

TOWARDS EVALUATING PERVASIVE COMPUTING

SYSTEMS

by

Yasir Malik

Thesis submitted to the Department of Informatics
to obtain the degree of Doctor of Philosophy (Ph.D.)

FACULTY OF SCIENCE

UNIVERSITY OF SHERBROOKE

Sherbrooke, Québec, Canada, 13 June 2014

Le 13 June 2014

Le jury a accepté la thèse de Yasir Malik dans sa version finale

Membres du jury

Professeur Bessam Abdulrazak
Directeur

Département d’informatique
Faculté des Sciences

Université de Sherbrooke, Canada

Professeur Stefan D. Bruda
Membre externe

Département of Computer Science
Bishop’s University, Canada

Professeur Hamid Mcheick
Membre externe

Département d’informatique et de mathématiques
Université du Québec à Chicoutimi, Canada

Professeur Hugo Larochelle
Président-rapporteur

Département d’informatique
Faculté des Sciences

Université de Sherbrooke, Canada

i

Résumé

L’informatique diffuse est le passage du paradigme informatique vers l’informatique
partout. L’émergence couvre principalement l’informatique mobile et distribuée,
les réseaux de capteurs, l’interaction homme-machine et l’intelligence artificielle
sous l’égide de l’informatique diffuse. Des efforts considérables ont été mis sur les
recherches dans ce domaine, mais il n’existe pas de normes ou des méthodologies
communément acceptées pour évaluer ces systèmes et de définir des nouvelles
orientations de recherche dans le futur. Cette thèse s’attaque au problème
d’évaluation des systèmes informatiques ubiquitaires. La question de recherche
notamment le quoi et comment évaluer n’a pas encore été résolue. Dans l’objectif
de trouver une réponse à cette question et d’élaborer un cadre général d’évaluation,
nous avons procédé comme suit.
Pour répondre à la première partie de la question, “Quoi évaluer”, nous avons tout
d’abord classé les systèmes en se basant sur certains critères, et nous avons défini
ensuite les principaux paramètres pour évaluer ces systèmes. Pour ce faire, nous
avons étudié différents aspects de l’informatique diffuse et nous les avons classés
en onze différents aspects/domaines d’évaluation. Pour chaque aspect, nous avons
identifié les principaux paramètres qui peuvent être caractérisés et mesurés. Cette
taxonomie n’est pas assez exhaustive, mais elle reflète le schéma de classification le
mieux adapté pour des évaluations effectives. Cependant, pour que l’évaluation soit
la plus complète possible, nous avons jugé nécessaire d’incorporer l’utilisateur dans
le processus d’évaluation. À cet effet, nous avons proposé un modelé d’évaluation qui
prend en compte les besoins de l’utilisateur, le contexte dans lequel la technologie
sera utilisée, et l’environnement d’exploitation dans lequel le système va être déployé.
Le modelé proposé constitue une première étape vers le développement des directives

ii

Résumé

et standards d’évaluation qui peuvent être utilisés peuvent être utilisées pendant les
évaluations formatives et sommatives.
Une autre question complémentaire à l’évaluation des performances est la validation
fonctionnelle d’un système en cours d’exécution, qui confirme que le système est
conforme aux exigences fonctionnelles et ne contient pas de failles. Pour répondre à
la deuxième partie de la question à savoir “comment évaluer”, nous avons adopté les
techniques formelles de vérification et de validation. Comme le champ d’application
du projet est très large, nous sommes concentrés sur l’évaluation au premier stade de
la conception afin de vérifier et de valider l’exactitude fonctionnelle de la conception
de systèmes.
Pour la preuve de concept, nous avons appliqué deux méthodes, dans la première
méthode, nous avons étudié les approches de vérification automatique et nous avons
choisi la technique la plus connue qu’est le “model checking” pour vérifier les exigences
fonctionnelles d’un système de gestion des médicaments basé sur le contexte pour des
personnes âgées dans une maison Intelligente. Cette approche est complémentaire
aux tests et à l’évaluation et permet aux concepteurs de vérifier le comportement
de leurs systèmes par rapport aux exigences fonctionnelles avant le développement
du prototype de système. Certaines propriétés de base, telles que la disponibilité
ou la vivacité, l’interblocage, la comparaison des spécifications et implémentations et
l’analyse d’accessibilité, sont également vérifiées à ce stade.
Dans la deuxième méthode, nous avons étudié les approches de vérification
d’exécution et nous avons adopté la technique de conception par le contrat pour
modéliser et vérifier la sémantique et exigences de l’interopérabilité des services
dans les environnements intelligents. L’avantage de cette approche réside dans la
vérification automatique en temps réel de l’interopérabilité des services dans les
environnements intelligents.

iii

Summary

Pervasive computing is shifting the computing paradigm toward everywhere
computing. This emergence covers distributed and mobile computing, sensor
networks, human computer interaction and artificial intelligence. Tremendous efforts
have been put in the related research, however no standards or commonly accepted
methodology exists to evaluate these systems and identify directions for future
research. The unsolved research question of “what and how to evaluate”
pervasive computing system has not yet been answered. This thesis addresses the
problem of evaluating pervasive computing systems. In an attempt to answer the
above questions and designing an evaluation framework, we followed a chronological
order of the research question.

To address the first part of the question,“What to evaluate”, we assembled a
user-centered framework that account for the system, user needs, context in which
the technology will be used, and the operating environment in which the system will
operate or deployed. Within each factor we consider important evaluation areas and
identify the key aspects in the evaluation process. Contextual and environmental
factors present key issues and aspects in the evaluation process. User associated
evaluation areas are studied from the ergonomic point of view, that would help
evaluators to evaluate the user acceptance aspects of the system. System evaluation
aspects are identified by classifying distinctive features and studying the key
performance parameters of interest for pervasive computing systems. Consequently,
we studied different aspects of pervasive computing and classified them into eleven
different aspects of evaluation. Within each aspect, we identify key parameters that
can be characterized and measured. This taxonomy is by no means complete, but
merely reflects the classification scheme that is best suited for the purpose of effective

iv

Summary

performance evaluations. The proposed model is a step towards forming standard
evaluation guidelines that can be used during formative and summative evaluations.

A complementary issue to performance evaluation is functional correctness of a
running system, which confirms that the system fulfills its functional requirements
and does not contain any flaws. To address the second part of the question that is
“how to evaluate”, we have adopted the well-known formal verification and validation
techniques. As the scope of the project is very big, the focus of this thesis is on
early design stage evaluation to verify and validate the functional correctness of the
systems design. For the proof-of-concept, we applied two methods:

In the first method, we studied automatic verification approaches and used a
well-known model checking approach to model and verify the functional requirements
of a context aware medication management system for the elderly in a Smart House.
This approach is complementary to testing and evaluation, it allows designers to
verify their system behavior against its functional requirements before developing the
system prototype. Some basic properties like the availability or liveliness, deadlock
checking, matching of specification and implementation, and reachability analysis are
verified.

In the second method, we studied the runtime verification approaches and used
design by contract technique to model and verify the semantic and pragmatic service
interoperability requirements in smart environments. The analysis of this technique
and results are presented. The benefit of the approach is automatic verification of
services interoperability in smart environments on the fly.

Keywords: Evaluation, Performance, Taxonomy, System Factors, User Factors,
Formal Methods, User-Centered, Design Analysis, Model Checking, Design By
Contract.

v

Acknowledgment

“In the name of God, most Gracious, most Merciful”

I wish to express my sincere appreciation to those who have directly indirectly
contributed to this thesis and supported me during this amazing journey.

First and foremost, I want to thank my advisor Professor Bessam Abdulrazak for
believing in me and giving me opportunity to work with him. His support, guidance,
funding, all the useful discussions, brainstorming sessions, article and thesis revisions
and many more are the reason that today I am able to finish this milestone of my
life. He not only mentor and support my research but he was always there during the
times when I was really down and depressed due to personal problems. He was more
like an elder bother to me away from my home.

My sincere gratitude is reserved for Professor Stefan D. Bruda for his invaluable
insights and suggestions on the thesis topic. I really appreciate his willingness to meet
me, help me with questions and in going through my project proposal and several
drafts of my thesis.

In regards to the formal method, I thank Professor Marc Frappier for his invaluable
insights and suggestions and valuable tips on the subject. I really appreciate his
willingness to meet me, help me and letting me attend his course on the subject.

Besides my advisor, I would like to thank the rest of my thesis committee
Professor Hugo Larochelle, Professor Hamid Mcheick, Professor Stefan Bruda, for
their insightful comments, suggestions, encouragement. Their support and valuable
comment helped to polish my thesis and research.

Very special thanks to the department of computer science for giving me the
opportunity to carry out my doctoral research and for their financial support. It

vi

Acknowledgment

would have been impossible for me to even start my study had they not given me
a scholarship and facilities for my studies. I would also like to thank the FORCE
foundation for giving me scholarship in all years of my studies, which was a great
help.

I would also like to thank all my friends from DOMUS lab for all their useful
suggestions and for being there to listen when I needed an ear.

Words cannot express the feelings I have for my parents and my in-laws for their
constant unconditional support.
Finally, I would like to acknowledge the most important people in my life my wife
Jowaria, my daughters Iman and Aroush. They have been a constant source of
strength and inspiration. There were times during the past four years when everything
seemed hopeless and I didn’t have any hope. I can honestly say that it was only my
wife and daughters determination and constant encouragement that ultimately made
it possible for me to see this milestone through to the end.

Lastly a big thankyou to Sherbrooke city, this small city has become a big and
special part of my life.

vii

Abbreviations

ADL Activities of Daily Living

AHP Analytic Hierarchy Process

API Application Programming Interface

CSP Communicating Sequential Processes

CSP# Communicating Sequential Programs

CTL Computation Tree Logic

DbC Design By Contract

ICT Information and Communication Technology

LTL Linear Temporal Logic

MC Model Checking

NIST National Institute of Standards and Technology

NFP Non Functional Properties

NFC Near Field Communication

PAT Process Analysis Toolkit

PDA Personal Digital Assistant

PRIDE PRediction In Dynamic Environment

PerCom Pervasive Computing

QoS Quality of Service

RFID Radio-frequency identification

SAAM Software Architecture Analysis Method

viii

Abbreviations

SCORE System, Component, and Operationally-Relevant Evaluation

SEQUEL Solver for circuit EQuations with User-defined ELements

SOAP Simple Object Access Protocol

SOA Service Oriented Architecture

TAM Technology Acceptance Model

UbiCom Ubiquitous Computing

UI User Interface

WCF Windows Communication Foundation

XSD XML Schema Definition

ix

Contents

Résumé ii

Summary iv

Acknowledgment vi

Abbreviations viii

Contents x

List of Figures xii

List of Tables xiii

Introduction 1

1 Background 11
1.1 Vision and Paradigm . 12
1.2 Concepts in Pervasive Computing . 15
1.3 Design and Evaluation Challenges in Pervasive Computing 18
1.4 Summary . 25

2 Related Work 26
2.1 Exiting Solutions and Approaches . 28

2.1.1 Evaluation Frameworks . 28
2.1.2 Simulation, Testing and Verification Approaches 33

x

Contents

2.1.3 User Centered Approaches . 38
2.1.4 Usability Studies . 42
2.1.5 Contextual Evaluation Approaches 44
2.1.6 Technology Acceptance Models 45
2.1.7 Environmental and Ecological Evaluation Approaches 47
2.1.8 Analysis . 48

2.2 Summary . 51

3 What To Evaluate 52
3.1 User Centered Evaluation Framework 53

3.1.1 Environmental Factors . 57
3.1.2 Contextual Factors . 58
3.1.3 User Factors . 59
3.1.4 System Factors . 64

3.2 Summary . 76

4 How to Evaluate 78
4.1 Early Design Evaluation . 79
4.2 Early Design Analysis of Contextaware System: Model Checking

Approach . 83
4.2.1 System Scenario . 84
4.2.2 Designing and Modeling the System 86

4.3 Verification of Dependability Properties 94
4.4 Runtime Analysis of Pervasive System: Design By Contract Approach 97

4.4.1 Requirements Analysis . 102
4.5 Summary . 107

Conclusion 109

xi

List of Figures

1.1 Pyramid of Pervasive Computing . 13

2.1 Design and Evaluation Lifecycle . 27

3.1 Design and Evaluation Model for Pervasive Computing System 56

4.1 System Architecture of Contextaware Medication System 87
4.2 System Architecture of PAT . 95
4.3 Service Contract Model . 103

xii

List of Tables

2.1 Evaluation Challenges And Approaches At Each Design Stage 50

3.1 Summary of Quantitative and Qualitative Parameters of Systems and
Users . 56

3.2 Summary of User Aspects and Key Elements 64
3.3 Infrastructure Evaluation Parameters 66
3.4 Design Evaluation Parameters . 68
3.5 Autonomicity Evaluation Parameters 69
3.6 Integration Evaluation Parameters 70
3.7 Service Availability Evaluation Parameters 71
3.8 Interaction Evaluation Parameters . 72
3.9 Interaction Evaluation Parameters . 74
3.10 Application Purpose Evaluation Parameters 76

xiii

Introduction

Evaluation is an essential process for successful deployment, assessment and

acceptance of new technologies. An evaluation is an activity to assess a program

or a product for its quality check and benchmarking. The outcome of this process is

a report which helps to take decisions on pros and cons and to provide directions

to improve the quality of the product or a program. Evaluation processes have

been understood differently in different disciplines and thus have resulted in various

methodologies and approaches depending on existing knowledge and set standards in

subject domain.

Evaluation of computing systems is not a new idea. It started with the rapid

growth in development of software and hardware, numerous evaluation and simulation

methods have been proposed and widely adopted in hardware/software design and

development. The process is applied at every design and development stage, which

helps to improve the quality of a product at every stage and helps to decide how to

continue the development.

With the recent development in information communication technologies

(distributed and mobile computing), computing systems have become more complex

and thus evaluation of these systems has become a complex task [130]. The most

1

Introduction

important aspects in any computing system evaluation (hardware or software) are

functionality, reliability, usability, efficiency, maintainability, portability and cost

[62]. Although there could be many reasons for a computing system quality to be

questioned, the two most significant reasons are:

1. Functional Failure: refers to the failure occurred when the input produces a

wrong output. A simple example could be addition of two numbers that results

in a wrong answer or an air defense tracking system that could not distinguish

between a friendly and enemy missile.

2. Performance Failure: refers to the failure occurred when system is functionally

correct, however computing the output for the input takes longer than expected.

This failure can cause serious problems in time critical systems where an output

becomes an input for the second process. A simple example can be an output of

an addition of two numbers takes longer time than expected, although the result

produced is correct. Thus system is said to have failed due to its computing

performance.

From the two reasons stated above, we could conclude that in the process of computing

system evaluation, it is necessary to guarantee functional and performance.

Pervasive computing a.k.a ubiquitous computing (UbiCom) is an emerging

computing paradigm that is shifting desktop computing into computing integrated in

the user’s living environment. The core concept of PerCom is anytime and anywhere

computing and communication. The vision of PerCom is to bring computing and

communication capabilities within users living environment and assist them in doing

their everyday tasks. This topic has a strong relationship with many computer

science disciplines such as mobile computing, distributed systems, human computer

2

Introduction

interaction, operating systems, artificial intelligence, wireless networks, embedded

hardware designs, sensors and sensor networks. Furthermore, the emergence of

technology relies on the convergence of recent advancements in smart computing

and communication devices like internet and wireless technology. These technologies

are embedded in user’s living environments, body or cloths and provide them with

useful services. The services offered in these environments are intelligent (relaying

on the environments context) and autonomous as they can run and perform tasks on

their own without having direct user input and attention.

Problem Statement

Its being two decades since Weiser’s vision of ubiquitous computing was coined,

very few practical or even promising systems have been deployed and generated

significant impact, and received acceptance. There exists an uncertainty in measuring

the real achievements and advancements in this field, the reasons behind this

phenomenon are:

– Firstly no standard measurement and evaluation techniques exist in this field.

– Secondly most of the systems exists in research labs or in dedicated

environments, therefore the system evaluation and user acceptance is hard to

measure and assess.

A review of the related literature shows that tremendous efforts have been put in

the related research over the past two decades. However, unlike other disciplines,

no standards or commonly accepted methodology has been established for a

3

Introduction

comprehensive evaluation of these systems to identify directions for future research.

Consequently the unsolved research question of “what and how to evaluate” has

been difficult to answer.

Goal

The goal of this research is to study and analyze system evaluation techniques to

propose a comprehensive evaluation framework for PerCom systems. To achieve our

goal, the research is centered on the question “What and how to evaluate”. Analyzing

and studying the PerCom systems reveals that design and evaluation of pervasive

computing systems is a very complex task and requires complete knowledge of the

following:

◦ The system and user behavior.

◦ The functional and non-functional requirements.

◦ The environmental and contextual issues.

Hence a one box solution is impractical although desirable.

Approach and Methodology

To address the question of “What and how to evaluate”, we tried to answer

it in a chronological order. To address the first part of the question i.e.“What to

evaluate”, we have assembled a user-centered evaluation framework (see figure 3.1)

that incorporates important factors from the system, user, context and operating

environment. Within each factor we consider important evaluation areas and identify

the key aspects in the evaluation process. Contextual and environmental factors

4

Introduction

present key issues and aspects in the evaluation process. User associated evaluation

areas are studied from the ergonomic point of view, that would help evaluators

to evaluate the user acceptance aspects of the system. System evaluation aspects

are identified by classifying distinctive features and studying the key performance

parameters of interest for PerCom systems. The diversity of PerCom prevents

the use of a well-formed hierarchical classification scheme, thus the research has

taken a different perspective and identified criteria that define major divisions in

operational paradigm. Eleven criteria were chosen that would exhibit vastly different

characteristics and helped us to generate the most compelling categories and key

aspects associated with each category. Each aspect has key parameters that need

to be identified and measured. The specified parameters that are identified are of

particular interest to each category, but do not provide an exclusive list of every

parameter to be evaluated. There are common parameters that are of interest for

all systems such as throughput, response time, user acceptance, etc. This taxonomy

can serve as a reference when deciding which parameters are most relevant to a

particular PerCom system. The proposed conceptual framework model is a step

towards forming standard evaluation guidelines that are defined for each factor, and

can be used for qualitative and quantitative evaluation of PerCom systems during

formative and summative evaluation processes.

The second part of the question i.e. “How to evaluate” is very difficult to

answer. Considering the greater operating space, dynamicity, availability and user

requirements of PerCom systems, it is not easy and practical to have a one box

solution. Different methodologies and techniques have been presented in the literature

and they are employed at different design stages of the system development. Our

5

Introduction

study of literature concludes that, for a comprehensive evaluation of PerCom systems,

multiple techniques and approaches should be employed at each design stage.

In our effort, we looked at the early design stage evaluation, and studied and

proposed evaluation approaches that can be employed at the early design stage. Our

motivation for evaluating the PerCom system in the early phase of its design is

based on the fact that: if the functional requirements of the system are correct

then it could be said that the system meets the minimum safety requirements

and is dependable. In addition, evaluating and verifying requirements at the early

stage helps to identify errors in system requirements that might appear in the later

design phases and can reduce the cost of simulation and testing. Early design

stage evaluation in PerCom is very challenging. Existing approaches to evaluate

the PerCom system at early design stage mostly centered towards the usability

analysis, which employs various techniques like heuristic approaches, wizard of OZ,

technology probes, system walkthroughs (c.f. Chapter 2 section 2.1.4 for details).

These approaches are employed to get the user experience, factors of adaptability

and gathering requirements for system design and development. The development of

a PerCom systems application is a very difficult job, thus it requires sophisticated

verification and validation techniques. To address these issues and requirements, we

have studied existing formal verification and validation approaches and have applied

them to quantify the functional correctness of PerCom systems. The promising

benefits of formal methods drove the motivation to use and extend the existing

validation and verification techniques for the purpose of early stage evaluation of

PerCom systems. In this thesis, we studied two methods:

1. Firstly, we studied and applied an automatic verification technique such as

6

Introduction

model checking to model and verify the functional requirements of the context

aware medication management system. The benefit of this approach helped to

validate the system in advance of its development, contrary to simulation and

testing. The flaws identified with this approach helped to improve the design

of system and increase the confidence level in its correctness and efficiency.

2. For the second method, we, studied runtime verification approach such

as “Design by Contract” to verify the service interoperability requirements

in smart environments. The benefit of the approach allows on-demand

verification (a.k.a runtime verification) that combines formal specifications

with an implementation to support runtime verification of software systems

during its execution. This approach is contrary to off-line verification methods,

such as theorem proving and model checking, that are hard to adopt in the

common development methodologies and does not completely support runtime

verification.

In the future, we would like to study more applications of runtime verification for

PerCom system evaluation at different design stage of PerCom system evaluation.

Contribution of Thesis

The aim of this project is to evaluate pervasive computing systems. Our research

started with the question of “what and how to evaluate”. We tried to answer it in

chronological order, to address the first part of the question what to evaluate:

� We assembled a user-centered framework that account for the system, user

needs, context in which the technology will be used, and the operating

7

Introduction

environment in which the system will operate or deployed. A survey of the

literature helped us to find “what to evaluate” by classifying PerCom systems

and identify key parameters that can be measured. After the classification, we

took a layered approach for evaluating system from the beginning of its design

to find approaches for “how to evaluate”.

A complementary issue to performance evaluation is functional correctness of a

running system, which confirms that a system is conforming to its functional

requirements and does not contain any flaws. The benefit of this approach allows

designers to verify their system behavior against its functional requirements. This

approach is complementary to testing and simulation. It enables to find flaws in the

design before developing the system prototype. To address the second part of question

that is “how to evaluate” (methodology of evaluation), we adopted a well-known

formal verification and validation techniques at early design stage and applied two

approaches.

� In the first method, well-known model checking approach has been used to

model and verify the functional requirements of the context aware system at

early design stage.

� In the second method, a Design by Contract technique has been used to model

and verify the semantic and pragmatic service interoperability requirements in

smart environments.

8

Introduction

Organization of Thesis

The thesis is organized in the following four chapters followed by a conclusion.

Each chapter follows the discussion presented in pervious chapters to help the readers

understand the objective and research conducted during the thesis.

Chapter 1: Introduces the topic of the thesis, presents a discussion and general

overview of the research background. Defines a fundamental vision of PerCom

systems, fundamental properties and characteristics, and the key concepts

related to PerCom systems. Later major challenges related to PerCom systems

design and evaluation are discussed. In addition, the design and evaluation

lifecycle for PerCom systems is presented. The goal is to better understand

and position the evaluation approaches for PerCom systems presented in the

literature.

Chapter 2: Presents the review of approaches and solutions for evaluating

PerCom systems. The approaches presented in this chapter are specially used

and proposed for PerCom systems evaluation. To analyze existing approaches,

we have divided the approaches in seven categories. These approaches are as

follows:

1. Evaluation frameworks for architectural designs and infrastructure

evaluation.

2. Simulation, testing and verification techniques that cover metrics and their

measurement techniques for various components of the systems

3. User centered evaluation approaches for field and lab assessments,

qualitative and quantitative evaluation, formative and summative

9

Introduction

evaluation, In-Suit evaluation of underlying systems.

4. Usability studies.

5. Contextual evaluation approaches for technology and context quality.

6. Environmental and ecological evaluation approaches for environmental

implication of technology.

7. Technology Acceptance Models to evaluate the impact of technology on

users and their acceptance factors.

Chapter 3: Presents the proposed user-centered evaluation framework for

PerCom systems evaluation. A discussion on a methodology to answer ”What

and how to evaluate” is divided into two sections. This chapter describes and

discusses the “What to evaluate” question and presents the discussion on a

proposed evaluation framework. Each factor is discussed in detail and key

aspects and associated parameters are also presented.

Chapter 4: Presents the approaches studied to answer “How to evaluate”. It

introduces early design evaluation approaches in PerCom systems and our

motivation in evaluating pervasive systems at its early stage. Later, formal

methods, their importance and role in early design evaluation are discussed,

followed by a discussion on techniques such as model checking and DbC. In

addition, the use of model checking for modeling and analyzing context aware

applications and analysis of DbC for verifying interoperability requirements for

smart environments are presented.

Conclusion: Finally, a conclusion is presented along with a discussion on the

lessons learned and future work.

10

Chapter 1

Background

In this chapter, we will analyze the existing research, concepts and technologies

used in ubiquitous or pervasive computing projects. We will, also, review the design

and evaluation challenges faced by pervasive system designer. Pervasive computing

has shifted the computing paradigm from traditional desktop computing to computing

in the physical environment. Recent advancements in computing and communication

technologies such as embedded and sensor technologies have been a major driving

force in the research and development of pervasive computing. Pervasive computing

defines the phenomenon of integrating technology and humans together. It offers a

world where technology becomes available to humans virtually and invisible through

hundreds of computing and communication devices around them, those fabricated

with user clothing, devices embedded in human bodies to user’s physical environment,

smart utility appliances, smart homes to cars. This will allow system to carrying out

information processing tasks and providing users with a set of services adapted to their

needs and requirements across the network. The realization of pervasive computing is,

11

1.1. Vision and Paradigm

when users will take computing and communication for granted and will only notice

when it’s absent.

1.1 Vision and Paradigm

The pervasive computing paradigm describes the computing environment, where

computing and communication is imperceptibly present anytime and anywhere

around the user physical environment. Mark Weiser, 1 a chief scientist at Xerox

PARC, is considered to be the father of ubiquitous computing. Weiser and his

colleagues introduced the vision of ubiquitous computing, also known as pervasive

computing, as

“The most profound technologies are those that disappear, they weave

themselves into the fabric of everyday life until they are indistinguishable

from it” [184]

The spirit of the technology is the development of environments saturated with

computing and communication capabilities yet gracefully integrated with users.

“The idea is to make a computer so embedded, fitting, natural, that we use

it without even thinking about it”(Mark Weiser)

Pervasive computing has a strong relationship with closely-related fields, and the

research is spans over many computer science disciplines like mobile computing,

distributed systems, human computer interaction, operating systems, artificial

intelligence, wireless networks, embedded hardware design and sensor networks,

figure 1.1 shows the pyramid of pervasive computing system. Recent research and

1. http://en.wikipedia.org/wiki/Mark-Weiser

12

1.1. Vision and Paradigm

Figure 1.1: Pyramid of Pervasive Computing

developments in these technologies tend to support rapid development of pervasive

computing. Although there is no formal definition for pervasive computing, based on

its characteristics it can be defined as:

“The access to information and services anytime and anywhere”.

Pervasive computing as visioned by Weiser in [184], some fundamental principles of

pervasive or ubiquitous computing are as follows:

– The purpose of a computer is to help you do something else, which implies

computer should do the job instead of you.

– The best computer is a quiet, invisible servant. This implies that all operations

should be transparent and require little user involvement.

– The more you can do by intuition the smarter you are. The computer should

extend your subconscious, which implies that the computer system should

respond to user’s subconscious according to the user and the environment

context. This approach gave birth to the idea of context aware computing.

13

1.1. Vision and Paradigm

– Technology should create calm. This implies that technology will inform or

serve the user and should not demand his/her focus or attention.

Based on the principle’s outlined above and on ongoing research, some basic

characteristics of pervasive computing can be derived. These characteristics are listed

below:

◦ Embedded: In pervasive computing environments, devices should be

implanted within the environments transparently. Transparency means users

are just using the services and are not involved directly in the systems underlying

operations (e.g. adapting services according to user preferences like changing

temperature, lights, etc.).

◦ Context awareness or Context sensitivity: Operations and services are

aware of the physical and logical context in which they occur and adapt to the

environment accordingly.

◦ Human-centric: This is the heart and real implication of the pervasive

computing vision. The system should bring computation and communication

within the easy reach of humans through natural perceptual interfaces of speech

and vision, so it blends into people’s lives and enables them to collaborate, access

knowledge, automate routine tasks and their environments.

◦ Intelligent: Pervasive environments are embedded with computing devices

that have the ability to learn from user behaviors, needs and preferences

that help to adapt user’s physical environments according to their preferences.

Ambient intelligence [12] techniques allow these devices to help people when

performing their daily living activities reactively or proactively.

◦ Autonomous: The user doesn’t necessarily need to ask for work to be done and

14

1.2. Concepts in Pervasive Computing

the system delivers services without user’s direct interaction and intervention.

Based on these concepts, many pervasive computing research projects are undertaken

in interdisciplinary, multi-faceted application domains like schools [186], hospitals [14],

universities, homes [74], cities [108], war fields [121], healthcare [131], etc. Some

notable projects are e.g. Gaia [150], Oxygen [157], Cityware [98], CoolTown [25]

and Gator Tech Smart House [74], these are just few to name here. All these

systems are designed and developed based on the principles and basic characteristics

of ubiquitous/pervasive computing.

1.2 Concepts in Pervasive Computing

Following are some concepts driven form the pervasive computing vision:

• Calm Technology

Calm technology is another term coined by Weiser in the context of ubiquitous

computing [181]. The idea of calm technology is to allow users to focus

on information that is needed in the center of their attention and ignore

information that is peripheral. Ubiquitous technology allows information to

be present anytime and everywhere, making available huge amounts of data

and information to the user. Calm technology makes the user more focused on

the information needed while hiding the unnecessary information. This way the

user is not be distracted or slowed down.

• Internet of Things

Internet of things or internet of objects is another concept invented with

the vision of pervasive computing [64]. The concept is attributed to the

15

1.2. Concepts in Pervasive Computing

former Auto-ID Center, founded in 1999, based at the Massachusetts Institute

of Technology (MIT). The idea is to inter-connect every object present in

the environment so that each object can interconnect with other objects in

the network to form a self-configuring network e.g. house hold appliances

communicating and servicing in home network.

• Context Awareness

Context awareness is another term coined after pervasive computing vision.

Within information rich environments, the information in the environment is

huge and sometimes irrelevant. Managing and processing large quantity of

information to provide the users with the appropriate services is addressed by

the research on context aware computing. Although the research in context

aware computing is growing, there is an impoverished understanding of what

context is and how it can be used. This results in various understandings and

definitions of the concepts of context presented in the literature [4, 30, 50, 106,

148,187]. For the purpose of general understanding we are quoting the definition

by Dey and colleague [4].

“Any information that can be used to characterize the situation of

entities (i.e. whether a person, place, or object) that are considered

relevant to the interaction between a user and an application,

including the user and the application themselves”.

Based on various understanding and definitions of context, numerous

applications have been developed and published in the literature. It ranges

from very simple application of lights turning ON when user enters the room

to more sophisticated applications where the application changes its behavior

16

1.2. Concepts in Pervasive Computing

based on the sensory input from the living environment of the user.

• Ambient Intelligence

Ambient intelligence is another concept in pervasive computing. The concept

is linked with the advancement in electronic device and communication

technologies. As progress has been made in embedding computing and

communication around human living environments, it will be important these

devices communicate and coordinated with an intelligent system embedded into

them to form an ambient intelligence environment. A brief definition of ambient

intelligence would be:

“A digital environment that proactively, but sensibly, supports people in their

daily lives” [12]

From the definition above, ambient intelligence refers to a system that is

embedded with digital intelligence to proactively deliver services to its user.

The system has to be intelligent enough so that it can assist users when

needed and doesn’t interfere in other operations in the environment. Thus,

design of ambient systems should be user friendly while providing absolute

privacy and security of user data. Another concept that emerges with the

ambient intelligence is known as smart environment. Smart environments

comprise of sensor, actuator and sophisticated communication technologies.

Smart environments are found in healthcare (where various sensors monitors the

user’s vital signs, location and offer services based on the context), offices (where

smart meeting rooms are contextually aware of ongoing events and provide users

with services according to their needs), etc.

17

1.3. Design and Evaluation Challenges in Pervasive Computing

1.3 Design and Evaluation Challenges in

Pervasive Computing

From the concepts stated above, we have seen that, unlike desktop computing

paradigm, in pervasive computing PerCom users are surrounded by many computing

and communicating devices. Thus, in this complex situation, the design and

evaluation of pervasive systems becomes a big challenge. As the technology is

improving, there is a great need for a standard model to position PerCom and

define directions for future research. A review of related literature shows that

tremendous efforts have been put in the related research over the past two decades,

however unlike other disciplines no standards or commonly accepted methodology

has been established to evaluate these systems and identify directions for future

research. There is a clear consensus among researchers that traditional performance

approaches are no longer applicable for pervasive computing environments. Gabriele

et al. suggested that due to high QoS requirements, proactive performance tuning

activities and interdependencies between user behavior and system, conventional

evaluation approaches are not directly applicable for evaluating PerCom [99]. In

another work, Scott and Jennifer identified some major evaluation challenges in

pervasive computing evaluation, such as applicability of metrics, scale, ambiguity

and unobtrusiveness [170]. Similarly, Satyanarayanan drew attention towards the

measuring and benchmarking the PerCom system and presented key challenges in

quantifying pervasive systems. The challenges are as summarized as follow [161]:

– Combining realism with reproducibility, which states that it is not easy to define

a benchmark in a way that preserves realism yet gives the same results in

18

1.3. Design and Evaluation Challenges in Pervasive Computing

identical experimental settings.

– Sheer scale complexity of pervasive computing systems, which states that it is

difficult to interpret measurements and determine the contribution of different

system components to those measurements. This makes it difficult to identify

bottlenecks on which attention should be focused to improve the whole system.

– Multidisciplinary nature of pervasive computing, which state that the end-to-end

quantitative analysis of a pervasive computing system would need to integrate

the analysis of the user behavior, software behavior, hardware behavior, wireless

network behavior etc.

In the following, we present the major and common design and evaluation challenges

for PerCom systems. The challenges presented are both technical and non-technical

and cover issues that are central to research in pervasive computing and are addressed

in this thesis.

• Interaction

Pervasive computing offers completely different challenges in terms of user’s

interaction with the system. Unlike traditional computing systems, interaction

in PerCom can be interacting with integrated computing and communication

components in the environment with respect to its context. The objective of

interaction in pervasive system is to enhance the user experience, so that the user

can experience and utilize the available services in an effective and pleasurable

way.

• Integration

Integration is one of the major challenges in achieving the vision of PerCom. It

refers to seamlessly integration of computing and communication components in

19

1.3. Design and Evaluation Challenges in Pervasive Computing

everyday lives and living environments of the users. The system becomes more

like a system of many autonomous systems within it. Thus this heterogeneous

nature of various components poses many questions on the seamless integration

of components in the environment and the smooth execution of services. This

leads to new research challenges and issues in development of PerCom.

• Scalability

Scalability is the ability of a computing system or network to meet the growing

work demand. Scalability is another major challenge in the development of

PerCom. Since in the pervasive computing paradigm, communicating and

communication is embedded in the environment, thus system designers have

to account for scalability issues in their design, e.g. having multiple users using

the same resources, the addition of new components that can work with the

existing system.

• Heterogeneity

Heterogeneity refers to multiple different autonomous computing units working

together in the environment. In PerCom environments, it is anticipated that

users will carry multiple devices such as a laptop or a SmartPhones, to more

sophisticated devices like body wear devices. Consequently connecting all these

devices to interact with the environment for the smooth execution of the system

poses great challenges such as: application and service adaptation to multiple

devices, protocol design for heterogeneous networks, inter-device and network

communication between multiple components (device & networks).

• Interoperability

Interoperability refers to the ability of different systems to work together

20

1.3. Design and Evaluation Challenges in Pervasive Computing

to achieve goals. Due to the presence of multiple devices in the PerCom

environments, it will be difficult to meet the interoperability requirements

of applications implemented on multiple platforms. With the wide range

of development platforms, heterogeneity of devices, PerCom environment

have to meet the requirements of different types of application and services.

Requirements may range from interface knowledge, application behavior,

syntax, semantics knowledge, pragmatic knowledge etc. Some requirements

related to service interoperability in smart environments are presented in

chapter 2 section 2.1.2.

• Invisibility

Invisibility is among the basic characteristics of PerCom. The goal of fabricating

computing and communication in environment present many challenges to

system and infrastructure design. To achieve invisibility, systems must keep the

focus of the user to the corresponding task, while keeping computing invisible.

The application designers have to design application and services that require

less user intervention while fulfilling user requirements. In addition, systems

and components have to react to any change in user requirements dynamically,

without any user intervention or halting system operations.

• Modulability

The modulability of a PerCom system describes its capability to adjust and

accommodate changes in the environment and user’s preferences. The required

flexibility of the applications as well as dynamicity of the environment, where

the system is deployed greatly affects the most suitable modulability for each

system. It is obvious that as more flexibility is incorporated in a system, the

21

1.3. Design and Evaluation Challenges in Pervasive Computing

higher the programming efforts are required, and these different approaches have

distinct characteristics such as in the case of programming and maintainability.

• Reliability

Generally, system reliability is the ability of the system to perform the tasks

without the user’s intervention and continue to provide services in normal

and exceptional conditions. PerCom systems tend to provide computing

environments where users will perform their Activity of daily living (ADL),

thus it is important for these environments to be reliable and fault tolerant.

System reliability can be achieved when the system implements dynamic and

transparent fault tolerance methods and requires minimal user intervention in

handling system operations. Due to openness and diversity in technology, it is

hard to build reliable systems. Unlike in traditional computing system, system

reliability of PerCom environments is hard to achieve due to the following facts:

– Many heterogeneous and autonomous components (hardware & software)

with different implementations have to interact together, which pose a great

challenge for designers to maintain the reliable execution among them and

design fault tolerance approaches.

– Pervasive computing systems are complex in nature. It is hard to cover

the complete system in test cases and verifying or validating every state

of the system. Therefore before hand, a diagnosis of system components

requires comprehensive testing and debugging tools, exception handling,

dynamic fault tolerant algorithms, transparency of the system and minimal

user intervention.

– Infrastructure and architecture design of PerCom systems incorporate many

22

1.3. Design and Evaluation Challenges in Pervasive Computing

computing and communication devices. Reliability of this environment

can be affected by many factors like device failure, communication link

failure, and user mobility. Simulating and validating these factors requires a

comprehensive knowledge of the entire system, which is not possible due to

the presence of multiple vendor components.

The facts stated above and more pose great challenges in the design and

evaluation of reliable and fault tolerant system.

• Privacy and Security

Privacy and security issues are of major concern in any computing system,

but at the same time, it has great importance in PerCom environments.

The huge amount of data and wide set of services, with limitless mobility

access that moves from one computing environment to another, require a

comprehensive and efficient security and privacy mechanism to safeguard user

data and maintain his/her privacy. As anticipated, multiple users will be using

PerCom environments therefore it will be of great importance to define new

access control mechanisms to ensure that services and user data are utilized by

the legitimate user. For instance, medical data is very personal to the user, thus

this data should only be accessible by the patient and his doctor or a person

authorized by patient. These immense security and privacy requirements pose

a big challenge for system designers to develop highly sophisticated models to

ensure security and privacy of the user in PerCom environments.

• Adaptation

In pervasive computing systems, adaption is the process to adapt the

system’s internal and external environment according to the profile and

23

1.3. Design and Evaluation Challenges in Pervasive Computing

dynamics (i.e. environmental context) of its users. The internal environment

refers to the internal adaptation of the application (i.e. context aware

application) in response to the changing context of the environment, while

the external environment refers to the transparent or prescribed environment

adaptation around the application [194]. Adaptation in PerCom is necessary

to overcome and address the dynamic nature of PerCom environments.

Unlike traditional computing systems, user mobility and interaction with

the environment, changing requirements for available resources, heterogeneous

system components (hardware & software), input and output modalities,

changes in the physical and virtual environments and more factors cause a

great challenge for system adaptation. In addition, interoperability among

applications and on-demand user requirements require advanced and complex

adaptation methods to support the smooth operation of a PerCom environment

[72]. System designers have to consider many factors to make their system

adaptable to the environment requirements such as:

– Dynamic system adaptation according to the environmental resources

(computing and communication) i.e. resource aware adaptation.

– Adapting application components with respect to environment change and

user requirements.

– Adapting while interoperating or migrating to other components (hardware

& software).

– Ensuring system’s adaptation with respect to the functional and behavioral

changes required by the user [194].

24

1.4. Summary

1.4 Summary

In this chapter, the background of PerCom and other related concepts were

introduced. It describes the vision and fundamental principles behind PerCom along

with a discussion of some key concepts in PerCom research. Also, this chapter

presents a discussion on major design and evaluation challenges for PerCom system.

The challenges presented are both technical and non-technical and covers issues that

are central to research in PerCom. In the next chapter, we will review and discuss

the approaches and solutions available for PerCom system evaluation.

25

Chapter 2

Related Work

In this chapter, we analyze existing research concepts, approaches, techniques

proposed and used in pervasive computing evaluation. We also present the design

and evaluation lifecycle which is established to review the related work presented in

literature in area of ubiquitous and pervasive computing evaluation. In an effort of

pervasive computing systems evaluation, various methods and solutions are proposed

in literature. However, most of these solutions and approaches are tailored towards

specific projects and technologies at different design stages. To better understand

and position evaluation approaches for pervasive computing systems, as a first step

we assemble a design and evaluation lifecycle for pervasive computing systems (shown

in figure 2.1).

This lifecycle is an abstract representation, showing the steps involved in the system

development and deployment. There might be multiple iterations on each step since

the system must be implemented and tested before the next step begins. Second, we

reviewed the evaluation approaches in practice and divided them in seven different

26

Figure 2.1: Design and Evaluation Lifecycle

categories:

1. Evaluation frameworks for architectural designs and infrastructure evaluation.

2. Simulation, testing and verification techniques that cover metrics and their

measurement techniques for various components of the systems.

3. User centered evaluation approaches for field and lab assessments, qualitative

and quantitative evaluation, formative and summative evaluation, In-Suit

evaluation of underlying systems.

4. Usability studies for the products.

5. Contextual evaluation approaches for technology and context quality.

6. Environmental and ecological evaluation approaches for environmental

implication of technology.

7. Technology Acceptance Models (TAM) to evaluate the impact of technology on

users and their acceptance factors.

27

2.1. Exiting Solutions and Approaches

2.1 Exiting Solutions and Approaches

In this section, we discuss and review the approaches best suited under each

category listed above.

2.1.1 Evaluation Frameworks

This section presents the review of representative work that addresses different

evaluation frameworks, challenges and solutions for PerCom systems. Several

existing methods and techniques for evaluating distributed and mobile systems

can be extended to cover PerCom system [191]. Simone and Kazman proposed

Software Architecture Analysis Method (SAAM), an analytical method for evaluating

software architectures [56]. Kazman et al. developed Architecture Tradeoff Analysis

Method (ATAM) a structured technique for understanding the inherent tradeoff

in the architecture of software-intensive system [96]. Clements described active

review for intermediate designs, methods for reviewing preliminary software designs

for suitability in its intended use, context and environment [44]. To evaluate

the autonomous and reconfiguration aspects of PerCom system, Braunes et al.

presented a Reconfiguration-Enabled Compiler and Simulation Toolset (RECAST)

an evaluation framework for coarse-grained reconfigurable architectures. The main

components of the framework are:

– Profiler based on Stanford University Intermediate Format (SUIF) compiler.

– Synthesis and reconfigurable module.

– Code selector.

28

2.1. Exiting Solutions and Approaches

The framework combines hardwired and reconfigurable functional units in one

template based on architecture description language, which turns a profiler driven

retargetable simulator [24].

Scholtz and Consolvo presented a user evaluation areas framework of ubiquitous

applications. The goal of this framework was to develop consensus among the research

community on evaluating and positioning PerCom systems [162]. Researchers from

National Institute of Standards and Technology (NIST) have presented an evaluation

framework knows as System, Component, and Operationally-Relevant Evaluation

(SCORE). The SCORE framework presents a unified set of criteria and software

tools to formulate the performance evaluation approaches for complex intelligent

systems. The SCORE framework is designed to evaluate technical and user oriented

aspects of system components in control and realistic environment. The goal is to

quantify the system performance in real user domain [189]. The SCORE has been

extended to design the Multi-Relationship Evaluation Design (MRED) framework to

cover discounted-factor in evaluating intelligent systems. The MRED framework is

capable of producing detailed evaluation blueprints while receiving uncertain input

information [190].

In another work, Thompson presented an evaluation framework for evaluating the

performance of intelligent systems across large test spaces. The framework is based

on spatial variance bounding methodology for designing tests experiments based

on a meta-model method for characterizing a discontinuous, stochastic system [173].

The aforementioned evaluation methodologies can be used to study and evaluate the

architectural aspects of PerCom system.

Web-based services can help users realize the PerCom vision. Enrique presented

29

2.1. Exiting Solutions and Approaches

a framework for evaluating QoS of Web services. The framework is designed on

the hypothesis of “ensuring QoS of the service is the capability to respond to the

constraints, and meet the need according to the preferences of users”. The models

tend to evaluate all QoS aspects of Web services as well as an aggregation of

non-functional properties (NFP values). NFP depend on context and help evaluate

service context [73]. In another work, Liu et al. proposed a framework for evaluating

the reliability quality of Web services in service-oriented architectures (SOA). The

framework is based on decomposition of reliable quality and focuses on composite

Web services. Specific reliability evaluation characteristic of Web services are defined

within the framework to find out what kind of reliability should be adapted for a

given Web service. The two main aspects that were considered in the framework are

availability and accessibility, while other aspects can be included in the framework

[107]. Kalasapur et al. focused on SOA in PerCom. They presented a mathematical

analysis model to derive a set of generic evaluation metrics for SOA, as well as metrics

for individual services [97]. Lera et al. employed ontology with performance-related

information to study the performance assessment of ambient intelligence systems that

allow acquiring knowledge and reasoning about possible performance. This helped

them to evaluate how architectural characterization affects the overall performance

of distributed intelligent systems [109].

Similarly, Zhang et al. proposed a suit of user-oriented models and methods

to evaluate the dynamic QoS requirements (context-awareness, mobility, jitter,

reliability, interoperability and robustness, etc.) and adapted service selection. The

hypothesis of the proposed model is based on QoS evaluation models that focus

on quality criteria associated to user context. The main features of the model

30

2.1. Exiting Solutions and Approaches

are: user-oriented QoS model with hierarchical structure to achieve scalability and

flexibility, a context-model with a time dimension to include in QoS evaluation, user

preference models based on linguistic variables to calculate the weights of quality

criteria and QoS evaluation, and service selection models for first order logic inference

and hierarchical fuzzy location evaluation [196]. Similarly, Laurent et al. proposed

a generic framework for mobility modeling and evaluation of dynamic behavior of

ubiquitous applications [105].

Metrics and benchmarks can help to sustain long-term research and stimulate

competition by defining a framework for comparing the effectiveness of alternative

approaches. Attempts have been made to identify the key evaluation and assessment

parameters for PerCom system. Authors in [28] [29] [115] suggested different

techniques to gather the data and selecting the metrics from scenarios that are

driven by real problems rather than by technology. Romer and Mattern surveyed and

studied the design space of wireless sensor networks and classified application designs

according to mobility, heterogeneity, network modality, and topology. The results

of this study helped designers understand the parameter that should be considered

during the design process of such systems and can later be used for performance

evaluation [151].

Oh et al. proposed an evaluation framework for QoS of their RFID middleware.

They studied and analyzed quality characteristics (like functionality, reliability,

usability, efficiency and portability) with reference to software in international

standard ISO/IEC 9126, as well as quality elements of standard RFID middleware

of EPC Global and extracted the potential aspects for quality of RFID middleware

evaluation. They used the Analytic Hierarchy Process (AHP) as a selection method

31

2.1. Exiting Solutions and Approaches

to evaluate the subjective characteristics of stakeholders in an objective way for

evaluating quality of RFID middleware. The proposed method can be employed

to select RFID middleware best suitable for ubiquitous environments [132].

Schlenff et al. presented a PRediction In Dynamic Environments (PRIDE)

evaluation framework to perform moving object prediction for unmanned ground

vehicles. The framework is designed on the concept of multi-resolutional hierarchical

approach by unifying multiple prediction algorithms into a single algorithm. In

addition a traffic control algorithm is presented to evaluate the performance of

autonomous vehicle in realistic environment. The framework helps to predict

location of moving objects as well as to evaluate vehicle performance in on-road

driving scenario without evaluating in real environment with real user [159, 160].

Ranganathan et al. presented a performance evaluation benchmark based on their

study of the GAIA system ; they divided the system framework roughly into three

layers (system support, application programming support and end-user interface) and

identified all of their performance metrics [6,146]. Similarly Kwon and Kim presented

a layered methodology to assess the level of ubiquitous services; they proposed a

three-layered model (i.e. capabilities of ubiquitous technology, level of ubiquity

in technical perspective and level of service quality in behavioral prospective) and

conducted the system assessment based on these layers with an expert in the domain.

They suggested a seven Likert-type scale for certain technology services to quantify

as UbiCom services [95]. This study was related to ubiquitous services and has a

significant impact on the evaluation of ubiquitous systems. Grim et al. set some

micro-benchmarks to quantify the scalability of migration in PerCom applications as

well as data storage systems’ performance for PerCom systems [63, 106]. Shirazi et

32

2.1. Exiting Solutions and Approaches

al. proposed a set of performance metrics to consolidate the QoS (quality of service)

model in PerCom [171].

2.1.2 Simulation, Testing and Verification Approaches

There are numerous approaches and tools available for simulating PerCom

systems. We have reviewed some simulation and testing techniques with tools

to support them. As mentioned earlier, PerCom covers distributed and mobile

computing, sensor networks, human computer interaction and artificial intelligence

under its umbrella. Various simulation techniques and tools are designed and

developed for different disciplines of PerCom systems. For instance, to evaluate a

wireless sensor network, there are simulation tools that can verify routing protocols,

data dissemination, QoS parameters, network throughput and several other issues.

In an effort to simulate and reduce the cost of testing PerCom systems, Nerendra

et al. suggested using well-known multi-agent-based simulation techniques. The idea

is to represent every software and hardware entity as a software agent that can help

designers develop and simulate the PerCom system. Each agent carries the workflow

module responsible for interaction with the interface module of the simulation engine

that triggers the workflow event [127]. Reynolds et al. argued that existing simulators

are very limited and are not suitable for modeling the desired complexity of UbiCom

system and presented some of their initial work on design of generic simulation tools

for various ubiquitous system scenarios. In their work, a layered modular approach

was used to support the simulation of UbiCom environments without constraining

the simulator for covering one of several aspects of system scenarios.

In addition, an emulation framework for middleware and software under

33

2.1. Exiting Solutions and Approaches

development was also provided that can interface with the simulation tool [149].

Min Do et al. drew attention towards the importance of evaluating a distributed

sensors environment and the presence of ubiquitous robots in it. They argue that to

verify and evaluate the performance of complete systems, the effect of environment

sensor should be considered. They presented an integrated simulation framework,

according to their approach each robot and sensor in the environment is implemented

as components of Robotics Technology Middleware (RT Middleware). The benefit of

this approach is to have a common interface module between simulation space and

real environment [53].

To improve confidence in the ubiquitous software system, Merdes et al presented

a built-in test paradigm by combining it with resource-awareness parameters, a

technique that executes tests at runtime for the software under evaluation. This

technique is well suited for ubiquitous middleware because of the environment’s

dynamic nature and inherent resource constraints [123]. Jinseok et al. presented

a virtual reality system tool for developing ubiquitous environments. The system

supports the prototyping and planning of sensors, display, processing objects and

data collection objects. These objects are re-usable and adaptable, and their behaviors

can be altered at different abstraction level. This virtual reality system can act as

a software-testing platform and can be used by system architects to walk through

the system under development and validate various scenarios for interaction usability

[165].

Vijayraghavan and Barton from Mobile ad Media Systems HP Laboratories

presented a Wireless Infrastructure Simulation Environment (WISE) simulator [180].

WISE is developed to explore the wireless infrastructure, devices, services for these

34

2.1. Exiting Solutions and Approaches

devices and their interaction. The simulator presents an abstracted view of the

environment to the end-user, which can be extended for building new scenarios.

Similar to WISE, Vijayraghavan and Barton extended QuakeSim simulator [18] to

design Ubisim [33]. Ubisim was designed to support the development of systems

that integrate the physical and virtual worlds by simulating the physical world of

people, the things they interact with, and the places they work, play and live in. The

simulator works well with the WISE [180].

Later, Ubisim and WISE were combined to design the UbiWise simulator. The

new simulator offers three main features that can help to simulate the ubiquitous

system. The first feature is for users to interact with the simulated environment while

running experiments or scenarios. The second is for researchers in order to pre-adjust

the simulation environment to suit the scenario under consideration. The last feature

is for developers to extend the simulator for application under review. The simulator

emphasizes computation and communication devices, either integrated with 3D model

of physical environments or carried by people [90]. Similarly, TATUS simulator was

developed to support software that controls ubiquitous environments. The simulator

explores the states of the software under test to develop its own representation of

the world. This virtual representation shows the view of the software under test in

the environment, and allows making decisions to change the world according to user

behavior and mobility. TATUS can be used to verify whether that the environment

behaves intelligently according to its set of goals or not [134]. In the following section,

we present some discussions on generic simulation models for PerCom systems.

Simulators are not particularly designed for PerCom systems but can be used to

design and simulate various aspects of UbiCom systems. The first simulator to be

35

2.1. Exiting Solutions and Approaches

discussed is the discrete event system specification (DEVS) [10]. DEVS is used to

model and analyze distributed discrete systems as modular and hierarchical system.

Each module takes an input to transformed output, without knowing the underlying

implementation, which makes it a black-box testing system. Ptolemy is another

simulator with a graphical user interface [22]. it studies modeling, simulation, and

design of concurrent, real-time, embedded systems and allows describing the model

of computation that can further describe the interaction between concurrent system

components. These components, called actors, are specified in Java technology and

can be analyzed for many properties such as dataflow or real-time characteristics.

Solver for circuit Equations with User defined Elements (SEQUEL) is another

generic simulator widely used for a variety of PerCom applications to simulate

electronic circuits, its pre-processor includes the library templates required to evaluate

user-defined circuits and prepares the associated element subroutines [139]. Moreover

there are numerous other formalizing and modeling approaches that come with a

simulator that could be used to model and simulate different aspects of PerCom

systems.

To the best of our knowledge, few attempts have been made to use formal methods

as a tool or technique for evaluation, particularly in PerCom domain. In an effort to

verify the interoperability requirements for PerCom systems, Pokraev et al. addressed

and identified assessment requirements for semantic and pragmatic interoperability.

Based on the requirements, they proposed a method to verify composite systems

[117, 145]. The limitation of their approach is the lack of mapping mechanism for

service models. Baldoni et al. recommended formalizing interaction protocols using

finite state automata to define and verify properties for a service protocol [13]. Their

36

2.1. Exiting Solutions and Approaches

approach is a static analysis that can improve confidence in the system; however,

it requires prior knowledge of protocol descriptions under test. A similar approach

is presented by Wan et al, they presented a verification algorithm and proposed

formalizing the properties of services adapted to Pantagruel, a language that describes

and manages services. This approach allows programs to be verified prior to their

execution, however it is limited when used to verify composite systems on the fly [183].

Some authors like [2, 36, 37, 40, 46, 47, 49, 84, 114, 147] have drawn attention towards

using formal methods for designing and validating PerCom systems. The importance

of the topic has also been addressed in two recently initiated projects (UbiVal [152] and

VERIWARE [102]) funded by European Research Council Advanced Investigators

Grant. These projects, also, intend to employ formal method to validate functional

and non functional requirements of pervasive system.

Networking is another important aspect of PerCom systems. There exists some

well-known network simulators that are often used to verify and test the performance

of network technologies/protocols for ubiquitous systems. For instance, Network

simulator (NS-2) is a discrete event simulator for TCP, routing and multicast protocols

over wired and wireless (local and satellite) networks. It can be used as an emulator to

implement protocols on real and simulated networks [120]. Global Mobile Information

System Simulation Library (GlomoSim) is another parallel discrete event simulator

for network technologies best suited for ubiquitous systems [195]. It is built to support

network systems using a layered approach (similar to OSI seven layers architecture),

which allows the rapid integration of model and solutions developed at layers by

different people. There are other existing simulators (e.g. OMNeT++ [178], NetSim

[87], OPNET [42]) which are extensively used to simulate the network protocols and

37

2.1. Exiting Solutions and Approaches

implementations for PerCom systems.

2.1.3 User Centered Approaches

Numerous user-centered evaluation approaches are devised to design and evaluate

PerCom system. Petrelli suggested the potential use of user-centered approaches

in design and evaluation of interactive information retrieval system. The results of

this approach have the potential to first, help assessing the effectiveness of system

components by testing the system prototype (micro-level), and secondly, help build

a macro view of a system that would impact users and their tasks [140]. Scholtz and

Consolvo presented a ubiquitous computing evaluation areas framework [162]. Iqbal

et al. tailored existing user-centered design and evaluation approaches for ubiquitous

system. In their proposed method, they addressed different dimensions (individual,

social and organizational) that are relevant in the design and evaluation of ubiquitous

services [82].

Hook suggested using user-centered design and evaluation approaches to achieve

the objective of effective ubiquitous application. He presented a two-tiered

user-centered evaluation method for evaluating the effectiveness of interfaces by

discounting simplistic measurements while focusing on interpretative understandings

of what’s happening between user and system [76]. Neill et al. presented a 3D

virtual reality simulation platform for user-centered design and evaluation of adaptive

context-aware systems. The simulator presents a virtual environment that resembles

a real environment and captures user context according to changing physical and

social dynamics. The platform tends to help in rapid prototyping of adaptive services

and in usability evaluation [138]. Similarly, 3D virtual platforms are presented to

38

2.1. Exiting Solutions and Approaches

evaluate services for multi-users in PerCom environment [133].

Gross presented a user-centered design and evaluation process by adapting ISO

13407 according to the needs of UbiComp system. The process helps understanding

and specifying the context of use, requirements and evaluating design against the

requirements in a loop of an iterative cycle [66]. Leichtenstern et al. presented a

user-centered prototyping tool called Pervasive Interface Development Toolkit for

Mobile Phones (MoPeDT). The tool is an extension and combination of various

features available in user-centered prototyping tools. The proposed tool tends

to analyze user behavior and evaluate efficiency, effectiveness and satisfaction of

interfaces [103].

Privacy is an important factor in PerCom system. Samsuri et al. proposed a

user-centered evaluation of privacy model for protecting personal medical information.

The evaluation is conducted by interviewing users. The interviews covered questions

from areas like legislation, ethic, technology and culture. The user’s feedback was

used as an aid in design and evaluation of privacy models [169]. Similarly, Ali et al.

presented a privacy model based on user control over private information; the model

helps to evaluate the expressiveness of privacy policies and unobtrusiveness of privacy

mechanisms [54].

User-experience is another important area of evaluation in PerCom. Arhippainen

et al. presented analysis of user-experience evaluation for adaptive mobile application.

They conducted interviews with small groups of people to get the information on

user-experience while using a PDA application. In addition to the interviewing

method, an observation method was also conducted to gather user experience that

might have not been expressed during the verbal interview sessions [11]. Isomursu

39

2.1. Exiting Solutions and Approaches

conducted user-experience evaluations with four different methods: (1) methods used

before the pilot, (2) methods used during the pilot, (3) methods used immediately

after the pilot and (4) follow-up studies to evaluate the user experience data and

analyze the results [83]. Ikonen et al. used scenario evaluations to evaluate the

user experience while using technology. This method tends to help designers develop

functional models of real life and evaluate them before designing the complete system

[81]. Vangelis et al. presented a set of attributes with respective metrics that are

critical for user-adoption, and then recommended possible solutions for measuring

those metrics [122].

Human behavior and contextual factors are also important in the design of

PerCom environments. A concept of living laboratory was presented to evaluate

PerCom environments [1] [80]. Results of living laboratories are helpful to identify

pitfalls and improvement opportunities in the design of display (interactional aspect).

However, the results are not satisfactory when deployed outside a laboratory

environment, as participants of the living laboratory study (students or volunteers)

are not often representative of the real users of applications. Hence, the interaction

and intentional level of these individuals cannot be generalized. To address living

laboratory evaluation limitations, domain experts turned to In-situ evaluation and

recommended bringing systems to interact with real users in their normal life. In

order to capture true user experiences, researchers applied evaluation techniques such

as wizard of Oz, experience sampling, analyzing data from sensors, cultural probe,

etc. [163]. In-suit evaluation techniques [43] seem promising for PerCom system,

however these techniques have some limitations like:

– Studies are done on prototypes, therefore results may differ from those with the

40

2.1. Exiting Solutions and Approaches

complete system.

– The time period, which is often 2-3 weeks, is not sufficient.

– The question of how to effectively analyze and utilize the data in evaluation is

still not answered.

A summary of selected literature on the topic of In situ evaluation for PerCom system

is presented by Neely el al. [130].

Qualitative and quantitative evaluation approaches have also been applied for

the evaluation of PerCom. Researchers in the domain have suggested numerous

evaluation approaches. Mark and Chris presented a comparison of quantitative

and qualitative evaluation strategies and suggested a hybrid evaluation framework

[29]. Jennifer and Scott stated difficulties in evaluation, particularly at the early

design stage. They explored the questions that arise in ubiquitous system adoption

and evaluation (like: what is useful, usable and what do users actually need).

They recommended using unobtrusive methods to gather data by combining both

quantitative and qualitative methods, and indicated the importance of diary studies

or media-driven diaries to gather data for evaluation [170]. In another study, Consolvo

et al. used LAQ sequential analysis (LSA) to assess and evaluate the enhanced biology

laboratory [34]. This technique requires hours of manual video coding into different

categories.

Beckwith conducted a qualitative evaluation study on user perceptions of

house-based sensing technology. The participants of this study lived in a nursing

home. The results of the study were useful to obtain the user’s perception of these

technologies and their adoption mood, however, system design and other technical

aspects were ignored in this study [19]. Hutchinson el al. presented a new kind of

41

2.1. Exiting Solutions and Approaches

evaluation technique called Technology Probe [75]. This technique has three goals that

cover different disciplines of system design and adoption. The first is the social goal

that leads to the understanding of needs and desires of users in real world settings.

Second is the engineering or technological goal, which explores field-testing of the

technology. Third is design goal for motivating users and practitioners to explore new

methods and technology for the advancement in the domain. Efforts have also been

made to explore formative and summative evaluation approaches [32] [35] [124] [86].

The reason that these approaches have limited impact is that their focus was entirely

on gathering user requirements before designing a working system or vice-versa.

2.1.4 Usability Studies

Usability is defined as the ease of use and learning ability of a human-made

object, product, device, etc. The ISO 9241-11 standard [61] defines usability as

the effective, efficient and satisfactory use of a product, device, etc. in the context

of its use. Unlike traditional computing systems, usability evaluation of PerCom is

very complex due to multiple dimensions of system and user requirements. Bowman

et al. conducted a study that highlighted usability issues related to interfaces in

virtual environments. They considered three main characteristics: involvement of

representative users, context of evaluation, and types of results produced. This

study helped position usability evaluation methods in virtual environments [20]. A

systematized usability evaluation framework for ubiquitous devices was presented by

Kim et al. The framework offered a new usability evaluation method reflecting user,

task and device by modifying the context decomposition, allowing evaluating each

part of ubiquitous device. This framework has a Web-based implementation where

42

2.1. Exiting Solutions and Approaches

devices can be evaluated and compared by calculating their scores [92]. Zhang et al.

presented a generic framework for conducting usability tests for mobile application.

The framework tends to serve as guidelines for conducting usability studies of mobile

application [193].

In another work, Heo et al. presented an analytical usability evaluation framework

based on a multi-level hierarchical model for mobile phone. The framework supports

task and interface-based usability evaluation, and helps quantify several usability

aspects using the proposed checklist [70]. A heuristic evaluation of HCI was carried

out by Bastien and Scapin. They presented ergonomic criteria that can help to

evaluate and improve user interfaces completeness and explicitness [31]. In another

work, Nielsen presented ten usability heuristics as general principles of user interface

design and evaluation of PerCom systems [128]. Similarly, Ji et al. presented a

task-based usability checklist for evaluating mobile phone user interface based on

heuristic during the development process [89].

Numerous usability evaluations of the PerCom system are conducted in laboratory

and field environments. Rowley conducted a study to evaluate the impact of

bringing the system in field environment for studying user behavior and reported

the experience in [154]. Nielsen et al. studied the impact of usability studies for

mobile systems in laboratory and field environments. They reported that usability

studies in field environments are quite difficult compared to laboratory environments.

Some of the major problems identified were the user interaction style and cognitive

load, which are discounted in the laboratory environments [129]. Lirn duh et

al. compared usability studies conducted for mobile phone used in laboratory and

field environments. They studied the quantity and quality of severity, performance

43

2.1. Exiting Solutions and Approaches

measures, user satisfaction and subjective feelings and behavioral patterns in both

environments, while performing the same tasks [57]. Beck et al. presented six

usability evaluation techniques for mobile systems in laboratory settings that involve

various aspects of physical motion with either needs for navigation in physical space

or division of attention [15].

Kjeldskov et al. evaluated the usability of context-aware mobile systems in the

field. They employed our multi-method evaluation approaches (i.e. field-evaluation,

laboratory evaluation, heuristic walkthrough and rapid reflection) for evaluating a

mobile guide designed to support the use of public transport in Melbourne, Australia.

They discussed the limitations and strengths of these approaches in evaluating mobile

computing application [94,101]. Analysis of these studies identified major difficulties

in evaluating mobile systems in laboratory and field environments. Other usability

studies were carried out and presented in the literature; however, they are not reported

here, as most of them are using or improving techniques described previously, or

applying them to different applications [5, 7].

2.1.5 Contextual Evaluation Approaches

Pervasive computing systems demand applications that can support highly

dynamic self-adaptive environments and require less user intervention. Context

information is the key to produce self-adaptive applications, thus it is important to

validate context information in PerCom environments. To the best of our knowledge,

a little work has been done on evaluating the quality of context. Park et al. presented

a context-aware simulation system for smart houses. Their idea was to generate a valid

context using virtual sensors instead of physical sensors. The simulator tends to help

44

2.1. Exiting Solutions and Approaches

application developers detect rule violations and conflicts in context information [141].

Location is a part of context and an important factor for designing location-based

applications.

Morla and Davies evaluated a location-based medical monitoring system by using

existing network and context simulators. They presented a hybrid test and simulation

environment that focus on component interaction, networking, location changes, and

multiple component instances [118]. Neill et al. drew attention toward the importance

of context, they suggest that context-aware applications need to operate reliably over

a wide variety of situations to behave according to their context of use. They presented

a technical architecture to support scalable, cost-effective, runtime experimentation

of context-aware applications. The architecture allows informed decision-making in

an iterative design cycle [136].

Grace et al. presented a context-based evaluation model and suggested that

technologies should be evaluated within the context they will be used [111]. The

model does not support PerCom evaluation as the contextual factor considered in

their model (i.e. environment) is not the only factor to be considered in the case of

PerCom systems.

2.1.6 Technology Acceptance Models

Pervasive computing systems are available on the market in various forms and

users use such technologies in their Activity of Daily Living (ADL) e.g. (PDA,

SmartPhones, etc.). Technology Acceptance Model (TAM) is an established theory

of information systems that helps to evaluate user acceptance of technologies. In its

modeling constructs, TAM accounts for a number of factors that might influence the

45

2.1. Exiting Solutions and Approaches

use of technology. Designing TAM for PerCom is a challenging job. To the best

of our knowledge, very few attempts have been made in TAM research for PerCom

system.

Carsten reported the shortcomings of existing TAM models and suggested new

factors that should be included in the design of TAM for future technologies [153]. Kay

proposed a mathematical predictive model based on user perception of usefulness, ease

of use, social influence, trustworthiness and integration to evaluate user acceptance of

PerCom environments [45]. Dong-Hee presented a Ubiquitous Computing Acceptance

Model (UCAM). The construction of models is based on the cognitive and affective

attitudes of users. The model helps to identify the factors that influence user attitude

and intention while using the ubiquitous system [168]. Shin extended the TAM to

examine user acceptance of digital multimedia broadcasting (DMB) system in Korea.

The constructs of this model are based on a motivational perspective that helps

examine the socioeconomic determinants of DMB technology [167]. Hamner and Qazi

extended TAM in their study to examine personal computing technology utilization

in government agencies. The constructs of their model are based on external factors

such as organization culture, individual and belief factors. This study helped gather

diverse versions of adoption and non-adoption problems of employees [79].

Liang et al. in their study extended TAM to examine the use of PDA in

healthcare domains. The study concludes that personal innovativeness, relevance

and compatibility directly and indirectly affect the usage of PDA for healthcare

professionals [112]. June Lu et al. extended TAM to study the use of Internet on

handheld devices. The constructs of their model are based on individual differences,

technology complexity, facilitating conditions, social influences, and wireless trust

46

2.1. Exiting Solutions and Approaches

environment. The result of the study helps in analyzing factors affecting the use

and acceptance of technology [113]. Chismar applied TAM2 [179], an extended

version of TAM to evaluate Internet use in healthcare environments [48]. Numerous

researchers have applied different constructs to examine PerCom and UbiCom

systems [58, 156, 175, 182, 192]. However, there is no consensus among researchers

over one common model for studying the user acceptance of PerCom systems.

2.1.7 Environmental and Ecological Evaluation Approaches

Pervasive computing systems are envisioned to be smartly fabricated into people’s

lives and environments. Unlike traditional computing systems, where it was

considered irrelevant for design and evaluation, environment plays an important role

in design and development of PerCom systems. In diverse disciplines, techniques and

principles have been developed for environmentally friendly execution and deployment

of technologies.

Pervasive computing systems are intended to bring comfort in our daily living.

However, they have some positive and negative effects on environment. Jain and

Wullert studied the environmental aspects of PerCom and identified negative impacts

(e.g. physical waste and energy consumption, which would come under increasing

government and public scrutiny) [91]. It is significantly important for PerCom

researchers to consider environmental factors during the design of software and devices

for PerCom environments. The importance of this matter has been articulated in

literature [158] [78] [188] [16] [93] [17], however no standard methods or guideline

have been developed to evaluate PerCom systems

47

2.1. Exiting Solutions and Approaches

2.1.8 Analysis

In this section, we present the analysis of the literature review. This analysis is

presented in table 2.1, that shows the evaluation approaches presented to address the

evaluation challenges and at which design stage the approach was applied or can be

used. The study of the literature shows that most of the approaches are:

– Applied or developed during the implementation phase or after the prototype

has been developed.

– Address specific design and evaluation challenges and ignore or discount other

factors in the evaluation.

– Concentration on performance and QoS issues and not the functionality.

– Simulations and tests are performed on limited scenarios and in virtual

environments.

– Most of the approaches are application dependent and cannot be applied to

other application domains.

– There is no consensus among researchers about the parameters for evaluation.

– No benchmarks have been developed.

– Very limited functional verification has been performed.

The above mentioned shortcomings require a comprehensive approach for evaluating

PerCom systems. Our analysis of the state of the art suggests that there is uncertainty

among researchers about “what and how to evaluate”. The “What” factor is associated

to the fact that, which parameters and aspect of system are to be considered. The

“How” factor is associated with “what” factor, and raises the question of how to

evaluate, which approach to follow or adapt for the evaluation. In our analysis,

48

2.1. Exiting Solutions and Approaches

the factor that is of most concern to users is the reliability of the system from the

functional prospective. In literature, authors have drawn attention towards using

many exiting techniques, but have not provided guidelines that can be applied to

validate the functionality of the systems. Secondly there is no information about

what parameters to be considered while evaluating reliability.

The main objective of this thesis is to analyze system evaluation techniques to

propose comprehensive evaluation framework for PerCom systems. Consequently,

we have tried to find the best possible solutions for the question “what and how to

evaluate”. In next chapters, we will discuss and present our approach to the research

question i.e.“what and how to evaluate”.

49

2.1. Exiting Solutions and Approaches

Ta
bl

e
2.

1:
Ev

al
ua

tio
n

C
ha

lle
ng

es
A

nd
A

pp
ro

ac
he

s
A

t
Ea

ch
D

es
ig

n
St

ag
e

C
H

A
LL

E
N

G
E

S
A

P
P

R
O

A
C

H
E

S
D

E
SI

G
N

ST
A

G
E

In
te

ra
ct

io
n

[1
,1

1,
20

,2
4,

27
,3

1,
33

,7
0,

73
,8

0–
83

,8
9,

95
,1

28
,1

32
,1

40
,1

62
,1

65
,1

80
,1

89
,1

90
]

P
ro

to
ty

pe
D

ev
el

op
m

en
t,

In
-S

ui
t

E
va

lu
at

io
n,

Im
pl

em
en

ta
tio

n
A

nd
D

ev
el

op
m

en
t

In
te

gr
at

io
n

[2
4,

33
,5

3,
63

,1
06

,1
27

,1
32

,1
49

,1
80

,1
89

,1
90

,1
95

]
Im

pl
em

en
ta

tio
n

A
nd

D
ev

el
op

m
en

t,
Si

m
ul

at
io

n
A

nd
Te

st
in

g
Sc

al
ab

ili
ty

[2
4,

56
,6

3,
73

,9
5,

96
,1

06
,1

32
,1

33
,1

36
,1

37
,1

51
,1

73
,1

89
,1

90
,1

96
]

Im
pl

em
en

ta
tio

n
A

nd
D

ev
el

op
m

en
t,

Si
m

ul
at

io
n

A
nd

Te
st

in
g

H
et

er
og

en
ei

ty
[5

6,
10

9,
12

7,
15

1,
17

3,
18

9,
19

0,
19

6]
P

ro
to

ty
pe

D
ev

el
op

m
en

t,
Si

m
ul

at
io

n
A

nd
Te

st
in

g
In

te
ro

pe
ra

bi
lit

y
[1

3,
73

,1
42

,1
43

,1
83

,1
89

,1
90

,1
96

]
P

ro
to

ty
pe

D
ev

el
op

m
en

t,
Im

pl
em

en
ta

tio
n

A
nd

D
ev

el
op

m
en

t
In

vi
si

bi
lit

y
[1

,4
4,

66
,7

3,
80

,9
5,

11
1,

13
4,

13
6,

13
8,

18
0,

18
9,

19
6]

Im
pl

em
en

ta
tio

n
A

nd
D

ev
el

op
m

en
t,

Si
m

ul
at

io
n

A
nd

Te
st

in
g

M
od

ul
ab

ili
ty

[2
4,

56
,9

7,
10

9,
14

9,
17

3,
18

9,
19

0]
P

ro
to

ty
pe

D
ev

el
op

m
en

t,
Si

m
ul

at
io

n
A

nd
Te

st
in

g
R

el
ia

bi
lit

y
[2

,3
6,

37
,4

0,
47

,4
9,

73
,8

4,
10

7,
11

4,
12

3,
13

2,
14

7,
15

9,
16

0,
18

9,
19

6]
P

ro
to

ty
pe

D
ev

el
op

m
en

t,
Im

pl
em

en
ta

tio
n

A
nd

D
ev

el
op

m
en

t,
Sy

st
em

A
nd

U
se

r
R

eq
ui

re
m

en
ts

P
ri

va
cy

an
d

Se
cu

ri
ty

[5
4,

10
4,

13
0,

15
8,

16
9,

18
9]

P
ro

to
ty

pe
D

ev
el

op
m

en
t,

Im
pl

em
en

ta
tio

n
an

d
D

ev
el

op
m

en
t,

Si
m

ul
at

io
n

an
d

Te
st

in
g

A
da

pt
at

io
n

[1
1,

45
,4

8,
58

,7
9,

81
,8

3,
11

2,
11

3,
12

2,
15

3,
15

6,
16

7,
16

8,
17

5,
18

2,
19

2]
P

ro
to

ty
pe

D
ev

el
op

m
en

t

50

2.2. Summary

2.2 Summary

This chapter presented and discussed the evaluation approaches proposed in

the literature. These approaches are divided into seven categories according to

their methodology and approach. This chapter also presented an analysis of these

approaches and their use at different product design level. The analysis is summarized

in table 2.1, that can serve as a reference while reviewing state of art evaluation

approaches for PerCom System.

51

Chapter 3

What To Evaluate

In this chapter, we present our approach to answer the first part of the question

i.e. “What to Evaluate”. In this context, we present our proposed user-centered

evaluation framework model and its building blocks. The evaluation method and

approaches presented in literature are quite limited and only focusing on specific

areas. Our study shows that pervasive systems are highly diverse in areas such as

software architecture, enabling technologies and application domain, thus it is very

difficult to establish a generic and comprehensive performance evaluation framework.

In our model, we incorporated important system, user, contextual and environmental

factors that are necessary for a comprehensive design and evaluation. Within each

factor, we identify key parameters that can be characterized and measured for the

purpose of evaluation. Our proposed model can serve as a design engineering model

and a step towards forming standard evaluation guidelines that can be used during

formative and summative evaluation.

52

3.1. User Centered Evaluation Framework

3.1 User Centered Evaluation Framework

In this section, we extend our discussion on the proposed model. Based on our

observations, we conclude that as a first step towards designing a PerCom evaluation

framework, it is necessary to examine the common characteristics and differences of

PerCom systems that separate them apart. We survey the literature to determine the

ultimate interest of researchers when they make design decisions and evaluate their

prototypes. Consequently, we studied different aspects of PerCom and classified them

into different areas of evaluation to assemble the taxonomy of PerCom system [9].

A taxonomy of PerCom systems would allow us to characterize the systems and

help to identify the most important performance parameters for evaluation. There is

limited research on the classification of PerCom due to the heterogeneity of various

technologies. Jeon and colleagues presented a taxonomy of ubiquitous applications

and suggested three main criteria (i.e. subject, time and place) to classify ubiquitous

applications [88]. Similarly Kista and Rajiv presented taxonomy of mobile and

pervasive computing applications [55]. Dennis and colleagues presented taxonomy

of ubiquitous computing environments [110]. Joanna and colleagues presented a

taxonomy of pervasive healthcare systems 138, and Modahl and colleagues presented

the taxonomy for a ubiquitous computing software stack called UbiqStack [116]. All

these taxonomies and classifications mentioned here are limited to specific domains

and do not cover the complete system.

After a careful study of various systems presented in the literature, we analyze

the distinctive features of these systems and bring together the most suitable for

classification. This taxonomy is by no means complete, but merely reflects the

53

3.1. User Centered Evaluation Framework

classification scheme that best suits the purpose of effective performance evaluations.

Based on the analysis of the distinctive features of pervasive systems, we have chosen

eleven criteria that would exhibit vastly different characteristics and can generate

the most compelling categories. The diversity of PerCom prevents the use of a

well-formed hieratical classification scheme. We take a different perspective and

identify criteria that define major divisions in operational paradigm. First, we

identified differentiating parameters that can be used to categorize pervasive systems.

Once the criteria and their differentiating parameters are identified, we, then, define

the categories and identify their key aspects and parameters. Each system to be

evaluated is based on the eleven different criteria (defined later in subsections), and

it will fall into one of the categories each time a different criterion is applied. The

candidate parameters of interest for each system could be the union of the common

parameters, the differentiating parameters and the key parameters associated with the

category. Since there are multiple criteria employed in the taxonomy, any system can

belong to multiple categories. Therefore, the set of categories, the system belongs to,

can be used to define its character. For instance, a smart house would be considered

as a centralized, assistive system that works within a single house. The taxonomy

is designed to give researchers a reference when deciding which parameters are most

relevant to a particular PerCom system. The key aspects and parameters associated

with each category are not the only parameters of interests. The specified parameters

are of particular interest to each category but do not provide an exclusive list of

every performance parameter to be evaluated. There are common parameters that

are of interest for all systems such as throughput, response time, and user acceptance.

The taxonomy clarifies the scope, commonalities and range of diversity of PerCom

54

3.1. User Centered Evaluation Framework

systems. It also generates a reference and provides guidance when researchers and

implementers wish to evaluate and benchmark different systems.

Knowing the complexity and the diversity of pervasive computing systems,

different measurements and results collected may not truly reflect the PerCom system

if comparisons are made among systems with vastly different design approaches

and application domains. It is, therefore, crucial to identify not only quantifiable

parameters that can be measured and evaluated, but also to use non-quantifiable

parameters to characterize important aspects of these systems. In addition, we believe

that it is equally important to take into account the contextual and environmental

factors for a comprehensive evaluation of pervasive systems. Compared to traditional

computing systems, pervasive systems rely on user intention, context and operating

environment.

From our studies, we come to the conclusion that the there is a great need for an

evaluation framework that considers the user, system, contextual and environmental

factors for the comprehensive evaluation of a system. We assemble user-centered

evaluation framework model for PerCom evaluation (shown in figure 3.1) identified

the most important user and system aspects and established a list of quantitative and

qualitative parameters for evaluation (summarized in Table 3.1). The system-centric

parameters gauge the efficiency and effectiveness of the design decisions and present

the assessment of how the system performs and expands under normal and abnormal

conditions, as well as the resources employed to achieve the target performance.

Similarly, user-centric parameters are used to indicate how well the behaviors of

a system correspond to user intentions and expectations, and how much effort is

required on the user’s behalf to interact with the system. In the following sections,

55

3.1. User Centered Evaluation Framework

Table 3.1: Summary of Quantitative and Qualitative Parameters of Systems and
Users

Quantifiable Parameters Non-quantifiable Characteristics
System Performance Node-level characteristics
Communication Performance Service & application
and cost Context Characteristics
Software Footprints Security & Privacy

System-Centric Power Profiles Knowledge representation
Parameters Data storage & manipulation Architectural characteristics

Quality of context Standardization
Programming efficiency Extensibility
Reliability Backward compatibility
Fault-tolerance Proactivity
Scalability Adaptability characteristics
Maintainability
Effectivness
Adaptability Economical consideration

System and User Self-organization
Parameters Error

Explicitness

we are going to present the key evaluation aspects from the system, user, contextual

and environmental perspectives that lay the groundwork to develop a comprehensive

evaluation framework and to construct a technology acceptance model [51].

Figure 3.1: Design and Evaluation Model for Pervasive Computing System

56

3.1. User Centered Evaluation Framework

3.1.1 Environmental Factors

Pervasive computing systems are envisioned to be smartly fabricated into people’s

lives and environments. The importance of the matter has been articulated in the

literature but, to the best of our knowledge, no standard guidelines or techniques

have yet been developed to guide design and evaluation. The environmental factors

can be derived from technical and non-technical domains.

From the technical domain, designers and evaluators should consider the implicit

and explicit implication of deployed technologies, such as device safety and installation

constraints present in the environment, environmental conditions (such as heat,

cold and humidity) for the devices 1, energy consumption, physical waste and

recycling of devices. In addition, user safety against non-ionizing radiations from

mobile communication, environmental dynamics, potential health or environmental

effects, stress imposed on the user, restriction of consumers and patients, freedom

of choice, threats to ecological sustainability, and dissipation of responsibility in

computer-controlled environments [104].

Non-technical factors can be accounted from diverse disciplines such as

government regulating authorities, architecture, transportation, engineering, etc.

[130], green technology concept, potential impact of applying technologies (Human

Health Impacts, local natural environment impacts, social and cultural impacts,

global impacts and resource sustainability) identified in Environmental Technology

Assessment Manual (EnTA) [77]. We believe that the aforementioned environmental

factors can, in one way or another, play a very important role in design and assessment

of PerCom environments.
1. Pervasive device with built-in computing and communication abilities

57

3.1. User Centered Evaluation Framework

3.1.2 Contextual Factors

Pervasive computing demands applications that can support highly dynamic

environments and require less user intervention. To meet such challenges, applications

should be designed considering user context. There is a rapid development in

the design of context aware applications that can react autonomously on behalf of

users [38, 71, 125]. Context is one of the most distinctive characteristics of PerCom

system, thus when there is change in context due to some reason the performance

of the system can be affected. The reason behind this affection could be the service

provided by the system that could not adapt itself with the current context of the

user. We argue that the pervasive computing applications and services should be

designed and evaluated taking their contextual factors into account.

For the purpose of clarity, we have studied the most important constructs of

context (location, time, identity, activity) [4]. Broadening the scope for contextual

factor and considering the interdependency of environment and context, we include

environmental attributes as building constructs of context, as change in environmental

factor can also bring a change in context. The importance of the contextual factors

for evaluation can be illustrated by the following scenario:

At 10:00 AM Mr. Clark leaves his home and visits the doctor at the hospital for a

check-up (Considering the visit with his doctor is not scheduled). After his check-up,

he unexpectedly sees an old friend, and invites her for a cup of coffee in a cafe to

talk about their old days. Later Mr.Clark returns to his home.

In this scenario, the location changes from home to hospital, from hospital to cafe and

from cafe to home. There are, also, changes in activities (meeting unexpected friend,

58

3.1. User Centered Evaluation Framework

inviting and drinking coffee), identities (Considering his friend is not in Mr. Clark

contact list), environment (hospital, cafe) and time. The contextual factors in each

environment could be different due to the change in location, identities, activities and

time, resulting in a change in context. A context aware application that adapts the

interface for its user, or provides specific services depending on the context of the

user must account for the contextual factors to provide efficient and effective service

execution.

Contextual factors can be determined by simulating the scenarios in the

environments, to understand human behavior, social situations, the purpose of

application and services and environmental factors. More factors can be considered

depending on the requirements and the purpose of the application and the definition

of the context. As such there are no scales to check the performance of contextual

factors other than the quality of the context, a complete characterization of the

context in a system, and the dimensions of the context that are of interest. The

number of different dimensions of context can be used to correlate the complexity of

the system and the utilization of context, for instance, whether the use of the context

is proactively or reactively greatly affect the response time and resource usage of the

system.

3.1.3 User Factors

Pervasive computing systems are designed to serve users and facilitate their daily

activities. They have to satisfy the user’s needs, conform to the environmental

constraints where the user is located, and must be compatible with their physical and

mental characteristics. Therefore, when evaluating pervasive computing systems, it

59

3.1. User Centered Evaluation Framework

is crucial to consider and evaluate factors not only from the system’s perspective,

but also from the user’s perspective as well. In the following discussion, we will

bring forth some user’s related factors that are essential for PerCom design and

evaluation. These factors are derived from our personal experience in [8,67] following

the standard guidelines presented in [177]. These factors have qualitative and

quantitative importance in evaluation and can be utilized to develop constructs of

Technology Acceptance Model (TAM). The key factors and aspects that could be

considered for evaluation are summarized in Table 3.2.

• Personal Factors

Personal factors define the user’s individual characteristics and surroundings.

It considers the user’s lifestyle and it focuses on sensory aspects that could

affect or stimulate the user’s senses such as noise, light, comfortable positions,

etc. Pervasive systems have to be adjusted to the user’s characteristics, because

every person is unique, the “standard user” doesn’t exist. To design a system

that will be useful for our target population (for instance, assistive technology

for people with special needs), certain aspects of personal factors need to be

taken into account.

1. Demographics:

The demographic aspects represent the statistical socio-economic

characteristics of a population, such as age, sex, education level, income

level, occupation, marital status, country customs and anthropometric

data. Populations are diverse and their habits and lifestyle differ from one

country to another. It will be important to consider user’s demographic

factors in the design and evaluation of pervasive systems. Demographic

60

3.1. User Centered Evaluation Framework

factors can be useful in defining the constructs of a TAM, and regular

feedback will help designers to tune the system for the target population.

2. Comfort:

Comfort aspects are one of the most important aspects in a pervasive

system. Indeed, a person will use and adopt the system only if he/she feels

comfortable with it. This aspect represents the state of well-being the user

feels when he/she uses the system. The term comfortable is not exclusively

the user’s postural comfort, but also sensory and visual comfort. Indeed,

interacting with a pervasive system affects all senses. This is why a system

that makes the user uncomfortable to achieve his/her goals will likely be

rejected by user. The consideration of comfort aspects in the evaluation

will help in identifying the right constructs of a user’s acceptance of the

technology.

3. Skills Aspects:

Skills factors are also important in the design of pervasive computing

systems. Most pervasive computing applications require the user to

understand the basic computing technologies of today (i.e. PC, Cell

phones). Skills factors actually help to understand the user’s abilities

to perform a task. To promote user adoption of a technology, a

“Learning-by-Doing” approach can be valuable. If we know the potential

of the user, we can improve his learning abilities by helping him/her to

perform the tasks. It is important to look into the user’s experience

with the technology, as the target population may contain novice and

experienced users of the current technologies (e.g. use of a PDA).

61

3.1. User Centered Evaluation Framework

Compared to a novice, the experienced people may have another point

of view due to their learning and past experience that can be relevant for

the system. Additionally, it is interesting to consider the user’s mental

workload and capacity. The system will be much more appreciated if it

is concise and doesn’t involve extra cognitive load. To understand such

details, comprehension/comprehensive user’s performance and error free

user aspects have to be considered in design and evaluation.

• Organic Factors

Organic factors are related to the physiological functions of body and

psychological aspects (motivation, perceived use, need for technology),

personality traits (e.g. openness, confidence, etc.) which are not usually

considered and evaluated in traditional computing system. However, in

PerCom, it is significantly important to consider and evaluate these factors.

Physiological aspects include the user’s impairments such as the loss of an organ

(impairment after accident), which is likely to be a problem for the user to

interact with the system and can limit his activities. Furthermore, the brain is

the most important and central cognitive organ and it plays a major role in a

user’s performance. Cognitive impairments impact a user’s capacity, his/her

intellectual functions and confidence [3]. It is essential to consider mental

workload and capacity in the design of a pervasive system (e.g. Cognitive

Orthotic [65]). Additionally, psychological factors enable us to understand the

user’s personality, frame of mind, and their feelings toward the system. For

instance, people who have technophobia will likely not show interest in learning

and adapting new technology.

62

3.1. User Centered Evaluation Framework

• Health Factors

Health aspects should be carefully considered in the design and evaluation

process of pervasive systems. Health aspects relate to the user’s health status

(e.g. diseases or allergies). Health aspects have to be considered to address the

difficulties a user can face while using the system. The user’s health condition

could restrict him/her in performing some activities. If a user doesn’t have an

impairment, but later presents difficulties in performing some activities while

using the system, the system must notice this change in the user’s performance,

collect related data (for instance by consulting the user’s vital signs and medical

history) and propose adopted services.

• Social and Community Factors

Social and community factors directly or indirectly affect or pilot the life we

lead in the society. Although demographic aspects are personal factors, these

can also be covered in social factors, given that social status and work are

social factors. For instance, in the case of pervasive healthcare applications

(e.g. assistive technology) for the elderly, demographics and social factors

can play an important role. For example, in some countries (especially in

oriental ones) people are closer to their family and the social and cultural

bond is stronger; their acceptance of the assistive technology will likely be more

difficult compared to people living in occidental countries, where social and

cultural norms are not as strong. Moreover, religion is an aspect that should

be taken into consideration, given that it could have an impact on social life

and technology usage [185]. For example, Buddhists might not accept new

technologies easily, as they are closer to nature and rely more on their family.

63

3.1. User Centered Evaluation Framework

Table 3.2: Summary of User Aspects and Key Elements
User Factors Aspects Elements

Age
Demographic Aspects Sex

Anthropometry
Social Status and Work
Postural Comfort and Pressure
User Effort

Comfort Aspect Satisfaction
Economical Consideration
Sensory Comfort
Visual Comfort

Personal Factors Experience
Use without error
Mental workload Conciseness
Symbol interpretation and denomination

Skill Aspect Ease of Learning
Capacity
Language abilities
Willingness
Openness to experience

Organic Factors Intellectual functions
Physiological and Activity limitation

Psychological Aspects Impairments
Confidence

User Factor Health Aspects Allergies
Diseases
Health state
Religion and spirituality
Political life and citizenship

Social Social Aspects Community social and civic life
Social Support/ Social Networking
Language
Interpersonal aspects
Soft skills

Similarly, if the system doesn’t fit with the country’s policy, it won’t be used

by the citizens. Furthermore, it is valuable to consider a user’s soft skills and

interpersonal aspects which can inform on the user’s traits of personality and

abilities in social interactions and relationships in everyday life.

3.1.4 System Factors

This section describes and discusses the important system evaluation factors.

These factors are by no means complete but are best suited for the purpose of effective

performance evaluations. We expect that as the PerCom research grows and more

64

3.1. User Centered Evaluation Framework

experiences are shared in its evaluation, more factors and evaluation aspects will

be introduced. We found that it will be very effective to first categorize the systems

based on some criteria and define key parameters to design a comprehensive evaluation

framework. These system evaluation factors are determined from our experience in

designing taxonomy of PerCom system [9]. This taxonomy is by no means complete,

but merely reflects on the classification scheme best suited for the purpose of effective

performance evaluations. Based on analysis of distinctive features of pervasive

system, we have chosen eleven criteria that exhibit vastly different characteristics

and can generate the most compelling categories. In the following section, we present

the system evaluation factors and key evaluation parameters associated with each

category.

• Architecture

Architecture refers to the conceptual design and functional structure of all

hardware and software components in pervasive systems. It provides the

blueprint and operational manual during the development and deployment of a

pervasive system. We have divided the architectural characteristics of PerCom

in two major sub categories (infra-structure and design). In the following, we

present the details and key evaluation parameters associated with each category.

65

3.1. User Centered Evaluation Framework

Ta
bl

e
3.

3:
In

fra
st

ru
ct

ur
e

Ev
al

ua
tio

n
Pa

ra
m

et
er

s
IN

F
R

A
ST

R
U

C
T

U
R

E
C

A
T

E
G

O
R

Y
T

Y
P

E
SU

B
-T

Y
P

E
K

E
Y

A
SP

E
C

T
K

E
Y

P
A

R
A

M
E

T
E

R
S

R
es

ou
rc

e
us

ag
e

So
ftw

ar
e

Fo
ot

pr
in

ts
C

en
tr

al
iz

ed
D

at
a

St
or

ag
e

Sc
he

m
e

Sc
al

ab
ili

ty
St

at
io

na
ry

D
ep

lo
ym

en
t

M
ai

nt
ai

na
bi

lit
y

Sa
fe

ty
Se

cu
ri

ty
&

P
ri

va
cy

R
es

ou
rc

e
us

ag
e

P
ro

ce
ss

M
an

ag
em

en
t

G
ri

d
Sa

fe
ty

D
at

a
M

an
ag

em
en

t
D

at
a

St
or

ag
e

Sc
he

m
e

Se
cu

ri
ty

&
P

ri
va

cy
N

et
w

or
k

R
es

ou
rc

e
U

sa
ge

So
ftw

ar
e

Fo
ot

pr
in

t
In

vi
si

bi
lit

y
Po

w
er

P
ro

fil
e

D
is

tr
ib

ut
ed

M
ob

ile
(I

nf
ra

st
ru

ct
ur

e)
D

at
a

St
or

ag
e

&
M

an
ip

ul
at

io
n

R
el

ia
bi

lit
y

&
Fa

ul
t

To
le

ra
nc

e
N

od
e-

le
ve

lc
ha

ra
ct

er
is

tic
s

&
P

ri
va

cy
Sp

ee
d

&
E

ffi
ci

en
cy

C
om

m
un

ic
at

io
n

Pe
rf

or
m

an
ce

an
d

C
os

t
R

es
ou

rc
e

U
sa

ge
D

at
a

St
or

ag
e

Sc
he

m
e

M
ob

ile
(A

dH
oc

)
Sa

fe
ty

So
ftw

ar
e

Fo
ot

pr
in

ts
D

ep
lo

ym
en

t
N

od
e-

le
ve

lC
ha

ra
ct

er
is

tic
s

C
om

pa
tib

ili
ty

Se
cu

ri
ty

&
P

ri
va

cy
In

vi
si

bi
lit

y
Po

w
er

P
ro

fil
e

R
es

ou
rc

e
U

sa
ge

So
ftw

ar
e

Fo
ot

pr
in

ts
U

sa
bi

lit
y

Po
w

er
P

ro
fil

e
Pe

rs
on

al
-R

an
ge

In
vi

si
bi

lit
y

D
at

a
St

or
ag

e
&

M
an

ip
ul

at
io

n
A

cc
ep

ta
nc

e
N

od
e-

le
ve

lC
ha

ra
ct

er
is

tic
s

G
eo

gr
ap

hi
c

Sp
an

Sa
fe

ty
R

el
ia

bi
lit

y
an

d
Fa

ul
t

To
le

ra
nc

e
Lo

ca
l-R

an
ge

D
ep

lo
ym

en
t

Se
cu

ri
ty

&
P

ri
va

cy
Sc

al
ab

ili
ty

R
es

ou
rc

e
U

sa
ge

Po
w

er
pr

ofi
le

W
id

e-
R

an
ge

D
ep

lo
ym

en
t

D
at

a
St

or
ag

e
Sc

he
m

e
C

om
pa

tib
ili

ty
N

od
e-

le
ve

lC
ha

ra
ct

er
is

tic
s

A
da

pt
ab

ili
ty

,M
ai

nt
ai

na
bi

lit
y

an
d

Se
lf-

or
ga

ni
za

tio
n

66

3.1. User Centered Evaluation Framework

◦ Infrastructure

One of the primary characteristics of PerCom is computing and

communication anywhere anytime, which allows system to provide service

to its users from personal to global scale. We categorize systems according

to the distribution of data and control, mobility of users and devices, the

infrastructural support of the network and the geographic span. We identify

the following differentiating parameters: architectural characteristics at the

system level, node-level characteristics, communication performance and

cost, and economical considerations that allow us to distinguish one system

from another based on their differences in the network infrastructure and

geographic span. We present in Table 3.3 the categories, key aspects and

parameters associated with this criterion.

◦ Design

The vision of PerCom is to provide users with an access to computational

environment anywhere and anytime [184]. Thus, the goal of pervasive

computing systems is to design software architectures that support multiple

applications and services in a pervasive environment. The diverse nature

of PerCom has made it difficult for software designers to adapt one

common model that can meet all the requirements of PerCom. The major

challenges that make software design difficult are the ability of software

architectures to support interoperability due to various network technologies

and implementations, the needs of user and service mobility [52]. After a

careful review of different software architectures, we have identified the key

differentiating parameters (coordination, coupling, versatility and generation)

67

3.1. User Centered Evaluation Framework

that can help to classify different software architectures used for PerCom. We

present in Table 3.4 the categories, key aspects and parameters associated

with this criterion.

Table 3.4: Design Evaluation Parameters
DESIGN

CATEGORY KEY ASPECTS KEY PARAMETER
Modularity Coupling and Cohesion

Application Based Architecture Software Dynamics Dependency Between Application
Interoperability

Modularity Component Compilation
Component Oriented Architecture Software Dynamics Orchestration

Management Coupling & Cohesion
Design
Modularity Orchestration
Compatibility Runtime Service Generation

Service Oriented Architecture Management Coupling & Cohesion
Software Dynamics Scalability
Design Interoperability
Management Choreography

Agent Oriented Architecture Design Embedded Intelligence
Autonomy
Interoperability

• Autonomicity

Pervasive computing systems are distributed, heterogeneous, and dynamic.

Unlike computers as traditionally defined, these systems have more

diversified software and hardware components making manual management

and development much more expensive. Automaticity is an aspect that

describes how a PerCom system is initialized, how it evolves automatically to

accommodate faults and failures, how it adjusts to user requirements, integrates

new resources, and how it can identify and fend off potential attacks. The

differentiating parameters of this criterion includes the report process of new

or changed requirements, the number of people involved in making required

changes, and the level of integration between business and programmed logic.

68

3.1. User Centered Evaluation Framework

Table 3.5: Autonomicity Evaluation Parameters
AUTONOMICITY

CATEGORY SUB-TYPE KEY ASPECT KEY PARAMETER
Static Speed & Efficiency Computational performance

Safety I/O performance
Reliability & Fault-tolerance

Self-Learning Sentience Quality of context
Usability Knowledge representation scheme

Error
Learning ability
Explicitness

Dynamic Re-Programmable Programmability Ease of programming
Deployment Maintainability
Compatibility Service & application

Extensibility
Backward compatibility

Re-Configurable Usability Adaptability
Compatibility Ease of programming

Self optimization

We present in Table 3.5the categories, key aspects and parameters associated

with this criterion.

• Integration

Pervasive computing systems, by its nature, require the integration of many

different subsystems with very different characteristics. These subsystems

include computational facilities, communication devices, mechanical or chemical

sensors and actuators, smart appliances, and existing control systems. Plenty

of research efforts have been spent on solving various integration issues, and

different implementers have tried different approaches. Based on the approach

taken, systems usually exhibit different architectures and therefore present

vastly different characteristics. We believe that integration is among the

important factors that need to be considered for a comprehensive evaluation.

The important aspects like maintainability, standardization, reliability, fault-

tolerance, architectural characteristics and scalability would be valuable for

69

3.1. User Centered Evaluation Framework

Table 3.6: Integration Evaluation Parameters
Integration
CATEGORY Key Aspect Key Parameter
AdHoc Integration Method Designated Black-box
Universal Interface Method Analyze data flow

Analyze pattern
Analyze content in pipeline

Plug-In Method Performance of utilities provided
Pattern and efficiency
Integration between application

evaluating the integration methods and to better analyze and check the

performance of utilities provided in middleware, patterns and efficiency of

integration between application components and middleware. We present

in Table 3.6 some differentiating parameters that can be used to categorize

the system based on their integration methods and identify the evaluation

parameters.

• Service Availability

The goal of pervasive computing system is to provide its user with a rich set

of services that are embedded in their physical environment and integrated

seamlessly with their everyday tasks. Unlike services that are provided by the

Internet, PerCom services are invisible, intelligent and invoked automatically

depending on the events happening in the environment or the user’s context that

satisfy their invocation. The quality of pervasive services can be evaluated in

many aspects and the key differentiating parameters that can help to categorize

services is their ubiquity, interoperability and composition with other services.

We categorize the pervasive services based on the definition of PerCom (i.e.

anywhere anytime). We present in Table 3.7 the category under this criterion,

and identify the key aspects and parameters.

70

3.1. User Centered Evaluation Framework

Table 3.7: Service Availability Evaluation Parameters
SERVICE AVAILABILITY

CATEGORY KEY ASPECT KEY PARAMETER
Anywhere & AnyTime Discovery Discovery Protocol

Location Discovery Protocol
Adaptation Service composition
Availability Execution
Mobility Resource availability

• Interaction

In pervasive computing systems, human-machine interaction and machine to

machine interaction are the important components and are becoming highly

dynamic and implanted in environment. A system should adapt the interaction

and presentation using various interface components available for interfacing

based on behavior sensing, service mobility and events happening in the

environment. The main objective is to make the system usable and interactive

for its user. The easier the system is, the more likely people will use and adopt

it. Unlike traditional computing systems, interaction in pervasive computing is

done implicitly and explicitly with the user. For this reason, there are so many

human aspects that must be considered for the effective design and evaluation.

The interaction in pervasive systems is not just interacting with the monitor.

Its scope is much bigger when it comes to implicit interaction, where user’s

activities, gestures and behaviors are observed by implanted sensors in the

environment. The systems that do not account for these aspects may lose

their credibility and users may not adopt it. The potential aspects that need to

be considered when evaluating systems are human to machine and machine to

machine interactions, while keeping the contextual factors in mind. We present

in Table 3.8 the categories under this criterion and key aspects and parameters.

71

3.1. User Centered Evaluation Framework

Table 3.8: Interaction Evaluation Parameters
INTERACTION

CATEGORY KEY ASPECT KEY PARAMETER
Human to Machine Human Capabilities Perceptual, Cognitive, Motor

Preferences Interface designs
Interaction Mode (Audio, Video, Tangible)

Machine to Machine Interoperability Communication Protocols
Platforms
Computational Capacities

• Extensibility and Backward Compatibility

Extensibility is a major consideration for most computing paradigms, and

certainly one of the fundamental factors when evaluating any PerCom system.

It describes how well the design and the architecture of a system can

accommodate new components in the future and the new technologies which

come with them. Backward compatibility, on the other hand describes the

capability of a system to integrate or collaborate with legacy systems or

technologies. Many PerCom systems, such as smart houses, structure integrity

monitoring or urban computing facilities, are expected to have much longer

life-spans compared to traditional computing systems. Many systems are

also inter-twined with physical plants that require deployment at the time of

construction or risk incurring high costs during retrofitting deployment. With

increasing development in the technologies and applications for PerCom, the

extensibility and compatibility factors will play a vital role in their evaluation.

For instance, the geographic span of different pervasive computing systems

can vary up to several orders of magnitudes. This will result in a significant

impact on the operation behavior and organization of the system. The designer

and assessor must take these considerations into account for the successful

72

3.1. User Centered Evaluation Framework

deployment and operation of their system. The extensibility and backward

compatibility can be evaluated by examining characteristics such as:

– The support for dynamic upgrade in firmware and applications.

– Whether there are mechanisms to improve the flexibility in the architecture

of the system, such as the use of adapters.

– Whether the nodes support multiple interfaces and standards.

– Whether they are configurable and the extent that they can be adjusted.

• Invisibility

Pervasive computing systems tend to improve the well-being and autonomy

of the user by implanting computing devices into their environment and

making it invisible. Invisibility can be achieved by using and considering

the environmental and contextual factors. Impact of invisibility should be

considered to quantify its implicit and explicit effects on its user and system.

• Intelligence

Pervasive computing environments are embedded with computing based devices,

able to learn from user behaviors, needs and preferences to adapt the

environment accordingly. Ambient intelligence techniques allow these devices

to reactively or proactively help people when performing their daily living

activities. In our observations, we found that there are two kinds of

environments. The first kind interacts and responds to the user’s behavior and

preferences according to changes in the user’s context and behavior. The second

environment is personalized according to the user’s preferences set in his/her

context (profile), and doesn’t respond and adapt when the user’s context or

behaviors are changed. For example, when a person enters into a smart room

73

3.1. User Centered Evaluation Framework

Table 3.9: Interaction Evaluation Parameters
INTELLIGENCE
CATEGORY Key Aspect Key Parameter
ContextAwareness Context Quality of context

Learning
Reasoning

the system recognizes and personalized the environment according to his/her

profile but if the person’s behavior is changed the environment doesn’t adapt

to that change. The key aspect in this criterion is the context awareness with

the key parameters being quality of context, learning ability and reasoning on

context. We, present in Table 3.9 the categories under this criterion and key

aspects and parameters.

• Maintainability

The large number of simple and cheap components employed in most pervasive

computing systems translates to short mean time to failure (MTTF) and make

failure a norm in the operation. To ensure that the system remains operational

over a period of time, considerable resources need to be allocated for continuous

maintenance. To understand the true cost of real-world deployments, we need to

measure MTTF, recovery time, cost of replacing parts or any other maintenance

related parameters such as the man-hour required to replace or fix the failed

entities, and the size of maintenance crew needed to keep the system operational.

• Security and Privacy

Pervasive computing is supposed to be “calm” and invisible. In order to

bring intelligence to an environment that can satisfy the user’s desires and

needs, the system has to be highly personalized and customizable. This, in

turn, depends on the capability to acquire and dissimilate data about the

74

3.1. User Centered Evaluation Framework

users to various parts of the system. Typical PerCom systems hold a lot of

fine-grained personal information, such as real- time locations, medical history,

biometric data, personal preferences, schedule, and concerns over security and

privacy have consequently reached new heights. Any serious discussion on

practical deployment would first need to address security and privacy concerns.

Examples of characteristics critical to the security and privacy in PerCom

systems include the expressiveness of the security policy and the strength of

security enforcing mechanism. Regarding privacy control, researchers suggest

to define appropriate measures and policies on the protection of content, identity

and locations.

• Application Purpose

The services and functionalities that pervasive computing systems are

designed to provide are extremely diverse. The requirements and emphasis

on various performance parameters are heavily dependent on their primary

purposes. For example assistive services allow users to enhance and expand

their communication, learning, participation, well-being, quality of life and

achieve great levels of independence [95]. We have defined some key

differentiating parameters such as quality of context, reliability, fault tolerance,

security, privacy and effectiveness that can be used to categorize the PerCom

applications. After analyzing the applications presented in the literature, we

identified the key differentiating parameters and categories according to their

purposes. We present in Table 3.10 key aspects and parameters that define each

category.

75

3.2. Summary

Table 3.10: Application Purpose Evaluation Parameters
APPLICATION PURPOSE

CATEGORY KEY ASPECT KEY PARAMETER
Assurance Safety Reliability & Fault Tolerance

Sentience Reliability & Fault Tolerance
Quality of Context

Assistive Usability Reliability & Fault Tolerance
Safety Node-level characteristics
Invisibility Security & privacy

Modality and Effectiveness
Return on Investment Speed System Performance

Efficiency Communication Performance & Cost
Economical Considerations
Data Storage Scheme
Learning Ability
Efficiency

Experience Enhancement Sentience Context Characteristics
Usability Explicitness

Learning Ability
Satisfaction

Exploration Sentience Quality of Context
Deployment Maintainability

3.2 Summary

In this chapter, efforts have been made to find answer for what to evaluate in

PerCom system. Pervasive computing system evaluation is different from traditional

systems, thus it is not enough to rely only on traditional evaluation area and

metrics such as throughput, communication, time, etc. In addition, PerCom

system operations mostly rely on user intention, context and operating environment.

Traditionally these factors were not important and were discounted in evaluation

process. There is uncertainty in deciding what to evaluate and what are the areas of

evaluation that are central and important to PerCom system. We presented, on this

chapter a user-centered evaluation framework, which incorporates important system,

user, contextual and environmental factors that are necessary for a comprehensive

76

3.2. Summary

design and evaluation. Within each factor, we identified key parameters that can be

characterized and measured for the purpose of evaluation. The proposed model can

serve as a design engineering model and a step towards forming standard evaluation

guidelines that can be used during formative and summative evaluation. In the next

chapter, we will discuss and present our approach to our second question i.e.“How to

evaluate”.

77

Chapter 4

How to Evaluate

This chapter presents our approach to address the second part of our research

question that is “How to Evaluate”. The evaluation of a pervasive system is

important at all design and development stages. We followed a layered approach to

address this question and focused on the early design stage. As mentioned in pervious

chapters, evaluating pervasive computing is a very complex job, in particular at the

early design stage. We proposed to employ a well-known formal method approach

as a solution to early evaluation of PerCom systems. At the best of our knowledge,

very few attempts have been made to use formal methods as a tool or technique for

evaluation particularly in the pervasive computing domain (see chapter 2 section 2.1.2

for details).

For the proof of concept, we applied two methods. In the first method, we

analyzed a model checking approach to model and verify the functional requirements

of a context aware application deployed in a Smart House. This approach is

complementary to testing and evaluation and allows designers to verify their

78

4.1. Early Design Evaluation

system behavior against its functional requirements before developing the system

prototype. Some basic properties like deadlock checking, matching of specification

and implementation, and reachability analysis are verified.

In the second method, we looked at runtime verification of PerCom systems

and tried to verify the service interoperability requirements in smart environments

by using a Design by Contract (DbC) technique. The benefit of this approach is

automatic verification of services interoperability in smart environments.

In the following sections, we present our discussion on two approaches and related

concepts. We have, also, positioned our work with the existing evaluation approaches

proposed for early evaluation of PerCom systems to compare our approach with the

existing solutions.

4.1 Early Design Evaluation

Evaluating and verifying systems at the early stage help to identify errors in

system requirements that might appear in the later design phases and reduce the

cost of simulation and testing. It has been articulated in the literature the difficulties

in early design evaluation of PerCom systems. There is very little work on early

design evaluation of PerCom systems. The approaches presented in the literature

are mostly centered on the usability analysis, which employs various techniques like

heuristic approaches, wizard of OZ, technology probes, system walkthroughs, (c.f.

see chapter 2 section 2.1.4 for details). These approaches are employed to get the

user experience, factors of adaptability and requirements mining for system design

and development.

79

4.1. Early Design Evaluation

A complementary issue to performance evaluation is functional correctness of

a running system, which confirms that the system conforms to its functional

requirements and does not contain any flaws. The system conforming to its functional

requirements is said to be reliable, knowing it meets the minimum requirements of

safety, which is the base for its certification [174]. System requirements are the first

steps towards conceptualizing the system and thus play an important role in the

system development. It has been known that system requirements (user needs) are

the prerequisite of successful system development. Thus if the system requirements

are incorrect or incomplete it will result in faulty system which is not useful and not

acceptable by its user.

Our motivation of evaluating a PerCom system is in the early phase of its design is

based on the fact that if the system design is correct i.e. the functional requirements

of the system are satisfied, then it could be said that the system meets the minimum

safety requirements and it is dependable. From the study of the literature and in

our experience in building PerCom systems, we believe that it would be beneficial if

the system meets its functional requirements and contain no functional flaws. Hence

having met the functional requirements for the underlying system, we can improve the

confidence in the system. It has been articulated in literature that there are difficulties

in doing the requirements engineering for PerCom system. Authors have proposed

different methods, such as video-based, contextual-knowledge-based, literature survey

and living laboratory, for gathering user requirements [85, 100]. However, these

approaches have focused solely on requirements engineering and have provide no

information on the verification of the gathered requirements.

Formal methods are often employed for the rigorous analysis of a computing

80

4.1. Early Design Evaluation

system. These approaches are based on mathematical foundations that provide

frameworks to specify and verify the specifications and implementations of the system.

Consequently reliability and efficiency of the system can be analyzed and compared.

System specifications are formally specified and are checked for any inconsistencies

and incompleteness. Next, these specifications along with some desired properties

of the system are verified to quantify whether properties are the consequence of the

specifications or not. This process is also known as formal verification. Using formal

methods, the designer can formalize and model the system specifications, which then

help to conceive the system components and their behavior at an abstract level. In

addition, the designer can predict the system behavior without executing or building

it, which can help to increase the confidence in the specification’s correctness. This

method is more comprehensive and reliable, contrary to testing and simulation, while

allowing the exploration of entire state space and cover every possible system state.

There are many formal and semi formal techniques available for system analysis. The

most well-known techniques in practice are:

◦ Theorem proving using deductive methods (manual and automatic approaches).

◦ Model checking to exhaustively and automatically verify possible system

behavior and verification properties.

◦ Runtime verification or dynamic verification of system components by checking

specified properties while the system is running.

Formal method techniques can be applied at different design stages for the formal

specification or verification of various aspects of a system (algorithm, protocols, etc).

However, we advocate that it is most effective to use formal methods at the early

design stage, i.e. during the requirements analysis, specifications, and high-level

81

4.1. Early Design Evaluation

design of a PerCom system. At this stage, the designer can use analysis tools that

can help to reason about the design description, verify desired properties and discover

problems at early stage of development. Consequently, early design verification

with support of analysis tools will play an important role in reducing the cost of

testing and improving the reliability of the system while discovering undesired system

behaviors. In addition, it will also allow to analyze the system specifications early in

the development and to verify that the system satisfies key requirements such as safety

and security before developing a complete system or prototype. For the purpose of

this thesis and for a proof-of-concept, we studied and applied two methods.

In first method, we use a model checking approach to model and verify the

functional requirements of a context aware medication management system for an

elderly in a Smart House. The benefits of this approach will help to validate the

system early in its development, contrary to simulation and testing which are generally

employed after the development of a prototype. This approach will ultimately

increase one’s confidence in its correctness. In the second method, we verified

service interoperability requirements in smart environments by using “Design by

Contract” technique. The benefit of using this approach is that it allows an automatic

verification of services interoperability requirements for smart environments. In

following sections, we present a discussion and our analysis results of each technique.

82

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

4.2 Early Design Analysis of Contextaware

System: Model Checking Approach

Model checking is a formal verification technique that helps to automatically

verify a model of a system against its correctness properties. Contrary to simulation

and testing, the model-checking approach verifies the system model based on the

exploration of the complete state space. The system models are finite to guarantee

reachability and decidability. System models are specified manually or automatically

for various levels of abstraction as a state machine that helps to describe the complete

system in a concise specification using some high level language such as Petri nets

or process algebras. In addition, desired correctness properties are described in some

temporal logic such as Computation Tree Logic (CTL) or Linear Temporal Logic

(LTL) [26] or in terms of automata. The comprehensive search of the state space is

performed to verify that the system model conforms to its specification and, also to

verify that its behavior conforms to its specification. Consequently, if the properties

do not hold, it is because the abstraction of the model is far from its specification

and a counter example exists. The main benefit of a model checking approach is in

finding flaws in a model and generating error traces when a property proves false. In

the next section, we will study the potential use of a model checking approach in the

early stage of analysis for a context aware system. First, we will present a system

scenario that will help the reader to understand the system and user requirements,

and later, we will explain system modules and their modeling definition.

83

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

4.2.1 System Scenario

Mrs. Smith is an old woman of 70 years who lives with her husband. In the

last two years, she was assessed at the Alzheimer clinic where she was diagnosed

with Alzheimer Disease (AD) in the early stage. Since she has memory problems,

she forgets to take her medication. Currently, her husband is taking care of her

medication at home, and helps with her prescription at the pharmacy (medication

refill) and in preparing her medication when the couple goes out. All these difficulties

have a serious impact on the quality of life of the couple. The dependency of Mrs.

Smith for her medication on her husband is affecting their life and non-compliance to

medication can lead to medication adherence problem. Resulting in hospitalization or

other serious health problems. To help Mr. and Mrs. Smith, we propose an integrated

technological support that will assist them in medication management and alert for

medication on time.

Mrs. Smith lives in an Ambient assisted home where multiple sensors and

actuators (screen and speakers) are installed to help her live independently. Mrs.

Smith receives a message on her smart phone that she will need to get her monthly

medication refills for her prescribed medication. The pharmacy of Mrs. Smith

registers the medication by applying RFID tags to the pill bottles, which contains

information about the medication, its dosing regimen, number of pills, and weight of

each pill. This schedule is also transferred to Mrs. Smith agenda so that caregivers

and family can see the updates in the prescription of Mrs. Smith. The pharmacist

gives the refills to Mrs. Smith and updates her medication file (changes in the

prescription’s type, dose, time, etc) on her agenda (view provided to Pharmacist).

84

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

He, also, pushes medication information to his mobile device using NFC device. As

Mrs. Smith returns home, the mobile agent on her device transfers the medication

information to the medication reminder system on the home gateway. The medication

reminder system is context aware and accounts for user activities in the home using

various sensors. It reminds Mrs. Smith about the upcoming medication, sends back

information to the pharmacy to prepare refills and reminds the user for refill pickups.

The system reminds Mrs. Smith to take her medication with her if she is going out

for lunch or attending her appointments. The medication reminder agent moves to

her mobile device and reminds her on time to take medication when she is outside.

The systems share the characteristics of a safety critical system, thus present

many challenges for its analysis. Any functional flaw in a system can result in life

threatening problems for Mrs. Smith (for instance a wrong medication reminder or no

alert on time). In the following, we will describe the medication adherence problem

and will present context aware medication management system along with its design

and analysis.

Medication adherence refers to whether patients follow their medication regime

as prescribed and continues their medication as prescribed [68]. Non-adherence

to a medication regime may result in serious health concerns and hospitalization.

Although adherence to prescribed medication regimens is difficult for all patients, it

is particularly challenging for the elderly. Elderly people who live independently find

it hard to follow their medication regime, which causes a serious threat to their lives

[126]. There can be a number of factors that can cause non-adherence to a medication

regime for the elderly such as, cognitive decline, functional abilities, memory loss that

results in forgetting their medication schedules, ordering and picking-up medication

85

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

from pharmacy, etc. Clinical methods to assess medication adherence includes direct

patient questioning, prescription refill records, medication blister pack, etc. These

methods tend to address adherence problem but require lots of resources that prevent

their adaptability, and are not fault-proof. Recent advancement in ICT has helped to

design solutions like medication reminders [176], digital pill boxes [69] that address

the issues and limitations discussed above. However, these solutions are limited to

research studies, have limited functionality, lack in usability and user acceptance.

To address the medication adherence problem in elderly, we designed a context

aware medication management and reminder system. The system is designed for

a Smart House where various sensing and actuating components are installed to

capture environment data, process it, assist and alert its habitants. The context

aware medication system has four modules:

1. Sensing module.

2. Inferring module.

3. Reminding module.

4. Actuating module.

The system architecture is shown in figure 4.1. In the current phase of the project,

we have considered medication reminders in the house. The system reminds the users

about their medication on the predefined schedule provided by the pharmacy.

4.2.2 Designing and Modeling the System

The design and modeling of PerCom systems is very complex task and requires

lots of attention in its requirements and specifications. Context aware medication

86

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

Figure 4.1: System Architecture of Contextaware Medication System

management systems share the characteristics of safety critical systems, where every

detail of a system is important to model the system, so that the system performs its

task as required and it is safe and dependable. A failure or any functional fault in

these systems can result in serious danger and risk the life of the users.

The architecture of a PerCom system has a number of devices and applications

collaborating, interacting and moving to support the system’s operations. A PerCom

system requires formal methods that support the concurrency among process running

in the system and help to specify the mobility of application and the users. Although,

there are many formal tools and frameworks available to specify systems, for the

purpose of this project, we studied process algebra to specify a PerCom system.

Process algebra or process calculus is mostly used to model concurrent systems

[60]. It offers tools to describe high-level of interactions, communications, and

synchronization between a collection of independent agents or processes. Some

87

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

famous flavors of process calculi include CSP, CCS, ACP, LOTOS, π calculus,

ambient calculus, PEPA and the fusion. Among these flavors, we focused on using

Communicating Sequential Processes (CSP) [164].

Communicating sequential processes is a high level very expressive language,

it uses mathematical objects as the abstraction to represent systems and its

processes. CSP has a rich set of operators for modeling the behaviors of concurrent

communications systems. System behaviors are described as processes that are well

supported by algebraic laws. In addition, patterns of interaction among various

processes, for instance devices and applications, can also be modeled as a set of

communicating processes that interact with other devices and application which can

be described as process expressions. CSP has a set of algebraic operators that

allows describing complex relationships of components and behaviors of a system.

In this project, we used communicating sequential programs (CSP#) as a modeling

language to model the system components and its environment. CSP# integrates high

level modeling operators with low-level procedural codes. CSP# implementation are

supported by a process analysis toolkit (PAT) model checker (interested readers are

refer to [172]). In the next section, we present the modeling of the environment and

system modules.

1. Entity Modeling:

As a first step towards modeling the system, we define the user as a process to

model all the possible activities associated with the medication system. There

are three possible states of the user in our system i.e. he/she could be inside

the home, outside the home or taking medication.

User status :Inhome, OutsideHome, Medication

88

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

User processes or user activities are associated or followed by many other

processes or activities in the house. For instance, entering the home is followed

by opening the home door or otherwise. Similarly, taking medication is

associated with lifting the medication bottle. Since every activity is important

in completing a task, therefore all possible activities are modeled as a process.

In the following, we show the definition of a user process while inside or

outside the home, followed by the definition of a medication process where the

system detects each medication (we simulated two medication bottles) whether

medication bottle is lifted or placed on the table.

Status = status of user i.e. inside home or outside home

User(status) =̂ (enterHome(status);user(insideHome))

� (leavesHome(status); user(outsideHome))

� (medication(status); user(medication))

enterHome(status) =̂ [status == outsideHome]enterHome→ Skip

leavesHome(status) =̂ [status == insideHome)leavesHome→ Skip

Medication Bottle Behavior (lifted, placed) i= identification of Medication

bottle status = status of medication bottle (lifted or placed).

medication (i,status) =̂ (start_med(i,status); medication(i.lifted))

�(finish_med(i,status); medication(i.placed))

2. Sensing Module:

The smart house is composed of many sensors that monitor user activities and

changes in their environment. In our project, the sensing module monitors

the activities of the users when they enter and leaves home. This sensing

module also monitors the information when the medication bottle is lifted

89

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

and placed. This information will help to infer the user activities and assist

them in doing their daily task. In our system, we have considered Radio

Frequency Identification (RFID) for user identification and tracking. RFID

reader is placed on the home door to detect when the user enters and leaves

home. Similarly, a RFID reader is placed beside the medication cabinet,

that reads the RFID tags attached to the medication containers and infers

which medication is placed or lifted (we assume these tags are placed by the

pharmacy or person responsible for medication management for the elderly).

This information helps to remind the user of the correct regime of medication

incase if they pick the wrong medication, and also help in reporting consumption

of medication. We define HomedoorRFIDReader as a process to detect the

presence of the user in the home or outside. This process takes its input from

the home RFID reader that helps to infer the status of the user. Similarly, we

define a process of scaleRFIDReader(i) which reads the RFID tags attached to

the medication bottle. These two processes (i.e. HomedoorRFIDReader and

scaleRFIDReader(i)) are combine into one process termed Sensitization using

the interleave operator for keeping the process in a concurrent state.

HomedoorRFIDReader =̂ (enterHome → rfid_Homedoor !(outsideHome))→
Skip

� (leavesHome → rfid_Homedoor !(insideHome))→ Skip

scaleRFIDReader(i) =̂ (scaleRFIDReader !i → Skip)

Sensitization =̂ HomedoorRFIDReader ||| scaleRFIDReader(i)

3. Inferring Module:

The inferring module is an important component of the system. Data coming

90

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

from the sensors are raw information and need to be translated to infer the user

activities and assist them in doing their tasks. The inferring module translates

the raw sensor data to verify the information with user activity or environmental

change. For instance, sensor data coming from the door RFID reader will help

to infer the user’s presence in the home or otherwise. The inferring module

runs an inference engine that has pre-defined rules and these rules are triggered

when some conditions are satisfied or some actions are committed. All data

coming from sensors are treated as sensor events. The inference engine then

matches the rules with the sensor events, triggers the corresponding action

based on the satisfied condition. In our system, two activities are monitored:

first the presence of the user in the home or outside, second, the status of

medication bottle when the user lifts and place back medication bottle. We

define Precensemonitoring that infers from sensor information on the presence

of the user inside or outside the home. Similarly, the Medicationmonitoring

process is defined to infer from the information of scaleRFIDReader(i) which

medication model is lifted or placed back. Process definitions are as follows:

(a) First, the presence of user in home

Precensemonitoring =̂ (rfid_Homedoor?(status) →
[status == outsideHome]detectenterHome → Skip

� [status == insideHome]detectleavesHome → Skip);

Precensemonitoring

(b) Second when user lifts and place medication bottle on the

scale/box.

91

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

Medicationmonitoring =̂ (scaleRFIDReader?(i, status) →
[status == lifted]detectstart_med.i → Skip

� [status == placed]detectfinish_med.i → Skip);

Medicationmonitoring

4. Reminding Module:

The reminding module is a reminder system that alerts the user about their

medication. The reminding module takes input from the inferring module to

activate/deactivate the correct reminder. Reminders are predefined and they

are prompted based on the input from the inferring module. For instance, when

the inference engine evaluates that the user is leaving the house and has to take

medication on a scheduled time, it triggers a reminding event. Based on this

information, the reminding module translates this information and generates an

alert to prompt the user to take medication along with him/her. This will help

the user to not skip his/her medication while he/she is away from the house.

(a) Take Medication Reminder:

This reminder alerts users to take their medication on time. The reminder

is very precise and triggers on the scheduled time of medication. This

reminder has two parameters: (i = medication that has to be taken and

ct = current time). In addition it also takes the sensor input to detect

whether the user is in the home or not. In the following, we define the

reminder that alerts the user to take the medication.

Take_med_reminder(i, ct) =̂ ([detectinhome]alert!(Take_Medication.i)

→ Skip

WHERE (med_timetable.i = ct) → Skip); Take_med_reminder(i, ct)

92

4.2. Early Design Analysis of Contextaware System: Model Checking
Approach

(b) Take the Correct Medication:

This reminder is very important to address the medication adherence

problem. It is triggered after the system detects whether the user lifted

the correct medication or not. The correct regime is pre-stored in the

system. If the user follows the correct regime, it will prevent the serious

consequences of taking the wrong medication regime. In the following, we,

define the reminder that alerts the user to take the correct medication:

worng_med_reminder() =̂ ([detectlifted] → alert!(wrong_medication.i)

→ Skip);

worng_med_reminder()

(c) Bring Medication While Leaving Home:

This reminder is triggered when the system detects that the user is leaving

out from the home and his/her scheduled medication is due in the coming

hour. This kind of reminder is helpful for the user to follow their medication

schedule even if they are out of their home. In the following, we, define

the reminder that alerts user to bring his/her medication while going out:

bring_med_reminder() =̂ (dectectleavesHome?true → alert!(Bring_Medication))

→ Skip; bring_med_reminder()

5. Actuating Module:

The actuating module consists of output modalities in the smart house, e.g

(audio, video, display). It takes input (reminder to be displayed or played)

from the reminding module and notifies the user of various reminders. Here is

the implementation of alerting service, which takes its input from the status

93

4.3. Verification of Dependability Properties

and then triggers the corresponding reminder:

Reminding =̂ alert?status → Reminding;

4.3 Verification of Dependability Properties

With the system model presented above, this section presents the verification

of the system’s desired properties. In our review of literature, we found that

there is a diversity of opinions concerning the verification properties for pervasive

computing systems and methods to define and verify them. Generally, researchers

have considered and defined different properties for analyzing various aspects of a

system such as dependability analysis for fault tolerant system, safety properties

for hazard analysis, security properties for security and privacy oriented system

or protocols, and customized properties that are tailored to a system’s behavior

i.e. mostly LTL properties. Since it is hard to generalize properties for pervasive

computing, we will define and verify the most important properties for our system.

These properties are synthesis of fault tolerance properties, safety properties, security

properties and liveness properties. However, these properties are not the only

properties for system analysis; many other properties of such kind can be included

based on the need and analysis goal of project.

It is highly desirable to have automatic tool support for the modeling and

verification of system. Model checking allows to automatically verifying various

properties for critical systems using model checkers. There are many model checking

tools that support modeling of concurrent systems and their behavior. A survey

of such kind is presented by Frappier et al. in [59]. In our project, we used

94

4.3. Verification of Dependability Properties

the process analysis toolkit (PAT) to model and verify the properties of the above

described system. PAT is a self-contained framework for composing, simulating and

reasoning concurrent systems [172], figure 4.2 (borrowed from [172]) shows the system

architecture of PAT. In addition, due to its extensible and modularized framework.

PAT allows users to build customized model checkers and extend the existing one

to support new modeling languages and assertions [172]. We worked with the CSP

module of PAT which implements CSP# [172].

Figure 4.2: System Architecture of PAT

• Deadlock Freeness: Deadlock is the most common and important property

of critical systems. Deadlock can be when two or more processes competing for

the same resource or wait for each other to finish. We verify this property as

believe it is mandatory for pervasive systems to not have a deadlock in system’s

operations. For instance, it is not desirable that two reminders triggered at the

same time or waiting for each other to happen, or some kind of sensing error

that may corrupt inference module operations. These kinds of consequences

95

4.3. Verification of Dependability Properties

may lead to a serious threat for the patient life. In the following, we define and

verify the deadlock properties with the PAT model checker. Deadlock property

is directly supported in PAT using a keyword “deadlockfree” e.g.

#assert Process() deadlockfree;

In our system, the result of this analysis was “VALID” which shows the system

has no deadlock.

Property 1: System is deadlock free.
system()=user()|||sensorization()|||Takemedication_Reminder();
Definition : #assert system() deadlockfree;
********Verification Result********
The Assertion (system() deadlockfree) is VALID.
********Verification Setting********
Admissible Behavior: All
Search Engine: First Witness Trace using Depth First Search
System Abstraction: False
********Verification Statistics********
Visited States:106
Total Transitions:1133
Time Used:0.0183896s
Estimated Memory Used:8973.712KB

• False Reminder: The medication reminder is the heart of our system, thus it

is important to verify if the reminding service is working correctly. We check

in our system if the reminder service alerts users according to the environment

context, i.e. location, time, etc. The analysis is done by defining a scenario

inconsistentinfo. In this scenario, the status of the user is outside while the

medication bottle is lifted. This is an inconsistent state of the system about

the environment and results in a functional bug. We define the scenario in PAT

and run the assertion using “reaches” keyword. This kind of analysis is also

96

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

known as reachabiity analysis of the system, where the system knowledge is

inconsistent with the environment knowledge, which results in a faulty system.

The result of the scenario in “NOT VALID” that means system reached the

state defined in the scenario.

Property 2: Reachability Analysis (Inconsistent Knowledge of system)
Scenario While user is outside, medication bottle is lifted
#define inconsistentinfo (isOuthome= EMPTY && takemed =Lifted);
Definition #assert system reaches inconsistentinfo;
********Verification Result********
The Assertion (system() reaches inconsistentinfo) is NOT VALID.
********Verification Setting********
Admissible Behavior: All
Search Engine: First Witness Trace using Depth First Search
System Abstraction: False
********Verification Statistics********
Visited States:106
Total Transitions:1133
Time Used:0.0164181s
Estimated Memory Used:8940.744KB

4.4 Runtime Analysis of Pervasive System:

Design By Contract Approach

We have seen earlier that model checking offers static analysis (off-line verification)

while exploring functional flaws in system design. However, it can only be useful while

analyzing finite systems, where the system operates in a closed environment and states

are not changing with respect to their operating context. Though there are benefits

of verifying systems with these techniques, however these techniques are difficult to fit

in common system development approaches due to their formality and lack of runtime

97

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

verification methods.

Pervasive computing systems (specifically context aware systems) are dynamic

in nature, thus requiring runtime verification approaches. In such a case a simple

static analysis of the system is not sufficient. Combining it with runtime analysis

will aid the analysis process. Recently, the research in formal methods have moved

from off-line verification to on-demand verification (a.k.a runtime verification) that

combines formal specification with an implementation to support runtime verification

of software systems during its execution. This approach is contrary to off-line

verification methods (such as theorem proving, model checking, etc.) that are hard

to adopt in the common development methodologies and do not completely support

runtime verification of system.

Runtime formal verification allows verification of the system behavior for

unexpected dynamic situations and helps to monitor the system performance

dynamically. Furthermore, with a runtime verification approach, the system can

be analyzed during the development phase and can be monitored while running.

We believe that along with static analysis, runtime verification will be favorable

for pervasive computing system analysis. In this thesis, we propose the use of

Design by Contract as a possible “How” to verify pervasive computing systems

on fly. In particular, we highlight the potential use of DbC in verifying service

interoperability and adaptability requirements in pervasive computing environments,

as it is very important that these environments support interoperability of services

and components deployed in the environments to achieve common goals [144].

Design by contract is the object oriented design techniques introduces by Bertand

Meyer [119]. The technique was introduced to increase the reliability and robustness

98

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

in software system and make them bug free. It is based on the principle of client

supplier relationship from the business world, where a contract is specified between

the two on how to interact and deal in a transaction. On the same principle, DbC

was introduced for software development, where two software components (client

and supplier) have a contract specified on how the two will interact. This way

it helps to ensure the required conditions and behavior correctness of the software

components at design stage. The engineer writes assertions (contracts) for every class

and components that can be verified dynamically at runtime, when the component

or instance is invoked. Here the assertions/contracts are the boolean expressions

that represent the semantic properties of that instance or component. Like business

contract, design contracts also have some condition that must be fulfilled in order

for smooth execution of system operations. The conditions are known as “Pre” and

“Post” conditions, for instance former has to be met in order to call certain methods

or components of the system while later have to fulfill certain condition. The pre and

post conditions are inherited by Hoare’s correctness triplets of:

{P} A {Q}

This expression can be interpreted as an execution of process A is a state where P

holds and, termination of process A is a state where Q holds. Here P and Q are the

logical pre and post condition assertions for the process A respectively. These pre

and post conditions are formally known as contracts that software designers can use

to formally define precise and verifiable specification for software components. These

contracts can be viewed as rights and obligations of the class and its client. The

fundamental idea of DbC is to attach assertions or “contracts” with each component

of the application, which allow the runtime verification of the properties that hold.

99

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

There are three different kinds of assertions that could be defined for any service,

routine or application component:

1. Pre-condition: Pre-conditions are used to specify the assertion that must hold

before the execution of the program, or component. In this way the programs

or services can be verified before their executions. For instance, it is possible to

verify the arguments or inputs required by the service.

2. Post-conditions: Post-conditions are assertions that must hold after the

execution of the program. In this way services are verified after their execution

against respective contracts.

3. Invariants: Invariants are the assertions in the contract that must hold anytime

during the execution of a program.

Design by Contract technique is not exception handling or defensive programming,

that allows a system to take and support all possible inputs and outputs. DbC allows

to formally specifying the behavior of software using specified contracts that help to

analyze and guarantee the functional requirements of real-time systems on the fly.

We look now at the interoperability requirements in PerCom systems and potential

use of DbC in verifying these requirements.

To support continuity of services in smart environments (SE), these systems

must provide seamless interoperability among devices and services. The formal

definition of interoperability given in IEEE glossaries is the ability of two or more

networks, systems, devices, applications or components to exchange information

between them and use the exchanged information. Thus interoperability is the

capability of heterogeneous and autonomous systems to interact with each other

for efficient service execution [143], It can, also, be defined as transparent &

100

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

compatible execution between equipments from different vendors. Researchers have

presented many approaches to support interoperability in PerCom environments such

as [21, 23, 117, 135, 145, 155]. However there are very few works done on verifying

service interoperability requirements for these environments. There are three types

of interoperability problems that can occur in PerCom environments:

1. Syntactic Interoperability: Syntactic interoperability involves a common

data format and common protocol to structure any data so that the processing

of information will be interpretable from the structure [166].

2. Semantic Interoperability: Semantic interoperability requires that any two

systems will derive the same inferences from the same information [166].

3. Pragmatic Interoperability: Pragmatic interoperability is reached when the

interoperating systems are aware of the methods and procedures that each system

is employing. In other words, the use of the data or the context of its application

is understood by the participating systems [166].

Service interoperability verification is a key to ensure service continuity and thus

requires a thorough analysis of interoperability requirements. Pokraev and colleagues

[142,143] addressed the issue of interoperability verification and identified assessment

requirements for semantic and pragmatic interoperability. These requirements are

summarized below (taken as from [143]):

R1 : A necessary condition for the semantic interoperability of two systems is the

existence of a translation function that maps the entity types, properties and

values of the subject domain model of the first system to the respective entity

types, properties and values of the subject domain model of the second system.

R2 : A necessary condition for pragmatic interoperability of a single interaction is

101

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

that at least one result that satisfies the constraint of all contributing systems

can be established.

R3 : A necessary condition for pragmatic interoperability of a service is that R2

is met for all of its interactions and they can occur in a causal order, allowed

by all participating systems.

Based on the above requirements, they proposed a method to verify composite

systems. The limitation of their approach is the lack of mapping mechanism for their

service model. Baldoni and colleagues in [13] suggested formalizing the interaction

protocols using finite state automata to define and verify properties of a service for the

given protocol. Their approach is a static analysis of the system which can improve the

confidence in the system. However it requires prior knowledge of protocols description

under test. A similar approach is presented by Wan and colleagues, authors presented

a verification algorithm and propose to formalize the properties of service adapted

to Pantagruel (i.e. language that describes and manages services), which will allow

programs to be verified prior to their execution. However this approach is limited

when used to verify composite systems on the fly [183]. In next section, we present

our preliminary analysis of using DbC to analyze the requirements presented above.

4.4.1 Requirements Analysis

Based on the requirements presented above, we studied how the requirements

can be met if we choose to specify services using a DbC design. A service contract

model is presented (shown in figure 4.4.1) which is a more like a design pattern to

specify service. The components of this model are self-explanatory and can serve

as a reference model while specifying services for smart environments. For instance,

102

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

consider the simple Service Oriented Architecture (SOA) where services are published

and advertised in the environments. Using DbC a service publisher can specify a

service with its service contract and thus help service composition on the fly. It also

helps to monitor if a contract of communications and executions is met (which verifies

its correct functioning).

In this section, we analyze DbC technique to verify the semantic and pragmatic

interoperability requirements. Contracts can be used to specify the application

requirements that must hold to inter-operate with other systems. A service

contract can specify semantics, behavioral, functional and nonfunctional requirements

associated with the respective service. In this way, a service provider makes

no assumptions about a service consumer, other than those specified in the

service contract. Service contract can act as an interface through which service

consumers communicate with the other services for service composition. These

service contracts can be specified independently of the underlying technologies to

support interoperability. The use of DbC technique will help to support and verify

semantic interoperability requirements in pervasive computing environments. Next,

we present the analysis of DbC technique in satisfying the semantic and pragmatic

interoperability requirements identified in [143].

The first requirement R1 for the semantic interoperability is that the system

Figure 4.3: Service Contract Model

103

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

must have a translation function that maps the entity types, properties and subject

domain model of the systems being integrated. This requires the complete knowledge

of the system service and its relationships with other components in the environment.

This requirement can be satisfied by associating a contract with each component

of the system. Thus, when systems are interacting, they can be verified w.r.t to

their contracts. This could be the pre or post condition that must hold for any

communication. To enrich the contract with the domain knowledge and relations

with other components, ontologies can be used. Ontologies are the description of

some shared concepts and their relationships for the given domain and they support

semantics interoperability based on the domain knowledge. Requirement R2 and R3

address the problem of pragmatic interoperability.

As discussed above, pragmatic interoperability can be reached when the inter-

operating systems are aware of each other methods and procedures, also the necessary

conditions are met for at least one result that can satisfy constraint. As a result,

the context of its application is understood by the participating systems. This

requirement can be satisfied by defining the invariants of the contract and can be

verified any anytime during the execution, to know the current state of the system.

DbC can, also, be applied to address the service composition and verification in

PerCom environment. Authors in [41] have presented an approach to model a

service behavior represented by concurrent regular expression and then translate it

to label transition system to form a finite state process notation trace to verify the

service composition. This approach is not automatic and does not support service

interoperability if the composition is between two different systems. DbC approach

can be applied to support such interoperability and verification of service composition.

104

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

The idea is similar to that stated above, every service has its contract which specifies

its behavior, functional and semantics requirements.

4.4.1.1 Proof of Concept

For the proof of concept, we simulated a web service to analyze how a design

by contract technique can be used to verify the interpretability requirements

discussed above. We choose to verify web services as it offers interoperability

of languages, platforms and technologies by providing XML-based definitions of

services. Furthermore, we have seen efforts in enabling smart environments using

web service technologies for example in [184]. It is also one of our motivations to

work with web services. As discussed above, DbC is a design pattern that can

be implemented using various available languages. However, we choose to work

with the CodeContract framework. CodeContract supports three types of contracts:

pre-conditions, post-conditions and invariants. These contracts offer an Application

Programming Interface (API) that consist of methods defined in a class. The

“requires method” helps to define pre-conditions of the method and “ensures

method” helps to define post-conditions of the method. Unlike pre and post

conditions, invariants are not directly applied to the methods but are used to verify

the state of class instance and see if class is satisfying the contracts defined in it. The

class state can be multiple fields, properties or class behavior.

To analyze how DbC helps in verifying interoperability requirements of a web

service, we implemented a simulate of a web service that computes volume and

surface area of a triangle implemented in Windows Communication Foundation

(WCF). WCF is a framework for building service-oriented applications. It helps

105

4.4. Runtime Analysis of Pervasive System: Design By Contract
Approach

to inter-operate web services while supporting a set of specifications known as the

web services specifications. Since basic interoperability can be achieved using WCF,

we are interested in how to verify the interoperability requirements discussed above.

To do so, a web service is defined using the contracts defined in WCF. WCF offers

four types of contracts:

1. First, service contracts (with the attributes of service contract and operational

contract) that help to describe which operations the client can perform on the

service.

2. Second, data contracts that help to define which data types are passed to and

from the service.

3. Third, message contract that helps to define services for interaction with

messages. This type of contract is useful in cases where services have to comply

with existing message formats.

4. Fourth, fault contract that helps to record the errors occurred during the

communication and how the service has behaved during this session.

In WCF there is no contract types available to verify the functional requirements,

though we can achieve it using invariants attributes of the DbC framework (as

discussed above).

In our case, we were interested in analyzing syntactic, semantic and pragmatic

interpretability requirements of the web service. By defining services using these

contracts, we can verify interoperability requirements of web services. To analyze

this, we drive tests using data and message contracts. For the purpose of functional

testing a test contract to verify the input values is defined. The service computes the

volume and total surface area of a triangle by calling the object of the message and

106

4.5. Summary

data contract. It exposes two methods: MesageContractCalculation method

that defines the message contract and DataContractCalculation method that

defines the data contract type. The goal of both methods is the same i.e. computing

the volume and surface area. However their service call method is different. In the

MesageContractCalculation method, service operation should accept or return

only a message contract type and it does not allow any other data types i.e. a service

call is sent in a message format and is returned in the same way. The method takes

input from the user and verifies its functional contract, if everything is correct it

generates a new message contract as a response to the service call and returns the

object to the call. If the input value violates the rule, a fault contract is flagged, errors

are recorded and the user is prompted about it. In DataContractCalculation

method which implements the data contract type, it takes data contract as input

and returns the same. These contracts only describe the data to be transferred

between the service requester and the provider, and do not describe any message

format that carries the data. Generally for data contracts, interoperability is enabled

through the XML Schema Definition (XSD). However, the message contract services

can interoperate with any system that communicates through the Simple Object

Access Protocol (SOAP). The simulation helps to analyze the pragmatic and syntactic

interoperability requirements of web services using data and message contracts.

4.5 Summary

This chapter presented a discussion on “How to Evaluate” i.e. approaches and

tools for evaluation. As explained in this chapter, finding one approach or tool for

107

4.5. Summary

evaluating PerCom systems is very difficult. We followed the layered approach and

presented possible solutions for early design stage evaluation of PerCom systems. Two

methods are discussed in this context i.e. model checking and DbC. Both methods

and their potential use in evaluating PerCom systems are discussed and analyzed

using example of PerCom system. In the next chapter, we conclude our work and

present a discussion on the lessons learned and future goals.

108

Conclusion

In this chapter, we conclude this thesis by summarizing the work, discuss how the

contribution of the thesis addresses the research question stated at the beginning and

present a discussion on the results. We then discuss and draw directions for future

research and topics that go beyond the scope of the current work. Final remarks

conclude this thesis.

Summary

The aim of this thesis was to analyze the tools and techniques for evaluating

PerCom systems. The research started with the open question of “what and how

to evaluate”. To address the first part of the question, we have presented an

evaluation framework for comprehensive evaluation of pervasive computing systems.

We advocate that it is important that the design and evaluation of pervasive systems

take into consideration the user, environment and context. In our model, we have

incorporated and discussed important system, user, contextual and environmental

factors that should not be overlooked during the evaluation process of pervasive

systems. A survey of literature helped to classify the systems and to identify the

key parameters that can be measured, which help to determine “what to evaluate”.

109

Conclusion

To address the second part of the question, we, took a layered approach for

evaluating a system from the beginning of its design to find approaches for “how to

evaluate”. A complementary issue to performance evaluation is functional correctness

of a running system, which confirms that a system conforms to its functional

requirements and does not contain any flaws. We studied formal method techniques

to verify the functional correctness of the system at the early design stage. This

approach is complementary to simulation and testing and can find flaws in the

design before developing the system prototype. This approach allows designers to

verify their system’s behavior against its functional requirements. We studied two

kinds of formal analysis methods. At first, we studied the potential use of a model

checking approach as an automatic verification method for PerCom systems. To

demonstrate our approach, we applied a (CSP) modeling framework to a context

aware medication management system, and verified dependability properties using

a PAT model checker. Secondly, we studied the runtime verification approach of

DbC for runtime analysis of PerCom system. The analysis shows the potential use

of using DbC in verifying interoperability requirements in smart environments. The

interoperability requirements are defined as assertions that facilitate verifying the

correctness properties and help to record the associated runs. Since the verification is

run for a single piece of code/program or service, thus it can scale well. In addition,

these approaches can be easily incorporated with the currently available technologies,

however large scale analysis of these approaches are still to be done.

110

Conclusion

Findings and Discussion

Pervasive computing system evaluation research has recently gained tremendous

attention. Researchers around the world are trying to come up with solutions and

tools that can be used for comprehensive evaluation. However these approaches and

tools are tailored towards specific applications or system modules. In addition,

analysis approaches such as simulation, testing, and formal analysis all have

limitations when applied to PerCom system. For instance existing testing techniques

do not support the analysis of applications developed for dynamic environments

(context-aware systems), mobility supports, inter-operability and heterogeneity, etc.

Similarly, simulation approaches and tools that are widely used for PerCom system

analysis face similar difficulties when dealing with special characteristics of PerCom

system. In addition, formal analysis tools such as formal methods are powerful and

broad. However they do not completely support the analysis of the unique nature of

PerCom system.

In this thesis, we have tried to address the research issue and took a systematic

approach by studying the available systems to understand and define analysis goals,

that helped us to identify and gather relevant performance metrics and later explore

appropriate evaluation techniques and tools for evaluation. We focused our attention

on evaluating PerCom system at early design stage and studied formal methods

as an approach for evaluation. Traditionally, formal methods have been used for

evaluating complex and safety critical systems, however to the best of our knowledge,

it has not been applied in PerCom systems. While PerCom systems are considered

as safety critical systems, yet they are different from traditional critical systems.

111

Conclusion

Among many differences, the fundamental differences are dynamic environments,

context awareness, and service continuation while the user is mobile. Hence these

characteristics are not easily modeled with traditional formal frameworks and present

many challenges for modeling and verifying PerCom systems.

First and foremost was finding the comprehensive modeling framework that would

help to model a complete behavior of a system. The design requirements of PerCom

system are different from a traditional system (such as context awareness, mobility,

dynamicity, heterogeneity, etc) which makes existing formal frameworks inadequate

for system specification and verification. In this thesis, we modeled and verified a

context aware system using model checking approach. Although formal methods such

as model checking approach was helpful to identify functional flaws at early stage of

system design, however there were few limitation and difficulties faced in using formal

methods for the analysis of PerCom System. In our experience, we choose to model

our application using (CSP) modeling framework that allows describing the patterns

of interaction among various processes. Locality and mobility are the important

characteristics of pervasive computing system. This mobility could be of software

agents to user in environment. (CSP) do not directly support mobility and locality

specifications in a straightforward way, therefore modeling system with (CSP) alone

is not an optimum solution. Other frameworks such as Ambient calculus [39] (Just

to name here) can help to model the mobility requirements. The core concept of

the Ambient calculus lies in the ambient that is a bounded place where computation

happens. Each ambient can contain a number of applications that are executed in

its context. These applications can move in and out, can host other applications and

can be used to specify mobility and locality factors of PerCom system. However in

112

Conclusion

the best of our knowledge there are no tools available for automatically analyzing

specifications, therefore no concrete analysis can be done. In our experience, it

was first difficult to find a comprehensive modeling framework that could help to

specify all the aspects and properties of PerCom systems. For instance, due to CSP

limitation presented above, we could not explore mobility scenarios for our system.

We believe for comprehensive analysis of PerCom system, research community would

need to develop specification frameworks and analysis tools that could address the

most important properties of PerCom system. To date, we have not found any

standard method or tool which can be used to model and verify all the evaluation

aspects of PerCom system discussed in chapter 3. This leads to research issue of

extending the utilities of existing modeling frameworks to meet the needs of future

computing system modeling and analysis.

Although model checking allows exploring functional flaws in system design,

however it can only be useful when analyzing finite systems where system operates

in a close environment and states are not changing with respect to their operating

environments. While dealing with infinite system, model checking approach faces the

well-known problem commonly known as state explosion. This is a major concern in

model checking as it is difficult to devise method and data structure to handle large

state spaces of complex system. Consequently, this limits its use for open system

such as PerCom system where multiple systems of systems are running together and

system states are changing without the predefined rules. In our case, to deal with

the problem, we divided the system in modules. However this approach will not give

complete information of system behavior thus system analysis will be incomplete.

While verifying and analyzing the most important properties of PerCom system,

113

Conclusion

we observe that contextual information properties of a system cannot be specified

and verified easily. Thus requires additional reasoning techniques and tools. Since

contextual information and related property verification is central to PerCom

system analysis, therefore without analyzing such properties, we cannot analyze the

adaptation behavior of PerCom system. The problem leads towards a solution for

using various reasoning approaches in one framework.

We believe that it will not be enough to use model checking for automatic analysis

of PerCom system. This thesis also advocates the need of runtime verification

approaches for runtime analysis of PerCom system properties such as anytime,

everywhere, context dependent adaption analysis etc. We discussed and presented

one way of doing runtime verification using DbC for verifying interoperability

requirements in smart environments. Although the benefits of runtime verifications

are fruitful, however it is hard to boldly say that this approach can be solely used

for system analysis. We believe that more research efforts and experiences should be

shared for runtime verification to achieve any breakthrough in the analysis of PerCom

system.

Concluding Remarks and Future Objectives

The above observations lead to the conclusion that PerCom system design and

analysis is still in its infancy. We have found that research on PerCom system

evaluation is fragmented in many directions, consequently there is a lack of common

evaluation parameters, methodologies, tools, practices and theories that exist and

can be used for evaluation. This leads to revisit these approaches and develop new

114

Conclusion

practices for system analysis that can support the verification and analysis of main

characteristics of PerCom system. We fear unless some standard methodologies and

tools are not developed. PerCom system will not enjoy the success of traditional

computing system and will remain research oriented system in laboratories. Thus

developing new analysis tools are necessary for realizing the vision of Mark Weiser.

This work has also helped us to conclude that no one box solution is practical for

evaluating PerCom system. Thus the analysis of PerCom system should be conducted

in a systematic way that completes its process throughout the development cycle and

focuses on main characteristics of PerCom system. In addition, evaluation approaches

should also account user behavior in analysis process, so that user behavior can be

analyzed.

Many related topics are studied in the course of this thesis research; however

they did not take-up due to limitation of time and scope of project. In future,

we would like to investigate more system analysis approaches, to develop suite of

analysis approaches tailor towards PerCom system. In particular, we have studied

and applied formal methods for design and analysis of context aware system. The

results are promising and help to drive research to next level. The next agenda in our

research is to explore more system verification and validation approaches, to develop

new tools and techniques for PerCom system design and analysis. In particular, we

would be interested in studying reliable software engineering approaches for pervasive

computing system and studying tools and frameworks to verify these requirements

on the fly.

115

Bibliography

[1] G. D. Abowd, C. G. Atkeson, A. F. Bobick, I. A. Essa, B. MacIntyre,
E. D. Mynatt, et T. E. Starner, “Living laboratories: the future
computing environments group at the Georgia Institute of Technology,”
dans CHI 00: CHI 00 extended abstracts on Human factors in
computing systems. New York, NY, USA: ACM, 2000, pp. 215–216.

[2] M. Arapinis, M. Calder, L. Denis, M. Fisher, P. Gray, S. Konur,
A. Miller, E. Ritter, M. Ryan, S. Schewe, C. Unsworth, et R. Yasmin,
“Towards the Verification of Pervasive Systems,” Formal Methods for
Interactive Systems, vol. 22, pp. 1–15, 2009.

[3] B. Abdulrazak, B. Chikhaoui, C. Gouin-Vallerand, et B. Fraikin, “A
Standard Ontology for Smart Spaces,” IJWGS, vol. 6, no. 3, 2010.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
et P. Steggles, “Towards a Better Understanding of Context and
Context-Awareness,” dans HUC 99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing. London, UK:
Springer-Verlag, 1999, pp. 304–307.

[5] W. Abdul, A. Farooque, A. Hina, et S. Ali, “Usability Aspects in
Pervasive Computing: Needs and Challenges,” International Journal
of Computer Applications, vol. 32, no. 10, pp. 18–24, 2011.

[6] R. Anand, A.-M. Jalal, B. Jacob, Z. Brian, C. R. H, et B. Brian,
“Towards a Pervasive Computing Benchmark,” dans PERCOMW 05:
Proceedings of the Third IEEE International Conference on Pervasive

116

Bibliography

Computing and Communications Workshops. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 194–198.

[7] M. Alshamari et P. Mayhew, “Technical Review: Current Issues of
Usability Testing,” IETE Technical Review, vol. 26, no. 6, pp. 402–406,
2009.

[8] B. Abdulrazak, M. Mokhtari, et B. Grandjean, “Usability of an
Assistive Robot Manipulator: Toward a Quantitative User Evaluation,”
vol. 306, no. 1, pp. 211–220, 2004.

[9] B. Abdulrazak, Y. Malik, et H.-I. Yang, “A Taxonomy Driven Approach
towards Evaluating Pervasive Computing System,” dans ICOST 10:
Proceedings of the Eight International Conference On Smart homes and
health Telematics. South Korea: Springer Berlin Heidelberg, 2010, pp.
32–42.

[10] T. Antoine Santoni, J. F. Santucci, E. De Gentili, et B. Costa,
“Modelling & simulation oriented components of wireless sensor
network using DEVS formalism,” dans Proceedings of the 2007 spring
simulation multiconference - Volume 2, série SpringSim 07. San Diego,
CA, USA: Society for Computer Simulation International, 2007, pp.
299–306.

[11] L. Arhippainen et M. Tähti, “Empirical evaluation of user experience
in two adaptive mobile application prototypes,” dans Proceedings of
the 2nd international conference on mobile and ubiquitous multimedia,
2003, pp. 27–34.

[12] J. C. Augusto, “Ambient Intelligence: the Confluence of Ubiqui-
tous/Pervasive Computing and,” Artificial Intelligence, pp. 213–234,
2007.

[13] M. Baldoni, C. Baroglio, A. Martelli, et V. Patti, “A priori conformance
verification for guaranteeing interoperability in open environments,”
dans In Proc. of ICSOC 2006, volume 4294 of LNCS. Springer, 2006,
pp. 339–351.

117

Bibliography

[14] J. E. Bardram et H. B. Christensen, “Pervasive Computing Support
for Hospitals: An overview of the Activity-Based Computing Project,”
IEEE Pervasive Computing, vol. 6, no. 1, pp. 44–51, janvier 2007.

[15] E. Beck, M. Christiansen, J. Kjeldskov, N. Kolbe, et J. Stage,
“Experimental evaluation of techniques for usability testing of mobile
systems in a laboratory setting,” dans proceedings of Ozchi, 2003, pp.
106–115.

[16] J. Bohn, V. Coroama, M. Langheinrich, F. Mattern, et M. Rohs,
“Living in a World of Smart Everyday Objects Social, Economic, and
Ethical Implications,” Human and Ecological Risk Assessment: An
International Journal, vol. 10, no. 5, pp. 763–785, 2004.

[17] J. Bohn, V. Coroama, M. Langheinrich, F. Mattern,
et M. Rohs, “Social, economic, and ethical implications
of ambient intelligence and ubiquitous computing.
http://www.vs.inf.ethz.ch/publ/papers/socialambient.pdf, 2004.
Institute for Pervasive Computing,” dans In. Springer-Verlag, 2004.

[18] M. Bylund et F. Espinoza, “Testing and demonstrating context-aware
services with Quake III Arena,” Commun. ACM, vol. 45, pp. 46–48,
January 2002.

[19] R. Beckwith, “Designing for Ubiquity: The Perception of Privacy,”
IEEE Pervasive Computing, vol. 2, pp. 40–46, 2003.

[20] D. Bowman, J. Gabbard, et D. Hix, “A survey of usability evaluation
in virtual environments: classification and comparison of methods,”
Presence: Teleoperators & Virtual Environments, vol. 11, no. 4, pp.
404–424, 2002.

[21] A. Bottaro, A. Gerodolle, et P. Lalanda, “Pervasive Service
Composition in the Home Network,” dans Proceedings of the 21st
International Conference on Advanced Networking and Applications,
série AINA ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 596–603.

118

Bibliography

[22] J. Buck, S. Ha, E. A. Lee, et D. G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogenous Systems,”
Int. Journal in Computer Simulation, vol. 4, no. 2, 1994.

[23] Y.-D. Bromberg et V. Issarny, “INDISS: interoperable discovery system
for networked services,” dans Proceedings of the ACM/IFIP/USENIX
2005 International Conference on Middleware, série Middleware ’05.
New York, NY, USA: Springer-Verlag New York, Inc., 2005, pp. 164–
183.

[24] Braunes, Jens, Kohler, Steffen, et R. Spallek, “RECAST: An
Evaluation Framework for Coarse-Grain Reconfigurable Architectures,”
dans Organic and Pervasive Computing ARCS 2004. Springer Berlin
/ Heidelberg, 2004, pp. 5–53.

[25] J. Barton et T. Kindberg, “The Cooltown User Experience. Tech
Report: HPL-2001-22.” HP Labs., Rapport technique, 2001.

[26] C. Baier, J. Katoen et al., Principles of model checking. MIT press,
2008, vol. 26202649.

[27] M. Beaudouin-Lafon et W. Mackay, “Prototyping tools and tech-
niques,” 2003.

[28] J. J. Barton et J. Pierce, “Finding the right nails: Scenarios for
evaluating pervasive systems,” dans Pervasive 07: Common Models
and Patterns for Pervasive Computing Workshop. Canada: Springer-
Verlag, 2007.

[29] M. Burnett et C. P. Rainsford, “A Hybrid Evaluation Approach for
Ubiquitous Computing. Environments,” dans In Workshop: Evaluation
Methodologies for Ubiquitous Computing, 2005.

[30] P. J. Brown, “The Stick-e Document: a Framework for Creating
Context-aware Applications,” dans Proceedings of EP96, Palo Alto.
also published in it EPodd, June 1996, pp. 259–272.

[31] J. C. Bastien et D. L. Scapin, “Ergonomic criteria for the evaluation of
human-computer interfaces,” INRIA, Rapport technique RT-0156, juin
1993.

119

Bibliography

[32] V. Bellotti et I. Smith, “Informing the design of an information man-
agement system with iterative fieldwork,” dans DIS 00: Proceedings of
the 3rd conference on Designing interactive systems. New York, NY,
USA: ACM, 2000, pp. 227–237.

[33] J. J. Barton et V. Vijayraghavan, “Ubisim Mod for Quake III Arena,”
Mobile and Media Systems HP laboratories Palo Alto, Rapport
technique, 2001.

[34] S. Consolvo, L. Arnstein, et B. R. Franza, “User Study Techniques
in the Design and Evaluation of a Ubicomp Environment,” dans
Proceedings of the 4th international conference on Ubiquitous
Computing, série UbiComp 02. London, UK, UK: Springer-Verlag,
2002, pp. 73–90.

[35] S. Consolvo, L. Arnstein, et B. R. Franza, “User Study Techniques in
the Design and Evaluation of a Ubicomp Environment,” dans UbiComp
02: Proceedings of the 4th international conference on Ubiquitous
Computing. London, UK: Springer-Verlag, 2002, pp. 73–90.

[36] A. Coronato et G. De Pietro, “Formal specification of dependable
pervasive applications,” dans Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, 2009, pp. 358 –365.

[37] Z. Chen et S. Fickas, “Do No Harm: Model Checking eHome
Applications,” dans Proceedings of the 1st International Workshop on
Software Engineering for Pervasive Computing Applications, Systems,
and Environments, série SEPCASE 07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 8–.

[38] H. Chen, T. Finin, et A. Joshi, “An ontology for context-aware
pervasive computing environments,” Knowl. Eng. Rev., vol. 18, no. 3,
pp. 197–207, 2003.

[39] L. Cardelli et A. D. Gordon, “Mobile ambients,” dans Foundations of
Software Science and Computation Structures. Springer, 1998, pp.
140–155.

120

Bibliography

[40] M. Calder, P. Gray, et C. Unsworth, “Tightly coupled verification of
pervasive systems,” Formal Methods for Interactive Systems, vol. 22,
pp. 1–16, 2009.

[41] J. Chen et L. Huang, “Formal verification of service composition in
pervasive computing environments,” dans Proceedings of the First Asia-
Pacific Symposium on Internetware, série Internetware ’09. New York,
NY, USA: ACM, 2009, pp. 19:1–19:5.

[42] X. Chang, “Network Simulations with OPNET,” dans Proceedings of
the 31st Conference on Winter Simulation: Simulation—a Bridge to
the Future - Volume 1, série WSC ’99. New York, NY, USA: ACM,
1999, pp. 307–314.

[43] S. Consolvo, B. Harrison, I. Smith, M. Chen, K. Everitt, J. Froehlich,
et J. Landay, “Conducting in situ evaluations for and with ubiquitous
computing technologies,” International Journal of Human-Computer
Interaction, vol. 22, no. 1-2, pp. 103–118, 2007.

[44] P. Clements, R. Kazman, et M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley, 2001.

[45] K. Connelly, “On Developing a Technology Acceptance Model for
Pervasive Computing,” dans UBICOMP 07: Proceedings of Ubiquitous
System Evaluation (USE)Workshop. Austria: Springer, Innsbruck,
2007.

[46] A. Coronato et G. D. Pietro, “Formal Specification of a Safety Critical
Pervasive Application for a Nuclear Medicine Department,” Advanced
Information Networking and Applications Workshops, International
Conference on, vol. 0, pp. 1043–1048, 2009.

[47] A. Coronato et G. D. Pietro, “Formal specification of wireless and
pervasive healthcare applications,” ACM Trans. Embed. Comput. Syst.,
vol. 10, pp. 12:1–12:18, August 2010.

[48] W. Chismar et S. Wiley-Patton, “Predicting Internet use: Applying the
extended technology acceptance model to the healthcare environment,”

121

Bibliography

E-Health Systems Diffusion and USe: The Innovation, the USer and
the USE IT Model. London: Idea Group Publishing, 2006.

[49] A. M. K. Cheng et R. Zheng, “Design and Verification of Pervasive
Sensor-Actuator Systems,” dans Proceedings of the 2006 NSF Workshop
On Cyber-Physical Systems, 2006.

[50] A. Dey, G. Abowd, M. Pinkerton, et A. Wood, “CyberDesk:
A Framework for Providing Self-Integrating Ubiquitous Software
Services,” dans Knowledge-Based Systems. ACM Press, 1997, pp.
47–54.

[51] F. Davis, “Perceived Usefulness, Perceived Ease Of Use, And User
Acceptance Of Information Technology,” MISQ Central MIS Quarterly,
vol. 13, no. 3, 1989.

[52] C. A. da Costa, A. C. Yamin, et C. F. R. Geyer, “Toward a General
Software Infrastructure for Ubiquitous Computing,” IEEE Pervasive
Computing, vol. 7, no. 1, pp. 64–73, 2008.

[53] H. M. Do, B. K. Kim, Y.-S. Kim, J. H. Lee, K. Ohara, T. Sugawara,
T. Tomizawa, X. Liang, T. Tanikawa, et K. Ohba, “Development of
simulation framework for ubiquitous robots using RT-middleware,”
dans Control, Automation and Systems, 2007. ICCAS 07. International
Conference on, 2007, pp. 2483 –2486.

[54] A. Dehghantanha, R. Mahmod, D. I. Udzir, et Z. A. Zukarnain,
“UPEM: User-centered Privacy Evaluation Model in Pervasive
Computing Systems,” Ubiquitous Computing and Communication
Journal, vol. 4, no. 4, 2009.

[55] K. M. Dombroviak et R. Ramnath, “A taxonomy of mobile and
pervasive applications,” dans Proceedings of the 2007 ACM symposium
on Applied computing, série SAC ’07. New York, NY, USA: ACM,
2007, pp. 1609–1615.

[56] M. De Simone et R. Kazman, “Software architectural analysis: an
experience report,” dans Proceedings of the 1995 conference of the

122

Bibliography

Centre for Advanced Studies on Collaborative research, série CASCON
95. IBM Press, 1995, pp. 18–.

[57] H. Duh, G. Tan, et V. Chen, “Usability evaluation for mobile device:
a comparison of laboratory and field tests,” dans Proceedings of the
8th conference on Human-computer interaction with mobile devices and
services. ACM, 2006, pp. 181–186.

[58] O. El-Gayar et M. Moran, “College students acceptance of Tablet PCs:
an application of the UTAUT model,” Dakota State University, vol.
820, 2006.

[59] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, et
M. Ouenzar, “Comparison of model checking tools for information
systems,” dans Proceedings of the 12th international conference on
Formal engineering methods and software engineering, série ICFEM’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 581–596.

[60] W. Fokkink, “Introduction to Process Algebra. Texts in Theoretical
Computer Science, An EATCS Series,” Springer Ver-lag, Jan, vol. 3,
pp. 555–600, 2000.

[61] I. O. for Standardization, ISO 9241-11: Ergonomic Requirements for
Office Work with Visual Display Terminals (VDTs): Part 11: Guidance
on Usability, 1998.

[62] G. Gediga, K. christoph Hamborg, U. Osnabruck, F. P. U.
Gesundheitswissenschaften, et I. Duntsch, “Evaluation of Software
Systems,” Encyclopedia of Computer Science and Technology, vol. 45,
pp. 166–192, 2001.

[63] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson,
B. Bershad, G. Borriello, S. Gribble, et D. Wetherall, “System support
for pervasive applications,” ACM Trans. Comput. Syst., vol. 22, pp.
421–486, November 2004.

[64] N. Gershenfeld, R. Krikorian, et D. Cohen, “The Internet of Things,”
Scientific American, vol. 291, no. 4, pp. 76–81, October 2004.

123

Bibliography

[65] S. Giroux, H. Pigot, B. Paccoud, D. Pache, E. Stip, et
J. Sablier, “Enhancing a Mobile Cognitive Orthotic: A User-Centered
Design Approach,” International Journal of Assistive Robotics and
Mechatronics, vol. 9, no. 1, pp. 36–47, 2008.

[66] T. Gross, “Designing, Developing, Evaluating the Invisible- Usability
Evaluation and Software Development in Ubiquitous Computing.”

[67] S. Helal et B. Abdulrazak, “Toward a Scalable Home-Care Delivery
for Frail Elders and People with Special Needs,” dans ICORR 07:
Proceedings of the Tenth International Conference On on Rehabilitation
Robotics. Noordwijk aan Zee: IEEE, 2007, pp. 994 – 998.

[68] P. Ho, C. Bryson, et J. Rumsfeld, “Medication adherence,” Circulation,
vol. 119, no. 23, pp. 3028–3035, 2009.

[69] T. Hayes, J. Hunt, A. Adami, et J. Kaye, “An Electronic Pillbox for
Continuous Monitoring of Medication Adherence,” dans Engineering
in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual
International Conference of the IEEE, 30 2006-sept. 3 2006, pp. 6400
–6403.

[70] J. Heo, D.-H. Ham, S. Park, C. Song, et W. C. Yoon, “A framework
for evaluating the usability of mobile phones based on multi-level,
hierarchical model of usability factors,” Interact. Comput., vol. 21,
no. 4, pp. 263–275, août 2009.

[71] K. Henricksen et J. Indulska, “Developing context-aware pervasive
computing applications: Models and approach,” Pervasive and Mobile
Computing, vol. 2, no. 1, pp. 37 – 64, 2006.

[72] K. Henricksen, J. Indulska, et A. Rakotonirainy, “Infrastructure for
Pervasive Computing: Challenges,” dans Workshop on Pervasive
Computing INFORMATIK 01, Viena, 2001, pp. 214–222.

[73] E. Hernandez, M. LAFOREST, et C. RODRIGUEZ, “Evaluation
Framework for Quality of Service in Web Services: implementation
in a pervasive environment,” Thèse de doctorat, Master thesis in INSA
Lyon, 2010.

124

Bibliography

[74] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, et
E. Jansen, “The Gator Tech Smart House: A Programmable Pervasive
Space,” Computer, vol. 38, no. 3, pp. 50–60, mars 2005.

[75] H. Hutchinson, W. Mackay, B. Westerlund, B. B. Bederson, A. Druin,
C. Plaisant, M. Beaudouin-Lafon, S. Conversy, H. Evans, H. Hansen,
N. Roussel, et B. Eiderbäck, “Technology probes: inspiring design
for and with families,” dans Proceedings of the SIGCHI conference on
Human factors in computing systems, série CHI 03. New York, NY,
USA: ACM, 2003, pp. 17–24.

[76] K. Höoöok, “User-centred design and evaluation of affective interfaces,”
From brows to trust, pp. 127–160, 2005.

[77] W. Hoskim, “Environmental technology assessment (EnTA) in cleaner
production assessment,” dans Report prepared for the IX. Balkan
Mineral Processing Congress, Istanbul, Turkey, 2001, pp. 11–13.

[78] L. M. Hilty, C. Som, et A. Kohler, “Assessing the Human, Social, and
Environmental Risks of Pervasive Computing,” Human and Ecological
Risk Assessment: An International Journal, vol. 10, no. 5, pp. 853–874,
2004.

[79] M. Hamner et R. ur Rehman Qazi, “Expanding the Technology Accep-
tance Model to examine Personal Computing Technology utilization in
government agencies in developing countries,” Government Information
Quarterly, vol. 26, no. 1, pp. 128 – 136, 2009.

[80] S. S. Intille, K. Larson, J. S. Beaudin, J. Nawyn, E. M. Tapia, et
P. Kaushik, “A living laboratory for the design and evaluation of
ubiquitous computing technologies,” dans CHI 05: CHI 05 extended
abstracts on Human factors in computing systems. New York, NY,
USA: ACM, 2005, pp. 1941–1944.

[81] V. Ikonen et K. Rentto, “Scenario Evaluation for Ubiquitous
Computing-Stories Come True,” dans Position paper for the Ubicomp
2002 conference workshop Evaluation Methods for Ubiquitous Comput-
ing. Goteborg, Sweden, 2002.

125

Bibliography

[82] R. Iqbal, J. Sturm, O. Kulyk, J. Wang, et J. Terken, “User-centred
design and evaluation of ubiquitous services,” dans Proceedings of the
23rd annual international conference on Design of communication:
documenting & designing for pervasive information. ACM, 2005, pp.
138–145.

[83] M. Isomursu, “Evaluating user experience in technology pilots,” dans
Human-Computer Interaction Symposium. Springer, 2008, pp. 47–52.

[84] F. Ishikawa, B. Suleiman, K. Yamamoto, et S. Honiden, “Physical
interaction in pervasive computing: formal modeling, analysis and
verification,” dans Proceedings of the 2009 international conference on
Pervasive services, série ICPS 09. New York, NY, USA: ACM, 2009,
pp. 133–140.

[85] J. Jorgensen et C. Bossen, “Requirements engineering for a pervasive
health care system,” dans Requirements Engineering Conference, 2003.
Proceedings. 11th IEEE International. IEEE, 2003, pp. 55–64.

[86] X. Jiang, J. I. Hong, L. A. Takayama, et J. A. Landay, “Ubiquitous
computing for firefighters: field studies and prototypes of large displays
for incident command,” dans CHI 04: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY,
USA: ACM, 2004, pp. 679–686.

[87] J. R. Jump et S. Lakshmanamurthy, “NETSIM: A general-
purpose interconnection network simulator,” dans Proceedings of the
International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems. Society for Computer
Simulation International, 1993, pp. 121–125.

[88] N. J. Jeon, C. S. Leem, M. H. Kim, et H. G. Shin, “A taxonomy of
ubiquitous computing applications,” Wirel. Pers. Commun., vol. 43,
no. 4, pp. 1229–1239, décembre 2007.

[89] Y. Ji, J. Park, C. Lee, et M. Yun, “A usability checklist for the usability
evaluation of mobile phone user interface,” International Journal of
Human-Computer Interaction, vol. 20, no. 3, pp. 207–231, 2006.

126

Bibliography

[90] J. J.Barton et V. Vijayraghavan, “(UBIWISE) A Simulator for
Ubiquitous Computing Systems Design,” Mobile and Media Systems
HP laboratories Palo Alto, Rapport technique, 2003.

[91] R. Jain et J. Wullert, II, “Challenges: environmental design for
pervasive computing systems,” dans MobiCom 02: Proceedings of
the 8th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM, 2002, pp. 263–270.

[92] H. J. Kim, J. K. Choi, et Y. Ji, “Usability Evaluation Framework for
Ubiquitous Computing Device,” dans Proceedings of the 2008 Third
International Conference on Convergence and Hybrid Information
Technology - Volume 01. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 164–170.

[93] A. Kohler et L. Erdmann, “Expected Environmental Impacts of
Pervasive Computing,” Human and Ecological Risk Assessment: An
International Journal, vol. 10, no. 5, pp. 831–852, 2004.

[94] J. Kjeldskov, C. Graham, S. Pedell, F. Vetere, S. Howard, R. Balbo, et
J. Davies, “Evaluating the usability of a mobile guide: The influence
of location, participants and resources,” Behaviour and Information
Technology, vol. 24, pp. 51–65, 2005.

[95] O. Kwon et J. Kim, “A Multi-layered Assessment Model for Evaluating
the Level of Ubiquitous Computing Services,” dans Ubiquitous
Intelligence and Computing, série Lecture Notes in Computer Science,
J. Ma, H. Jin, L. Yang, et J. Tsai, éditeurs. Springer Berlin /
Heidelberg, 2006, vol. 4159, pp. 1059–1068.

[96] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, et
J. Carriere, “The Architecture Tradeoff Analysis Method,” Engineering
of Complex Computer Systems, IEEE International Conference on,
vol. 0, p. 0068, 1998.

[97] S. Kalasapur, M. Kumar, et B. Shirazi, “Evaluating service
oriented architectures (SOA) in pervasive computing,” dans Pervasive

127

Bibliography

Computing and Communications, 2006. PerCom 2006. Fourth Annual
IEEE International Conference on, 2006, pp. 10 pp. –285.

[98] V. Kostakos et E. O’Neill, “Cityware: Urban computing to bridge
online and real-world social networks,” Handbook of research on urban
informatics: The practice and promise of the real-time city, pp.
195–204, 2008.

[99] G. Kotsis, “Performance management in ubiquitous computing
environments,” dans ICCC 02: Proceedings of the 15th international
conference on Computer communication. Washington, DC, USA:
International Council for Computer Communication, 2002, pp. 988–
997.

[100] L. Kolos-Mazuryk, G. J. Poulisse, et P. A. T. van Eck, “Requirements
Engineering for Pervasive Services,” dans Second Workshop on Building
Software for Pervasive Computing. Position Papers., San Diego,
California, USA, pp. 18–22.

[101] J. Kjeldskov, M. B. Skov, B. S. Als, et R. T. Hoegh, “Is It
Worth the Hassle Exploring the Added Value of Evaluating the
Usability of Context Aware Mobile Systems in the Field,” dans Mobile
Human Computer Interaction MobileHCI 2004, série Lecture Notes in
Computer Science, S. Brewster et M. Dunlop, éditeurs. Springer Berlin
Heidelberg, 2004, vol. 3160, pp. 529–535.

[102] M. Kwiatkowska, “From Software Verification to ’Everyware’ Verifica-
tion,” Computer Science - Research and Development, vol. 28, no. 4,
pp. 295–310, 2013.

[103] K. Leichtenstern et E. André, “MoPeDT: features and evaluation of
a user-centred prototyping tool,” dans Proceedings of the 2nd ACM
SIGCHI symposium on Engineering interactive computing systems.
ACM, 2010, pp. 93–102.

[104] H. Lorenz, S. Claudia, et K. Andreas, “Assessing the Human Social and
Environmental Risks of Pervasive Computing,” International Journal
of Human and Ecological Risk Assessment, vol. 10, pp. 853–674, 2004.

128

Bibliography

[105] J. S. V. C. Laurent Ciarletta, Tom Leclerc et A. Schaff, “Towards
standards for Pervasive Computing evaluation: using the multi-model
and multi-agent paradigms for mobility,” LORIA - Campus Scientifique
- BP 239 - 54506 Vandouvre-les-Nancy Cedex, Rapport technique, 2008.

[106] E. Lemar, “The Design and Evaluation of a Storage System for
Pervasive,” University of Washington, Rapport technique, 2001.

[107] Z. Liu, N. Gu, et G. Yang, “A reliability evaluation framework
on service oriented architecture,” dans Pervasive Computing and
Applications, 2007. ICPCA 2007. 2nd International Conference on.
IEEE, 2007, pp. 466–471.

[108] S. H. Lee, J. H. Han, Y. T. Leem, et T. Yigitcanlar, “Towards
ubiquitous city : concept, planning, and experiences in the Republic
of Korea,” dans Knowledge-Based Urban Development : Planning and
Applications in the Information Era, T. Yigitcanlar, K. Velibeyoglu,
et S. Baum, éditeurs. Hershey, Pa.: IGI Global, Information Science
Reference, 2008, pp. 148–169.

[109] I. Lera, C. Juiz, R. Puigjaner, C. Kurz, G. Haring, et J. Zottl,
“Performance assessment on ambient intelligent applications through
ontologies,” dans Proceedings of the 5th international workshop on
Software and performance, série WOSP 05. New York, NY, USA:
ACM, 2005, pp. 205–216.

[110] D. Lupiana, C. ODriscoll, et F. Mtenzi, “Taxonomy for ubiquitous
computing environments,” dans Networked Digital Technologies, 2009.
NDT ’09. First International Conference on, july 2009, pp. 469 –475.

[111] G. A. Lewis et L. Wrage, “A Process for Context-Based Technology
Evaluation: Examples for the Evaluation of Web Services Technology,”
dans ICCBSS 06: Proceedings of the Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems. Washing-
ton, DC, USA: IEEE Computer Society, 2006, p. 63.

129

Bibliography

[112] H. Liang, Y. Xue, et T. Byrd, “PDA usage in healthcare professionals:
testing an extended technology acceptance model,” International
Journal of Mobile Communications, vol. 1, no. 4, pp. 372–389, 2003.

[113] J. Lu, C. Yu, C. Liu, et J. Yao, “Technology acceptance model for
wireless internet,” Internet Research, vol. 13, no. 3, pp. 206–222, 2003.

[114] Y. Malik et B. Abdulrazak, “Towards Verifying Service Interoperability
Requirements for Pervasive Computing Environments,” dans PECCS,
2012, pp. 220–223.

[115] J. Mankoff, “Crossing Qualitative and Quantitative Evaluation in
the Domain of Ubiquitous Computing. Presented at the CHI 2005
Workshop on Usage Analysis: Combining logging and qualitative
methods,” 2005.

[116] M. Modahl, B. Agarwalla, S. Saponas, G. Abowd, et U. Ramachandran,
“UbiqStack: a taxonomy for a ubiquitous computing software stack,”
Personal Ubiquitous Comput., vol. 10, no. 1, pp. 21–27, décembre 2005.

[117] J. M. Maestre et E. F. Camacho, “Smart home interoperability: the
DomoEsi project approach,” International Journal of Smart Home,
vol. 3, pp. 31–44, 2009.

[118] R. Morla et N. Davies, “Evaluating a Location-Based Application:
A Hybrid Test and Simulation Environment,” IEEE Pervasive
Computing, vol. 3, pp. 48–56, July 2004.

[119] B. Meyer, “Applying "Design by Contract",” Computer, vol. 25, pp.
40–51, October 1992.

[120] S. McCanne, S. Floyd, K. Fall, K. Varadhan et al., “Network simulator
ns-2,” 1997.

[121] Y.-W. Moon, H.-S. Jung, et C.-S. Jeong, “Context-awareness in
Battlefield using Ubiquitous Computing: Network Centric Warfare,”
dans 2010 IEEE 10th International Conference on Computer and
Information Technology (CIT), 29 2010-july 1 2010, pp. 2873 –2877.

[122] V. Metsis, Z. Le, Y. Lei, et F. Makedon, “Towards an evaluation
framework for assistive environments,” dans Proceedings of the 1st

130

Bibliography

international conference on PErvasive Technologies Related to Assistive
Environments, série PETRA 08. New York, NY, USA: ACM, 2008,
pp. 12:1–12:8.

[123] M. Merdes, R. Malaka, D. Suliman, B. Paech, D. Brenner, et
C. Atkinson, “Ubiquitous RATs: how resource-aware run-time tests
can improve ubiquitous software systems,” dans Proceedings of the 6th
international workshop on Software engineering and middleware, série
SEM 06. New York, NY, USA: ACM, 2006, pp. 55–62.

[124] L. Mamykina, E. Mynatt, et M. A. Terry, “Time Aura: interfaces
for pacing,” dans CHI 01: Proceedings of the SIGCHI conference on
Human factors in computing systems. New York, NY, USA: ACM,
2001, pp. 144–151.

[125] G. K. Mostfaoui, J. Pasquier-Rocha, et P. Brzillon, “Context-Aware
Computing: A Guide for the Pervasive Computing Community,”
Pervasive Services, IEEE/ACS International Conference on, vol. 0, pp.
39–48, 2004.

[126] E. MacLaughlin, C. Raehl, A. Treadway, T. Sterling, D. Zoller, et
C. Bond, “Assessing medication adherence in the elderly: which tools
to use in clinical practice?” Drugs & aging, vol. 22, no. 3, pp. 231–255,
2005.

[127] N. C. Narendra, “Large scale testing of pervasive computing systems
using multi-agent simulation,” dans Intelligent Solutions in Embedded
Systems, 2005. Third International Workshop on, 2005, pp. 27–38.

[128] J. Nielsen, “Ten usability heuristics,” 2005.

[129] C. M. Nielsen, M. Overgaard, M. B. Pedersen, J. Stage, et S. Stenild,
“Its worth the hassle!: the added value of evaluating the usability
of mobile systems in the field,” dans Proceedings of the 4th Nordic
conference on Human-computer interaction: changing roles, série
NordiCHI 06. New York, NY, USA: ACM, 2006, pp. 272–280.

131

Bibliography

[130] S. Neely, G. Stevenson, C. Kray, I. Mulder, K. Connelly, et K. A.
Siek, “Evaluating Pervasive and Ubiquitous Systems,” IEEE Pervasive
Computing, vol. 7, pp. 85–88, 2008.

[131] C. Orwat, A. Graefe, et T. Faulwasser, “Towards pervasive computing
in health care - A literature review,” BMC Medical Informatics and
Decision Making, vol. 8, no. 1, p. 26, 2008.

[132] G. Oh, D. Kim, S. Kim, et S. Rhew, “A quality evaluation technique
of RFID middleware in ubiquitous computing,” dans ICHIT’06.
International Conference on Hybrid Information Technology, 2006.,
vol. 2. IEEE, 2006, pp. 730–735.

[133] E. O’Neill, M. Klepal, D. Lewis, T. O’Donnell, D. O’Sullivan, et
D. Pesch, “A testbed for evaluating human interaction with ubiquitous
computing environments,” dans Testbeds and Research Infrastructures
for the Development of Networks and Communities, 2005. Tridentcom
2005. First International Conference on. IEEE, 2005, pp. 60–69.

[134] E. ONeill, M. Klepal, D. Lewis, T. ODonnell, D. OSullivan,
et D. Pesch, “A Testbed for Evaluating Human Interaction with
Ubiquitous Computing Environments,” dans Proceedings of the First
International Conference on Testbeds and Research Infrastructures for
the DEvelopment of NeTworks and COMmunities. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 60–69.

[135] D. O’Sullivan et D. Lewis, “Semantically driven service interoperability
for pervasive computing,” dans Proceedings of the 3rd ACM
international workshop on Data engineering for wireless and mobile
access, série MobiDe ’03. New York, NY, USA: ACM, 2003, pp. 17–24.

[136] E. ONeill, D. Lewis, et O. Conlan, “A simulation-based approach
to highly iterative prototyping of ubiquitous computing systems,”
dans Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, série Simutools 09. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2009, pp. 56:1–56:10.

132

Bibliography

[137] E. O Neill et D. Lewis, “A Platform for User-Centred Evaluation of
Context-Aware Adaptive Services.”

[138] E. O Neill, D. Lewis, K. McGlinn, et S. Dobson, “Rapid user-centred
evaluation for context-aware systems,” Interactive Systems. Design,
Specification, and Verification, pp. 220–233, 2007.

[139] M. Patil, “SEQUEL: A Public-domain Simulation Platform for
Electronics and Power Electronics,” IETE Technical Review, vol. 26,
no. 1, pp. 47–54, 2009.

[140] D. Petrelli, “On the role of user-centred evaluation in the advancement
of interactive information retrieval,” Information processing &
management, vol. 44, no. 1, pp. 22–38, 2008.

[141] J. Park, M. Moon, S. Hwang, et K. Yeom, “CASS: A Context-Aware
Simulation System for Smart Home,” Software Engineering Research,
Management and Applications, ACIS International Conference on,
vol. 0, pp. 461–467, 2007.

[142] S. Pokraev, D. A. C. Quartel, M. W. A. Steen, et M. Reichert,
“A Method for Formal Verification of Service Interoperability,” dans
Proceedings of 2006 IEEE International Conference on Web Services
18-22 September 2006, Chicago, Illinois, USA.

[143] S. Pokraev, D. A. C. Quartel, M. W. A. Steen, et M. Reichert,
“Requirements and Method for Assessment of Service Interoperability,”
dans Proceedings of the 2006 4th International Conference on Service
Oriented Computing, ICSOC ’06, December 4-7, 2006, Chicago, USA,
série Lecture Notes in Computer Science, vol. 4294. Springer, 2006,
pp. 1–14.

[144] T. Perumal, A. R. Ramli, C. Y. Leong, S. Mansor, et K. Samsudin,
“Interoperability among Heterogeneous Systems in Smart Home
Environment,” dans Proceedings of the 2008 IEEE International
Conference on Signal Image Technology and Internet Based Systems,
série SITIS ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 177–186.

133

Bibliography

[145] T. Perumal, A. R. Ramli, C. Y. Leong, S. Mansor, et K. Samsudin,
“Interoperability for Smart Home Environment Using Web Services,”
International Journal of Smart Home, vol. 2, pp. 1–16, 2008.

[146] A. Ranganathan, J. Al-Muhtadi, J. Biehl, B. Ziebart, R. H.
Campbell, et B. Bailey, “Evaluating Gaia using a Pervasive Computing
Benchmark,” University of Illinos at Urbana-Champaign,IL, Rapport
technique, 2005.

[147] A. Ranganathan et R. H. Campbell, “Provably Correct Pervasive
Computing Environments,” dans Proceedings of the 2008 Sixth
Annual IEEE International Conference on Pervasive Computing and
Communications. Washington, DC, USA: IEEE Computer Society,
2008, pp. 160–169.

[148] T. Rodden, K. Chervest, N. Davies, et A. Dix, “Exploiting Context
in HCI Design for Mobile Systems,” dans in Workshop on Human
Computer Interaction with Mobile Devices, 1998.

[149] V. Reynolds, V. Cahill, et A. Senart, “Requirements for an ubiquitous
computing simulation and emulation environment,” dans Proceedings
of the first international conference on Integrated internet ad hoc and
sensor networks, série InterSense 06. New York, NY, USA: ACM,
2006.

[150] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
et K. Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active
Spaces,” IEEE Pervasive Computing, pp. 74–83, octobre 2002.

[151] K. Romer et F. Mattern, “The design space of wireless sensor
networks,” Wireless Communications, IEEE, vol. 11, no. 6, pp. 54 –
61, 2004.

[152] D. Rosenblum, C. Mascolo, M. Kwiatkowska, D. Ghica, M. Ryan,
N. Dulay, et E. Lupu, “UbiVal: fundamental approaches to validation
of ubiquitous computing applications and infrastructures,” University
of Birmingham, University College London and Imperial College

134

Bibliography

London, UK, Project Proposal, EPSRC Project GR D, vol. 76625, pp.
2006–2010.

[153] C. Röcker, “Why Traditional Technology Acceptance Models Won’t
Work for Future Information Technologies?” World Academy of
Science, Engineering and Technology, vol. 65, pp. 237–243, 2010.

[154] D. E. Rowley, “Usability testing in the field: bringing the laboratory to
the user,” dans Conference companion on Human factors in computing
systems, série CHI 94. New York, NY, USA: ACM, 1994, pp. 217–.

[155] I. Roussaki, I. Papaioannou, D. Tsesmetzis, J. Kantorovitch, J. Kalaoja,
et R. Poortinga, “Ontology Based Service Modelling for Composability
in Smart Home Environments,” dans Constructing Ambient Intelli-
gence, série Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2008, vol. 11, pp. 411–420.

[156] S. Rao et I. Troshani, “A Conceptual Framework and Propositions for
the Acceptance of Mobile Services,” 2007.

[157] L. Rudolph, “Project Oxygen: Pervasive, Human-Centric Computing
- An Initial Experience,” dans Proceedings of the 13th International
Conference on Advanced Information Systems Engineering, série
CAiSE 01. London, UK, UK: Springer-Verlag, 2001, pp. 1–12.

[158] S. Ruth, “Reducing ICT-related Carbon Emissions: An Exemplar for
Global Energy Policy?” IETE Technical Review, vol. 28, no. 3, pp.
207–211, 2011.

[159] C. Schlenff, J. Ajot, et R. Madhaven, “PRIDE: A Framework for
Performance Evaluation of Intelligent Vehicles in Dynamic, On-Road
Environments,” DTIC Document, Rapport technique, 2004.

[160] C. Schlenoff, J. Ajot, et R. Madhavan, “Performance evaluation of
autonomous vehicle navigation in dynamic, on-road environments,”
Integrated Computer Aided Engineering, vol. 12, no. 3, pp. 263–278,
2005.

[161] M. Satyanarayanan, “Metrics and Benchmarks for Pervasive Comput-
ing,” IEEE Pervasive Computing, vol. 4, pp. 4–6, 2005.

135

Bibliography

[162] J. Scholtz et S. Consolvo, “Toward a Framework for Evaluating
Ubiquitous Computing Applications,” IEEE Pervasive Computing,
vol. 3, pp. 82–88, 2004.

[163] J. Scholtz et S. Consolvo, “Conducting In Situ Evaluations for and
With Ubiquitous Computing Technologies,” International Journal of
Human-Computer Interaction, vol. 22, pp. 103–118, 2007.

[164] S. Schneider, Concurrent and Real-time systems. Wiley Chichester,
UK, 2000.

[165] J. Seo, G. Goh, et G. J. Kim, “Creating ubiquitous computing
simulators using P-VoT,” dans Proceedings of the 4th international
conference on Mobile and ubiquitous multimedia, série MUM 05. New
York, NY, USA: ACM, 2005, pp. 123–126.

[166] A. P. Sheth, “Changing focus on interoperability in information
systems: from system, syntax, structure to semantics,” pp. 5–29, 1999.

[167] D. Shin, “Understanding user acceptance of DMB in South Korea using
the modified technology acceptance model,” Intl. Journal of Human–
Computer Interaction, vol. 25, no. 3, pp. 173–198, 2009.

[168] D. H. Shin, “Ubiquitous Computing Acceptance Model; end user
concern about security, privacy and risk,” Int. Journal of Mobile
Communication., vol. 8, no. 2, pp. 169–186, février 2010.

[169] S. Samsuri, Z. Ismail, et R. Ahmad, “User-Centered Evaluation
of Privacy Models for Protecting Personal Medical Information,”
Informatics Engineering and Information Science, pp. 301–309, 2011.

[170] C. Scott et M. Jennifer, “Challenges for Ubicomp Evaluation,”
Technical report ucb-csd-04-1331, 2004.

[171] B. Shirazi, M. Kumar, et B. Sung, “QoS middleware support
for pervasive computing applications,” dans System Sciences, 2004.
Proceedings of the 37th Annual Hawaii International Conference on,
2004, p. 10 pp.

[172] J. Sun, Y. Liu, J. Dong, et C. Chen, “Integrating specification and
programs for system modeling and verification,” dans Theoretical

136

Bibliography

Aspects of Software Engineering, 2009. TASE 2009. Third IEEE
International Symposium on. IEEE, 2009, pp. 127–135.

[173] M. Thompson, “Evaluating intelligent systems with performance
uncertainty in large test spaces,” dans Proceedings of the 10th
Performance Metrics for Intelligent Systems Workshop. ACM, 2010,
pp. 133–135.

[174] E. Tran, “Verification/Validation/Certification,” Topics in Dependable
Embedded Systems. Carnegie Mellon University, 1999.

[175] I. Troshani et S. Rao Hill, “A proposed framework for mobile
services adoption: a review of existing theories, extensions, and
future research directions,” Mobile Multimedia Communications:
Concepts, Applications and Challenges, Hershey, PA, USA: Idea Group
Publishing, pp. 85–108, 2008.

[176] L. Tang, X. Zhou, Z. Yu, Y. Liang, D. Zhang, et H. Ni, “MHS: A
Multimedia System for Improving Medication Adherence in Elderly
Care,” Systems Journal, IEEE, vol. 5, no. 4, pp. 506–517, 2011.

[177] T. B. Ustun, S. Chatterji, J. Bickenbach, N. Kostanjsek, et
M. Schneider, “The International Classification of Functioning,
Disability and Health: a new tool for understanding disability and
health.” Disability and rehabilitation, vol. 25, no. 11-12, pp. 565–571,
2003.

[178] A. Varga, “OMNeT++,” dans Modeling and Tools for Network
Simulation. Springer, 2010, pp. 35–59.

[179] V. Venkatesh et F. Davis, “A theoretical extension of the technology
acceptance model: Four longitudinal field studies,” Management
science, vol. 46, no. 2, pp. 186–204, 2000.

[180] J. J. B. Vikram Vijayraghavan, “WISE - A Simulator Toolkit for Ubiq-
uitous Computing Scenarios,” dans Workshop on Application Models
and Programming Tools for Ubiquitous Computing at UBICOMP 2001.
ACM, 2001.

137

Bibliography

[181] M. Weiser et J. S. Brown, The coming age of calm technolgy. New
York, NY, USA: Copernicus, 1997, pp. 75–85.

[182] J. Wu, Y. Chen, et L. Lin, “Empirical evaluation of the revised end user
computing acceptance model,” Computers in Human Behavior, vol. 23,
no. 1, pp. 162–174, 2007.

[183] H. Wan, Z. Drey, Z. You, et L. Liu, “Formal Modeling and Verification
of Services Managements for Pervasive Computing Environment,” dans
Proceedings of The 7th International Conference on Service Systems
and Service Management, Tokyo Japan, 06 2010.

[184] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, 1999.

[185] S. P. Wyche et R. E. Griner, “Extraordinary computing: religion as
a lens for reconsidering the home,” dans CHI 09: Proceedings of the
27th international conference on Human factors in computing systems.
New York, NY, USA: ACM, 2009, pp. 749–758.

[186] T. Winkler et M. Herczeg, “Pervasive Computing in Schools
Embedding Information Technology into the Ambient Complexities of
Physical Group Learning Environments,” dans Proceedings of Society
for Information Technology and Teacher Education International
Conference 2005. Phoenix, AZ, USA: AACE, 2005, pp. 2889–2894.

[187] A. Ward, A. Jones, et A. Hopper, “A new location technique for the
active office,” IEEE Personal Communications, vol. 4, no. 5, pp. 42–47,
1997.

[188] A. Woodruff et J. Mankoff, “Environmental Sustainability,” Pervasive
Computing, IEEE, vol. 8, no. 1, pp. 18 –21, jan.-march 2009.

[189] B. Weiss et C. Schlenoff, “Evolution of the SCORE framework to
enhance field-based performance evaluations of emerging technologies,”
dans Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems. ACM, 2008, pp. 1–8.

[190] B. Weiss et L. Schmidt, “The Multi-Relationship Evaluation Design
Framework: Creating Evaluation Blueprints to Assess Advanced and

138

Bibliography

Intelligent Technologies,” dans Proceedings of the 2010 Performance
Metrics for Intelligent Systems (PerMIS) Workshop, 2010.

[191] H.-I. Yang, C. Chen, B. Abdulrazak, et S. Helal, “A framework
for evaluating pervasive systems,” International Journal of Pervasive
Computing and Communications, vol. 6, no. 4, pp. 432–481, 2010.

[192] C. Yoon et S. Kim, “Convenience and TAM in a ubiquitous computing
environment: The case of wireless LAN,” Electron. Commer. Rec.
Appl., vol. 6, no. 1, pp. 102–112, janvier 2007.

[193] D. Zhang et B. Adipat, “Challenges, methodologies, and issues in
the usability testing of mobile applications,” International Journal of
Human-Computer Interaction, vol. 18, no. 3, pp. 293–308, 2005.

[194] A. Zaslavsky, “Adaptability and interfaces: key to efficient pervasive
computing,” dans NSF Workshop series on Context-Aware Mobile
Database Management, Brown University, Providence, 2002, pp. 24–25.

[195] X. Zeng, R. Bagrodia, et M. Gerla, “GloMoSim: a library for
parallel simulation of large-scale wireless networks,” dans Parallel and
Distributed Simulation, 1998. PADS 98. Proceedings. Twelfth Workshop
on, mai 1998, pp. 154 –161.

[196] Y. Zhang, S. Zhang, et S. Han, “A new methodology of QoS evaluation
and service selection for ubiquitous computing,” Wireless Algorithms,
Systems, and Applications, pp. 69–80, 2006.

139

