The possibility to represent specific lateral boundary conditions is not contemplated.

A straightforward use of the ISM based on physical arguments is rather preferred. On the

one hand, this choice is justified by the approximate nature of the analytical model (i.e.

some details are already intrinsically lost compared to a finite element approximation).

On the other hand, multilayered treatments can be quite complex systems, so that lat-

eral mounting conditions might be either not exactly known, hard to model or, from an

industrial standpoint, vary for each realization of the system (e.g. assembled car). Thus,

the objective is to assess the feasibility of a simplified image sources based correction to

retrieve the accuracy that was intrinsically missing in the unbounded model of the acoustic

trim proposed in chapter 4. The study is restriced to hard wall lateral boundary condi-

tions (i.e. lossless) and to rectangular treated areas in order to simplify the image sources

generation process.

The paper is organized as follows. In Section 2 the main equations are introduced and the

finite size correction is presented by introducing images of the actual sources forcing the

acoustic trim over the two ends of the multilayer. Since such correction is exact only if an

equivalent fluid behavior is assumed for the whole acoustic trim, physical arguments are

provided to justify the methodology for generic configurations. In Section 3, the corrected

model of the acoustic trim is validated through a benchmark similar to that proposed in

chapter 4. Then, in Section 4, two application are proposed. First, a simplified automotive

application is considered. Then, the effectiveness of the proposed correction is assessed in

the case of layups whose behavior cannot be assumed equivalent to that of a fluid domain.

Namely, an acoustic trim involving a poroelastic layer with non negligible mechanical

properties is considered.

5.3 Theoretical background

The acoustic treatment is assumed (i) flat, (ii) homogeneous in the plane (i.e. thickness,

lay-up and material properties do not change over the treated surface) and (iii) isotropic.

One side of the multilayer (i.e. side A) is considered to be attached onto a structure while

the other side (i.e. side B) radiates into a fluid. The coupling surface between the treat-
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ment, the structure and the fluid is herein referred to as the trimmed (or, equivalently,

treated) area S. Under this circumstances, the analytical model of the the laterally un-

bounded acoustic trim was presented in chapter 4. The model accounts only for normal

displacement and stress at the ends of the treatment. Due to the negligible impact of the

boundary conditions to apply outside the surface S (i.e. the absolute complement of S in

R
2, i.e. R

2 \ S) on the two sides of the trim, two formulations were proposed. Namely,

the (u, u) formulation assumes both ends of the treatment inserted in a rigid baffle (u = 0

over R
2 \ S) while the (u, σ) considers side A baffled (u = 0 over R

2 \ S) and side B

unbaffled (σ = 0 over R
2 S). The (u, u) formulation is supported by physical arguments

(i.e. it exactly gives the direct field response if the acoustic trim is assumed to behave like

a fluid) but it requires more computational effort to integrate the response of the trim

into the finite element equation of the master structural and acoustic degrees of freedom.

On the other hand, the (u, σ) formulation is justified by its efficiency, as it minimizes the

number of operations required to build the final hybrid model. A comprehensive derivation

of these two formulations can be found in chapter 4. Here, only the final result is used.

Considering for instance the (u, u) formulation, the response of the laterally unbounded

sound package can be written as







RA(ω) = DAA(ω) a(ω) + DAB(ω)b(ω)

RB(ω) = DBA(ω) a(ω) + DBB(ω)b(ω)
, (5.1)

where a and b are the coefficients associated to each basis function used to approximate

the displacement over sides A (i.e. uA) and B (i.e. uB). Namely, a jinc function [63] is

associated to each node of the discretized surface S. The entries of the generalized dynamic

stiffness matrices are defined as

Dmnij
(ω) = Dmn(rij, ω) =

(

4π

k2
s

)2
1

2π

∫ ks

0

d̂mn(k, ω)J0(krij)k dk , (5.2)

where m = A,B and n = A,B, k = |k| is the modulus of the wavenumber, J0(krij) is the

Bessel function of zero order of argument krij , rij = |rij | is the Euclidean distance between

nodes xj and xi and ks is the maximum wavenumber content of the jinc function. The

formalism f̂(k) indicates the radially symmetric Fourier transform, i.e. Hankel transform,

of the function f(r). Thus, the analytical kernels d̂mn(k, ω) are the transformed Green
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functions. Finally, vectors RA and RB are the normal stresses acting on the acoustic trim

degrees of freedom, i.e.

Rmi
(ω) =

∫

S

2 jinc(ksr)σm(x, ω) dS , (5.3)

where r = |xi − x| (i.e. the jinc function is centered at xi).

rij

uA(r)

side A

trimmed surface S
︷ ︸︸ ︷side B

xi xj

Figure 5.1 Through-the-thickness view of the acoustic trim baffled on both
ends (i.e. (u, u) formulation). A jinc-like displacement is applied at point xj .
The module of the distance between the source and the observation point xi is
rij .

To facilitate the discussion, let us focus on the following scalar problem taken from Eq.

5.1

RAi
(ω) = DAA(rij, ω)aj(ω) = D∞(rij, ω)aj(ω) , (5.4)

where the formalism D∞ has been employed in place of DAA to emphasize that the solution

assumes an infinite laterally extended system (i.e. direct field response). Eq. 5.4 gives the

reaction on node i due to a displacement of the form 2 jinc(ksr) centered in xj and of

amplitude aj when all other degrees of freedom are fixed to zero. With an abuse of

notation due to the finite value of ks, D∞(rij , ω) is the Green function of the multilayer in

the physical space, relating the output at a given point (i.e. RAi
) to the source (i.e. aj).

The mathematical problem is sketched in Fig. 5.1. Similar equations can be defined by

employing other blocks of Eq. 5.1, or considering the (u, σ) formulation instead. Eq. 5.4

will be used in the next section to develop the finite size correction based on the ISM.

5.3.1 Finite size correction

In the ISM, the reflected field emanating from the boundary of the system is interpreted

as the effect of virtual sources, whose position in the space is uniquely determined by the

position of the original source. The methodology assumes the domain to have a polygonal
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edge 1
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Figure 5.2 Image sources generation process for a convex corner.

shape, i.e. only reflections at straight edges can be modeled. Under these conditions, the

two-dimensional process to generate the virtual sources is depicted in Fig. 5.2. Subscripts

j and i refers to the source and receiver, respectively. Consider, for instance, the reflection

on edge 1 of the wave field generated by a source located at xj . The reflected field is

interpreted as the vibrational field emanating from a source located at xs
j , whose coor-

dinates are determined by the symmetry of xj with respect to edge 1. Then, if waves

arising from the image source are reflected again by another boundary along their path,

a new reflection must be accounted for. Hence, another image source is generated. For

instance, a second order image is located at xs′

j , where the superscript s′ indicates that the

new source accounts for a second order reflection of the reflected field originally emanated

from edge 1. Thus, referring to Eq. 5.4, the total reaction at the observation point xi

obtained by superposition of direct and reflected field contributions can be written as

RAi
(ω) = D∞(rij , ω)aj(ω) +

Nw
∑

p=1

∞
∑

q=1

DS(rij(p,q), aj, ω) , (5.5)

where, Nw is the number of straight edges composing the boundary, q is the number of

successive reflections (in theory infinite higher order images are required) and rij(p,q) is the

module of the distance between the virtual source associated to the couple (p, q) and the

receiver point xi. The function DS(r, aj, ω) is defined in such a way that some conditions

are satisfied for the reflection corresponding to the couple (p, q). For generic boundary

conditions, the contribution of the reflected field can be complicated, as simple image
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sources might not be sufficient to reproduce the exact effect of the boundary (see, for

instance, the application to thin plate vibrations of Gunda et al. [52]). However, in this

work, the problem is rather simplified. Namely, an equivalent fluid behavior is assumed

for the whole acoustic trim. Consequently, the latter can be equivalently seen as a shallow

acoustic cavity and classical results for the reflected field can be used [4, 16, 78, 101].

Under this hypothesis, if perfect reflections are considered at lateral boundaries (i.e. lossless

walls), Eq. 5.5 becomes

RAi
(ω) =

(

D∞(rij, ω) +
Nw
∑

p=1

∞
∑

q=1

D∞(rij(p,q) , ω)

)

aj(ω) . (5.6)

Thus, the reflected field is given by the equivalent direct field emanating from successive

image sources with the same intensity of the original source. Formally, Eq. 5.6 is valid

only under the aforementioned hypothesis, i.e. only if equivalent fluid layers are involved

in the treatment. On the other hand, if different media are considered (e.g. solid and

poroelastic layers), Eq. 5.6 should rather be interpreted as an approximation of the exact

finite size behavior. Indeed, the reflection of all type of waves (e.g. compressional and

shear) propagating within the layers of the treatment occurs at the boundary. Generally

speaking, such reflection generates coupling effects among all wave types that one simple

image source cannot predict. Nonetheless, the image source guarantees that the energy

impinging onto the lateral boundaries is perfectly reflected back, avoiding energy losses.

From this standpoint, the proposed methodology is similar to the Ray Tracing Method

(RTM, see for instance the application to thin plates of Chae and Ih [18]). Such energetic

interpretation suggests that, regardless of the particular boundary conditions, the reflected

field should be at least quantitatively captured on average, improving the performance of

the laterally unbounded model assessed in chapter 4.

In order to simplify the implementation of the image sources detection algorithm, the

present analysis is limited to rectangular treated areas S. In such case, the image sources

locations is trivial [4]. Moreover, since the reflected field originated by the image sources

is highly damped, multiple reflections do not need to be accounted for. Indeed, it can be

argued that, for a sufficiently large trimmed area S, only two kind of reflections needs to

be considered, namely (i) first order reflection along the four straight edges and (ii) second

order reflection at the corners. With this assumption, the final lattice of virtual sources

associated to the generic source located at xj assumes the pattern in Fig. 5.3.
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2 reflections path
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Figure 5.3 Images lattice accounting for up to second order reflections only at
corners (i.e. double reflections between two opposite edges are neglected).

Extending the discussion above to the case of multiple sources, the reflected field within

the acoustic trim is obtained from eight images of the n trimmed nodes. Hence, the final

form of the corrected (u, u) formulation (Eq. 5.1) can be written as















RA(ω) =

(

DAA(ω) +
8
∑

l=1

D(l)
AA(ω)

)

a(ω) +

(

DAB(ω) +
8
∑

l=1

D(l)
AB(ω)

)

b(ω)

RB(ω) =

(

DBA(ω) +
8
∑

l=1

D(l)
BA(ω)

)

a(ω) +

(

DBB(ω) +
8
∑

l=1

D(l)
BB(ω)

)

b(ω)

, (5.7)

where, referring to the definition in Eq. 5.2,

D(l)
mnij

(ω) = Dmn(rij(l) , ω) (5.8)

with rij(l) the distance between the receiver node i and the lth image of the node j. For

completeness note that the corrected (u, σ) model (see chapter 4) of the trim is formally

equivalent to Eq. 5.7, i.e.















RA(ω) =

(

GAA(ω) +
8
∑

l=1

G(l)
AA(ω)

)

a(ω) +

(

GAB(ω) +
8
∑

l=1

G(l)
AB(ω)

)

b(ω)

RB(ω) =

(

GBA(ω) +
8
∑

l=1

G(l)
BA(ω)

)

a(ω) +

(

GBB(ω) +
8
∑

l=1

G(l)
BB(ω)

)

b(ω)

, (5.9)
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where the coefficients b are now associated to the normal stress on side B, i.e. σB. The

reactions on the same side are now defined as (cf. Eq. 5.3)

RBi
(ω) =

∫

S

2 jinc(ksr)uB(x, ω) dS . (5.10)

Matrices Gmn(ω) are formally equivalent to the definition in Eq. 5.2, taking care of replac-

ing d̂mn(k, ω) with ĝmn(k, ω).

5.3.2 Assembly of the hybrid model

As shown in details in chapter 4, the acoustic trim models in Eqs. 5.7 and 5.9 can be easily

integrated in the finite element equations of the structural-acoustic system. The generic

form of the assembled final system reads

([

Zss(ω) Zsa(ω)

ZT
sa(ω) Zaa(ω)

]

−
[

Yss(ω) Ysa(ω)

YT
sa(ω) Yaa(ω)

]){

qs(ω)

qa(ω)

}

=

{

Fs(ω)

Fa(ω)

}

, (5.11)

where matrix Z is a generalized impedance matrix and vectors qs and qa are the degrees

of freedom of the structural (i.e. displacements and rotations or modal amplitudes) and

acoustic (i.e. pressures or modal amplitudes) domains, respectively. Vectors Fs and Fa

are the external disturbances forcing the structural and acoustic domains, respectively. If

Eq. 5.11 is expressed in physical coordinates, the boundary operator Y accounting for the

effect of the acoustic trim must be interpreted as acting only on the trimmed area finite

element degrees of freedom. Without loss of generality, the second equation in Eq. 5.11

can refer to a hard walled as well as to an open acoustic cavity. Indeed, the radiation into

a semi-infinite fluid can be modeled by adding an impedance operator to matrix Zaa to

account for the infinite extent of the acoustic domain, for instance employing the Boundary

Element Method [6] (BEM) or the Perfectly Matched Layer [11, 12] (PML).

The hybrid system obtained using the (u, u) model of the acoustic trim involves the fol-

lowing boundary operator (see chapter 4)

Y =





HT(D̃AA + D̃ABD̃
−1

BBD̃AB)H −HTD̃ABD̃
−1

BBĤ)

−Ĥ
T
D̃
−1

BBD̃ABH Ĥ
T
D̃
−1

BBĤ



 , (5.12)
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where the superscript˜indicates that the direct field matrix has been corrected for finite size

effects, i.e. D̃mn = Dmn +
∑8

l=1D
(l)
mn. The explicit dependency on the circular frequency

ω has been omitted to lighten the notation. Eq. 5.11 together with Eq. 5.12 gives the

response of the vibroacoustic system accounting for finite size effects in the acoustic trim.

The reciprocity condition d̂AB(k, ω) = −d̂BA(k, ω) has been used, leading to the symmetry

of the boundary operator. Matrices H and Ĥ are suitable mapping operators between the

acoustic trim and finite element nodal degrees of freedom (see chapter 4). As already

pointed out in chapter 4, a matrix inversion is involved in the construction of the acoustic

trim response, potentially jeopardizing the efficiency of the analytical model when the

trimmed surface S involves a large number of nodes n (note that D̃BB is fully populated).

On the other hand, such drawback is avoided by employing the (u, σ) model of the acoustic

trim. In such case, the boundary operator reads (see chapter 4)

Y =





HTG̃AAH −HTG̃ABH

−HTG̃ABH HTG̃BBH



 , (5.13)

where the reciprocity condition ĝAB(k, ω) = ĝBA(k, ω) has been used. Differently from Eq.

5.12, Eq. 5.13 does not require any matrix inversion in the construction of the acoustic

trim response, allowing to reduce the computational burden for large n.

5.3.3 Overview of the computational cost

Thanks to the simplifications adopted in the previous section, the corrected model of the

acoustic trim (Eq. 5.7 and 5.9) essentially requires only the evaluation of the analytical

kernels Dmn(r, ω) at the distances between the trimmed nodes and their images. Since

functions Dmn(r, ω) are sampled at each frequency over a set of radius points (see chapter

4), only extra interpolations are needed to account for the effect of the reflected field.

Such conclusion strictly holds under the previously assumed hypothesis of a rectangular

trimmed surface S, as for such geometries the locations of the images can be quickly

calculated. However, in the case of generic polygons, the computational time required by

a mirror sources detection algorithm (see Cuenca et al. [29]) must be also accounted for.

Although this aspect is not subject of this work, it can be argued that, since only the first

low order images should be generated, efficiency issues are not expected to be encountered.

Moreover, for typical sizes of the trimmed area, dissipation effects would also render the

images of several trimmed nodes ineffective, as the reflected field emanating from them

might not reach other nodes. This physical observation seems to justify the definition
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of a tolerance which forces to zero some of the elements of matrices D(l)
mn (resp. G(l)

mn).

Consequently, the number of interpolations would be minimized and the computational

efficiency optimized. This particular aspect will be assessed in Section 3.2.

As a final remark concerning the computational costs, the effect of the finite size correction

on the two proposed formulations of the laterally unbounded acoustic trim (i.e. (u, u) and

(u, σ)) is worth discussing. In fact, it can be pointed out that the corrected (u, u) and

(u, σ) models are expected to reproduce the same finite size behavior although the two

formulations use different baffling conditions over the two sides of the treatment. As a

result, the corrected hybrid models (Eqs. 5.12 and 5.13) are expected to give the same

solution. The effect of the adopted formulation will be discussed in Section 3.1. Once the

above argument is confirmed, the most efficient formulation (i.e. (u, σ)) should be always

preferred.

5.4 Validation

This section aims at validating the infinite acoustic trim model corrected by means of the

ISM presented in Section 5.3. To this end, only the case of acoustic treatments having an

equivalent fluid behavior is considered (an example illustrating the accuracy of the model

for a poroelastic trim will be given later in section 4). In this case, the exact solution

is expected to be retrieved. The effect of the correction on both the (u, u) and (u, σ)

formulations is also assessed. Moreover, a convergence study is carried out to justify the

assumption of the a priori image sources lattice in Fig. 5.3 and to propose a truncation

rule for the images generation process. Throughout this section, the reference solution

uses the finite element based substructuring methodology developed by Hamdi et al. [53],

which employs a finite element model of the acoustic trim to calculate the boundary

operator Y in Eq. 5.11. Typical vibroacoustic indicators such as structural space averaged

quadratic velocity, acoustic space averaged quadratic pressure and power radiated into a

fluid domain. The mechanical and acoustic properties of the considered materials are

reported in Tab. 5.1. Emphasis will be put on mechanical excitations. Indeed, it was

observed in chapter 4 that finite size effects in the acoustic trim are maximized when the

system is mechanically excited.

5.4.1 Assessment of the finite size correction

To begin with, the absorption provided by a dissipative layer attached onto a wall of a

parallelepiped cavity of dimensions 0.8 × 1.7 × 1 m3 excited by an acoustic monopole is
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Table 5.1 Materials used in the numerical simulations. Note that m (given in
the text) refers to the mass per unit surface of the considered heavy layers.

Material
Properties

Acoustic Mechanical

Steel density = 8000 kg/m3

Young’s modulus = 200GPa
Poisson’s ratio = 0.33
damping factor = 0.02

Air density = 1.21 kg/m3

speed of sound = 342.2 m/s

Melamine porosity = 0.99 density = 8.8 kg/m3

resistivity = 10900 kg/m3s Young’s modulus = 80 kPa
tortuosity = 1.02 Poisson’s ratio = 0.4
viscous length = 100µm damping factor = 0.17
thermal length = 130µm

Felt porosity = 0.98 density = 58 kg/m3

resistivity = 26514 kg/m3s Young’s modulus = 6 kPa
tortuosity = 1 Poisson’s ratio = 0.04
viscous length = 48µm damping factor = 0.15
thermal length = 144µm

Polyurethan porosity = 0.99 density = 29.1 kg/m3

resistivity = 6758 kg/m3s Young’s modulus = 110 kPa
tortuosity = 1.4 Poisson’s ratio = 0.4
viscous length = 83µm damping factor = 0.1
thermal length = 325µm

Heavy layer density = m · 10−3 kg/m3

Young’s modulus = 103 kPa
Poisson’s ratio = 0.3
loss factor = 0.5
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assessed. A 4 cm melamine foam is attached onto the 0.8 × 1.7m2 rigid wall at z = 0.

Moreover, a proportional structural damping model is used to introduce dissipative effects

within the cavity itself (ηa = 0.01). A monopole with constant volume velocity is applied

at the corner located at (0 m, 1.7 m, 1 m). The response of the system up to 1 kHz is

considered. The finite element model of the cavity involves 24× 50× 30 eight-noded fluid

elements. The foam, assumed to be limp, is modeled with 5 eight-noded equivalent fluid

elements along its thickness (same mesh of the acoustic domain in the plane). Fig. 5.4

shows the quadratic pressure inside the acoustic cavity. A perfect correlation is observed

between the reference curve and the corrected hybrid models. Consequently, the corrected

(u, u) and (u, σ) formulations are equivalent, as expected. The finite size effects can be

appreciated by comparison with the solution obtained neglecting the image sources (i.e.

direct field only). It can be argued that the reflected field effect must be accounted for to

correctly capture the absorption provided by the acoustic treatment below 600 Hz (an error

between 5 and 10 dB is observed if the finite size of the treatment is neglected). It is noted

in passing that the considered geometry involves orthogonalities between the acoustic

cavity and the dissipative fluid layer, i.e. only the cavity modes with the same shape over

the trimmed area are coupled by the presence of the acoustic treatment. Nonetheless, Fig.

5.4 shows that the image sources correction exactly retrieves such effect.

A parallelepiped air filled plate-cavity system of dimensions 0.8× 1.7× 1 m3 is considered

next. The plate, clamped along its edges, covers the 0.8 × 1.7 m2 face of the cavity at

z = 0. A 2 cm polyurethane foam with a 1.5kg/m2 heavy layer on top is placed between

the plate and the cavity. The response of the system driven by a point force applied

on the plate at point (0.112 m, 0.131 m) and acting along the z-axis is considered. The

finite element model of the plate and cavity involve 43 × 91 four-noded plate elements

and 43× 91× 30 eight-noded fluid elements, respectively. The mesh of the acoustic trim

employs 5 eight-noded limp elements through the thickness of the polyurethane layer,

while the heavy screen is modeled with one layer of eight-noded solid elements (see Tab.

5.1 for the structural properties). The simulation refers to the case of a 5% damping

provided by the acoustic cavity itself (i.e. ηa = 0.05). The quadratic velocity is not

reported since the direct field model of the sound package is already accurate enough to

capture the damping added to the structure by this type of lay-up [1] (see also chapter 3).

The quadratic pressure in the cavity is, instead, reported in Fig. 5.5. It can be observed

that the effect of the reflected field is important between 200 and 600 Hz, where the peak

of the response associated to the spring-mass resonance of the acoustic trim occurs. In

this frequency range, the response of the trim is non local and size effects appears. Such
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Figure 5.4 Space averaged quadratic pressure of the acoustic cavity excited by
a monopole. A 4 cm melamine layer is attached onto the hard wall facing the
excitation point. Effect of the finite size correction on the hybrid models based
on the (u, u) and (u, σ) formulations.
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behavior is exactly retrieved by adding image sources, as a perfect match between the

corrected hybrid models and the reference solution is observed.
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Figure 5.5 Space averaged quadratic pressure of the acoustic cavity. The plate-
cavity system is mechanically excited by a point force. A 2 cm polyurethane foam
with 1.5 kg/m2 heavy layer on top is placed between the plate and the cavity.
Effect of the finite size correction on the hybrid models based on the (u, u) and
(u, σ) formulations.

Finally, to conclude the present validation, the radiation of a clamped plate in an un-

bounded fluid domain is considered. The surface radiating into the semi-infinite fluid is

assumed to be inserted into a infinitely extended rigid baffle. The plate is 0.4 m long and

0.85 m wide. The mechanical force is now located at (0.114 m, 0.147 m). The finite element

model of the plate involves 35×70 four-noded plate elements. A light treatment consisting

of a 4 cm felt is attached onto the structure and radiates in air. The felt is modeled with

10 eight-noded equivalent fluid (i.e. limp) elements along its thickness (same mesh of the

structural domain in the plane). The radiated power is reported in Fig. 5.6. It is observed

that the reflected field affects the power radiated into the semi-infinite fluid above 400Hz.

Once again, the reference solution in perfectly recovered by the proposed hybrid models

when the ISM is employed.



130 CHAPTER 5. FINITE SIZE CORRECTION FOR THE FE-TMM

f [Hz]

ra
d
ia
te
d
p
o
w
e
r
[d
B
]

500 1000 1500 2000 2500 3000
-70

-65

-60

-55

-50

-45

-40

FEM

FE-TMM - (u,u)

FE-TMM - (u,σ)
FE-TMM - (u,u) ISM

FE-TMM - (u,σ) ISM

Figure 5.6 Power radiated into the semi-infinite fluid. The plate is mechani-
cally excited by a point force. A 4 cm felt is attached onto the structure and
radiates in the fluid. Effect of the finite size correction on the hybrid models
based on the (u, u) and (u, σ) formulations.
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To conclude, it can be argued that the analysis above confirms the hypotheses and obser-

vations discussed in Section 5.3. Namely, (i) the finite size correction by image sources

allows to retrieve the exact behavior of acoustic treatments with an equivalent fluid be-

havior; (ii) the reflected field is non diffuse, as the minimum number of reflections (i.e. one

along straight edges and two at corners, see image lattice in Fig. 3) is enough to capture

its effects on the system response; (iii) the corrected (u, u) and (u, σ) formulations are

equivalent, authorizing the user to choose the most efficient approach (i.e. (u, σ)).

5.4.2 Truncation rule for the image sources generation process

In this section a further analysis is presented to fully assess the hypothesis justifying

the use of the ISM. Namely, the strong dissipative effects involved in the acoustic trim

allows to overcome the typical issue related to the ISM, that is the number of images

to be generated. To prove this argument, the region containing only those images which

actually give a contribution to the reflected field must be defined. The analysis proposed

in this section follows the work of Cuenca et al. [29], where a similar study were conducted

for the application of the ISM to damped thin plates.

Although the number of images has already been limited to those accounting for the

reflection paths in Fig. 5.3, a further criteria can be introduced to fully take advantage

from the non diffuse nature of the reflected field. Namely, the reflected field is expected

to be accurately determined by considering only those image sources which actually affect

to the solution at the trimmed area nodes. In order to do this, a truncation criteria must

be introduced to stop the image generation process. Typically, such criteria is based on

the definition of a meaningful characteristic length. Thus, if the distance between the

image source xj(l) (see Fig. 5.3) and the receiver point xi is larger than such characteristic

length, then the effect of the considered image is neglected. Formally, the condition for

the effectiveness of the image source located at xj(l) reads

rij(l) ≤ ǫrc , (5.14)

where ǫ is a tolerance and rc is the mean free path [62], i.e.

rc =
πS

p
, (5.15)
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where S is the trimmed surface and p its perimeter. The mean free path is often used

in room acoustics and is defined as the average distance a ray of sound travels before it

encounters an obstacle and reflects. Equivalently, it may be seen as the average distance

between two successive image sources. Since the image sources lattice considered in this

work (Fig. 5.3) already assumes only one reflection at straight edges and double reflections

at corners, a tolerance around 1 is expected to give reliable results. In what follows, two

plate-cavity systems with light and spring-mass treatments are considered to prove the

argument above. Only the results relative to the more efficient (u, σ) formulation are

reported.

The first case refers to a 0.4× 0.85× 0.5 m3 air filled cavity. A clamped plate covers the

0.4 × 0.85 m2 face of the cavity at z = 0 and is excited by a point force. A 4 cm felt is

placed between the plate and the cavity. Fig. 5.7 shows the error between the quadratic

pressure inside the cavity obtained with the hybrid model employing all the eight images

of the lattice in Fig. 5.3 and that obtained with different values of the tolerance ǫ. The

results show a slow convergence below 800 Hz. In this frequency range, the absorption

provided by the felt layer must be correctly captured to obtain a good accuracy (cf. Fig.

5.4). Indeed, the first peaks of the error are localized around 200, 340 and 400 Hz, which

are the first three non zero natural frequencies of the cavity. Thus, to correctly capture

the damping added to each cavity mode an accurate description of the reflected field is

required (although still confined in the lattice of Fig. 5.3). It could be argued that a

value of the tolerance ǫ around 1.5 already gives an accurate solution apart at the first

two resonances at 200 and 340 Hz. On the other hand, in the remaining portion of the

considered frequency range, ǫ = 0.5 already gives almost the same solution of the full

images lattice. In this frequency range, the absorption is correctly captured even without

finite size correction (cf. Fig. 5.4) whereas the transmission is typically underestimated if

the reflected field is neglected (see Fig. 5.6). Thus, the power injected into the cavity can

be perfectly retrieved considering only the image sources within about 0.2 m (i.e. maximum

distance ǫrc with ǫ = 0.5) from the boundaries. All the images lying outside this cloud

can be thus neglected.

The second case refers to a 0.8×1.7×1 m3 cavity. A clamped plate covers the 0.8×1.7 m2

face of the cavity at z = 0 and is excited by a point force. A 2 cm melamine foam with

a 1.2kg/m2 heavy layer on top is placed between the plate and the cavity. The same

convergence analysis for the acoustic quadratic pressure previously discussed is reported

in Fig. 5.8. For the considered lay-up, the absorption provided by the sound package is now

not important, as the peaks of the error at the cavity resonances (below 200 Hz) are not
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Figure 5.7 Effect of the tolerance ǫ in the approximation of the reflected field
within the 4 cm felt treatment. The error refers to the difference between the
quadratic pressure obtained with the full images lattice (Fig. 5.3) and that
obtained with different values of ǫ. The error relative to the solution without
finite size correction is also reported. Results relative to the (u, σ) formulation.
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Figure 5.8 Effect of the tolerance ǫ in the approximation of the reflected field
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The error refers to the difference between the quadratic pressure obtained with
the full images lattice (Fig. 5.3) and that obtained with different values of ǫ.
The error relative to the solution without finite size correction is also reported.
Results relative to the (u, σ) formulation.
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particularly pronounced. On the other hand, the maximum value of the error is observed

at the resonance around 350 Hz controlled by the spring-mass behavior of the lay-up. Here,

a satisfactory accuracy (i.e. ±0.5 dB) can be achieved by setting ǫ = 0.5, corresponding

to an images cloud confined within 0.425 m from the boundaries of the trimmed area.

As a result, the convergence analysis showed that, although some issues may be encoun-

tered with the absorption provided by the acoustic trim at low frequencies, the proposed

truncation criteria is generally in agreement with the assumed behavior of the reflected

field. Namely, for the considered sound packages, a ray emanating from a source over the

trimmed area does not hit, on average, more than one wall along its path, that is ǫ ≤ 1

typically gives satisfactory results. In other words, the reflected field is confined within

less than a mean free path from the lateral boundaries.

To conclude, it should be mentioned that the same study was carried out for the (u, u)

formulation and showed a slower convergence with respect to the parameter ǫ. This result

is not surprising since a matrix inversion is involved in the construction of the acoustic

trim response (see Eq. 5.12), requiring a more accurate description of the reflected field.

The results are not reported here for the sake of conciseness.

5.5 Applications

In this section, two applications are considered to compare accuracy and efficiency of the

hybrid methodology with classical approaches. The first case consist of a simplified au-

tomotive application with a soft three-layers treatment attached onto the main structure.

The second case aims at assessing the accuracy of the image sources correction when poroe-

lastic materials with non negligible structural properties are involved in the treatment. A

simple plate cavity system is considered for this end.

Three modeling strategies are compared in this section: (i) the full finite element sub-

structuring approach as presented in Refs. [53] and chapter 3 (reference solution); (ii) the

hybrid FE-TMM corrected for finite size effects by means of the ISM (Eqs. 5.12 and 5.13)

using the full images lattice in Fig. 5.3); (iii) the simplified local impedance approach

[122] employing the normal plane wave impedance of the sound package (calculated by

means of the TMM). As a result of the analysis carried out in Section 5.4.1, only the (u, σ)

formulation of the Green functions based model of the acoustic trim will be considered,

as it overperforms the (u, u) formulation in terms of efficiency (see chapter 4).
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5.5.1 Application 1: simplified car test case

The first application proposed here consists of a rigid acoustic cavity coupled with a

2 mm thick steel plate (see Fig. 5.9). The same geometry was considered in Ref. [95].

Here, the application is proposed in a different configuration. Namely, a 3-layers acoustic

treatment involving a 1 kg/m2 heavy screen sandwiched between a 2 cm and 1 cm felt

layers is attached onto the structure. The presence of other dissipative materials inside

the acoustic domain (i.e. carpets, seats, etc. . . ) is modeled introducing a 10% damping in

the cavity. The mesh of the plate involves 43 × 91 four-noded plate elements while fifty

eight-noded fluid elements are used through the depth of the cavity. The felt is a very soft

material (see Tab. 5.1), and its structural stiffness is typically negligible. Therefore, the

bottom and top layers of the trim are modeled using two eight-noded equivalent fluid limp

elements. The heavy layer is instead modeled as a limp solid (see Tab. 5.1). The finite

element model of the sound packge involves 40618 equations. The number of trimmed

nodes is 4048. The system is excited by a point force acting normally to the plate and

located at (0.186 m, 1.364 m, 0 m). The response of the system up to 500 Hz is considered.
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Figure 5.9 Application 1. Geometry of the vibroacoustic system. The plate
covers the face located at z = 0.

Figs. 5.10 and 5.11 show the plate quadratic velocity and the absolute value of the pres-

sure at driver’s ear point at (0.423 m, 1.214 m, 3.529 m), respectively. All the considered

methodologies are in good agreement below 200 Hz, although it may be pointed out

that the absorption provided by the top felt layer is not perfectly captured by the lo-

cal impedance model. Indeed, small differences (less than 1 dB) are observed in Figs. 5.11

at resonances and anti-resonances between 100 and 200 Hz. On the other hand, above

200 Hz the effect of the thickness resonance of the 3-layers treatment cannot be captured

by a locally reacting model, as both the considered indicators are far from the reference
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solution. Conversely, the hybrid model based on the acoustic trim Green functions and

corrected by the ISM perfectly matches the finite element solution, therefore confirming

the accuracy of the methodology for practical layups and local indicators (previously only

global indicators were considered). It is noted in passing that the slightly divergent trend

at high frequency between the Green functions based hybrid model and the reference so-

lution is due to the finite element model of the solid limp layer involved in the acoustic

trim. Indeed, it could be shown that increasing the number of elements along the x and

y axes reduces the gap.
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Figure 5.10 Space averaged quadratic velocity of the plate for the case con-
sidered in Application 1. Comparison between the finite element (FEM), the
hybrid model based on the (u, σ) formulation corrected by means of the ISM
(FE-TMM-(u, σ) ISM) and the hybrid model using the plane wave impedance
of the trim (FE-TMM-locally reacting).

5.5.2 Application 2: finite size effects in poroelastic materials

The second application consists in the plate-cavity system depicted in Fig. 5.12. The

cavity dimensions are Lxc
= 0.8 m, Lyc

= 1.7 m and Lzc
= 1 m while the plate is 0.595 m
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Figure 5.11 Acoustic pressure at driver’s hear point for the case considered in
Application 1. Comparison between the finite element (FEM), the hybrid model
based on the (u, σ) formulation corrected by means of the ISM (FE-TMM-(u, σ)
ISM) and the hybrid model using the plane wave impedance of the trim (FE-
TMM-locally reacting).
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large and 1.554 m wide. Point A (see Fig. 5.12) is located at (0.074 m, 0.056 m). The

system is excited by a point force acting on the structure along the z-axis at point B

located at (0.167 m, 0.187 m). The mesh of the plate involves 32 × 83 four-noded plate

elements while 43 × 91 × 30 eight-noded fluid elements are used for the finite element

model of the acoustic domain. The sound package placed between the plate and the fluid

consists of a 1.9 cm melamine foam with a 1.2 kg/m2 heavy layer on top. The melamine

layer is modeled by poroelastic elements (five eight-noded elements through the thickness

were used) according to the formulation of Atalla et al. [5]. The heavy layer is considered

glued onto the top of the foam and is modeled as a limp solid. Such interface condition is

very important because it excites solid borne compressional and shear waves in the porous

material, making a limp model of the foam not reliable. At the other end of the treatment,

the melamine layer is considered to be laid onto the structure, i.e. a 1 mm equivalent fluid

layer (same properties of the melamine foam) is placed between the poroelastic layer and

the plate. This modeling strategy is typically employed in practical applications to account

for the fact that the foam solid frame is not directly connected to the structure. The finite

element model of the sound package involves 75978 equations. The number of trimmed

nodes is 2774.

z

x

y

Lyc

Lxc

Lzc

Lxp

Lyp

ht

A

B

Figure 5.12 Application 2. Geometry of the plate-cavity system.

Figs. 5.13 and 5.14 show the structural and acoustic quadratic velocity and pressure,

respectively. Concerning the simplified locally reacting model of the considered sound

package, it can be pointed out that it fails over the whole frequency band. Indeed, although

it could be argued that the acoustic energy in the cavity somehow follows the reference

solution on average, the local behavior of the system is clearly missed. Namely, position

and amplitude of the resonance peaks in the structural (Fig. 5.13) and acoustic (Fig. 5.14)
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response are not correctly predicted. It could be shown that, although other values of the

local impedance could be employed besides the classical plane wave value (i.e. solution

of the TMM obtained by setting a null trace wavenumber), an acceptable solution for

both the structural and acoustic indicators cannot be retrieved, revealing the limitations

of this efficient but extremely simplified model of the trim. On the other hand a very

good correlation is observed between the hybrid model based on the trim Green functions

corrected by the ISM and the reference solution. More precisely, the structural energy

is perfectly retrieved over the entire spectrum (few discrepancies actually appears in the

higher portion of the spectrum due to the finite element model of the limp solid layer, see

also Fig. 5.10 and associated discussion) while the predicted acoustic energy drifts away

from the reference curve only between 750 and 900 Hz. In this frequency range, a local

resonance associated to the shear waves propagating in the melamine foam is observed.

However, the image sources correction as proposed in this work is not able to exactly

captured such size effect. This is not surprising since the reflection of the poroelastic

waves at the lateral boundaries cannot be exactly reproduced by means of the classical

ISM (see Section 5.3.1). Nonetheless, the proposed finite size correction is still able to

retrieve the average level, providing a good approximation of the exact solution.

Therefore, the present analysis suggests that the reflection of the energy carried by the

direct field at the lateral boundaries by means of image sources is sufficient to obtain a

satisfactory accuracy for generic sound packages.

5.5.3 Computational efficiency

To conclude this section, the efficiency of the proposed methodology is discussed in terms

of computational time required to perform the simulations in Sections 5.5.1 and 5.5.2.

In what follows, the computational time refers to that required for the calculation of the

boundary operator Y in Eqs. 5.11. The reference methodology requires the solution of a

finite element system to perform this step. For the two applications in Sections 5.5.1 and

5.5.2, 124 and 290 s were necessary to solve the linear system by means of the MKL based

parallel solver PARDISO [98, 99]. On the other hand, the computational time required by

the Green functions model with finite size correction to calculate the same operator Y by

means of Eq. 5.13 is reported in Tab. 5.2 as sum of three steps. Namely, the calculation

of the fundamental solutions by the TMM, the integration of the functions defined in Eq.

5.2 over a given set of grid points between the maximum and minimum distance between

two trimmed nodes and the interpolation of the integrated function to build the matrices

of the acoustic trim model. For application 1 (resp. 2), it can be seen that the proposed
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Figure 5.13 Space averaged quadratic velocity of the plate for the case con-
sidered in Application 2. Comparison between the finite element (FEM), the
hybrid model based on the (u, σ) formulation corrected by means of the ISM
(FE-TMM-(u, σ) ISM) and the hybrid model using the plane wave impedance
of the trim (FE-TMM-locally reacting).
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Figure 5.14 Space averaged quadratic pressure of the cavity for the case con-
sidered in Application 2. Comparison between the finite element (FEM), the
hybrid model based on the (u, σ) formulation corrected by means of the ISM
(FE-TMM-(u, σ) ISM) and the hybrid model using the plane wave impedance
of the trim (FE-TMM-locally reacting).
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methodology is about 7 (resp. 29) times faster than a standard finite element approach.

It should be clear that a very appealing saving in the computational time is achieved es-

pecially in the second application, since the sound package involves poroelastic instead of

equivalent fluid elements. Moreover, a close look at Tab. 5.2 reveals that the interpolation

step is clearly the most critical step of the methodology, making the computational time

strongly dependent on the number of trimmed nodes. However, it should be noted that a

simple implementation in a MATLAB environment of the Green functions approach was

considered and the interpolation step was not optimized. Conversely, the reference solu-

tion employs the optimized MKL library, so that the present analysis should be seen as

a qualitative assessment of the computational performance rather than a rigorous bench-

marking. Despite that, given that the reference solution is almost perfectly matched by

the proposed methodology (Figs. 5.10-5.11 and 5.13-5.14), a very promising reduction of

the computational burden is achieved. All the computations were performed on a Linux

machine powered by an intel i7-2600 processor (8 nodes at 3.4 GHz).

Table 5.2 Computational time required to perform each step involved in the
Green function model of the acoustic trim with finite size correction.

TMM Integration Interpolation Total Reference
Total

Application 1 1 s 4 s 12 s 17 s 7.3

Application 2 0.5 s 3.5 s 6 s 10 s 29

5.6 Conclusions

In this paper, a numerical tool aimed at simplifying and speeding-up the integration of

acoustic treatments in vibroacoustic finite element analysis was proposed. The method-

ology employs the ISM to account for the finite lateral extension of the acoustic trim

(i.e. reflected field effects) within the analytical framework for laterally unbounded, flat

and homogeneous treatments presented in Part I (i.e. chapter 4). The use the ISM was

justified by the non diffuse nature of the reflected field arising in the sound package.

Image sources were employed to reproduce the effect of lossless lateral boundaries. Al-

though this choice allows to exactly retrieve the finite size effects of treatments with an

equivalent fluid behavior, it cannot satisfy arbitrary lateral mounting conditions for treat-

ments involving solid-phase layers with non negligible mechanical properties. On the one

hand, the methodology only guarantees that the energy impinging onto the boundary is

reflected back (the effect of an absorption coefficient to model lossy boundaries was not

considered), similarly to ray tracing. On the other hand, it greatly simplyfies the model-

ing of the acoustic trim; the meshing of complex layups is avoided (simplifying the virtual
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prototyping phase) and the knowledge of the actual lateral mounting conditions (which

may be different for each realization of the build-up system) is not required.

The results showed that the ISM can substantially improve the accuracy of the direct

field model of the acoustic trim presented in Part I (i.e. chapter 4). Namely, the dynamic

response of acoustic treatments involving equivalent fluid layers is exactly retrieved. How-

ever, as expected, a perfect correlation with a finite element analysis cannot be achieved

for the generic case of poroelastic layers, due to the simplifications adopted in the mod-

eling of the lateral boundary conditions. Nonetheless, a satisfactory accuracy is always

obtained, at least on average. Furthermore, it was proved that the non diffuse nature of the

reflected field arising in the acoustic treatments allows to consider only image sources con-

fined within less than one mean free path from the boundary of the trimmed area (i.e. only

one reflections occurs on average), confirming the suitability of the ISM in the modeling

of highly dissipative systems. Thus, the proposed finite size correction allows to preserve

sufficient accuracy with respect to standard finite element procedures while substantially

reducing the computational burden. Results are indeed very promising, as a reduction of

the computational time by, at least, a factor 10 is obtained compared to well-established

finite element procedures. Moreover, the proposed model can be used for arbitrary sound

packages, thus overperforming simple local impedance approaches. However, the image

sources correction is intrinsically limited to polygonal treated areas.

5.7 Further results

It has been shown that the finite size correction based on the ISM developed in this chapter

is not able to reproduce exactly the reflected field in poroelastic media with non negligible

mechanical properties. As shown in Fig. 5.14, this typically leads to a loss of accuracy

in localized narrow frequency bands, i.e. around the thickness resonances controlled by

compressional and shear solid phase borne waves in the porous layer/s. Conversely, far

from these bands and at the resonances controlled by compressional fluid borne waves, a

perfect correlation with the FEM is observed.

For the reason above, the effect of the continuity condition between the structure and the

first poroelastic layer involved in the sound package must be further assessed. Indeed, the

fact that the foam solid frame may be or may be not directly connected to the master

structure can strongly affect the participation of the solid phase borne waves to the sound

package response in the low frequency range. Clearly, when the mounting conditions

become complex (i.e. point or line connections), a detailed model of the interface can
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be achieved only by means of a finite element based strategy. However, such boundary

conditions may vary for each realization of the system (i.e. industrial process) so that their

modeling is rather simplified during the design phase.

In this section, the effect of different interface conditions is studied for a representative

spring-mass lay-up. The same plate-cavity system presented in Section 3.4 (Fig. 3.3) is

considered to this end. The sound package consists of a 2 cm melamine foam with a

1.2 kg/m2 heavy layer on top (see Tab. 5.1 table in Part II). The analysis is restricted to

the following configurations.

Configuration A (solid phase sliding): the melamine layer is considered glued to the

heavy screen while it can slide (i.e. only normal displacement continuity) onto the plate.

Thus, the structural normal displacement directly excites the solid frame of the foam.

This interface configuration can be model by means of the hybrid method, although a

loss of accuracy must be expected at the thickness resonances of the sound package.

Configuration B (equivalent fluid): the melamine layer is considered as an equivalent

fluid according to the limp model. Thus, only compressional fluid waves can propagate

within it. As proved throughout this chapter, the behavior of this configuration can be

exactly retrieved by the hybrid model.

Configuration C (fluid-structure interface): the melamine layer is considered glued to

the heavy screen while a 1 mm limp layer is placed at the interface with the plate. Such

configuration is typically employed to model the fact that the foam solid frame is not

directly connected to the plate, i.e. the sound package is simply laid on the structure.

As shown in Fig. 5.14, a loss of accuracy is only expected at the sound package shear

waves controlled resonance between 750 and 900 Hz.

Configuration D (solid phase partially glued): the melamine layer is considered glued

to the heavy screen and glued onto the structure at the corners of the treated area.

Namely, the continuity of the three displacements is enforced between the plate and the

foam solid frame over four 0.003 m2 square patches placed at the corners of the plate.

Over the rest of the treated area the skeleton of the foam is considered not directly

connected to the plate by introducing a 1 mm limp layer. This configuration is non

homogeneous and cannot be modeled by the hybrid method.

Figs. 5.15 and 5.16 show the quadratic velocity and pressure, respectively, of the plate

cavity-system when the configuration A is considered and a point force drives the struc-

ture at (0.167 m, 0.187 m). The three curves refer to the finite element substructuring

methodology (reference) and the hybrid FE-TMM ((u, σ) formulation) with and without

image source correction. The results confirm that the exact finite size effects can be only



146 CHAPTER 5. FINITE SIZE CORRECTION FOR THE FE-TMM

retrieved on average, as the set of image sources is inappropriate to exactly reproduce the

reflection of poroelastic waves at the lateral boundaries of the treatment. Nevertheless, the

hybrid solution clearly benefits from the, albeit approximated, finite size correction (see

Fig. 5.16), as the gap with the reference curve is reduced. However, it should be noticed

that the interface condition considered in this example (i.e. configuration A) is hardly

representative of typical applications. Indeed, due to practical reasons (i.e. the vehicle

must be accessible for inspections and reparations), the sound package is typically just

laid over the structure or, at most, connected over few small areas or points. Therefore,

Figs. 5.15 and 5.16 should be rather seen as the result of a numerical test case aiming

at fully assessing the limitations of the hybrid methodology. In this context, it may be

asserted that the case of a poroelastic layer whose structural frame is directly excited (by

continuity condition) over both ends of the layer constitutes a worst case scenario for the

accuracy of the FE-TMM.
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Figure 5.15 Space averaged quadratic velocity of the plate (configuration A).
Comparison between the finite element (FEM), the hybrid model based on the
(u, σ) formulation with (FE-TMM-(u, σ) ISM) and without finite size correction
(FE-TMM-(u, σ)).
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Comparison between the finite element (FEM) and the hybrid model based
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As a result, more practical configurations should be considered. Namely, the sound pack-

age may be considered glued onto the structure over discrete small areas (configuration

D). However, to simplify the modeling problem, such interface condition is usually approx-

imated by neglecting the connection between the structure and the foam solid phase. In

such case, a small fluid gap is introduced (configuration C). A further simplification may

be obtained if the whole poroelastic layer is assumed to behave like an equivalent fluid,

thus neglecting the effect of the structural frame also at the interface with the heavy layer

(configuration B). In Figs. 5.17 and 5.18 the quadratic velocity and pressure, respectively,

of the plate-cavity system with these three configurations are reported. Namely, a finite

element analysis was performed to compare configuration D with the simplified configu-

rations B and C. For the latters, also the FE-TMM ((u, σ) formulation) solution obtained

with the finite size correction is considered. The quadratic velocity is shown in Fig. 5.17.

It can be seen that the effect of the interface conditions with the structure and the heavy

layer are very important below 400 Hz. Indeed, the limp model (i.e. configuration B) dissi-

pates less vibrational energy than configurations C and D, which instead almost coincide.

In addition, for configurations B and C, the hybrid model matches very well the finite

element solutions.

Next, the quadratic pressure is shown in Fig. 5.18. The difference between the three con-

figurations is now appreciable above the transmission resonance at 300 Hz. The sound

package glued at the for corners of the trimmed area (i.e. configuration D) gives three

clear transmission resonances at 300 Hz, 450 Hz and 850 Hz. The limp approximation (i.e.

configuration B) follows quite well the behavior of configuration D between the second

and third peak. On the other hand, configuration C follows configuration D on average

between 300 and 700 Hz while the two curves get closer to each other at the sound pack-

age shear waves resonance around 850 Hz. Consequently, it could be argued that, for the

considered system, the simplified interface conditions of configuration C can be considered

representative of the actual behavior of the system when the sound package is actually

installed onto the structure (configuration D). Furthermore, the finite element solution of

configuration C is well approximated by the hybrid model, aside from the loss of accuracy

exhibited over the narrow frequency band centered at 850 Hz. Therefore, this analysis,

albeit not comprehensive, suggests that the hybrid FE-TMM can be considered an effi-

cient and reliable tool for the prediction of the vibroacoustic performances of practical

configurations.
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CHAPTER 6

EFFICIENT MODELING OF TRANSMISSION

PROBLEMS BY THE FE-TMM

This chapter concludes the assessment of the hybrid FE-TMM with a discussion on the

numerical modeling of the acoustic radiation of structures with attached noise control

treatments. The radiation into an unbounded fluid has already been considered in chap-

ters 4-5. However, no details were therein given on the specific strategy adopted to model

the receiver acoustic domain. In this chapter, instead, different hybrid strategies to model

efficiently transmission problems are proposed, discussed and compared with the method-

ology developed in chapter 2. The chapter is organized as follows. In section 6.1, the main

equations are introduced. Next, in section 6.2 three different hybrid models are presented.

Here, advantages and drawbacks of each strategy are also discussed. Finally, in section 6.3

the considered hybrid models are used to predict the acoustic radiation of a flat structure

with an attached typical automotive treatment.

6.1 Introduction

The governing equations of a treated structure radiating in an unbounded fluid domain

are given by the following linear system

(Zss(ω)−Yss(ω))qs(ω) = Fs(ω) , (6.1)

where Zss is the structural impedance while Yss is the added boundary operator accounting

for the effect of the sound package and the external fluid. Vector qs gathers the modal

amplitudes of the in-vacuo structural modes. Hence, all the operators in Eq. 6.1 are

intended to be projected onto the modal basis. The main drawback of Eq. 6.1 consists in

the fact that the calculation of Yss involves the sound package as well as the unbounded

fluid model. In other words, from a substructuring standpoint, the solution of the acoustic

treatment and acoustic fluid subdomains are not independent. Conversely, an alternative

strategy consists in modeling the radiation from the back of the noise control treatment

into the unbounded fluid by an acoustic finite element domain. This would allow to use

the framework of chapters 3-4 as it is, thus leading to the following set of equations

151



152
CHAPTER 6. EFFICIENT MODELING OF TRANSMISSION PROBLEMS BY THE

FE-TMM

([

Zss(ω) Zsa(ω)

ZT
sa(ω) Zaa(ω) + Z∞(ω)

]

−
[

Yss(ω) Ysa(ω)

YT
sa(ω) Yaa(ω)

]){

qs(ω)

qa(ω)

}

=

{

Fs(ω)

Fa(ω)

}

,

(6.2)

where vectors qs and qa gathers the modal amplitudes of the uncoupled structural and

acoustic modes, so that all the operators in Eq. 6.2 are intended to be projected onto the

modal bases. Matrix Z∞ is the impedance operator accounting for the opening in the

acoustic domain, which can be calculated by means of the BEM [6, 17] or PML [11, 12].

Consequently, the calculation of the sound package response (i.e. the boundary operator

Y) is decoupled from the unbounded fluid problem (i.e. calculation of Z∞). This feature

can really make the difference when several designs of the acoustic treatment have to be

considered.

The hybrid finite element-transfer matrix models based on Eqs. 6.1 and 6.2 will be carefully

discussed in the next section.

6.2 Hybrid models

In what follows, three possible modeling strategies are discussed. Namely, the unbounded

fluid is accounted for by (i) the simplified model presented in chapter 2 (referred to as

model or strategy A), (ii) the exact radiation stiffness attached to the back of the sound

package (referred to as model or strategy B) and (iii) the transition through an open finite

element cavity (referred to as model or strategy C).

6.2.1 Model A

This is the model already presented in chapter 2. It considers the unbounded fluid to

be integrated into the transfer matrix model of the sound package. Thus, the dynamic

response is governed by the linear system in Eq. 6.1, where Yss accounts for the acousti-

cally treated fluid half space. Employing the jinc function to expand the sound package

displacement at the interface with the structure (i.e. side A), it follows from chapter 2

that the entries of Yss are given by
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Yssmn
= Vsmi

HiiDAAij
HjjVsjn

= Vsmi
Hii

[

1

2π

(

4π

k2
s

)2 ∫ ∞

0

d̂AA(k, ω)J0(kr)k dk

]

HjjVsjn
,

(6.3)

where d̂AA is the Green function accounting for the treated fluid half space (see appendix

A), H is the mapping operator defined in appendix B and Vs is the structural reduced

basis (i.e. modal shapes). The radiated power is computed as follows (see chapter 2)

Πrad =
ω2

2
q∗s(ω)Zrad(ω)qs(ω) (6.4)

where Zrad(ω) is the effective radiation impedance seen by the structure and is given by

Zrad
mn = Vsmi

Hii

[

1

2π

(

4π

k2
s

)2 ∫ ∞

0

Re
[

Ẑ∞(k, ω)
]

|d̂A→B(k, ω)|2J0(kr)k dk

]

HjjVsjn
. (6.5)

where d̂A→B is the coupling Green function accounting for the fluid half space (see appendix

A). Some comments on advantages and drawbacks of hybrid strategy A are listed below.

– The presence of the unbounded fluid is efficiently accounted for, avoiding expensive

boundary element models. Indeed, the computational effort required for the modeling

of the external fluid is minimized by embedding its effect into the analytical kernels

d̂AA(k, ω) and d̂A→B(k, ω). On the other hand, this model is known to overestimate the

fluid loading, as already observed in chapter 2. This is due to the fact that a finite size

wetted area on the back of the sound package cannot be taken into account within this

framework.

– Due to the fact that the Green functions include the effects of the external fluid, the

correction developed in chapter 5 cannot be employed. Indeed, the virtual sources would

reproduce the effect of an infinite acoustic waveguide instead of an open space.

– Although the effect of the curvature has not been assessed throughout this thesis, it is

worth noting that this model does not allow to account for the curvature of the radiating

surface, which can be important at low frequencies.

In conclusions, it can be argued that model A is expected to perform very efficiently, even

though the accuracy may be lacking.
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6.2.2 Model B

The dynamic stiffness of the unbounded fluid can be also accounted for in the sound

package equations according to the (u, u) or (u, σ) formulations introduced in chapter

4. Indeed, several methodologies (for instance the BEM) can be employed to obtain the

dynamic stiffness of the semi-infinite fluid, i.e. , without loss of generality,

pr(ω) = D∞(ω)un(ω) , (6.6)

where pr (resp. un) gathers the radiated pressures (resp. normal displacements) at the

nodes over side B of the treatment. Following appendix B, Eq. 6.6 can be mapped onto the

sound package degrees of freedom (i.e. the jinc functions amplitudes), giving the projected

dynamic stiffness D̃∞. Therefore, considering for instance the (u, u) formulation, the

equations of the acoustic trim wetted by the fluid read







RA(ω) = DAA(ω) a(ω) + DAB(ω)b(ω)

−D̃∞(ω) a(ω) = −DAB(ω) a(ω) + DBB(ω)b(ω)
, (6.7)

where matrices DAA, DAB and DBB can either refer to those accounting for the response

of the laterally unbounded system (i.e. direct field) or to those corrected by means of the

ISM. Solving for RA, the added boundary operator to be used in Eq. 6.1 can be obtained

as

Yss = (HVs)
T(DAA + DAB(DBB + D̃∞)−1DAB)(VsH) . (6.8)

The radiated power can be calculated as

Πrad =
ω

2
q∗s(ω)

[

(DBB + D̃∞)−1DABHVs

]T

Im
[

D̃∞(ω)
] [

(DBB + D̃∞)−1DABHVs

]

qs(ω) .

(6.9)

Similar equations can be obtained employing the (u, σ) formulation of the sound package.

However, it can be pointed out that the use of the latter is no more justified by its

computational efficiency, since a matrix inversion is anyway required to obtain the operator

Yss because of the condensation of the wetted side acoustic trim degrees of freedom.
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Some comments on advantages and drawbacks of strategy B are listed below.

– Differently from strategy A, the exact finite size dynamic stiffness matrix of the external

fluid is accounted for. A curved radiating surface can be, in principle, considered.

– The finite size effects within the sound package can be approximated following the

methodology developed in chapter 5, thus improving substantially the accuracy.

– A (fully-populated) matrix inversion is involved in the computation of the added opera-

tor Yss (see Eq. 6.8), therefore reducing the computational efficiency for large trimmed

areas.

If the analysis is limited to flat systems, model B is thus expected to give accurate results,

although efficiency issues may arise when a large number of trimmed nodes are considered.

Furthermore, it is noteworthy that simplified models based on the Rayleigh integral can

be used in order to speed up the calculation of the open space dynamic stiffness in Eq. 6.6.

For instance, the approach proposed by Langley [63] well suits the present framework, as

it employs the same methodology (i.e. jinc functions) used for the sound package. This

approach (which is employed in the present analysis) is very efficient as it allows for the

direct construction of the semi-infinite fluid dynamic stiffness D∞, i.e. avoiding the solution

of a linear system (which is instead required if the BEM or the PML are employed).

6.2.3 Model C

This model does not require any modification of the acoustic treatment equations (see

chapter 4), since the latter is assumed to be inserted between a finite element structural

and acoustic domain. Hence, the governing equations in terms of modal amplitudes are

those reported in Eq. 6.2. The calculation on the acoustic treatment boundary operator Y

is instead detailed in chapter 4. Some comments on advantages and drawbacks of strategy

C follow.

– The exact finite size dynamic stiffness matrix of the external fluid is accounted for. A

curved radiating surface can be, in principle, considered.

– The finite size effects within the sound package can be approximated following the

methodology developed in chapter 5, thus substantially improving the accuracy..

– It can take advantage from the computational efficiency of the (u, σ) formulation, which

has been proved in chapters 4 and 5.

– The construction of the noise control treatment boundary operator Y is completely

independent from calculation of the impedance Z∞ of the cavity opening.
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– The main drawback resides in the fact that the modal basis of the hard walled cavity

may be not effective to describe the dynamic effects of the opening. Consequently a

large number of modes may be needed to correctly capture the solution.

It can then be argued that model C should be preferred to model B when several trim lay-

ups have to be simulated. Indeed, the operator Y can be efficiently calculated by means

of the (u, σ) formulation (with or without finite size correction) for each configurations,

while the effect of the unbounded domain on the acoustic cavity (i.e. Z∞) can be computed

(independently) only once, improving considerably the efficiency with respect to strategy

B. In this work, the BEM is considered to calculate Z∞.

6.3 Application to a test case

In this section the models described above are used to predict the power radiated by a

structure with an attached four-layers treatment. The 2 mm thick rectangular plate is

made of steel (Young’s modulus 200 GPa, Poisson’s ratio 0.33 and density 8000 kg/m3), is

clamped along its edges and has dimensions 0.8 × 1.7 m2. A 1% damping is provided by

the structure itself. The acoustic treatment consists of a spring-mass configurations with

two further poroelastic layers on top of the heavy screen. The acoustic and mechanical

proporties of the layers are reported in Tab. 6.1. The acoustic trim radiates into a semi-

infinite fluid domain with density ρ0 = 1.21 kg/m3 and speed of sound c0 = 342.2 m/s.

Models B and C assume an infinitely baffled radiating surface, while such condition cannot

be accounted for in model A, as already discussed in chapter 2. A point force and a

45◦/45◦ plane wave are considered as external disturbance. The radiated power and the

TL, respectively, are the vibroacoustic indicators of interest.

Concerning the finite element model of the plate, the selected mesh guarantees 8 elements

per wavelength at the maximum observed frequency, i.e. 1 KHz. For all the three method-

ologies, the reduced model involves 170 structural modes, i.e. all the modes resonating in

the frequency band 0−1300 Hz. Concerning strategy C, the radiation into the unbounded

fluid is modeled introducing a fictitious 1 mm deep cavity. The latter is thus coupled with

the acoustic trim on one side and with the semi-infinite fluid on the other side. The lateral

boundaries of the cavity are assumed to be hard walled. Therefore, the open cavity be-

haves like a very short waveguide, which is expected to have a negligible tunneling effect

[50, 102] on the radiation. The convergence of the solution with the number of kept hard

walled acoustic modes was studied and it was fund that the resonating modes in the band

0− 2000 Hz suffice to provide an accurate solution.
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Fig. 6.1 shows the predicted transmission loss when the 45◦/45◦ plane wave impinges

onto the plate. As already observed in chapters 4 and 5, the size effects within the

acoustic treatment are negligible when an acoustic excitation is considered. Consequently,

it can be argued that the correction based on the ISM is not necessary to get an accurate

estimation of the TL. Concerning model A, some inaccuracies are experienced between

100 and 500 Hz, where a maximum error of 2 dB is observed. Hence, model A may be a

very efficient strategy to perform quick calculations while improving the accuracy of the

classical TMM. The latter, instead, cannot capture the structural modal behavior below

600 Hz since the entire multilayer system is assumed of infinite lateral extent. Such low

frequency improvement is obtained at the negligible cost of the solution of an eigenvalue

problem and may be very important in case of complex built-up structures (perhaps non

flat).

Fig. 6.2 shows instead the predicted radiated power when the plate is excited by a point

force. As expected (see chapters 4 and 5), finite size effect are now important. Indeed, a

maximum gap of 4 dB is observed between the hybrid models accounting for the reflected

field within the acoustic treatment (i.e. finite size correction) and those which do not.

Moreover, also model A becomes less accurate compared to the case of acoustic excitation

(Fig. 6.1), as already observed in chapter 2. In particular, a maximum error of 5 dB is

shown at the system thickness resonance, while an offset between 1 and 2 dB is observed

above 500 Hz.

Finally, concerning the accuracy of model C, it can be argued that tunneling effect and

modal truncation introduce negligible errors, as an almost perfect correlation with the

reference model (i.e. strategy B) is obtained in both Figs. 6.1 and 6.2.
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Figure 6.1 Transmission loss provided by the plate with the attached four-layer
treatment under a 45◦/45◦ plane wave excitation. Comparison between models
A, B (with and without finite size correction by ISM) and C (with and without
finite size correction by ISM) and the classical TMM.
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Figure 6.2 Power radiated into the semi-infinite fluid by the plate plus attached
four-layer treatment under a point force excitation. Comparison between models
A, B (with and without finite size correction by ISM) and C (with and without
finite size correction by ISM).
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6.3.1 Computational efficiency

In Tab. 6.1 the computational time required for the calculation of the added boundary

operator is reported for each methodology considered in the simulations above. To be

more precise, the computational time associated to model A and B refers to that required

for the calculation of Yss in Eq. 6.1. The time required to compute the operator Y in

Eq. 6.2 is instead considered for model C. It is here stressed that the computational time

referred to models A and B includes the effect of the semi-infinite fluid, whereas model

C requires to consider a further independent step to calculate the impedance of the open

end of the cavity attached to the acoustic trim. The time required to perform this step

(by means of the BEM) is however not reported here.

Tab. 6.1 reveals that model A is the most efficient strategy, albeit not the most accurate as

observed in Figs. 6.1-6.2. Indeed, although model C requires almost the same time for the

computation of the sound package operator, it needs a further step to compute the finite

element based model of the open cavity, as discussed above. Model B exploits instead the

formulation proposed in Ref. [63] based on the Raileigh integral, which allows for a direct

calculation of the dynamic stiffness matrix D∞ (Eq. 6.6). However this methodology is

obviously limited to flat radiating surfaces. It is noted in passing that the computational

time associated to strategies B and C with finite size correction refers to the model con-

sidering the full image sources pattern in Fig. 5.3. However, thanks to the study carried

out in section 5.4.2, the number of effective virtual source can be optimized, thus reducing

the effort associated to the numerical integration and interpolation steps. Once again, it

can be seen from Tab. 6.1 how the latter step is critical for an efficient implementation of

the finite size correction based on the ISM.
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Table 6.1 Considered acoustic treatment lay-up. Layer 1 is in contact with the
structure while layer 4 radiates in air.

Layer Thickness Type
Properties

Acoustic Mechanical

1 16.5mm Porous (Limp) porosity = 0.95 density = 55 kg/m3

resistivity = 15797 kg/m3s Young’s modulus = 5.19 · 104 Pa
tortuosity = 1.85 Poisson’s ratio = 0.3
viscous length = 66µm damping factor = 0.23
thermal length = 198µm

2 0.57mm Plate density = 1750 kg/m3

Young’s modulus = 1.5 · 108 Pa
Poisson’s ratio = 0.29
loss factor = 0.1

3 8mm Porous (Limp) porosity = 0.98 density = 58 kg/m3

resistivity = 26514 kg/m3s Young’s modulus = 6 · 103 Pa
tortuosity = 1 Poisson’s ratio = 0.04
viscous length = 48µm damping factor = 0.15
thermal length = 144µm

4 0.4mm Porous (Limp) porosity = 0.95 density = 210 kg/m3

resistivity = 2500000 kg/m3s Young’s modulus = 1.5 · 103 Pa
tortuosity = 1.2 Poisson’s ratio = 0.3
viscous length = 30µm damping factor = 0.05
thermal length = 60µm

Table 6.2 Computational time required to perform each step involved in the
(u, u) and (u, σ) formulations. MATLAB backslash operator was used to perform
the solution step.

TMM Integration Interpolation Solution Total

Model A 0.7 s 2 s 1.5 s - 4.2 s

Model B 0.7 s 2 s 2.4 s 7.3 s 12.4 s

Model B (ISM) 1.3 s 4.5 s 13 s 7.3 s 26.1 s

Model C 0.7 s 1.6 s 1.8 s - 4.1 s

Model C (ISM) 1.3 s 4 s 12.5 s - 17.8 s
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6.3.2 Conclusions

In this chapter three different finite element-transfer matrix models based on the hybrid

framework developed in this thesis have been proposed to predict the noise radiation of

an acoustically treated structure into a semi-infinite fluid domain. Each model is specif-

ically designed to respond to a particular need, i.e. from the quick and rough estimation

to the accurate prediction of the transmission properties of a built-up structure. As a

consequence, a different degree of approximation is involved in the considered models,

which inevitably affects their accuracy (Figs. 6.1-6.2) and computational efficiency (Tab.

6.2). Namely, model A is essentially an extension of the TMM to account for the modal

behavior of the structure. It allows for quick calculations, although it is based on stringent

assumptions. Model B and C are straightforward applications of the hybrid framework

developed throughout chapters 3-5. Model C has the advantage of decoupling the acoustic

treatment and unbounded fluid substructuring solutions by modeling the radiation from

an open acoustic cavity. However, this approach may introduce further difficulties in the

use of modal synthesis to reduce the size of the open cavity discrete model.

The three strategies have been used to predict the transmission properties of a steel plate

acoustically treated by a typical four-layers automotive lay-up. The hybrid framework

allows for an easy and quick virtual prototyping phase, as the finite element model of the

sound package is replaced by a much simpler transfer matrix model. For the considered

lay-up, the results showed that, when acoustic-borne paths are considered (e.g. plane

wave excitation), even simple and quick models (e.g. model A) can give reliable results.

Conversely, more accurate models are necessary to capture the resonant transmission due

to structure-borne noise (e.g. point force excitation). This conclusion is not surprising and

confirms what has been already observed in the previous chapters.
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CONCLUSIONS AND PERSPECTIVES

The main concern of this research was to develop a reliable hybrid framework to speed up

and simplify the integration of passive acoustic treatment components in vibroacoustic fi-

nite element analysis. To this purpose, the finite element models of the main structure and

acoustic cavity have been coupled with a simple analytical model of the sound package.

Namely, under the hypotheses of homogeneous, flat and laterally infinite acoustic treat-

ments, an approximation of the impedance seen by the finite element domains over the

acoustically treated surfaces was obtained starting from a simple transfer matrix model of

the treatment itself. The above assumptions are justified by

– the simplifications typically employed in acoustic treatments design and modeling, and

– the short wavelength and dissipation that characterize sound-proofing materials (e.g.

poroelastic materials).

The approach, is based on a boundary formulation of the sound package dynamic response.

Namely, the reactions of the treatment over its two faces (i.e. the interface surfaces with

the structural and acoustic domains) are formally expressed in terms of convolution in-

tegrals between external disturbances and Green functions. If the problem is formulated

in the wavenumber domain, then the analytical kernels can be quickly sampled by solv-

ing successive small transfer matrix problems. In this framework, the discrete dynamic

equations of the acoustic treatment can be obtained from a Galerkin projection employing

radially symmetric shape functions. In the case of isotropic layups, the latter choice allows

to reduce further the computational burden, since two-dimensional integrals can be rear-

ranged as one-dimensional operators. Then, the boundary impedance operator containing

the effect of the acoustic trim on the structural and/or acoustic domains can be calculated

and thus integrated into the finite element model of the vibroacoustic system.

A comprehensive benchmark of typical test problems (transmission and absorption) in-

volving several acoustic treatment configurations was considered to validate and assess the

hybrid FE-TMM. The analysis was limited to flat systems and homogeneous treatments.

A systematic comparison with standard approaches showed that, although a substantial

improvement is achieved with respect to oversimplified locally reacting models, the accu-

racy of a detailed finite element model of the acoustic treatment cannot be always retrieved

163
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due to the stringent assumption of infinite lateral extent. Such approximation neglects the

presence of a reflected field, whose effect, albeit confined at the boundaries of the treated

area, may be important - depending on the considered excitations and materials - to ob-

tain quantitative meaningful predictions. Therefore, a finite size correction based on the

ISM has been proposed. The study carried out within this thesis showed that the ISM can

be successfully used for the acoustic treatment modeling, thanks to the strong dissipation

provided by such subsystems. Although the proposed correction is exact only for sound

packages whose dynamic behavior can be approximated by equivalent fluid models (i.e.

negligible mechanical properties), the results showed that an accuracy close to that of a

reference finite element model can be achieved also for practical configurations. On the

other hand, it may be argued that a full finite element analysis might still be needed if the

effect of complex details (i.e. practical mounting conditions, curvature) must be assessed.

As a result, depending on the user needs, the hybrid tool developed throughout this thesis

(with or without finite size correction) can be successfully used to predict efficiently the

response of vibroacoustic systems involving arbitrarily complex flat and homogeneous noise

control treatments. Furthermore, a substantial simplification of the modeling is achieved,

as time consuming virtual prototyping phases required by standard finite element analysis

are replaced by a costless transfer matrix model. This is an important feature when the

optimization of the acoustic treatment is sought. Indeed, while the finite element model

(possibly of reduced order) of the vibroacoustic system remains unchanged, only simple

transfer matrix models must be considered to calculate the boundary operator associated

to each layups generated by the optimization process.

7.1 Main achievements

The main achievements of this work can be summarized as follows.

- First of all, the theoretical framework behind the acoustic treatment modeling based on

the Green functions has been formally and comprehensively presented, identifying sim-

ilarities and differences with other approaches proposed in the literature (chapters 2-3).

Within the proposed methodology, different formulations have been assessed. Namely,

the effect of different shape functions and baffling conditions have been investigated in

order to establish the best strategy for the considered applications (chapter 4). This

addresses the first objective defined in section 1.4.

- The proposed hybrid FE-TMM has been comprehensively assessed. Although only

simplified geometries were considered throughout this thesis, the effects of different
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configurations of the acoustic treatment (e.g. materials and interface conditions) and

external disturbances on the accuracy of the hybrid model were carefully assessed. This

allowed to understand the impact of the main assumption inherent within the hybrid

framework (i.e. laterally unbounded acoustic treatments). For instance, it was observed

that, broadly speaking, the accuracy provided by the hybrid FE-TMM increases when

the sound package materials get softer and acoustic excitations drive the main structure

(chapter 4). Moreover, it was pointed out that the dissipation added to the main

structure is typically well captured (chapters 2-4), whereas the absorption seen by the

acoustic domain is usually poorly captured at low frequencies (chapters 3-4). More

complicated was the assessment of the energy transmission through the sound package,

which can be only qualitatively captured at low as well as higher frequency (chapters

3-4). This addresses the second objective defined in section 1.4.

- Reference tools (i.e. substructuring FEM [53] and locally reacting impedance model

[122]) have been considered to provide systematic comparisons. This allowed, on the

one hand, to prove the superiority of the proposed hybrid FE-TMM with respect to

locally reacting models. On the other hand, FEM comparable accuracy was achieved

while substantially reducing computational costs and resources. This addresses the third

objective defined in section 1.4.

- As a result of the three above points, the research went one step forward, improving

the accuracy of the noise control treatment model by proposing a finite size correction

able to retrieve, at least on average, the effect of the reflected field emanating from the

lateral boundaries of the treated surface. In this context, the application of the ISM

to the acoustic treatments modeling (chapter 5) constitutes another originality of this

work.

To the author’s knowledge, no scientific paper dealing with such comprehensive presen-

tation and assessment of hybrid finite element-transfer matrix methodologies applied to

passively treated vibroacoustic system was available in the open literature. The present

work (in the form of four scientific papers) tries to partially fill this gap by providing (i) a

fully validated formulation and (ii) a careful insight into its potentiality (advantages and

drawbacks). This should allow for a conscious use of the tool. However, much work is yet

to be done, as briefly summarized in the following section.



166 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

7.2 Future works

7.2.1 Potential applications

The developed transfer matrix based model for noise control treatments can be also inte-

grated into alternative frameworks beside the finite element application considered in this

thesis.

For instance, the FEM-SEA hybrid tool developed by Shorter and Langley [104] to perform

efficient mid frequency analysis would greatly take advantage from the proposed formu-

lation to account for noise control treatments. Indeed, a full hybrid framework would be

available to perform accurate and quick full-spectrum prediction. For instance, a complex

real life system with noise control treatments could be modeled with different strategies

depending on frequency range of interest and required accuracy. Namely,

- at low frequency a full finite element model of the main structure and acoustic cavity

can be employed together with a transfer matrix model of the acoustic treatment.

- As the frequency increases some details of the structure (i.e. short wavelength subcom-

ponents) and the cabin can be more efficiently modeled as statistical subsystems, while

the sound package can still take advantage from the formulation presented in this work.

- At higher frequency a full SEA model can be employed. In this context, the SEA

parameters of the acoustically treated subsystems can be estimated by the classical

TMM (see Ref. [23, 90]) or by accurate finite element models (for instance using the

periodic structure theory [24]) which can, in turn, exploit the simplified Green functions

based model to account for multilayer treatments.

A further application of the acoustic treatment model consists in the calculation of self

and transfer impedances among patches defined over the two faces of the trim. The Green

functions model would provide a user-friendly and quick tool to perform such calculations,

avoiding time consuming and cumbersome experimental tests. The impedances can be

then used in a PTF methodology, such as the one proposed in Ref. [127].

Finally, it could be argued that the developed hybrid model could be effectively and

efficiently employed for uncertainty quantification purposes. Indeed, the parameters of

the noise control treatment (e.g. acoustic properties, mechanical properties and thickness)

are typically uncertain, so that their propagation in the computational model must be

assessed. In this context, given a statistical model for the uncertain data, the hybrid

FE-TMM can be used to perform quick Monte Carlo simulations. Indeed, similarly to an

optimization procedure, simple transfer matrix models have to be considered to evaluate
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the effect of each sample on the vibroacoustic system. The response of each realization

is then calculated by solving the reduced order model, so that the confidence intervals

for the vibroacoustic indicators of interest can be estimated. It is noted in passing that

this approach would only allow to account for parametric uncertainties, as the effect of

nonparametric uncertainties (i.e. modeling errors) have to be accounted for by employing a

statistical description of the boundary impedance matrix (see for instance Refs. [69, 111] for

an overview of parametric and nonparametric probabilistic approaches of uncertainties).

In the latter case, the use of the random matrix theory developed by Soize [109, 110] may

be employed to build the computational stochastic model, as performed in Ref. [45].

7.2.2 Further assessments and improvements

Concerning the low frequency range, the following aspects must be still assessed to fulfill

the validation of the transfer matrix based acoustic treatment model.

- The effect of the curvature must be quantitatively assessed.

- The modeling of non isotropic configurations must be considered. The model developed

in this thesis is not strictly limited to isotropic sound packages, however, non isotropic

layups would require an increase of the computational effort, which should be quantified.

Alternatively, the use of averaged Green functions (equivalent isotropic kernels) should

be considered.

- Non homogeneous configurations must be assessed. In the context of this thesis, differ-

ent acoustic treatment would be treated as different treated surfaces, thus neglecting

coupling phenomena at their interfaces. The effect of this approximation in the dynamic

response of the vibroacoustic system must be quantified.

- Finally, the possibility to account for normal components continuity at the structural-

acoustic trim interface should be studied. Although it may be argued that this is an

unnecessary improvement for noise control treatments (which are typically lied over

the structure), it is surely necessary to account for other passive components, such as

constrained damping layers.

In addition, depending on the required accuracy, the following improvements of the finite

size correction could be considered.

- General implementation of the image sources detection algorithm and application of the

to more complex-shaped treated areas to assess the feasibility of the methodology when

practical configurations are considered.
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- Feasibility study of an alternative correction to account more accurately for the reflected

field in materials which do not behave like equivalent fluids (e.g. solids or poroelastic

materials with non negligible mechanical properties). However, this aspect appears

challenging. Indeed, the wave reflection in solid and porous media may involve com-

plex phenomena (e.g. coupling effects between different wave types) which could be

hard to account for without jeopardizing the simplicity of the developed methodology.

Moreover, as already pointed out in chapter 5, the usefulness of such correction might

be questionable, due to the uncertain knowledge of the acoustic treatment boundary

conditions.

It should be noted that to fulfill the above requirements, an alternative methodology may

be needed to account for the reflections at the acoustic treatment boundaries.
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L’objectif principal de cette recherche est de développer une méthodologie hybride pour ac-

célérer et simplifier l’intégration des traitements acoustiques dans les modèles par éléments

finis du comportement vibroacoustique des structures. À cette fin, les modèles éléments

finis de la structure principale et de la cavité acoustique ont été couplés à un modèle

analytique du traitement acoustique. Ce dernier est basé sur la méthode des matrices de

transfert qui suppose le traitement acoustique plan, homogène et de dimension latérale

infinie. L’approche est basée sur une formulation intégrale de la réponse dynamique du

traitement acoustique. Formellement, le traitement acoustique est remplacé par des im-

pédances d’interfaces ajoutées aux domaines éléments finis, c.-à-d. à la structure et la

cavité. Ces impédances sont exprimées en termes d’intégrales de convolution entre les sol-

licitations externes et des fonctions de Green judicieusement approximées par la méthode

des matrices de transfert.

Un test de performance impliquant plusieurs configurations (absorption, transmission),

sollicitations (mécanique, acoustique) et traitements acoustiques (monocouche, bicouche,

et multicouche) a été réalisé pour valider et évaluer la précision de la méthodologie hy-

bride éléments finis - matrice de transfert. La comparaison systématique avec la méthode

des éléments finis (c.-à-d. modélisation détaillée du traitement acoustique par éléments

finis; notre référence) et la méthode d’impédance à réaction localisée (une approximation

simple et rapide bien répandue en pratique) a montré que notre approche apporte une

amélioration substantielle par rapport à cette dernière. Toutefois, pour quelques exci-

tations et configurations de matériaux, la précision du modèle hybride ne reproduit pas

toujours celle des éléments finis en raison de l’hypothèse de l’extension latérale infinie. En

effet, cette approximation néglige la contribution du champ réfléchi par les parois latérales

du traitement acoustique. Bien que cette contribution soit limitée aux frontières de la

surface traitée, elle est nécessaire pour obtenir des prédictions quantitatives utiles. Par

conséquent, une correction basée sur la méthode des sources images a été proposée et

validée avec succès.

En conclusion, en fonction des besoins de l’utilisateur, la méthodologie hybride dévelop-

pée dans cette thèse peut être utilisée avec succès pour prédire efficacement la réponse

vibroacoustique des structures avec traitements acoustiques. En plus du gain en temps de

calcul, une simplification substantielle de la modélisation du problème est aussi obtenue.



En effet, le maillage des traitements phoniques, une opération complexe et fastidieuse,

est remplacé par un modèle de matrice de transfert simple et rapide. Ceci représente

un apport important puisque l’optimisation d’un traitement acoustique, pour un système

structure-cavité donné, nécessite le développement et résolution de plusieurs dizaines de

modèles.



ANNEX A

CALCULATION OF THE GREEN FUNCTIONS

In this appendix, the methodology employed to calculate the Green functions involved in
the (u, u) and (u, σ) formulations is presented. The transfer matrix model of a generic
multilayer system leads to the following linear system [3]

D(k, ω)V(k, ω) = 0 , (A.1)

where matrix D express the continuity conditions at the interfaces between different layers.
Without loss of generality, Eq. A.1 refers to the case of an isotropic system, i.e. the final
system is only a function of the module of the wavenumber k. Vector V contains the
variables of each layer involved in the acoustic trim. The variables at the two ends of the
treatment are defined as

VA(k, ω) =

{

σA(k, ω)
vB(k, ω)

}

(A.2)

VB(k, ω) =

{

σB(k, ω)
vB(k, ω)

}

, (A.3)

where σA (resp. vA) and σA (resp. vB) are the normal stress (resp. velocity) over the two
ends of the trim. Since the proposed model accounts only for the normal components at
the interface between the sound package and the master acoustic and structural domains,
another set of boundary conditions has to be added to Eq. A.1 if the first (i.e. side A)
and/or nth (i.e. side B) layers involve also in-plane variables. Imposing the necessary
boundary conditions at sides A and B, one gets





DA1(k, ω) DA2(k, ω) 0
0 D(k, ω) 0
0 DB1(k, ω) DB2(k, ω)











VA(k, ω)
V(k, ω)
VB(k, ω)







= D̃(k, ω)Ṽ(k, ω) = 0 , (A.4)

where matrices DA1 and DA1 relates the variables of the first (resp. nth) layer and VA

(resp. VB). Eq. A.4 can be rearranged to give





DA1(k, ω) DA2(k, ω)
0 D(k, ω)
0 DB1(k, ω)





{

VA(k, ω)
V(k, ω)

}

=





0
0

−DB2(k, ω)



VB(k, ω) . (A.5)
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Solving Eq. A.5 it is possible to define a reduced transfer matrix relating the normal
variables on side A and B, i.e.

VA(k, ω) =

[

T11(k, ω) T12(k, ω)
T21(k, ω) T22(k, ω)

]

VB(k, ω) . (A.6)

Thus, the fundamental solutions for the (u, u) formulation read































d̂AA(k, ω) = ıω
T11(k, ω)

T21(k, ω)

d̂AB(k, ω) = −ıω 1

T21(k, ω)
= −d̂BA(k, ω)

d̂BB(k, ω) = −ıωT22(k, ω)

T21(k, ω)

, (A.7)

while for the (u, σ) formulation



























ĝAA(k, ω) = ıω
T12(k, ω)

T22(k, ω)

ĝAB(k, ω) =
1

T22(k, ω)
= ĝBA(k, ω)

ĝBB(k, ω) = − 1

ıω

T21(k, ω)

T22(k, ω)

, (A.8)

where ı =
√
−1 is the complex unit. Furthermore, the radiation into an unbounded fluid at

side B of the acoustic treatment can directly accounted for within the transfer matrix model
by adding to the system in Eq. A.6 the impedance condition σB

vB
= −ıω ρ0c0k0√

k2
0−k2

= Ẑ∞(k, ω).

Thus, solving the system one eventually gets



























d̂(k, ω) = ıω

(

T12(k, ω)

T22(k, ω)
−

1
T 2
22(k,ω)

Ẑ∞(k, ω)

1− Ẑ∞
T21(k,ω)
T22(k,ω)

)

d̂A→B(k, ω) =

1
T22(k,ω)

Ẑ∞(k, ω)

1− Ẑ∞
T21(k,ω)
T22(k,ω)

. (A.9)



ANNEX B

MAPPING BETWEEN JINC FUNCTIONS AM-
PLITUDES AND NODAL VALUES

In this appendix the mapping from the amplitude of the jinc functions to the value of
the physical variable associated to the same node is obtained. Let u(x, ω) be the generic
physical variable. The approximation of u(x, ω) by a finite number of jinc functions is

u(x, ω) =
n
∑

i=1

2 jinc(ksr) ai(ω) . (B.1)

Following Monaghan [80] and Lanagley [63], the continuous form of Eq. B.1 reads

u(x, ω) =

∫

S

2 jinc(ksr)
a(x′, ω)

A(x′)
, (B.2)

where r = |x − x′|, A(x′) is the area distribution function and S is the support of the
function u. Applying the Fourier transform on both sides of Eq. B.2 yields

u(k, ω) =

(

4π

k2
s

)

FT

[

a(x′, ω)

A(x′)

]

, (B.3)

where the first term in the brackets is the Fourier transform of the jinc function, while
the formalism FT [f(x)] indicates the Fourier transform of the argument f(x). Antitrans-
forming Eq. B.3 and using the obtained formula on a specific node xi one finally obtains

a(xi, ω) = ai(ω) =
A(xi)k

2
s

4π
u(xi, ω) = Hiiui(ω) , (B.4)

with Hii elements of the diagonal operator H which maps the physical variables u onto
the amplitudes a. Similarly, the continuous form of the projection onto the jinc function
space of the generic variable u(x, ω) is

R(x) =

∫

S

2 jinc(ksr) u(x
′, ω) . (B.5)

Following the same procedure above, the following mapping between the projected variable
and the associated physical variable is obtained
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ANNEX B. MAPPING BETWEEN JINC FUNCTIONS AMPLITUDES AND NODAL

VALUES

R(xi, ω) = Ri(ω) =
4π

k2
s

u(xi, ω) = Ĥiiui(ω) , (B.6)

with Ĥii elements of the diagonal operator Ĥ.
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