Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A ONA Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Canadä'

by

MANQING LI

GRADUATE PROGRAM

IN

CHEMISTRY

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Graduate Studies The University of Western Ontario
London, Ontario
October, 1999

Abstract

This thesis describes studies designed to cast light on the ways in which the nature and geometry of one part of a molecule may influence reaction in another part of the same molecule. The specific feature examined was the effect that varying the stereochemistry of a substituent group would have on the ease of reaction of a β-substituted sulfone with strong base to form the substituted α-sulfonyl carbanion. King and Rathore in this laboratory first found that the rate of hydroxide-promoted $\mathrm{H}-\mathrm{D}$ exchange alpha to a sulfonyl group is strongly influenced by the presence of an ether oxygen at the beta position, with acceleration by oxygen varying from 10^{-2} to 10^{4}, depending whether the $H_{a}-$ $\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angle was 60° or 180°. Later King and Guo in this laboratory extended this study to include substrates with other $\mathrm{H}_{\alpha}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angles (θ). and the following equation was obtained. $$
\log k_{\mathrm{N}}=1.6(1.7+\cos 2 \theta)
$$

Chapter 1 of this thesis gives some related background information about the quantitative study of substituent effects and the anomeric effect (negative hyperconjugation). The details of the previous work mentioned above are also presented.

Chapter 2 describes the continuation of the previous work in this laboratory. leading eventually to the measurement of rates of H -D exchange for nineteen β-alkoxy sulfones believed to have known fixed $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angles. In order to get a clear picture about the geometry dependence of the substituent effect, some complicating factors which may increase or decrease the reaction rate, such as the steric effect and the gamma inductive effect, are also explored. This study leads to the conclusion that the

effect of the β-alkoxy substituent cannot be accounted for by the inductive and field effect, but must involve another factor; it is proposed that this factor is the negative hyperconjugation (generalized anomeric effect). The following revised equation is presented.

$$
\begin{aligned}
\log k_{\mathrm{N}}(\text { alkoxy }) & =(3.00 \pm 0.08)+(1.31 \pm 0.10) \cos 2 \theta \\
& =(1.70 \pm 0.17)+(2.62 \pm 0.20) \cos ^{2} \theta
\end{aligned}
$$

A new angle dependent feature of the Taft substituent constant $\left(\sigma_{\theta}^{*}\right)$ is also proposed with the following equation.

$$
\begin{aligned}
\left(\sigma_{\theta}^{*}\right)_{\mathrm{OR}} & =(0.61 \pm 0.02)+(0.27 \pm 0.02) \cos 2 \theta \\
& =(0.35 \pm 0.03)+(0.54 \pm 0.04) \cos ^{2} \theta
\end{aligned}
$$

This new picture is applied to the interpretation of a long standing mechanistic puzzle, the mechanism of the elimination in β-tosyloxy sulfones originally studied by Pearson. Bordwell, and Hine, et al.

Chapter 3 describes the generalization of the conclusions of Chapter 2. It includes the studies in β-thioalkoxy, β-amino, β-sulfonyl, and β-trialkylammonio systems in addition to the β-alkoxy system. It includes the synthetic and kinetic studies of the β heteroatom (X) substituted sulfones with $\mathrm{a} \sim 60^{\circ}$ or $\sim 180^{\circ} \mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{\beta}}-\mathrm{X}$ torsion angle. It is clear that the angle dependence of substituent effect is a general phenomenon. In the case of the β-ammonio systems, which are known to show unusual behavior in the anomeric effect to the point that a 'reverse anomeric effect' has been postulated, our β-ammonio system shows a strong, normal anomeric effect. The origin of the 'reverse anomeric effect' is discussed.

ACKNOWLEDGMENT

I would like to express my sincere appreciation, with deep gratitude and respect. to my supervisor. Professor J. F. King for guidance, constant encouragement, valuable advice, and his endless patience during the course of these studies.

I would like to thank everyone in the Chemistry Department for their cooperation and help throughout the years of my studies. I am also indebted to Professor N. C. Payne for the x -ray crystal structure determinations.

A special thanks goes to Dr. Vinod Dave for his great help, and being a friend.
My thanks also extended to the fellow students in Professor King's group, especially Dr.
M. S. Gill, and Z. Cheng, P. Ciubotaru, A. Viege, B. Nabaie, K. Kulbaba, R. Ibrahim.

The members of my family, especially my wife, Dicheng Liu, my daughter, Junlan Li, deserve a special mention for their love and support.

TABLE OF CONTENTS

PAGE
CERTIFICATE OF EXAMINATION ii
ABSTRACT iii
ACKNOWLEDGMENT iv
TABLES OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES x
CHAPTER 1: BACKGROUND 1
1.1 THE ORIGINAL PROPOSAL 2
1.2 THE QUANTITATIVE STUDY OF SUBSTITUENT EFFECTS - THE HAMMETT EQUATION AND THE TAFT EQUATION 4
1.3 ANOMERIC EFFECT AND NEGATIVE HYPERCONJUGATION 7
1.4 GEOMETRY DEPENDENCE IN β-SUBSTITUTED SULFONES 11
1.5 AB INITIO CALCULATIONS OF THE DIFFERENCE BETWEEN 0° AND 90° CONFORMER SUSPECTED OF NEGATIVE HYPERCONJUGATION 15
1.6 THE FIRST EXPERIMENTAL EVIDENCE 18
CHAPTER 2: THE GEOMETRY DEPENDENCE OF THE REACTION OF A BETA-ALKOXY SUBSTITUTED SATURATED SYSTEM 21
2.1 NTRODUCTION 22
2.2 RESULTS AND DISCUSSION 24
2.2.1 PREPARATION OF THE SULFONES 24
2.2.2 KINETICS AND THERMODYNAMICS OF THE H-D EXCHANGE REACTION 36
2.2.3 GEOMETRIC EFFECTS 50
2.2.4 VARIATION OF $\log k_{\mathrm{N}}$ WITH THE H-C-C-O TORSION ANGLE 66
2.2.5 THE FIELD EFFECT 71
2.2.6 REACTION VIA A LESS STABLE CONFORMER: THE CASE OF COMPOUND 5 79
2.3 APPLICATION: A REEXAMINATION OF THE MECHANISM OF THE ELIMINATION IN BETA-TOSYLOXY SULFONES ORIGINALLY
STUDIED BY PEARSON, BORDWELL, HINE, AND OTHERS 82
2.3.1 DISCUSSION OF THE MECHANISM OF SYN AND ANTI ELIMINATION 82
2.3.2 APPLICATION OF THE ANGLE DEPENDENT σ^{*} TERM TO HINE AND RAMSAY'S PLOT 84
2.4 CONCLUSIONS 88
2.5 EXPERIMENTAL 89
2.5.1 PREPARATION OF SULFONES 89
2.5.2 KINETIC AND THERMODYNAMIC MEASUREMENTS OF H-D EXCHANGE 111
CHAPTER 3: GENERALIZATION OF THE ANGLE DEPENDENCE OF THE BETA-SUBSTITUTED SATURATED SULFONES 118
3.1 INTRODUCTION 119
3.2 RESULTS AND DISCUSSION 121
3.2.1 PREPARATION OF THE BETA-HETEROATOM SUBSTITUTED SULFONES 121
3.2.2 KINETICS OF THE H-D EXCHANGE REACTION 125
3.2.3 THE GENERALIZATION OF THE GENERALIZED ANOMERIC EFFECT AS A COMPONENT OF THE POLAR EFFECT 129
3.2.4 DISCUSSION OF THE TRLALKYLAMMONIO SYSTEM - THE 'REVERSE' ANOMERIC EFFECT 138
3.3 CONCLUSION 151
3.4 EXPERIMENTAL 152
3.4.1 PREPARATION OF SULFONES 152
3.4.2 KINETIC MEASUREMENTS OF H-D EXCHANGE 162
APPENDIX
APPENDIX A 164
APPENDIX B 168
APPENDIX C 171
REFERENCES 172
VITA 178

LIST OF TABLES

Table Description Page
2.2.1 The buffer concentration vs. second-order rate constant $k_{\text {exch }}$. 37
2.2.2 Rate constants for $\mathrm{H}-\mathrm{D}$ exchange in β-alkoxy sulfones with -fixed' $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{a}-\mathrm{C}_{\mathrm{B}}-\mathrm{O}$ torsion angles (plus model compounds). 39
2.2.3 H-D exchange in β-alkoxy sulfones of unfixed conformation and $\gamma-$ - δ-, ε - alkoxy sulfones 46
2.2.4 The equilibrium constants for sulfone epimerization. 48
2.2 .5 Comparison of x-ray structures of $9,10,11$. 57
2.2.6 The unusual " 1,3 -synaxial-like" MeO — Ph interaction in 17b 65
2.2.7 The torsion angle (θ), the $\log k_{\mathrm{N}}$ (after corrections) and estimated parameters of ζ, r, and $(\cos \zeta) / \mathrm{r}^{2}$ 73
2.2.8 The value of $(\cos \zeta) / \Gamma^{\prime}$ vs torsion angle for the ethyl methyl ether system 77
2.3 .1 Comparison of kinetic data obtained by Hine and Ramsay with our results 85
2.5.1 The results of determination of the H-D Exchange rate of the sulfones 114
3.2.1 Kinetic data for β-Heteroatom Substituted Sulfones 126
3.2.2 The $\log k_{\mathrm{N}}$ values and their corresponding σ^{*} values 130
3.2.3 The Composition of Substituent Electronic Effect 134
3.2.4 The angle dependence feature of σ_{θ}^{*} 137
3.2.5 The angle dependence of the field effect in the ammonium monopole system. 147
3.4.1 The Pseudo-first-order Rate Constants for H-D Exchange 162
A. 1 Coordinates for the relative positions of X (O in our cases),
$(\beta-) \mathrm{C},(\alpha-) \mathrm{C},(\alpha-) \mathrm{H}$ obtained from the calculation results from PC MODEL for the conformation depicted as Figure 2.2.2 166

LIST OF FIGURES

Figures

Description

Page
1.3.1 Filled-vacant stabilizing interaction of long pair (n) with (a) C-X antibonding (σ^{*}) orbital; (b) $\mathrm{C}-\mathrm{X}^{-}$antibonding (σ^{*}) orbital. 9
1.4.1 The conformation preference of α-sulfonyl carbanion. 13
1.4.2 A second stabilization by the β-substituted oxygen. 14
1.6.1 Guo's plot of $\log k_{\mathrm{N}}$ vs. the $\mathrm{H}_{a}-\mathrm{C}_{a}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angle for the base catalyzed $\mathrm{H}-\mathrm{D}$ exchange reactions of β-alkoxy sulfones. (The corrections will be discussed in Chapter 2) 20
2.2.1 Torsion angle dependence of the rate of α-hydrogen exchange in β-alkoxy substituted sulfones. 49
2.2.2 The conformation used to calculate the $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{S}-\mathrm{C}_{\alpha}$. torsion angle by PCModel 54
2.2.3 Energy diagram for the interconversion of $\mathbf{2 0}$ and $\mathbf{1 9}$ 58
2.2.4 The angle dependence of $\sigma_{\theta}{ }^{*}$ term. 70
2.2.5 The definitions of parameters used for Kirkwood- Westheimer equation 71
2.2.6 The lack of any linear dependence of the $\log k_{N}$ (after corrections) on ($\cos \zeta$) $/ r^{2}$ 75
2.2.7 The conformations of ethyl methyl ether were taken as a model for the field effect 72
2.2.8 The field effect vs torsion angle in the ethyl methyl system 76
2.3.1 Rates of proton removal from 2-X-cyclohexyl p-tolyl sulfones vs. σ^{*} for XCH_{2} (copy from Hine and Ramsay's paper) 83
2.3.2 Comparison of kinetic data obtained by Hine and Ramsay with our results 86
2.5.1 The x-ray crystal structure of 1-methoxy-2-(phenylsulfonyl)- bicyclo[2.2.2]octane (7) 94
3.2.1 $\quad \log k_{\mathrm{N}}$ vs σ^{*} 131
3.2.2 The $\log k_{N}$ values of $\sim 60^{\circ}$ torsion angle vs those of $\sim 180^{\circ}$ torsion angle 132
3.2.3 The torsion angle dependence of β-heteroatom substituted sulfone 135
3.2.4 An electrostatic interpretation of the reverse anomeric effect 140
3.2.5 The different field effects between monopole and dipole 143
3.2.6 The angle dependence of the field effect in a dipole-dipole (filled symbols) and a monopole-dipole (empty symbols) systems. 146
3.2.7 An illustration of angle dependence of combination of field effect and negative hyperconjugation in ammonio system 150

CHAPTER 1

BACKGROUND

1.1 THE ORIGINAL PROPOSAL

A key procedure for many years in the study of reaction mechanisms has been to examine the influence of a small perturbation in structure - a change of substituent - on properties and reactivity in the substrate. For reactions of non-conjugated systems the electronic effect of a substituent is customarily described as a polar effect. itself consisting of an inductive (or electronegativity) effect in which the action of the substituent is propagated along the σ-bond array, and a field (or Coulombic) effect in which the substituent acts directly through space; another effect, polarizability, is sometimes also included. ${ }^{\text {1.2a.j-5 }}$ The overall picture has been widely accepted as sufficient for at least three decades.

In 1977, Stirling and Thomas ${ }^{6.7}$ reported that the detritiation of β-substituted acyclic ethyl phenyl sulfones, $\mathrm{PhSO}_{2} \mathrm{CHTCH}_{2} \mathrm{X}$, in ethanolic sodium ethoxide depended very strongly on the substituent X (Scheme 1.1.1), showing a good correlation with σ^{*} (of $\mathrm{CH}_{2} \mathrm{X}, \rho^{*}=4.89$); the effect of changing from CH_{3} to OPh . for example, was to increase the exchange rate by about 50,000 -fold.

$$
\mathrm{PhSO}_{2} \mathrm{CHTCH}_{2} \mathrm{X} \xrightarrow{k_{\mathrm{ex}}} \mathrm{PhSO}_{2}{ }^{\ominus} \mathrm{HCH}_{2} \mathrm{X} \xrightarrow{\mathrm{EtOH}} \mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}
$$

Scheme 1.1.1

Such a very large substituent effect raises the question of whether the conventional polar effect terms, i.e. inductive and field effects, are sufficient to account for these observations. This in turn raises the possibility that a third effect, namely the anomeric effect or negative hyperconjugation, might be contributing as well.

The present research is a reinvestigation of the components of a substituent effect,
and a semi-quantitative study, at least, of the significance of the anomeric effect (negative hyperconjugation) of a β-substituent in a carbanion-forming reaction.

To put this work into perspective it is necessary to review (a) earlier work on substituent effects, (b) the anomeric effect and its relation to negative hyperconjugation, and then (c) the stereochemistry of sulfonyl carbanion formation, and finally (d) on the theoretical researches in the literature on the angle dependence of the anomeric effect (negative hyperconjugation). Substituent effects will be discussed first.

1.2 THE QUANTITATIVE STUDY OF SUBSTITUENT EFFECTS - THE HAMMETT EQUATION AND THE TAFT EQUATION

The discovery and improvement of methods for quantitative correlation of rate and equilibrium constants are among the most important developments in the history of physical organic chemistry. It was Hammett ${ }^{1,2 a}$ who found that for a large number of reactions of meta- and para-substituted benzene derivatives. the plot of the logarithms of rate (k) or equilibrium constants (K) for one reaction vs. $\log k$ or $\log K$ for another reaction gave an acceptable linear relationship (eq 1.2.1). Note that the ortho-substituted benzene derivatives are not included because of possible additional influences (steric effect, hydrogen bonding, etc.) from the ortho-substituent.

$$
\begin{equation*}
\log K=\rho \log K^{\prime}+\text { constant } \tag{eq1.2.1}
\end{equation*}
$$

Hammett defined the ionization of the substituted benzoic acids as the reference reaction, i.e. that in which $\rho=1$. Setting hydrogen as the reference substituent $(\sigma=0)$ he was able to evaluate a substituent constant (σ) for an array of substituent groupings from the relation

$$
\begin{equation*}
\log K i K_{0}=\sigma \tag{eq1.2.2}
\end{equation*}
$$

Where K is the ionization constant of the substituted benzoic acid and K_{0} refers to the ionization of benzoic acid. Hence,

$$
\begin{equation*}
\log K / K_{0}=\rho \sigma \tag{eq1.2.3}
\end{equation*}
$$

Note a similar equation for the reaction rate (k) may be derived similarly.

$$
\begin{equation*}
\log k / k_{0}=\rho \sigma \tag{eq1.2.4}
\end{equation*}
$$

Where k_{0} refers to the rate constant of the 'unsubstituted' (hydrogen substituted) compound.

Equations 1.2.3 and 1.2.4 are both called the Hammett equation. In the Hammett equation, the substituent constant (σ) is a measure of the electron-withdrawing ability of a substituent, while the reaction constant (ρ) reflects the nature of this reaction and the sensitivity of the substrate to the electronic effect of the substituent in that reaction. An electron-donating substituent has a negative substituent constant $(\sigma<0)$, while an electron-withdrawing substituent has a positive σ value. For example. p - MeO group is electron-donating ($\sigma=-0.27$) while $p-\mathrm{iNO}_{2}(\sigma=0.78)$ is electron-withdrawing; p-methoxybenzoic acid is weaker than benzoic acid while p-nitrobenzoic acid is stronger. For a particular reaction, a positive ρ value indicates that an electron-withdrawing group (relative to hydrogen) will increase the reaction rate or equilibrium constant, while a negative ρ value implies an electron-donating group will increase the reaction rate or equilibrium constants; when $\rho>1$, the ionization or reaction rate is more sensitive to substituent effects than is the ionization of the benzoic acids in water at $25^{\circ} \mathrm{C}$.

A plot of $\log k$ vs σ is commonly used to study the mechanism of a reaction. Electron demand or release at the reaction centre is signalled by the sign and magnitude of ρ. Change of the slope (p value) of the plot is also diagnostic: "concave upwards, is indicative of a change in mechanism, while a discontinuity concave downwards is indicative of a change in the rate-determining step." ${ }^{8 a}$

A substituent effect in a benzene system includes at least two physical phenomena, the polar effect (the total of inductive and field effects; sometimes the term "inductive effect" is used to include also the field effect) and the resonance effect. Great effort has been exerted to separate these two, particularly by R. W. Taft ${ }^{9.10}$ and G. Swain. ${ }^{11,12}$ A substituent constant (σ) was considered to have two components: the
universal inductive constant $\left(\sigma_{\mathrm{t}}\right)$ and the resonance constant $\left(\sigma_{\mathrm{R}}\right)$ (eq 1.2.5). ${ }^{\mathrm{sb}}$

$$
\begin{equation*}
\sigma^{0}=\sigma_{\mathrm{I}}+\sigma_{\mathrm{R}} \tag{eq1.2.5}
\end{equation*}
$$

and a rate series would fit into a two-term equation such as:

$$
\begin{equation*}
\log k / k_{0}=\rho_{\mathrm{l}} \sigma_{\mathrm{I}}+\rho_{\mathrm{R}} \sigma_{\mathrm{R}} \tag{eq1.2.6}
\end{equation*}
$$

The Hammett equation is defined for aromatic systems. In an aliphatic nonconjugated system, the resonance effect (σ_{R}) may generally be ignored. If the steric effect is also not important. only the polar effect functions and we have the simplest forms of the Taft equation (eq 1.2.7, and eq 1.2.8).

$$
\begin{align*}
& \log k_{\mathrm{X}} / k_{0}=\rho^{*} \sigma^{*} \tag{eq1.2.7}\\
& \log K_{\mathrm{X}} / K_{0}=\rho^{*} \sigma^{*} \tag{eq1.2.8}
\end{align*}
$$

Because both σ^{*} and σ_{l} are related to the polar effect (or universal inductive effect). eq 1.2.9 has been proposed for most of the substituents. ${ }^{1.10}$

$$
\begin{equation*}
\sigma_{\mathrm{I}(\mathrm{X})}=0.45 \sigma_{\left(\mathrm{XCH}^{2}\right)} \tag{eq1.2.9}
\end{equation*}
$$

As in the Hammett equation (eq 1.2.3 or eq 1.2.4), the value of ρ^{*} measures the sensitivity of a reaction to a substituent, and the value of σ^{*} reflects the electronwithdrawing power of the substituents, and Taft plots may be used to probe the mechanism in much the same way as the Hammett equation.

Note that it has been traditional to treat the electronic effect in a saturated system as consisting of only the (traditional) polar effect - i.e. the sum of inductive and field effects. As has been mentioned in section 1.1, it is the contention of this thesis that an anomeric effect or a negative hyperconjugation plays an important role in a substituent effect in the particular case of α-carbanion formation in a saturated β-substituted sulfone system, and hence, by extension, in all saturated reacting systems.

1.3 ANOMERIC EFFECT AND NEGATIVE HYPERCONJUGATION

For the vast majority of cases the more stable chair conformer of a monosubstituted cyclohexane is the one with its substituent (X) equatorial (Scheme 1.3.1).

1ax

Scheme 1.3.1

When X is axial, as in 1ax, there are destabilizing steric repulsions. The free-energy difference between axial and equatorial conformers (eq 1.3.1),

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{s}}{ }^{\circ}=-\mathrm{RT} \ln ([1 \mathbf{e q}] /[1 \mathbf{a x}]) \tag{1.3.1}
\end{equation*}
$$

is customarily taken as a quantitative measure of those steric repulsions. The values for $-\Delta G_{s}{ }^{\circ}$ are sometimes referred to as " A values".

When a tetrahydropyran ring (Scheme 1.3.2) bears an electronegative substituent X adjacent to oxygen, additional interactions shift the equilibrium so that the axial conformer is commonly the more stable one. This phenomenon is called the anomeric effect. ${ }^{13 \mathrm{a}}$

Scheme 1.3.2
and

$$
\begin{equation*}
-\Delta G^{\circ}=R T \ln ([\mathbf{2 e q}] /[\mathbf{2 a x}]) \tag{1.3.2}
\end{equation*}
$$

Since the anomeric effect opposes steric repulsion. a quantitative measurement of the anomeric effect is given by eq 1.3.3.

$$
\begin{equation*}
\text { anomeric stabilization }=\Delta \mathrm{G}^{\circ}-\Delta \mathrm{G}^{\circ} \text { (steric) } \tag{1.3.3}
\end{equation*}
$$

Where, ΔG° (steric) should be the steric preference for equatorial X in a tetrahydropyran. but the $\Delta G_{s}{ }^{\circ}$ of the eq 1.3.1 is used for simplicity.

The generalized anomeric effect "describes the preference for synclinal (sc. gauche) over anti-periplanar (ap, trans) conformations in the molecular fragment $\mathrm{W}-\mathrm{X}-\mathrm{Y}$ Z, where X possesses one or more pairs of non-bonding electrons, Z is electronwithdrawing and W and Y are of intermediate electronegativity (Y is usually $\mathrm{C}, \mathrm{P}, \mathrm{Si}$, S) ${ }^{1+1+a}$

The theoretical basis of the "anomeric effect" has been subject to much discussion. The factor currently believed to account for most of the anomeric effect is negative (or anionic) hyperconjugation, i.e. the delocalization of a lone pair of electrons in an orbital on the oxygen into the anti-bonding orbitals of the C_{1}-OR system, i.e. $\mathrm{n} \rightarrow \sigma^{*}$.

Scheme 1.3.3

Figure 1.3.1a ($\mathrm{X}=\mathrm{OR}$ for Scheme 1.3.3) shows the stabilization due to the mixing of these two orbitals and creation of a new, lower-energy orbital. The energy of
this new orbital will decrease if the energy of $\sigma^{*}{ }_{c-x}$ orbital is lowered. When X is an electronegative element or group (like F), greater stabilization can be expected. On the other hand, there is less stabilization if X is H . In Figure 1.3.1b, the greater stabilization (solid arrow) arises from the lower energy (dashed arrow) of the σ^{*} orbital of $\mathrm{C}-\mathrm{X}^{-}$.

Figure 1.3.1 Filled-vacant stabilizing interaction of long pair (n) with (a) C-X antibonding (σ^{*}) orbital; (b) $\mathrm{C}-\mathrm{X}^{+}$antibonding (σ^{*}) orbital. ${ }^{\text {is }}$

For simplicity, the lone pairs of oxygen are often viewed as sp^{3}-hybridized (3). Delocalization of the (shaded) sp^{3} lone pair antiperiplanar to the $\mathrm{C}-\mathrm{X}$ bond in the axial conformer is considered to provide more stabilization than does delocalization of either lone pair that is synclinal in the equatorial conformer.

3

The kinetic anomeric effect is conceptually simple (Scheme 1.3.4): ${ }^{13 b}$ The
no-bond--double bond hyperconjugative model predicts weakening of the $\mathrm{M}-\mathrm{Y}$ bond and therefore implies stereoelectronic X-assisted M-Y bond cleavage. Reactivity is therefore controlled by the conformation: if a lone pair orbital is anti-periplanar to the labile $\mathrm{M}-\mathrm{Y}$ bond. then that bond will be activated for cleavage.

Scheme 1.3.4

1.4 GEOMETRY DEPENDENCE IN $\boldsymbol{\beta}$-SUBSTITUTED SULFONES

α-Sulfonyl carbanions have been studied intensively since the observation that α chiral sulfones undergo base catalysed $\mathrm{H}-\mathrm{D}$ exchange with retention of chirality. ${ }^{16.17}$ As early as the sixties, Corey and coworkers ${ }^{18 .}{ }^{19}$ suggested that this retention of chirality is due to the barrier of rotation of $\mathrm{C}_{a}-\mathrm{S}$ bond (see 4), rather than the tetrahedral configuration at the $\alpha-\mathrm{C}$ atom, as would be the case in 5 .

4

5

Corey and Lowry ${ }^{19}$ compared the H-D exchange rate and the racemization rate of 6 and 7. and found that the exchange rate $\left(k_{\text {exc }}\right)$ of 7 is much faster than that of 6 (by almost 10^{+} times).

6

7

It is clear that the benzene ring in 7 is stabilizing the planar form of the intermediate carbanion by $p-\pi$ conjugation. If the retention of chirality is due to the barrier to inversion, then the phenyl group should facilitate the racemization of the carbanion intermediate. However, the ratios of the H-D exchange rate to the racemization rate for 6
and 7 are almost the same (41 for 6,44 for 7). So, it was concluded that retention of chirality at the $\alpha-C$ is not the source of the barrier to inversion.

Theoretical calculations of the α-sulfonyl carbanion at the 3-21G* level by Wolfe et al.. ${ }^{20}$ and by Bors and Streitwieser ${ }^{21}$ indicated that the conformation in which the lone electron pair at the $\alpha-C$ is gauche to the two sulfonyl oxygen atoms (8), is a thermodynamic minimum on the potential surface that has a rotational barrier of more than $14 \mathrm{kcal} \mathrm{mol}^{-1}$.

8

X-ray structure determinations of the lithium coordinated α-sulfonyl carbanions, ${ }^{16.22}$ such as α-(phenylsulfonyl)benzyllithium-tetra-methylethylenediamine (9a), (phenylsulfonyl)-methyllithium-tetra-methylethylenediamine (9b), (phenylsulfonyl)isopropylithium-diglyme (9c) and α-(phenylsulfonyl)- α-methylbenzyl-lithium-diglyme (9d), shows "in each case a similar dimer with each lithium bridging an oxygen on each of the sulfonyl anions, a short $\mathrm{Cl}-\mathrm{S}$ bond and no $\mathrm{Cl}-\mathrm{Li}$ bond and a conformation of the carbanions with the lone pair electrons at the anionic C -atom bisecting the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle".

9a: $\quad R_{1}=H, R_{2}=P h, L=$ tmeda
9b: $\quad R_{1}=R_{2}=H, L=$ tmeda
9c: $R_{1}=R_{2}=M e, L=$ diglyme
9d: $R_{1}=M e, R_{2}=P h, L=$ diglyme

It has been suggested ${ }^{20}$ that the strong stereoelectronic preference for the formation depicted in Figure 1.4.1, may be ascribed to the donation of the lone pair electrons from the anionic α-C atom to the antibonding orbital (σ^{*}) of the $\mathrm{S}-\mathrm{C}_{\alpha^{*}}$ bond. This is, in fact, negative hyperconjugation; the factor believed to be responsible for most of the generalized anomeric effect.

Figure 1.4.1 The conformation preference of α-sulfonyl carbanion.

With $\mathrm{PhSO}_{2} \mathrm{CHTCH}_{2} \mathrm{X}$, where $\mathrm{X}=\mathrm{OPh}$, or OCH_{3} etc., it seems very likely that the carbanion can be stabilized not only by donation into antibonding orbital (σ^{*}) of S- $\mathrm{C}_{\alpha^{\prime}}$, but also by donation into that of the $\mathrm{C}_{\beta}-\mathrm{O}$ bond (see Figure 1.4.2).

Figure 1.4.2 A second stabilization by the β-substituted oxygen.

That is to say, a third effect (besides inductive and field effects), negative hyperconjugation. or the anomeric effect, may be contributing to such a large substituent effect as well. Obviously, the effectiveness of the anomeric effect (negative hyperconjugation) should depend on the geometry of the β-substituent. The negative hyperconjugation, or anomeric effect, will be greatest in the conformations with a 180° or $0^{\circ} \mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angle, while it will be least with a $90^{\circ} \mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angle. Therefore, it became the aim of this research to investigate the angle dependence of a substituent effect.

1.5 AB INITIO CALCULATIONS OF THE DIFFERENCE BETWEEN 0° AND 90° CONFORMER SUSPECTED OF NEGATIVE HYPERCONJUGATION

$A b$ initio studies have been carried out on the geometrical dependency of hyperconjugation (anomeric effect). The β-substituted ethyl anion system (Scheme 1.5.1) is one of the most studied theoretically. ${ }^{23}$

Scheme 1.5. 1

The high electronegativity of fluorine, oxygen and nitrogen lead to sizable inductive effects. To separate the negative hyperconjugation from the inductive effect, Hoffmann et al. ${ }^{2+}$ compared the energies of β-substituted ethyl anions in different assumed conformations. The inductive effect is not expected to vary with the dihedral angle. On the other hand, the negative hyperconjugation should be maximal in conformation 10, and disappear in conformation 11 due to the 90° dihedral angle between the carbanion lone pair orbital and the C-X bond. In 10 both negative hyperconjugation and inductive effects involving X can operate, but in 11, only the inductive effect of X is present.

$10\left(180^{\circ}\right)$

$11\left(90^{\circ}\right)$

Thus, the energy difference between $\mathbf{1 0}$ and $\mathbf{1 1}$ gives the negative hyperconjugation
contribution for each substituent X . Theoretical calculations show ${ }^{23}$ that it is in the order of $8-15 \mathrm{kcal} / \mathrm{mol}$ for electronegative substituents like F, OH and NH_{2}. To evaluate the total stabilization energy, eq 1.5.1 was used.

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}+\mathrm{XCH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{XCH}_{2} \mathrm{CH}_{2}^{-} \tag{eq1.5.1}
\end{equation*}
$$

The net result of eq 1.6 .1 is only the transference of the carbanion to the position β to X where negative hyperconjugation (anomeric effect) by the $\beta-\mathrm{X}$ stabilizes the carbanion. The total stabilization is found to be about 10 to $20 \mathrm{kcal} / \mathrm{mol}$ allowing the maximum stabilization from hyperconjugation (10). It was shown that the contribution from negative hyperconjugation is not only not negligible. but is the major component of the substituent effect.

In neutral systems such as $\mathrm{XCH}_{2} \mathrm{NH}_{2}$, theoretical calculation also confirms the above conclusion. ${ }^{35} 25$ The 180° torsion angle conformation $12(X=F)$ (which permits maximum hyperconjugation) was $8.5 \mathrm{kcal} / \mathrm{mol}$ more stable than the 90° torsion angle conformation $13(\mathrm{X}=\mathrm{F})$ (which lacks hyperconjugation). Furthermore, $12(\mathrm{X}=\mathrm{F})$ was calculated to have a longer C-F bond and a shorter C-N distance than $13(\mathrm{X}=\mathrm{F})$.

12

13

Pross et al ${ }^{26}$ studied the 2,2,2-trifluoroethyl anion system (14, $\left.\mathrm{X}=\mathrm{F}\right)$. These results reveal a marked lengthening (as compared with 15), in the anion of the $\beta-C F$ bond ($1.478 \AA$) which is ideally oriented for hyperconjugation (i.e. in the anion lone pair plane). The other two fluorine atoms in 14 have a 60° dihedral angle to the carbanion
lone pair; these C-F bonds ($1.396 \AA$) are lengthened only slightly relative to the neutral model ($\mathbf{1 5}, \mathrm{C}-\mathrm{F} 1.361 \AA$). The C-C bond is shortened in $14(1.39 \AA)$ relative to $15(1.485$ \AA), as is expected from hyperconjugation.

14

15

It was found ${ }^{23}$ that the anomeric effect by the fluorine anti-coplanar to the carbanion lone pair contributes $20 \mathrm{kcal} / \mathrm{mol}$ - one half - of the total stabilization energy of the $\mathrm{CF}_{\text {; }}$ group in the 2,2,2-trifluoroethyl anion.

In conclusion, negative hyperconjugation (anomeric effect) has been theoretically shown to be angle dependent, and is conformations oriented for maximum negative hyperconjugation (anomeric effect) in some β-heteroatom substituted systems. Its contribution to the substituent effect is substantial.

1.6 THE FIRST EXPERIMENTAL EVIDENCE

Despite all the theoretical researches on the geometrical dependency of the anomeric effect. the direct experimental evidence on this point is limited. Earlier work from this laboratory ${ }^{29-j 2}$ has lent strong support for this picture. King and Rathore ${ }^{30.31}$ first found that the rate of hydroxide-promoted H-D exchange α to a sulfonyl group (Scheme 1.6.1) is strongly influenced by the presence of an ether oxygen at the β position. with acceleration by oxygen varying from 10^{2} to 10^{+}, depending on the geometry of the molecule (Scheme 1.6.2).

Scheme 1.6.1

$k_{\text {exch }}\left(25^{\circ} \mathrm{C}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$:
3.2×10^{-2}

4.3×10^{-2}

1.6×10^{-2}
$4.5 \times 10^{-4}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$

$k_{\text {exch }}\left(25^{\circ} \mathrm{C}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$:

$1.2 \times 10^{-6}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$

Scheme 1.6.2

Later, King and Guo ${ }^{29}$ extended this study to include substrates with other $\mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angles (θ) and conformed that the exchange rates vary with torsion angle (θ) of the alkoxy sulfones (A).

A

The following equation was given:

$$
\log k_{\mathrm{N}}=1.6(1.7+\cos (2 \theta))
$$

where. $k_{\mathrm{N}}=k_{\beta} / k_{0}, k_{\beta}$ refers to $k_{\text {exch }}$ for the β-substituted substrate and k_{0} to $k_{\text {exch }}$ for an analogous model in which the substituent is replaced by hydrogen as. for example:

 k_{0}

Guo's plot of $\log k_{\mathrm{N}}$ vs the torsion angles (θ) is shown in Figure 1.6.1. As shown in Figure 1.6.1, some of the points were corrected for a complicating steric effect. This point will be discussed in detail in Chapter 2.

Chapter 2 will present further experiments and also a detailed discussion on the geometry dependence of a substituent effect in a β-oxygen-substituted saturated system.

Chapter 3 describes generalization of the results obtained with the alkoxy group to include the angle dependence of the substituent effect in compounds with sulfur, nitrogen, disulfone, and ammonio substituents. Also, the special feature of the ammonio system will be discussed and a discussion on the 'reverse anomeric effect' will be offered.

Figure 1.6.1 Guo's plot of $\log k_{\mathrm{N}}$ vs. the $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{\beta}}-\mathrm{O}$ torsion angle for the base catalyzed H-D exchange reactions of β-alkoxy sulfones. (The corrections will be discussed in Chapter 2)

CHAPTER 2

THE GEOMETRY DEPENDENCE OF THE REACTION OF A BETA-ALKOXY SUBSTITUTED SATURATED SYSTEM

2.1 INTRODUCTION

As has been discussed in Chapter l, there was evidence pointing to the notion that in a saturated system an anomeric effect (negative hyperconjugation) might be contributing to the substituent effect in addition to the traditional inductive and field effects in the specific case of the formation of carbanions in β-substituted sulfones.

The work described in this chapter is a continuation of the study of Rathore and Guo in this laboratory, and leads ultimately to the measurement of rates of H-D exchange for a set of nineteen β-alkoxy sulfones in which there was reason to believe they would have fixed and approximately known $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{O}$ dihedral angles ranging from $\sim 0^{\circ}$ to \sim 180°. In addition, a sizable number of other sulfones were studied to provide relevant model systems. The aim of this study was to build up as complete a picture as possible of the geometrical dependence of the β-alkoxy substituent effect in α-sulfonyl carbanion formation, and thereby to provide a better understanding of the interaction between substituent and reacting center. To do that, the sulfones shown in Scheme 2.1.1 were synthesized and the rates of hydroxide-promoted H-D exchange alpha to the sulfonyl groups were determined. Also included is the application of the geometry dependent substituent picture to an earlier, only partly solved mechanistic problem.

12

$17 a$

24a

25b
26

28

32

$\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OMe}$	$\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Me}$
30 b	31 a
30 c	31 b
30 d	31 c
30 e	31 d
	31 e

Scheme 2.1.1

2.2 RESULTS AND DISCUSSION

2.2.1 PREPARATION OF THE SULFONES

3-(Phenylsulfonyl)tetrahydropyran (5) was synthesized as illustrated (Scheme
2.2.1). 3-(Phenylthio)tetrahydropyran (53) was prepared according to the procedure of Martin et al. ${ }^{33}$ In the first step 3,4-dihydro-2H-pyran was treated with thiolacetic acid in the presence of 2.2'-azobisisobutyronitrile (AIBN) to give the 3-(acetylthio)tetrahydropyran (51): this was hydrolyzed and the resultant thiol (52) was treated with iodobenzene in hexamethylphosphoramide (HMPA) to yield 3-(phenylthio)tetrahydropyran (53). Oxidation of $\mathbf{5 3}$ gave $\mathbf{5}$ as a colorless liquid.

Scheme 2.2.1
trans-1-Methoxy-2-(methylsulfonyl)-cyclohexane (6a) was prepared following the procedure of Carreno and coworkers ${ }^{34}$ as is illustrated in Scheme 2.2.2. Reaction of cyclohexene with N-bromosuccinimide (NBS) in water gave trans-2-bromocyclohexanol (54). The trans stereochemistry of 54 can be derived from its ${ }^{1} \mathrm{H}$ NMR spectrum by the coupling of the methine at Cl (ddd, $J=11.7 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 4.4 \mathrm{~Hz}$) and is expected from the rule of diaxial opening. In the next step, reaction of $\mathbf{5 4}$ with sodium thiomethoxide gave
trans-2-(methylthio)cyclo-hexanol (55) under very mild conditions. The trans stereochemistry can be explained by invoking cyclohexene oxide as the key intermediate. ${ }^{34}$ Methanol and concentrated sulfuric acid converted the hydroxy sulfide (55) into the methoxy sulfide (56), which was then oxidized by hydrogen peroxide (30%) in acetic acid to give the final sulfone (6a). The coupling of the methine at C 2 in the ${ }^{\mathrm{l}} \mathrm{H}$ NMR spectrum of $6 \mathbf{a}$ (ddd, $J=12.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 3.9 \mathrm{~Hz}$) is consistent with the trans stereochemistry of 6a.

Scheme 2.2.2

1-Methoxy-2-(phenylsulfonyl)bicyclo[2.2.2]octane (7) was obtained by a two-step sequence (Scheme 2.2.3). 1-Methoxy-6-endo-(phenylsulfonyl)bicyclo[2.2.2]octa-2-ene (57) was synthesized by the method of Paquette and coworkers. ${ }^{38}$ Diels-Alder reaction of 1-methoxy-1,3-cyclohexadiene and phenyl vinyl sulfone at $135^{\circ} \mathrm{C}$ gave a crude product which was purified by thick-layer chromatography and recrystallization to give 1-methoxy-6-endo-(phenylsulfonyl)bicyclo[2.2.2]octa-2-ene (57). According to Paquette and coworkers, ${ }^{38}$ the crude product might include a small amount of exo epimer but only
the pure endo (syn to the double bond) was separated and identified. The endo stereochemistry of $\mathbf{5 7}$ was assigned by these authors without further details. Hydrogenation of 57 gave 7 which was characterized unambiguously by x-ray crystallography.

Scheme 2.2.3

Scheme 2.2.4 outlines the preparation of 2-endo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]heptane (8) and 2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1] heptane (12). 2-endo-3-exo-Bis(phenylsulfonyl)-7-oxabicyclo[2.2.1] hept-5-ene (58) was obtained following the method of De Lucchi et al. ${ }^{39}$ Diels-Alder reaction of furan and (E)-bis(phenylsulfonyl)ethylene gave 58 in quantitative yield. The second step, the removal of the phenylsulfonyl group, was carried out in acetonitrile in the presence of potassium tertbutoxide (1 equiv.) and sodium borohydride (excess) according to the procedure of Mirsadeghi and Rickborn..40 The literature ${ }^{40}$ described only the major product (59b) and referred to it only as a colorless liquid. We separated the products by thick layer chromatography using ether as the developing solvent, and found at least seven bands. One band proved to be the exo epimer (59b) which, turned out to be crystalline (mp 63.5-
$65^{\circ} \mathrm{C}$). Another band evidently contained the endo epimer (59a) but was still a mixture. After further thick layer chromatography and recrystallization, the endo epimer (59a) was finally obtained as white crystals (mp $52-53^{\circ} \mathrm{C}$). Hydrogenation of 59a and 59b gave 8 and 12. respectively. The endo stereochemistry of 59a and 8, the exo stereochemistry of $59 b$ and 12 were clear because equilibration from 8 and from 12 separately in a basic deuterated solvent gave the same mixture with the deuterated form of 12 as the major component. The exo stereochemistry of 59b was originally assigned by Mirsadeghi and Rickborn. ${ }^{40}$

Scheme 2.2.4

Scheme 2.2.5 shows the synthesis of cis-1-methoxy-2-(methylsulfonyl)cyclohexane (17a). Reaction of cyclohexene with N-bromosuccinimide (NBS) in methanol gave trans-1-bromo-2-methoxycyclohexane (60). ${ }^{41}$ Refluxing of the bromide (60) with
sodium thiomethoxide in 2-butanol gave cis-2-methoxy-1-(methylthio)cyclohexane (61). presumably by way of a $\mathrm{S}_{\mathrm{N}} 2$ reaction. Oxidation of the sulfide (61) gave the desired sulfone (17a). The cis stereochemistry of 61 and 17 a can be derived by the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 a}$ which shows that the signal pattern of the hydrogen at C 2 is formed by a large coupling of 12.7 Hz (with the axial hydrogen at C3) and two small couplings of 2.9 Hz (with the equatorial hydrogens at Cl and C 3).

Scheme 2.2.5

Cyclohexyl methyl sulfone (23a) ${ }^{4 l}$ was prepared from oxidation of cyciohexyl methyl sulfide, which was obtained from the addition of methanethiol to cyclohexene (Scheme 2.2.6).

Scheme 2.2.6

The syntheses of trans-2-methyl-1-(methylsulfonyl)cyclohexane (24a) and cis-2-
methyl-l-(methylsulfonyl)cyclohexane (25a) are outlined in Scheme 2.2.7. 2-Methylcyclohexanethiol (63) was synthesized using the method of Bordwell and Hewett. ${ }^{42}$ Addition of thiolacetic acid to 1-methylcyclohexene by irradiating with a 100 watt bulb. followed by hydrolysis of the ester with KOH in aqueous ethanol gave 2-methylcyclohexanethiol (63). Methylation of the thiol and oxidation of the sulfide to the sulfone gave a mixture of 24a and 25a with the cis compound (25a) as the major component (roughly $\mathbf{7 5 \%}$). Recrystallization from methanol gave pure 25a. The cis stereochemistry of $\mathbf{2 5 a}$ can be derived by its ${ }^{1} H$ NMR spectrum which shows that the signal pattern of the hydrogen at Cl is formed by a large coupling of 11.9 Hz (with the axial hydrogen at C 6) and two small couplings of 3.8 Hz (with the equatorial hydrogens at C2 and C6).

Refluxing of 25a in methanol containing sodium methoxide (5\%) gave a mixture of 24a and $25 a$ with $24 a$ as the major component. Separation of $24 a$ and $25 a$ was unsuccessful; the $\mathrm{H}-\mathrm{D}$ exchange of $\mathbf{2 4 a}$ was determined with a mixture of $\mathbf{2 4 a}$ and $\mathbf{2 5 a}$ (see Experimental).

Scheme 2.2.7
trans-2-Methyl-1-(phenylsulfonyl)cyclohexane (24b) and cis-2-methyl-1-(phenylsulfonyl)cyclohexane ($\mathbf{2 5 b}$) were prepared using the method of Bordwell and Hewett.: ${ }^{\text {i2 }}$ Reaction of 1-methylcyclohexene with thiophenol in the presence of AIBN gave a mixture of 2-methylcyclohexyl phenyl sulfides (Scheme 2.2.8). Oxidation of the mixture by hydrogen peroxide (30\%) in acetic acid and separation by thick layer chromatography gave a mixture of $\mathbf{2 4 b}$ and $\mathbf{2 5 b}$ with the cis epimer ($\mathbf{2 5 b}$) again as the major component (roughly 75\%). Recrystallization from hexane : ethyl acetate give pure 25b. The cis epimer ($\mathbf{2 5 b}$) was refluxed in 1,4-dioxane and water in the presence of sodium hydroxide and then separation gave a 4:1 mixture of trans-2-methyl-1-(phenylsulfonyl)-cyclohexane (24b) and 25b. The cis stereochemistry of $\mathbf{2 5 b}$ can be derived by its 'H NMR spectrum which shows that the signal pattern of the hydrogen at Cl is formed by a large coupling of 12 Hz (with the axial hydrogen at C6) and two small couplings of 3.8 Hz (with the equatorial hydrogens at C2 and C6). Again, the trans methyl sulfone (24b) was not obtained free of the cis isomer (25b) and the H-D exchange rates were obtained from the mixture. The trans stereochemistry of $\mathbf{2 4 b}$ is consistent with ${ }^{1} \mathrm{H}$ NMR spectrum which shows that the signal pattern of the hydrogen at Cl is formed by two large couplings of 11.3 Hz and 9.5 Hz (with the axial hydrogens at C 2 and C6) and one small coupling of 3.4 Hz (with the equatorial hydrogen at C6).

Scheme 2.2.8
cis-4-tert-Butylcyclohexyl phenyl sulfone (27) and trans-4-tert-butylcyclohexyl phenyl sulfone (26) were prepared using the method of Eliel and Ro^{43} as outlined in Scheme 2.2.9. Tosylation of the 4-tert-butylcyclohexanol (mixture of trans and cis epimers) gave the mixture of trans and cis tosylates ($65 a$ and $65 b$). Recrystallization of the mixture from ether : hexane (1/1) twice gave pure trans epimer (65a), but the cis epimer (65b) was always accompanied by approximately 25% of trans epimer ($\mathbf{6 5 a}$). Therefore, only the pure trans epimer (65a) was used in the next substitution reaction with NaSCH_{3} in 90% ethanol, which gave cis-4-tert-butylcyclohexyl phenyl sulfide (66). The sulfide (66) was oxidized smoothly by hydrogen peroxide (30\%) in acetic acid to give cis-4-tert-butylcyclohexyl phenyl sulfone (27). Epimerization of (27) in the presence of sodium ethoxide in ethanol and recrystallization gave trans-4-tert-butylcyclohexyl phenyl sulfone (26) in good yield. The trans stereochemistry of 65a and 26 are consistent with their ${ }^{1} \mathrm{H}$ NMR spectra which show the signal pattern of the hydrogen at Cl is formed by two large couplings (> 11 Hz , with the axial hydrogens at C 2 and C 6) and two small couplings ($<5 \mathrm{~Hz}$, with the equatorial hydrogens at C 2 and C 6); while the cis
stereochemistry of $\mathbf{2 7}$ is consistent with a narrower peak ($\mathrm{w}_{1 / 2}=8.4 \mathrm{~Hz}$) of the hydrogen at Cl ; the equilibrations between 26 and 27 in deuterated solvent (see Experimental) further support these structures.

Scheme 2.2.9

The syntheses of cis-1-methoxy-3-(phenylsulfonyl)cyclohexane (28) and trans-1-methoxy-3-(phenylsulfonyl)cyclohexane (29) are shown in scheme 2.2.10. Addition of thiophenol to cyclohexenone gave 3-(phenylthio)cyclohexanone (67) in excellent yield. ${ }^{45}$ Reduction of the ketone (67) by sodium borohydride gave a mixture of cis and trans epimers (68a and 68b) with the cis-3-(phenylthio)cyclohexanol (68a) as the major component. ${ }^{47}$ The mixture was not separated until after the hydroxy group had been methylated by iodomethane and the sulfides oxidized by hydrogen peroxide to give the mixture of the desired sulfones. The separation by thick layer chromatography led to pure cis-1-methoxy-3-(phenylsulfonyl)-cyclohexane (28, 88% of mixture) and pure trans-1-methoxy-3-(phenylsulfonyl)-cyclohexane (29, 12\% of mixture). The stereochemistry of 28 can be derived from its ${ }^{1} \mathrm{H}$ NMR spectrum which shows the hydrogen peak at Cl with
two large couplings of 11 Hz (with two axial hydrogens) and two small couplings of 4.1 Hz (with two equatorial hydrogens): while the stereochemistry of 29 is consistent with a narrower hydrogen signal at Cl .

Scheme 2.2.10

A substitution reaction of 2-chloroethyl methyl ether with thiophenol in the presence of sodium hydroxide gave phenyl 2-methoxyethyl sulfide. Oxidation of the sulfide gave the desired phenyl 2-methoxyethyl sulfone (30b, Scheme 2.2.11).

30b
Scheme 2.2.11

Reaction of thiophenol with 3-chloropropanol and sodium hydroxide gave 3-(phenylthio)propanol. Methylation of the alcohol with iodomethane in DMSO gave the methyl ether. Oxidation of the sulfide gave phenyl 3-methoxypropyl sulfone (30c, Scheme 2.2.12).

Scheme 2.2.12

Scheme 2.2.13 shows the preparation of phenyl 4-methoxybutyl sulfone (30d). Ring-opening of tetrahydrofuran in acetyl chloride gave 4-chlorobutyl acetate, which was treated with PhSNa followed by methylation by iodomethane in DMSO to give phenyl 4-methoxybutyl sulfide. Oxidation of the sulfide gave the desired sulfone (30d). A similar procedure starting with tetrahydropyran gave phenyl 5-methoxypentyl sulfone (30e, Scheme 2.2.14).

$$
\begin{aligned}
& \mathrm{O}+\mathrm{ClCOCH}_{3} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCOCH}_{3} \xrightarrow{\mathrm{PhSH}} \mathrm{NaOH} \mathrm{PhS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH} \\
& \xrightarrow[\mathrm{KOH}]{\mathrm{Mel}, \mathrm{DMSO}} \mathrm{PhS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{3} \xrightarrow[\text { HOAc }]{\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)} \mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{3} 30 \mathrm{~d}
\end{aligned}
$$

Scheme 2.2.13

Scheme 2.2.14

The syntheses of other phenyl alkyl sulfones are outlined in scheme 2.2.15.
Reaction of PhSNa with ethyl bromide gave phenyl ethyl sulfide, which was oxidized by hydrogen peroxide (30\%) to give phenyl ethyl sulfone (31a). Refluxing of sodium benzenesulfinate $\left(\mathrm{PhSO}_{2} \mathrm{Na}\right)$ with the appropriate alkyl bromide in ethanol gave the phenyl alkyl sulfone (31b, c. d. and e).

Scheme 2.2.15

Tosylation of 4-hydroxytetrahydropyran gave the tosylate (70), which was further substituted to give 4-(phenylthio)tetrahydropyran. Oxidation with hydrogen peroxide (30\%) in acetic acid gave 4-(phenylsulfonyl)tetrahydropyran (32, Scheme 2.1.16).

70

Scheme 2.2.16

2.2.2 KINETICS AND THERMODYNAMICS OF THE H-D EXCHANGE

REACTION

The H-D exchange rates of the sulfones in this study were measured under pseudo-first-order conditions by ${ }^{1} \mathrm{H}$ NMR spectroscopy (or ${ }^{13} \mathrm{C}$ NMR spectroscopy for 30d. phenyl 4-methoxybutyl sulfone and 31d, phenyl pentyl sulfone) in sodium deuteroxide using deuterium oxide solution. or a mixed solvent, either dioxane- d_{s} and deuterium oxide ($1: 1 \mathrm{v} / \mathrm{v}$), or acetonitrile- $d_{;}$and deuterium oxide ($1: 1 \mathrm{v} / \mathrm{v}$) at different temperatures. All our experiments showed that this base-promoted H-D exchange reaction showed first-order kinetics under the pseudo-first-order conditions. The concentration of unreacted starting materials was obtained from the NMR signals by observing the change in area of the $\alpha-\mathrm{CH}$ signal relative to an unchanged signal. A plot of the logarithm of the concentration of unreacted starting material vs time gave a linear relationship; the slope of the best-fit line gave the pseudo-first-order rate constant ($k_{\text {obs }}$). The second-order rate constant $k_{\text {exch }}$ was obtained as the slope of the straight line from the plot of the pseudo-first-order rate constant $\left(k_{\mathrm{obs}}\right)$ vs. base concentration.

For the determinations of fast $\mathrm{H}-\mathrm{D}$ exchange reactions, a low OD^{-}concentration ($\mathrm{pD}=7$ to 11) was needed in order to keep the time intervals long enough for the NMR determination. A buffer solution was used instead of deuteroxide solution. The calculation of OD^{-}concentration was based on the following equations. ${ }^{58.59}$

$$
\begin{aligned}
& \mathrm{pD}=\mathrm{pH} \text { meter reading }+0.37\left(25^{\circ} \mathrm{C}\right) \\
& {\left[\mathrm{D}_{3} \mathrm{O}^{-}\right]\left[\mathrm{OD}^{-}\right]=10^{-14.869}\left(25^{\circ} \mathrm{C}\right)}
\end{aligned}
$$

The H-D exchange rate is not significantly influenced by the concentration of buffer under the conditions used in this research (carbonate for pH 9 to 11 , or phosphate
for pH 7 to 10). This is evident from the results in Table 2.2.1 for the determination of exchange in phenyl ethyl sulfone (30b) for the carbonate buffers and for the determination of exchange in 4,4-dimethyltetrahydro-1,4-thiazinium iodide (denoted as $\left(\mathbf{N}^{+}\right)_{180}$ in Chapter 3) for the phosphate buffer. These observations indicate that the general base catalysis mechanism is not important under the conditions used in these reactions.

Table 2.2.1. The buffer concentration vs. second-order rate constant $k_{\text {exch }}$.

$\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$$\mathbf{3 0 b}$	$\left[\mathrm{CO}_{3}{ }^{2-}\right]$ (M)	$\begin{gathered} {\left[\mathrm{OD}^{-}\right]} \\ (\mathrm{M}) \end{gathered}$	$\begin{aligned} & k_{\text {obs }} \\ & \left(\mathrm{s}^{-1}\right) \end{aligned}$	$\begin{gathered} k_{\text {exch }}=k_{\text {obos }} /\left[\mathrm{OD}^{-}\right] \\ \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{gathered}$
	5.0×10^{-2}	1.62×10^{-4}	8.30×10^{-5}	5.12×10^{-1}
	9.4×10^{-2}	1.35×10^{-5}	6.93×10^{-6}	5.12×10^{-1}
	1.9×10^{-1}	1.45×10^{-5}	7.40×10^{-6}	5.12×10^{-1}
 $\left(\mathrm{N}^{+}\right)_{180}$	$\begin{gathered} {\left[\mathrm{PO}_{4}{ }^{3-}\right]} \\ (\mathrm{M}) \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{OD}^{-}\right]} \\ (\mathrm{M}) \end{gathered}$	$\begin{aligned} & k_{\mathrm{obs}} \\ & \left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{gathered} k_{\text {exch }}=k_{\text {obs }} /\left[\mathrm{OD}^{-}\right] \\ \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{gathered}$
	3.7×10^{-2}	1.13×10^{-7}	1.69×10^{-4}	1.50×10^{3}
	5.8×10^{-2}	5.90×10^{-8}	8.88×10^{-5}	1.51×10^{3}
	1.4×10^{-1}	3.56×10^{-8}	5.32×10^{-5}	1.50×10^{3}

The equilibrium constants were also determined by 'H NMR spectroscopy in sodium deuteroxide using the same mixed solvent as for the kinetics. Because the $\alpha-\mathrm{H}$ exchanged completely long before the equilibrium was obtained, the equilibrium constants obtained were in fact between the deuterated compounds. The difference between the α-protiated and α-deuterated isotopomers is expected to be very small.

The kinetic data for the β-sulfones with more or less fixed $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angles obtained in the present study, together with the previous experiments of Rathore ${ }^{31}$ and Guo. ${ }^{32}$ are summarized in Table 2.2.2. The corresponding data for all the other sulfones are in Table 2.2.3. The plot of $\log k_{\mathrm{N}}$ vs torsion angle (θ) is shown in Figure
2.2.1. All the thermodynamic data are listed in Table 2.2.4.
Table 2.2.2 Rate constants for $\mathrm{H}-\mathrm{D}$ exchange in β-alkoxy sulfones with 'fixed' $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{p}}$ - O torsion angles (plus model compounds)

Table 2.2.2 Continued
alkoxy sulfone
Table 2.2.2 Continued

Table 2.2.2 Continued

Table 2.2.2 Continued

Table 2.2.2 Continued

multiplying the rate constant, $k_{\text {exchl, }}$, for $\mathbf{2 3 b}$ at $25^{\circ} \mathrm{C}$ by the rate constant ratio of $\mathbf{2 4 b}$ to $\mathbf{2 3 b}$ at $64^{\circ} \mathrm{C}$. ${ }^{8}$ Estimated value at $25^{\circ} \mathrm{C}$ by multiplying the rate constant, $k_{\text {exch }}$, for 19 at $25^{\circ} \mathrm{C}$ by the rate constant ratio of 20 to 19 at $77^{\circ} \mathrm{C}$. ${ }^{h}$ Estimated value at $25^{\circ} \mathrm{C}$ by multiplying the rate constant, $k_{\text {exchl }}$, for $\mathbf{2 3 a}$ at $25^{\circ} \mathrm{C}$ by the rate constant ratio of $\mathbf{2 5 a}$ to $\mathbf{2 3 a}$ at $64^{\circ} \mathrm{C}$. ${ }^{\circ}$ Estimated value at $25^{\circ} \mathrm{C}$ by

Rathore's thesis. ${ }^{31} k$ These data are obtained from Guo's thesis. ${ }^{32}$
Table 2.2.3 H-D exchange in β-alkoxy sulfones of unlixed conformation and $\gamma, \delta-, \varepsilon$ - alkoxy sulfones *

alkoxy sulfone	$k_{\text {exch }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	model(s)	$\left(k_{\text {exctic }}\right)_{\text {model }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$k_{\text {N }}$
28	1.83×10^{-3}	23b	1.47×10^{-4}	12.4
29	1.35×10^{-3}	23b	1.47×10^{-4}	9.2
30b $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}{ }^{\text {b }}$	5.12×10^{-1}	31a $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	4.14×10^{-4}	1.23×10^{3}
		31b $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	2.3×10^{-4}	2.27×10^{3}
30c $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{3}$	1.68×10^{-3}	31b	2.3×10^{-4}	7.5
		31c $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	2.03×10^{-4}	8.3
30d $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{3}$	3.96×10^{-4}	31c	2.03×10^{-4}	2.0
		31d $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	1.80×10^{-4}	2.2
30e $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OCH}_{3}$	4.01×10^{-4}	31d	1.80×10^{-4}	2.2
		31e $\mathrm{PhSO}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	1.80×10^{-4}	2.2

Table 2.2.3 Continued

alkoxy sulfone	$k_{\text {excl }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	model(s)	$\left(k_{\text {exch }}\right)_{\text {model }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	k_{N}
32	8.6×10^{-3}	23b	1.5×10^{-4}	49
$33 \mathrm{CH}_{3} \mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}{ }^{\text {b, c }}$	4.2×10^{-1}	$34 \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	2.4×10^{-5}	1.79×10^{-1}

${ }^{\mathrm{a}}$ In $\mathrm{D}_{2} \mathrm{O}$-dioxane- d_{8}; cyclohexyl sulfones at $64^{\circ} \mathrm{C}$; alkyl sulfones at $25^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ For comparison: $\mathrm{PhSO}_{2} \mathrm{CH}_{3}, k_{\mathrm{exch}}=2.26 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1} ; \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}_{3}, k_{\text {exch }}=9.95 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$;
${ }^{\mathrm{c}}$ Rates refer to the exchange of the methylene hydrogens; for the α-methyl group of $34: k_{\text {evel }}=9.9 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Table 2.2.4 The equilibrium constants for sulfone epimerization.

Reaction	$\begin{aligned} & \mathrm{K} \\ & \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \Delta \mathrm{G}^{\circ} \\ & (\mathrm{kcal} / \mathrm{mol}) \end{aligned}$
	$\begin{aligned} & 0.18 \text { * } \\ & (77) \end{aligned}$	1.2 ± 0.3
	$\begin{aligned} & 0.003 \\ & (77) \end{aligned}$	4 ± 1
	$\begin{aligned} & 0.025^{*} \\ & (77) \end{aligned}$	2.5 ± 0.3
	$\begin{aligned} & 0.030 * \\ & (77) \end{aligned}$	2.4 ± 0.3
	$\begin{aligned} & 0.019 \\ & (64) \end{aligned}$	$\begin{aligned} & 2.66 \\ & \text { (lit. } .^{60} \\ & 2.5 \mathrm{kcal} / \mathrm{mol}) \end{aligned}$
	$\begin{aligned} & 0.04 \\ & (64) \end{aligned}$	2.15

* These data are obtained from Guo's thesis. ${ }^{32}$

Figure 2.2.1 The torsion angle dependence of the rate of α-hydrogen exchange in β-oxygen substituted sulfones.

2.2.3 GEOMETRIC EFFECTS

2.2.3.1 Geometric Effects: Relation to the Sulfonyl Group

For the majority of the compounds in Table 2.2.2, there is only one hydrogen α to the sulfonyl group and hence there is no ambiguity about which hydrogen is being exchanged. With the compounds carrying a methylsulfonyl group (6a, 17a. 23a-25a) the exchange of the methyl hydrogens was found to be very much faster than that of the methyne hydrogen on the other side of the sulfonyl groups; it is the common experience that (when otherwise equivalent) methyl groups form a carbanion more readily than a methylene group, which in turn reacts more readily than a methyne. With the substrates and conditions in this study, the results in Table 2.2.3 indicate that the relative rates of hydrogen removal from methyl, methylene, and methyne groups are roughly $10^{+}: 10^{2}: 1$.

Seven compounds have the sulfonyl group in a six-membered ring and have at least one methylene group directly attached to the sulfonyl function. In most of these the methylene hydrogens are diastereotopic (i.e. 4, 14, 15, 16, and 21), but in two of them (13 and 22) the hydrogens of the methylene groups become equivalent by simple chair $=$ chair interconversion; the members of this latter group present no problems in interpreting their spectra but they do require inclusion of a statistical correction factor for comparison with other compounds in this study. The exchange reaction that is being followed is the replacement of all four of the alpha hydrogens; at any time, however, only half of these hydrogens are in the (more reactive) equatorial position and hence the measured rate constant must be multiplied by two for comparison with compounds in which the alpha hydrogen is at all times in the favourable orientation.

In the group of sulfones in which the individual hydrogens of the methylene group
are diastereotopic, the different hydrogens can be expected to exchange at different rates. As has been discussed in the theses of Rathore ${ }^{31}$ and Guo, ${ }^{32}$ the hydrogens are readily assigned as axial or equatorial (in the most stable conformation) by their 'H NMR signals; the axial hydrogens show the typical large axial-axial coupling ($10-15 \mathrm{~Hz}$) with each vicinal axial hydrogen and a much smaller axial-equatorial coupling ($2-4 \mathrm{~Hz}$) with their vicinal equatorial neighbours, whereas the equatorial hydrogens show small couplings with both axial and equatorial neighbours. On observing the exchange reactions by ${ }^{1} \mathrm{H}$ NMR it became evident that in all of the six-membered cyclic sulfones the equatorial hydrogen(s) exchange(s) faster than the epimeric axial hydrogen atom(s). With 21, for example, the equatorial alpha hydrogen ($\mathrm{C}-3 \mathrm{e}$) exchanges about 100 times faster than the axial hydrogen of the methylene group (C-3a), and this in turn exchanges much faster than the axial methyne hydrogen (C-10a). Similarly in 4, it is the equatorial hydrogen which is exchanged more rapidly than the axial, by a factor of more than 25 times. These observations are indeed what was expected on the basis of the known preference for carbanion formation of the α-hydrogen with the anti-periplanar $\mathrm{H}-\mathrm{C}-\mathrm{S}-\mathrm{C}$ torsion angle, and would have required little comment had it not been that Katritzky and coworkers ${ }^{61}$ have reported that the equatorial : axial rate ratio in a model system of theirs (cis-3,5-diphenyl-trans-4-hydroxy-3,4,5-trideuterotetrahydrothian 1,1-dioxide) was only 1.6. The origin of the difference between our results and Katritzky's is not immediately apparent, but it is our view that the comparative simplicity of our compounds indicates that our systems describe the general case and it is the Katritzky example which is the exception, being heavily perturbed by the hydroxy and phenyl groups. This is also in agreement with the observation by Fuji, et al. ${ }^{62}$ that the equatorial α-hydrogens in 6-methyl-1,3-oxathiane
3.3-dioxide exchanges 15 to 25 times more rapidly than the axial α-hydrogens (in $\mathrm{NaOCD}_{3}-\mathrm{CD}_{3} \mathrm{OD}$ at $20^{\circ} \mathrm{C}$). It could be argued that most of our examples are also perturbed by the presence of an ether oxygen, and it is the basic point of this work that this oxygen and its orientation strongly influence the rate of $\mathrm{H}-\mathrm{D}$ exchange. In the two simple examples (21 and 4) noted above, however, one (21) has no ether oxygen at all and the other has the methoxy group symmetrically disposed with respect to the two α methylene hydrogen atoms, and hence it is most unlikely that the oxygen in 4 is directly responsible for the difference between the reactivities of the two hydrogens. In the other three compounds $(14,15$, and 16$)$ the oxygen accelerates the exchange reaction, but in our view it is the orientation of the hydrogen atom with respect to the $\mathrm{C}_{\alpha}-\mathrm{S}$ bond that is the primary factor which determines which hydrogen is exchanged. The evidence in the present study is fully consistent with the picture that, with the compounds and the conditions used in this investigation at least, exchange of the α-hydrogens only takes place when the hydrogen has the anti-periplanar torsion angle around the $\mathrm{H}-\mathrm{C}_{\mathrm{a}}-\mathrm{S}-\mathrm{C}_{\alpha}$. bond. The exchange of hydrogens lacking the favourable $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{S}-\mathrm{C}_{\alpha}$ torsion angle in the major conformation require conformational flip either to the alternative chair conformation (i.e. $\mathbf{4}$ with the methoxy group axial, 14 with the sulfonyl group axial to the cyclohexane ring, or 16 with the methyl axial), or to the twist conformation of the heterocyclic ring in $\mathbf{1 5}$ or $\mathbf{2 1}$. The very slow exchange of the (axial) methyne hydrogen in 15 could conceivably be an exception to this picture, and could be taking place by way of a conformation in which the $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{S}-\mathrm{C}_{\mathrm{a}}$. torsion angle is not anti-periplanar; it should be noted, however, that even this hydrogen can come close to achieving the anti-periplanar arrangement when both rings are in twist conformations.

2.2.3.2 Geometry Effects: Relation to the Alkoxy Group

(a) Small Steric Effects

The experimental values of $\log k_{\mathrm{N}}$ are shown in Figure 2.2.1 as either black filled or fully open circles. With those points shown as black filled circles it is believed that the principal influence on $\log k_{\mathrm{N}}$ is the electronic effect of the alkoxy group. i.e. that steric factors have little, or at least a relatively small effect on $\log k_{N}$; within the context of a range of k_{N} values spanning more than four orders of magnitude, 'small' may be taken as a factor of three or (more usually) less. Some notion of the result of a small perturbation may be gained by examining the effect of replacing a β-hydrogen by a methyl group, i.e. by comparing the specific rates of H-D exchange either of (a) the α-hydrogens of 23 with those in $\mathbf{2 4}$ and $\mathbf{2 5}$ or (b) the C-3 and C-5 equatorial hydrogens in 16. In the case of $\mathbf{2 4 b}$ and $\mathbf{2 5 b}$ vs $\mathbf{2 3 b}$, the effect of the methyl group is to slow the reaction by factors of 2.0 (with $\mathbf{2 5 b}$) and 3.33 (with $\mathbf{2 4 b}$). It is customary to assume that part of these rate reductions may arise from a small electronic effect of the methyl group (σ^{*} of $\mathrm{CH}_{2} \mathrm{X}$ for $\mathrm{X}=\mathrm{H}$ is 0.00 and for $\mathrm{X}=\mathrm{CH}_{3}$ is -0.1$)^{63 \mathrm{a}}$ and hence the steric effect of the methyl group (which must be only a part of the total effect) can not be large. With 16 the effect of the 2-methyl group is to reduce the specific rate of $\mathrm{H}-\mathrm{D}$ exchange from 3×10^{-2} to 1.6×10^{-2} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$. Again, in this more reactive system, the steric effect of the methyl group must be small; note that unless the steric effect of the methyl group is to accelerate the reaction (which seems unlikely in these cases) the maximum electronic effect of the methyl group is to slow the reaction by a factor of two. Methyl and methoxy groups can often be regarded as of comparable 'size', with a slightly larger Taft E_{5} values ${ }^{63 b}$ for OCH_{3} vs CH_{3} (respectively, for $\mathrm{CH}_{2} \mathrm{X},-0.19$ and -0.07) and a distinctly lower A value ${ }^{27 \mathrm{a}}$ for methoxy as
compared with methyl (respectively, a range from 0.55 to $0.75 \mathrm{vs} 1.74 \mathrm{kcal} \mathrm{mol}^{-1}$). It is within this framework that the points in Figure 2.2.1 given ass filled black circles are regarded as unlikely to be strongly influenced by steric factors.

Note that four of the entries in Figure 2.2.1 consist off two points yoked by a pair of parallel lines. For two compounds ($\mathbf{6 b}$ and $\mathbf{1 7 b}$) the two circles are yoked by two vertical lines. This reflects the uncertainty as to what is the most appropriate model compound. For example, for $\mathbf{6 b}$ the upper point is obtained iby using the "methyl model" (24b) and the lower by using the "hydrogen model" (23b). With 17b the upper point arises by division of $k_{\text {exch }}$ of $\mathbf{1 7 b}$ by that of the "methyl model" (25b) and the lower from $k_{\text {exch }}$ of "hydrogen model" (23b). Analogously, the horizontæal yoking of points derives from uncertainties in the $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{O}$ torsion angle. In most i-nstances the angle determined by x-ray crystallography was in fair accord with that estimated with PCModel, but with two compounds, 1 and 7, the two values differed substantially and both are included in Figure 2.2.1. It should be noted that the PCModel calculations are performed on the conformation corresponding to Figure 2.2.2. i.e. with the sulfonyl group in the conformation with the $\mathrm{H}-\mathrm{C}_{\alpha}-\mathrm{S}-\mathrm{C}_{\alpha^{\prime}}$ torsion angle at $18 \mathrm{C} \pm 1^{\circ}$.

Figure 2.2.2 The conformation used to acalculate the $\mathrm{H}-\mathrm{C}_{\mathrm{a}}-\mathrm{S}-\mathrm{C}_{\mathrm{a}}$. torsion angle by PCModel.

In the structures obtained from x-ray diffraction of single crystals, none of the
phenylsulfonyl groups are actually in the conformation shown in Figure 2.2.2; a measure of distortion on going to the Figure 2.2.2 arrangement is not unexpected.

The filled and lightly-outlined circles in Figure 2.2.1, taken together, do not justify drawing of the cosine curve (or, indeed, any other curve). We wish to show in the next few subsections (those with "correction" in the titles) that when due allowance is made for either steric assistance or steric hindrance or the " γ-effect", we may, with the aid of arguments totally independent of the generalized anomeric effect. factor out the steric (and γ-effect) contributions to a number of these k_{N} values leading to the "corrected" log k_{N} points shown as heavily outlined circles in Figure 2.2.1. In the two remaining examples, lacking sufficient information to make quantitative corrections, we develop an independent argument that indicates that the points should be corrected in the direction shown by the attached arrow in Figure 2.2.1, and that the extent of the change required bring each of these points close to the cosine curve is not beyond reasonable expectation; these latter points are not included in the curve fitting.

(b) Correction for Large Steric Assistance.

In contrast to the examples considered in the previous section in which steric factors are regarded as fairly small, a substantial steric effect was immediately evident from the observation in the reactions of the cis methoxy sulfones, $9, \mathbf{1 0}$, and $\mathbf{1 1}$, not only of H-D exchange, but also of concomitant isomerization to the equilibration mixture of the cis and trans α-deuterated isotopomers. That is, 9 gave an equilibrium mixture of the $\alpha-\mathrm{D}$ isotopomers of 9 and 3 , with the later predominating. In deuterated media the free energy changes accompanying equilibration $\left(\Delta \mathrm{G}^{\circ}{ }_{\mathrm{SA}}=\mathrm{G}^{\circ}{ }_{s y n}-\mathrm{G}^{\circ}{ }_{a n n}\right)$ were, respectively,
2.5 ± 0.2 for $\mathbf{3}=9\left(77^{\circ} \mathrm{C}\right) .4 \pm 1$ for $\mathbf{2}=\mathbf{1 0}\left(77^{\circ} \mathrm{C}\right)$, and $2.4 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathbf{1}=\mathbf{1 1}$
$\left(77^{\circ} \mathrm{C}\right)$ (Table 2.2.4). The likely source of the clear preference for the anti isomer is a strong non-bonding repulsion (probably both steric and Coulombic) between the eclipsed syn methoxy and arylsulfonyl groups. In addition to this there is a difference between the ΔG° values for $\mathbf{3}=\mathbf{9}$ vs $\mathbf{2 = 1 0}$ which is readily assigned to well-known lower energy of exo vs endo [2.2.1]bicycloheptane systems. This was confirmed by treating 19 and 20 with strong base (at $77^{\circ} \mathrm{C}$) to give mixtures of 19 and 20 , indicating an ultimate equilibrium mixture with $85 \pm 5 \%$ of 19 and $15 \pm 5 \%$ of $\mathbf{2 0}$, and corresponding to $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{NX}}=1.2 \pm 0.3 \mathrm{kcal} \mathrm{mol}^{-1}$. If we label the cis interaction energy difference in 9 vs 3 (i.e. exo-cis) as $\left(\Delta G^{\circ}{ }_{C}\right)_{X}$ and that in 10 vs 2 (i.e. endo-cis) as $\left(\Delta G^{\circ}{ }_{C}\right)_{N}$, and if we then assign the observed energy differences primarily to the cis and endo interaction energies, we may write the following.

$$
\begin{aligned}
& G^{\circ}{ }_{20}-G^{\circ}{ }_{19}=\Delta G^{\circ}{ }_{N X}=1.2 \pm 0.3 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& G^{\circ}{ }_{9}-G^{\circ}{ }_{3}=\left(\Delta G^{\circ}{ }_{c}\right)_{X}-\Delta G^{\circ}{ }_{N X}=2.5 \pm 0.3 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& G^{\circ}{ }_{10}-G^{\circ}{ }_{2}=\left(\Delta G^{\circ}{ }_{c}\right)_{N}+\Delta G^{\circ}{ }_{N X}=4 \pm 1 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

From this we readily obtain

$$
\left(\Delta \mathrm{G}^{\circ}{ }_{\mathrm{C}}\right)_{\mathrm{x}}=3.7 \pm 0.6 \mathrm{kcal} \mathrm{~mol}^{-1} \text { and }\left(\Delta \mathrm{G}^{\circ}{ }_{\mathrm{C}}\right)_{\mathrm{N}}=2.8 \bullet 1.3 \mathrm{kcal} \mathrm{~mol}{ }^{-1}
$$

The exo- and endo-cis isomer interaction energies appear to be somewhat different, though the accumulated error in these estimates precludes precise comparison. Inspection of the S---OMe interaction distances and the O-C-C-S torsion angles (Table 2.2.5), which indicate slightly shorter distances in the exo isomer (9), are in accord with an apparently higher energy for $\left(\Delta \mathrm{G}^{\circ}{ }_{\mathrm{C}}\right)_{\mathrm{x}}$. The energy difference between the cis and trans
[2.2.2]bicyclooctyl sulfones, $G^{\circ}{ }_{11}-G^{\circ}{ }_{1}$, was found to be $2.4 \pm 0.3 \mathrm{kcal} \mathrm{mol}^{-1}$, i.e. a value
apparently smaller than the other cis interactions, in accord with the larger O-C-C-S torsion angle and S---OMe internuclear distance in 11 vs $\mathbf{1 0}$ and 9.

Table 2.2.5 Comparison of x -ray structures of $9.10,11 .^{32}$

	$\mathbf{9}^{\mathbf{2}}$ (exo)				$\mathbf{1 0}$ (endo)				11
O-C-C-S torsion angle (${ }^{\circ}$)	11.2	0.7	13.9	17.3	6.2	10.9	30.8		
S--O $\left(\mathrm{CH}_{3}\right)$ internuclear distance (A)	2.83	2.9	2.89	2.97	3.01	2.89	2.93		

${ }^{2}$ Because 9 and 10 have multiple conformers in the unit cell, multiple values for the torsion angle and internuclear distance are shown in the table.

The abstraction of a proton to form the carbanion from 9,10 , or 11 must be accompanied by a change in the O-C-C-S torsion angle which in turn yields a measure of relief of the ground state strain noted above; this well-known phenomenon is often referred to as "steric assistance." ${ }^{27 b}$ The question that now arises is, what proportion of the observed energies of the cis and endo interactions is expressed in the transition states leading to the carbanion, i.e. to what extent does ground state strain affect the rate of carbanion formation (and hence of H-D exchange) ?

To approach this problem we have looked at the relation between rates and equilibria in two simple sulfonyl systems, $19=\mathbf{2 0}$ and $\mathbf{2 6}=\mathbf{2 7}$. An energy diagram for $19=20$ is shown in Figure 2.2.3. ${ }^{32}$ Note that ΔG^{+}is $26.22 \mathrm{kcal} \mathrm{mol}^{-1}$ for 19 and 25.46 $\mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathbf{2 0}$; the difference in free energy of activation, $\Delta \Delta \mathrm{G}^{\ddagger}=\Delta \mathrm{G}^{\ddagger}{ }_{19}-\Delta \mathrm{G}^{\ddagger}{ }_{20}=0.76$ $\mathrm{kcal} \mathrm{cal}^{-1}$ is clearly ascribable to steric acceleration in the reaction of $\mathbf{2 0}$. Of the original $1.2 \mathrm{kcal} \mathrm{mol}^{-1}$ of strain energy (in 19 vs 20) $0.76 \mathrm{kcal} \mathrm{mol}^{-1}$ or 63% is released as steric

Figure 2.2.3 Energy diagram for the interconversion of 20 and 19
assistance in the formation of the α-sulfonyl carbanion from the sulfone. In the other system $\mathbf{2 6}=\mathbf{2 7}$, the axial isomer was found to be higher in energy by $2.66 \mathrm{kcal} \mathrm{mol}^{-1}$, and the difference in free energies of activation $1.91 \mathrm{kcal} \mathrm{mol}^{-1}\left(k_{\text {cxch }}\right.$ for 26 is 1.50×10^{-4} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ and for 27 is $2.60 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ both under the same conditions: $64^{\circ} \mathrm{C}$, dioxane- d_{x} : $\mathrm{D}_{2} \mathrm{O}(1: 1)$); the release of strain energy is therefore $1.91 / 2.66$ or 72% of the total. The results from the two reactions (an average ratio of strain energy release of 67\%) are clearly in general agreement with other work on steric assistance. For example, Rüchardt and Beckhaus find slopes for plots of ΔG^{\ddagger} vs strain enthalpy for thermal cleavage of hydrocarbons which point to about 40% to 67% of strain energy being released in the reaction. ${ }^{64}$ In other instances, strain energy released has been reported to vary from close to 80% to $26 \%,{ }^{65}$ to little or none. ${ }^{66}$

Returning to the alkoxy systems, the reaction of 9 , we take 67% of $3.7 \pm 1=2.48$ $\pm 0.7 \mathrm{kcal} \mathrm{mol}^{-1}$ as the strain energy released in making the carbanion. To find the electronic effect of the methoxy group we must correct the value of $\log k_{\mathrm{N}}$ accordingly, i.e. we must reduce $\log k_{\mathrm{N}}$ by the effect of the $2.48 \mathrm{kcal} \mathrm{mol}^{-1}$, which is to say, by $2480 / 2.303 R T=1.55 \pm 0.44\left(T=77^{\circ} \mathrm{C}\right)$, and the value of $\log k_{\mathrm{N}}$ for 9 corrected for steric acceleration becomes 2.57 ± 0.44, the value given by the heavily outlined circle (and error bars) in Figure 2.2.1. In the same way the corrected (heavily outlined circle) values for $\log k_{\mathrm{N}}$ for 10 and 11 were also obtained.

(c) Correction for the $\boldsymbol{\gamma}$-Effect.

In the light of our observation that an alkoxy substituent in the beta position may accelerate the H-D exchange by more than 10^{4}-fold, it is evident that due account must be
taken of an alkoxy interaction at the gamma position and probably at more distant locales as well. Table 2.2.3 indicates the results of a brief look into gamma and more distant effects. From this we see that an alkoxy group connected by a single three-carbon chain to the sulfonyl group increases the rate of H-D exchange (the " γ effect") in four examples by amounts ranging from 7.5 to 12.4 times. With one oxygen connected to the α-carbon by two identical three-carbon chains, as in 32. the effect of the oxygen is increased to 49fold. By this same token, we must conclude that in the reactions of the two 7-oxabicyclo[2.2.1]heptyl sulfones ($\mathbf{8}$ and $\mathbf{1 2}$), in which the oxygen is beta to the sulfur by one route and gamma by another, the observed rate must be influenced not only by the beta interaction but also by the γ effect, and hence that the magnitude of the gamma effect must be accounted for if we are to estimate the magnitude of the β-effect by itself in these compounds. An upper limit of roughly 10 - to 12 -fold for the γ-effect may be placed by the values in Table 2.2.3. The lower limit is less clear because it would appear reasonable to expect that when one oxygen is interacting by two paths, the total effect will not be as large as if there were two separate oxygen atoms acting independently. That is. to the extent that an oxygen atom acting by, say, a β-effect withdraws charge from the α carbon in the transition state, then that same oxygen atom acquires an increased negative charge and can be therefore expected to be less electron withdrawing by the other pathway than if this involved another, quite different oxygen atom. In accord with this, we note that the "double γ-effect" via the two pathways (in 32,49 -fold) is less than that expected for two independent γ-effects. In the absence of any straightforward basis for assigning the γ-effect when the same oxygen also shows a β-effect (as in 8 and 12), we suggest that the value 5 e 3 very likely covers the $\boldsymbol{\gamma}$-effect range in these substrates. The
corrected point for $\mathbf{1 2}$ in Figure 2.2.1 has been obtained using this number: part of the error bars reflects the uncertainty in the γ-effect assignment. For 8. an additional (steric) correction is required because the strain energy difference 8 and 12 is $2.15 \mathrm{kcal} \mathrm{mol}^{-1}$ (or $0.95 \mathrm{kcal} \mathrm{mol}^{-1}$ greater than that observed for $\mathbf{1 9} \mathrm{vs} \mathbf{2 0}$), and hence is not adequately accounted for with 20 as the model. Accordingly a correction corresponding to 67% of the difference in strain energies (i.e. $0.67 \times 0.95 \mathrm{kcal} \mathrm{mol}^{-1}$) is applied to 8 in addition to the γ-effect correction.

(d) Correction for Rate Suppression Factors.

Even the most cursory examination of Figure 2.2.1 shows two (unfilled circular) points to be clearly removed from the others, those for (a) cis-2-methoxycyclohexyl phenyl sulfone (17b), and (b) the bridgehead methoxy sulfone 7. The k_{N} value of the latter, $4.6\left(\log k_{\mathrm{N}}=0.66\right)$, is very low, being much lower than any of the other β-alkoxy sulfones and only about half of the typical $\boldsymbol{\gamma}$-effect k_{N} values (Table 2.2.3). This, in itself, suggests the presence of a rate suppression factor of some kind.

Examination of molecular models suggests that a combination of two factors slows the H-D exchange in 7 relative to its model (18). As was noted in the introduction, the preferred (and in the present examples, probably the only) orientation of the α sulfonyl system for carbanion formation is that shown in $\mathbf{3 5}$ as follows:

For $\mathbf{7}(=\mathbf{3 5 b})$ and $\mathbf{1 8}(=\mathbf{3 5 a})$ this would lead to very strong nonbonding repulsions between the phenyl and the nearest methylene groups. In the model system ($\mathbf{1 8}=\mathbf{3 5 a}$) this can be alleviated in considerable measure by having the phenyl group move, as shown by the arrow, with concomitant twisting of the [2.2.2]bicyclooctyl system (which presumably also helps to minimize the eclipsing interactions in this array). With $7(=\mathbf{3 5 b})$, however, such motion leads to a shrinkage of the O-C-C-S torsion angle from its original value of about 60° in the untwisted bicyclo system to a value approaching 0°. This latter extreme would correspond to the eclipsed array, which as has already been seen with $\mathbf{9}, \mathbf{1 0}$, and 11, above, would lead to extra energy of the order of about $3 \mathrm{kcal} \mathrm{mol}^{-1}$ or so. It would appear that the methoxy group in 7 introduces a steric-cum-electronic effect not adequately factored out by dividing by the rate constant for the model system (18), and hence a correction must be applied to increase k_{N} to find the purely electronic effect of the methoxy group in 7. Without attempting to assign a numerical correction factor in this case we suggest that some idea of the order of magnitude can be gained from the following. A 1,3 -synaxial $\mathrm{Ph}-\mathrm{CH}_{3}$ interaction in a cyclohexane system has been assigned ${ }^{27 \mathrm{~b}}$ a $\Delta \mathrm{G}^{\circ}$ (relative to the diequatorial conformer) of $3.4 \mathrm{kcal} \mathrm{mol}^{-1}$. To the extent that a $\mathrm{Ph}-\mathrm{CH}_{2}$ interaction in 35 resembles the cyclohexyl synaxial $\mathrm{Ph}-\mathrm{CH}_{3}$ interaction,
then a comparable amount of energy may be expected to be required to achieve the arrangement in 35a with the phenyl group moved as shown by the curved arrow. Such a movement of the phenyl in $\mathbf{3 5 b}$ is presumably resisted by the tendency to obtain the eclipsed S-C-C-O array. Within this framework it would be reasonable to expect that the "less relaxed" arrangement in 7 would be of higher energy than the "more relaxed" conformation in 18 by at least $1 \mathrm{kcal} \mathrm{mol}^{-1}$ and probably not more than $5 \mathrm{kcal} \mathrm{mol}^{-1}$. In 7 it should be noted that any tendency to involve hyperconjugation (which would be expected to be small because of the unfavourable $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle estimated at 78°, see Table 2.2.2), would probably be accompanied by at least a small change in hybridization (from sp^{3} to sp^{2}) at $\mathrm{C}-1$ and $\mathrm{C}-2$. Such a change would generate angle strain in the bridged structure associated with Bredt's rule, that is "in a small bridged system one cannot, for reasons of excessive strain, have a double bond at the bridgehead position". ${ }^{27 \mathrm{c}}$ The net result could be either (a) no hyperconjugation, or (b) some hyperconjugation, but with little or no energy release because of increased strain.

The other unfilled circle, well removed from the others, is that due to $\mathbf{1 7 b}$. Examination of molecular models shows that the appropriate conformation of the $\mathrm{H}-\mathrm{D}$ exchange is that shown in 36c.

36
a) $X=P h, Y=H$;
b) $X=P h, Y=M e ;$
c) $X=P h, Y=O M e ;$
d) $X=M e, Y=O M e$

One immediately notes in 36c what appears to be a substantial "1,3-synaxial-like"
interaction between the methoxy and phenyl groups. Interestingly (as has been noted earlier). however. when cis-2-methylcyclohexyl phenyl sulfone (25b) was examined. the effect of the "synaxial-like" methyl-phenyl interaction was found to be comparatively minor, with the rate constant for H-D exchange in $\mathbf{2 5 b}$ about one-half of that of cyclohexyl phenyl sulfone (23a). One possibility suggested by these results is that there is a substantial $\mathrm{MeO}-\mathrm{Ph}$ interaction not mimicked by the methyl analogue, i.e. one possibly not primarily steric in origin.

That there is something unusual about the " 1,3 -synaxial-like" $\mathrm{MeO}-\mathrm{Ph}$ interaction is suggested by the following evidence which is quite apart from anything related to Figure 2.2.1. Note the effect on relative rates of H-D exchange of changing from a methyl sulfone to the corresponding phenyl sulfone, as shown in Table 2.2.6. For four of these pairs the exchange is substantial, varying from 23- to 58 -fold; for the change 17 b to 17 a, however, it is only four-fold.

These results appear to point to a repulsive, possibly Coulombic nonbonding $\mathrm{MeO}-\mathrm{Ph}$ interaction in $\mathbf{3 6 c}(=\mathbf{1 7 b})$ (and analogous arrays) not compensated for by models such as $\mathbf{2 3 b}$ or $\mathbf{2 5 b}$. Without a clear picture of its origin we are not in a position to make any estimate of its effect on rates of H-D exchange magnitude other than the roughly one order of magnitude change noted in the methyl vs phenyl sulfone series above, Accordingly, we merely indicate by an upward pointing arrow in Figure 2.2.1 that it is likely that the point, when properly corrected, will likely have a distinctly higher log k_{N} value.

Table 2.2.6 The unusual " 1.3 -synaxial-like" MeO - Ph interaction in 17b.

$k(\mathrm{Ph})\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$k(\mathrm{Me})\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$k(\mathrm{Ph}) / k(\mathrm{Me})$
$\mathbf{1 7 b}$ $9.3 \times 10^{-4 a}$	17a $2.4 \times 10^{-4 a}$	4
$23 b$ 1.75×10^{-62}	$4.2 \times 10^{-8 \mathrm{a}}$	42
$\begin{gathered} \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Ph} \\ 2.26 \times 10^{-2 \mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Me} \\ 9.95 \times 10^{-4 \mathrm{a}} \\ \hline \end{gathered}$	23
6b	$6 \mathbf{a}$	26
25b	25a $1.3 \times 10^{-6} \mathrm{c}$	58

${ }^{a}$ reaction conditions: $25^{\circ} \mathrm{C}$, Dioxane $-d_{8}: \mathrm{D}_{2} \mathrm{O}(1: 1) .{ }^{\mathrm{b}}$ Estimated value at $25^{\circ} \mathrm{C}$, Dioxane- $d_{8}: \mathrm{D}_{2} \mathrm{O}(1: 1)$ by multiplying its rate constant, $k_{\text {exch }}$, at $64^{\circ} \mathrm{C}\left(3.7 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ by the rate constant ratio of $\mathbf{2 3 b}$ at $25^{\circ} \mathrm{C}\left(1.75 \times 10^{-6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ to that at $64{ }^{\circ} \mathrm{C}\left(1.47 \times 10^{-4}\right.$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$). ${ }^{\mathrm{c}}$ reaction conditions: $64^{\circ} \mathrm{C}$, Dioxane $-d_{8}: \mathrm{D}_{2} \mathrm{O}(1: 1)$.

2.2.4 VARIATION OF $\log k_{\mathrm{N}}$ WITH THE H-C-C-O TORSION ANGLE

2.2.4.1 Negative Hyperconjugation and the Generalized Anomeric Effect.

Inspection of the filled and heavily outlined circles in Figure 2.2.1 reveals a pattern consistent with variation of $\log k_{\mathrm{N}}$ with $\cos 2 \theta\left(\right.$ or $\cos ^{2} \theta$) where θ is the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle; the line drawn corresponds to the equation

$$
\begin{align*}
\log k_{\mathrm{N}} & =(3.00 \pm 0.08)+(1.31 \pm 0.10) \cos 2 \theta \\
& =(1.70 \pm 0.17)+(2.62 \pm 0.20) \cos ^{2} \theta \tag{eq2.2.1}
\end{align*}
$$

derived from a nonlinear least squares treatment including all of the heavily outlined and filled points in Figure 2.2.1. The three $\log k_{\mathrm{N}}$ values not included in the least squares treatment (those for 5, 7, and 17b) are subject to correction of uncertain magnitude, but it is not difficult to imagine that they too, given more information, would also conform to the cosine curve. At present, however, the $\log k_{\mathrm{N}}$ values for 7 and 17 b do not, in our view, constitute evidence either for or against the cosine relationship. The case of $\mathbf{5}$ is discussed in Section 2.2.6.

Experimental free energy relationships in chemistry are always subject to "noise", i.e. to minor deviations from perfect fit to the line. In addition in the present case of $\log k_{\mathrm{N}}$, the problem of imprecision is made worse by the fact noted already that k_{N} cannot by its very nature always be uniquely and precisely determined. (A similar problem of precise determination appears with some well-known chemical parameters, e.g. resonance energy and effective molarity, or effective concentration; as with these, $\log k_{\mathrm{N}}$ can be useful and lack of precision is not in itself grounds for not making use of the idea.) Within this framework we suggest that the results in Figure 2.2.1 constitute a strong case for eq 2.2.1. The variation with θ ranges from $\log k_{\mathrm{N}}$ of about 2 to about 4.6, i.e. there is a
torsion angle dependent component of $\log k_{\mathrm{N}}$ which appears to constitute more than half of the maximum total effect, and also a component (presumably the inductive and perhaps the field effect) which appears to be (more or less) independent of θ.

The angle dependence, in our view. is in full accord with the presence of negative hyperconjugation (generalized anomeric effect), for which such angle dependence has been predicted. In particularly striking agreement with our experiments are the calculations of Schleyer and Kos^{23} who estimated that for the ethyl carbanion, the presence of a β-alkoxy substituent with $\theta=180^{\circ}$ would stabilizing the carbanion by 23.5 $\mathrm{kcal} / \mathrm{mol}$, whereas at 90° the effect would be $10.3 \mathrm{kcal} / \mathrm{mol}$. That is hyperconjugation is responsible for 56% of the maximum total effect of a β-alkoxy group. Our corresponding estimated $\log k_{\mathrm{N}}$ for the 180° and 90° conformers are respectively 4.29 and 1.55 , pointing to stabilization by hyperconjugation of 64% of the maximum.

2.2.4.2 The Syn-periplanar Lone-pair Stereoelectronic Effect.

One notable feature of Figure 2.2.1 which warrants special mention is the powerful effect of syn-periplanar alkoxy groups, as shown by the $\operatorname{large} \log k_{N}$ values for 1 , 2, and 3, in which the effect on k_{N} is close to or as large as that of the anti-periplanar alkoxy groups (e.g. compounds 14, 15, and 16). Padwa and Wannamaker ${ }^{67}$ have proposed syn-periplanar $n-\sigma^{*}$ overlap in connection with carbanion formation from a substituted 2-methoxycyclopropyl p-tolyl sulfone. Experimental evidence for the synperiplanar lone pair effect in the chemistry of acetals has been put forward by Deslongchamps and Kirby and coworkers ${ }^{68}$ (who conclude that the syn-periplanar effect is weaker than the anti-periplanar) and supported by calculations. ${ }^{69}$ Notwithstanding a
suggestion that "syn-periplanar ... overlap would be disfavoured" ${ }^{70}$ the case for the strong syn-periplanar lone pair effect appears established.

2.2.4.3 Angle Dependence of $\boldsymbol{\sigma}^{*}$. A New Parameter, $\boldsymbol{\sigma}_{0}^{\boldsymbol{*}}$.

The variation of $\log k_{\mathrm{N}}$ with the torsion angle may be described in terms of the Taft parameter σ^{*} provided one adds a new feature, namely torsion angle dependence; we shall symbolize the angle dependent σ^{*} as σ_{θ}^{*}, where θ implies an unspecified angle and σ_{30}^{*}, say, refers to the value at $\theta=30^{\circ}$. Under the conditions of our experiments $(\mathrm{NaOD}$ in $\mathrm{D}_{2} \mathrm{O}$-dioxane- d_{8} at $25^{\circ} \mathrm{C}$) or $\mathrm{D}_{2} \mathrm{O}$-organic solvent) the rate constants for $\mathrm{H}-\mathrm{D}$ exchange of $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$ (30b) and $\mathrm{PhSO}_{2} \mathrm{Et}$ (31a) were found to be, respectively, 0.51 and $4.2 \times 10^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1}\left(\right.$ ratio $\left.=k_{\mathrm{N}}=1.2 \times 10^{3}\right)$. Thomas and Stirling report 0.44 and $3.7 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (ratio 1.2×10^{3}) for their detritiations (in $\mathrm{EtO} / \mathrm{EtOH}$ at 25 ${ }^{\circ} \mathrm{C}$), and it is clear that our system behaves very similarly to theirs. If we write eq 2.2.1

$$
\begin{align*}
\log k_{\mathrm{N}} & =(3.00 \pm 0.08)+(1.31 \pm 0.10) \cos 2 \theta \\
& =(1.70 \pm 0.17)+(2.62 \pm 0.20) \cos ^{2} \theta \tag{eq2.2.2}
\end{align*}
$$

from our work and take, from Thomas and Stirling's results, ${ }^{6}$

$$
\log k_{\mathrm{N}}=4.89\left(\sigma_{\theta}^{*}\right)_{\mathrm{OR}}
$$

we get

$$
\begin{align*}
\left(\sigma_{\theta}^{*}\right)_{\mathrm{OR}} & =(0.61 \pm 0.02)+(0.27 \pm 0.02) \cos 2 \theta \\
& =(0.35 \pm 0.03)+(0.54 \pm 0.04) \cos ^{2} \theta \tag{eq2.2.3}
\end{align*}
$$

which gives the σ_{θ}^{*} value of the $\mathrm{CH}_{2} \mathrm{OR}$ group as a function of the torsion angle, θ. In eq 2.2.3 σ_{θ}^{*} for the $\mathrm{CH}_{2} \mathrm{OR}$ group may vary from $\sigma_{90}^{*}=0.35 \pm 0.03$ to $\sigma_{0}^{*}=\sigma_{180}^{*}=0.88 \pm$ 0.08. A plot of filled ("uncorrected") and heavily outlined ("corrected") $\log k_{\mathrm{N}}$ values vs
σ_{θ}^{*} is shown in Figure 2.2.4, and, as expected. gives an approximate straight line with slope (ρ^{*}) of 4.88 (i.e. very close to 4.89).

Note that $\sigma_{180}^{*}=0.88 \pm 0.08$ is distinctly larger than the value of σ^{*} for $\mathrm{CH}_{2} \mathrm{OMe}$ (0.64) used by Thomas and Stirling. This reflects the fact that the maximum value of log k_{N} in our study is taken as 4.6, whereas in Stirling and Thomas' work $\log \left(k_{\mathrm{OMe}} / k_{\mathrm{H}}\right)=$ 3.08 , i.e. in these experiments we are seeing larger k_{N} values with alkoxy groups in fixed conformations than with the conformationally mobile species (30b). Such a situation arises in a conformationally mobile system whenever there is a mixture of conformations of differing reactivity and the system is subject to Winstein-Holness kinetics. ${ }^{28}$ In the simplest case of two equimolar conformations, one of which is reactive and the other totally unreactive, for example, the measured $k_{\text {obs }}$ is one-half of the specific rate of the reacting conformation; more generally, the measured σ^{*} is the weighted average of the σ^{*} values for each conformation present. In the present case of $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$ the reacting conformer is arranged as in Figure 2.2.2 $\left(\mathrm{X}=\mathrm{OMe}, \mathrm{C}_{\mathrm{a}^{\prime}}=\mathrm{Ph}\right)$. From the discussion already given in connection with the relatively low reactivity of $\mathbf{1 7 b}$, this arrangement is expected to have high energy. The low value of $\log \left(k_{\mathrm{OMe}} / k_{\mathrm{H}}\right)$ is presumably a reflection of a relatively low concentration of the reacting conformer (Figure 2.2.2, $\mathrm{X}=\mathrm{OMe}, \mathrm{C}_{\mathrm{a}^{\prime}}=\mathrm{Ph}$) as compared with that from $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (Figure 2.2.2, $X=H, C_{a^{\prime}}=P h$.

The above discussion suggests that a rigorous treatment of a reaction of conformationally mobile species by the Taft equation would require a full conformational analysis with individual rate constants for conformers taken with a set of σ_{θ}^{*} values. Presumably the success of much simpler treatments suggests that (a) some systems are

Figure 2.2.4 The angle dependence of $\sigma_{\theta}{ }^{*}$ term. The equation for the best-fit line is $\log k_{\mathrm{N}}=-0.010+4.88 \sigma_{\theta}{ }^{*}$.
not complex. and (b) we often deal with averaging of conformational populations. rates and σ^{*} values. Observation of experimental "noise" is not surprising.

2.2.5 THE FIELD EFFECT

As has been noted already, nearly half of the effect of alkoxy groups on $\log k_{\mathrm{N}}$ appears to be more or less independent of the torsion angle. θ. This is fully consistent with the presence of the inductive effect which operates by successive bond polarizations and is, therefore, uninfluenced by the torsion angle. The field effect, however, is expected to be controlled to some extent by geometry.

In 1938, Kirkwood and Westheimer published their study of the field effect on acidity of a dipolar substituent. ${ }^{71}$ An equation, known as Kirkwood-Westheimer equation, was presented:

$$
\log \left(K_{\mathrm{x}} / K_{\mathrm{H}}\right)=\mathrm{e} \mu \cos \zeta /\left(2.3 \mathrm{RT} \mathrm{r}^{2} \mathrm{D}_{\mathrm{eff}}\right)
$$

where K_{X} and K_{H} are the acid dissociation constants of substituted and unsubstituted acids, and μ is the substituent dipole moment; $D_{\text {eff }}$ is called to the "effective dielectric constant"; r is the distance between the middle point of bond $\mathrm{C}-\mathrm{X}$ and hydrogen, ζ is the angle formed by bond $\mathrm{C}-\mathrm{X}$ and the line which defines r (Figure 2.2.5 (a)).

(a)

(b)

(c)

Figure 2.2.5 The definitions of parameters used for Kirkwood-Westheimer equation

This equation indicates that field effect for the same substituent and solvent should vary with $(\cos \zeta) / r^{2}$. However, it is not clear where the charge position at the transition state (the leaving of the H_{α}) in our situation is. Therefore, two additional pictures (shown in Figure 2.2 .5 (b) and (c)) are considered: (b) the charge stays in the middle of the $\mathrm{C}_{\mathrm{u}}-\mathrm{H}$: (c) the charge at the $3 / 4$ position. closer to the leaving H.

As is shown in detail in Appendix A, we may calculate the value of $(\cos \zeta) / r^{2}$ (Table 2.2.7) based on the equations above. The plots of $\log k_{\mathrm{N}}$ vs. $(\cos \zeta) / r^{2}$ are shown in Figures 2.2.6.

Judging from the Figures 2.2.6 (a), (b) and (c), there is no evident dependence of $\log k_{\mathrm{N}}$ on $(\cos \zeta) / r^{2}$. A reasonable conclusion from these is that the field effect is NOT a major factor for the geometry dependence.

In order to have a clearer picture about the geometry dependence of the field effect, ethyl methyl ether was taken as a model (Figure 2.2.7). Table 2.2.8 includes the data obtained from PCModel calculations for this ethyl methyl ether system. The plots of $(\cos \zeta) / r^{2}$ vs. torsion angle θ are shown in Figure 2.2.7.

$\theta \sim 0^{\circ}$

$\theta \sim 180^{\circ}$

Figure 2.2.7 The conformations of ethyl methyl ether were taken as a model for the field effect.
Table 2.2.7 The torsion angle (θ), the $\log k_{N}$ (after corrections) and estimated parameters of ζ, r, and $(\cos \zeta) / \mathrm{r}^{2}$

sulfones	torsion angle $\theta\left({ }^{\circ}\right)$	corrected$\log k_{N}$	$\mathrm{H}^{\text {a }}$			$1 / 2^{6}$			$3 / 4^{\text {c }}$		
			$\cos \zeta$	$r(A)$	$(\cos \zeta) / \mathrm{r}^{2}$	$\cos \zeta$	$r(\AA)$	$(\cos \zeta) / \mathrm{r}^{2}$	$\cos \zeta$	$\mathrm{r}(\AA)$	$(\cos \zeta) / \mathrm{r}^{2}$
1	26.2	4.06	0.1896	2.185	0.0397	0.4113	1.968	0.1062	0.2970	2.060	0.0700
2	7.1	3.84	0.2489	2.262	0.0487	0.4687	2.035	0.1131	0.3555	2.133	0.0781
3	13.9	4.40	0.1697	2.178	0.0358	0.4058	1.966	0.1050	0.2840	2.056	0.0672
4	59.3	2.57	0.3191	2.317	0.0594	0.4659	2.030	0.1131	0.3901	2.160	0.0836
5	60	2.81	0.3775	2.326	0.0698	0.7034	2.379	0.1242	0.5533	2.306	0.1041
6 a	61.3	2.04	0.3603	2.333	0.0662	0.4989	2.053	0.1184	0.4278	2.180	0.0900
6b	61.9	1.81	0.3600	2.341	0.0657	0.4979	2.056	0.1178	0.4270	2.185	0.0894
7	78.4	0.67	0.4574	2.402	0.0793	0.5500	2.091	0.1257	0.5032	2.235	0.1008
8	74.5	3.42	0.3470	2.261	0.0678	0.4558	1.976	0.1168	0.4003	2.105	0.0904
9	133	4.12	0.7705	2.687	0.1067	0.7348	2.267	0.1428	0.7563	2.471	0.1239
10	133.1	3.96	0.8046	2.675	0.1125	0.7701	2.272	0.1493	0.7915	2.465	0.1302
11	145	4.51	0.8107	2.687	0.1123	0.7556	1.787	0.1474	0.7877	2.469	0.1292

Table 2.2.7 Continued.

sulfones	torsion angle $\theta\left({ }^{\circ}\right)$	corrected$\log k_{N}$	$\mathrm{H}^{\text {a }}$			$1 / 2^{\text {b }}$			$3 / 4^{\text {c }}$		
			$\cos \zeta$	$r(\AA)$	$(\cos \zeta) / \mathrm{r}^{2}$	$\cos \zeta$	$r(A)$	$(\cos \zeta) / \mathrm{r}^{2}$	$\cos \zeta$	r (\AA)	$(\cos \zeta) / r^{2}$
12	152.4	4.24	0.7507	2.699	0.1031	0.6843	2.237	0.1368	0.7221	2.463	0.1191
13	172.9	4.55	0.8389	2.788	0.1079	0.7703	2.322	0.1429	0.8092	2.551	0.1244
14	173.5	4.60	0.8407	2.799	0.1073	0.7742	2.311	0.1436	0.8119	2.556	0.1242
15	173.5	4.43	0.8425	2.790	0.1083	0.7745	2.322	0.1436	0.8130	2.551	0.1249
16	173.9	4.28	0.8612	2.712	0.1171	0.7857	2.271	0.1523	0.8287	2.486	0.1341
17a	179.4	3.75	0.8547	2.725	0.1151	0.8263	2.208	0.1695	0.8423	2.466	0.1385
17b	178	2.73	0.8749	2.732	0.1172	0.8116	2.306	0.1527	0.8481	2.512	0.1344

${ }^{\text {a }}$ Refer to the conformation depicted as Figure 2.2 .5 (a);
${ }^{\text {b }}$ Refer to the conformation depicted as Figure 2.2 .5 (b);
${ }^{c}$ Refer to the conformation depicted as Figure 2.2.5 (c).

Figure 2.2.6 The lack of any linear dependence of the $\log k_{\mathrm{N}}$ (after corrections) on $(\cos \zeta) / \mathrm{r}^{2}$.

Figure 2.2.8 The field effect vs torsion angle in the ethyl methyl system.
The filled circles are for Figure 2.2.5a; the unfilled circles are for Figure 2.2.5b.

Table 2.2.8 The value of $(\cos \zeta) / r^{2}$ vs. torsion angle for the ethyl methyl ether system

torsion angle (θ)	$(\cos \zeta) / r^{2}$ in Figure 2.2.5a	$\left(\cos \zeta / r^{2}\right.$ in Figure 2.2.5b
0.1	0.0328	0.1015
10	0.0343	0.1026
20	0.0374	0.1037
30	0.0430	0.1065
40	0.0498	0.1097
50	0.0572	0.1136
60	0.0651	0.1175
70	0.0727	0.1219
80	0.0796	0.1256
90	0.0860	0.1291
100	0.0917	0.1323
110	0.0963	0.1356
120	0.1010	0.1388
130	0.1032	0.1399
140	0.1067	0.1426
150.1	0.1079	0.1434
159	0.1093	0.1443
171	0.1105	0.1453
180	0.1098	0.1447

Figure 2.2.8 indicates that the field effect should be at its minimum when the torsion angle θ is 0° and at its maximum when the torsion angle θ is 180°. This is obviously not what we have obtained in Figure 2.2.1, because our results clearly indicate that the substituent effect is higher at either $\theta=0^{\circ}$ or $\theta=180^{\circ}$ than at $\theta \sim 90^{\circ}$. The points around $\theta=180^{\circ}$ appear to be slightly higher than those around $\theta=0^{\circ}$, perhaps by as much
as $0.5 \log k_{\mathrm{N}}$ units. and one conceivable source of this difference - if it is real - could be the field effect.

A more complete evaluation of the Kirkwood-Westheimer equation requires the use of somewhat arbitrary parameters. For a particular substituent (e.g. the alkoxy group) and reaction, the Kirkwood-Westheimer equation may be expressed as

$$
\Delta \mathrm{E}=q \mu \cos \zeta /\left(\mathrm{D} r^{2}\right)
$$

where q is the magnitude of the charge (which we took initially as that of the electron, 1.6 $\times 10^{-19} \mathrm{C}$, see below), μ is the bond moment of the dipolar bond. taken as $0.7 \mathrm{D}^{88}$ where $1 \mathrm{D}=3.34 \times 10^{-30} \mathrm{C} \mathrm{m}, D=D_{\mathrm{E}}\left(4 \pi \varepsilon_{0}\right)$ where D_{E} is the "effective dielectric constant" (see below) and ε_{0} is the permittivity of free space $\left(8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$. From this (with Avogadro's number) we obtain $\Delta E=2.03 \times 10^{-15}(\cos \zeta) / D_{\mathrm{E}} r^{2} \mathrm{~J} \mathrm{~mol}^{-1}$. As is shown in Table 2.2.8, when θ is 0° then $(\cos \zeta) / r^{2}=0.33 \AA^{-2}\left(=3.3 \times 10^{18} \mathrm{~m}^{-2}\right)$ and when θ is 180° then $(\cos \zeta) / r^{2}=0.11 \AA^{-2}\left(=11 \times 10^{18} \mathrm{~m}^{-2}\right)$. At this point we must make a choice of two parameters, D_{E} and the magnitude of the developing negative charge. Kirkwood and Westheimer ${ }^{71}$ have suggested that the effective dielectric constant, D_{E}, for the space between the charge and a dipole, should be in the range 3 to 10 . We find that $D_{\mathrm{E}}=4$ gives a range of $\log k_{\mathrm{N}}$ values consistent with Figure 2.2.1. The developing anionic charge must be less than one, but, from the sensitivity of the reaction to substituent (cf. $\rho^{*}=4.89$), we find it difficult to imagine a charge less than 0.5 . We used 0.75 in our calculations while noting that the results are not very sensitive to the precise number. These parameters (with $4.184 \mathrm{~J} / \mathrm{cal}$) gave ΔE values of 0.3 and $1.00 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\theta=0^{\circ}$ and 180°, respectively; division by 2.303 RT gives $\log k_{\mathrm{N}}$ field effect contributions of 0.22 and 0.74 effectively. The results and discussion to this point indicate that the polar effect
of an alkoxy group may be qualitatively analysed as follows: at $\theta=0^{\circ}$ and 180° the polar effect comprises an anomeric effect, plus a smaller inductive effect, plus a still smaller field effect, and at $\theta=90^{\circ}$ the polar effect contains only the inductive effect plus (a smaller) field effect.

2.2.6 REACTION VIA A LESS STABLE CONFORMER: THE CASE OF COMPOUND 5

Although many reactions take place by way of the most stable conformer(s), one must recall that exceptions to this generalization are commonly found when, as in the present study, stereoelectronic requirements are important. It therefore seemed prudent to examine the substrates in Table 2.2.2 to see if any of these might react to a substantial extent via a conformation different from that shown. One likely example, in fact, was found.

As is illustrated in Scheme 2.2.1, Compound $\mathbf{5}$ in the most stable conformation (5e) clearly has the PhSO_{2} group equatorial and the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle, θ, close to 60°. The alternative axial conformation (5a) must have higher energy than $\mathbf{5 e}\left(c f . \Delta \mathrm{G}^{\circ}=\right.$ $2.66 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathbf{2 6}=\mathbf{2 7}$), but θ in $\mathbf{5 a}$ is close to 180°.

5e

Scheme 2.2.1

From eq 2.2.1 the rate constant for $\mathbf{5 a}$ must be greater than that for $\mathbf{5 e}$ by about 108 ± 5
times just because of the stereoelectronic factor alone; we therefore use a " θ-factor" of 108-fold. The actual active conformations are illustrated as 5 ar and $\mathbf{5 e 1}$ (Scheme 2.2.2).

To estimate the $\log k_{\mathrm{N}}$ for $\mathbf{5 a 1}$ and $\mathbf{5 e 1}$, we need to evaluate the equilibrium of $\mathbf{5 e l}=\mathbf{5 a l}$. As a rough guess for the value of the ΔG° of this equilibrium we suggest about $6 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ (see Appendix C).

$5 e 1$

$5 a 1$

Scheme 2.2.2

Roughly half of the suggested $6 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ may be regarded as the energy required to convert $\mathbf{5 e}$ into $\mathbf{5 a}$, in accord with the $2.66 \mathrm{kcal} \mathrm{mol}^{-1}$ observed for $\mathbf{2 6}=\mathbf{2 7}$. The remainder represents the difference in energy used to get to the specific arrangements in 5 el and 5a1, each of which will be of higher energy than the other conformers about the $\mathrm{C}_{\alpha}-\mathrm{S}$ bond (i.e. those with the phenyl group anti-periplanar to one or the other of the methylene groups). A value in the range of a "syn-axial" conformation ($\sim 3 \mathrm{kcal} \mathrm{mol}^{-1}$) seems appropriate. Note that using $\Delta \mathrm{G}^{\circ}=6 \mathrm{kcal} \mathrm{mol}^{-1}$ and a θ-factor of 85 , one may estimate that roughly $\mathbf{7 0 \%}$ of the reaction of $\mathbf{5}$ proceeds via $\mathbf{5 a} \mathbf{1}$ and about $\mathbf{3 0 \%}$ by $\mathbf{5 e 1}$. Note the value of $6 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\Delta \mathrm{G}^{\circ}$ of the reaction shown in Figure 2.2.2 is given only for illustrative purpose, to show that it is likely that 5 reacts via both the axial and equatorial conformers. Even with values outside the above range, one obtains the
same conclusions: e.g. with $\Delta \mathrm{G}^{\circ}=3 \mathrm{kcal} \mathrm{mol}^{-1}$, we would estimate 93% via the axial 5a1, whereas $\Delta G^{\circ}=10 \mathrm{kcal} \mathrm{mol}^{-1}$ predicts 16% via the axial 5 al .

With 5 and a number of other species in Table 2.2.2, twist forms may be presumed to be present in relatively small concentrations. As is mentioned earlier in the text. these are believed to be the intermediates in the H-D exchange of axial protons in anancomeric (conformationally anchored) systems (15 and 21). The 100- to 200-fold slower rates for the axial exchange probably gives a rough idea of the importance of twist forms in the reactions of compounds in Table 2.2.2.

2.3 APPLICATION: A REEXAMINATION OF THE MECHANISM OF THE

ELIMINATION IN BETA-TOSYLOXY SULFONES ORIGINALLY STUDIED

 BY PEARSON, BORDWELL, HINE, AND OTHERS.
2.3.1 Discussion of the Mechanism of Syn and Anti Elimination

Now we apply the results of this study to a question of mechanism which started in the middle 1950's when Bordwell and Pearson and coworkers ${ }^{72}$ looked at syn and anti eliminations in a series of sulfones including 36 and 37.

36

37

These authors concluded at that stage that the anti elimination from 36 and the syn elimination from 37 (to form 1-cyclohexenyl p-tolyl sulfone in each case) both proceeded by way of a concerted (E2) reaction. In 1962 Hine and Ramsay ${ }^{73}$ questioned this conclusion and provided evidence that the syn elimination, contrary to the contention of Bordwell and Pearson, was not faster than could be expected for a carbanion process. Subsequently, Bordwell, Weinstock, and Suilivan ${ }^{74}$ marshalled arguments and evidence to conclude that the syn and anti eliminations both take place by the carbanion mechanism. Their reasoning invoked two interesting ideas, (a) internal return of the carbanion as a significant reaction in this system, and (b) a "retardation effect" in forming carbanions from 1,2-diequatorially disubstituted cyclohexyl derivatives; in our view, both of these effects need at least some revision.

Returning to Hine and Ramsay's paper, the key piece of evidence was a plot of
$\log k$ vs σ^{*} in which the reactions were (a) the H-D exchange reactions of cyclohexyl p-tolyl sulfone (23c) and 2-cis-methoxycyclohexyl p-tolyl sulfone (17c), and (b) the elimination reactions of 36,37, and 2-cis-chloro- and 2-cis-fluorocyclohexyl p-tolyl sulfones (Figure 2.3.1). They commented as follows, "From the best straight line through the unsubstituted, cis-2-methoxy and trans-2-tosyloxy sulfones [i.e. 23c, 17c and 37], it is seen that the rate of cis elimination of the tosyloxy compound [37] is not faster but instead rather slower than would be predicted from the σ^{*}-constants of the groups used."

6

17

23
a) $\cdot \mathrm{X}=\mathrm{Me}$
b) $\mathrm{X}=\mathrm{Ph}$
c) $X=p-\mathrm{Tol}$

Figure 2.3.1. Rates of proton removal from 2-X-cyclohexyl p-tolyl sulfones vs. σ^{*} for XCH_{2} (copy from Hine and Ramsay's paper ${ }^{73}$).

The agreement between the points and "the best straight line" in the above quote is not very good and the authors discussed possible steric factors for the observation that the point for 37 was below that expected from the σ^{*} value. Hine and Ramsay's plot included cis-tosylates (36) and two cis-halo analogues; the points for these last were well above the best straight line through the other three points, consistent with the idea that these compounds react by an $E 2$ reaction. Note that the same σ^{*} value was used for the cis- and trans-tosylates (36 and 37).

Here, we wish to point out that the application of the idea of an angle-dependenst σ^{*} parameter alters the picture dramatically.

2.3.2 Application of the Angle Dependent $\sigma^{\boldsymbol{*}}$ term to Hine and Ramsay's plot

Depending on assumptions we may estimate $a\left(\sigma_{60}^{*}\right)_{0 T_{s}}$ value of roughly 0.63 ± 0.1 (see Appendix B). So, there is a significant difference between the σ^{*} values of the cisand trans-tosylates, and this will move the point for 37 in the Hine-Ramsay plot so thatr it is close to being on the same straight line with all of the other points as the scatter of these other points will allow. That is the points for the two H-D exchange reactions aned the four elimination processes may be regarded as falling all on the same straight line, and from this we may conclude that the transition states for all of these reactions are very similar. Since two of the reactions (the H-D exchange processes) are known to be carbanion reactions, it is reasonable to infer that the eliminations also involve carbanio:n formation, or, if not, that the transition states are extremely similar to those of carbanioons. In other words the reactions are either $E 1 \mathrm{cB}$ or very $E 1 \mathrm{cB}$-like $E 2$ processes.

In view of the complexity of some of the discussion in this thesis to this point, $\bar{u} t$
may be helpful to view this topic from a perspective requiring specifically neither σ^{*} values nor "corrected" $\log k_{\mathrm{N}}$ values. A simple plot of $\log k$ for the reactions of 23c (H-D exchange). 36, and 37 (both eliminations) (data as presented by Hine and Ramsay ${ }^{73}$) vs our results for $\mathrm{H}-\mathrm{D}$ exchange in 23b, 6b, and $\mathbf{1 7 b}$ is shown in Figure 2.3.2 (Table 2.3.1 lists the data for Figure 2.3.2). The three points fit a straight line, and we are immediately led to the same conclusions as those drawn in the previous paragraph The point for the cis-tosylate ($\mathbf{3 6}$) is slightly above the (projected) line joining 23c and $\mathbf{3 7}$; this could conceivably permit an $E 1 \mathrm{cB}$ mechanism for 37 and an $E 1 \mathrm{cB}$-like $E 2$ reaction for 36 .

Table 2.3.1. Comparison of kinetic data obtained by Hine and Ramsay ${ }^{73}$ with our results.

Our Results		Hine and Ramsay's Results		
	$\log k$: -3.95	37		$\log k=-1.60$
	(H-D exchange)			(elimination)
17b	$\log k$: -3.03	36		$\log k: 1.24$
	(H-D exchange)			(elimination)
23b	$\log k=-5.76$	$\xrightarrow{23 \mathrm{c}}$		$\log k:-6.18$
	(H-D exchange)			(H-D exchange)

Figure 2.3.2 Comparison of kinetic data obtained by Hine and Ramsay with our results. (For additional information see Table 2.3.1)

Bordwell, et al. ${ }^{74}$ had already drawn the conclusion that the anti and syn elimination reactions are probably both carbanion processes, and it is now appropriate to see how the present results relate to their arguments. First we note that the proposal of significant internal return is contradicted by subsequent experiments. The work of Thomas and Stirling, ${ }^{2 a, 75}$ in particular, clearly establishes that hydrogen exchange alpha to the sulfonyl group is indeed remarkably sensitive to the nature of any β-substituents with $\rho^{*}=4.89$ (see above), and they observed a sizable kinetic isotope effect $\left(k_{\mathrm{H}} / k_{\mathrm{T}}=7.1\right)$ in good accord with a mechanism in which the hydrogen removal is rate-determining and there is little or no ion-pair return. ${ }^{2 b}$ The second effect postulated by Bordwell, et al. was
the "retardation effect" in carbanion formation in six-membered cyclic compounds. The main reason for calling upon this effect was to account for the observation that syn eliminations in cyclohexyl compounds were invariably slow relative to either (a) the analogous anti eliminations in cyclohexyl or cyclopentyl substrates, or (b) the corresponding syn eliminations in cyclopentyl species. We now look at these results in the light of the present work. The $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle in the cyclohexyl substrates undergoing syn elimination (e.g. 37) is around 60° and must form, therefore, the carbanion much more slowly than either the trans-cyclopentyl compounds (reacting by: syn eliminations) in which the torsion angle can readily be close to 0°, or the cis substrates in either the cyclopentyl or cyclohexyl systems in which the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle is close to 180°. The results of the present study predict that the syn-cyclohexyl (θ $=60^{\circ}$) reactions will be slower than any of the other reactions (with 0 or 180° torsion angles). It should perhaps be noted that there could also be some sort of (additional) retarding effect in the reactions of cyclohexyl compounds; the $\log k_{\mathrm{N}}$ values for $\mathbf{6 a}$ and $\mathbf{6 b}$ (and possibly 17 a and $\mathbf{1 7 b}$) may reflect this phenomenon.

2.4 CONCLUSIONS

The angle dependence of the reaction of a β-alkoxy substituted saturated system has been established. The β-effect in the above system has been demonstrated to be not consistent with simple inductive and field effect and it is proposed that there is an additional effect arising from negative hyperconjugation (generalized anomeric effect). It has been shown that the contribution from the negative hyperconjugation (anomeric effect) is the major component. when the substituent is ideally oriented for hyperconjugation.

A new feature, namely the angle dependence, has been added to the Taft parameter σ^{*}, and a new parameter, σ_{θ}^{*}, is proposed. This angle dependence feature has been successfully applied to shed light on the question of mechanism of the elimination in β-tosyloxy sulfones originally studied by Pearson, Bordwell. and Hine, et al.

2.5 EXPERIMENTAL

2.5.1 PREPARATION OF SULFONES

Melting points were determined on a Kofler Hot Stage and are uncorrected. Infrared spectra were obtained with a Bruker IFS 32 FTIR spectrometer. 'H NMR spectra were obtained using Varian XL-200. Gemini 200 and Gemini 300 spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were determined on Gemini 200 and Gemini 300 instruments. Tetramethylsilane (TMS) was used as reference for solvent CDCl_{3}. When $\mathrm{D}_{2} \mathrm{O}$ was used as solvent for NMR, the reference was sodium trimethylsilylpropanesulfonate (DSS). Mass spectra were run on a Finnigan 8200 MS data system using low resolution at 70 electron volt ion current and using direct exposure probe. Precise mass determinations were carried out using peak matching with perfluoroalkane. Chemical ionization mass spectra were recorded using isobutane as a moderating gas.

Reagent grade chemicals and solvents were used without additional purification unless otherwise noted. Solvents such as methylene chloride, chloroform, benzene, ethyl acetate, tetrahydrofuran, diethyl ether were distilled before used. Absolute ethanol and methanol were dried by the magnesium alkoxide procedure.

Usual workup of reactions refers to the partition of the reaction mixture between water and an organic solvent (methylene chloride or ether), drying of the organic layer with magnesium sulfate (or sodium sulfate) and then evaporating the solvent using a Buchi rotary evaporator connected to a water aspirator.

Preparation of 3-(Phenylsulfonyl)tetrahydropyran (5)

a) 3-(Phenylthio)tetrahydropyran (53) ${ }^{33}$

To a mixture of thiolacetic acid ($2.0 \mathrm{~g}, 0.026 \mathrm{~mol}$) and 3,4-dihydro- $2 H$-pyran (2.2 g. 0.026 mol) at $0^{\circ} \mathrm{C}, ~ 2.2^{\prime}$-azobisisobutyronitrile (AIBN, $0.020 \mathrm{~g}, 0.12 \mathrm{mmol}$) was added. The reaction mixture was stirred for 10 h at $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$, then overnight at room temperature. Workup as usual gave 3-(acetylthio)tetrahydropyran (51, $2.1 \mathrm{~g}, 50 \%$ yield); bp $54-56^{\circ} \mathrm{C} / 0.3$ torr (lit. ${ }^{33} 56^{\circ} \mathrm{C} / 0.3$ torr).

To a solution of 3-(acetylthio)tetrahydropyran ($51.2 .0 \mathrm{~g}, 0.013 \mathrm{~mol}$) in ethanol (6.5 mL) was added potassium hydroxide in water $(20 \%, 12.5 \mathrm{~mL})$. After the reaction mixture was refluxed for 1 h , diethyl ether was added and the organic layer was separated. The water layer was neutralized with cold hydrochloric acid (10%), and then extracted three times with diethyl ether. The combined ether layers were washed several times with sodium bicarbonate solution, and then water. Fractional distillation gave 3-mercaptotetrahydropyran (52, $1.0 \mathrm{~g}, 68 \%$ yield); bp $62-64^{\circ} \mathrm{C} / 20-25$ torr (lit. ${ }^{33} 65^{\circ} \mathrm{C} / 21$ torr); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 26.2,34.3,35.6,67.6,75.1$.

To a solution of sodium ($0.043 \mathrm{~g}, 0.0019 \mathrm{~mol}$) in ethanol, 3-mercaptotetrahydropyran ($0.22 \mathrm{~g}, 0.0019 \mathrm{~mol}$) was added. After the reaction mixture was stirred at room temperature for 5 min , the solvent was removed completely under reduced pressure. Then hexamethylphosphoramide (HMPA, 2 mL), iodobenzene ($0.38 \mathrm{~g}, 0.0019 \mathrm{~mol}$) and Cu powder (0.6 g) was added. The resulting mixture was heated at $130^{\circ} \mathrm{C}$ for 15 h . Water was added and the mixture was extracted three times with methylene chloride. After the combined organic layer was washed three times with saturated sodium chloride solution, the solvent was removed under reduced pressure, and further distillation gave 3-(phenylthio)tetrahydropyran (53, $0.290 \mathrm{~g}, 80 \%$ yield); bp $94-96^{\circ} \mathrm{C} / 0.5$ torr (lit. ${ }^{33} 98$ ${ }^{\circ} \mathrm{C} / 0.5$ torr).

b) 3-(Phenylsulfonyl)tetrahydropyran (5)

3-(phenylthio)tetrahydropyran (53. $0.250 \mathrm{~g}, 0.0013 \mathrm{mmol}$) was refluxed with hydrogen peroxide ($30 \%, 3 \mathrm{~mL}$) in acetic acid $(1.5 \mathrm{~mL})$ for 20 min . Workup as usual and separation by thick layer chromatography using hexane/ether (4/1) as the developing solvent (developed four times) gave pure 5 as a colorless liquid ($0.200 \mathrm{~g}, 76 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 1.45-2.25(\mathrm{~m}, 4 \mathrm{H}), 3.05-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.90(\mathrm{~m}$. $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.8 .24 .6,60.3,66.0,67.6,128.7,129.2,133.9,137.2$. Calcd. exact mass for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1)$: 227.0742. Found: 227.0737.

Preparation of trans-1-methoxy-2-(methylsulfonyl)cyclohexane (6a) ${ }^{34}$

Cyclohexene ($10.27 \mathrm{~g}, 0.125 \mathrm{~mol}$), N -bromosuccinimide (NBS, 22.25 g. 0.125 $\mathrm{mol})$ and water (100 mL) were mixed and stirred vigorously at room temperature until the solid NBS disappeared. The organic layer was separated and the water layer was washed with ether. Distillation of the combined product gave trans-2-bromocyclohexanol (54) as a colorless liquid ($18.0 \mathrm{~g}, 80 \%$ yield); bp $76-77^{\circ} \mathrm{C} / 6$ torr (lit. ${ }^{35} 73-75^{\circ} \mathrm{C} / 5$ torr, and lit. ${ }^{36}$ $86.6-88.4^{\circ} \mathrm{C} / 10$ torr) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.1-2.4(\mathrm{~m}, 8 \mathrm{H}), 2.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~m}, \mathrm{IH})$, 3.81 (ddd, $J=11.7 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.8,26.3,33.4,36.0$, 61.3, 74.9.

To a solution of trans-2-bromocyclohexanol (54, $10.0 \mathrm{~g}, 0.056 \mathrm{~mol}$) in dry methanol (30 mL), sodium thiomethoxide ($4.3 \mathrm{~g}, 0.061 \mathrm{~mol}$) in dry methanol (25 mL) was slowly added. The reaction mixture was stirred overnight at room temperature, quenched with water and extracted with methylene chloride. The extracts were combined
and dried over magnesium sulfate and concentrated to give trans-2-(methylthio)cyclohexanol as a colorless liquid ($\mathbf{5 5}, 6.7 \mathrm{~g} .82 \%$ yield); bp $85^{\circ} \mathrm{C} / 4.5$ torr (lit. ${ }^{37} 97-98^{\circ} \mathrm{C} / 11$ tort); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.15(\mathrm{~m} .8 \mathrm{H}) .2 .0(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 3.0(\mathrm{~s}, 1 \mathrm{H}), 3.26$ (m, 1H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.26 .24 .30,26.03,31.30,33.65,52.94,70.91$.

To a solution of trans-2-(methylthio)-cyclohexanol ($5.0 \mathrm{~g}, 0.034 \mathrm{~mol}$) in methanol (250 mL), conc. sulfuric acid (10 mL) was added. The reaction mixture was refluxed for 24 h . Workup as usual gave trans-1-methoxy-2-(methylthio)cyclohexane (56, 3.42 g , 59% yield); bp $66^{\circ} \mathrm{C} / 3$ torr (lit. ${ }^{3+} 88-90{ }^{\circ} \mathrm{C} / 2$ torr); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.5-2.2(\mathrm{~m}, 8 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 14.7,23.6$, $25.0,30.2,31.1,49.9,56.6,83.0$.

To a solution of trans-1-methoxy-2-(methylthio)cyclohexane ($1.5 \mathrm{~g}, 9.26 \mathrm{mmol}$) in acetic acid $(6 \mathrm{~mL})$, hydrogen peroxide $(30 \%, 15 \mathrm{~mL})$ was added dropwise at room temperature. The mixture was heated on a steam bath for 20 min . Workup as usual gave trans-1-methoxy-2-(methylsulfonyl)cyclohexane ($6 \mathbf{a}, 1.66 \mathrm{~g}, 92 \%$ yield); $\mathrm{mp} 46-47^{\circ} \mathrm{C}$ (lit. ${ }^{34} 46-47^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.5(\mathrm{~m}, 8 \mathrm{H}), 2.80(\mathrm{ddd}, J=12.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.43($ symmetric $\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.4$, $23.7,24.6,30.0,44.3,56.0,66.4,78.9$; Calcd. exact mass for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}: 192.0820$. Found: 192.0820.

Preparation of 1-Methoxy-2-(phenyisulfonyl)bicyclo[2.2.2]octane (7)

a) 1-Methoxy-6-endo-(phenylsulfonyl)bicyclo[2.2.2]oct-2-ene (57) ${ }^{38}$

A mixture of phenyl vinyl sulfone ($0.50 \mathrm{~g}, 0.003 \mathrm{~mol}$), 1-methoxy-1,3-cyclohexadiene $(0.66 \mathrm{~g}, 0.006 \mathrm{~mol})$, benzene $(1.4 \mathrm{~mL})$ and hydroquinone $(0.005 \mathrm{~g})$ was heated
in an evacuated Carius tube at $135^{\circ} \mathrm{C}$ for 18 hours. Workup as usual gave crude 1-methoxy-6-(phenylsulfonyl)bicyclo[2.2.2]-oct-2-ene (57, $0.65 \mathrm{~g}, 78 \%$ yield). Separation by thick layer chromatography using hexane : ethyl acetate (3/1) as the developing solvent and recrystallization gave pure 1-methoxy-6-endo-(phenylsulfonyl)-bicyclo[2.2.2]-oct-2-ene ($57,0.284 \mathrm{~g}, 34 \%$ yield) as a colorless, crystalline solid; mp 86$88^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{38} 86-88.5^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 1.30-2.03(\mathrm{~m}, 6 \mathrm{H}), 2.62$ (symmetric m. 1 H), $3.10(\mathrm{~s} .3 \mathrm{H}), 3.65(\mathrm{dd} . J=9.2 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.25(\mathrm{~m}, 2 \mathrm{H}), 7.4-8.0(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 24.3,28.8,29.3,30.7,50.3,66.4,78.2,128.3,129.1,131.7,132.0$, 132.9, 141.1.

b) 1-Methoxy-2-(phenylsulfonyl)bicyclo[2.2.2]octane (7)

A mixture of 1-methoxy-6-endo-(phenylsulfonyl)bicyclo[2.2.2]oct-2-ene (57, 0.20 $\mathrm{g}, 0.72 \mathrm{mmol}$) and Pt / C ($10 \%, 0.015 \mathrm{~g}$) in chloroform (5 mL) was stirred at room temperature under 1 atm of H_{2} for about 6 h and then workup as usual gave a quantitative yield of 7; mp 91.5-94.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30-2.50(\mathrm{~m}, 11 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 3.47$ $(\mathrm{m}, 1 \mathrm{H}), 7.3-8.0(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.2,25.0,25.9,26.2,28.4,30.0,48.4$, 63.6, $75.0,128.4,128.7,132.8,141.6$; Calcd. exact mass for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: 280.1133$. Found: 280.1137. Its x -ray structure is shown in Figure 2.5.1.

Preparation of 2-endo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]heptane (8) and 2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]heptane (12)
a) 2-exo-3-endo-Bis(phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (58) ${ }^{39}$ Furan ($1.2 \mathrm{~g}, 17.6 \mathrm{mmol}$) was added with stirring to a solution of (E)-1,2-bis-

Figure 2.5.1 The x-ray crystal structure of 1-methoxy-2-(phenylsulfonyl)bicyclo[2.2.2]octane (7).
(phenylsulfonyl)ethylene ($2.0 \mathrm{~g}, 6.5 \mathrm{mmol}$) partially dissolved in methylene chloride (30 mL). The mixture was stirred at room temperature for 6 h until all the white precipitate had dissolved and the reaction mixture was transparent and colorless. Stirring was discontinued and the solution was allowed to stand overnight. Diethyl ether was then added to complete the precipitation and the white solid was filtered, washed with ether and dried to give 2-exo-3-endo-bis(phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (5.8, $2.45 \mathrm{~g}, 100 \%$ yield); mp 231-233 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{39} 216-226^{\circ} \mathrm{C}$, lit. ${ }^{40} 229-230^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.61(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}$, apparent $\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=4.5$ Hz and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.43(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.60(\mathrm{~m}, 2 \mathrm{H}), 7.4-8.0(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NOMR
$\left(\mathrm{CDCl}_{5}\right) \delta 65.5 .67 .6 .79 .5,81.9,128.2,128.7,129.5,134.3,135.7 .136 .6$.

b) 2-endo-(Phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (59a) and

2-exo-(phenylsulfonyl) 7-oxabicyclo[2.2.1]hept-5-ene (59b) ${ }^{40}$
A stirred. ice-bath cooled solution of 2-exo-3-endo-bis(phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (58. $0.250 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.166 \mathrm{~g}, 4.39 \mathrm{mmol})$ in acetonitrile (16 mL) was treated with potassium tert-butoxide ($0.074 \mathrm{~g}, 0.66 \mathrm{mmol}$). After 4 h , water was added, and most of the solvent removed by rotary evaporation. The residue was taken up in methylene chloride, washed with water three times, and the organic layer dried over magnesium sulfate. The solvent was removed to give an oily liquid (0.220 g). Thick layer chromatography showed at least seven bands using diethyl ether as the developing solvent. One of the seven bands yielded crystalline 2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (59b, $\mathbf{- 1 5 0} \mathrm{mg}$) from diethyl ether : petroleum ether; mp $63.5-65^{\circ} \mathrm{C}$ (reported ${ }^{40}$ to be a colorless oil); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.5-2.4(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~m}$, $2 \mathrm{H}), 7.4-8.1(\mathrm{~m}, 5 \mathrm{H})$. The ${ }^{\mathrm{t}} \mathrm{H}$ NMR spectrum is consistent with literature ${ }^{40}$ except that the peak for the endo methine hydrogen was reported as 3.10 (dd, $J=5,4 \mathrm{~Hz}$, endo methine).
${ }^{1} \mathrm{H}$ NMR showed another band to be a mixture containing the endo epimer. It was reapplied to thick layer chromatography using methylene chloride as the developing solvent and developed twice. After recrystallization, the endo epimer, was finally obtained as white crystals (59a, $\sim 20 \mathrm{mg}$); mp $52-53^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.6-2.3$ (m, $2 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~m}, 2 \mathrm{H}), 7.4-8.1(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$
28.7. 62.6. 78.2, 79.6. 127.6, 129.4, 131.5, 133.7, 137.2, 140.3. Calcd. exact mass for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1): 237.0585$. Found: 237.0588.
c) 2-endo-(Phenylsulfonyl)-7-oxabicyclo[2.2.1]heptane (8) and

2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]heptane (12)
2-endo-(Phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (59a, $40 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in chloroform, and $\mathrm{Pt} / \mathrm{C}(10 \% .15 \mathrm{mg})$ was added. The mixture was stirred under $\mathrm{H}_{2}(\mathrm{l} \mathrm{atm})$ for 6 h . The solid was then filtered out and washed with chloroform. The filtrate was dried to give a quantitative yield of 2-endo-(phenylsulfonyl)-7oxabicyclo[2.2.1]heptane (8); $\mathrm{mp} 75.5-77^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.6-2.7(\mathrm{~m}, 6 \mathrm{H})$, 3.50$3.63(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.70(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.90(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ 8 26.0, 29.9, $32.9,65.8,77.2,78.3,127.6,129.4,133.7,140.5 ;$ Calcd. exact mass for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$: 238.0666. Found 238.0668 .

Similar treatment of 2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1]hept-5-ene (59b, $40 \mathrm{mg}, 0.17 \mathrm{mmol}$) gave a quantitative yield of 2-exo-(phenylsulfonyl)-7-oxabicyclo[2.2.1] heptane (12); mp 100-101.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30-2.25(\mathrm{~m}, 6 \mathrm{H}), 3.29(\mathrm{dd}, J$ $=8.8 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-8.00(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 29.0,29.9,33.7,67.8,76.4,76.6,128.8,129.2,133.7,138.0$. Calcd. exact mass for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}: 238.0666$. Found: 238.0664.

Preparation of cis-1-methoxy-2-(methylsulfonyl)cyclohexane (17a)

a) trans-1-Bromo-2-methoxy-cyclohexane (60) ${ }^{41}$

Into a 100 mL round-bottomed flask equipped with magnetic stirrer, reflux
condenser and a drying tube was placed anhydrous methanol (30 mL) and N-bromosuccinimide (NBS, $13 \mathrm{~g}, 0.073 \mathrm{~mol}$). To this mixture was added cyclohexene $(6.0 \mathrm{~g}, 0.073 \mathrm{~mol})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 3 h . The mixture was then poured into ice water, rapidly filtered through a Buchner funnel and extracted with ether. The ether layer was washed with water and dried over magnesium sulfate. The ether was removed and the product distilled at reduced pressure to give trans-1-bromo-2-methoxycyclohexane ($\mathbf{6 0}, 60 \%$ yield); bp $45-47^{\circ} \mathrm{C} / 3$ torr (lit. ${ }^{+1} 45-47^{\circ} \mathrm{C} / 3$ torr).
b) cis-1-Methoxy-2-(methylthio)cyclohexane (61)
trans-1-Bromo-2-methoxy-cyclohexane ($60,10 \mathrm{~g}, 0.0518 \mathrm{~mol}$) and sodium thiomethoxide ($4.0 \mathrm{~g}, 0.0571 \mathrm{~mol}$) were dissolved in 2-butanol and refluxed for 24 h . Workup as usual gave cis-1-methoxy-2-(methylthio)cyclohexane as a colorless liquid (61, $4.6 \mathrm{~g}, 55 \%$ yield); ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.4(\mathrm{~m}, 8 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.90(\mathrm{~m}, \mathrm{l} \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.6,14.7,21.4,23.7,27.9,28.5$, 49.4, 79.5.
c) cis-1-Methoxy-2-(methylsulfonyl)cyclohexane (17a)

The sulfide (61) was oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ in acetic acid to give 17 a (80% yield). White crystals were obtained by recrystallization from ethyl acetate : hexane; mp $44-47^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.1-2.2(\mathrm{~m}, 8 \mathrm{H}), 2.73(\mathrm{dt}, J=12.7 \mathrm{~Hz}$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 4.0\left(\mathrm{~m}, \mathrm{w}_{12}=6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.7,22.0,25.1$, 27.1, 39.4, 55.9, 67.1, 73.4. Calcd. exact mass for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$: 192.0820. Found:

Preparation of cyclohexyl methyl sulfone (23a) ${ }^{\text {41 }}$
Cyclohexene (2.56 g .31 mmol) was mixed with methanethiol ($1.50 \mathrm{~g}, 31 \mathrm{mmol}$) and AIBN ($-50 \mathrm{mg}, 0.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$. After the resulting mixture was stirred overnight at $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$, the solvent was removed carefully. Without further purification. the remaining sulfide was then oxidized by hydrogen peroxide (30\%) in acetic acid to give 23a as a colorless liquid ($2.5 \mathrm{~g} .50 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-$ $2.5(\mathrm{~m}, 10 \mathrm{H}) .2 .78(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.9$ (three carbons). 25.3 (two carbons), 37.1, 62.3.

Preparation of trans-2-methyl-1-(methylsulfonyl)cyclohexane (24a) and cis-2-methyl-1-(methylsulfonyl)cyclohexane (25a)
a) 2-Methylcyclohexanethiol (63) ${ }^{42}$

Thiolacetic acid ($0.75 \mathrm{~g}, 9.9 \mathrm{mmol}$) was added slowly to l-methylcyclohexene ($1.15 \mathrm{~g}, 12 \mathrm{mmol}$) while irradiating with a 100 watt bulb (tungsten bulb placed about 10 cm from the flask), and the resulting solution was stirred for additional 20 min under the irradiation. Distillation gave 2-methylcyclohexyl thiolacetate (62) as a colorless liquid consisting of a mixture of cis and trans epimers ($1.49 \mathrm{~g}, 97 \%$ yield); bp $91-92^{\circ} \mathrm{C} / 8$ torr (lit. ${ }^{42} 110^{\circ} \mathrm{C} / 14$ torr). This liquid was used directly for the next step without further purification.

2-Methylcyclohexyl thiolacetate ($62,1.2 \mathrm{~g}, 0.007 \mathrm{~mol}$) was dissolved in a mixture of ethanol (18 mL) and aqueous potassium hydroxide solution ($10 \%, 18 \mathrm{~mL}$). The reaction mixture was refluxed for 1 h , and then neutralized with glacial acetic acid. The
solution was extracted with pentane three times and the pentane layer was dried with sodium sulfate. Careful distillation of the pentane solution gave 2-methylcyclohexanethiol as a cis/trans mixture ($63,0.472 \mathrm{~g}, 52 \%$ yield); bp $71-72{ }^{\circ} \mathrm{C} / 23$ torr (lit. ${ }^{42} 71-72{ }^{\circ} \mathrm{C}$ 123 torr). No further purification was performed.
b) cis-2-Methyl-1-(methylsulfonyl)cyclohexane (25a)

Methyl iodide ($1.1 \mathrm{~g}, 0.0070 \mathrm{~mol}$) was added to a solution of 2-methylcyclohexyl mercaptan ($63,0.30 \mathrm{~g}, 0.0023 \mathrm{~mol}$) and sodium hydroxide ($0.0090 \mathrm{~g}, 0.00023 \mathrm{~mol}$) in aqueous ethanol (1:1,2 mL). After the resulting mixture was stirred for 30 min , it was poured into water and the sulfide obtained by extraction with petroleum ether. The crude sulfide (64) was not purified before it was oxidized by 30% of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid to give cis-2-methyl-1-(methylsulfonyl)cyclohexane $(0.41 \mathrm{~g}$, yield 95% from 63) as a cis/trans mixture. Recrystallization from methanol gave pure cis epimer (25a, 0.21 g); mp 86$88{ }^{\circ} \mathrm{C} ;{ }^{\mathrm{l}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-2.0(\mathrm{~m}, 8 \mathrm{H}), 2.57$ (symmetric $\mathrm{m}, 1 \mathrm{H}), 2.81(3 \mathrm{H}, \mathrm{s}), 2.96(\mathrm{dt}, J=11.9 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.3,19.3$, $20.8,25.5,27.8,33.3,39.4,65.5 ;$ Calcd. exact mass for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+1): 177.0949$. Found: 177.0943.

c) trans-2-Methyl-1-(methylsulfonyl)cyclohexane (24a)

cis-2-Methyl-1-(methylsulfonyl)cyclohexane (25a, 100 mg) in methanol containing sodium methoxide (5\%) was refluxed for 3 days. Workup as usual gave a 3:1 mixture of 24a and 25a as a semi solid (100 mg); attempts at separation of the trans/cis mixture were not successful, and this mixture was used as such to obtain the rate constant
for 24a: ${ }^{\text {! }} \mathrm{C}$ NMR for $24 \mathrm{a}\left(\mathrm{CDCl}_{3}\right) \delta 21.1,25.0,25.1 .27 .1,32.8,35.4 .39 .1 .68 .7$. Calcd. exact mass for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+1)$ (the mixture): 177.0949. Found: 177.0946.

Preparation of trans-2-methyl-1-(phenylsulfonyl)cyclohexane (24b) and cis-2-methyl-1-(phenylsulfonyl)cyclohexane (25b)

a) cis-2-Methyl-1-(phenylsulfonyl)cyclohexane (25b) ${ }^{42}$

To a solution of 1 -methylcyclohexene ($10.0 \mathrm{~g}, 0.104 \mathrm{~mol}$) and thiophenol (11.9 g . $0.109 \mathrm{~mol})$ in benzene $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $\operatorname{AIBN}(0.87 \mathrm{~g}, 0.005 \mathrm{~mol})$ was added slowly and the reaction mixture was stirred overnight at less than $5^{\circ} \mathrm{C}$. Workup as usual and then distillation gave 2-methylcyclohexyl phenyl sulfide as a colorless liquid (7.0 g, 32\% yield). It was not purified further but was used directly in the next reaction; bp 116$119^{\circ} \mathrm{C} / \sim 0.9$ torr).

2-Methylcyclohexyl phenyl sulfide $(5.8 \mathrm{~g}, 0.028 \mathrm{~mol})$ was refluxed with hydrogen peroxide $(30 \%, 80 \mathrm{~mL})$ in acetic acid $(40 \mathrm{~mL})$ for 20 min . Workup as usual gave a cis/trans mixture of 2-methyl-1-(phenylsulfonyl)cyclohexane ($5.1 \mathrm{~g}, 76 \%$ yield). Recrystalization from hexane : ethyl acetate three times gave pure cis-2-methyl1 -(phenylsulfonyl)cyclohexane crystals (25b, 2.9 g); mp 73-74 ${ }^{\circ} \mathrm{C}$ (lit. $.^{42} 74-74.5^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.45$ (symmetric $\left.\mathrm{m}, 1 \mathrm{H}\right)$, $2.99(\mathrm{dt}, J=12 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.93(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{5}\right)} \delta 13.3,19.3,20.2$. $25.5,27.7,33.4,66.3,128.4,129.0,133.3,138.8$.

b) trans-2-Methyl-1-(phenylsulfonyl)cyclohexane (24b)

cis-2-Methyl-1-(phenylsulfonyl)cyclohexane (25b, 1.0 g) was dissolved in
dioxane (20 mL) and sodium hydroxide solution ($1 \mathrm{M}, 20 \mathrm{~mL}$) was added. The resulting solution was refluxed for five days. Workup as usual gave a cis/trans mixture of 2-methyl-1-(phenylsulfonyl)cyclohexane. Recrystallization a number of times using different solvents still gave a mixture of about $4: 1$ trans/cis epimers. Thin layer chromatography using different solvents did not effect separation; mp of the mixture 86$87^{\circ} \mathrm{C}$. The mixture was used directly in the determination of the H-D exchange rate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for the trans epimer (24b) $\delta 0.80-2.20(\mathrm{~m}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3 H), 2.71 (ddd. $J=11.3 \mathrm{~Hz}, 9.5 \mathrm{~Hz} .3 .4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.95(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ for the trans epimer (24b) $\delta 21.4,24.8,25.0,27.4,32.3,35.4,69.1$; the ${ }^{13} \mathrm{C}$ NMR signals for the carbons of benzene ring for the trans epimer (24b) are not clear because they overlap with the signals of the cis epimer (25b); Calcd. exact mass for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+1)$ (the mixture): 239.1106. Found: 239.1100.

Preparation of trans-4-tert-butylcyclohexyl phenyi sulfone (26) and cis-4-tertbutylcyclohexyl phenyl sulfone (27)

a) trans-4-tert-Butylcyclohexyl Tosylate (65a)

Commercially available 4-tert-butylcyclohexanol (cis and trans mixture, 5.0 g , 0.032 mol) dissolved in dry pyridine (20 mL) was added to p-toluenesulfonyl chloride $(10.0 \mathrm{~g}, 0.052 \mathrm{~mol})$ in pyridine $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred overnight at room temperature, poured into ice-cold 10% hydrochloric acid and extracted with ether three times. The combined ether extract was washed with dilute hydrochloric acid, water, aqueous sodium bicarbonate and again with water, dried over sodium sulfate and then concentrated to give a quantitative yield of 4-tert-butylcyclohexyl tosylate as a cis/trans
mixture. The crude product was recrystallized from ether : hexane two times to give the pure trans epimer as white crystals ($65 \mathrm{a}, 6.5 \mathrm{~g}, 65 \%$ yield); mp $89-90^{\circ} \mathrm{C}$ (lit. $.^{43} 89-90^{\circ} \mathrm{C}$. lit. $\left.{ }^{4+} 89.4-90^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.78(\mathrm{~s} .9 \mathrm{H}), 0.80-2.10(\mathrm{~m}, 9 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.32$ (tt. $J=11.3 \mathrm{~Hz} .4 .6 \mathrm{~Hz} .1 \mathrm{H}), 7.25-7.85(\mathrm{~m} .4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.5,25.5,27.4$, 32.1, 32.8, 46.5, 82.6, 127.4, 127.5, 129.7, 134.7.

b) cis-4-tert-Butylcyclohexyl phenyl sulfone (27)

A solution of NaSPh prepared by addition of thiophenol ($2.45 \mathrm{~g}, 0.022 \mathrm{~mol}$) to a solution of sodium $(0.47 \mathrm{~g}, 0.0204 \mathrm{~mol})$ in ethanol $(87 \%, 36 \mathrm{~mL})$ was added to a solution of trans-4-tert-butylcyclohexyl tosylate $(65 a .6 .0 \mathrm{~g}, 0.0193 \mathrm{~mol})$ in 150 mL of the same solvent and allowed to stand for 30 da . Workup as usual gave cis-4-tert-butylcyclohexyl phenyl sulfide ($66,4.1 \mathrm{~g}, 86 \%$ yield). Without further purification, the sulfide was oxidized by 30% hydrogen peroxide in acetic acid. After recrystallization from ethanol : water several times, pure cis-4-tert-butyl-cyclohexyl phenyl sulfone (27, about 1.76 g) was obtained as white crystals; mp $114.5-116^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{43} 115-116^{\circ} \mathrm{C}\right) ;{ }^{\mathrm{h}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{5}\right) \delta$ $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.9-2.5(\mathrm{~m}, 9 \mathrm{H}), 3.1\left(\mathrm{~m}, \mathrm{w}_{12}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.4-8.0(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.0,25.0,27.4,32.5,47.0,58.8,128.4,129.0,133.3,138.8$.

c) trans-4-tert-Butylcyclohexyl phenyl sulfone (26)

cis-4-tert-Butylcyclohexyl phenyl sulfone ($27,0.45 \mathrm{~g}, 1.6 \mathrm{mmol}$) was boiled for 4 da with ethanolic sodium ethoxide $(10 \%, 30 \mathrm{~mL})$. The solution was poured into water and extracted with ethyl ether which, after drying over sodium sulfate and concentration, left a residue. Separation by thick layer chromatography (developing solvent: ether) gave
the desired trans-4-tert-butylcyclohexyl phenyl sulfone ($26,0.30 \mathrm{~g}, 67 \%$ yield); mp 89 $91{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{+3} 90-91{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.76(\mathrm{~s}, 9 \mathrm{H}), 0.80-2.22(\mathrm{~m} .9 \mathrm{H}), 2.82(\mathrm{tt} . J=$ $12.4 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.90(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 25.8,25.9,27.3,32.5 .46 .8$, $63.4,128.9$ (four carbons), 133.4. 137.0.

Preparation of cis-3-methoxy-1-(phenylsulfonyl)cyclohexane (28) and trans-3-methoxy-1-(phenylsulfonyl)cyclohexane (29)

a) 3-(Phenylthio)cyclohexanone(67) ${ }^{\text {45 }}$

Triethylamine $(0.3 \mathrm{~mL})$ was added to a solution of 2-cyclohexenone (5.0 g .0 .052 mol) and thiophenol ($5.8 \mathrm{~g}, 0.053 \mathrm{~mol}$) in chloroform (10 mL) at $0^{\circ} \mathrm{C}$. The cooling bath was removed, and the solution was stirred at room temperature for 2 h . Then, it was diluted with ether, and washed twice with saturated sodium chloride solution. After the ether layer was dried over sodium sulfate, the solvent was removed to give 3-(phenylthio)cyclohexanone ($67,10.2 \mathrm{~g}, 95 \%$ yield); bp $151-154^{\circ} \mathrm{C} / 0.4$ torr (lit. ${ }^{46} 152$ $154{ }^{\circ} \mathrm{C} / 0.4$ torr $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.8-3.0 (m, 8H), 3.45-3.80 (m, 1H). 7.3-7.8 (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.9,31.1,40.8,46.0,47.7,127.7,129.0,133.0,133.1,208.5$.

b) 3-(Phenylthio)cyclohexanol (68) ${ }^{47}$

Sodium borohydride ($4.88 \mathrm{~g}, 0.0129 \mathrm{~mol}$) was added to a solution of 3-(phenylthio)cyclohexanone $(67,6.9 \mathrm{~g}, 0.0334 \mathrm{~mol})$ in methanol $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, then hydrolyzed by addition of water, acidified with 10% sulfuric acid, and extracted with ether three times. The combined ether layers were washed with sodium bicarbonate solution and then water. After the solution was dried
over sodium sulfate, the solvent was removed to give 3-(phenylthio)cyclohexanol (68. 6.0 g, 86% yield). It was found from its NMR spectrum using literature information ${ }^{47}$ to be a mixture of cis and trans epimers with the cis epimer as the major product. No separation was performed before it was used in the next step.

c) 1-Methoxyl-3-(phenylthio)cyclohexane (69)

3-(Phenylthio)cyclohexanol ($68,4.84 \mathrm{~g}, 0.0232 \mathrm{~mol}$) in DMSO (10 mL) was added to potassium hydroxide $(5.20 \mathrm{~g}, 0.093 \mathrm{~mol})$ in DMSO $(40 \mathrm{~mL})$ at room temperature and the resulting mixture was stirred for 2 min . Methyl iodide ($13.2 \mathrm{~g}, 0.093 \mathrm{~mol}$) was added and the reaction mixture was stirred 30 min . Water and methylene chloride were then added. The two layers were separated and the organic layer was washed with water and dried over magnesium sulfate. The solvent was removed to give 1-methoxyl-3-(phenylthio)-cyclohexane ($69,4.8 \mathrm{~g}, 93 \%$ yield). No further separation was performed on 68.
d) cis-1-Methoxy-3-(phenylsulfonyl)cyclohexane (28) and trans-1-methoxy-3(phenylsulfonyl)cyclohexane (29)

Hydrogen peroxide ($30 \%, 25 \mathrm{~mL}$) was added dropwise to 3-methoxy1 -(phenylsulfonyl)cyclohexane $(69,2.0 \mathrm{~g}, 9 \mathrm{mmol})$ in acetic acid (6 mL) at room temperature. The mixture was refluxed for 20 min , and then water and methylene chloride were added and the two layers were separated. The organic layer was washed with sodium bicarbonate solution and water, and dried over sodium sulfate. The solvent was removed to give 1-methoxy-3-(phenylsulfonyl)cyclohexane as a mixture of cis and
trans epimers ($2.235 \mathrm{~g} .97 \%$ yield). It was separated by thick layer chromatography using ether : hexane (3/2) as the developing solvent to give pure cis-1-methoxy-3-(phenylsulfonyl)cyclohexane (28, $\sim 1.3 \mathrm{~g}, \sim 57 \%$ yield) and trans-1-methoxy-3-(phenylsulfonyl)-cyclohexane (29, $\sim 0.17 \mathrm{~g}, \sim 7.4 \%$ yield) separately.

For the cis epimer (28): mp $95.5-97.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.5(\mathrm{~m} .8 \mathrm{H})$, $2.90(\mathrm{tt}, J=12.4 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .07(\mathrm{tt}, J=11.0 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 7.5-7.9$ (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.6,25.1,31.0$ (double intensity), 56.0, 62.0, 78.0, 129.1 (double intensity), 133.7,136.8; Calcd. exact mass for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1): 255.1055$. Found: 255.1056.

For the trans epimer (29): mp 63.5-64.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.4(\mathrm{~m}, 8 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{tt}, J=12.2 \mathrm{~Hz}$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58\left(\mathrm{~m}, \mathrm{w}_{1,2}=11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40-8.0$ (m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.8,24.8,28.1,28.4,55.7,58.4 .73 .8,128.8,128.9,133.5$, 137.2; Calcd. exact mass for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1)$: 255.1055 . Found: 255.1053.

Preparation of 2-methoxyethyl phenyl sulfone (30b)

A solution of thiophenol ($11 \mathrm{~g}, 0.10 \mathrm{~mol}$), sodium hydroxide $(4.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ and 2-chloroethyl methyl ether ($9.5 \mathrm{~g}, 0.10 \mathrm{~mol}$) in ethanol was refluxed overnight and then workup as usual gave 2-methoxyethyl phenyl sulfide as a yellowish liquid ($15 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 3.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.1-7.5(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 33.0,58.6,70.9,126.0,128.8,129.2,135.8$.

2-Methoxyethyl phenyl sulfide ($6 \mathrm{~g}, 0.036 \mathrm{~mol}$) was oxidized by refluxing with hydrogen peroxide $(30 \%, 50 \mathrm{~mL})$ in acetic acid $(20 \mathrm{~mL})$ for 20 min to give, after workup, 2-methoxyethyl phenyl sulfone ($\mathbf{3 0 b}$) as a colorless liquid ($6.7 \mathrm{~g}, 97 \%$ yield); ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 3.16(\mathrm{~s}, 3 \mathrm{H}) .3 .33(\mathrm{t}, J=6.2 \mathrm{~Hz} .2 \mathrm{H}), 3.68(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.4-8.0(\mathrm{~m} .5 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 55.7 .58 .3 .65 .3,127.6,128.8 .133 .5,139.3$.

Preparation of 3-methoxypropyl phenyl sulfone (30c)

Sodium hydroxide ($4.25 \mathrm{~g}, 0.106 \mathrm{~mol}$) was dissolved in water (40 mL), and added to the solution of thiophenol (11.7 g .0 .106 mol) in ethanol (40 mL). Then, 3 -chloropropanol (10 g .0 .106 mol) was added. The resulting solution was stirred for 30 min at room temperature and then refluxed for 10 min . Workup as usual gave 3-hydroxypropyl phenyl sulfide as a colorless liquid ($13.5 \mathrm{~g}, 76 \%$ yield).

3-Hydroxypropyl phenyl sulfide ($5.0 \mathrm{~g}, 0.030 \mathrm{mmol}$) was added to $\mathrm{KOH}(6.7 \mathrm{~g}$, 0.12 mol) in DMSO (50 mL) and stirred for 2 min at room temperature. Methyl iodide $(16.7 \mathrm{~g}, 0.12 \mathrm{~mol})$ was then added and the resulting solution was stirred for 15 min . Workup as usual gave 3-methoxypropyl phenyl sulfide as a colorless liquid ($5.3 \mathrm{~g}, 98 \%$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.5,30.5,58.8,71.1,126.0,129.0,129.2,136.7$.

3-Methoxypropyl phenyl sulfide ($1.0 \mathrm{~g}, 5.5 \mathrm{mmol}$) was refluxed with hydrogen peroxide $(30 \%, 10 \mathrm{~mL})$ in acetic acid (4 mL) for 20 min . Workup as usual gave 3-methoxypropyl phenyl sulfone ($\mathbf{3 0 c}, 1.06 \mathrm{~g}, 91 \%$ yield) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.70-2.00(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-8.00 (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ § 22.9, 53.2, 58.3, 69.8, 127.7, 129.1, 133.5, 138.9; Calcd. exact mass for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1): 215.0742$. Found: 215.0748 .

Preparation of phenyl 4-methoxybutyl sulfone (30d) ${ }^{48}$

a) 4-Chlorobutyl acetate ${ }^{48}$

Refluxing of tetrahydrofuran ($3.25 \mathrm{~g}, 45 \mathrm{mmol}$) with acetyl chloride ($2.5 \mathrm{~g}, 32$ mmol) and zinc chloride (10 mg .0 .07 mmol) for 45 min and then distillation gave 4-chlorobutyl acetate as a yellowish liquid ($4.9 \mathrm{~g}, 72 \%$ yield); bp $78-80^{\circ} \mathrm{C} / 10$ torr (lit. ${ }^{18}$ $92-93^{\circ} \mathrm{C} / 22$ torr and lit. ${ }^{49} 59-60{ }^{\circ} \mathrm{C} / 1.8$ torr $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.6-\mathrm{l} .9(\mathrm{~m}, 4 \mathrm{H}), 1.98$ (s. 3 H), $3.50(\mathrm{t} . J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t} . J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.8,25.9$, 29.0, 44.3. 63.4, 170.8.

b) Phenyl 4-methoxybutyl sulfone (30d)

4-Chlorobutyl acetate ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of sodium hydroxide ($0.44 \mathrm{~g}, 11 \mathrm{mmol}$) and thiophenol ($1.2 \mathrm{~g}, 11 \mathrm{mmol}$) in water (40 mL). After the resulting mixture was stirred at room temperature for 30 min , sodium hydroxide solution $(10 \%, 100 \mathrm{~mL})$ was added and the solution was refluxed for another 1 h . Workup as usual and distillation gave 4-phenylthiobutanol as a yellowish liquid $(1.57 \mathrm{~g}$, 98% yield); bp $148-150^{\circ} \mathrm{C} / 0.6$ torr.

4-Phenylthiobutanol ($0.5 \mathrm{~g}, 0.0027 \mathrm{mmol}$) was added to $\mathrm{KOH}(0.67 \mathrm{~g}, 0.012 \mathrm{~mol})$ in DMSO (5 mL) and stirred for 2 min at room temperature. Methyl iodide ($1.7 \mathrm{~g}, 0.012$ mol) was then added and the resulting solution was stirred for 15 min . Workup as usual and distillation gave 4-methoxybutyl phenyl sulfide as a colorless liquid ($4.8 \mathrm{~g}, 89 \%$ yield); bp $104-106^{\circ} \mathrm{C} / 0.6$ torr.

The solution of 4-methoxybutyl phenyl sulfide ($3.0 \mathrm{~g}, 0.0153 \mathrm{~mol}$) and hydrogen peroxide $(30 \%, 30 \mathrm{~mL})$ in acetic acid (12 mL) was refluxed for 20 min . Workup as usual gave 4-methoxybutyl phenyl sulfone as a colorless oil (30d, $3.4 \mathrm{~g}, 97 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50-1.85(\mathrm{~m}, 4 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$,
7.45-7.95 (m. 5 H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.9,28.1,56.0,58.5 .71 .7 .128 .0,129.2,133.6$.
139.0; Calcd. exact mass for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1):$ 229.0899. Found: 229.0898.

Preparation of phenyl 5-methoxypentyl sulfone (30e)

a) 5-Chloropentyl acetate ${ }^{50}$

Tetrahydropyran ($5.0 \mathrm{~g}, 58 \mathrm{mmol}$) was mixed with acetyl chloride ($4.2 \mathrm{~g}, 54$ mmol) and zinc chloride ($0.4 \mathrm{~g}, 6 \mathrm{mmol}$) and the resulting mixture was heated in a $100^{\circ} \mathrm{C}$ bath for about 45 min . Distillation gave 5 -chloropentyl acetate as a colorless liquid ($7.5 \mathrm{~g}, 85 \%$ yield); bp $104-106^{\circ} \mathrm{C} / 18-19$ torr.

b) 5-Methoxypentyl sulfone (30e)

5-Chloropentyl acetate ($2.1 \mathrm{~g}, 0.013 \mathrm{~mol}$) was mixed with thiophenol ($1.5 \mathrm{~g}, 0.014$ $\mathrm{mol})$, and then sodium hydroxide $(0.54 \mathrm{~g}, 0.014 \mathrm{~mol})$ in water (5.5 mL) was added. The reaction mixture was stirred at room temperature for 30 min. More sodium hydroxide solution ($10 \%, 15 \mathrm{~mL}$) was added, and the resulting solution was refluxed for another 70 min. Workup as usual gave 5-hydroxypentyl phenyl sulfide as a colorless oil which became a half solid after 2 da ($2.2 \mathrm{~g}, 86 \%$ yield): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.9,28.9,32.2$, $33.5,62.7,125.7,128.8,128.9,136.7$.

Potassium hydroxide powder ($2.0 \mathrm{~g}, 35.6 \mathrm{mmol}$) was dissolved in dimethyl sulfoxide (DMSO, 15 mL). To this solution, 5 -hydroxypentyl phenyl sulfide ($1.5 \mathrm{~g}, 7.6$ mmol) in DMSO (5 mL) was added and the resulting solution was stirred for about 2 to 3 min . Methyl iodide ($5.1 \mathrm{~g}, 35.6 \mathrm{mmol}$) was added and stirring was continued for 15 min . Workup as usual gave 5-methoxypentyl phenyl sulfide as a colorless liquid (1.4 g, 87.5\% yield); It was then oxidized by refluxing with hydrogen peroxide ($30 \%, 20 \mathrm{~mL}$) in acetic
acid (10 mL) for 25 min to give 5 -methoxypentyl sulfone ($\mathbf{3 0} \mathbf{e}$) as a colorless oil (1.4 g . 86% yield); ${ }^{\mathrm{l}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.30-1.75(\mathrm{~m} .6 \mathrm{H}) .2 .98-3.10(\mathrm{~m}, 2 \mathrm{H}) .3 .24(\mathrm{~s} .3 \mathrm{H})$, $3.28(\mathrm{t} . J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.95(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8 22.4. 24.9, 28.9. 56.1, 58.5.72.0, 127.9, 129.2, 133.6. 139.0. Calcd. exact mass for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+1)$: 243.1055. Found: 243.1056.

Preparation of alkyl phenyl sulfones (31a, 31b, 31c, 31d, 31e)

Ethyl phenyl sulfone (31a) was prepared from the oxidation of ethyl phenyl sulfide (obtained from Alderich Chemical Company) by hydrogen peroxide (30\%) in acetic acid. ${ }^{1} \mathrm{H}$ NMR as reported ${ }^{51}$ and ${ }^{13} \mathrm{C}$ NMR as reported. ${ }^{52}$

All the other alkyl phenyl sulfones were obtained by refluxing of sodium benzenesulfinate with the corresponding alkyl bromide. An example is as follows: benzenesulfinic acid ($5 \mathrm{~g}, 30.5 \mathrm{mmol}$) and propyl bromide ($7.5 \mathrm{~g}, 61 \mathrm{mmol}$) was dissolved in ethanol and then refluxed for about 6 h . Workup as usual gave phenyl propyl sulfone (31 b) as a colorless liquid ($4.5 \mathrm{~g}, 80 \%$ yield).

Phenyl propyl sulfone (31b). ${ }^{53}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.9,16.5,57.9,128.0,129.2$, $133.6,139.1 ;{ }^{1} \mathrm{H}$ NMR as reported. ${ }^{54}$

Phenyl butyl sulfone (31c). ${ }^{53}{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 0.9(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.1-1. 9 $(\mathrm{m}, 4 \mathrm{H}), 3.0(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.3-7.9(\mathrm{~m}, 5 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with literature. ${ }^{55}$

Phenyl pentyl sulfone (32d). ${ }^{54}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.6,22.0,22.2,30.3,56.2$, 127.9, 129.2, 133.5, 139.1; ${ }^{1} \mathrm{H}$ NMR as reported. ${ }^{56}$

Phenyl hexyl sulfone (32e). ${ }^{57}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.6,22.2,22.5,27.9,31.1$,
56.3, 128.0, 129.2, 133.5. 139.1; 'H NMR as reported. ${ }^{\text {4 }}$

Preparation of 4-(phenylsulfonyl)tetrahydropyran (32)

a) Tetrahydro-4H-pyran-4-yl tosylate (70)

Commercial available tetrahydro-4H-pyran-4-ol ($2.5 \mathrm{~g}, 0.024 \mathrm{~mol}$) dissolved in dry pyridine (16 mL) was added to p-toluenesulfonyl chloride (7.7 g .0 .040 mol) in pyridine (16 mL) at $0^{\circ} \mathrm{C}$. The solution was stirred overnight at room temperature, poured into ice-cold 10% hydrochloric acid and extracted with ether three times. The ether extracts were combined and washed with dilute hydrochloric acid, water, and saturated sodium bicarbonate solution. The solvent was removed and then the residue was recrystallized from ether : hexane to give tetrahydro- $4 H$-pyran- 4 -yl tosylate as white crystals (70, $5.45 \mathrm{~g}, 87 \%$ yield); mp 56-57 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.60-1.90(\mathrm{~m}, 4 \mathrm{H})$, $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.6,32.4,64.7,77.3,127.5,129.8,134.3,144.7$; exact mass for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}$ $(\mathrm{M}+1):$ found 257.0846 , calculated 257.0848.

b) 4-(Phenylsulfonyl)tetrahydropyran (32)

A solution of sodium hydroxide $(0.40 \mathrm{~g}, 0.010 \mathrm{~mol})$ and thiophenol $(1.23 \mathrm{~g}, 0.011$ mol) in ethanol $(90 \%, 50 \mathrm{~mL})$ was mixed with tetrahydro- $4 H$-pyran-4-yl tosylate (70 , $2.50 \mathrm{~g}, 0.0098 \mathrm{~mol})$. The resulting solution was stirred at room temperature for 20 da . Then water was added and the mixture was extracted with methylene chloride three times. The combined organic layer was washed with 5% sodium hydroxide, saturated sodium chloride solution, and dried over magnesium sulfate. Removal of solvent and
distillation of the product gave 4-(phenylthio)tetrahydro-4 H-pyran as a colorless oil (71. $1.45 \mathrm{~g}, 77 \%$ yield).

To a solution of 4-(phenylsulfonyl)-tetrahydropyran (71, $1.0 \mathrm{~g}, 5 \mathrm{mmol}$) in acetic acid (3 mL), hydrogen peroxide ($30 \%, 8.5 \mathrm{~mL}$) was added. The solution was refluxed for 20 min. Workup as usual and separation by thick layer chromatography (solvent: ether) gave 32 as white crystals $\left(0.89 \mathrm{~g}, 71 \%\right.$ yield); mp $87-89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.60-$ $2.00(\mathrm{~m}, 4 \mathrm{H}), 3.11(\mathrm{tt} . J=11.8 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{HL}), 3.30(\mathrm{td}, J=11.8 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (ddd, $J=11.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.5-7.9(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{15} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 25.6,60.6$. 66.5, 129.1, 129.2, 133.9; Caled. exact mass fo: $\mathrm{r}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}: 226.0664$. Found: 226.0666.

2.5.2 KINETIC AND THERMODYNAMI-C MEASUREMENTS OF H-D EXCHANGE

2.5.2.1. General procedure

All kinetic measurements were carried ©ut by ${ }^{1} \mathrm{H}$ NMR spectrometry using the Gemini 300 NMR spectrometer. The concentration of unreacted α-hydrogen of the starting material, as determined from its integral relative to that of an inert peak (e.g. the peak of the benzene ring), was monitored with respect to time.

The solutions of sodium deuteroxide $(0.05 \mathrm{M}$ to 0.50 M$)$ in deuterium oxide were prepared by dissolving sodium metal in deuteri um oxide under nitrogen. These solutions were titrated using 0.01 M hydrochloric acid.

The buffer solutions of sodium carbonate (pH -meter reading from 9 to 11) in deuterium oxide were prepared by dissolving d.euterium chloride ($37 \mathrm{wt} \$.$% in \mathrm{D}_{2} \mathrm{O}$) and solid sodium carbonate in deuterium oxide.

Sodium phosphate dodecahydrate was dehydrated in a $200^{\circ} \mathrm{C}$ oven overnight and cooled down in a desiccator, it was then dissolved in deuterium oxide. Addition of deuterium chloride (37 wt . \% in $\mathrm{D}_{2} \mathrm{O}$) gave the sodium phosphate buffer solution (pH meter readings from 7.0 to 9.0).

A typical kinetic measurement was carried out as follows: A sample (3 mg) was dissolved in dioxane- d_{8} (or some other deuterated organic solvents, 0.28 mL) in a NMR tube. Sodium deuteroxide solution or buffer solution $(0.28 \mathrm{ml})$ was added into the NMR tube by a 0.5 mL syringe and the NMR tube was sealed right away and was shaken vigorously. When no organic solvent was used the total volume of the solvent ($\mathrm{D}_{2} \mathrm{O}$) was 0.56 mL . The NMR tube was kept in the NMR instrument at a preset temperature ($\pm 0.2^{\circ} \mathrm{C}$, without calibration), or in a water bath $\left(\pm 0.2^{\circ} \mathrm{C}\right)$, or in an oil bath (temperature maintained by refluxing a suitable solvent, methanol for $64^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$, methylene chloride for $40^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$, or ethanol for $77^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$). The rate of $\mathrm{H}-\mathrm{D}$ exchange was then followed by ${ }^{1} \mathrm{H}$ NMR (or by ${ }^{13} \mathrm{C}$ NMR in case of $\mathbf{3 0} \mathrm{c}$ and 31 c). The amount of unexchanged α-hydrogen $\left(C_{\downarrow}\right)$ was obtained from its integral relative to that of an inert peak or set of peaks such as those of the aromatic hydrogens for phenyl sulfones. The slope of $\ln C_{t}$ versus time (t) gave the pseudo-first-order rate constant ($k_{\text {obs }}$) The second-order rate constant $\left(k_{\text {exch }}\right)$ was obtained from the slope of $k_{\text {obs }}$ versus the concentration of sodium deuteroxide (OD). The kinetic results are listed in Table 2.5.1.

All equilibrium constants were also determined by ${ }^{\prime} \mathrm{H}$ NMR spectrometry using the Gemini 300 NMR spectrometer. The preparation of the reaction mixture was the same with the rate constants determination described above using dioxane $-d_{8}: \mathrm{D}_{2} \mathrm{O}$ (1:1) as the solvent. The sample was kept in an oil bath at $64^{\circ} \mathrm{C}$ (maintained by refluxing
methanol) for at least 45 da until its NMR spectrum indicated an equilibration reached. To determine the relative concentration in the equilibrated mixture, the ' H NMR peaks were enlarged to the maximum and plotted out on at least four sheets of paper. For each sheet. a peak for each equilibrium component was then cut out manually and the weight gave the relative ratio of the area. An average ratio of the area for all the papers gave the concentration ratio between the equilibrium components. All the equilibrations were determined from both directions.

Table 2.5.1 The results of determination of the H-D Exchange rate of the sulfones.

	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	solvent	NaOD (M)	$k_{\text {obs }} . \mathrm{s}^{-1}$	$\begin{aligned} & \text { Calc. } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$
5	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1036	1.20×10^{-4}	1.16×10^{-3}	1.14×10^{-3}
			0.1554	1.77×10^{-4}	1.14×10^{-3}	
			0.2072	2.30×10^{-4}	1.10×10^{-3}	
6a	64	$\begin{gathered} \text { Dioxane- } d_{y} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	1.91×10^{-5}	3.71×10^{-4}	3.3×10^{-4}
			0.103	3.96×10^{-5}	3.84×10^{-4}	
			0.1545	5.36×10^{-5}	3.47×10^{-4}	
6b	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1036	1.13×10^{-5}	1.09×10^{-4}	1.12×10^{-4}
			0.1554	1.74×10^{-5}	1.12×10^{-4}	
7	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0536	5.62×10^{-5}	1.05×10^{-3}	1.06×10^{-3}
			0.1036	1.06×10^{-4}	1.02×10^{-3}	
			0.1608	1.70×10^{-4}	1.06×10^{-3}	
8	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.150	7.49×10^{-5}	4.99×10^{-4}	5.1×10^{-4}
			0.200	1.03×10^{-4}	5.15×10^{-4}	
12	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.150	1.52×10^{-4}	1.01×10^{-3}	1.1×10^{-3}
			0.200	2.26×10^{-4}	1.13×10^{-3}	
17 a	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0518	1.10×10^{-5}	2.12×10^{-4}	2.5×10^{-4}
			0.1030	2.63×10^{-5}	2.55×10^{-4}	
			0.1545	3.68×10^{-5}	2.38×10^{-4}	
17b	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \\ \hline \end{gathered}$	0.1036	9.67×10^{-5}	9.33×10^{-4}	9.3×10^{-4}
			0.1554	1.44×10^{-4}	9.27×10^{-4}	

Table 2.5.1 Continued

	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	solvent	NaOD (M)	$k_{\text {obs }}, \mathrm{s}^{-1}$	$\text { Calc. } k_{\text {exch }}$ $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \text { Mean } \left.k_{\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)}\right) \end{aligned}$
23a	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1030	4.90×10^{-9}	4.76×10^{-8}	4.2×10^{-8}
			0.1554	5.73×10^{-9}	3.69×10^{-8}	
	64	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1030	3.65×10^{-8}	3.54×10^{-7}	3.3×10^{-6}
			0.1554	4.85×10^{-8}	3.12×10^{-7}	
23b	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.075	1.15×10^{-5}	1.53×10^{-4}	1.5×10^{-4}
			0.100	1.39×10^{-5}	1.39×10^{-4}	
			0.200	3.00×10^{-5}	1.50×10^{-4}	
	36	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1036	6.80×10^{-7}	6.56×10^{-6}	7.0×10^{-6}
			0.1554	1.15×10^{-6}	7.40×10^{-6}	
	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.1036	1.80×10^{-7}	1.74×10^{-6}	1.75×10^{-6}
			0.1554	2.73×10^{-7}	1.76×10^{-6}	
24a	64	$\begin{gathered} \text { Dioxane- } d_{y} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.100	9.40×10^{-8}	9.40×10^{-7}	1.1×10^{-6}
			0.150	2.00×10^{-7}	1.33×10^{-6}	
24b	64	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0518	2.11×10^{-6}	4.07×10^{-5}	4.4×10^{-5}
			0.1036	4.92×10^{-6}	4.75×10^{-5}	
25a	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.100	1.05×10^{-7}	1.05×10^{-6}	1.3×10^{-6}
			0.150	2.31×10^{-7}	1.54×10^{-6}	
25b	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0518	3.60×10^{-6}	6.95×10^{-5}	7.5×10^{-5}
			0.1036	8.21×10^{-6}	7.92×10^{-5}	
			0.1545	1.19×10^{-5}	7.70×10^{-5}	
26	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	9.31×10^{-6}	1.81×10^{-4}	1.5×10^{-4}
			0.1036	1.34×10^{-5}	1.29×10^{-4}	
			0.1545	2.16×10^{-5}	1.40×10^{4}	

Table 2.5.1 Continued

	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	solvent	$\begin{gathered} \mathrm{NaOD} \\ (\mathrm{M}) \end{gathered}$	$k_{\text {obs }}, \mathrm{s}^{-1}$	$\begin{aligned} & \text { Calc. } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$
27	64	$\begin{gathered} \text { Dioxane- } d_{y} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	1.29×10^{-4}	2.50×10^{-3}	2.60×10^{-3}
			0.1036	2.64×10^{-4}	2.55×10^{-3}	
			0.1545	4.23×10^{-4}	2.74×10^{-3}	
28	64	$\begin{gathered} \text { Dioxane- } d_{y} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0750	1.36×10^{-4}	1.81×10^{-3}	1.83×10^{-3}
			0.100	1.82×10^{-4}	1.82×10^{-3}	
			0.150	2.80×10^{-4}	1.87×10^{-5}	
29	64	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.100	1.33×10^{-4}	1.33×10^{-3}	1.35×10^{-3}
			0.125	1.70×10^{-4}	1.36×10^{-3}	
			0.150	2.05×10^{-4}	1.37×10^{-3}	
30b	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	$\begin{aligned} & 1.621 \times 10^{-4} \\ & \left(5.0 \times 10^{-2}\right)^{\mathrm{a}} \end{aligned}$	8.303×10^{-5}	5.122×10^{-1}	5.12×10^{-1}
			$\begin{aligned} & 1.352 \times 10^{-5} \\ & \left(9.4 \times 10^{-2}\right)^{\mathrm{a}} \end{aligned}$	6.925×10^{-6}	5.122×10^{-1}	
			$\begin{aligned} & 1.445 \times 10^{-5} \\ & \left(1.9 \times 10^{-1}\right)^{\mathrm{a}} \end{aligned}$	7.396×10^{-6}	5.188×10^{-i}	
30c	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.100	1.69×10^{-4}	1.69×10^{-3}	1.68×10^{-3}
			0.125	2.07×10^{-4}	1.66×10^{-3}	
			0.150	2.56×10^{-4}	1.68×10^{-3}	
30d	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	2.09×10^{-5}	4.06×10^{-4}	3.96×10^{-4}
			0.103	4.06×10^{-5}	3.94×10^{-4}	
			0.1545	5.99×10^{-5}	3.88×10^{-4}	
30e	25	$\begin{gathered} \text { Dioxane- } d_{3} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \\ \hline \end{gathered}$	0.100	4.17×10^{-5}	4.17×10^{-4}	4.01×10^{-4}
			0.150	5.78×10^{-5}	3.85×10^{-4}	

Table 2.5.1 Continued.

	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	solvent	NaOD (M)	$k_{\text {obs }},{ }^{\text {-t }}$	$\begin{aligned} & \text { Calc. } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } k_{\text {exch }} \\ & \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$
31a	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.050	2.09×10^{-5}	4.18×10^{-4}	$4.14 \times 10^{-}$
			0.100	4.11×10^{-5}	4.11×10^{-4}	
			0.150	6.20×10^{-5}	4.13×10^{-4}	
31b	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.050	1.16×10^{-5}	2.32×10^{-4}	2.3×10^{-4}
			0.100	2.12×10^{-5}	2.12×10^{-4}	
			0.200	4.62×10^{-5}	2.31×10^{-4}	
31c	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.050	1.01×10^{-5}	2.02×10^{-4}	2.03×10^{-4}
			0.100	2.00×10^{-5}	2.00×10^{-4}	
			0.125	2.59×10^{-5}	2.07×10^{-4}	
31d	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	9.17×10^{-6}	1.78×10^{-4}	1.80×10^{-4}
			0.103	1.84×10^{-5}	1.79×10^{-4}	
			0.1545	2.84×10^{-5}	1.84×10^{-4}	
31e	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \\ \hline \end{gathered}$	0.100	1.82×10^{-5}	1.82×10^{-4}	1.80×10^{-4}
			0.150	2.66×10^{-5}	1.77×10^{-4}	
32	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.0515	4.36×10^{-6}	8.47×10^{-5}	8.6×10^{-5}
			0.1030	8.98×10^{-6}	8.72×10^{-5}	
			0.1545	1.34×10^{-5}	8.67×10^{-5}	
33	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	$\begin{aligned} & 1.445 \times 10^{-4} \\ & \left(\sim 1 \times 10^{-1}\right)^{\mathrm{a}} \end{aligned}$	5.79×10^{-5}	4.01×10^{-1}	4.2×10^{-1}
			$\begin{aligned} & 1.047 \times 10^{-4} \\ & \left(\sim 1 \times 10^{-1}\right)^{a} \end{aligned}$	4.60×10^{-5}	4.39×10^{-1}	
34	25	$\begin{gathered} \text { Dioxane- } d_{s} \\ : \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.125	$\begin{aligned} & 3.09 \times 10^{-6} \\ & \left(1.24 \times 10^{-4}\right)^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 2.47 \times 10^{-5} \\ & \left(9.92 \times 10^{-4}\right)^{b} \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \times 10^{-5} \\ \left(9.92 \times 10^{-1}\right)^{b} \end{gathered}$
			0.200	4.46×10^{-6}	2.23×10^{-5}	

${ }^{a}$ The values shown in parentheses are the concentrations of $\mathrm{CO}_{3}{ }^{2-}$ of the buffer solutions.
${ }^{b}$ The values shown in parentheses are for the H-D exchange of the $\alpha-\mathrm{CH}_{3}$.

CHAPTER 3

GENERALIZATION OF THE ANGLE DEPENDENCE OF THE
BETA-SUBSTITUTED SATURATED SULFONES

3.1 INTRODUCTION

Chapter 2 presents evidence that the effect of β-alkoxy substituents on the rate of the H-D exchange via α-carbanions $\left(\left(k_{\text {exch }}\right)_{\mathrm{x}}\right)$ is subject to variation in rate correlating with the H-C-C-O torsion angle (θ). Specifically, defining $k_{\mathrm{N}}=\left(k_{\text {exch }}\right)_{\mathrm{x}} /\left(k_{\text {exch }}\right)_{\text {model }}$, we found for a set of β-alkoxy sulfones k_{N} for carbanion formation is given by

$$
\begin{aligned}
\log k_{\mathrm{N}} & =a+b \cos 2 \theta \\
& =c+d \cos ^{2} \theta
\end{aligned}
$$

consistent with the intervention of negative hyperconjugation (the generalized anomeric effect). The values of the parameters a and b (or c and d) are such that one may conclude that the maximum anomeric effect of an alkoxy group is greater than the sum of its field and inductive effects. Since the anomeric effect and negative hyperconjugation are not confined to alkoxy groups, the only reasonable construction that we can infer from Chapter 2 is that we must expect the torsion angle dependence to be a general phenomenon, capable of appearing to a greater or lesser measure with all substituents. The effect can be expected to be small or negligible with some substituents (e.g. alkyl groups), but with most heteroatomic substituents it should be significant.

This chapter extends our study to additional substituents $\mathrm{SR}, \mathrm{SO}_{2} \mathrm{R}_{2}, \mathrm{NR}_{2}$, and ${ }^{+} \mathrm{NR}_{3}$ restricting the torsion angle (θ) to either approximately 180° or 60° (Scheme 3.1.1). The angle dependence of these systems is to be discussed in this chapter (together with the β-oxygen substituted compounds presented in Chapter 2).

$\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{SO}_{2}, \mathrm{NMe},{ }^{+} \mathrm{NMe}_{2}{ }^{-} \quad \mathrm{Y}=\mathrm{OMe}, \mathrm{SMe}, \mathrm{SO}_{2} \mathrm{Me}, \mathrm{NMe}_{2},{ }^{+} \mathrm{NMe}_{3}{ }^{-}$

Scheme 3.1.1

In the positively charged ammonio system, the possibility of the so called 'reverse anomeric effect' arises. This chapter will also discuss this point.

3.2 RESULTS AND DISCUSSION

3.2.1 PREPARATION OF THE BETA-HETEROATOM SUBSTITUTED SULFONES

1,4-Dithiane 1,1-dioxide (\mathbf{S}_{180}) was synthesized according to the procedure of Clennan and coworkers ${ }^{76}$ as illustrated in S.cheme 3.2.1. Mild oxidation of 1.4 -dithiane by m-chloroperoxybenzoic acid at $25^{\circ} \mathrm{C}$ gaive a mixture of starting material (30\%), 1.4-dithiane 1 -oxide (40%) and 1,4-dithianse 1,4 -dioxide (30%). The mixture was further oxidized by potassium permanganate in the presence of magnesium sulfate in acetone to give \mathbf{S}_{180} which could be obtained in pure form after separation by thick layer chromatography and recrystalization.

Scheme 3.2.1

Scheme 3.2.2 illustrates the preparation of trans-1,4-dithiadecalin 1,1-dioxide ($\mathbf{S}^{\prime}{ }_{180}$). Ring-opening reaction of cyclohex. ene oxide by mercaptoethanol anion gave trans-2-(2-hydroxyethylthio)cyclohexanol in 90% yield. ${ }^{77}$ This was then treated with concentrated hydrochloric acid in 1,2-dimethoxyethane (DME) to give trans-2-chlorocyclohexyl 2-chloroethyl sulfide as a colorDess liquid in quantitative yield. ${ }^{31}$ The
stereochemistry of this last reaction presumably results from the intermediate formation of the thiiranium ion. trans-1,4-Dithiadecalin was synthesized according to the method of Culvenor and coworkers ${ }^{78}$ through the reaction of the dichloride with sodium sulfide. The trans stereochemistry about C9 and C10 ring junction of the dithiadecalin has been deduced by Culvenor and coworkers ${ }^{78}$ from its synthesis by cyclization of trans-2-chloroethyl 2-mercaptocyclohexyl sulfide. The stepwise oxidations of trans-1,4-dithiadecalin was achieved following the procedure of Rooney and Evans. ${ }^{79}$ Oxidation of the trans-1,4-dithiadecalin with peroxybenzoic acid gave a mixture containing the axial and equatorial mono sulfoxides, which was not purified before it was oxidized to the desired sulfone ($\mathbf{S}^{\prime}{ }_{180}$). Pure $\mathbf{S}^{\prime}{ }_{180}$ was obtained from column chromatographic separation.

Scheme 3.2.2
Complete oxidation of trans-1,4-dithiadecalin by 30% hydrogen peroxide in
acetic acid gave trans-1,4-dithiadecalin 1.1.4.4-tetraoxide ((SO2 $)_{180}$, Scheme 3.2.2).
3-(Methylthio)tetrahydrothiapyran 1,1-dioxide (\mathbf{S}_{60}) was prepared according to Scheme 3.2.3. 3-Bromotetrahydrothiapyran 1,1-dioxide was prepared according to the procedure of Fenel. ${ }^{81}$ Ethyl γ-(carbethoxymethylmercapto)butyrate was treated with alcohol free sodium ethoxide to give 2-carbethoxytetrahydrothiapyran-3-one as a colorless liquid in 80% yield. The β-ketoester was decomposed by 10% sulfuric acid to gave tetrahydrothiapyran-3-one (72% yield). Reduction of the ketone to the alcohol and followed by reaction with phosphorus tribromide gave 3-bromotetrahydrothiapyran as a coloriess liquid, which was oxidized to yield 3-bromotetrahydrothiapyran 1,1-dioxide as pale yellow crystals. Substitution of the bromide with sodium thiomethoxide in 2-butanol gave \mathbf{S}_{60} as white needles in 71% yield.

Oxidation of 3-(methylthio)tetrahydrothiapyran 1,1-dioxide (\mathbf{S}_{60}) by 30\% hydrogen peroxide in acetic acid gave 3-(methylsulfonyl)tetrahydrothiapyran 1,1-dioxide ($\left(\mathbf{S O}_{2}\right)_{60}$, Scheme 3.2.3).

Scheme 3.2.3
N-Methylthiomorpholine 1.1-dioxide (\mathbf{N}_{180}) is commercially available. and its methylation with iodomethane gave 4,4-dimethyltetrahydro-1.4-thiazinium iodide $\left(\left(\mathbf{N}^{+}\right)_{180}\right.$. Scheme 3.2.4).

Scheme 3.2.4

Scheme 3.2.5 presents the preparation of 3-(dimethylamino)tetrahydrothiapyran 1,1-dioxide $\left(\mathbf{N}_{60}\right)$. 4H-2,3-Dihydrothiapyran 1,1-dioxide was synthesized according to the following procedure of Liebowitz and coworkers. ${ }^{82}$ Mild oxidation of tetrahydrothiapyran by 30% hydrogen peroxide gave tetrahydrothiapyran-1-oxide (yield 81%). Pummerer reaction of the sulfoxide with acetic anhydride in acetic acid gave 4 H -2,3-dihydrothia-pyran, which was selectively oxidized by OXONE® (potassium peroxymonopersulfate, $2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \bullet \mathrm{~K}_{2} \mathrm{SO}_{4}$) to form 4H-2,3-dihydrothiapyran 1,1dioxide. Addition of dimethylamine to the double bond yielded \mathbf{N}_{60} as white crystals in very good yield.

Methylation of 3-(dimethylamino)tetrahydrothiapyran 1,1-dioxide (\mathbf{N}_{60}) with iodomethane gave 3-(trimethylammonio)tetrahydrothiapyran 1,1-dioxide $\left(\left(\mathrm{N}^{+}\right)_{60}\right.$, Scheme 3.2.5).

Scheme 3.2.5

3.2.2 KINETICS OF THE H-D EXCHANGE REACTION

The H-D exchange rates of the sulfones in this study were measured as outlined in Chapter 2. The solvents used for the NMR kinetic determination included $\mathrm{D}_{2} \mathrm{O}$. dioxane- $d_{3}: \mathrm{D}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}), \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$. The preparation of buffer solution has also been described in Chapter 2, and the influence of buffer concentration on the $\mathrm{H}-\mathrm{D}$ exchange rate is believed to be unimportant under the conditions used in this research, see Table 2.2.1 of Chapter 2. The concentration (C) of the exchanging hydrogen was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy relative to an inert hydrogen in the system. The plot of $\ln C_{t}$ vs time gave a best-fit line whose slope was the pseudo-firstorder rate constant ($k_{\text {obs }}$). The second order rate constant $k_{\text {exch }}$ was obtained from the slope of the best-fit line of k_{obs} vs the concentration of OD^{-}.

The kinetic results obtained in this chapter are summarized in Table 3.2.1.
Table 3.2.1 Kinetic Data for β-Heteroatom Substituted Sulfones.
alkoxy sulfone

Table 3.2.1 Continued

${ }^{a}$ The torsion angles (θ) were estimated by calculation using PCModel (PCM4). ${ }^{\mathrm{b}}$ Reaction conditions, $\mathrm{A}: \mathrm{D}_{2} \mathrm{O}\left(20^{\circ} \mathrm{C}\right) ; \mathrm{B}: \mathrm{D}_{2} \mathrm{O}$:
dioxane- $d_{8}\left(1: 1,25^{\circ} \mathrm{C}\right) ; \mathrm{C}: \mathrm{D}_{2} \mathrm{O}: \mathrm{CD}_{3} \mathrm{CN}\left(1: 1,21^{\circ} \mathrm{C}\right) .{ }^{\mathrm{c}} k_{\mathrm{N}}=k_{\text {exch }} /\left(k_{\text {excl }}\right)_{\text {model }}$. ${ }^{\text {d }}$ These data were from the theses of R. Rathore ${ }^{31}$ and Zhen Rong Guo ${ }^{32}{ }^{\text {c }}$ Obtained for the conditions C by multiplying the value at conditions B with the converting factor: 0.291 . The converting factor was obtained by dividing the rate of 2-exo-(phenylsulfonyl)-7-oxabicyclo[2,2, 1 heptane at conditions $\mathrm{C}\left(3.11 \times 10^{-4}\right.$
$\left.\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ by its rate at condition $\mathrm{B}\left(1.07 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. ${ }^{\mathrm{I}}$ The rate constant in parenthesis is that for H-D exchange per H , and was
obtained by multiplying the experimental value by 2 .

3.2.3 THE GENERALIZATION OF THE GENERALIZED ANOMERIC EFFECT AS A COMPONENT OF THE POLAR EFFECT

3.2.3.1 The mechanisms of the reactions of heteroatom-substituted sulfones.

Most sulfones studied in this research gave a H-D exchange (substitution) product under our conditions. In the case of the β-alkoxy substituted sulfones, the $\mathrm{H}-\mathrm{D}$ exchange of these β-heteroatom substituted sulfones proceeds through the carbanion intermediate as shown in Scheme 3.2.6. In this mechanism, the formation of the carbanion is the slow reaction; the extraction of a proton (D or H) from water (mostly $\mathrm{D}_{2} \mathrm{O}$, with a very small amount of HOD) is much faster. Here the substituent R_{2} is $O R$, a relatively poor leaving group, and the carbanion takes up a proton (to form the exchanged product), rather than eliminate R_{2} (to form a double bond by an irreversible ElcB mechanism).

Scheme 3.2.6

One of the ammonium salts, $\left(\mathbf{N}^{+}\right)_{60}$, however, did not give the $\mathrm{H}-\mathrm{D}$ exchange product, but was rapidly converted to the elimination product, and only the elimination rate could be accurately measured. This is exactly what is expected from the irreversible

ElcB mechanism offered above. However, there exist some other possible mechanisms which need to be ruled out. For example, starting from $\left(\mathbf{N}^{+}\right)_{60}$, rotation of the six-member ring to a twist boat (Scheme 3.2.7) to make the ammonio group almost syn to the leaving hydrogen, and then a syn E2 mechanism (Scheme 3.2.7) would result in the same product. So. it is necessary to distinguish the irreversible ElcB mechanism from the other possibilities.

Scheme 3.2.7

To do that, the $\log k_{\mathrm{N}}$ values for the β-alkoxy, β-thioalkoxy, β-amine, β-sulfonyl and β-trialkylammonio substituents with different torsion angles were plotted against the σ^{*} values (Table 3.2.2, Figure 3.2.1).

Table 3.2.2 The $\log k_{\mathrm{N}}$ values and their corresponding σ^{*} values.

Substituent	Alkoxy	Thioalkoxy	Amine	Sulfonyl	Ammonio
σ^{*}	0.66	0.53	0.11	1.32	1.9
$\log k_{\mathrm{N}}\left(\sim 60^{\circ}\right)$	2.35	1.64	1.41	4.75	5.5
$\log k_{\mathrm{N}}\left(\sim 180^{\circ}\right)$	4.33	3.96	2.93	8.46	9.18

This gave two roughly straight lines with somewhat different slopes. Except for the point for $\left(\mathbf{N}^{+}\right)_{60}$ (the ammonio group at about 60° torsion angle), all the others are the results of

Figure 3.2.1 $\log k_{\mathrm{N}}$ vs σ^{*}. The unfilled circles are for the compounds with $\sim 60^{\circ}$ torsion angle; the filled circles are for those with $\sim 180^{\circ}$ torsion angle torsion angle .

H-D exchange which is through a formation of a carbanion intermediate. From the 60° line in Figure 3.2.1, it is easy to find that the elimination rate of $\left(\mathrm{N}^{+}\right)_{60}$ is fully consistent with a carbanion intermediate mechanism, and thus, for $\left(\mathbf{N}^{+}\right)_{60}$ the irreversible ElcB
mechanism is more likely than the E2 mechanism. If the E2 mechanism were to dominate it would be because it is faster than the irreversible ElcB process, and this would raise the $\left(\mathbf{N}^{+}\right)_{60}$ point higher than the 60° line in Figure 3.2.1.

The plot of $\log k_{N}\left(\sim 180^{\circ}\right)$ vs $\log k_{\mathrm{N}}\left(\sim 60^{\circ}\right)$ (Figure 3.2.2) offers another way to investigate the mechanism of the elimination of compound $\left(\mathrm{N}^{+}\right)_{60}$. Figure 3.2 .2 clearly indicates that the elimination of $\left(\mathbf{N}^{+}\right)_{60}$ shares the same kind of transition state.

To summarize. the available evidence indicates that all the points in Figure 3.2.1 (or Figure 3.2.2) are from the same rate determining step - the formation of a carbanion intermediate. It is this conclusion that enables us to include all the points in Figure 3.2.1 into the discussion of the generalization and normalization of the angle dependence of the β-substituent saturated sulfones.

Figure 3.2.2 The $\log k_{\mathrm{N}}$ values for the compounds with $\sim 60^{\circ}$ torsion angle vs those with $\sim 180^{\circ}$ torsion angle.

3.2.3.2 The generation of the angle dependent term

Chapter 2 presented the evidence for the angle dependence of the rate of formation of α-sulfonyl carbanions of β-alkoxy sulfones, and an equation was given:

$$
\begin{align*}
\log k_{\mathrm{N}}(\text { alkoxy }) & =(3.00 \pm 0.08)+(1.31 \pm 0.10) \cos 2 \theta \\
& =(1.70 \pm 0.17)+(2.62 \pm 0.20) \cos ^{2} \theta \tag{eq 3.2.1}
\end{align*}
$$

The obvious difference of the $\log k_{\mathrm{N}}$ values between the $\sim 60^{\circ}$ torsion angle compound and the -180° torsion angle compound (Table 3.2.2), enables us to extend the angle dependence of the β-alkoxy system to all the β-thioalkoxy, β-amine, β-sulfonyl. and β-ammonio systems studied in this Chapter. To extend eq 3.2.1 to β-thioalkoxy, β amine, β-sulfonyl and β-ammonio substituents, it is reasonable and also practical to use a minimum set of points (that is, the $\sim 60^{\circ}$ and $\sim 180^{\circ}$ sulfones) to find a reasonably accurate equation. For β-oxygen substituted sulfone system, an equation (eq 3.2.2) derived only from the points of the sulfones \mathbf{O}_{60} and \mathbf{O}_{180} is only slightly different from eq 3.2.1.

$$
\begin{align*}
\log k_{\mathrm{N}}(\text { alkoxy }) & =3.00+1.37 \cos 2 \theta \\
& =1.63+2.74 \cos ^{2} \theta \tag{eq 3.2.2}
\end{align*}
$$

Using the same two-point procedure to find the equations for the other substituent systems, we obtain the following:

$$
\begin{align*}
& \begin{aligned}
\log k_{\mathrm{N}}(\text { thioether }) & =2.33+1.70 \cos 2 \theta \\
& =0.63+3.40 \cos ^{2} \theta
\end{aligned} \\
& \begin{aligned}
\log k_{\mathrm{N}}(\text { amine }) & = \\
= & .91+1.04 \cos 2 \theta \\
& 0.87+2.08 \cos ^{2} \theta
\end{aligned} \tag{eq 3.2.3}\\
& \log k_{\mathrm{N}} \text { (sulfonyl) }=5.55+2.83 \cos 2 \theta
\end{align*}
$$

$$
\begin{equation*}
=2.72+5.66 \cos ^{2} \theta \tag{eq 3.2.5}
\end{equation*}
$$

$$
\begin{align*}
\log k_{\mathrm{N}}(\text { ammonio }) & =6.04+3.15 \cos 2 \theta \\
& =2.89+6.30 \cos ^{2} \theta \tag{eq 3.2.6}
\end{align*}
$$

These equations (eq 3.2.2 to eq 3.2.6) are used to connect the experimental points in Figure 3.2.3.

Figure 3.2.3 reflects the angle dependence of the substituent effect. It is also possible to estimate the size of hyperconjugative (anomeric) effect and that of a conventional polar effect (Table 3.2.3). Ignoring the angle dependence of the field effect (which may be small judging from our calculation in Section 2.2.4), the maximum electronic effect can be obtained by the $\log k_{\mathrm{N}}$ values at 180° (and also at 0°) torsion angle; and the polar effect is given by the $\log k_{\mathrm{N}}$ values at 90° torsion angle; their difference gives the maximum contribution from negative hyperconjugation or anomeric effect. The contribution from negative hyperconjugation or the anorneric effect is maximum when the optimal torsion angle $\left(0^{\circ}\right.$ or $\left.180^{\circ}\right)$ is allowed.

Table 3.2.3 The Composition of Substituent Electronic Effect

	Maximum hyperconjugative (anomeric) effect	Inductive and field effect
\mathbf{O}	$2.74(63 \%)$	$1.63(37 \%)$
\mathbf{S}	$3.40(84 \%)$	$0.63(16 \%)$
\mathbf{N}	$2.08(71 \%)$	$0.87(29 \%)$
\mathbf{N}^{+}	$6.30(69 \%)^{*}$	$2.89(31 \%)^{*}$
$\mathbf{S O}_{\mathbf{2}}$	$5.66(68 \%)$	$2.72(32 \%)$

* In the ammonio system, the field effect will be much larger than in the uncharged substituents (see discussion in Section 3.2.4). These contributions may be subject to change.

Figure 3.2.3 The torsion angle dependence of β-heteroatom substituted sulfone.

The new feature of the angle dependence of σ^{*}. introduced in Chapter 2 in β alkoxy sulfones. can now be extended to β-thioalkoxy. β-amine. β-sulfonyl and β ammonio substituent system. As has been discussed in the beginning of this Section (Section 3.2.3.1). all the reactions (H-D exchange. and the elimination of $\mathbf{N}^{+}{ }_{60}$) share the same reaction intermediate and rate-determining step (formation of the carbanion), so we can use the same reaction constant (ρ^{*}) obtained in the alkoxy system by Thomas and Stirling. ${ }^{6}$ That is

$$
\log k_{\mathrm{N}}=4.89 \sigma_{\theta}^{*}
$$

Combining it with equation 3.2.2 to equation 3.2.6, we get, though eq 3.2.11 is subject to change (see discussion in Section 3.2.4),

$$
\begin{align*}
& \sigma^{*}{ }_{\theta}(\text { alkoxy })=0.61+0.28 \cos 2 \theta \\
& =0.33+0.56 \cos ^{2} \theta \tag{eq 3.2.7}\\
& \sigma_{\theta}^{*}(\text { thioether })=0.48+0.35 \cos 2 \theta \\
& =0.13+0.70 \cos ^{2} \theta \tag{eq 3.2.8}\\
& \sigma_{\theta}{ }_{\theta}(\text { amine })=0.39+0.21 \cos 2 \theta \\
& =0.18+0.43 \cos ^{2} \theta \tag{eq 3.2.9}\\
& \sigma_{\theta}{ }_{\theta}(\text { sulfonyl })=1.14+0.58 \cos 2 \theta \\
& =0.56+1.16 \cos ^{2} \theta \tag{eq 3.2.10}\\
& \sigma^{*}(\text { ammonio })=1.24+0.64 \cos 2 \theta \\
& =0.59+1.29 \cos ^{2} \theta \tag{eq 3.2.11}
\end{align*}
$$

Table 3.2.4 lists the σ^{*} values at 0° (or 180°), 60° (or 120°) and 90° torsion angles for these systems.

Table 3.2.4 The angle dependence feature of σ^{*}.

	σ^{*}	$\sigma_{0}^{*}=\sigma_{180}^{*}$	$\sigma_{60}^{*}=\sigma_{120}^{*}$	σ_{90}^{*}
OR	0.66	0.89	0.47	0.33
SR	0.53	0.83	0.31	0.13
NR_{2}	0.11	0.61	0.29	0.18
$\mathrm{SO}_{2} \mathrm{R}$	1.32	1.72	0.85	0.56
$\mathrm{~N}^{-} \mathrm{R}_{3}$	1.9^{*}	1.88^{*}	0.91^{*}	0.59^{*}

* refer to the note of Table 3.2.3.

It is obvious that the angle dependent term, $\sigma^{*}{ }_{\theta}$, reaches its maximum at 0° or 180° torsion angle, and drops to its minimum at 90°. The traditional term, σ^{*}, falls into the range, but the size of the range is not trivial. The angular variation of σ^{*} may account at least in part for the considerable variation in the σ^{*} value for a particular substituent that may be found in the literature. Exner, ${ }^{84}$ for example, lists six values for the σ_{1} for the methoxy group; these correspond to σ^{*} values ranging from 0.51 to 0.76 .

The analysis above introduces the angle dependence feature of the substituent constant from the negative hyperconjugation (or anomeric effect). We realize that, for some series, it may not be the only reason; in the ammonio system another factor, the field effect, may change it as well. This will be discussed in the next section.

3.2.4 DISCUSSION OF THE TRIALKYLAMMONIO SYSTEM
 - THE ‘REVERSE' ANOMERIC EFFECT

3.2.4.1 A Brief Introduction to 'Reverse Anomeric Effect'

Among the substituents considered in this Chapter is the trialkylammonio group. This substituent is of special interest since positively charged nitrogens are known to show unusual behavior in anomeric effect studies, to the point that a reverse anomeric effect has been postulated.

The reverse anomeric effect refers to an apparent preference for the equatorial conformation in some systems (Scheme 3.2.8 and 3.2.9), where the anomeric substituent is positively charged such as the ammonio group; such a preference is believed to exist independently of or in addition to steric factors normally favoring the equatorial over the axial conformation. The idea of a reverse anomeric effect was presented by Lemieux and Morgan ${ }^{83}$ who studied the conformational equilibria of the N -(tetra- O -acetyl-D-gluco-pyranosyl)-4-methylpyridinium ions (Scheme 3.2.8) and the N -(tri-O-acetyl-D-2-deoxy-2-iodomannopyranosyl)-4-methylpyridinium ions (Scheme 3.2.9). They concluded that the positively-charged electronegative substituents prefer the equatorial over the axial orientation.

Obviously, the reverse anomeric effect cannot be explained directly by negative hyperconjugation. If a 'normal' anomeric effect functions, as illustrated in Figure 1.3.1 b, a positive charge on the nitrogen should lower the energy of σ^{*} orbital of $\mathrm{C}-\mathrm{X}^{*}$, and thus enhance the anomeric stabilization.

Scheme 3.2.8

Scheme 3.2.9

Considerable effort has been made to explain the reverse anomeric effect. ${ }^{15}$ The first explanation came from Lemieux and Morgan, ${ }^{83}$ when they first postulated the phenomenon. Their argument was based on the interpretation of the anomeric effect (Figure 3.2.4) in terms of electrostatic interactions. In the 'normal' anomeric effect (when X is neutral), the dipole-dipole repulsion may destabilize the equatorial conformer, where there is little effect in the axial conformer; in the reverse anomeric effect, however, a positive substituent X is expected to reverse the $\mathrm{C}-\mathrm{X}$ dipole direction, and thereby to stabilize the equatorial conformer. This theory was criticized by Perrin: ${ }^{15}$ "this explanation cannot be valid, since the dipole moment has no intrinsic meaning when
there is net charge". Instead, Perrin suggested ${ }^{15}$ that it is more acceptable if the interaction is regarded as between a monopole (X^{-}) and a dipole. When X^{-}is equatorial, the positive charge is closer to the negative end of the dipole and thus stabilizes the equatorial conformation, which will lead to a reverse anomeric effect.

Figure 3.2.4 An electrostatic interpretation of the reverse anomeric effect.

However, Perrin cited an example ${ }^{15}$ that a stable "boat form", based on ${ }^{1} \mathrm{H}$ NMR information, for the N-(tetrahydroxy- α-D-glucopyranosyl)pyridinium ion ($\mathbf{B 1}$ or $\mathbf{B 2}$, Scheme 3.2.10) cannot be accounted for by the electrostatic interpretation because $\mathbf{B} \mathbf{2}$ is "apparently stabilized even though the positive charge has moved away from the negative end of the dipole". So, Perrin suggested that "this electrostatic interpretation is not entirely satisfactory". However, the evidence in favour of B2 does not appear to be conclusive, and in the same paper, ${ }^{15}$ Perrin said "the variation with solvent is consistent with a contribution of a reverse anomeric effect arising from monopole-dipole interactions".

B1

B2

Scheme 3.2.10

The nature of the reverse anomeric effect is still the topic of controversy. One of the arguments is that in those systems some other complicating factors may be concealing the truth. For example, in a 2-substituted (X) tetrahydropyran system, when X is trimethylammonio group (Scheme 1.3.2), Kirby and Williams ${ }^{14 \mathrm{~b}}$ pointed out that the trimethylammonio group is bulky, being sterically equivalent to t-butyl group. Such a bulky group will make it impossible to stay axial. Also in a solvent system like water, whe high solvation of the positively charged nitrogen may be expected to greatly "enlarge" the size of the substituent. So, the steric effect is an important factor which has to be well understood before the nature of the reverse anomeric effect can be accepted by more people.

A 'normal' anomeric effect has also been found in some positively-charged systems. For example, 2-(trimethylphosphonio)-1,3-dithiane (2) ${ }^{85}$ was shown to have a 2:1 preference for axial ${ }^{+} \mathrm{PMe}_{3}$ despite a steric repulsion estimated as $1.8 \mathrm{kcal} / \mathrm{mol}$ (Scheme 3.2.11).

$2: 1$

Scheme 3.2.11

Thus. although electrostatic attraction can explain the reverse anomeric effect, this effect simply cannot be explained by the $n-\sigma^{*}$ delocalization, which is currently the most favoured explanation to account for the anomeric effect in general. In view of the questions and counterexamples, the reverse anomeric effect is under reinvestigation. ${ }^{15}$

3.2.4.2 The Monopole Nature of the $\mathbf{C}-\mathbf{N}^{+}$Bond and its Influence on the Field Effect

As part of our analysis of electronic effects of a substituent, we have carried out calculations of the variation of field effect with the torsion angle of (a) a dipole-dipole interaction and (b) a dipole-monopole interaction, using the classic treatments of Kirkwood and Westheimer ${ }^{86}$ and Bjerrum. ${ }^{87}$ We are immediately struck by the result that the variations with torsion angle are reversed (Figure 3.2.5). For a dipole, as mentioned before (see Section 2.2.4), the maximum stabilization by the field effect occurs when the $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{X}$ torsion angle is 0° and the minimum stabilization when the torsion angle is 180°; the partial negative charge on X actually destabilizes the developing negative charge, while the partial positive charge on the carbon stabilizes it. On the other hand, for the monopole, the positive charge on N^{+}stabilizes the partial negative charge (developed in the transition state) the most at the $0^{\circ} \mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{X}$ torsion angle while the least at the
$180^{\circ} \mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{N}^{-}$torsion angle. Note, it is by no means obvious where the negative charge is located in the transition state, and in Figure 3.2.5 it is centered on the leaving hydrogen atom only as a reasonable approximation.

180° torsion angle Less destabilization from X

DIPOLE
0° torsion angle Greater destabilization from X

MONOPOLE
0° torsion angle Greater stabilization from N^{+}
180° torsion angle Less stabilization from N^{+}

Figure 3.2.5 The different field effects between monopole and dipole. Note: the influence of the carbon bearing the X or N^{+}does not change with the torsion angle.

The question is how much difference in the field effect, in the monopolar system as described above, can be made by changing the $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{X}$ torsion angle. For a monopole, the influence of the charge at the $\alpha-\mathrm{C}$ on the negative charge of the reacting center - the position of the α-H for simplicity - stays constant in terms of field effect. Therefore, we can say that the stabilization difference comes from the positive charge at the N^{+}. One can show ${ }^{86.87}$ that the free energy of charges. q_{1} and q_{2}, separated by a distance r, is equal to $q_{l} q_{2} /\left(D_{\text {eff }} r\right)$, where $D_{\text {eff }}$ is a parameter related to effective dielectric constant $\left(\mathrm{D}_{\mathrm{E}}\right): \mathrm{D}_{\text {eff }}=4 \pi \varepsilon_{0} \mathrm{D}_{\mathrm{E}} ; \varepsilon_{0}$ is the permittivity of free space. For 1 mol of molecules, we have

$$
\begin{equation*}
\Delta E=\left(N q_{1} q_{2}\right) /\left(4 \pi \varepsilon_{0} D_{E} r\right) \tag{eq 3.2.12}
\end{equation*}
$$

where N is $6.01 \times 10^{23} \mathrm{~mol}^{-1}$, Defining $k_{\mathrm{N}}=k / k_{0}$, where k_{0} is the rate without any influence of the field effect, while k is the rate with the influence from the field effect, for $\mathrm{T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$, we have

$$
\begin{equation*}
\Delta \mathrm{E}=\mathrm{RT} \ln k_{\mathrm{N}} \tag{eq 3.2.13}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\log _{10} k_{\mathrm{N}}=\left(\mathrm{Nq}_{1} \mathrm{q}_{2}\right) /\left(9.212 \pi \varepsilon_{0} \mathrm{D}_{\mathrm{E}}\ulcorner\mathrm{RT})\right. \tag{eq 3.2.14}
\end{equation*}
$$

In the present situation, the magnitude of the charge on nitrogen is taken to be equal to that of the electron, $1.60 \times 10^{-19} \mathrm{C}$. The developing anionic charge can be regarded as approximately 0.75 of an electron charge, or $0.75 \times 1.60 \times 10^{19} \mathrm{C}$, and ε_{0} is 8.854×10^{-12} $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ (see the discussion of the field effect of a dipole in Appendix A). An estimation of the distance (r) between N^{+}and the reacting center, depending on the $\mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\alpha}-$ $\mathrm{C}_{\beta}-\mathrm{N}^{+}$torsion angle, was obtained by a PCModel calcuiation on trimethylethylammonium model system (Figure 3.2.5). For different values of D_{E}, the values of $\log k_{\mathrm{N}}$ can be
calculated (Table 3.2.5). The torsion angle dependence of the field effect both in our alkoxy system (as is described in Chapter 2) and in our ammonio system are displayed in Figure 3.2.6.

From Figure 3.2.6, it is clearly shown that in our ammonio system the stabilization due to the field effect will be the smallest at the 180° torsion angle and greatest at the 0° torsion angle; the difference of $\log _{10} k_{N}$ between them is greatly influenced by the dielectric constant $\left(D_{E}\right)$. For example, if D_{E} should be equal to 4 (which gives a reasonable value for the evaluation of the field effect in a dipole system in Appendix B), we have $\log _{10} k_{\mathrm{N}}=4.4$. indicating a huge rate difference due to the field effect. If D_{E} is 10 on the other hand, we get $\log _{10} k_{\mathrm{N}}=1.76$ (or $k_{\mathrm{N}}=57$); and even if D_{E} is 15 , the influence of the field effect on the reaction rate $\left(k_{\mathrm{N}}=15\right)$ is still not trivial. It is difficult to obtain an accurate value for the effective dielectric constant $\left(D_{E}\right)$ for the actual space between the N^{+}and the reacting center. For a vacuum, D_{E} is 1 ; in a solvent system, the maximum value for D_{E} is presumably to be that of the solvent.

Figure 3.2.6 The angle dependence of the field effect in a dipole-dipole (filled symbols) and a monopole-dipole (unfilled symbols) systems.

Table 3.2.5 The angle dependence of the field effect in the ammonium monopole system.

Torsion angle $\left({ }^{\circ}\right)$	$\mathrm{R}(\AA)$	$\log k_{\mathrm{N}}$		
		if $\mathrm{D}_{\mathrm{E}}=4$	if $\mathrm{D}_{\mathrm{E}}=10$	if $\mathrm{D}_{\mathrm{E}}=15$
180	3.539	13.06	5.22	3.48
178.28	3.538	13.06	5.22	3.48
170.28	3.533	13.08	5.23	3.49
160.28	3.515	13.15	5.26	3.51
150.28	3.486	13.25	5.30	3.53
140.28	3.445	13.41	5.36	3.58
130.28	3.395	13.61	5.44	3.63
120.28	3.335	13.85	5.54	3.69
110.28	3.286	14.06	5.62	3.75
100.28	3.194	14.467	5.79	3.86
90.28	3.117	14.82	5.93	3.95
80.28	3.037	15.21	6.09	4.06
70.28	2.958	15.62	6.25	4.17
60.28	2.881	16.04	6.42	4.28
50.28	2.81	16.44	6.58	4.38
40.28	2.748	16.81	6.73	4.48
30.28	2.695	17.14	6.86	4.57
20.28	2.656	17.40	6.96	4.64
10.28	2.632	17.56	7.022	4.68
0.28	2.623	17.62	7.046	4.70

3.2.4.3 The Substituent Effect in the Ammonio System

From Table 3.2.1, we see that the k_{N} value for the $180^{\circ} \mathrm{H}_{a}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\beta}-\mathrm{N}^{-}$torsion angle compound $\left(\left(\mathbf{N}^{+}\right)_{180}\right)$ reacted much faster than that for the 60° one $\left(\left(N^{+}\right)_{60}\right)$; this is clearly not a 'reverse anomeric effect'.

$\left(\mathbf{N}^{+}\right)_{180}$
$\log k_{\mathrm{N}}=9.18$

$\left(\mathbf{N}^{+}\right)_{60}$
$\log k_{\mathrm{N}}=5.50$

The observation $\left(k_{\mathrm{N}}\right)_{60} \ll\left(k_{\mathrm{N}}\right)_{180}$ is not consistent with a field effect as described in Section 3.2.4.2 (which requires $\left(k_{\mathrm{N}}\right)_{60} \ll\left(k_{\mathrm{N}}\right)_{180}$, see Figure 3.2.6). It is also not consistent with the classical inductive effect, which requires $\left(k_{\mathrm{N}}\right)_{60}=\left(k_{\mathrm{N}}\right)_{180}$. It is, however, fully consistent with the anomeric effect (negative hyperconjugation). That is to say the negative hyperconjugation is the major contributor to k_{N} when $\theta \approx 0$ or 180°. The present results do not allow any decision as to whether the field effect is substantial or negligible. In light of the calculations embodied in Figure 3.2.6, it would seem likely that a substantial variation in field effect would accompany changes in torsion angle in, for example, 1-ammonio sugars.

Comparing our ammonio system with Lemieux and Morgan's system ${ }^{83}$ (Scheme 3.2.8 and 3.2.9), or with most examples mentioned under the topic of 'reverse anomeric effect', we realize that the most favorable arrangement for anomeric effect or hyperconjugative stabilization (in $\left(\mathbf{N}^{+}\right)_{180}$) does not require placing the ammonio group into an axial conformation. The complicating factor from steric effect (see Kirby and

William's argument in section 3.2.4.1) does not apply to our system. Also our system is much simpler, and thus, decreases the possibility of other complicating factors. As has been mentioned in section 3.2.4.1, Perrin mentioned a stable 'boat' conformation (B2 in Scheme 3.2.10) that cannot be explained by the 'electrostatic interpretation'. We notice that this example is too complicated to serve as a good counter-example to the electrostatic explanation. The evidence in favor of $\mathbf{B} 2$ over $\mathbf{B 1}$ does not appear to be conclusive. In B1 an obvious complicating factor may come from the oxygen at C_{2}. The partially negative charged oxygen at the C_{2} may stabilize the positive charge (by the field effect) differently at different conformations. For example, the distance between the partially negative oxygen and the positive ammonio group, in the B1 conformation, is obviously very close, and extra stabilization may result from this.

In summary, the total polar effect may be described as the sum of three effects: (a) an angle dependent negative hyperconjugation (or generalized anomeric effect) which stabilizes the reacting center to the same extent in the conformation with a $0^{\circ} \mathrm{H}_{\alpha}-\mathrm{C}_{a}-\mathrm{C}_{\beta}$ N^{+}torsion angle and in that with a 180° torsion angle, but with a minimum at the 90° torsion angle; (b) an angle dependent field effect which is expected to vield a higher stabilization for the conformation with a $0^{\circ} \mathrm{H}_{\mathrm{a}}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{N}^{+}$torsion angle than that with a 180° torsion angle; and (c) an angle independent inductive effect. Based on this, the cosine line for the ammonio system in Figure 3.2.3 may not be appropriate because it ignores the field effect which may be important in a monopole system, as discussed above. A more reasonable plot for the ammonio system should be the addition of the cosine line as shown in Figure 3.2.3 and a pattern similar to what is displayed in Figure 3.2.6. An illustration is shown in Figure 3.2.7.

Figure 3.2.7 An illustration of angle dependence of combination of field effect and negative hyperconjugation in ammonio system. Experiments designed to shed light on this matter are currently underway in this laboratory.

3.3 CONCLUSION

A strong dependence on the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{X}$ torsion angle of a substituent has been found experimentally for beta $\mathrm{OR}, \mathrm{SR}, \mathrm{NR}_{2} . \mathrm{SO}_{2} \mathrm{R}$, and $\mathrm{N}^{-} \mathrm{R}_{3}$ substituents. By extension, we can infer from these observations that the torsion angle dependence is a general phenomenon, capable of appearing to a greater or lesser measure with all substituents. The effect can be small or negligible with some substituents (e.g. alkyl groups), but with most heteroatomic substituents it must be significant.

Similarly, we can infer that the angle dependence of σ^{*} is general. The value of σ_{θ}^{*} reaches its maximum at 0° or 180° torsion angle, and drops to its minimum at 90°; and the traditional term, σ^{*}, probably represents a weighted average involving different conformers each with its own torsion angle (θ) and hence, each with different reactivity. This may explain why a different σ^{*} value is found in different literature sources for the same substituent.

In our positively charged ammonio system, the $180^{\circ} \mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{N}^{+}$torsion angle compound $\left(\left(\mathbf{N}^{+}\right)_{180}\right)$ exchanged much faster than that for the 60° one $\left(\left(\mathbf{N}^{+}\right)_{60}\right)$. This is not consistent with a field effect, and also not consistent with the classic inductive effect. It is clearly not a 'reverse anomeric effect'. It is, however, fully consistent with the normal anomeric effect (negative hyperconjugation), and the negative hyperconjugation is the major contributor to k_{N} when $\theta \approx 0$ or 180°. Therefore, any discussion on the 'reverse anomeric effect' has to include a strong normal anomeric effect (negative hyperconjugation) as a factor.

3.4 EXPERIMENTAL

3.4.1 PREPARATION OF SULFONES

The general procedure and instrumentation are as described in the experimental part of Chapter 2.
N-Methylthiomorpholine 1,1-dioxide (\mathbf{N}_{180}) was obtained directly from Lancaster Synthesis Ltd. Tetrahydrothiapyran was obtained from Aldrich Chemical Company, Inc.

Preparation of 1,4-Dithiane, 1,1-dioxide $\left(\mathrm{S}_{180}\right)^{76}$

To a rapidly stirred solution of 1,4 -dithiane ($3.0 \mathrm{~g}, 25.0 \mathrm{mmol}$) in chloroform (200 mL) maintained at $-20^{\circ} \mathrm{C}$ in an dry ice/acetone bath under a nitrogen atmosphere, a solution of 85% m-chloroperbenzoic acid ($5.58 \mathrm{~g}, 27.4 \mathrm{mmol}$) in chloroform (150 mL) was added slowly. The resulting solution was stirred at $-20^{\circ} \mathrm{C}$ for another 1.5 h and then was warmed slowly to room temperature and then kept there for an additional 2 h . Anhydrous ammonia was bubbled into the reaction mixture, and the resulting white precipitate, ammonium m-chlorobenzoate, was removed by filtration. The filtrate was treated with ammonia a few more times, and filtered again. The filtrate was then concentrated under reduced pressure to give a white solid. By comparing its ${ }^{13} \mathrm{C}$ NMR spectrum with reported ${ }^{13} \mathrm{C}$ NMR information, ${ }^{76}$ it was concluded that the white solid was a mixture of 1,4-dithiane 1-oxide ($\sim 40 \%$), 1,4-dithiane 1,4-dioxide ($\sim 30 \%$) and 1,4dithiane ($\sim 30 \%$).

A solution of the mixture obtained above $(0.60 \mathrm{~g})$, magnesium sulfate $(1.5 \mathrm{~g}, 12.5$ $\mathrm{mmol})$ in acetone $(80 \mathrm{~mL})$ in a round-bottom flask was cooled to $-30^{\circ} \mathrm{C}$ in a dry ice/acetone bath. Potassium permanganate $(0.47 \mathrm{~g}, 3.0 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ was
added slowly with constant stirring. After the addition was complete, the reaction mixture was kept at $-30^{\circ} \mathrm{C}$ for another 90 min and then warmed to room temperature. Excess sodium metabisulfite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}\right)$ was then added and the mixture stirred for a few minutes. The solution was filtered and the removal of solvent gave a white solid (400 mg). Thick layer chromatography (4:1 methylene chloride/ethyl acetate, silica gel) and then recrystallization from chloroform gave pure $\mathbf{S}_{180}(360 \mathrm{mg}) ; \mathrm{mp} 202-204{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.05-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{5}\right) \delta 54.1$, 27.7; These data are consistent with the reported values. ${ }^{76}$

Preparation of 1,4-Dithiadecalin 1,1-dioxide ($\mathbf{S}^{\prime}{ }_{180}$)

a) trans-2-(2-Hydroxyethylthio) cyclohexanol ${ }^{77}$

Cyclohexene oxide ($12.5 \mathrm{~g}, 128 \mathrm{mmol}$) was added dropwise to a solution of mercaptoethanol ($10.0 \mathrm{~g}, 128 \mathrm{mmol}$) and potassium hydroxide ($7.2 \mathrm{~g}, 128 \mathrm{mmol}$) in methanol (100 mL). The reaction mixture was stirred at room temperature for 12 h . Workup as usual gave trans-2-(2-hydroxyethylthio)-cyclohexanol as a white solid (20.5 g, 90% yield); mp $45-47^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{77} 45-48^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.2-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.6-1.9$ $(\mathrm{m}, 2 \mathrm{H}), 2.0-2.2(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.01$ (br s, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.4,26.3,33.5,33.9,34.3,53.2,61.7,73.4$.

b) trans-2-Chlorocyclohexyl 2-chloroethyl sulfide ${ }^{31}$

trans-2-(2-Hydroxyethylthio)-cyclohexanol ($5 \mathrm{~g}, 28.4 \mathrm{mmol}$) in
1,2-dimethoxyethane (DME, 10 mL) was added to concentrated hydrochloric acid (25 mL) and the reaction mixture was stirred overnight. The usual workup gave
trans-2-chloro-cyclohexyl 2-chloroethyl sulfide as a colorless liquid in quantitative yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 1.22-1.85(\mathrm{~m} .6 \mathrm{H}), 2.16-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m} .1 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H})$, $3.65(\mathrm{~m} .2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.5,24.0,31.6,34.4$ (double intensity), 43.2. 51.3, 64.0.

c) trans-1,4-Dithiadecalin ${ }^{78}$

trans-2-Chlorocyclohexyl 2-chloroethyl sulfide ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(8.2$ g. 34 mmol), ethanol (600 mL), and water (200 mL) were mixed and refluxed for 6 h . Ice-water (600 mL) was added and the precipitate was removed by filtration. The precipitate was recrystallized from ethanol : water and sublimation $\left(70^{\circ} \mathrm{C}, 1.2\right.$ torr) gave trans-1,4-dithiadecalin: ($1.05 \mathrm{~g}, 60 \%$ yield) as white crystals. The trans stereochemistry about the $\mathrm{C} 9, \mathrm{Cl} 0$ ring junction has been determined from the method of synthesis; ${ }^{78} \mathrm{mp}$ $72-74{ }^{\circ} \mathrm{C}$ (lit. ${ }^{78} \mathrm{mp} 77-78{ }^{\circ} \mathrm{C}$, and lit. ${ }^{79} \mathrm{mp} 72-72.5^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ \& 1.0-2.0 (m, $8 \mathrm{H}), 2.5-3.5(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.4,31.2,32.7,47.1$; these data are consistent with reported values. ${ }^{79}$

d) trans-1,4-Dithiadecalin 1-oxide ${ }^{79}$

Peroxybenzoic acid ($\sim 75 \%, 460 \mathrm{mg}, 2.5 \mathrm{mmol}$, freshly prepared from benzoic acid and hydrogen peroxide by the literature method ${ }^{80}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added to a solution of trans-1,4-dithiadecalin ($400 \mathrm{mg}, 2.3 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ maintained at $-20^{\circ} \mathrm{C}$ in an acetone/dry ice bath under a nitrogen atmosphere. The solution was stirred for 1.5 h and then warmed to room temperature for an additional 2 h . Workup as usual gave a white solid (380 mg). Comparison of its ${ }^{13} \mathrm{C}$ NMR spectrum with the information
given by Rooney and Evans. ${ }^{79}$ indicated it to be a mixture of trans-1.4-dithiadecalin 1-exo-oxide (-35%), trans-1 , 4-dithiadecalin 1-endo-oxide ($\sim 35 \%$), and an unidentified material. This mixture was used without further separation. ${ }^{13} \mathrm{C}$ NMR for the equatorial isomer $\left(\mathrm{CDCl}_{3}\right) \delta 24.9(\mathrm{C} 6), 25.1(\mathrm{C} 7), 25.4(\mathrm{C} 3), 26.8(\mathrm{C} 8), 31.4(\mathrm{C} 5), 43.2(\mathrm{C} 10), 52.4$ (C2), 67.9 (C9): ${ }^{13} \mathrm{C}$ NMR for the axial isomer $\left(\mathrm{CDCl}_{3}\right) \delta 17.9$ (C3), 25.5 (C6). 25.7 (C7), 28.3 (C8), 31.9 (C5), $34.0(\mathrm{C} 10), 47.2(\mathrm{C} 2), 59.7(\mathrm{C} 9)$; the equatorial and axial configurations and ${ }^{13} \mathrm{C}$ NMR signals were those assigned by Rooney and Evans. ${ }^{79}$

e) trans-1,4-Dithiadecalin 1,1-dioxide $\left(\mathrm{S}^{\prime}{ }_{180}\right)^{79}$

To the solution of acetone (20 mL) containing the mixture obtained above (350 mg , approximately 1.29 mmol of equatorial and axial sulfoxides), magnesium sulfate ($625 \mathrm{mg}, 5.2 \mathrm{mmol}$) was added and cooled to $-30^{\circ} \mathrm{C} . \mathrm{KMnO}_{4}(195 \mathrm{mg}, 1.23$ mmol) in acetone (25 mL) was added slowly with constant stirring. After the addition was complete, the reaction mixture was kept at $-30^{\circ} \mathrm{C}$ for another 90 min and then warmed to room temperature. Excess sodium metabisulfite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}\right)$ was then added and the mixture stirred for a few minutes. The solution was filtered and the removal of solvent from the filtrate gave a yellowish solid. This solid was then dissolved in methylene chloride, washed with water, and then the organic layer dried over MgSO_{4}. The solvent was removed to give a white solid. Separation by column chromatography (using alumina as the solid phase and hexane, methylene chloride, and ethyl acetate in sequence as the eluents) gave pure $\mathbf{S}^{\prime}{ }_{180}(178 \mathrm{mg}, 0.86 \mathrm{mmol}) ; \mathrm{mp} 138-142{ }^{\circ} \mathrm{C}$ (lit. ${ }^{79} \mathrm{mp}$ $138-142{ }^{\circ} \mathrm{C}$); ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.2-2.4(\mathrm{~m}, 8 \mathrm{H}), 2.79$ (symmetric m, IH), 2.96 (symmetric m, 1 H), 3.10-3.60(m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.2$ (C8), 24.5 (C6), 25.2
(C7), 26.5 (C3), 31.1 (C5), 44.1 (C10), 53.6 (C2). 68.0 (C9); the ${ }^{13} \mathrm{C}$ NMR assignments are those given by Rooney and Evans. ${ }^{79}$

Preparation of 1,4-dithiadecalin 1,1,4,4-tetraoxide (($\left.\mathrm{SO}_{2}\right)_{180}$)

trans-1 ,4-Dithiadecalin (50 mg) and hydrogen peroxide ($30 \%, 4 \mathrm{~mL}$) in acetic acid (2 mL) was refluxed for 30 min . After the resulting solution was cooled down slowly, white crystals precipitated out. The precipitate was filtered and washed with a large amount of water and dried to give $\left(\mathbf{S O}_{2}\right)_{180}(40 \mathrm{mg}, 85 \%$ yield $) . \mathrm{mp} 195-210{ }^{\circ} \mathrm{C}$ (with sublimation), $289-291^{\circ} \mathrm{C}$ (determined in a sealed capillary, lit. ${ }^{78} 288{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.38(\mathrm{~m}, 2 \mathrm{H})$, 3.29-3.42 (m, 2H), 3.40-3.53(m, 2H), 3.68-3.88(m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.2,23.3$, 49.0, 61.6.

Preparation of 3-(methylsulfonyl)tetrahydrothiapyran 1,1-dioxide (\mathbf{S}_{60})

(a) 3-Bromotetrahydrothiapyran 1,1-dioxide ${ }^{81}$

A suspension of alcohol-free sodium ethoxide (freshly prepared from 3.34 g of sodium) in dry ether (80 mL) was cooled in an ice bath, while ethyl γ-(carbethoxymethylmercapto)butyrate was added dropwise to the mechanically stirred suspension over a 30 \min period. The mixture was stirred in the ice bath for another hour, after which it was treated with a mixture of glacial acetic acid $(10 \mathrm{~mL})$ and ice water $(60 \mathrm{~mL})$. The aqueous solution was separated and extracted with ether ($3 \times 40 \mathrm{~mL}$). The combined ether layer was washed with aqueous sodium bicarbonate, dried over anhydrous MgSO_{4} and distilled to give 2-carbethoxytetrahydrothiapyran-3-one as a colorless oil (80\% yield); bp 100 -
$102{ }^{\circ} \mathrm{C} / 0.6-0.8$ torr (lit. $.^{81} \mathrm{bp} 117-120{ }^{\circ} \mathrm{C} / 4$ torr).
A mixture of 2-carbethoxytetrahydrothiapyran-3-one ($8.0 \mathrm{~g}, 42.5 \mathrm{mmol}$) and 10% of sulfuric acid (60 mL) was refluxed for 6 h , after which it was cooled and the layers were separated. The aqueous layer was extracted several times with ether and the extracts were added to the original oil layer. The ether solution was washed with sodium bicarbonate solution. water and then dried over magnesium sulfate. Fractional distillation of the ether solution gave tetrahydrothiapyran-3-one as a colorless liquid (72.3% yield); bp 66-68 ${ }^{\circ} \mathrm{C} / 3.8$ torr (lit. ${ }^{31}$ bp $101-102 \cdot{ }^{\circ} \mathrm{C} / 18$ torr); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.35-2.50$ $(\mathrm{m}, 4 \mathrm{H}), 2.65-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 28.5,33.4,38.6,41.8$, 203.8.

Sodium borohydride ($0.17 \mathrm{~g}, 4.5 \mathrm{mmol}$) was added to a solution of tetrahydrothiapyran-3-one $(0.5 \mathrm{~g}, 4.3 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, and then 5% of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. The resulting mixture was extracted with methylene chloride three times, and the combined organic layer was washed first with sodium bicarbonate, then with saturated sodium chloride and finally dried over magnesium sulfate. Fractional distillation gave tetrahydrothiapyran-3-ol ($0.47 \mathrm{~g}, 92.4 \%$ yield); bp $76-78{ }^{\circ} \mathrm{C} / 2$ torr (lit. ${ }^{81} \mathrm{bp} 76-78{ }^{\circ} \mathrm{C} /$ 2 torr).

Freshly distilled phosphorus tribromide ($1.62 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added slowly to tetrahydrothiapyran-3-ol ($1.77 \mathrm{~g}, 15.0 \mathrm{mmol}$) while the mixture was stirred vigorously and cooled to about $10^{\circ} \mathrm{C}$ by an ice bath. After that, the viscous mixture was warmed to $70^{\circ} \mathrm{C}$ and then allowed to cool to room temperature. Water was added and the resulting mixture was extracted with ether several times. The combined ether layer was washed
with aqueous sodium bicarbonate and dried over magnesium sulfate. Fractional distillation gave 3-bromotetrahydrothiapyran as a colorless liquid ($1.90 \mathrm{~g}, 70 \%$ yield); bp $68-69{ }^{\circ} \mathrm{C} / 4$ torr (lit. ${ }^{81} \mathrm{bp} 68-69^{\circ} \mathrm{C} / 4$ torr).

To a solution of 3-bromotetrahydrothiapyran ($1.81 \mathrm{~g}, 10 \mathrm{mmol}$) in chloroform (80 mL). was added peroxybenzoic acid (about $75 \%, 4.65 \mathrm{~g}, 25 \mathrm{mmol}$. freshly prepared from benzoic acid and hydrogen peroxide by the literature method ${ }^{80}$) in chloroform (100 mL), while cooling in an ice bath to keep the temperature below $30^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 3 h . after which, it was heated slowly to boiling and then allowed to cool to room temperature. The chioroform solution was freed of acid by washing with aqueous sodium bicarbonate several times. Removal of solvent gave a semicrystalline residue, which was then recrystallized from benzene : hexane to give 3-bromotetrahydrothiapyran 1,1 -dioxide as pale yellow crystals; $\mathrm{mp} 89.5-91{ }^{\circ} \mathrm{C}$ (lit. ${ }^{81}$ $\left.\mathrm{mp} 90-91{ }^{\circ} \mathrm{C}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.0,35.3,40.7,50.4,60.2$.

(b) 3-(Methylthio)tetrahydrothiapyran 1,1-dioxide (S_{60})

The solution of 3-bromotetrahydrothiapyran 1,1-dioxide ($350 \mathrm{mg}, 1.64 \mathrm{mmol}$) and sodium thiomethoxide ($173 \mathrm{mg}, 2.46 \mathrm{mmol}$) in 2-butanol (30 mL) was refluxed for 1 h under a nitrogen atmosphere. Workup as usual and recrystallization from ethyl acetate : hexane gave \mathbf{S}_{60} as white needles ($210 \mathrm{mg}, 71 \%$ yield); $\mathrm{mp} 94-95^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.3-1.5(\mathrm{~m}, 1 \mathrm{H}), 2.0-2.5(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.5-3.2(\mathrm{~m}, 4 \mathrm{H}), 3.2-3.5(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.5,23.1,30.8,41.1,50.8,56.8$; Calcd. exact mass for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$: 180.0279. Found: 180.0276.

(c) 3-(Methyisulfonyl)tetrahydrothiapyran 1,1-dioxide ($\left.\left(\mathrm{SO}_{2}\right)_{60}\right)$

3-(Methylthio)tetrahydrothiapyran 1,1 -dioxide ($230 \mathrm{mg}, 1.28 \mathrm{mmol}$), glacial acetic acid $(\sim 1 \mathrm{~mL})$ and hydrogen peroxide $(30 \%$, about 2 mL$)$ were mixed and heated to $100^{\circ} \mathrm{C}$ for 15 min . After the reaction mixture was cooled, water (30 mL) was added and the mixture extracted with methylene chloride $(5 \times 40 \mathrm{~mL})$. The combined methylene chloride layer was then washed with 5% of aqueous $\mathrm{NaOH}(2 \times 30 \mathrm{~mL})$, saturated NaCl ($2 \times 60 \mathrm{~mL}$). Removal of the solvent and recrystallization from ethanol gave $\left(\mathbf{S O}_{2}\right)_{60}$ as white crystals ($57 \mathrm{mg} .21 \%$ yield); $\mathrm{mp} 210.5-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.30(\mathrm{~m}$. $1 \mathrm{H}), 2.05-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 2 \mathrm{H}), 4.0-4.2(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.0,23.5,38.6,49.8,50.8,59.1$; exact mass for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+1): 213.0255$. Found: 213.0261.

Preparation of 4,4-dimethyltetrahydro-1,4-thiazinium iodide $\left(\left(\mathbf{N}^{+}\right)_{180}\right)$

N-Methylthiomorpholine 1,1-dioxide ($\mathbf{N}_{180}, 50 \mathrm{mg}, 0.34 \mathrm{mmol}$) and methyl iodide ($238 \mathrm{mg}, 1.68 \mathrm{mmol}$) were mixed in methanol $(1 \mathrm{~mL})$ and stirred overnight at room temperature. Ether ($\sim 5 \mathrm{~mL}$) was added and the precipitate was filtered and washed with ether to give $\left(\mathbf{N}^{+}\right)_{180}$ as a while solid ($80 \mathrm{mg}, 82 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.2(\mathrm{~s}, 6 \mathrm{H})$, 3.5-3.7 (m, 4H), 3.8-4.0 (m, 4H); Calcd. exact mass for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}^{-}\right)$: 164.0745 . Found: 164.0739.

Preparation of 3-(dimethylamino)tetrahydrothiapyran (\mathbf{N}_{60})

a) 4H-2,3-dihydrothiapyran 1,1-dioxide ${ }^{82}$

Neat tetrahydrothiapyran ($5.0 \mathrm{~g}, 48.9 \mathrm{mmol}$) was cooled at $0^{\circ} \mathrm{C}$ with vigorous
stirring while 30% of hydrogen peroxide was added slowly. After the addition was complete, the mixture was stirred at room temperature overnight. Workup as usual gave tetrahydrothiapyran-1-oxide $(4.67 \mathrm{~g}, 81 \%$ yield $) .{ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.2-1.8(\mathrm{~m}, 4 \mathrm{H})$. 1.9-2.4(m. 2H), 2.5-3.0(m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 18.8, 24.4, 48.7.

A solution of tetrahydrothiapyran 1 -oxide ($1.5 \mathrm{~g}, 12.7 \mathrm{mmol}$) in acetic acid (6 mL) at $110^{\circ} \mathrm{C}$ was treated with acetic anhydride $(4.5 \mathrm{~mL}, 38.3 \mathrm{mmol})$ dropwise with stirring over a period of 45 min . After complete disappearance of the sulfoxide. as detected by thin-layer chromatography, the reaction mixture was diluted with ether (50 mL) and the excess acetic acid and acetic anhydride neutralized with 10% sodium bicarbonate. The ether layer was separated and dried over magnesium sulfate. Fractional distillation gave $4 H-2,3$-dihydrothiapyran ($1.14 \mathrm{~g}, 90 \%$ yield); bp $65-67^{\circ} \mathrm{C} / 55$ torr (lit. ${ }^{82}$ bp $65-66^{\circ} \mathrm{C} /$ 57 torr); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.85-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.70-3.00(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.75(\mathrm{~m}$, $1 \mathrm{H}), 5.90-6.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.3,23.6,26.1,119.0,121.1$.

OXONE® (potassium peroxymonopersulfate, $2 \mathrm{KHSO}_{\S} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}, 3.68 \mathrm{~g}$, 6.0 mmol) in water (15 mL) was added to a solution of $4 H$-2,3-dihydrothiapyran (0.40 g , 4.0 mmol) in methanol (15 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and then stirred for 4 h . Workup as usual gave 4H-2,3-dihydrothiapyran 1,1dioxide ($0.50 \mathrm{~g}, 95 \%$ yield) as white crystals; $\mathrm{mp} 44-46^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{82} \mathrm{mp} 45-46^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.20-2.60(\mathrm{~m}, 4 \mathrm{H}), 3.00-3.30(\mathrm{~m}, 2 \mathrm{H}), 6.25-6.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.5,24.6,50.5,129.8,138.6$.
b) 3-(Dimethylamino)tetrahydrothiapyran 1,1-dioxide (\mathbf{N}_{60})

4H-2,3-Dihydrothiapyran 1,1-dioxide ($50 \mathrm{mg}, 0.38 \mathrm{mmol}$) and dimethylamine
(1 mL) were sealed in a NMR tube and kept at room temperature for 2 da. The NMR tube was opened carefully while it was cooled in an ice bath. It was then warmed slowly to room temperature to let the excess dimethylamine evaporate. The residue was then dissolved in methylene chloride and washed with 10% hydrochloric acid, 5% sodium hydroxide. saturated sodium chloride, and then dried over magnesium sulfate. Removal of the solvent gave \mathbf{N}_{60} as a white solid in an almost quantitative yield; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.80-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.70-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 20.9. 27.3, 40.5. 51.1, 52.2, 60.4.

Preparation of 3-(trimethylammonio)tetrahydrothiapyran 1,1-dioxide $\left.\left(\mathbf{N}^{+}\right)_{60}\right)$

Methyl iodide ($100 \mathrm{mg}, 0.70 \mathrm{mmol}$) was added to a solution of 3-(dimethylamino)tetrahydrothiapyran 1,1-dioxide ($\mathrm{N}_{60}, 20 \mathrm{mg}, 0.11 \mathrm{mmol}$) in methanol (2 mL) and the reaction mixture was stirred overnight at room temperature. Diethyl ether (5 mL) was added and the precipitate was collected by filtration and rinsed with ether to give $\left(\mathbf{N}^{+}\right)_{60}$ as a white solid ($31 \mathrm{mg}, 86 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.40(\mathrm{~m}$, $2 \mathrm{H}), 2.90(\mathrm{~s}, 9 \mathrm{H}), 2.85-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.80(\mathrm{~m}, 2 \mathrm{H})$; Calcd. exact mass for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right):$192.1058. Found: 192.1058.

3.4.2 KINETIC MEASUREMENTS OF H-D EXCHANGE

The general procedure are as described in the experimental part (Section 2.5.2.1) of chapter 2. The results are listed in Table 3.4.1

Table 3.4.1 The Pseudo-first-order Rate Constants for H-D Exchange.

	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	solvent	$\begin{aligned} & \mathrm{NaOD} \\ & \text { (M) } \end{aligned}$	$\begin{aligned} & k_{\text {obs }} \\ & \left(\mathrm{s}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { calculated } \\ k_{\text {exch }} \\ \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{gathered}$	
\mathbf{S}_{180}	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ \vdots \\ \mathrm{D}_{2} \mathrm{O}(1: 1) \\ \hline \end{gathered}$	0.050	1.5×10^{-3}	3.0×10^{-2}	2.8×10^{-2}
			0.038	1.0×10^{-3}	2.6×10^{-2}	
\mathbf{S}_{60}	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \\ \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	0.100	2.3×10^{-5}	2.3×10^{-4}	2.7×10^{-4}
			0.050	1.5×10^{-5}	3.0×10^{-4}	
$\left(\mathrm{SO}_{2}\right)_{180}$	21	$\begin{gathered} \mathrm{CD}_{3} \mathrm{CN}: \\ \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \end{gathered}$	$\begin{gathered} 6.606 \times 10^{-8} \\ (7.62)^{\mathrm{b}} \end{gathered}$	1.9×10^{-5}	2.9×10^{2}	2.6×10^{2}
			$\begin{gathered} 5.248 \times 10^{-7} \\ (8.52)^{b} \end{gathered}$	1.2×10^{-4}	2.3×10^{2}	
$\left(\mathbf{S O}_{2}\right)_{60}$	21	$\mathrm{D}_{2} \mathrm{O}$	$\begin{gathered} 1.002 \times 10^{-4} \\ (10.50)^{\mathrm{b}} \end{gathered}$	1.15×10^{-5}	1.15×10^{-1}	1.13×10^{-1}
			$\begin{gathered} 3.990 \times 10^{-4} \\ (11.10)^{\mathrm{b}} \end{gathered}$	4.39×10^{-5}	1.10×10^{-1}	
\mathbf{N}_{180}	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ \vdots \\ \mathrm{D}_{2} \mathrm{O}(1: 1) \\ \hline \end{gathered}$	0.150	3.92×10^{-4}	2.61×10^{-3}	2.60×10^{-3}
			0.100	2.59×10^{-4}	2.59×10^{-3}	
\mathbf{N}_{60}	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \\ \mathrm{D}_{2} \mathrm{O}(1: 1) \\ \hline \end{gathered}$	0.200	3.3×10^{-5}	1.7×10^{-4}	1.6×10^{-4}
			0.100	1.5×10^{-5}	1.5×10^{-4}	

Table 3.4.1 Continued

$\left(\mathrm{N}^{+}\right)_{180}$	20	$\mathrm{D}_{2} \mathrm{O}$	$\begin{gathered} 1.125 \times 10^{-7} \\ (7.55)^{\mathrm{b}} \\ \left(3.7 \times 10^{-2} \mathrm{M}\right)^{\mathrm{c}} \end{gathered}$	1.69×10^{-4}	1.50×10^{3}	1.50×10^{3}
			$\begin{gathered} 5.902 \times 10^{-8} \\ (7.27)^{\mathrm{b}} \\ \left(5.8 \times 10^{-2} \mathrm{M}\right)^{\mathrm{c}} \\ \hline \end{gathered}$	8.88×10^{-5}	1.50×10^{3}	
			$\begin{gathered} 3.556 \times 10^{-8} \\ (7.05)^{\mathrm{b}} \\ \left(1.4 \times 10^{-1} \mathrm{M}\right)^{\mathrm{c}} \\ \hline \end{gathered}$	5.32×10^{-5}	1.49×10^{3}	
$\left(\mathrm{N}^{+}\right)_{60}$	20	$\mathrm{D}_{2} \mathrm{O}$	$\begin{gathered} 3.990 \times 10^{-4} \\ (11.10)^{\mathrm{b}} \end{gathered}$	2.5×10^{-4}	6.3×10^{-1}	6.3×10^{-1}
			$\begin{gathered} 1.002 \times 10^{-6} \\ (8.50)^{\mathrm{b}} \end{gathered}$	6.3×10^{-7}	6.3×10^{-1}	
22	25	$\begin{gathered} \text { Dioxane- } d_{8} \\ : \\ \mathrm{D}_{2} \mathrm{O} \\ (1: 1) \\ \hline \end{gathered}$	0.100	3.2×10^{-7}	3.2×10^{-6}	3.1×10^{-6}
			0.050	1.5×10^{-7}	3.0×10^{-6}	

Note:
c) The values shown in parentheses are calculated values on a per-hydrogen basis.
d) The values shown in parentheses are pH readings for the buffers.
e) The values shown in parentheses are the concentration of phosphate $\left(\left[\mathrm{PO}_{+}^{3-}\right]\right)$.

APPENDIX A

The relative positions of X (O in our cases), ($\beta-$) C, ($\alpha-$) $\mathrm{C},(\alpha-) \mathrm{H}$ can be obtained from the calculation results from PCMODEL for the conformation depicted as Figure 2.2.2, and the results are listed in Table A.1. From the x, y, z coordinates, the values of ζ and r are readily obtained as follows.

The coordinates of M_{a} in case of Figure 2.2.5 (b):

$$
\begin{aligned}
& x\left(M_{u}\right)=\left(x_{u}+x_{H}\right) / 2: \\
& y\left(M_{a}\right)=\left(y_{a}+y_{H}\right) / 2: \\
& z\left(M_{\omega}\right)=\left(z_{a}+z_{H}\right) / 2
\end{aligned}
$$

The coordinates of M_{a} in case of Figure 2.2 .5 (c):

$$
\begin{aligned}
& \mathrm{x}\left(\mathrm{M}_{\alpha}\right)=\left[\left(\mathrm{x}_{\alpha}+\mathrm{x}_{\mathrm{H}}\right) / 2+\mathrm{x}_{\mathrm{H}}\right] / 2 ; \\
& \mathrm{y}\left(\mathrm{M}_{\alpha}\right)=\left[\left(\mathrm{y}_{\alpha}+\mathrm{y}_{\mathrm{H}}\right) / 2+\mathrm{y}_{\mathrm{H}}\right] / 2 ; \\
& \mathrm{z}\left(\mathrm{M}_{\alpha}\right)=\left[\left(\mathrm{z}_{\alpha}+\mathrm{z}_{\mathrm{H}}\right) / 2+\mathrm{z}_{\mathrm{H}}\right] / 2 .
\end{aligned}
$$

The coordinates of M_{β} are:

$$
\begin{aligned}
& x\left(M_{\beta}\right)=\left(x_{\beta}+x_{0}\right) / 2 \\
& y\left(M_{\beta}\right)=\left(y_{\beta}+y_{0}\right) / 2 \\
& z\left(M_{\beta}\right)=\left(z_{\beta}+z_{0}\right) / 2
\end{aligned}
$$

A general formula can be used to obtain the distance, say between point A and B (x and y represent the coordinates):

$$
A B=\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}+\left(z_{A}-z_{B}\right)^{2}} .
$$

In case of Figure 2.2.5 (a):

$$
r_{a}=\sqrt{\left(x\left(M_{\beta}\right)-x_{H}\right)^{2}+\left(y\left(M_{\beta}\right)-y_{H}\right)^{2}+\left(z\left(M_{\beta}\right)-z_{H}\right)^{2}} ;
$$

in case of Figure 2.2.5 (b) and (c):

$$
r_{b}\left(r_{c}\right)=\sqrt{\left(x\left(M_{\beta}\right)-x\left(M_{\alpha}\right)\right)^{2}+\left(y\left(M_{\beta}\right)-\nu\left(M_{\alpha}\right)\right)^{2}+\left(z\left(M_{\beta}\right)-z\left(M_{\alpha}\right)\right)^{2}} .
$$

Now the distances can be used to calculate $\cos \zeta$. In case of Figure 2.2 .5 (a) (see footnote):

$$
\cos \zeta=\frac{\left(M_{\beta} C_{\beta}\right)^{2}+\left(M_{\beta} H\right)^{2}-\left(C_{\beta} H\right)^{2}}{2\left(M_{\beta} C_{\beta}\right)\left(M_{\beta} H\right)}
$$

while in case of Figure 2.2 .5 (b) and (c):

$$
\cos \zeta=\frac{\left(M_{\beta} C_{\beta}\right)^{2}+\left(M_{\beta} M_{\alpha}\right)^{2}-\left(C_{\beta} M_{\alpha}\right)^{2}}{2\left(M_{\beta} C_{\beta}\right)\left(M_{\beta} M_{\alpha}\right)} .
$$

Footnote: the calculation of the cosine value of an angle in a triangle.

$$
\begin{aligned}
& \text { In a triangle } \\
& \because \quad \mathrm{AD}=\mathrm{AB} \cos \alpha \text {, and } \mathrm{DC}=\mathrm{AC}-\mathrm{AD}, \\
& \therefore \quad \mathrm{BD}^{2}=\mathrm{AB}^{2}-\mathrm{AD}^{2} \text {, and } \mathrm{BD}^{2}=\mathrm{BC}^{2}-\mathrm{DC}^{2} \\
& \therefore \quad \mathrm{AB}^{2}-(\mathrm{AB} \cos \alpha)^{2}=\mathrm{BC}^{2}-(\mathrm{AC}-\mathrm{AB} \cos \alpha)^{2}
\end{aligned}
$$

simplifying the above equation will give:

$$
\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}-2 \times \mathrm{AB} \times \mathrm{AC} \cos \alpha
$$

Or: $\quad \cos \alpha=\left(A B^{2}+A C^{2}-B C^{2}\right) /(2 \times A B \times A C)$.
Table A. 1 Coordinates for the relative positions of $\mathrm{X}(\mathrm{O}$ in our cases), ($\beta-$) $\mathrm{C},(\alpha-) \mathrm{C},(\alpha-) \mathrm{H}$ obtained from
the calculation results from PC MODEL for the conformation depicted as Figure 2.2.2

sulfone	X (O in our cases)			$(\beta-) \mathrm{C}$			$(\alpha-) \mathrm{C}$			(α_{-}) H		
	X_{0}	y_{0}	z_{0}	x_{β}	y_{β}	z_{β}	X_{a}	y_{u}	z_{1}	x_{11}	y_{11}	z_{11}
1	1.73	1.91	0.66	0.67	1.23	-0.01	-0.25	0.59	1.05	-0.16	1.18	1.99
2	0.35	-1.61	-2,28	-0.03	-0.61	-1.34	-0.26	-1.14	0.09	-0.20	-2.25	0.11
3	2.40	1.07	-0.60	1.06	0.59	-0.61	0.51	0.57	0.83	1.20	1.17	1.48
4	0.72	0.36	-0.57	0.54	-0.42	0.74	1.21	-0.08	1.56	-1.14	-0.32	1.34
5	-2.30	0.45	1.91	-0.92	0.38	1.57	-0.63	1.23	0.33	-0.90	2.29	0.56
6a	0.61	-0.27	-1.80	-0.34	0.16	-0.82	-0.04	-0.57	0.51	-0.15	-1.67	0.35
6b	0.15	0.18	-2.29	-0.75	-0.09	-1.21	-0.18	-1.26	-0.38	-0.10	-2.17	-1.02
7	0.63	-1.01	1.75	0.88	0.23	1.08	-0.48	0.93	0.83	-0.80	1.40	1.80
8	0.26	2.11	-1.26	0.43	0.71	-1.40	1.40	0.40	-0.24	2.39	0.79	-0.59
9	-0.35	0.43	-1.58	-0.98	-0.77	-1.14	-0.12	-1.48	-0.06	-0.05	-2.57	-0.32
10	1.48	-0.01	-0.18	1.38	1.26	-0.55	0.61	1.25	0.79	1.24	1.84	1.51
11	1.26	-0.21	-0.96	1.23	1.07	-0.33	0.36	1.01	0.95	0.85	1.70	1.69

Table A1 Continued.

sulfone	$(\beta-) \mathrm{C}$			$X(O$ in our cases $)$			$(\alpha-) \mathrm{C}$			$(0-) \mathrm{H}$		
	X	y	Z	X	y	Z	X	y	7.	X	y	Z
12	-0.78	0.78	0.38	-0.97	-0.60	0.61	0.02	-1.24	-0.39	-(0. 32	-2.26	-0.71
13	-0.57	0.27	1.76	-1.42	0.70	0.69	-1.31	-0.28	-0.49	-2.04	-0.07	-1.30
14	1.18	0.64	-0.97	2.10	0.91	0.09	1.88	-0.06	1.24	2.64	0.01	2.06
15	1.55	0.04	-1.21	2.51	0.13	-0.15	2.17	-0.87	0.96	2.95	-0.93	1.75
16	0.28	0.04	-1.58	1.14	0.36	-0.50	0.79	-0.49	0.72	1.56	-().28	1.49
$17 a$	-0.15	0.01	-0.14	0.20	1.34	-0.66	-0.07	-0.90	-0.21	-0.34	-1.93	-0.14
17b	0.09	0.70	-1.53	-0.48	-0.60	-1.60	-0.37	-1.42	-0.30	-0.48	-2.49	-0.60

Note: The unit of length for the x, y, z coordinates is \AA.

APPENDIX B

The Quantitative Evaluation of $\left(\sigma^{*}{ }_{60}\right)_{\text {ors }}$

Based on the results we have presented in this thesis, the σ^{*} value shows angle dependence. The tosyloxy group in the trans-tosylates (37) studied by Hine and Ramsay can be expected to have a different σ^{*} value from that in the cis-tosylate (36).

If we assume as a first approximation that $\left(\sigma_{\theta}^{*}\right)_{\text {ots }}$ follows the same basic pattern as $\left(\sigma_{\theta}^{*}\right)_{\text {OR }}$ but requires a scaling factor (f) to correct for the greater electronegativity of the tosyloxy group (vs alkoxy) then from eq 2.2.3 we may write

$$
\left(\sigma_{\theta}^{*}\right)_{\mathrm{OTs}}=f(0.60 \div 0.28 \cos 2 \theta)
$$

At $180^{\circ}\left(\sigma_{\theta}^{*}\right)_{\text {OTs }}$ is maximal. If we assign $\left(\sigma_{180}^{*}\right)_{\text {OTs }}=1.31$ (from Hine and Ramsay's $\sigma^{*}=$ 1.31) then $f=1.31 / 0.88=1.49$ and so $\left(\sigma_{\theta}^{*}\right)_{\mathrm{OTs}}=0.89+0.42 \cos 2 \theta$. from which we get $\left(\sigma_{60}^{*}\right)_{\text {OTs }}=0.68$. We may note that eq 2.2.3 was based on $\sigma_{\text {OMe }}^{*}=0.64$ whereas the Hine and Ramsay plot uses $\sigma_{\mathrm{OMe}}^{*}=0.52$; with correction for this difference $\left(\sigma_{60}^{*}\right)_{\mathrm{OTs}}=$ $0.68(0.52 / 0.64)=0.55$.

The above assumes that the σ^{*} as measured conventionally (by $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ of $\mathrm{XCH}_{2} \mathrm{COOH}$, for example) gives the maximal value. This was not what we found in the H-D exchange reactions; $\sigma_{\mathrm{OMc}}^{*}$ that was used (by Thomas and Stirling) in the Taft plot was 0.64 , whereas we find $\left(\sigma_{180}^{*}\right)_{\text {ome }}$ to be 0.88 . This could arise because the methoxysubstituted substrate, $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$, is conformationally mobile and the reactive conformer may be only a small proportion of the total sample, whereas in the 13-16, the reactive conformer constitutes virtually all of the same sample.

A

If, in the Winstein-Holness equation. $k_{\text {obs }}=n_{\mathrm{a}} k_{\mathrm{a}}+n_{\mathrm{b}} k_{\mathrm{b}}+\ldots$, only one conformer (subscripted a) reacts. then $k_{\text {obs }}=n_{\mathrm{a}} k_{\mathrm{a}}$ where k_{a} is the rate constant for that conformer, i.e. the maximal value for $\left(\sigma_{\theta}^{*}\right)_{\mathrm{OMe}}$ (and n refers to the mole fraction of each conformer, reactive or otherwise). From the Taft equation

$$
\log \left(k_{\mathrm{obs}}\right)_{\mathrm{OR}} / k_{\mathrm{H}}=\sigma_{\mathrm{obs}}^{*} \rho^{*} \text { and } \log \left(k_{\mathrm{a}}\right)_{\mathrm{OR}} / k_{\mathrm{Hf}}=\sigma_{\mathrm{a}}^{*} \rho^{*}
$$

where the subscript "obs" refers to experimental values obtained with the normal mixture of conformers and the subscript "a" to the single conformer. Substituting $\left(k_{\mathrm{a}}\right)_{\mathrm{OR}}=k_{\mathrm{obs}} / n_{\mathrm{a}}$ we get

$$
\log \left(k_{\mathrm{obs}}\right)_{\mathrm{OR}} / k_{\mathrm{H}}-\log n_{\mathrm{a}}=\sigma_{\mathrm{a}}^{*} \mathrm{p}^{*}
$$

and with further substitution

$$
\sigma_{\text {obs }}^{*} \rho^{*}-\log n_{\mathrm{a}}=\sigma_{\mathrm{a}}^{*} \rho^{*}
$$

from which we may obtain

$$
\begin{equation*}
-\log n_{\mathrm{a}}=\rho^{*}\left(\sigma_{\mathrm{a}}^{*}-\sigma_{\mathrm{obs}}^{*}\right) \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\mathrm{a}}^{*}=\sigma_{\text {obs }}^{*}-\left(\log n_{\mathrm{a}}\right) / \rho^{*} . \tag{ii}
\end{equation*}
$$

From (i) we find $\log n_{\mathrm{a}}=-1.17$ and $n_{\mathrm{a}}=0.067$, and from (ii) we see that $\left(\sigma_{\mathrm{obs}}^{*}\right)_{\mathrm{OMe}}=0.64$ is transformed into $\left(\sigma_{\mathrm{a}}^{*}\right)_{\text {OMe }}=0.88$ by adding $1.17 / 4.89=0.24$. If we further assume that the tosylate system behaves in the same way, we get $\left(\sigma_{a}^{*}\right)_{o t s}=1.31+0.24=1.55$. Using 1.55 instead of 1.31 for scaling (as above) we get

$$
\left(\sigma_{\theta}^{*}\right)_{\tau_{\mathrm{s}}}=1.1 \div 0.49 \cos 2 \theta .
$$

from which $\left(\sigma_{60}^{*}\right)_{o T_{s}}=0.86$. Correcting this as before (by $0.52 / 0.64$) we obtain a value of $\left(\sigma_{60}^{*}\right)_{\text {ots }}=0.70$ for use with the Hine-Ramsay equation. Average 0.63 ± 0.1

APPENDIX C

From the Winstein-Holness equation ${ }^{28}$

$$
k_{\text {obs }}=n_{\mathrm{e}} k_{\mathrm{c}}+n_{\mathrm{a}} k_{\mathrm{a}}+n_{\mathrm{v}} k_{\mathrm{x}}
$$

where n refers to mole fractions and the subscripts e and a to 5el and 5a1 and x to all non-reacting conformers (i.e. those, mostly equatorial, conformers not arranged as in Figure 2.2.2). Defining $K=n_{\mathrm{a}} / n_{e}$, then

$$
n_{e}=\frac{1-n_{x}}{1+K}
$$

and

$$
n_{a}=\frac{K\left(1-n_{x}\right)}{1+K} .
$$

For the present case in which $K \ll 1$, we may then write

$$
\frac{k_{o b s}}{1-n_{x}} \approx k_{e}+K k_{a}
$$

From the present text discussion with that of the correction for large steric effects

$$
k_{\mathrm{a}}=(\theta-\text { factor })(\text { steric factor }) k_{\mathrm{e}}=108 k_{\mathrm{e}} \mathrm{e}^{0.67 \Delta \mathrm{G} R T}
$$

which with $K=\mathrm{e}^{-\Delta G / R T}$ gives

$$
k_{\mathrm{obs}} /\left(1-n_{x}\right) \approx k_{\mathrm{e}}\left(1+108 \mathrm{e}^{-0.33 \Delta \mathrm{G} / R T}\right)
$$

from which, using $\Delta \mathrm{G}^{\circ}=6 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathbf{5 e l}=\mathbf{5 a} 1$, and assuming that $\left(1-n_{x}\right)$ is much the same for $\mathbf{5}$ and $\mathbf{2 3 b}$, we find $\log \left(k_{\mathrm{e}}\right)_{\mathrm{N}}=2.33 \pm 0.3$ and $\log \left(k_{\mathrm{a}}\right)_{\mathrm{N}}=4.26 \pm 0.3$. If we assign torsion angles of about 60 and 180°, respectively, we see that they fit well with the filled and heavily outlined circles in Figure 2.2.1; they are not included in the array used for the best fit for eq 2.2 .1 because they are not estimated independently of eq 2.2.1.

REFERENCES

1. Hine, J. Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York. 1962, pp. 81-103.
2. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry. $3^{\text {rd }}$. ed., Harper and Row, New York, 1987, (a) pp. 143-158, (b) pp. 292-293.
3. Topsom, R.D. Prog. Phys. Org. Chem., 1976, 12, 1-20.
4. Reynolds, W.F. Prog. Phys. Org. Chem., 1983, I4, 165-203.
5. Taft, R.W.; Topsom, R.D. Prog. Phys. Org. Chem., 1987, 16, 1-83.
6. Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc. Perkin 2, 1977, 1909-1913.
7. Marshall, D.R.: Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc. Perkin 2, 1977, 1914-1919.
8. Isaacs, N. Physical Organic Chemistry, $2^{\text {nd }}$ ed., Longman Scientific \& Technical, 1995, (a) p. 164, (b) p. 170.
9. Taft. R. W., Jr. J. Am. Chem. Soc., (a) 1952. 74, 2729-2732, (b) 1952, 74, 31203127, (c) 1953, 75, 4231-4238.
10. Taft, R. W., Jr. J. Am. Chem. Soc., 1958, 80, 2436.
11. Swain, C. G.; Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. Soc. 1983, 105, 492-502.
12. Swain, C. G.; Lupton, E. C., Jr. J. Am. Chem. Soc., 1968, 90, 4328.
13. Juaristi, E.; Cuevas, G.; The Anomeric Effect, CRC Press, Florida, 1995, (a) p. 12, (b) p. 183.
14. Thatcher, G. R. J.; The Anomeric Effect and Associated Stereoelectronic Effects, ACS Symposium Series, 1993, (a) p. 7, (b) p. 61.
15. Perrin. C. L. Tetrahedron, 1995, 51(44), 11901-11935; Perrin. C. L.: Fabian, M. A.: Brunckova, J.; Ohta, B. K. J. Am. Chem. Soc. 1999, 121. 6911-6918.
16. Boche. G. Angew. Chem. Int. Ed. Engl. 1989, 28, 277-297.
17. Cram, D. J. Fundamentals of Carbanion Chemistry. Academic Press. New York, 1965. pp. 105-113.
18. Corey, E. J.: König, H.; Lowry, T. H. Tetrahedron Lett., 1962, 12, 515-520.
19. Corey. E. J.; Lowry, T. H. Tetrahedron Lett. 1965. 13, 803-809.
20. Wolfe. S.; Stolow, A.; LaJohn, L. A. Tetrahedron Lett., 1983, 24. 4071.
21. Bors, D. A.; Streitwieser, A. Jr. J. Am. Chem. Soc., 1986, 108, 1397-1404.
22. Gais, H.; Vollhardt, J.; Hellmann, G.; Paulus, H.; Lindner, H. J. Tetrahedron Lett., 1988, 11, 1259-1262.
23. Schleyer, P. v. R.; Kos, A., Jr. Tetrahedron, 1983, 39(7), 1141-1150.
24. Hoffmann, R.; Radom, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 6221.
25. David, S.; Eisenstein, O.; Hehre, W. J.; Salem, L.; Hoffmann, R. J. Am. Chem. Soc. 1973, 95, 3806.
26. Pross, A.; DeFrees, J. D.; Levi, B. A.; Pollack, S.K.; Radom, L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693.
27. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds, John Wiley \& Sons, New York, 1994, (a) pp.696-697, (b) p. 707, (c) p. 790.
28. Winstein, S.; Holness, N. J. J. Am. Chem. Soc., 1955, 77, 5562-5578.
29. King, J. F.; Li, M.; Guo, Z. Substituent Effects and Geometry: The Orientation of a β-Ether Oxygen and the Ease of α-Sulfonyl Carbanion Formation, the 79 ${ }^{\text {th }}$

Canadian Society for Chemistry Conference. St. John`s, Newfoundland. June 1996, Abstract 77.
30. King, J. F.; Rathore, R. J. Am. Cherm. Soc. 1990. 112, 2001-2002.
31. Rathore, R. Ph.D. thesis, University of Western Ontario, London. Canada. 1990.
32. Guo, Z. Ph.D. thesis, University of Western Ontario, London. Canada, 1994.
33. Martin, M.; Bassery, L.; Leroy, C. Bull. Soc. Chim. Fr. 1972. 12. 4763.
34. Carreno, M. C.; Carretero J. C.: Garcia Ruano, J. L; Rodriguez, J. H. Tetrahedron 1990. 46. 5649-5664.
35. Guss, C.O.; Rosenthal, R. J. Am. CFiem. Soc. 1955, 77. 2549.
36. Winstein, S. J. Am. Chem. Soc. 1942, 64, 2780.
37. Böhme, H.; Gram, H. J. Ann. 1952, 577, 68-77.
38. Carr, R.V. C.; Williams, R.V.: Paquette, L.A. J. Org. Chem. 1983, 48, 49764986.
39. De Lucchi, O.; Lucchini, V.; Pasquato, L.; Modena. G. J. Org. Chem. 1984, 49, 596-604.
40. Mirsadeghi, S.; Rickborn, B. J. Org. Chem. 1985, 50, 4340-4345.
41. Grady, G. L.; Chokshi, S.K. Synthesis 1972, 483-484.
42. Bordwell, F. G.; Hewett, W.A. J. A m. Chem. Soc. 1957, 79, 3493-3496.
43. Eliel, E. L.; Ro, R.S. J. Am. Chem. Soc. 1957, 79, 5995-6000.
44. Eliel, E. L.; Ro, R.S. J. Am. Chem. Soc. 1957, 79, 5986-5994.
45. Bakuzis, P.; Bakuzis, M. L. F. J. Orv. Chem. 1981, 46, 235-239.
46. Chamberlain, P.; Whitham, G. H. J. Chem. Soc. Perkin Trans. 2 1972, 130.
47. Alcudia, F.; Llera, J. M. Sulfur Letfers 1988, 7(4), 143-148.
48. Cloke, J. B.: Pilgrim, F. J. J. Am. Chem. Soc. 1939, 61, 2667-2669.
49. Alper, H.; Huang, C. C. J. Org. Chem. 1973, 38. 64-70.
50. Synerholm, M. E. J. Am. Chem. Soc. 1947. 69, 2581.
51. Ishida. M.; Minami, T.; Agawa, T. J. Org. Chem. 1979, 44, 2067-2073.
52. Birchall, J. D.; Glidewell, C.; J. C. S. Dalton Trans. 1978, 604-607.
53. Baldwin, W.A.: Robinson, R. J. Chem. Soc. 1932, 1445.
54. Manescalchi. F.; Orena, M.; Savoia. D.; Synthesis 1979. 445-446.
55. Babler. J. H. J. Org. Chem. 1987, 52, 4614-4616.
56. Pine, S.H.; Shen. G.; Bautista, J.; Sulton, C. Jr; Yamada. W.; Apodaca, L. J. Org. Chem. 1990, 55 (7), 2234-2237.
57. Katritzky, A. R.; Saba, A.; Patel, R.C. J. Chem. Soc., Perkin Trans. I 1981, 5. 1492-1494.
58. Williams, A. J. Chem. Soc., Perkin Trans. 2 1975, 947-953.
59. Farrar, C. R.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1979, 1758-1766.
60. Eliel, E. L.; Della, E. W.; Rogic, M. J. Org. Chem. 1965, 30, 855.
61. Brown, M.D.; Cook, M.J.; Hutchinson, B.J.; Katritzky, A.R. Tetrahedron, 1971. 27, 593-600.
62. Fuji, K.; Usami, Y.; Sumi, K.; Ueda, M.; Kajiwara, K. Chem. Lett., 1986, 16551658.
63. Taft, R.W. in Steric Effects in Organic Chemistry, ed. by Newman, M.S., John Wiley \& Sons, New York, 1956, (a) p. 595, (b) p. 598.
64. Rüchardt. C.; Beckhaus, H.D. Angew. Chem. Int. Ed. Engl. 1980, 19, 429-440.
65. Tonachini, G.; Bernardi, F.; Schlegel, H.B.; Stirling, C.J.M. J. Chem. Soc., Perkin

Trans. 2 1988. 705-709.
66. Sella. A.; Basch, H.; Hoz. S. J. Am. Chem. Soc. 1996, II8, 416-420.
67. Padwa, A.; Wannamaker, M.W. Tetrahedron Lett. 1986, 27. 2555-2558.
68. (a) Li, S.; Kirby, A.J.; Deslongchamps. P. Tetrahedron Lett. 1993. 34. 7757-7758;
(b) Li, S.; Deslongchamps, P. Tetrahedron Lett. 1993, 3ł. 7759-62; (c)

Deslongchamps, P.; Jones, P.G.; Li, S.; Kirby, A.J.; Kuusela, S.; Ma. Y. J. Chem. Soc. Perkin Trans. 2, 1997. 2621-2626.
69. Grein, F.; Deslongchamps, P. Can. J. Chem. 1992, 70, 604-611; 1562-1572.
70. Laszlo, P. Organic Reactions Simplicity and Logic. (tr. by H. R. Meyer). John Wiley \& Sons, Chichester, 1995, p. 457.
71. (a) Kirkwood, J. G.; Westheimer, J. Chem. Phys., 1938, 6, 506-512; (b)

Kirkwood, J. G.; Westheimer, J. Chem. Phys., 1938, 6, 513-517.
72. (a) Bordwell, F.G.; Kern, R.J. J. Am. Chem. Soc. 1955, 77, 1141-1144; (b)

Weinstock, J.; Pearson, R.G.; Bordwell, F.G. J. Am. Chem. Soc. 1956, 78, 34683472; (c) Bordwell, F.G.; Landis, P.S. J. Am. Chem. Soc. 1957, 79, 1593-1597:
(d) Weinstock, J.; Bernardi, J.L.; Pearson, R.G. J. Am. Chem. Soc. 1958, 80. 4961-4964.
73. Hine, J.; Ramsay, O.B. J. Am. Chem. Soc. 1962, 84, 973-976.
74. Bordwell, F.G.; Weinstock, J.; Sullivan, T.F. J. Am.Chem. Soc. 1971, 93, 47284735.
75. Marshall, D.R.; Thomas, P.J.; Stirling, C.J.M. J. Chem. Soc. Perkin 2, 1977, 1914-1919.
76. Clennan, E. L.; Wang, D. X.; Yang, K.; Hodgson, D. J.; Oki, A. R. J. Am. Chem.

Soc., 1992, 114. 3021-3027.
77. Barry, C. N.; Baumrucker, S. J.; Andrews, R. C.; Evans, S. A. Jr. J. Org. Chem., 1982, 47, 3980-3983.
78. Culvenor, C. C. J.; Davis, W.; Hawthorne, D. G.; MacDonald, P. L.; Robertson. A. V. Aust. J. Chem., 1967, 20. 2207-2015.
79. Rooney, R. P.; Evans, S. A., Jr. J. Org. Chem. 1980, 45, 180-183.
80. Silbert. L. S.; Siegel, E.; Swern, D. Org. Syn., Coll. Vol. V, John Wiley \& Sons. New York, 1973, p. 904.
81. Fehnel, E. A. J. Am. Chem. Soc., 1952, 74, 1569-1574.
82. Liebowitz, S. M.: Lombardini, J. B.; Allen, C. I. Biochem. Pharmacol., 1989, 38 (3), 399-406.
83. Lemieux, R. U.; Morgan, A. R. Can. J. Chem. 1965. 43, 2205.
84. Exner, O. in Correlation Analysis in Chemistry : Recent Advances, ed. by Chapman, N. B.; Shorter, J., Plenum Press, New York, 1978.
85. Juaristi, E.; Cuevas, G. J. Am. Chem. Soc. 1992, 125, 1921.
86. Kirkwood, J. G.; Westheimer, F. H. J. Chem. Phys., 1938, 6, 506-513.
87. Bjerrum, N. Zeit. Physik. Chem., 1923, 106, 219.
88. Euchen, A. Zeit. Angew. Chem., 1932, 45, 203.

