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ABSTRACT 

S tructured Vector Quantizers in Image Coding 

Llanijeh Khataie? Ph. D. 

Concordia 1999 

Data compression has become an essential part of modern &$rai communi- 

cation: video signal processing. and storage systerns. -4lthough the banduidth of 

coninlunication netlvorks has been increasing continuously, the introduction of new 

sen-ices and the espansion of cbe esisting ones demand an even higher bandwidth. 

Tniage data  compression is concerned with the minimization of the volume of data 

used to represent an image. 

For a t'-pical image, the values of adjacent pixels are highIy correlated. The 

trarisform and predictive codings use tliis correlation becween the neighbors to 

acliieve a high degree of compression. The goal of transform coding is to decor- 

relate the pixel values and redistribute the signal energy arnong on1)- a sniall set of 

transform coefficients. For most images, the Diccrete cosine transform (DCT) is 

\-ery close to an optimum transform. 

In recent years, image compression algorithms using 1;ector Quan~izacion (VQ) 

hâve been receiving considerable attention. Unstructured vector quantizers, i.e., 

those with no restriction on the geometrical structure of the codebook, suffer from 

tivo basic drawbacks, viz.? the codebook search complesity and the large storage 

recluirenient. This esplains the interest in the scructured VQ schemes, such as 

lactice-based VQ and multi-stage VQ. 
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The objective of this thesis is to devise techniques to reduce the cornplesity 

of vector quantizers. In order to reduce the codebook search complexity and mem- 

ory requirement, a universal Gaussian codebook in a residual VQ or a lattice-baseci 

\'Q is used. To achieve a better performance, a part of work has been done in the 

frecpency domain. Specificallv. in order to retain the high-fr-equency coefficients 

in transforrn coding, two methods are suggested. One is developed for moderate to 

high rate data  compression wliile the other is effective for low to moderate data rate. 

In the first part of this thesis, a residual VQ using a lon- rate optimal \'Q in 

the first-stage and a Gaussian codebook in the other stages are introduced. From 

rate distortion theor!; for most rnerno~less  sources and man- Gaussian sources 

with nieniory, the quantization error under XISE criterion: for small distortion. is 

mernoryless and Gaussian. For VQ with a realistic race: the error signal has a non- 

Gaussian discribution. It is shox-n tliat the distribution of Iocally normalized error 

signals, hou-ever? becornes close to a Gaussian distribution. 

In the second part, a new two-stage quantizer is proposed. The funct.ion of 

the first stage is to encode the more important Ion--pass components of the image 

and that of the second is to do the same for the hi$-frequency components ignored 

in the first stage. In one scheme, a hi&-rate lattice-based vector quantizer is used 

as the quantizer for both stages. In another scheme, the standard JPEG with a loiv 

rate is used as the quantizer of the first stage, and a lattice-based VQ is used for 

the second stage. The resulting bit rate of the two-stage lattice-based VQ in either 

scherne is found to be considerably better than that of JPEG for moderate to  high 

bit rates. 



In the third part of the thesis, a method to retain the high-frequency coeffi- 

cients is proposed by using a relatively huge codebook obtained by truncating the 

lattices with a large radius. -4s a result, a large number of points faIl inside the 

boundary of the codebook, and thus, the images are encoded with high quality and 

low cornplesity. To reduce the bit rate, a shorter representation is assigned to the 

more frequently used lattice points. To index the large nurnber of lattice points 

which fa11 inside the boundary, two methods that are based on grouping of the Iat- 

tice points according to their frequencies of occurrence are proposecl. For most of the 

test images, the proposed methods of retaininp high-frequency coefficients is found 

to outperform JPEG. 
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Chapter 1 

INTRODUCTION 



1.1 GENERAL 

The bandwidth of the communication networks has been increasing continuously as 

a result of techno10,bical advances. However: the introduction of new services and 

the expansion of the esisting ones have resulted in an even higher demand For the 

band\!-idth. This esplains the many efforts currently being invested in the area of 

data compression. The primary goal of these works is to develop techniques of coding 

information sources sucb as speech, image and video so as to reduce the number of 

bics secluirecl to represent a source without significantly degrading its qualicy. Image 

and 1-ideo compression is essential for image transmission applications such as T V  

transmission, video conferencing. remote sensing via satellite: aircraf~: radar or sonar 

and facsirnile transmission of print.ed materials as weI1 as xhere pictures are stored in 

databases, such as archiving medical images, finger prints, educational and business 

documents and drawings. 

1.2 DATA COMPRESSION 

Dam compression techniques can be classified into t ~ o  categories: lossless and lossy. 

LossIess data cornpressio~~ techniques permit perfect reconstruction of the original 

information, whereas the lossy schemes do not guarantee perfect reconstruction. 

However: they offer bet ter compression ratios. 

IR many applications, such as computerized tomography and satellite remote 

sensing of images, ivhere image data  is constantly produced for archiva1 storage, no 

information should be lost during the process. Therefore, in these cases, one has to 

use a lossless scheme. In lossless compression, the shorter indices are assigned to 

gray levels that occur more often. Huffman coding [2] and arithmetic coding [3] are 

two esamples of lossless compression. 



Lossy compression techniques reduce the number of bits required for the re- 

construction of the source by introducing some distortion in the data. For a given 

source, the amount of distortion depends on the degree of compression. Typically, 

images have a hiph degree of correlation between the adjacent pixels. Most com- 

pression techniques use this correlation between the neigl-iboring pisels in order to 

achieve a considerable compression. These rnethods exploit a set of uncorrelated 

paranieters that represent a picture and from which the picture c m  be reprocluced. 

Transform coding 141 espands a picture in terms of a family of orthonormal func- 

tions and takes the coefficients of the expansion as a representation of' the picture. 

If n-e do not limit to Iinear orthogonal cransforma~ion~ there are other techniques 

that  achieve the same result. One such technique is the predictive compression [Ai. 

Because of the strong correlation between the pisels of an image. it is possible to  

deri\-e an estimate or prediction, Z(m: n), for a @\-en elenlent r(m. n) in ternis of 

its neighboring picture elements. The  difference e(m. n) = ~ ( m ,  n) - i ( m :  n)  is the 

estimation error for the picture elements. It is reasonable to espect tliat the random 

variable e(m, n )  should be less correlated than the elemenrs in the original picture. 

i ë c to r  Quantization (I rQ)  [5] is another esample of a 10- data compression 

teclmicpes. In a vector quantizer, die data  sequence is quantized in groups (bloclis) 

i~istcad of individually. I t  is ~vell known that the vector quantizarion always results in 

a berter performance than the scalar cluantization [6]: [7] .  .Uthou& the performance 

of an optimum Vector Quantizer(ITQ) is good, the quancizacion and encoding steps 

are cornples. Lack of a structure in an  optimum vector quantizer is the reason for i ts  

complesity. This esplains the interest in VQ schemes n-ith structured codebooks, 

suc11 as tree searched [SI, residual (multi-stage) [Sj, gainjshape [IO], and lattice- 

based vector quantizers [Il]. Due to the superior performance of VQ in cornparison 

to  scalar quancization, use of VQ in conjunction with a predictive or transform 

coding technique usually yieids a better performance. 



One of the results of any transformation is that the signal energy is distributed 

among a small set of transforrn coefficients. Most of the compression in transform 

coding is a result of dropping small-valued coefficients and coarselp quantizing the 

otliers. Optima1 bit allocation [l] is a comples strate=: especially if it is adaptive. 

It involves quantizers mith different number of levels and reassignment procedures. 

This esplains the reason for interests in non-cptimal techniques. In zona1 coding [4]: 

the coefficients with indes less than a predefined value are retained and the rest are 

set to zero. The zona1 coding has been irnproved by proposing a classified trans- 

former [4j7 in which depending on the activity content of the block. different bit 

assignment matrices are used. En some other methods, the transform matrix is di- 

vided into different zones and each zone is quantized with different quantizers [12]. 

1131. In [12]: a scalar quantizer has been used for loiv-frecpency coefficients ivhile 
L * 

hi&-freqiiency coefficients are vector quantized. In [l3] ; the transform coefficients 

are grouped in a zig-zag order. and each group are vector quantized. In [l-l],[lJ]; us- 

ing quantization table or weighced pyrarnid IYQ: the high freyuency-coefficients are 

given some small LI-eights. In most of these methods, the high-frequency coefficients 

are almost neglected. Altliough the energy of these coefficients are srnall: retaining 

them could result in a better performance. 

Lattice-Based Vector Quantizer (LB1.Q) is a structured 1-4 technique in which 

the lattice points are used as a codebook of VQ. The lattice-based vector quantizer 

proposed in [16] and [l'il; has been estensively studied by man' researchers [ll], 

[lS]: [ICI]. Because of the regular structure of the LBVQ, its use results in a drastic 

reduction in the complesity in cornparison to an optimum VQ for the çame rate and 

vector dimension. Codebook storage is eliminated, since lattices are easily generated 

and mapping between lattice points and binary words are known. Since a lattice 

is a set of points which are uniformly distributed[20], using LBVQ is optimum for 

uniformly distributed sources. However, LBVQ has also been used for Gaussian and 



Laplacian sources, showing a good performance [19], [31]. Usually in a lattice-based 

vector quantizer, the lattice is truncated such that the desired number of lattice 

points fa11 inside the boundary. For a source with a given probabili~y density Eunc- 

tion (pdf): only a feu- of these lattice points are used. To take advantage of the 

source regularities, geometric vecror quantizer has been suggested [ls], [22]. Effi- 

cient algorit hms esist for implementing a lattice quantizer wit h an K-dimensional 

11)-percube b o u n d a ~  However, for other desirable boundaries, such as sphere or 

p~-ramid. indesing is still a problem. In the esisting methods, indesing requires 

escessive storage or comples enurneration algorit hrns [IJj [23j. 

1.3 SCOPE AND ORGANIZATION OF THE 

THESIS 

The objective of chis thesis is to devise techniques to reduce the complesity of 

vector quantizer. In order to reduce the codebook search cornplexit- and memory 

requirement, a universal Gaussian codebook in a residual IyQ or a lattice-based C r Q  

is suggested. Since for all images onll- one codebook is needed in different stages 

of a residual VQ? different structures and mapping techniques can be developed to 

reduce the search cornplesitj-. The effect of hi&-frequency coefficients in transform 

coding is also investigated by taking into account the indesing problem in latcice- 

based vector quantization. Based on this study, a technique is developed to include 

the quantized high-frequency coefficients in order to improve the quality of the re- 

constructed images without significantly increasing the bit rates. 

This thesis is organized as follows. Chapter 2 reviews the necessary back- 

ground material to carry out the proposed investigation. The basic element of data  

compression such as Transform coding, different kinds of transformations. predictive 



coding, entrop? coding. and vector quantization are discussed. 

In Chapter 3 a Gaussian codebook to quantize error samples in the residual 

VQ is presented. The scheme is based on a multi-stage residual VQ. -4 well known 

result of rate-distortion theory states that, under broad conditions, the quantiza- 

tion error has a Gaussian distribution. It is also knon-n that a Gaussian memoryless 

source is successively refinable. Sincc the use of codebooks designed for a generic 

Gaussian source for different stages of a residual vector quantizer does not result in 

loss of performance, a residuai vector quantizer using an optimal vector quantizer in 

the first stage and a Gaussian codebook in the other stages have been introduced. 

The closeness of the distribution of the error s i s a l s  to the Gaussian distribution is 

esamineci and the loss in optirnality of the codebook for the error signal when the 

rate is not high is also studied. 

In Chapter -4 two-stage residual image coding technique that uses transform 

coding and the lattice based 1-Q is presented. To espioit rnost of the mernory sources, 

a transform coding with a fattice-based \'Q is used. The imposition of additional 

structure on the multi-stage VQ rnakes the code more subrnissive to a sequential 

search. In the proposed method. the second stage is added to retain the information 

losr in the first stage. A standard JPEG or a DCT transform coding is used for 

the first stage, and an optimum VQ, a lattice-based VQ and a Gaussian codebook 

is used as the quantizer for the second stage. The effect of adding the second stage 

in improving the performance of the quantization in terms of the compression ratio 

and the image quality is studied. 

Chapter 5 concentrates on the indexing of the lattice points used as a code- 

book for image transform coding. In order to improve the quality of a compressed 

image, a large number of lattice points must be selected as codewords to represent 



the coefficients with small energy in transform coding. Hon-ever, the large number 

of lattice points results in a high bit rate. To reduce the bit rate, a shorter repre- 

sentation with appropriate iudesing must be assigned to the more frequently used 

1at.tice points. In this chapter, two methods to indes the Iarge number of lattice 

points that fa11 inside the prescribed boundary: are proposed. Both these rnethods 

are based on grouping of the lattice points according to their frequencies of occur- 

rence. In the first method, these points are grouped based on the non-zero eIements 

of the quantized scaled DCT coefficients. In the second one, the grouping is cczrried 

out according to the radial parameter. 

Chapter 6 highlights the important findings of the investigation carried out in 

thcsis and gives suggestion for further study. 



Chapter 2 

BACKGROUND 



2.1 INTRODUCTION 

Transform coding and predictive coding are two n-ell-know-n methods for redundancy 

reduction in image coding. Both techniques remove the linear dependencj- betxeen 

the neighbor pixels. In transforrn coding n-e use only the linear orthogonal cransfor- 

mation. -1 varietu of techniques can be used to quantize the cransformed coefficients 

or error signais. Scalar quantizer is simple to implement, and vector cluantization 

performs bet ter but is more cornples. Laccice-based vector quantizer reduces this 

co~riplesity using the structured lattice points as a codebook. Entrop? coding is an  

efficient niethod for encoding the predicted or transformed image information. This 

chapter is a brief review of chese techniques which have also been used and refereed 

to in this study. 

2.2 PREDICTIVE CODING 

-4rnong the man. different predictive coding methods. the Differencial Pulse Code 

1Iodulation (DPChsI) is the most common one. In this mechod, error signal. the 

difl'erence between the previously quantized samples and the new samples. are quan- 

tized and encoded. Figure 2.1 shows the block diagram of the encoding and decoding 

operation in\-olved witli a DPCSI. The correlation between the different sarnples of 

Figure 2.1: DPCM block diagram. 



Image Light 

Figure 2.2: Correlation coefficient of some images. 

the error signal is much less than the correlation betn-een the original signal samples. 

111 other words, the redundancy of the quantized samples is reduced. In this waj- 

the  image cari be quantized more efficient15 The correlation of the adjacent pisels 

for differenr; images are shown in Figure 2.2. Figure 2.3 compares the correlation of 

pisels of the error signais and original samples. -4s it can be seen, the error signals 

are less correlated than the original image. The distribution function of the error 

signal is shown in Figure 2.4. -4s espected, the dynamic range of the error signal 

is smaller than the original one. For esample, for the image Lenna the samples' 

amplitudes are between O and 255; however, as it can be seen in the Figure 2.4, the 

error samples are almost between -30 and 30. Hence, less number of bits are needed 

to encode an  error signal. 



Errcr sampies 

Figure 0-3: Comparison of correlation coefficient of error image and original image 
of the image Lenna. 



Error samples 

Figure 2.4: Distribution of error signal. 

In general, for a Iinear prediction, a sample can be predicted as 

n-here hi is the prediction coefficients. If the  prediction gain is clefined by 

it can be shown that  

and the reduction in bit rate for DPCM compared CO PCM is given by 
1 



wliere a: is the input variance and oz is error signal variance. 

For the first-order prediction, i ( n )  = hlx(n - 1): the error signal is given b -  

In order to h a ~ e  a masimum gain, tlie energc. of e ( n )  has to be minimized. It can 

be shown that for this purpose, the prediccion coefficient hl has to be eclual to tlie 

coti-elation coefficient pl defined by [-Il 

E [ X ( n ) X ( n  - l)] 
Pr = E [-Y2 (n )  

-As a result, the gain for the first-order prediction is 

and the bit rate rediiction is given bj- 

- 

-1s an esample: for p = 0.97. SNR of a &bit PChI can be achieved by a &bit  DPCAI. 

For the second-ordeï prediction. Z(n)  is defined bx 

t(n) = hix(n - l j  t h2r(n - 2). 

In this case: the optimum prediction coefficients are given by [a! 

hl,,, = ~ i ( 1  - PMI - A) 

where 
E [ S  (n) S (n - 2)] 

p2 = E [ S 2 ( n ) ]  



2.2.1 Two-dimensional prediction 

The idea of the DPCbI c m  be estended to the two-dimensionàl space. In tliis case, 

a pixel can be predicted using its adjacent pixels in two dimensions, i.e.: 

n-liere U is a two-dimensional prediction region and hid7s are the prediction coeffi- 

cients. Prediction can be causal or non-causal. Esamples of causal and nori-causal 

predictions are shou-n in Figure 2.5. In a causal prediction, the prediction of a 

sarriple depends only on the previous samples, but in a non-causal predictiou- some 

future pixels also used in the prediction. 

Ir fias been shon-n that  for typical images using more than four nearest pixels 

for the prediction of a sample is not useful and cannot increase the prediction gain 

[II: [241 . Thus, a sample in a two-dimensional DPCSI can be predicred as 

Slaximizing the prediction gain requires the rninirnization of the error variance. 

hlininiizing the error variance' in the special case of a separable correlarion function: 

results in the following relations [ I I -  

wtiere ph and p, are horizontal and vertical correlation coefficients as giren by 

-4 separable mode1 for covariance function is defined as 
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Figure 2.5: Esamples of two-dimensional prediction. (a j Causal predict ion. (b) Non 
causal prediction. 

2.2.2 Drawbacks of DPCM 

Although the DPCbL is a simple scheme and results in a better performance com- 

pared to the PChI? three types of degradation are common in a DPCM qriantizer 

design: granularity, slope overload and edge-busyness [4]. Granularit- is because of 

the scep-like nature of the output where the input signal is almost constant. Slope 

overload happens when there is a sharp change in the input signal (edges). In this 

case the quantized output cannot follow the input and a fen- steps are needed to 

match the outpur; nlith the input. Edge-busyness is caused at less sharp edges when 

the input in the adjacent lines are quantized into different levels. -\nocher draw- 

back of the DPCM is its sensitivity to chânnel noise and image statistics. .\daptive 

techniques have been used to compensate these drawbacks. 

2.3 TRANSFORM CODING 

For a typical image, the correlation between the adjacent pisels is high. Transform 

coding uses this correlation in order to achieve a high compression ratio. To show 



Figure 2.6: The correlation of adjacent pixels for the image Lenna. 

this correlation, nre group two consecutice pisels of image Lennct as a cector (xy) ,  

and the dependency of y on s iç presented in Figure 2.6. It can be seen that most 

of chese points are concentrated near bisector y=% as indicated dense area. 

Quantizing any two consecutive samples independentlu results in an ineffi- 

cie~ics since the quantization levels for boch dimensions are the sarne. For esample, 

the cluaritizer allocates the same bit rate to the upper-left as to the dense area. 

Hon-ever, the probability of a s-ector being in this area is ver'- lon-. Ta irnpr0k.e 

the quantizer efficiency, after grouping the samples, the coordinate system can be 

rotateci b_\- a certain angle such chat one of the axes is placed in the middle of the 

dense area as shown in Figure 2.6. In this case: more bits can be allocated to the 

u-asis and less to the v-axis. Hence, with the same average bit rate: better precision 

is achieved. After quantization and encoding, the inverse of this rotation is carried 

out in the decoder. The main idea of al1 image transformations in coding is to 

convert the original samples to new coefficients such that the  new coefficients are 

less correlated than the original samples. Furthermore, these transformations have a 



tendency to pack a large amount of energy into a fem transform coefficients. The op- 

timum transform which has the best " input-decorrelating': and '' variance-ordering" 

properties is called the Karhunen Loeve Transform (KLT). The KLT completely 

decorrelates al1 pixels. The problem is thac it depends on the statistics of the input 

samples, and it is hard to implement. Other transforms includes Discrete Fourier 

Transform (DFT); Discrete Walsh Hadamard Transform (DWHT). Discrete Sine 

Transform (DST) and Discrete Cosine Transform (DCT) (41: [l]. For image compar- 

ison, the DCT transform is very close t.o an optimum transform. Furthermore, i t  is 

signal-independent and it can be implemented using Fast Fourier Transform (FFT). 

-4s a result, it is the most popular transform used for image ancl video con~pression. 

T\*avelet transform, which is a generalization of the conventional transforms has also 

been used for image compression [%]. 

Ir1 addition to the type of transform used, the bit allocation for the coefficients 

p1q.s an important role in the performance of a compression scheme. There are 

man? adaptive and non-adaptive metechods for bir allocation. These includes opri- 

mum b i ~  allocation. zona1 sampling, threshold sampling and switched bit allocation 

[Xi. [?il. 

In general, a t,ransform coding scheme has three major blocks: transformer, 

quantizer and lossless encoder. For an optimum bit allocation, the set of N trans- 

form coefficients usually needs N different quantizers. Figure 2.7 shows an image 

t ransform encoder and decoder. 

Many efforts have been made for improving the quancizer and noiseless en- 

coder. The Joint Photographic Expert Group (JPEG) [14] is a result of these 

efforts. The JPEG is accepted as a standard for compression techniques bp the 
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Figure 2.7: The block diagram 
Transform decoder. 



International Telegraph and Telephone Consultative Cornmittee (CCITT): Inter- 

national Organization for standardization (ISO) and International Electrotechnical 

Commission (IEG). 

2.3.1 Linear Transform 

For a one-dimensional sequence XT = {x(n) : O 5 n 5 N - l}: a transformation 

can be written as 

wliere UT = { Z L ( R )  : O 5 n 5 N - 1) are transform coefficients and 

is an :Y x :\- transform matris. a* (k) = { a 8 ( k :  n) ,  O 5 n 5 N - l} are called the  

basis \.ectors. 

For esample: for 3 = '2, the transformation rnatris -4. resul~ing froni 4.5' 

rocation of the coordinate system, is git-en bj- 

F 7 

The basis vectors are 



For orthonormal transform, the transformation rnatrk satisfies the property 

A-' = AT. The basis vectors of some of the popular transformations are shown 

in Figure 2.5. -4mong these transformations, only the basis vectors of the KLT is 

defined by the statistics of the source. 

Txo-dimensional linear transform is defined by 

If a separable and u n i t a c  transformation matris is chosen, i-e., aS(k: 1: m7 n)  = 

a . ( k .  nz)al,(l. n)! Eqn 3.23 becomes 

~vhere a, and ah are the column and row transform b a i s  vectors. The above equation 

cari be re-written as 

ri = A,XA;~ 

In the case of symrnetric kernels. A, = Ah = A and the transforniation equations 

can be writtexi as 

-4s a result of this separable transform, t.he image S becomes to be a superposition 

of a series of representations for the image called the "basis images": as given by 



Figure 2.S: Basis vectors of some transforms mith N=S, reproduced from [l!. 



wliere ak is a vector corresponding to kth column of the matris A. In other words, 

each image is reconstructed by the superposition of the b a i s  images meighted by 

the transform coefficients. Figure 2.9 s h o w  these b a i s  images for different trans- 

format ions. 

2.3.2 Sorne well-known transforrns 

Karhunen-Loeve Tkansforrn (KLT): The Karhunen-Loeve transform, which is 

aIso called eigenvector or Hotelling transform, is defined b -  the eigenx-ectors of the 

correlation matr is  of the input sarnples. The correlation function is defined as 

and the correlation rnatris is given b ~ -  

The correlation matris &, has a set of eigen\ralues Ai's and eigeni-ectors I','s definecl 

by 

= &Ifi. (2.33) 

Were R,, is a real sj-mrnetric rnar r i~ :  and thus its eigenvalues are real and there 

are esactly N eigenvectors ivhich are orthogonal and can be normalized to form an 

orthonurmnl set Ii: i = 0 , l :  ..., 3- - 1: that is, 

The transform matris of KLT is cornposed of eigenvectors of R,,. In other words, 

the b a i s  vectors are eigenvectors of R,,? that is, 

t hus (2.19) takes a form given by 
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Figure 2.9: Basis images of some transforms, reproduced frorn [l]. (a) Cosine. (b) 
Sine. (c) Hadamard. (d) Haar. (e) Slant. (f) KLT. 



implying that, the input signal S is a superposition of weighted eigenvectors which 

are derived from the correlation rnatris of X. Therefore, the b a i s  vectors depend 

on the statistics of the input samples. The correlation matr is  of the transformed 

coefficients is a diagond rnatris 11-ith the eipenvalues of the correlation matris  of the 

input samples as its diagonal elements, that  is 

Discrete Hadamard Transform (DHT): In this transform. the transform 

is constructed b_~'  a recursii-e operation, gis-en bu 

mat r is  

(2.35) 

u-liere "H represents the transform matris  with a dimension of :V x 3-. The coef- 

ficient variance of t his transforni does no t monotically decrease wi t h the coefficient 

index. To have ordered coefficients, the ordering of rows in t.he transform matris 

is clianged. This new transform is called the Discrete Wa'alsh Hadamard Transform 

(DWHT). To get the DIVHT transform matris, the DHT rnatrix is "sequency" or- 

dered. The term "sequency" of a basis vector is defined by the number of s i s  

changes in the vector. The concept of sequency for basis vectors is similar to the 

frecluency in DCT or DFT. The transform matris  for a DHT and a DWHT for 

:V = 4: for esample, are @\yen by 



the numbers beside the transform matris are the sequency of the b a i s  vectors. -41- 

though chis transform is v e p  easy to implement, it is not optimum: Le. it does not 

diagonalize the covariance matris. 

There are some other fast transforms such as the Haar transforrn wbich is 

suitable for feature extraction? or the Slant transform which has a very good energ-- 

compaction property for images [l]. The basis vector and basis images of these 

transforms are shou-n in Figures 2.8 and 2.9: respectively 

Discre te  Fourier Transform (DFT): The discrete Fourier transform of a se- 

quence { z ( n ) .  n = 0: 1' ...: N - l} is defined by 

Thus: the transform matris of the DFT is given by 

The most important point in the DFT is that it can be implemented using 

some fast methods called the Fast Fourier Transforms (FFT). With these methods 

the complesity of operation is reduced from N2 to (Y log ;AÏ) [28]. The probleni with 

the DFT is that it is not an optimal transformation, since it does not diagonalize 

t.he covariance matrix. In addition, the inverse DFT generates samples which are 



Figure 2.10: Side effect in DFT. 

periodic estension of the first 5 samples, that is, 

and 

This periodicity in DFT causes discontinuities at the beginning and end of eacli 

block. This effect can be seen in Figure 5.10. 

Discrete Cosine Transform (DCT): Among the different transfornis: tlie DCT 

has the decorrelation property ve- close to thac of tlie KLT for most images. The 

discrete cosine transform is defined by 

N - 1  

,u(n)  = F c t ( k )  r (n )  cos 
(Zn + 1)kr 

k = 0: 1: ...: iV - 1 
!V n=O 2 rV 

I 
4 0 )  = and a(k) = 1 k f 0  

A\- - I (2n i l ) h  
x(n) = a ( h )  u (k) cos 

k=O 2 1v 



In the matr is  form? this transformation can be written as 

The DCT basis vectors can be obtained from 

b: = {&l(k) cos (2n + I ) h  : n = O, 1: .-., !V - 1 for k = 0: 1: .- .?  3 - 1 

(3.49) 

It can be shown that the cosine transforrn is ver? close to the KLT for a 

first-order stationary Llarlioi- secluence when the correlation parameter p is close to 

1. Because of strong correlation between adjacent pixels of a tt-pical image, this 

transform is very close to the optimum transform for most images. The DCT h a  

an esceHent e n e r g  compaction property for highly correlated data. Furcher, it can 

be easi1~- implemented using fast implementation methods. These properties make 

the  DCT a popular transform for image coding. The e n e r p  distribution of DCT 

coefficients of a typica1 image, Lenna, is esamined. The S x S DCT coefficients 

are scanned in a zigzag order as shown in Figure 2.13, starting from the lowest 

to highest frecluency. It is seen that most of energy is contained in lon--frecluency 

coefficients and ener,q\-, in general. ciecreases veq- rapidly as the fi-equency increased. 

as it c m  be seen in figure 2.11. 'The implementation of che DCT causes the input 

block of X-samples to  estend into the blocks of 2s samples with an even SJ-rnrnetry. 

t hat is 

This periodic extension has smaller end-effects than the DFT operation (Figure 3-13). 



Figure 2.1 1: The energy distribution of DCT coefficients of image Lenna. 

Figure 2.12: Zig-zag order of transform coefficients. 

Figure 2-13: Side effect in DCT. 



Two-dimensional DCT: Two-Dimensional DCT (2D-DCT) is defined by 

9 IV-1 :v-L n k ( 2 m  - 1) 7~1(2n +- 1) 
u ( k .  Z) = Lor(k )a ( l )  x(m, n) cos COS 2 L\*Ï (2.31) 

!V m=G n=O 2 rv 
3 'V-1 :v-L s;k(S-m + 1) iil(2n - 1 )  

x (m,  n )  = - cu(k)cu(l)u(k, 1) cos COS 9 +- (2.53) 1v k=O &=O 2 1\- - - 

n-liere x(ml  n) is an Y x -V block and k: 1: rn, n = 0, 2, ...: N - 1. 

Figure 2.14 compares the KLT: DCT and DFT transform coding gains ver- 

sus block Iength for a firsc-order Gauss-Slarkov source with p  = 0.95. -4s the graph 

shows: for a Gauss-hlarkol- source, the gain of DCT almost equals t hat of KLT, with 

a difference of less than 0.1 dB. In this figure G, is the maximum gain achievable 

b- a transforni coding. It can be shomn that Gp = (1 - p z ) ,  and for p = 0.95: Gp is 

equaI 10.11 dB. This is the upper limit for any transform. -4s it can be seen. DFT 

is asj-rnptotically optimum. 

Table 2.1 compares the SKR of diflerent transforms for an image modeleci br- 

isotropic covariance function with p = 0.93. This table also shows that the DCT 

is ver?- close to an optimum cransforrn mhen the correlation of the adjacent pixels 

is high ( p  = 0.95). -in isotropie or circularly symmetric function must satisfy the 

property 

R,, (m, n)  = o:pd (2 .54  

p = esp(-Io)) when al = c t p  = a 

where al and a 2  are the correlation factor in the horizontal and vertical directions 

respectively. 



Figure 2.14: Transform coding gains versus b = log, W for a first-order Gauss- 
Markov source with p = 0.95. 

Table 2.1: SNR comparison of various transform coders for randorn fields n-ith 
isotropic covariance function p = 0.95, reproduced from [1] 

Block size 

I 
l 

16 x 16 

L 

DST Hadamard 



2.3.3 Bit allocation in transform coding 

-ifter Iiavinp chosen a suitable transform. the nest step is to allocate bits to different 

coefficients. Since the variances of different coefficients are not equal, the- need 

different number of bits. -4 a v e n  number of bits should be distributed between 

coefficients such that  the overall distortion is minimized. -411 orthogonal transforms 

preserïe the variance. To show this, consider a source with variance 0: and its 

transform coefficients witli 1-ariances 0;. The total energ' of the coefficients can be 

espressed as 

Furthermore, for orthogonal transforrns: the reconstruction error variance in tranç- 

form coding equals that introduced by the set of quantized coefficients; as given 

where D: is the reconstructed error variance, is the quzintization error variance 

and O$ is the variance of the quantization error of the kth coefficients. After finding 



a n  orthogonal transform m a t r k ,  the problem is to minimize 0; with the constraint 

of a given average bit rate defined by 

n-fiere Rk is the bit rate for the ktli coefficient. This requires solving the following 

equation n-hich is obtained from using the Lagrange multiplier method, 

-An optirnuni bit allocation is thus achieved as 

I 0; 
R,, = R + ;; log, - L I N  ' [ni:- 1-0 

Optimum bit allocation for each coefficient depends on the distribution of 

coefficient variances. For esample, for N=2, the bit allocation is given by 

In the case of equal variance , we have Rn = R for k = 0: l 7  ...: Ar - 1. The depen- 

denq-  of bit allocation on the variance is illustrated in Figure 2.13. For a uniforni 

qiiantizer to have the eclual quantization error variance, al1 quantizers have to  have 

equal step size. Since the dÿnamic ranges of the coefficients are different, the coef- 

ficient with a higher variance needs more quantization levels than a coefficient witli 

a lotver variance. For esample, in Figure 2.13, the coefficient -4 can be quantized by 

16 levels or 4 bits; however: for the coefficient B, 2 bits a r e  enough. 

For practical considerations, the second term in ( 2.59 ): for the srnaIl values 

of ak, could be negative mith a magnitude greater than R. This  will cause a negative 
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Figure 2.13: The dependency of bit allocation on variance. 



Figure 2.16: Bit allocation for 16 x 16 DCT of image modeled by an isotropic covari- 
ance function with p = 0.95 wirh an average bit rate of 1 bps, reproduced froin [l]. 

bit allocation. To avoid negative values of Rk, the ecpation cm be modified as 

n-here D is the geometrical average of the variances of the coeEcients. Figure 2.16 

demonstrates the application of this bit allocation method to a 16 x 16 block DCT 

coding of an image modeled by an isotropic covariance function n-ith p = 0.95 and 

an average bit rate of 1 bit per sample. 

Zona1 coding: Figure 3.16 shows chat only a small zone of the transformed image 

contains elements with non-ncgligible values. This is the main idea behind zonal 

coding. In zonal coding the coefficients with the index l e s  than a specified value 

are retairied and the rest are set to  zero. In other words, the coefficients are masked 



Figure 2-17: -4 typical mask for (a) Zona1 coding. (b) Threshold coding. 

wich a zonai mask defined by 

Figure ?.l;(a) shows a typical maslï for zonal coding. 

Threshold coding: In tliresllold 

t han t heir indices are considered for 

defined by 

m ( k ,  l )  = 

coding the variance of the coefficients rather 

masking. The mask for a tlireshold coding is 

The tlireshold q is chosen to get a desirable bit rate. Figure 2.17(b) shows a t p i c a l  

nlask for the threshold coding. 

2.3.4 Image transform coding 

The closeness of the DCT to the optimum transform makes it the popular transform 

for image coding. In the DCT: the Brst coefficient is the dc coefficient and remaining 

coefficients are ac coefficients. Usuall- the dc coefficient of the transform coding is 

coded separately using the DPCbI. As shown in Figure 3-18, encoding the ac coef- 

ficients involves two steps: first? quantizing and then, indesing the output points of 



Figure 2.15: The block diagram of transform coding. 

the cluantizer. For the first step. many 1oss~- scalar and t-ector quantizer techniques 

have been designed. Depending on the quantizer, different noiseiess cociing scheines 

ha1.e been used to indes the output points of the quantizer. 

IIVD EYIIVG 
4V.W BLOCKS 

DCT 

JPEG [14] partitions each image into S x8 blocks. DCT is computed over chese 

bioc1;s. After the transformation, che DCT coefficients are scaled and truncated in 

order to reduce the dynamic range of the data. The scaled DCT coefficients are 

ordered into a zig-zag secluence. The non-zero amplitudes of this one-dimensional 

seyuence and the runlength of zeros are entropy coded. 

Due to the regular structure of latrices, man). researchers have used the Lattice- 

Based \,éctor Quantizer (LBVQ) for quantizing the DCT coefficients . but only a few 

metliods have been suggested for indesing the output points [lj]. Fischer - :29! has 

combined an lattice-based vector quantizer mith a noiseless code to encode the DCT 

coefficients of images. The output lattice points are labeled by using an enurneration 

method for a Laplacian source. and it is shown that the combination of the LBVQ 

and noiseless code outperforms the uniform scalar quantizer combined with noiseless 

coding for each coefficient. 

- SCA LING CG 

Q UAAMIUIVG 



2.4 PRINCIPLES OF JPEG STANDARD 

Like any transform coding scheme, the block diagram of JPEG scheme consists of 

two basic blocks, a DCT based compression follon-ed by a lossless variable length 

coding (a special case of Huffman coding). Each 9 x 8 block of input goes through 

the processing steps giving a Stream of compressed data a t  the output. In the first 

step, eacli block is converted into 64 DCT coefficients whose values are uniqriely 

determined by the 64 input pisels. The DCT coefficients are quantized by a set of 

uniform scalar quancizers defined in a quantization table. The goal of chis step is CO 

omit information which is noc visually important. Several quantization tables have 

been defined and the qualitj- of a coded image is controlled by these tables. 

After quantization. the scaled DCT coefficients are coded. In this step, be- 

cause of the scrong correlation betn-een the DC coefficients of successive blocks, they 

are coded differentially (Differential Pulse Code blodulation DPCII) . The -AC co- 

efficients are scanned in a zigzag sequence, as shon-n in Figure 2.12. This ordering 

places the 101s.-frequency coefficients before the high-frecpency coefficients which are 

usually zero (afcer scaling). The last step in JPEG is entropy coding. Two entrop'. 

coding schernes is used in JPEG: Huffman coding [2] or aritlimetic coding [3]. After 

scaling there are only a few non-zero elements in the quantized -AC coefficients. Each 

of these non-zero elements is represented in combination with runlength. the number 

of consecutive zero-valued coefficients which precede the non-zero coefficients. Two 

symbols are used to s h o ~  the combination of runlength and non-zero-coefficients. 

The first symbol represents two pieces of information, the runlength and the size. 

The second symbol represents the amplitude of the non-zero coefficients. The run- 

length is the number of consecutive zero-valued AC coefficients and the size is the 

number of bits used to encode the amplitude of a non-zero coeficient. -4 special 

codeword is generated for the End Of Block, symbol EOB, which is viewed as the 

terminator of an S x S sample block. For the DC coefficients, two symbols are also 



used. However, the first symbol represents only the number of bits used to encode 

the amplitude of the DC coefficient, size of the symbol. The second symbol rep- 

resents the amplitude of the difference signal. F ina l l~ ,  these symbols are encoded 

using a variable-length code. 

VECTOR QUANTIZATION 

-4 fundamental result of Shannon's rate-disrortion theory [G], a branch of information 

t h e o -  devored co data  compression, is that a better performance can be achieved by 

coding vectors instead of scalars. This holds even if the data  source is mernoryless! 

Le.. che secluence of source samples are independent. Hon-ever: a greater perfor- 

mance irnprovement can be achieved if the source samples are correlated. It has 

been proven that vector quantizer is asymptotically the optimal structure for source 

coding when the veccor dimension tends to infinity Fi]. Before 1980. this theory had 

a lirnited impact on system design. because it did not pro\-ide constructive design 

techniques for encoders. -4fter the publication of the paper bj- Linde et al. [30j: 

in whicli the Lloyd algorithm [311, an algorithm for the design of an optimal scalar 

cluantizer, \vas generalized to  vector space, vector quantization gained popularity. 

Fornially, a \.3ctor Quantizer (VQ) can be defined as a mapping Q(.) of the 

S-dimensional Euclidean space Rev into a finite subset Y of WV. i-e. 

- where x = {xi, x2; ...: xLv} E 92" is an input vector and 1- = {yi E PVi i - 

1, 2, .... df } is the codebook, and its elements {yi) are called code-vectors or repro- 

duction vectors. Vector quantizatio~i is a combination of two functions, an encoding 

and a decoding. The encoder receives the IV-dimensional input vector x and searches 

throuph the codebook to find the address of a reproduction vector X = y;, which is 

closest to the input vector. The  indes of this reproduction vector is transmitted and 



the decoder uses this address to look up for the reproduction vector. For choosing 

the address of 2, a distortion rneasure d(x, 2) has to be defined. It represents the 

penalty associated with reproducing x by K. One simple distortion measure is the 

Xlean Squared Error (h1SE) , defined as 

An optimum VQ is a quantizer which generates the reproduction vectors, 

minimizing the espected distortion, defined as 

The optimum VQ may be generated from the training images using the clustering 

technique introduced by Linde et al. in 1980 [30]. This technique, called the Gen- 

eralized Lloyd Algorithm (GLA)? is a generalization of the Lloyd's scalar algorit hm 

[31] to wctor space. This technique begins mit h an initial codebook and an iteration 

process comprising the following tu-O steps yields an optimum codebook. The firsst 

step is to encode the training sequence and CO calculate the average distortion. In 

the nest step, each codeword is replaced by the centroid of the input. vectoïs encoded 

inro it. The size of a VQ codebooli is usualiy a poiver of 2: Le., AI = zb:  so that the 

index of reproduction vector can be represented using b bits. 

The initial codebook in the GLA algorithm is very important, because regard- 

ing the initial codebook the method results in different locally optimum codebook. 

One of the mechod to generate the initial codebook is the spiliting method. It starts 

with the average of training sequence and then with a small change in the average 

and using the GL-A algorithm constructs a codebook with size 2. In the same way 

with a small changes in the code-vectors a double size codebook is constructed until 

a desirable size codebook is achieved. The codebook is used as an initial codebook 

for GL.4 algorithm. 



The encoding complesity for an optimum VQ, where each input vector is com- 

pared with al1 the vectors in the codebook, increases esponentially with the rate R 

and dimension 3. This complesity and the  memory requirernent of a n  optimum VQ 

can be greatly reduced bÿ imposing a structure on the codebook. Several schemes 

have been proposed for reducing the complexity of a full search IYQ. These rnethods 

include Tree-Search Vector Quantizer (TSVQ) [8]: Lattice-Based Vector Quantizer 

(LB1.Q) [l l] and Finite-State Vector Quantizer (FS1;Q). 

In addition, techniques such as classified VQ have also been proposed to match 

the codebook to certain properties of the source iri order to improve the perfor- 

manc. hIany other efforts have been made to improve vector cluantization tech- 

niques. These include adaptive I'Q and variabLe-dimension VQ. Some techniques 

such as gain/sliape VQ [il], predictive VQ and transform coding do  some prepro- 

cessinp on the input vector before encoding. Gray [5] has presented a good review 

of these techniqiles. 

2.5.1 Lattice-based vector quantizer 

Because of rhe regular structure of the lattice-based 11-Q. its use can result in a dras- 

tic reduction in the cornple_\city in cornparison to the GLA algorithm For the r3me 

rate and dimension. It is opcirnum for uniforrnly distributed sources. Hence, it may 

not give a good performance for other sources. Some works [19]: 1-11 have been 

reported in which the lattice-based VQ is used for Gaussian and Laplacian sources. 

Jeong and Gibson [19], [32] have used a lattice-based VQ to encode the 2D-DCT 

coefficients of images. 

X lattice is an  infinite reguIar array tha t  covers N-dimensional space uniformly. 

-4 lattice can be defined as a set of vectors 



where {ai : i = 1 ,2 ,  ..., N )  is the set of b a i s  vectors of the lattice and u i 3  are 

integers. Matris G with its roms cornposed of the basis vectors ai's is called the 

generator matris. The determinant of the lattice A is defined as, 

If G is a square matris then de tA  = detG.  

-lxq- X-dimensional lactice -1 has a dual lattice A': @\-en by 

n-liere (.) is the inner product : and Z is the set of integer. Voronoi region. fi(.\)' 

is the set of points s in X-dimensional space that are closer to the origin tlian to 

an'- other lattice point, Le., 

The fundamental volume of -1, o.(-1); is the volume of ics voronoi region &(LI) . The 

determiriant of a lattice deterniines the volume of its voronoi region. 

Liittices frequently used in image coding include the cubic lattice 2" and the 

root larcices .-lL3r' Dx,  Ev [32]. These lattices can be defined using their generator 

mat rices. 

The  lattice-based VQ encodes the source vectors by rnappinp them into the 

lattice points. 

LQ(x)  : x + y i  € A  if  XE&(:^) (2.72)  

nliere R,,, (A) is the voronoi region when the origin is translated to yi. 

Using a lattice as a codebook involves three steps: truncating, scaling, and 

arranging the lattice points which are outside of the truncated region. For a given 



dimension N and bit rate R: z " ~  is the number of lattice points used. The lattice 

is truncated in such a way that  the desired number of output points fa11 inside the 

boundary. Hence, in truncating lattice points, two parameters should be defined: 

the shape of the boundary and the radial parameter. For minimum distortion, the 

shape of the boundary is the shape of the contour of constant probability density 

function (pdf) i'?l]. This contour is splierical for Gaussian source and a pyramid for 

Laplacian source. To determine the radial parameter, ive can use the theta fvnction 

of a lattice. d i i ch  specifies the number of Iattice points at a certain distance from 

the origin :?O].  Theta function of the lat tice h is defined as 

n-Iiere n(m)  is the number of lattice vectors with norm squared m (i-e., the number 

of lattice points a t  a distance rn frorn the origin): z is a rea1 number and q = e7'=. 

Coiin-ay and Sloane have investigated the theta functions of seieeral lattices [-O]. 

Theta functions of some Iattices can be espressed in terrns of the Jacobi theta 

functions. For 

espressing the 

esample, consider the Jacobi t h e h  function &(1) which is useful for 

theta function of cubic lattice: 

l n  this case: the theta function is given by 

For some dimensions, esplicit espressions for defining the coefficients of qm in the 

theta function are obtained [?O]. For cubic lattice, the expressions for dimension 

'3?4:S, for esample, for these coefficients are given by: 



mhere niv(rn) is the coefficient of qm for dimension N ,  LxJ means the greatest inceger 

less chan or equal x; and Xdlm d represents t.he summation of these integers from 1 

to rn that can divide m. For iV = 16, no esplicit formula is knou-n, and the direct 

espansion of (O3(z))I6 is used to compute n16 (m). 

The truncated lattice points must be scaled to achieve minimum distortion. 

The best scaling is found by repeated esperiments. .-\ltliou,oh. this method is not 

a precise procedure: it is the best method IL-hen the pdf of the source is unknown. 

Jeong and Gibson 1191 have developed an analytical solution for the scaling of inde- 

pendent, identically distributed, i.i.d.; Gaussian and L.aplacian sources. 

For finding tlie nearest lattice point, a fast quantization a l g o r i t h  has been 

devised by Conway and Sloane [33]. This metliod is appropriate for root lattices 

.A,, D,, En and t heir duals. First, for a real number x: the? have defined a simple 

function f (x) having an integral value closest to x. In the  case of a tie, tlie integer 

n-itli the smallest absolute value is chosen. For a vector x = (ri: r-, ... z : ~ )  E R": 

.A fuiiction g(x) is defined in the same manner as f (x) escept that  the worst com- 

ponent of x, that is the element of x that is farthest from its corresponding integer? 

is rounded the ivrong way. If ~ w ( x )  denotes a real number x rounded the ivrong wa): 



where k is a non-negative integer. The  nearest lattice point to a point in PV is found 

using f (x) and g(x). For esample, for a cubic lattice, f (x) is the nearest lattice 

point to x E R"; hoivever, quantizing with lattice DAV requires calculating f (x) and 

g(s) and choosing the one wirh an even coordinate sum i3-11. 

The l a s c  step in the lattice-based quantization is encoding the inpur; points 

whicfi fall outside the truncated region. Tliese points are re0ected on the contour 

surfice d o n g  their radiai line. The nearest lattice point d i c h  lies inside the lattice 

region is selected as the output. 

2.6 ENTROPY CODING 

-4 discrete-amplitude source is a source taking values from a finite set: i-e., x(n) E 

X = {xL: 12: ...: xK}. The source alphabet X is associated mith a set of probabilities 

{pi. p... ..., p r ; }  where pi = Pr. { S ( n )  = x i )  = p ( x i ) :  xi E X. The  source is called a 

memoi-yless source if its samples are statistically independent. 

The entropy of a discrete random variable -1- is defined bu 

If a base-2 logarithm is taken, the  entropy is espressed in bits. Entropy is a positive 

number wicli the following boundaries: 

O 5 H ( S )  5 log, K. 



An entropy H ( - Y )  = O means that there is no uncertainty and the source is totally 

predictable. This condition happens only if al1 the source alphabet values have tlie 

probabiliry of zero escept one of them. -4n entropy H ( S )  = log? Ii corresponds to 

the case when al1 probabilities are equal. 

If there is an statistical dependency between the samples, the source hac mem- 

o r .  To take advantage of this dependenc>-: Y successive samples ( x ( n ) : x ( n  t 

1). .... x ( n  -i- 3- - 1)) are arranged in a block designated as vector X. The prob- 

abilicy of a specific block is p(x). and the entropy per symbol of this vector is gicen 

and for a memoryless source 

HZY (X) = H (-Y). 

2.6.1  The Asymptotic Equipartition Property 

The weak law of large numbers [35; States that for independent, identically dis- 

tribured (i.i.d.) random variables, + x:=, xi is close to tlie espected value of S for 

large values of n. The lax  of large number in information theory is the -+mptotic 

Ecluiparcition Property (-AEP). This property is formalizecl in the follon-ing cheo- 

rem [z!. 
AEP Theorem: If are i.i.d. with the probabilit?. of observing p ( s ) ,  then 

in probability 
1 

- - log p(*Yl, -Y2, . . . : -Y.v) + H(-y )  - (2.82) 1v 
This theoreni suggests dividing each sequence into two sets: the typical set and the 

non-typical set. 

Definition: The typical set A!") with respect to p ( x )  is the set of sequences 



(Il : -Y2 . .. , -Yv) E with the following property 

This set has tlie following properties: 

2 .  p(;l!'v)) 2 Z - E for sufficiently large X. 

' < q - N ( H ( S ) i c )  : mhere 1-41 denotes the number of eleme~its in the set A. 3. 4 1 - - 

Hence. a t>+pical set has a probabilitv close to 1. and al1 of its elenlents are nearly 

equiprobable ii-ith the probability 2-"H(S) .  Figure 2.19 shows the typical and non- 

typical sets. If this set is found then a special code can be defined. ,411 elements in 

the typical set can be coded using -lT(H i E )  i- 1 bits and al1 elements of the non- 

typical set can be espressed using log? I X " ~  = Nlog, !XI. We can use one prefis bit 

to show n-hether or not the vector belongs to tlie typical set. For esample. a O as 

the first bit indicates that the code belongs CO the typical set and the code lengtlth is 

.V(H i E )  t 1. On the other Iiand, a 1 as the firsc bit s h o w  that the code belongs 

to the non-typical set and the code length is longer. 

2.7 RATE DISTORTION FUNCTION 

The rate distortion function; R(D):  specifies the minimum rate at  ivliich one must 

recei\.e the information about the source output in order to be able to reproduce it 

with an average distortion that does not esceed a given D. To find an espression for 

R(D), first the notation is defined, then a brief introduction to information theory 



Figure 2.19: TJ-pical and non-typical sets. 

is presented [36]. 

-4 source mith alphabet X = {xL: x2: .... xfr), and a set of the associateci prob- 

abilities P = { p l .  p2_  .... Pr;), is denoted as (X, P). For convenience, the random 

\-ariahle S(.) and the probability P ( S ( . ) )  are denoted as 

X ( j )  = j and P ( X ( j ) )  = P ( j )  = Pj- 

Ik-irh these notational definicions, tlie entropy of a discrete raildom 1-ariable can be 

where H(S) is the average uncertainty as to value S will assume. Let X and Y 

be tivo alphabets and Pij be the joint distribution defined on tlie product space of 

random variables S ( j )  and Y p ( k ) ,  and Pj and QI. be the marginal distributions. The  

conditional entropy is the amount of uncertainty that rernains as to the a value S 

will assume. if the value of Y has been specified. Formally, the conditional entropy 



The mutual information, I(Sr Y) is the amount of information that  the knowvledge 

of 1' provides about the value assumed by S. The mutual information can thus be 

u-ritten as 1 (-Y; 1') is defined as 

It can be shown that  is 

I ( S ; I F )  = H ( S )  - H ( S ] Y )  

= H(Z.') - H(Y-1-Y). 

Dis to r t  ion measure: The cost function p(X,  Y) which specifies the penalty charged 

for reproducing the source word X by vector Y is called u-ord distortion rneasure. 

Let {x,, t = 0: k1' 5 2 ;  ...) be a time-discrete stationap- source. -4 sequeilce of word 

distortion measures, called the fidelity criterion, is given by 

Fp = { p , ( X , Y ) J  5 . n  < r } ,  

For the magnitude-error criterion p ( S ,  1') = IS - 1-i : and in the case of the squared- 

error criterion p ( S  Y) = (.Y - Y-)'. The average distortion associated mith the 

conditional distribution Q is denoted by 

wliere p,Qklj = Pja is the joint distribution. The  conditional probability is said to 

For a h e d  D the rate distortion function witb respect to a specified fidelity 

criterion Fp is defined as 

R ( D )  = min I ( Q ) ,  
QEQo 



In other words: the rate distortion function is the least information about the source 

that must be con~eyed to the user in order to achieve a prescribed fidelit. Let Dm, 

be the minimum value that d(Q) as @en by (2.59) can assume. In general: R ( D )  is 

a continuous, monotonically decreasing, conves U function in the interval D = O to 

D = Dm,, and R ( D )  = O for D > D,,,. It can be shown that R ( D )  always esists 

and O 5 R ( D )  5 logh', where K is the size of the source alphabet. For al1 cases 

R(0) 5 H(S) and the equality hoids if reproducing alphabet images the source 

aIphabet in the sense that  for each source letter there is a unique reproducing letter 

such that p( j .  k) = 0. 

2.7.1 The application of R ( D )  

Let p,(S; 1-) be the distortion measure for words of length n: and B = {yI7 ..., y,,) 

be a codebook of size $4 and block length n. If p(B) = E[p,(SIB)j 5 D: then B 

is a D-admissible code. The smallest size of any D-admissible code is denoted by 

Jf ( 7 1 :  D). 

The hndaniental source coding theorem establishes that for any E > O and 

D 3 0: an integer n can be found such tliat there esists a (D - e)-admissible code 

of block length n with rate R < R ( D )  i a. In other words 

1 
- l o g M ( n , D t ~ )  < R ( D ) i €  forsufficientlylarpn. (2.91) 
n 

The converse of this theorem states that no D-admissibie source code has a rate less 

than R ( D ) .  

These theorems show that with given fidelity the rate distortion function is a 

lower bound to encode any discrete memoryless source (d.m.s.). -4s a consequence 



of the source coding theorem and its converse, we have that for al1 D > O 

1 
1 

lim - log Jf (n,  D) = R ( D ) ,  (2.92) 
n-ffi n 

which sometimes is referred to a definition of R(D) .  It can also be proved (informa- 

tion transmission theorem) that i~ is impossible to reproduce a d.m.s. with fidelity 

D at the receiving end of any discrete rnemoryless channel of capacity C < R(D) 

bits per source letter. 

TIiese theorems also provicle the practical significance of the rate distortion 

f~inction for communications. 

2.7.2 Continuous amplitude stationary sources 

-411 the definitions that were given for discrete sources can also be estended co 

continuous-anipiitude or analog sources. 

Let -y be a random variable wicli cuniulative distribution P ( x )  = Pr(-' 5 x). 

If P ( x )  is continuous, S is called continuous random variable. Let p ( x )  = ~ ' ( r )  be 

the probability density function for S. The differential entropy h ( S )  is defined a s  

h ( S )  = / p ( 1 )  l o g p ( r ) d x .  (2.9:3) 
S 

where S is tlie support set of the random variable S. The differential entropy for a 

continuous randorn ïector X = (-Yr ..-: &YR) is given by 

where dx = dxldx 2. . .dx, .  For two continuous random variables -y and Y: the 

conditional differential entropy is defined by 



and the average mutual information is given 

For an)- one-to-one transformation of coordinates, the differential entropy changes 

bj- an arnount equal to the espected value of the log of magnitude of the Jacobian. 

In the new coordinate [zi = f ( x i )  : 1 5 i 9 n]: the differential entropy is given b -  

h ( Z )  = h ( S )  i E [log 1 J ! ]  , (2-97) 

where J is the Jacobian of the transformation. Since I ( S ;  km) is the ciifference of 

tivo differential entropies, it is not changed under a one-to-one transformation. 

Rate distortion function for continuous source: For a continuous source: 

p ( r )  is clefined the measure of accuracy of the reproduction source. The average 

distortion and the average mutual information assigned to any conditional density 

q(1 -11 ) .  are defined as 

T h e  rate distortion function of a source with respect to a Bdeli~y criterion Fp is 

defined by 

R ( D )  = inf ( I ( q ) ) :  (2.100) 
~ E Q D  

wliere QD = {q(ylx) : d(q)  < D ) .  With some mathematical operations the minimum 

can be achieved for 

d!/ 14 = W d d  e s ~ w ,  

where A is given 



and 

It can be shown that 

2.7.3 Shannon lower bound 

The distortion rneasurement is caIled a difference distortion. if p(x )  = p(x - y). In 

the case of difference distortion rneasures it can be proved that 

R ( D )  2 h ( p )  i sD - log esp(=)dz = / RL (4 7 

rrhere R L ( D )  is called the Shannon lower bound. 

The  follorving tlieorem gives the condition that a rate distortion function equals 

co its lower bound. 

Given an- s < O , R(D,) = RL(Ds): if and only if the source x can be 

espressed as the sum of two statistically independent random variables one of which 

is distributed according to the probability density function g, (.) given by 



For magnitude error distortion measure p(x - y) = jz - yl. this probability density 

function and the Shannon lower bound is given by 

On tlie other hand, for scluared-error distortion measure p(z - y )  = (r - y)'7 the 

probabilitj- densit.y function and the !ou-er bound can be obtained b ~ -  

,411 important special case is when p ( . )  is the normal density, 

En cliis caset it can be shon-n that 

that is, tlie output has a normal distribution. N(p, o2 - D).  N e  can deduce that  for 

a memoryless Gaussian source and squared error criterion: the difference between 

the input source and its reproduction, Z = S - Y, is normal with variance D.  Also 

for normally distributed source 

and 



Ir has been proved that the  upper bound of the rate distortion function of an?- 

souice with zero mean and variance o7 is the rate distortion function of a Gaussian 

source, that  is, 

nit11 ecluali- sign holding iff p(x) is normal. 



Chapter 3 

RESIDUAL VECTOR 

QUANTIZER 



3.1 INTRODUCTION 

Optimum vector quantizers, designed using generalizecl Lloyd algorithm [30]. can be 

used for a variet. of sources. Hon-erer: their practical applications are limited bj- 

the complesity of codebook search and codebook storage. Lack of a structure in an 

optimum \(-ector Quantizer (VQ) is the reason fbr the complesity. This esplains the 

interest in VQ schemes with structured codebooks. such as tree searched [Sj. residual 

(niulci-stage) [9!. gain/shape [IO]. and lat tice-based vector quantizers [Il!. In order 

to reduce the search complesir- Buzo et al. [S] have proposed a tree searchecl en- 

coder. In their method. the encoder searches a secluence of snnall codebooks iristeacl 

of a large one. In this w v .  the complesity of search is reduced witli a small increcîse 

in the discortion. but the codebooli storage requirement is greater than tliat in the 

full-search \;Q. hlulti-stage 1'4 [9] diïides the quantization task into sel-eral siic- 

cessi\-e stages. resulting in a reduction of codebook search and storage complesity. 

but ir increases clle encoding distortion. For esample. in a two-stage VQ; after the 

input vector X is quantized bj- the first stage. the error is quantized bj. the second 

stage. and the final reproduction of X is che summation of the two cluantized levels. 

If the tn-O-stage 1:Q has -\Il code-words in the first stage aiid AL2 code-words in the 

secorid one. it requires -\Il - -1- distance computation. ll'here as the corresponding 

single-stage VQ would ha\-e recluired :Il1 x SI2 memory space and JI1 x JI2 clis- 

tarice computatioris. Thus: rvith the same rate and dimeusion. the complesity of 

a two-stage VQ is much Iess than that  of a single-stage VQ. This reduction in the 

cornpie-xity cornes a t  the espense of an  increased distortion. 

The point in the multi-stage quantizers is to find the condition under which the 

source can be successively reconstructed rvithout loss of optimalit? [37]: [35]. Several 

researchers have investigated the problem of successive refinement of information. 

The goal of these studies is to achieve an optimal description a t  each stage to ensure 

that  the on going description is optimal whenever it is interrupted. Equitz et al. 



[ I j ' i ]  have shomn that  a source is successively refinable if and only if the individual 

solution of the  rate distortion problem for the source can be u-ritten as a LIarkov 

chain. Since it can be shown that there exists a Markov chain for a Gaussian dis- 

tributed signal under the %ISE criterion? a Gaussian source is successive1~- refinable 

From the rate distortion theory, for most rnemoryless sources and many Gaus- 

sian sources n-ith memory, the ideal encoding noise under SISE criterion, for small 

distonion is rnemoryless and Gaussian. Based on the modeIing assurnptiori of a 

Gaussian distributed first-stage VQ encoding error, Pan and Fischer[39] introduced 

a m-O-stage quantizer with a l a~ t i ce  vector quantizer with a spherical codebook for 

the second-stage for memoryless sources. 

In [40] ,  Lee et al. have shorvn tliat if the source density is smooth and the 

first-stage is a high-rate VQ, then it can be assumed tliat the first-stage error is uni- 

form over each quantization cell. They have also shown that the overall encodirig 

distortiori approaches asympt~otically to that  of a single stage \Q as the size of the 

firs t-stage codebook approaches infinits 

However, the assumption of a Gaussian quantization error cannot be estended 

to sources with rnemorS., such as images. In this chapter: it is shon-n that  the resid- 

ual vectors normalized by the zona1 e n e r p  have a distribucion close to a Normal 

distri but ion. Therefore, a quantizer designed for a Gaussian source is almost op ti- 

mal for these normalized error samples. 

This adaptation is particularly efficient, since for a fised compression ratio, 

the same cociebook is used for any residual samples of images. This method is also 

applicable for the raw Synthetic Aperture Radar (SAR) data: since the ram data  



statistics is Gaussian with zero mean and also they are uncorrelated [41!. 

This chapter is organized as follows. Section 3.2 gives a brief introduction to 

multi-stage residual VQ and discusses the problem of successive refinement. Section 

3.3 describes the distribution of error signal. The  problem of the mismatch of 

distribution of the codebook and the distribution of the source is investigated in 

Section 3.4. Section 3.5 presents the I iolrnogoro-Smrno test (KS) [42] which is a 

test for goodness of fit of distribution to the digerent distributions. Finally, Section 

3.6 presents the results of simulation. Section 3.7 gives a summary ofstudy carried 

out in this chapter. 

3.2 MULTI-STAGE VQ 

-4 Slulti-stage Residual Quantizer (RQ) consists of a cascade of quantizer stages: 

each operacing on the residue of the previous stage. The block diagrani of a resid- 

ual quantizer is shown in Figure 3.1. In a residual cluantizer the total distortion 

is the distortion of the final stage. For probability mass funcrion p(x) and condi- 

tional probability mass function of q ( y  lx): in a Ii-stage quantizer. the rotal rate and 

distortion are, respectively, given by 

and 

R = RI + R3 t ... t Rh.: 

where SI,- and & are the input and output of the last stage, and Ri and Di are the 

rate and distortion of the ith stage. The residue of each stage is the input to the 

nest stage. For esample, the input of stage i is given by 



Figure 3.1: The block diagram of a K-stage residual quantizer. 

For an unknown source. the rnulci-stage quantizer is not optimum in the sense 

of rate and distort ion. Several researchers have published results on the condition 

under which a rnulti-stage quuantizer can be an optimum [371 [38] .  Al1 these investi- 

gations are based on the jointly good description [38;. In the jointly good descriptiou 

the goal is that  by sending tmo descriptions of the source, each describing it ~vell' 

at the receiver the combination of the descriptions can give the maximum possible 

information. 

Consider a stochastic process SI :.Y2: .. .: where each Si is an independent, 

identically distributed, i.i.d., random variable with a known distribution p ( x ) .  S 

is encoded twice with rates RI and Ro bits per symbol. Given three single letter 



distortion mesures: dl: d2 and cio, the problem is to find the information t h t  should 

be sent at. rate Rl and Ro so that  a receiver given only Rl can reconstruct with 

clistortion Dl:  given onIy Ro can recover -1- with distortion Do, and gïven both de- 

script ions can recover X with distortion D2. The problem of mu1 t iple descriptions 

was posed by Witsenhausen [43!, Uolf et  al. [U], and Ozarow [Xi].  Gamal and 

Coi-er [35] in their work exhibit an achievable rate region of (Ra Ri) pairs as a func- 

tion of the distortion vector D = ( D o ,  Di: 07). 

Consider a sequence of blocks X = (-Yl,  -Y2: ..._Y ,): where -Yi:s are i.i.d. random 

1-ariables with a known distribution p(x). By definition, the achievable rate for 

distortion D = (Do.  D l :  D?) is (Ro, Ri) .  if there esist a sequence of descriptions 

i (r)  E (1.2: ..., Y R 1 }  and j ( z )  E 11' 2, ...' Y R 0 } ,  and reconstruction functions I l ( i ) ,  

( J ) .  i2 ( i .  j )  such that  for a sufficiently large n 

wliere dm (., .) is the distortion measure defined bj- the average per-letcer distort ion, 

arid 2 is the sequence of the reconstruction vectors. The rate distortion region is 

the closure of the set of acliievable rate pairs (Ro, R I )  inducing a distortion less 

tlian or eclual D. -An achievable rate region is any subsec of the rate distortion 

region. Gamal and Cover [3Sj proved that the achievabie rate region for distortion 

D = (Do ,  Dl, D2)  is given by the conves hull of all (Ro, R I )  pairs such that  

Ro > I ( - Y ; - ~ . ~ )  

Rl > I ( - Y ; - T ~ )  (3 -4) 

Ro + R I  > I ( X ;  &, -TL! %) + I(&; 

if tliere esists a probabiliiy mass function p(x, Zo, ri ,  i2 j = p ( z ) p ( & ,  51 , 5 2  lx) sucli 

that 

Dm 2 E [d,(X -%JI m = 0,1,2 (3.5) 



Figure 3.2: kIuItip1e description and achievable rare region. 

wiiere I ( 0 )  denotes Shannon mutual information. Ahlswede [46! showed that the 

above conditions are both necessaq- and sufficient in the "no-escess rate case:" Le. 

Ro i- RI = !R(D2). For clarity. ive use R for the rate and R(.) for rate distortion 

fuiiction. Figure 3.2 shows the case where two receivers receive individual descrip- 

tions and the third has access to both descriptions. The loiver diagram in tliis figure 

s1ioi1-s the achievable rate region. 

The successive refinement problem which is shown in Figure 3.3 is a special 

case of the mu1tipIe description problem. In this case: there is no constraint on 

Do = E [ ~ ~ ( x : x ~ ) ]  and Ive require Ri = '%(DI) and R2 = RO f RI = a(D2) .  In 

general. the successive refinernent from distortion DI to distortion D2 is achievable 

if there esists a sequence of encoding function i : Sn + (1: 2, ..., PR')  and j : 

Sn -+ {1,2 ,  ...: and reconstruction functions ql : {1,.2? ...YR') 7 S," and 



Figure 3.3: The successive refinement. 

an ci 

= q 2 ( i ( S n ) ' j ( S n ) ) ?  

we have 

iim sup E [ ~ ( s :  S;)] 5 D ( R i )  
n - r w  

ancl 

iim sup E [ d ( S n ,  f;)] 5 D(&).  
n7cc  

In 3.8 and 3.9. D ( R )  is the distortion rate function defined by 

D ( R )  = min E [ d ( S : S ) ]  
p(.YIS.) 

In other words, the sequence Si, .... -Y ,., is successively refined if Ri = %(Di) 

and R2 = ZR(D2), Le., the rate distortion limit in eacli of the two stages is achieved. 

The successive refinement' for the quantization of a single variable is not achiev- 

abIe. However, if long blocks of i.i.d. variables were considered ? the successive 

refinement in some cases is possible. For esample, for long blocks of i.i.d. Gaussian 



Figure 3.4: The  block d i a g a m  of a two-stage residual quantizer for a Gaussiaii 
source. 

3 
ni(0 . O )  

Q I  

random variables, the successive refinement is always possible. 

Ecpitz and Cover [373 have pro\-ed chat successive refinenients from description 

-<-, with distortion DL to description n i th  distortion D2 5 Dl is achievable if 

and only if there esists a conditional distribution p(21 , 5- /.T) such that  S. -<-, , .f-? 
can be written as a 'rlarkov chain S ; -T2 -t .%-l. In this case the joint condirional 

distribtitioii becomes 

7 
N(O , o-- Di) 

42 

p(" , 12) = p(fZ ~z)p(.t,  1 5 ~ ) .  (3.11) 

-4s an example. consider the random variable LV(0, a'). Lnder the hlSE crite- 

rion: the error signal is Gaussian with the variance D. It means tiiat if -Y is ihV(O, O?) 

tlien p ( t )  = >-(O; O? - D) and p(xl2) = N ( Z :  D). It can be shown that  the source 

is refinable. Fos the tn-O-stage residual quantizer,shown in Figure 3.4: we can n-rite 

i 

It can be shonrn that 3.13-3.14 yield a joint function 

irnplying that  -Y: XI: -?? can be written as a Markov cllain: S i -v2 i -TL. 
Since there e-sists a Markov chain satisfying the Equitz and Cover theorem [37], the 

Normal source with MSE criterion is successively refinable. The existence of the 



hlarkov c h a h  also guarantees the achievebility of 

In the follon-ing: n e  present an  alternative proof showing that the Gaussian source 

under AISE criterion is refinable and R(D) = &(DI) + %2(D2). 

Under the mean-squared error criterion: the rate distortion function of the first 

stage witli a Gaussian input :V(O, oz) is gîven by [361. 

Since the input to the second-stage is also .\:ormal tvitli tariance Di' the rate dis- 

tortion function for the second stage is 

W D d  

For the two stage. D = D?. Thus, 

!R2 (Lb ) 

given bi- 

I Dl 
= - log -. 

2 D2 

1 Dl = - log -. 
3 - D 

For the rwo-stage residual quantizer, the rate distortion funcrion is given by 

1 a' 1 Dl = - log - - - log - 
? D l ?  D 

Estending this result to a K-stage quantizer we have 



It can also be shown that the Laplacian source under the absolute error criterion, 

d ( r :  2 )  = lx - 21, is refinable [37]. 

As a result, dividing the quantization task into several successive stages does 

not affect the accuracy of the quantizer. In addition, the residual quantizer can 

achieve a great deal of savings in terms of storage and computational complesity. 

-4ccorcling to the fiindamental source coding theorem, for a block quantizer 

with dimension n and codebook size A-: the average rate of any D-admissible code 

is R(D),  that is, 

iim ' log(A, D) = R(D).  
n i =  n 

Thus, using a block coding with a Iarge dimension, the multi-stage quantizer for 

Kormal distribution is successively refinable. 

3.3 DISTRIBUTION OF ERROR SAMPLES 

Ynder the '\.ISE criterion. the rate-distortion function of a tvide class of rnemoryless 

sources for srnall distortions ( ecluivalently, for high rates). approaches the Shannon 

Ioxer bound. -4s a result, for high rate, the ideal encoding noise is rnernoryless and 

Gaiissian. For many Gaussian sources with memors a critical rate esists such that 

for the rates larger than this critical rate, the encoding error becornes white and 

Gaussian [3û]. For esample. for a Gauss-Markov source with parameter p. the rate 

distortion function is given by 

1 1 - p2 1 - P  
R(D)  = r; log2 - 

D 
D L -  - l t p '  

For tliis source the critical rate corresponding to D = (1 - p)/ ( l  +- p)  is 



Figure 3.5: Xormalized histogram of the \'Q encoding error for memoryless LapIa- 
cian source with dimension S and codebook sizes ranging from 16 to 1024. 

111 other ivorcls. if the source encoding rate is R 2 Rc: then the optimum cpantiza- 

tion noise is white and Gaussian. 111 the case R < R,, the optimum encoding noise 

is not Gaussian. -4s a consequence, as the rate increases, the error signal tends CO 

be memoryless Gaussian. so chat it becomes successiveIy refinable. This justifies 

the use of a multi-stage residual quantizer for the error signa1 without significant 

loss of optimality. Figure 3.5 shows the histogram of error signals corresponding to 

nlernoryless Laplacian sources for dimension L = 8 and for various codebook sizes 

:II = 2 L R .  -4s Figure 3.5 shows, for large codebook, the error signal is close to a 

Gaussian source with the same variance. 

For Gaussian sources with mernory, the effectiveness of an encoding method 

is dependent on the feasibility of using a large enough first-stage vector quantizer 
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Figure 3.6: Xormalized histogram of the Le-Q encoding error for image Baboon witli 
dimension 4 and different codebook sizes. 

codebook to  esploit most of the source mernory. Ré have studied the effect of the 

iricrease in the rate for a constant dimension and the effect of increase in the dinien- 

sion for a constant rate for different images on the distribution of the error signal. 

These results show that  for the implementable rates, the idea cannot be estended 

to the sources with memory like images. For esample, Figure 3.6 shows the com- 

parison of the distribution of error signal for image Baboon mith that  of a Gaussian 

source. It can be seen even for bit rate 2..5 bps, the distribution is not a good fit to 

a Gaussian distribution. 



For a multi-stage VQ with a reasonable rate quantization in the first-stage, 

the error signal is far from having a global distribution. This is due to the different 

statisticd parameters in different regions of the image. -41.~0: by using a Ion. rate 

quantizer in the first stage, the errors sainples follow the same distribution. The 

normalized histogram of the error signals mith a lom bit rate VQ in the firsc stage 

for different images is shown in Figure 3.7. It  can be seen that the distributions 

of the error signal for different images are different and cannot be quantized bj. a 

single quantizer. Wowe\-erl by normalizing the error vectors bj- the zona1 energ'-. 

their distribution become close to a Xormal distribution. In order to carry out this 

normalization: the two dimensional error signal is divided into different zones and 

the average e n e r g  of each zone is calculated. The error samples in each zone are 

then di\-ided by the energy of the corresponding zone. The energy of a zone is 

defined as 

where zi refers to the ith zone and f 1.11 denotes the cardinalit- given by 

al1 zones 

ancl n, is the total number of samples. The locallj- nornialized error signal l i s  a 

variailce of unity. If x is a locally normalized error signal, then its variance is given 

b'. 

x: - - - C - 2 
al1 samples in =i -i 

- 1 - - 1 
C -5- C .'. 'i 

n5 al1 zones -i all samples in = i  
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Figure 3.7: Normalized histogram of the VQ encoding error for the different images 
with dimension 4 and codebook size 16 (Ibps). 
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Figure 3.5: Normalized histogram of the VQ encoding error for image Lennu with 
climension 4 and codebook sizes ranging from 4 to 256.  

To obtain a distribution close to a Xorrnal distribution, the bit rate in the first-stage 

should not be too Ion-. For esample, for image Lenna, when quantized by 0.5 bps 

optimum VQ, the normalized distribution of error samples follow the distribution of 

the original image. By increasing the bit rate in the first stage, this can be changed. 

Figure 3.5 s h o m  the effect of bit rate in the first stage For the image Lenna. 

The histograms of the locally normalized error samples for different images 

are shomn in Figures 3.9. The effect of norrnalizing the error samples locally can be 

seen from this figure. As seen from figure the error signal has a distribution very 



close to Normal. Figure 3.10 shows the comparison of the histograms of error sign 

and one of the locally normalized error signais. 

Since the locally normalized cun-es are close to a Kormal distribution, we CO 

clude that a quantizer designed for a Gaussian source can be considered as alrno 

optimal for these error signals. In the nest section: it will be shon-n that in the ca: 

of a mismatch between the actual distribution and a normal one, the distortion 

less tlian the case where clle locally normalized error signal is actually Gaussia 

even though the distortion that one gets is generally more than in the case whc 

the codebook is optimally designed for the source. 

3.4 MISMATCH 

It is well known 1361 that for al1 sources mith a @ - e n  second moment O?, the sourc 

that is most difficult to describe within a rnean square error distortion D is the men 

oryless zero-mean Gaussian source. If t,he rate distortion function for a memoryler 

Gaussian source is given by R,(D) and for a general source having the same secon 

moment o2 is R ( D ) ,  then 

R ( D )  5 RJD). (3.3; 

Let us now assume t h  a Gaussian codebook of rate X,(D) is used to cornpress 

source that is not Gaussian or mernoryless. In [-l'il: Sakrison has shown that using 

codebook designed for a mernoryless Gaussian source with a given second momer 

to compress a non-Gaussian source with the same second moment does not resu 

in a distortion higher   han the distortion corresponding to the original Gaussia 

source. Lapidoth [45] has shown that the resulting distortion is also no srnaller tha 

the distortion corresponding to the Gaussian source. These results demonstrat 

that the distortion that one can espect due to the use of a Gaussian codebook fc 



close to Normal. Figure 3.10 shows the cornparison of the histograms of error signal 

and one of the locaily normalized error signals. 

Since the locally normalized curves are close to a 'Jormal distribution: we con- 

clude that a quantizer designed for a Gaussian source can be considered as almost 

optimal for tliese error signals. In the  nest section, it will be shown that in the case 

of a mismatch between the actual distribution and a normal one, the distortion is 

Iess t han the case where the locally normalized erïor signal is act ualI y Gaussian, 

even tiiough the distortion chat one gets is generally more than in the case \vhen 

the codebook is optimally des iped  for the source. 

3.4 MISMATCH 

It is well known [36] that for al1 sources with a given second moment O?: the source 

that is most difficult to describe within a mean square error distortion D is the mem- 

oryless zero-mean Gaussian source. If the rate distortion function for a memoryless 

Gaiissian source is given b -  %,(D) and for a general source haring the same second 

moment d- is R(D),  then 

W ( D )  5 R,(D). (3.37) 

Let us nonr assume that a Gaussian codebook of rate R,(D) is used to compress a 

source that is not Gaussian or memoryIess. In [d'Tl: Sakrison has shomn that  using a 

codebook designed for a memoryless Gaussian source with a given second moment 

to compress a non-Gaussian source with the same second moment does not result 

in a distortion higher than the distortion corresponding to  the original Gaussian 

source. Lapidoth [48] has shown that the resulting distortion is also no smaller than 

the distortion corresponding to the Gaussian source. These results dernonstrate 

that the distortion that one can espect due to the use of a Gaussian codebook for 
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Figure 3.9: Normalized histograms of the locally normalized error for the different 
images mi th  dimension 4 and codebook size 16 (Ibps). 
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Figure 3.10: Comparison of the histograms of the error sipal and the histogram of 
the IocaIly normalized error for the different images. 



a non-Gaussian source with the same variance is esactly the same as the distortion 

one would get if the non-Gaussian source were actually Gaussian. Indeed, the loss in 

performance due to the use of a Gaussian (non-optimal) coàebook is esactly offset 

by the use of escess rate. To state this result Lapidoth proved the follon-ing theorem 

[4. 

Theoren: Consider a random codebook whose 2nR code words are dran-n indepen- 

dently and uniformly over the n-dimensional sphere of radius r,  centered around 

the origin. Let x be an n-tuple of source samples generated by an ergodic source 

wirh a second moment a'. and let O < D < a'. 

a) If R < ? - log(02/D) then irrespective of the radii 

b) If R > - 1og(o2/D) and r ,  = \jn(o2 - D):  then 

This result shows that  using a universal Gaussian codebook for the multi-stage cluan- 

cizer is a promising method to acliieve a given distorcion x i th  Ion- complesity. 

To shon. how much locally normdized error signal is close to the Gaussian 

source. n-e have performed the well knotvn Iiolmogorov-Smirnov(1ïS) [42] test for 

goodness of fit of the distribution. 

3.5 KOLNIOGOROV-SMIRNOV TEST 

The I<olmogorov-Smirnov test ( K Ç )  1421 is a test for goodness of fit of a given 

distribution to various well known distributions. The test statistic is based on 

a distance measure between the sarnple distribution function and a well defined 



distribution or a test distribution. Let S = ( 2 1 ,  ......' x. l f )  be a given set of data. 

The KS test compares the sample distribution FdY(.) to a given distribution function 

F . )  If y,,n = 1,%, ..,AI are the order statistic of the da ta  S- then tlie sample 

distribution is aven  by 

The IiS test is defined by 

11-hen different distributions are tested, the one t hat yields the smallest lis staciscic, 

t. is tlie best fit for the data. The result of this test for the error signal and the 

normalized error signal for some images are shown in Table 3.1. The normalized er- 

ror signal in al1 cases yields a smaller EïS statistic for Gaussian distribution function 

than the otlier tested distributions. 

3.6 SIMULATION AND RESULTS 

The proposed method \vas investigated in the contest of coding of 8-bit monochrome 

images of size 3 12 x 512 with different contests, face and scenery. -41.~0 images from 

Canadian Remote Sensing Satellite, Radarsat, are tested. A set of 2'' normally 

distributed samples were generated and the generalized Lloyd algorithm [30] was 

used to generate an optimum codebook. The error samples are divided into 16 x 16 

vectors (zones), and the samples in each zone were normalized to the magnitude of 

that zone. Eight bits were used to  encode the energy of each zone, i-e., 1/32 bits per 



Table 3.1: Kolmogorov-Smirnov test for the error signals of some images 

E,rror signal / 0.0175 1 0.0049 1 82.41 1 11 Lenna 1 Korrnalized i I 1 I 

image / Scheme / Gaussian Laplacian 1 Cauchy / 
l 

i 

sample (a negligible rate n-itli respect to the total bit rate). Tlie normalized error 

samples were encoded using the coclebook generated for the Gaussian source. The 

distortion of the quantized images were compared wit!~ the distortion of the images 

quantized using an optimum VQ. The objective measure for the coder performance 

used in this study is the mean square criterion. It refers to the aleerage of the squares 

of the  error betn-een the original image and tlie reconstructed one. T h t  is. 

The meari square error is espressed in terms of the Peak Signal-to-Soise Ratio 

(PSXR) n-hich: for images with $-bit pisel values, is defined as 

Bridge 

Baboon 

P S X R  = 10 log -. 
D 

0.01 Error signal 
Korrnalized 

The result of some of tests are shown in Sable 3.2 and 3.3. In most cases the 

differences were found to be less than 1 dB. For esarnple, for the image Lenna, if 

Error signal 1 0.0078 1 0.0011 

0.0018 / 8337  1 
1 error signal , 3.54e-04 0.0067 

* 

83.1837 1 

83.7 l 

Xormalized j I 
. error signal 0.0018 1 0-0029 53.4436 1 



the first stage is an optimum VQ with dimension 2 x 2 and codebook size 1024: the 

difference is 0.1 dB. Similar results were observed for other images. 'ïo encode the 

images in the first stage, an optimum vector quancizer \vas used. 

Three different esarnples of the reconstructed images using the tn-O-stage op- 

timum VQ and the Gaussian codebook shon-n in Figures 3.11 co Figure 3.13. For 

the image Lenna in Figure 3.11: a 4 dimensional VQ is used in the first-stage and 

the size of die codebook is 64. Figure 3.11a s h o w  the reconstructed image when 

a universal Gaussian codebook is used in the second stage. Figure 3.11b shows the 

resulc of using an optimum VQ in the second stage. The dimension of vectors for 

botli cases is 4 x 4 and the size of codebook in this stage is 2.56. For the image 

Bridge and the image Lansat3 shown in Figures 3.12 and 3.13, the codebook size in 

the first-stage is 64. The codebook for the second-stage is the sanle as the one used 

for the image Lenna. As it can be observed, the images reconstructed by the two 

metliods are very close. 

MERITS 

In the  proposed met hod. a universal Gaussian codebook is used for ~ h e  second stage. 

For quantizers with more than two-stages. the distortion is smaller in the later stages 

and ~ l l e  distribution of the error samples is doser to a normal distribution. Hence, 

for later stages the Gaussian codebook is e w n  closer to an optimum codebook, and 

onIy a single generalized codebook needs to be designed and used for al1 images in 

different stages. This is a significant advantage of the proposed method in which: 

almost without loss of optimalit'; one universal codebook can be used in different 

stages for different sources. 

Since the codebook designed for a Gaussian source is fised, different structures 



Table 3.2: Cornparison of using an optimum codebook for second stage of a two-stage 
vector quantizer mith universal Gaussian codebook [or different images 

Lenna 

Bridge 

i 

Giza 

Lansa t3 

1 First stage 
l Il Second stage 



Figure 3.11: Cornparison of the results for image Lenna, for bit rate 2 bps. (a) 
Reconstructed image quantized by the universal Gaussian codebook. (b) Recon- 
structed image quantized by an optimum codebook. 



(b) 

Figure 3.12: Cornparison of the resuIts for image Bridge, for bit rate 2 bps. (a) 
Reconstructed image quantized by the universal Gaussian codebook. (b) Recon- 
structed image quantized by an optimum codebook. 



Figure 3.13: Cornparison of the results for image Lansat3, for bit rate 2 bps. (a) 
Reconstructed image quantized by the universal Gaussian codebook. (b) Recou- 
structed image quantized by an optimum codebook. 



Table 3.3: Cornparison of using an optimum codebook for second and third stage of 
a residual vector quantizer with unirersal Gaussian codebook for different images 

can be imposed for reducing the complesity of the encoder. For instance, the code- 

1-ectors can be localized and the search can be started from the code-vectors n-hich 

are closer to the origin, or a mapping can be carried out based on the e n e r s  of the 

vectors. Having one generalized codebook for al1 stages gives an opportunity to find 

some mathematical mapping between the source vectors and the codevectors rvhich 

caii considerably rediice the comp1exit~- of search. The distribution of the codebook 

is n-el1 known and this makes it possible to define a lossless entropy coding. Use of 

the entropy coding c m  recluce bit rate and makes this method more efficient. 

3.8 SUMMARY 

In this chapter: the idea of using a universal codebook for a multi-stage vector 

quan~izer for image compression has been presented. It has been sliown tliat the 

locally norrnalized error vectors of an image have a distribution close to a normal 

dish-ibution. Since a memoryless Gaussian source is successively refinable, the error 

signal is successively refinable as well. As a consequence, the codebook designed 

for a rnemoryless Gaussian source can be used in different stages of a multi-stage 



1-Q to quantize the image error samples. -An optimum codebook designed for a 

normally distributed source has been used to quantize the error samples of different 

images, and the results were cornpared wit h the reconstructed images quantized 

bj- an optimum VQ. The results were v e q  close. In sorne cases the difference is 

less around 0.1 dB, but in general, the difference \vas found to be less than 1 dB. 

Since with the proposed method only one codebooli is needed in different stages of 

a resiclual 1.-$. different structures and mapping techniques can be used to reduce 

the search complesity. 



Chapter 4 

TWO-STAGE RESIDUAL 

LATTICE-BASED VECTOR 

QUANTIZER 



INTRODUCTION 

As explained in the previous chapter: Vector Quantization (VQ) theory aims at  

achirving tlie highest VQ performance as a function of rate and dimension, but the 

application of a VQ is concerned with obtaining a hi& level of VQ performance a t  

an affordable cost. The  merno- and computation mhich are required for L-Q irnple- 

mentarion, depend on the VQ rate, vecror dimension, and the constraint iniposed 

on the quantizer's structure. Imposing carefully selected structural constraints can 

reduce the cornplesity of a 1.Q. 

A class of structured quantizers that reduce both mernory and computation is 

the product code vector quantization. A product code vector cluantizer is a struc- 

tured VQ in which different components of the \,*Q quantize different features of the 

source. The gain-shape 1-Q and the residual VQ are tivo esamples of prod~lct code 

VQ - 

-4 residual vector quantizer is a simple product code 1-4 with a direct sum 

codebook structure and a sequential searcli procedure. The quantizer has a sequence 

of encoder stages where each stage encodes the residual vector of the previous stage. 

Residual \:Q: siniilar to other structured 1.-Qs; is not able to provicle performance 

as good as tliat of the unstructured VQ for a given rate and vector dimension, but  

it provides a better performance for a given complesity. 

In Chapter 3, we discussed the condition of optirnality of a multi-stage VQ. 

It nras shown that in the limit for a class of rnemoryIess sources and sources with 

mernory, multi-stage VQ's codebook can be optirnail?. designed, or in other words: 

tlie sources are  successive^ refinable. It was also shomn that  for sources mith mem- 

or?:. like images, the locally normalized error samples, defined by normalizing the 

residual samples by the magnitude of the zone to mhich the sample belongs, are 



successively refinable. The effectiveness of the encoding method in Chapter 3 is 

dependent on the feasibility of using a large enough vector quantizer codebook in 

the first stage to obtain for low distortion a rate that is close to the lowest rate 

achievable by the rate-distortion theory. The computation and memory complesity 

required for unstructured VQ implementation to achieve this requirement limits the 

application of t h e  proposed method. 

Imposing an additional structure on the product code makes the code more 

amenable to seqriential searches. Mult i-stzge VQ n-it h a lamice structured codebook 

is such an esample. 

The lattice-based VQ: which is an estension of the uniform scalar quantiza- 

tion to the multi-dimensional case: offers sorne advantages over the classical vector 

quantization. It reduces the computational time for comparable performances and 

no m e r n o -  is required to store the codebook. Due to the relative ease of lattice 

\-ector quantization: optimum encoding is feasible for moderate to large values of 

rates and vect or dimensions. 

To exploit most of the source memorj., transforrn coding in the first stage can 

be used. Transform coding decorrelates the pisel values and distributes the energy 

arnong a small set of transforrn coefficients. 

The mork presented in this cbapter is based on a two-stage residual lattice VQ. 

Two different schemes are presented. In the first one, each block is converted into 

DCT coefficients. The low-frequency coefficients are quantized using a high-rate 

Lattice-Based Vector Quantizer (LBVQ) in the first stage. In the second scheme, 

Ive use a lom-rate JPEG encoder, for the first stage. For both schemes, in the second 

stage, the difference of the quantized image in the first stage and the original one is 



quantized with an optimum VQ, an LBVQ, or a codebook designed for a memory- 

Iess Gaussian source. The results of three methods are compared. Although using 

LBVQ reduces the complesity of quantizer, encoding of the lattice points when the 

vector dimension increases is not a trivial task. Some efforts have been made in 

this direction, but still indesing of these points for boundaries other than cubical is 

still difficult. The enurneration method [lS] introduced for indesing needs too man? 

recursive computations. The indesing problem is discussed in Chapter 5 .  

In this chapter the energ'- of different coefficients: for some images are also 

presented and they are compared with the DCT coefficients of the error çamples. 

4.2 TWO-STAGE RESIDUAL LATTICE-BASED 

By dii-iding the quantization task into several successive stages. residual vector 

quantization achieves a great deal of savings in terrns of storage and cornputational 

cornple-sit>-. A residual vector quantizer consists of a cascade of 1;Q stages. n-here 

each stage operates on the resiclue of the previous stage. The codebook design sug- 

gested in [dg] is based on a sequential design of each stage by using GLA. This 

method has been reported CO provide a poor reproduction quality when the nuniber 

of stages esceeds two [9]. Some algorithms have been introduced to irnprove the 

performance of residual VQ [9]. 

The block diagram of a residual VQ encoder is shown in Figure 3.1. It is based 

on successive quantizations of residual signals. A 1<-stage residual VQ: each with 

the codebook size A.(, can be uniquely represent M" vectors with only i1l .K code- 

words. This structure results in tremendous reduction in the codebook search and 



the storage complesit.  The overall encoding rate is $ rh' log, Ml bits per sample, 

where rb] denotes the smallest integer larger than b. 

The codebook for the residual VQ can be designed in two ways. In the first 

method, the codebook in each stage is designed separately For esample, a gener- 

alized Lloyd algorithm 1301 can be used to design each stage. Let x be the input 

vector, and #1 the quantized error vector from stage 1. The input to stage 1 f 1 is 

Then, (1 t 11th stage has to choose X.l,l = yj to minimize the squared error given 

In the second method, (jointly optimum encoding). the  indices of qriantized 

error vectors are jointly selected. 

For reducing the complesity of the encoder, a lattice-based VQ can be used 

in each stage. Because of the regular structure of an LBVQ. its use, in general: 

resirl~s in a drastic reduction in the complesity in cornparison to an optimum VQ 

for the same bit rate and vector dimension. -4lthough an LBVQ. similar to other 

types of s~ructured VQs. is incapable of providing a performance as good as that of 

an optimum VQ for a given rate and dimension, it provides a good performance for 

a given rnemory and computational complesity. One reason for this is that by using 

structured quantizers, one can implement codes mith large vector dimensions. 

The lattice points form a subset of the Euclidean space x . ~  which are uni- 

forrnlj- dist ributed. Bence, using an LBVQ is optimum for uniformly distributed 

sources. However, LBVQs have also been used for Gaussian and Laplacian sources, 



shon-ing good performance [21j [16]. In [Xj, it has been shown that by an appro- 

priate shaping of the support region of the codebook. an LBVQ offers the granular 

gain of the lattice codebook as well as the boundary gain. 

The use of Lattice structured codebooks for non-uniform sources has been t h e  

subjec t of several investigations. For esample, piecewise uniform LBVQ has been 

designed to produce the codebooks for a Gaussian and a Laplacian sources [19]. In 

this rnethod, the scale-factor (step-size) is defined by the density of the input points 

in difkrent areas. 

The use of lattices with variable step-size has also been suggested in [23], [50]. 

-4 Çcalar l éc tor  Quantizer(SVQ) [231 is a Lxed-rate entrop'-coded scalar cluantizer. 

An SVQ combined with trellis-coded quantization [SOj prox~ides an excellent fised- 

rate encoding performance. Similar to other trellis encoding techniques, it involves 

a considerable encoding delay. 

In image compression. the use of the above-mentioned quant ization techniques 

in conjunctiori witli a transformation yields a better performance. For a typical im- 

age, the values of the adjacent pixels are higlily correlated. Transform coding uses 

this correlation between the neighboring pixels to achieve a considerable compres- 

sion. The goal of transform coding is to decorrelate the pixel values. The result 

of transformation on the correlated image samples is t ha t  the signai energ). is dis- 

tributed among a smali set of transforrn coefficients. Hence; in transforrn coding 

many coefficients with negligible information content are neglected. The number of 

the retained coefficients is a trade-off between distortion (quality of the retrieved 

image) and the compression rate. For most images; t h e  Discrete Cosine Trans- 

form (DCT) is very close to an  optimum transform (Karhunen-Loeve transform.) 

The DCT consists of cosine terms of different frequency components and results in a 



spectral decomposition of the original image. Using Kolmogorov-Smirnov test, it has 

been shown that the DCT of an image has Gaussian dc components and Laplacian 

ac cornponents [51]. This makes the combination of transform coding and geometric 

coding an eficient source coding scheme. Figures 4.1 - 4.2 show the distribution of 

some of the coefficients for different images. These coefficients are normalized by 

e n e r s  of each coefficient. For esarnple, for the image Bridge: the distribution of the 

coefficients are quite close to the distribution of a Laplacian source. 

Since most images have a loiv-pass pover spectrum, the low-frequency coef- 

ficients are usually retained while the high-frequency coefficients are ornitted. -4 

major dran-back of this method is that it is possible that some of the coefficients 

wliich are not in the coefficients retention set can have non-negligibie energy, and 

b!- neglecting thern, a great deal of information could be lost. 

Tables 4.1 - 4.3 show the e n e r s  of the coefficients of images Lenna. Bridge 

and Light respectively. For some images with a plain background, the energy of 

the hi$-frequencj. coefficients is not too large. -As it can be seen from Table 4.1, 

for image Lenna. the ratio of the energy of the lori--frequency coefficients and tliat 

of the Iiigh-fr-eyuency coefficients is more than 1000. However: for the image Light 

(Table -4.3). this ratio is reduced to less than 7 .  For these images, neglecting the 

hi&-frequency cransform coefficients is not effective. It can be observed that  even 

if  a lossless quantizer is used for encoding of a fised nurnber of Iow-frequencj- coef- 

ficients: there is a limitation for improving the quality of the image. For esample, 

even in an 8-bit image Lenna: if 15 lowest-frequency coefficients are chosen from an 

S x 8 blocks, the maximum achievable PSXR is 33.35 dB. 



Figure 4.1: Distribution of some DCT coefficients of the image Lenna. (a} Coef. (0:l). 
(b) Coef. (1 ,l) (c) Coef.(& 1). (d) Coef. ( 5 , 5 ) .  

Table 4.1: The energ'; of the coefficients for the image L,enna 



Figure 4.2: Distribution of some DCT coefficients of the image Brzdge. 
(a) Coef. (OJ). (b) Coef.(l, 1) (c) Coef.(3.1). (d) Coef.(5.5). 

Table 4.2: The energy of the coefficients for the image Bridge 
r 

0.0 5523.9 1955.1 920.5 513.3 '298.9 '200.7 146.1 
9524.3 2001.3 1012.7 535.3 345.1 211.6 149.6 113.1 
3517.7 1115.2 668.1 408.4 269.5 173.0 1 .  97.5 
1655.9 646.0 443.3 299.5 215.4 141.0 105.3 80.2 
807.2 373.1 2'72.4 220.8 161.5 111.5 88.1 71.6 
4 . 1  237.5 154.3 143.5 114.2 88.1 '72.3 56.5 
323.0 158.7 135.5 103.3 86.3 65.9 53.7 46.4 
195.3 121.4 99.0 78.5 70.4 58.6 46.2 35.4 



Table 4.3: The energy of the coefficients for the image Light 

-0.0 4567.3 2315.0 1566.4 1253.7 1160.3 873.5 796.1 
3606.4 2059.4 1465.9 1'263.3 1130.3 1047.1 930.5 520.3 
1687.4 1300.0 1193.3 109S.T 1147.3 981.9 92'3.9 796.3 
1167.9 1031.5 1007.5 990.9 1022.6 9'79.4 538.4 829.9 
93 .5  877.1 928.8 9'21.0 933.7 941.6 891.4 805.6 
855.9 536.5 569.3 945.1 981.0 915.3 539.3 830.-5 
S01.9 796.6 530.1 913.3 953.2 926.3 900.5 508.7 
114.3 7 . 6  831.0 984.9 912.4 939.2 514.3 764.4 

For retaining the higli-frequency information. man? techniques have been de- 

\-elopeci sonie of   hi ch were esplained in Section '2.2. In order to r e~a in  more in- 

formation chat is contained in an image, ive non- propose the üse of a two-stage 

quantizer. The function of the first stage is to encode the more important lou--pas 

cornponents of the image. The second stage encodes the high-frecpency cornponents 

ignored in the first stage. Since the correlation between the image pisels at the in- 

put of the first stage is high, a transform coding scherne is appropriate for this stage. 

Tables 4.4 - 4.6 show the e n e r p  of the various DCT coefficients of the resid- 

iial images after quantizing the low-frecluency coefficients. It can be obsei-t-ed chat 

even though the low-frequency coefficients are quantized in che first stage, in some 

images. the low-frequency coefficients of the error signal have a considerable amount 

of e n e r s .  These coefficients are also qriantized one more time in the second stage. 

ive present two versions of the proposed algorithm. In the first version a DCT 

transforrn coding scheme alonp wit h an LBVQ for the first stage (Figure 4.3) is used, 

wliile in the other version as shown in Figure 4.4 a standard JPEG encoder is used 

for the first stage. 

In either case the second stage works on an "error" or residual image formed 



Table 4.4: The energ- of the coefficients for the residual image Lenna 

Table 4.5: The energy of the coefficients for the residual image Bridge 

Table 4.6: The energt- of the coefficients for the residual image Light 
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4.3: The block diagram of the tn-O-stage residual 
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Figure 4.4: The block diagram of the two-stage residual VQ 
first stage. 

using JPEG for the 



by subtracting the output of the first stage fiom the original image. Since the 

correlation between pkels of the "error" image is low: a compression scherne suitable 

for a niemoyless source n-ould suffice. To observe this, the distribution of the error 

signals are found. Since the bit rate in the first stage is low, the distribution of the 

error signal is far from a Gaussian distribution. To see the efFect of the quantizer oo 

the distribution of the error samples, the f k t  14 coefficients are kept, and the rest 

set to zero. Then, the distribution of error samples are plotted. -1s shown in Figures 

-1.5 - 4.7 even if a fine quantizer is used in the first stage. the distribution does not 

fit to thrtt of a Gaussian source. The differences are more, in the case of ha\*ing a 

lossj- quantizer in the first stage. Thus. using a Gaussian codebook in this case is 

not very effective. An optimum \'Q. a Gaussian codebook and an LBt'Q is used for 

tlie second stage. Using a lattice-based vector quantizer for the second stage gives a 

better performance. This is due to the simplicity of the search in lattice, tha t  allows 

us to have a Iiigh-dimensional \.Q. The results are presented in the nest section. 

4.3 SIMULATION AND RESULTS 

The proposed two-stage LBVQ is applied to the images Llght. Bridge: Baboon; 

Lenna. each of size 51'2 x 517: and the bit rate is conipared witli the standard 

JPEG. The objective mesure  for the coder performance used in this section is the 

mean square criterion. It refers to the average of the squares of the error between 

che original image and the reconstructed one. The mean square error is espressed 

in terms of the Peak Signal-to-Xoise Ratio (PSXR). 

To simulate the first version of the proposed method (Scheme 1); each image 

is particioned iuto 8 x 8 blocks and DCT is computed over each block. The  DC 

coefficients are quantized separately- Because of the strong correla tion be tween the 

DC components of the adjacent blocks, differential pulse code modulation is used 



Figure 4.3: Distribution of error signa1 for the image Baboon with the first 15 DCT 
coefficients quantized. (a) Lossless quantizer. (b) LBVQ. (c) Locally normalized 
error signal from loss!ess quantizer. (d) Locally normalized error signal from LBVQ. 



Figure 4.6: Distribution of error signal for the image Lenna mith the first 15 DCT 
coefficients quantized. (a) Lossless quantizer. (b) LBVQ. (c) Locally normalized 
error signal from lossless quantizer. (d) Locally normalized error signal from LBVQ. 



Figure 4.7: Distribution of error signal for the image Bn'dge with the first 15 DCT 
coefficients quantized. (a) Lossless quantizer. (b) LBVQ. (c) Locally normalized 
error signal from lossless quantizer. (d) Locally norrnalized error signal from LBVQ. 



Figure 4.S: The quantizing orcler of DCT coefficients in the first stage. 

for quantizing them. In the first stage a fraction of AC coefficients are qiiantized. 

-1s shown in Fig (Figure 4.8): the first 14 -AC coefficients are chosen in a zig-zag 

order. -As a result, the coefficients corresponding to the 14 lowest frequencies (Le. 

the information contained in the static region of the image) are quantized. The rest 

of the coefficients are set to zero. 

For quantizing the DCT coefficients, a lactice-based \.-Q is used. 11% use the 

cubic lattice zi%nith a splierical contour for truncating. The  scale factor is obtained 

using an iteratil-e algorithm. The encoder uses a fast quantiza~ion teclmique due 

to Conway and Sloane [33j for finding clie nearest lattice point for each vector. To 

calculate the bit rate in this stage, two methods are used. In the first rnethod, a 

theoretical entropy coding is assumed and in the second rnethod, the bit rate is 

estimated by the number of lattice points on each hyper-sphere and the number of 

points falling on that  sphere after quant ization. 

In the second stage, the difference between the original image and the one 

100 



Table 4.7: Performance comparison of optimum VQ and Gaussian codebook in the 
second stage 

Table 4.3: Performance comparison of LBVQ in the second stage and JPEG 

2 1 Proposed Scheme 1 i JPEG fl 

1 
Second stage 

E,nt. denotes the result of entropy coding and Enum. the result of enurneration method. 

Image 
Firs t stage 

LBVQ 

- 

1 Gaussian-codebook 
DISI I bps PSXR 

Optimum VQ 

11 Image [ First stage 
Ent. E,nurn. 

Lenna 

bps DI14 

secoicl stage 1 Tot al 1 I 

Ent. Enum. 1 Ent. / iZ;;j. J PSZR Rate PSXR ' 

bps 1 bps , bps 

4 x 4  31-76 

0.16 

0.34 

Lenna 
i 

O. 98 
0.80 
0.99 

1.4 

0.93 1.2 

bpç 

0.106 
0.080 

37.26 
2.1 33.00 1.94 31.77 

0.106 ! 4 x 4  
35.51 
36.14 
23.69 
30.055 
28.69 
26.67 
29.4 

PSXR 

4 x 4  1 0.3 1 26.15 Ii 
1 ! 

4 0.5 
1 1 2 x 2  1 1.0 , Bridge 1 26.04 1 O ; O 

i 1.0 

Bridge ) 0.181 
1 0.169 

1-18 

Baboon 

1.2 40.54 1.56 
1.0 ( 1.3 1 35-70 1 0.66 33-76 
1.3 

0.94 1 1 3 0  

0.25 

' 

' 
4 x 4  

1.2 

33.4-4 

25.02 4 x 4  
4 x 4  
2 x 2  

Light 

1 
4 x 4  1 0.5 

0.5 0.5 
02.5 
1.0 1 

19.53 1 
1 

28.11 

19.33 0.163 4 x 4  1 0.25 19.9 
4 x 4  ) 0.5 ! 20.89 
2 x 2  1.0 / 23.84 



Table 4.9: Performance cornparison of two-stage VQ (Scheme 1) using entropy cod- 
ing and JPEG 

qiiantized from the first-stage is cpantized. In this stage. an optimum 1:Q and a 

I) 

Gaussian codebook are used to quantize the error image. Table 4.7 compares the 

results of the two methods of using the optimum VQ and Gaussian codebooli for the 

Radius 
Fiist stage 1 Second stage 

second stage. -4s it \vas espected from the distribution of the error image, using the 

~ P S  
Tivo-stage VQ 1 JPEG 11 

Gaussian codebook is not effective and does not result in a good performance. In the 

second stage, a lattice-based VQ is also used, and the lattice points are truncated 

as those bounded by a sphere. The bit race is estimated b>- theoretically as well as 

bj- applying an enumeration method. The simulation results are shown in Table 4.8 

in which the bit rates as obtained by using the proposed two-stage RVQ and the 

standard JPEG are depicted for various PSX.'Rs. -4s it is seen from this table, the 

result of the proposed method is better than that of the .JPEG escept for image 

Lenrta for which the performance using JPEG is better for PSSR = 3.5.7clB. Ta- 

ble 4.9 compares the performance of the proposed mechod for the imageLema and 

that of JPEG for more estensive value of PSNR. It can be seen that two-stage VQ 

s h o w  better results for PSNRs more than 35 dB. As seen in Table 4.1: for the image 

Lenna, most of the energy is distributed among the low-frecpency coefficients. By 

neglecting the high-frequency coefficients, the JPEG still has a good performance. 

Hoivever: for other images the high-frequency coefficients are not negligible. 

In the other version of the algorithm (Scheme 2),  al1 the methods used in 

scheme 1 are again applied to the residual image obtained by using the standard 



Figure 4.9: Distribution of the error signal for some images when the first stage is 
a 50% JPEG. (a) Image Baboon. (b) Image Bridge. (c) Image Lenna. (d) Image 
Light. 



JPEG with a lori- rate as the quantizer of the first stage. Figure 4.9 shows the 

distribution of the error image which is the difference of quantized image obtained 

by using a JPEG compression technique and the original image. -4s it can be ob- 

served, the distribution of error samples is far from a Gaussian distribution. For 

this version, only an LBVQ is used as a quantizer in the second stage. The resdts  

for different images are shown in Table 4.10. Using the LBVQ for two stages shows 

a superior result compared to the JPEG. Even the use of the enurneration technicpe 

to calculate the bit rate results in a better performance. Table 4.11 compares the 

result of this scheme with that of the JPEG for only the image Lenna. The results 

in this table are calculated by an approximation of the the entropy coding. From 

this table, it can be seen that for moderate to liigh bit rate the rate achieved by 

applying the proposed scheme is consiclerably betier than that  obtained by using 

the JPEG For the same qualicy coded image. 

For Iower rates. the performance of JPEG is better chan that of the proposed 

schemes. For esample, a PSXR of 36.0 dB can be acliieved at a rate of 0.7 bps using 

the JPEG. The same PSYR is achieved with the proposed Scheme 2 at a rate of 1.05. 

This is due to the fact that for lower values of PSXR: alrnost al1 the savings in the 

bit rate cornes from the first stage. The bit rate of the second stage rernains almosc 

a constant: since the error signal on wIiich the second stage operates is uncorrelated. 

and the entropy coding in this case is not ve- effective. This can be seen from the 

third column of Table 4. II. 

In the first row of Table 4-11? JPEG compression with the cluality value (de- 

fined by SVIEIV which determines the compression rate) of 50% is used. The output 

of the second stage is equivalent to the output of a standard JPEG mhen the quality 

value is more than 9'7%. Such a quality value can be achieved by the JPEG with a 

race of 3.9 bps. In our algorithm the second stage needs only one additional bit per 



Table 4.10: Performance comparison of Two-stage VQ (JPEG in the first stage and 
LBVQ in the second stage) and JPEG 

Ent. denotes the result of entropy coding and Enum. the result of enurneration rnethod- 

'I 

Table 4.1 1: f erformance comparison of JPEG and two-stage RI-Q (Scheme 2) 

sample with total rate of 1.6 bps to achieve tliis result. 

Image 

( Lenna 1 0.66 135 .71  

4.4 SUMMARY 

l 

In this chapter, we have proposed a two-stage residual cpantization method for 

image compression. Ttvo schemes have been presented. In the first scheme, an 

LBVQ is used to quantize the low-frequency transform coefficients. In the second 

one the standard JPEG is used to quantize the input image. It has been shown that 

the error signal does not have a distribution close to  Gaussian. In both schemes, 

a high-rate LBVQ has been applied to quantize the residual signals comprising the 

First stage 
JPEG 1 PSNR 

Tot al 
PSXR 

PSXR 
dB 

47.73 

Two-s t age RVQ JPEG 
First stage(JPEG) J Second stage 1 Total ) 

Second stage 
Ent. 1 Enum. 

JPEG ! 

dB 

0.1511 0.57 140.11 

' 
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bps 
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bps 
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dB 
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1.42 1 3.0 1 
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43.66 1 0.37 
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1-05 j 0.7 

1.6 1 3.9 1 
1.0.5 

0.66 

O .9S 
0.9 

0.94 

41.62 
36.0 
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difference between the original image and the reconstructed image in the first stage. 

The results have been compared with the standard JPEG: sliowing an improvement 

of upto 2 bits for high-bit rate compression. 



Chapter 5 

INDEXING OF LBVQ USED IN 

TRANSFORM CODING 



5.1 INTRODUCTION 

Encoding the Discrete Cosine Transform (DCT) coefficients of an image iuvolves 

two steps: quantizing and indesing the quantized points (Figure 2.18). For the first 

step, m a n -  lossy scalar and vector quantization techniques have been designeci. For 

the second step, depending on the quantizer, different noiseless coding schemes are 

used to indes the output points of the quantizer. 

Due to  the regular structure of lattices. man. researchers have used lattice- 

based vector quantizer for quantizing DCT coefficients of images, but only a fen- 

methods have been suggested for indesing the output points [1-5]. Fischer [29] has 

conibined an  Lattice-Based Vector Quantization (L,B\.Q) with a noiseless code to 

encode the DCT coefficients of images. In [lSj: the output lattice points are  labeled 

using an enumeration method for Laplacian sources. and i t  has been shown that  the 

combination of LBYQ and noiseless code outperforms the uniform scalar quantizer 

combined with a noiseless coding for each coefficient. Fischer 11as also shon-n that  

the result can be further improi-ed by using several quantizers ['>9]. The problem 

n-ith the enumeration method is thâc full enumeration requires too many recursive 

calculations. This can be avoided if the niapped poi~i ts  are localized. 

Diie the asymptotic ecjuipartition property of random variables? an>- secpence 

of blocks gets divided into two secs, typicai set and non-typical set. For a sufficieritly 

large dimension, the typical set has a probability dose  to 1, and al1 of its elernents 

are nearly equiprobable. -4ccording to this property, the DCT coefficients of an 

image can be localized and the high probability area can be found. 

In this chapter: an LBVQ is used to quantize the  DCT coefficients of images. 

For reducing the effective bit rate, first, the output points are grouped according 

to the different parameters of blocks, which correspond to the probability density 



function of the blocks. Then, shorter representations are assigned to more frequently 

used lattice points. Grouping is done in two ways. In the first method, the output 

points are grouped depending on the number of their non-zero cornponents and 

their values. These output points are indesed with respect to rheir groups and the 

positions of non-zero elements in their respective bIocks. In the second rnethod: the 

output points are grouped according to  a radiai parameter defined by 

n-here v = 2 for spherical boundary and v = 1 for a pyramid boundary. In this 

n-orkt spherical boundary is used, i.e. v = 2. Only the output points on the most 

probable spheres are iudesed usinp the enumeration metliod. Since these spheres 

have small radii, the number of points on thern is not too large? tbus making their 

enurneration not too difficult. For the indesing of the points on the spheres with 

large radii, the positions of the non-zero eIements and their values are used. L i é  use 

a prefis variable length code to index these values. 

5.2 LATTICE-BASED VQ 

For a vector cluantizer! the image samples are seomented into A l  blocks and the pis- 

els in each block are considered as a vector. In an optimum vector quantizer, most 

of the output vectors belong to the typical set. In fact, with the iteration method 

such as Generalized Lloyd -ilgorithm (CL-4): the codevectors are rnostly concen- 

trated in the typical set. A!"). As it was mentioned in Section 2.5 .  the asymptotic 

equipartition property is valid when the dimension is large- The problem 114th an 

unstructured VQ is chat the complesity of the quantizer increases esponentially as 

the the block dimension increases. Using lattice points as a codebook can solve this 

problem. 



Usually in a lattice-based vector quantizer, the lattice is truncated such that 

the desired number of lattice points fa11 inside the truncated boundary. For esample. 

for a given dimension LV and a bit rate R? 2'vR is the number of iattice points tliat 

are used. -4s a result: for a large value of N the radius of truncation is small, so 

different values that each pixel can assume is limited to two or three Ievels. For 

instance, for a cubic lattice when the dimension is 16 and the bit rate is 0.5 bps the 

codebook size is 2'. If the Iattice points are truncated mith a spherical bounciar? 

the radius of cruncation has to be chose11 such that 2' points (code words) fa11 inside 

the boundary In this case. the 16-dimensional lattice has to be truncated with a 

spliere of radius '3. 

i= 1 

It means that there are only 5 different levels given by (-2.-1,0,1:2). 

For a source wich a given probability density function, only a few of these 

lattice points are used. For esample, in an image: where the correlation between the 

adjacent pixels is high, most of the output points are near the h>-per-plane bisectors. 

-4nother illustration of this fact is that the DCT coefficients of an image are concen- 

trated near the origin or axes. To take ad\-antage of these r e p l a r i t i e ~ ~  a geometric 

1-ector quantizer has been suggested [Isj, [ 2 j .  Ir is knou-n [lj] that almost al1 code- 

ivords lie in the high probabiIity region specified by the entropj- of the source. The 

geornetrical shape of che region of high probability depends on the source statistics. 

For esample, these shapes are spheres for the memoryless Gaussian source, pyra- 

mids for the Laplacian source: and h~percubes for a uniform source. The probability 

density function is constant and, therefore, the codewords are uniformly distributed 

in this region. This is the idea behind geometric source coding. The intersection of 

the lattice points and the region of high probability for the source is chosen as the 

codebook. As a result, with simple encoding and decoding algorithms: this approach 

yields a good VQ for memoryless Gaussian, Laplacian and uniform sources. 



Using KoImogorov-Smirnov test: it  has been shown that  the DCT of an image, 

cornputed block \vise! has Gaussian dc  components and Laplacian ac components 

1 This makes the combination of the transiorm coding and the geometric coding 

an efficient source coding scheme. 

Since the  quantization step for an LBVQ is simple, using lattices for the high- 

dimensional VQ is possibIe, and according to t be asyrnptotic equipartition property, 

in high dimension the output points are iocalized in the typicai set. Hence. using 

an LBVQ in high dimension is a promising scheme for da ta  compression. In order 

to have a good quality image. we propose a high-dimensional LB1,-Q with a large 

radius of truacation. However. the indexing of the lattice points, el-en for the lon- 

dimension is still a problem. Efficient algorirlims esist for implementing a lattice 

quantizer with an X-dimensional hypercube boundary. In this case, indesing can be 

done by using one-dimensional code components over a bounded interval. However. 

for other desirable boundaries, such as spherical or pyramid, indexing requires an 

escessive storagc or cornples enumeration algorithms. In this work: we present a 

method for indesing the lattice points used as codewords of an LBVQ. 

5.3 PRINCIPLEOFTHEPROPOSEDMETHOD 

In order to achieve a high-quality and Ion.-complesity source coding, the Iattice 

points are truncated wich a large enough radius: making a large number of lattice 

points to fa11 inside the  boundary. The problem of high-bit rate due  to this large 

nurnber of points is resolved by assigning a shorter representation to more frequently 

used lattice points. Grouping is done in two ways. In one rnethod, al1 the output 

points are grouped depending on the number of their non-zero components. The 

output points are indexed with respect to tlieir groups and the position of non-zero 



elements in each group. In the other method, the  output points are grouped based 

on the radial parameter, and a prefised coding is used to indes the  output points. 

5.3.1 Method based on grouping according to non-zero 

values 

The correlation between the adjacent pixels of a typical image is high. As a result, 

if ire divide the whole image into small blocks, usually there will not be significant 

changes in the pixel values of one block. This esplains the concentration of the DCT 

coefficients of a typical image near the origin or ases. -4s a result, after scaling, there 

are only a few non-zero componencs in each block. These non-zero elements are the 

basis for indesing each block. In an LBVQ: the infinite Iattice is truncated with 

a defined boundary. Here, nre use a spherical boundary for truncation. Lsing an 

iterati~ve procedure, the scale factor is selected such that  the average distortion is 

minirnized. 

Depending on the radius of truncation, the components of each output vector 

can take only a few values. For esample, if the radius of truncation is 9 in lattice 

zI6: symbols can only take values O to 9. We g o u p  the output points according 

to the number of their non-zero elements and t.he absolute value of these elements. 

For instance, the  group with only two 1's and fourteen zeros includes vectors such 

as [iOOOlOO .... O], LOO.. - 10.. - io..O] and  [010..0..0.. - 11. Our simulation results 

indicate that ,  if the DCT coefficients of a n  image, e.g., Lenna , are quantized with 

a cubic lattice z16 truncated with radius 9; there will be around 300 groups. Forty 

four per cent of the output vectors are mapped into the origin, sisteen per cent of 

the points are encoded into the vectors having a single 1 and fifteen O's, and 6 per 

cent have two 1's and fourteen 0's. In more than fifty percent of the 300 groups, 

only one block is encoded. Table 5.1 shows some groups of the DCT coefficients of 

the image Lenna : and the number of b loch  in each group. The total number of 



Table 5.1: Selected groups for the image Lenna, block size 4 x 4 

1 Group's ( Number of block elements in the 1 Number of II 

Table 5.1: Distribution of codevectors and number of bits used for blocks in each 

number group with absolute vaIues of 
1 1 2 3 4 6 6 7  8 

category for the image Lenna 

bIocks in the 
groups 

n Categot-y 1 Output  distribution 1 Number of bits 

1 1 0 0 0 0 0 0 0  O 1 6381 

blocks is 15,360. The numbers in the first row of the table show the absolute values, 

and the numbers in the other r o m  show the number of non-zero symbols in each 

group. 

Depending on the distribution of the output blocks in each proup, these groups 

can be classified into different categories. For esample, in the image Lenna : we 

divide these groups into three different categories: the origin or all-zero vectors, the 

nesc seven most probable groups, and the rest. As a result, 44 per cent of the points 

are represented bu the first category, 34 per cent belong to the second category, and 

only 22 per cent are in the last category Table 5.3.1 shows the distribution of the 

output points for each category and the number of bits used to indes the output 

points in each category for the image Lenna . 



The  first category, Le.: the one containing all-zero vectors can be indesed with 

onlx one bit. In this ivay about one-half of the 16-dimensional blocks c m  be encoded 

only with one bit per block. The second category consists of seven most probable 

groups. These usually consist of code-vectors mith one or two non-zero symbols. 

To indes the code-vectors in the second ca tegor~ ,  ive need 9 to 19 bits. The first 

four bits specify the category and the group and the remaining five to fifteen bits 

specify the positions of the non-zero symbols in the vector and its sign. Finalli., in 

the Iast category, 12 bits are used to specify the category of the group and 5 to 30 

bit.s are used for defining the positions of the non-zero components. Although in 

category 3, sometimes more than 30 bits are used to index a block: the effect on  the 

overall bit rate is negligible: since only one or two blocks belong to these groups. 

Figure 5.1 shows the code-length in different categories using this method. Shese 

observations show that using this grouping method, a considerable bit reduction 

c m  be achieved. In addition, most of these non-zero elements are low-frequency 

cornponents. Considering this fact results in a loiver bit rate for high dimensions. 

5.3.2 Method based on grouping according to the radial 

parameter 

In this method, the lamice points are groiiped according to the radial pararneter, 

r ( see Eqn. 5.1). If the DCT components of an image are quantized witli a z16 

lattice truncated with a sphere of radius 9, there are eighty one different groups. 

For the image Lenna, forty four per cent of the output vectors are mapped into the 

origin, sisteen per cent of the points on the sphere with a radius 1 and six per cent 

on the sphere with a radial parameter of '3. In most of the spheres (groups), only 

a few output points are mapped on the sphere. For esample, in the simulation of 

the DCT components of the image Lenna, only -2 output paints fa11 on the sphere 

with T = 24, and only 7 output points are mapped on the sphere mith the radial 

pararneter 5 1. 
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Figure 5.1: The code length in different categories for the method based on grouping 
according to non-zero values. 
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For indesing the output points on each sphere, the  enumeration method 

esplained in [15] can be used. The number A;(iV, r) of integer points on the 

X-dimensional sphere with the radial parameter r can be calculated using the re- 

currence relation &en by 

~vliere rn is the largest integer such that  m2 5 r. Csing this ecluation, tlie index of 

each point can be calculated recursively. The  codeword assigned to each point con- 

sists of ctvo parts. The b rnost sipificant bits speci- the sphere on which the point 

lies. The rest of the bits identify the location of the point on the sphere. Since the 

number of the points on the spheres with large radii is huge, and a full enurneration 

requires too man?; recursive calculations, the enumeration of these points is quite 

difficult. Using a partial enumeration, Le., enumerating only the points on small 

spheres can reduce the search comp1esit.y considerably. 

111 this work. only the output points on the most probable spheres are indesed 

~ising the enumeration method. Since these spheres have small radius. tlie enumera- 

tion is not ver- difficult. For the inclesing of a points on a sphere n i th  large radius, 

the values of its vector components are used. Most of these values are less than 

3, (quite often O ) ;  thus we use a prefis variable Iength code to index these values. 

Although for indesing the points on a sphere witli a large radial parameter, as man- 

as 40 bits may be used, the effect on the overall bit rate is negligible, since only a 

few points are mapped onto such a sphere. 

For different groups (i.e., spheres with different radii), Sable 8.3 shows per 

cents of points falling on them, number of 1at.tice points on  each sphere and the 

number of bits used to indes the output points mapped ont0 these spheres in a 16- 

dimensional space. The table also shows the number of bits obtained by using a full 



Table 5.3: Distribution of codevectors and number of bits used for blocks in selected 
groups 

Per cent of Number of 
radius output points Lattice points Xumber of bits 

, on the sphere on the sphere Group with radius 1 Enurneration 1 Group with values 

1 O 44 I 1 1 I 1 1 1 l 

enumeration method and by employirig the method based on grouping according to 

the nurnber of non-zero elements (Section 5.3.1). In full enumeration, the prefis bits 

wiiich indicate the sphere, are an estimation for Huffman coding suggested in [29]. 

The code presentation is shown in Figure 5 .2 .  

5.4 SIMULATION AND RESULTS 

Images u-hich are quantized and encoded using the proposed methods are sliown in 

Figiire 5.4. Each image is partitioned into 8 x Q blocks and the DCT is cornputed 

oyer each block. The DC coefficients are quantized separately using difkrential pulse 

code modulation. -1 scalar quantizer is designed to quantize the difference compo- 

nent of the DC coefficients. The quaritized coefficients are then entropy coded. The 

ac coefficients are quantized with an LBVQ using z" cubic lattice. The infinite 

lattice is trilncated with sphericâl contours with different radii . In each case, the 

Conwq  and Sloane's fast quantization technique [34] [33] is used for finding the 

nearest lattice points. 

In the first method, grouping according to the values of the non-zero elements? 



I 
A U  ZERO VECTORS 

VECTORS 

POSITION XW 
U R G E  RADIUS vrlt UES 

VECTORS 

Figure 5.2: The code length for differeni groups in the proposed method based on 
grouping according to the radial parameters. 



Figure 5.3: The test images Lzght, Lenna, Baboon, Bridge, Girl and Tree. 

Table 5.4: PSNR and bit rate using the method based on grouping according to the 
radia1 parameter for the image Lenna 

according to the density of the non-zero elements, the categories are defined. Tliese 

categories sliould be specified in the header. In some cases, when the radius is large. 

some groups are comrnon for different images. These groups can be predefined for 

the decoder in order to make the header shorter. In al1 our simulations, there are 

only three categories as mentioned in Section 5.3.1. 

Table 5.4 shows the number of groups, the bit rate for one block, (bpb) and 

the PSNR for different radii of truncation for the ac coefficients of the image Lenna. 

In this case, the two methods, Scheme 1 and Scheme 2, have been used. In the 

first scheme, the location of the non-zero elements are represented by 6 bits. After 

PSNR 
dB 

28-55 
32.21 

Scheme 2 
bpb 

- 
Radius 1 Scherne I 

# of groups 1 bpb 

f 
7.3 3 18 1 11.69 

6 dm- 799 1 21.36 ! 17.6 



specifying the group of non-zero elements, their signs and locations are transmit- 

ted. In this method, there is no restriction on the location of the coefficients within 

the block. Sirice most images have a low-pass spectrum, the non-zero elements are 

usually concentrated in the left-upper corner of each block (the loiv-frequency coeffi- 

cients). Hence, in the second scbeme, the blocks are divided into four quadrants. In 

this scheme, each coefficient is specified by the quadrant number and the position of 

the coefficient mit hin the quadrant. Hoivever, with this scheme, savings in bit rate 

is achieved b -  determining the quadrant number of the coefficients belonging to the 

first quadrant bu default. Table 5.4 a h  shows the result of using this scheme for 

the image Lenna (Scheme 2).  

Tables 5.3 and TabIe 5.6 compare the performance of the proposed method 

n-ith JPEG. It is seen that the proposed methods, for the image Light , yields siipe- 

rior performance compared to JPEG. For the bit rate around 1.8: the PSxR with 

the nen. method is 26.4 dB, while JPEG results in a PSS'R of 24.3 dB. For the 

image Lenna. however: JPEG performs better than the proposed method. Using 

q~iantization table, JPEG has different scale factors for different coefficients. In this 

n-a? the hi& frequency coefficients almost vanish. In the image Lenna where pixels 

are highly correlated, by doing entropy coding twice, JPEG achieves liiglier com- 

pression. Hoivever, in images with lower correlation. JPEG cannot deliver similar 

results. In such cases, our method yields better performance, since high-frequency 

coefficients are ais0 taken into consideration. 

In the second method. based on grouping according to the radial parameter 

values, the output points which are mapped into the origin are only quantized with 

one bit. For the next two spheres (with radii 1 and 2): enumeration rnethod is used. 

The rest of the output points are indesed with the values of non-zero elements. The 

advantage of this method cornpared to the first one is that the header is very small 



Table 5.5: The performance comparison of blethod 1 and JPEG for the image Lenna 

Table 5.6: The performance comparison of Method 1 and JPEG for the image Light 
- 

PSNR Method 1 
~ P S  1 JF'Fs' 1 

and the groups need not be defined in the header. Besides, the code is not dependent 

on the image. Since the number of Iatcice points chosen inside the boundary is 

ver- large, the performance of this method is becter than otlier LBVQ's, ~vhere tlie 

nilmber of the lattice points are Iimited by the bit rate. Furtherrnore, indesing of the 

lattice points in this method is not based on enumeracion which requires too many 

recursive operations. In the piecewise uniform VQ [32], the lattice points are diïided 

into several zones and each zone has its own scaling factor. .Lltl~ough the most 

probable sections are quantized by a fine quantizer, the number of cociewords are 

Iirnited bx tlie rate and its indexing method is still employs enumeration. Table 5.7 

compares the result of a uniform LBVQ, full enumeration which is suggested in 

[l5] (PVQ) and piecewise uniform VQ with tlie proposed method (these results are 

taken from [32]). For some images our method outperforms these methods. For 

esample, for the image Lenna, the proposed metliod yield an improvement of about 

5dB over the other methods. For sorne other images the result is comparable to 

other methods. Figure 5.4 compares the result of this method with the PVQ for 
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Figure 5.4: The cornparison of the  method based on grouping according to the radial 
parameter and PVQ. 

image Girl and Tree. 

This method is also compared with JPEG in Table 5.8. For most images, this 

method outperforms the JPEG. For esample, in the image Light, this method uses 

1.3 bits per sample for a PSNR of 24 dB whiie the JPEG needs 1.8 bits per sample 

to get the same result. -1mong the images tested: only for the image Bridge. the 

JPEG shows better performance than the proposed method. Figure 5.5 compares 

the performance of this niethod with that of the JPEG. For the image Cenna: the 

PSNR is only slightly better than that  of the JPEG. Han-ever: for the image Light 

an improvement of up to 3 dB is achieved. Figure 5.6 compares the  quantized image 

Lenna obtained using this method for the bit rate 0.27 with the output of JPEG for 

the same bit rate. It is seen that  the blocking effect is reduced with the proposed 

method. 

To show the efficiency of the method in regard to its comple-xity, the proposed 



Table 5.7: The  performance comparison of the method based on grouping according 
ta the radial parameter and other indesing method for some images 

! l 
Lema 28-13(0.5) 27.62(0.5) 25.23(0.5) 1 33.89(0.14) 11 

l 
Girl l 3?.78(0.5) 1 31.9(0-5) 1 32.95 (0.5) 1 31.33(0.5) 

il i ! 
Tree 1 26.31(0.5) 16.05(0.5) ' 26.43(0..5) / 26.33(0.53) 

Table 3.8: The performance comparison of the method based on groupinp according 
to rhe radial parameter and that  of JPEG for some images 

ZL"rouping method 
PSXR(bps) 

Piecewise G'niform 
PSXR jbps) 

1 image Uniforni zL6 VQ 

, 

Image 1 Grouping with radial parameter 

PVQ 

II PSSR(bps) 
I 

JPEG 1 

PSNR(bps) 

L- 

1 PSYR(bps) PSNR(bps) 1 
Lenna 

Li& 

Bridge 

Baboon 

32.5(0.33) 1 32.90(0.374) 

30.95(0.25) 1 3137(0.29) 

26.63(1.6) 26.70(2-3) 

23.9'7(1.4) 1 ?4.36(1.535) - 

25.55(1.3) 

2,.03(1 .O) 

30.33(1.5) 

28.0(1.17) 

I 
28.TO(l .O%) 

26.90(0.692) 

30.95(1.75) 

28.54(1.25) 
- 



Figure 5.5: The comparison of the method based on the grouping açcording co the 
radial parameter and JPEC for the images Light and Lenna. 

nietliod is compared with an optimal VQ for some images. Sable 5.9 shows the 

coinplesity of the tu-O methods. The results of VQ are For low LO medium dimen- 

sions. Although the IiQ shows better performance nith higher dimensions, but the 

complesity of calcularion is higher. In some cases the code\~ector is far from the 

inpu t  rrector such that i t  is nor necessary to calculate the distortion between al1 the 

elenieiits of the input vector and the vector in the codebook. Thus. in the calcu- 

latioii of cornplesicy for the VQ? the number of multiplications and additions are 

considered to be one-half of a full search. In the calculation of che complesity each 

comparison is counted as equilvalent to an  addition. 

We also tested the error samples of an LBiTQ to investigate the advantages 

of using the universal Gaussian codebook to quantize the error sample. It has been 

observed that, the error samples are far from having a Gaussian distribution func- 

tion, a result that riras also obtained when quantizing the low frequency coefficients 

of image. Figure 5.7 shows the distribution of error samples when the first stage is 



Figure 5.6: The comparison of the method based on grouping according to the 
radial parameter and JPEG for the image Lenna for bit-rate 0.27 bps. (a) Proposed 
method. (b) JPEG. 125 



Table 5.9: The cornparison of compIesity of VQ and proposed method for some 
images 

LBVQ for the images Lenna and Bridge. Nest. the JPEG data  compression sclieme 

is used in the first-stage. The distribution of error samples for Iow to I-iigh compres- 

sion for image Lenna and Bridge. is shomn in Figure 5.8 Our investigation shows 

that, if a transform coding is used in the first stage of a two-stage vector yuantizer, 

the distribution of error samples are far from hat-ing a Gaussian discribution. and 

using a universal Gaussian code book is not efficient. 

I 

Image 

; i 

5.5 SUMMARY 

In this chapter, tmo methods using a combination of LBVQ and noiseless coding for 

the encoding the DCT coefficients of an  image have been presented. The first method 

is based on the grouping of the quantized coefficients according to the number of 

their non-zero elements. The second one classifies the output points according to 

their radii. Simulation results for different images have been presented and compared 
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Figure 5.7: The distribution of error image, first stage LBVQ. (a) r=4: image B.ridge. 
(b) r=9: image Bridge. (c) r=4, image Lenna. (d) r=9: image Lenna. 



Figure 5.5: The distribution of error image, first stage JPEG. (a)JPEG 3% image 
Bridge. (b) JPEG 5% image Lenna. ( c )  JPEG 20% image Bridge. (d) JPEG 20% 
image Lenna. (e) JPEG 80% image Bn'dge. (f)  JPEG 80% image Lenna. 



with the JPEG and other LBVQs. The first method gives better results for some 

images- but the second metbod outperforms the JPEG for most of images used to 

test the method. 



Chapter 6 

CONCLUSION 



6.1 CONCLUDING REMARKS 

Iéctor  quantization is an efficient method of data compression, especially for speech 

and images. This thesis has been concerned with the problems of search and code- 

book memory requirements of vector quantizers for image compression. 

In order to reduce the search cornpIesity of vector quantizers, a multi-stage 

vector quantizer with a unique codebook has been introducecl. A low-rate optimum 

wccor quantizer has been used in the first stage and a universal Gaussian codebook. 

designed for a rnemoryless Galissian source. for the other stoges. It lias been cliown 

that the locally norrnaiized error samples of images have a distribution close to a 

normal distribution. Since a Gaussian rnemoryless signal is successively refinable, 

the error samples are also successively refinable. -4s a consequence, the codebook 

designed for a memoq-less Gaussian source can be usecl in difFerent stages of a multi- 

sage vector quantizer to encode the image error samples. -An optimum codebook 

designed for a normally distributed source has been used to  quantize error sample of 

different images. and the results have been compared with the reconstructed images 

quant ized bj- an optimum veccor quantizer. The resul ts from the proposed technique 

is ver- close to that from tlie optimum vector quantizer. Since with the proposed 

mechod only one codebook is needed in different stages of the residuai \'Q: difFerent 

structures and mapping techniques can be used to reduce the searcli complesit~: 

Since the compression search complesity can also be reduced by quantizing 

only the more important parts of of an image, the low-frequency coefficients have 

been quantized in the first stage of a residual multi-stage quantizer. In this way 

the smaller size of the source results in a reduced search cornplesity of search. The 

second stage is then used to restore the information neglected in the first stage. The 

function of the second stage is to work on the residual image obtained by subtracting 

the output of the first stage from tlie original image. This task has been implemented 



in tn-O ways. In the first scheme, a lattice-based vector quantizer has been used as 

the quantizer, while in the other one, a standard JPEG with a Ion- rate has been 

used as the quantizer of the first stage, and a lattice-based vector quantizer for the 

second stage. The resulting bit rate of the two-stage lattice-based vector quantizer 

in either scheme hm been found to be considerably lower than that  of the JPEG 

in the same quality of the encoded images in moderate to  high rates applications. 

LI-ith the proposed two-stage lattice-based vector quantizer, an improvernent of up 

to 2 bits has been achieved. 

.-\ithough the proposed two-stage vector quantizer provides considerably bet- 

ter performance than the JPEG for high bit-rate compression, it is not effective for 

lon-er rates. This is due to the fact that  a major fraction of the bit rate cornes from 

the second stage and the bit rate associated with this stage remains almost constant. 

Thus, the tliird part of tliis thesis has been concerned wich the l o ~ v  bit-rate com- 

pression. In this part, the DCT coefficients have been quantized mith a lattice-based 

vector quantizer in which the lattice points are truncated with a large radius. As 

a result, a large number of points fa11 inside the boundar>- of tlie hyper sphere or 

the codebook: and thus, images are encoded with high quality and Iow complesity. 

111 order to reduce the bit rate, a shorter representation is assigned co tlie more fre- 

quently used lattice points. To  indes the large number of lattice points falling inside 

the boundary. two methods have been proposed. Both these methods are based on 

the grouping of the lattice points according to their frequencies of occurrence. In 

the first method, these points are grouped according to  the non-zero elements of 

the quantized DCT coefficients. In the second scherne, the grouping is carried out 

according to the radial parameter of the lattice points. After grouping, a lattice 

point is indexed according to  its group and position of its non-zero elements. For 

most of the images tested, the proposed methods have been found to outperform the 

JPEC in terms peak signal to  noise ratio and visual quality of reconstructed image 



a t  the same computational cornplesity. Homever, for the  ot her Iat tice- based vector 

quantizer schemes, the proposed method yields better performance 114th lower com- 

putational complesity. 

6.2 SCOPE FOR FURTHER INVESTIGATION 

.Availabilit~- of a universal codebook for coding any source with no loss in quality 

would be very attractive. In one of the proposed metho& in this thesis: an optimum 

codebook has been used in the first stage, and a universal Gaussian codebook in tlie 

otlier stages. It would be of interest co investigate the use of an universal Gaussian 

code book in al1 stages of a quantizer for applications in which has a Gaussian dis- 

tribution such as row S-4R data.  

The idea of having a universal codebook could be estended to the frec~uency 

domairi. It is me11 known that  the ac coefficients of an image has a Laplacian distri- 

bution. On the other hand, random variables drawn from a Laplacian distribution 

are successiveIy refinable when the distortion is meaçured using the absolute distor- 

tion criterion. It maje be desirable to design a Laplacian universal codebook: under 

the absolute distortion criterion: to  encode the ac coefficients of an  image. It is 

obvious that  in this case, the different stages should be able to work on the differ- 

ence of quantized and the DCT original coefficients, rather than on the error samples. 

Developing some structures and  mapping techniques for the universal code- 

book would also be of interest to  investigate. One approach could be the one in 

which the codevectors are grouped according to their norm squares. 



In Chapter 3, the indesing of the lattice points in a lattice-based vector quan- 

tizer has been carried out by choosing cubical lattice and a sphekical b o u n d a .  

Further investigation is needed with the use of different boundaries and lattices in 

order to improve the performance of the proposed lat tice-based vector quantizer. 
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