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ABSTRACT

Structured Vector Quantizers in Image Coding

Manijeh Khataie, Ph. D.

Concordia University, 1999

Data compression has become an essential part of modern digital communi-
cation, video signal processing. and storage systems. Although the bandwidth of
communication networks has been increasing continuously, the introduction of new
services and the expansion of the existing ones demand an even higher bandwidth.

Image data compression is concerned with the minimization of the volume of data

used to represent an image.

For a typical image, the values of adjacent pixels are highly correlated. The
transform and predictive codings use this correlation between the neighbors to
achieve a high degree of compression. The goal of transform coding is to decor-
relate the pixel values and redistribute the signal energy among only a small set of
transform coefficients. For most images, the Discrete cosine transform (DCT) is

very close to an optimum transform.

In recent years, image compression algorithms using Vector Quantization (VQ)
have been receiving considerable attention. Unstructured vector quantizers, i.e.,
those with no restriction on the geometrical structure of the codebook, suffer from
two basic drawbacks, viz., the codebook search complexity and the large storage
requirement. This explains the interest in the structured VQ schemes, such as

lattice-based VQ and multi-stage VQ.



The objective of this thesis is to devise techniques to reduce the complexity
of vector quantizers. In order to reduce the codebook search complexity and mem-
ory requirement, a universal Gaussian codebook in a residual VQ or a lattice-based
VQ is used. To achieve a better performance, a part of work has been done in the
frequency domain. Specifically, in order to retain the high-frequency coefficients
in transform coding, two methods are suggested. One is developed for moderate to

high rate data compression while the other is effective for low to moderate data rate.

In the first part of this thesis, a residual VQ using a low rate optimal VQ in
the first-stage and a Gaussian codebook in the other stages are introduced. From
rate distortion theory, for most memoryless sources and many Gaussian sources
with memory, the quantization error under MSE criterion, for small distortion, is
memoryless and Gaussian. For VQ with a realistic rate, the error signal has a non-
Gaussian distribution. It is shown that the distribution of locally normalized error

signals, however, becomes close to a Gaussian distribution.

In the second part, a new two-stage quantizer is proposed. The function of
the first stage is to encode the more important low-pass components of the image
and that of the second is to do the same for the high-frequency components ignored
in the first stage. In one scheme, a high-rate lattice-based vector quantizer is used
as the quantizer for both stages. In another scheme, the standard JPEG with a low
rate is used as the quantizer of the first stage, and a lattice-based VQ is used for
the second stage. The resulting bit rate of the two-stage lattice-based VQ in either

scheme is found to be considerably better than that of JPEG for moderate to high

bit rates.
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In the third part of the thesis, a method to retain the high-frequency coeffi-
cients is proposed by using a relatively huge codebook obtained by truncating the
lattices with a large radius. As a result, a large number of points fall inside the
boundary of the codebook, and thus, the images are encoded with high quality and
low complexity. To reduce the bit rate, a shorter representation is assigned to the
more frequently used lattice points. To index the large number of lattice points
which fall inside the boundary, two methods that are based on grouping of the lat-
tice points according to their frequencies of occurrence are proposed. For most of the
test images, the proposed methods of retaining high-frequency coefficients is found

to outperform JPEG.
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Chapter 1

INTRODUCTION



1.1 GENERAL

The bandwidth of the communication networks has been increasing continuously as
a result of technological advances. However, the introduction of new services and
the expansion of the existing ones have resulted in an even higher demand for the
bandwidth. This explains the many efforts currently being invested in the area of
data compression. The primary goal of these works is to develop techniques of coding
information sources such as speech, image and video so as to reduce the number of
bits required to represent a source without significantly degrading its quality. Iinage
and video compression is essential for image transmission applications such as TV
transmission, video conferencing, remote sensing via satellite, aircraft, radar or sonar
and facsimile transmission of printed materials as well as where pictures are stored in
databases. such as archiving medical images, finger prints, educational and business

documents and drawings.

1.2 DATA COMPRESSION

Data compression techniques can be classified into two categories, lossless and lossy.
Lossless data compression techniques permit perfect reconstruction of the original
information, whereas the lossy schemes do not guarantee perfect reconstruction.

However, they offer better compression ratios.

In many applications, such as computerized tomography and satellite remote
sensing of images, where image data is constantly produced for archival storage, no
information should be lost during the process. Therefore, in these cases, one has to
use a lossless scheme. In lossless compression, the shorter indices are assigned to
gray levels that occur more often. Huffman coding [2] and arithmetic coding [3] are

two examples of lossless compression.
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Lossy compression techniques reduce the number of bits required for the re-
construction of the source by introducing some distortion in the data. For a given
source, the amount of distortion depends on the degree of compression. Tvpically,
images have a high degree of correlation between the adjacent pixels. Most com-
pression techniques use this correlation between the neighboring pixels in order to
achieve a considerable compression. These methods exploit a set of uncorrelated
parameters that represent a picture and from which the picture can be reproduced.
Transform coding [4] expands a picture in terms of a family of orthonormal func-
tions and takes the coefficients of the expansion as a representation of the picture.
If we do not limit to linear orthogonal transformation, there are other techniques
that achieve the same result. One such technique is the predictive compression [4].
Because of the strong correlation between the pixels of an image, it is possible to
derive an estimate or prediction, £(m, n), for a given element r(m.n) in terms of
its neighboring picture elements. The difference e(m,n) = z(m,n) — Z(m, n) is the
estimation error for the picture elements. It is reasonable to expect that the random

variable e(m, n) should be less correlated than the elements in the original picture.

Vector Quantization (VQ) [3] is another example of a lossy data compression
techniques. In a vector quantizer, the data sequence is quantized in groups (blocks)
instead of individually. It is well known that the vector quantization always results in
a better performance than the scalar quantization [6], {7]. Although the performance
of an optimum Vector Quantizer(VQ) is good, the quantization and encoding steps
are complex. Lack of a structure in an optimum vector quantizer is the reason for its
complexity. This explains the interest in V() schemes with structured codebocks,
such as tree searched [8], residual (multi-stage) [9], gain/shape [10], and lattice-
based vector quantizers [11]. Due to the superior performance of VQ in comparison
to scalar quantization, use of V@ in conjunction with a predictive or transform

coding technique usually yields a better performance.



One of the results of any transformation is that the signal energy is distributed
among a small set of transform coefficients. Most of the compression in transform
coding is a result of dropping small-valued coefficients and coarsely quantizing the
others. Optimal bit allocation [4] is a complex strategy, especially if it is adaptive.
It involves quantizers with different number of levels and reassignment procedures.
This explains the reason for interests in non-cptimal techniques. In zonal coding [4],
the coefficients with index less than a predefined value are retained and the rest are
set to zero. The zonal coding has been improved by proposing a classified trans-
former [4], in which depending on the activity content of the block. different bit
assignment matrices are used. In some other methods, the transform matrix is di-
vided into different zones and each zone is quantized with different quantizers {12].
(131. In [12]. a scalar quantizer has been used for low-frequency coefficients while
high-frequency coefficients are vector quantized. In [13], the transform coefficients
are grouped in a zig-zag order, and each group are vector quantized. In [14},{15], us-
ing quantization table or weighted pyvramid VQ, the high frequency-coefficients are
given some small weights. In most of these methods, the high-frequency coefficients
are almost neglected. Although the energy of these coefficients are small, retaining

them could result in a better performance.

Lattice-Based Vector Quantizer (LBVQ) is a structured VQ technique in which
the lattice points are used as a codebook of VQ. The lattice-based vector quantizer
proposed in [16] and [17], has been extensively studied by many researchers [11],
[18], {19]. Because of the regular structure of the LBVQ, its use results in a drastic
reduction in the complexity in comparison to an optimum VQ for the same rate and
vector dimension. Codebook storage is eliminated, since lattices are easily generated
and mapping between lattice points and binary words are known. Since a lattice
is a set of points which are uniformly distributed{20], using LBVQ is optimum for

uniformly distributed sources. However, LBVQ has also been used for Gaussian and



Laplacian sources, showing a good performance [19], [21]. Usually in a lattice-based
vector quantizer, the lattice is truncated such that the desired number of lattice
points fall inside the boundarv. For a source with a given probability density func-
tion (pdf), only a few of these lattice points are used. To take advantage of the
source regularities, geometric vector quantizer has been suggested [13], [22]. Effi-
cient algorithms exist for implementing a lattice quantizer with an N-dimensional
hypercube boundary. However, for other desirable boundaries, such as sphere or
pyramid, indexing is still a problem. In the existing methods, indexing requires

excessive storage or complex enumeration algorithms {13}, [23].

1.3 SCOPE AND ORGANIZATION OF THE
THESIS

The objective of this thesis is to devise techniques to reduce the complexity of
vector quantizer. In order to reduce the codebook search complexity and memory
requirement, a universal Gaussian codebook in a residual VQ or a lattice-based VQ
is suggested. Since for all images only one codebook is needed in different stages
of a residual VQ, different structures and mapping techniques can be developed to
reduce the search complexity. The effect of high-frequency coefficients in transform
coding is also investigated by taking into account the indexing problem in lattice-
based vector quantization. Based on this study, a technique is developed to include
the quantized high-frequency coefficients in order to improve the quality of the re-

constructed images without significantly increasing the bit rates.

This thesis is organized as follows. Chapter 2 reviews the necessary back-
ground material to carry out the proposed investigation. The basic element of data

compression such as Transform coding, different kinds of transformations, predictive



coding, entropv coding, and vector quantization are discussed.

In Chapter 3 a Gaussian codebook to quantize error samples in the residual
VQ is presented. The scheme is based on a multi-stage residual VQ. A well known
result of rate-distortion theory states that, under broad conditions, the quantiza-
tion error has a Gaussian distribution. It is also known that a Gaussian memoryless
source is successively refinable. Since the use of codebooks designed for a generic
Gaussian source for different stages of a residual vector quantizer does not result in
loss of performance, a residual vector quantizer using an optimal vector quantizer in
the first stage and a Gaussian codebook in the other stages have been introduced.
The closeness of the distribution of the error signals to the Gaussian distribution is
examined and the loss in optimality of the codebook for the error signal when the

rate is not high is also studied.

In Chapter 4, two-stage residual image coding technique that uses transform
coding and the lattice based VQ is presented. To exploit most of the memory sources,
a transform coding with a lattice-based VQ is used. The imposition of additional
structure on the multi-stage VQ makes the code more submissive to a sequential
search. In the proposed method, the second stage is added to retain the information
lost in the first stage. A standard JPEG or a DCT transform coding is used for
the first stage, and an optimum VQ, a lattice-based VQ and a Gaussian codebook
is used as the quantizer for the second stage. The effect of adding the second stage
in improving the performance of the quantization in terms of the compression ratio

and the image quality is studied.

Chapter 5 concentrates on the indexing of the lattice points used as a code-
book for image transform coding. In order to improve the quality of a compressed

image, a large number of lattice points must be selected as codewords to represent



the coefficients with small energy in transform coding. However, the large number
of lattice points results in a high bit rate. To reduce the bit rate, a shorter repre-
sentation with appropriate indexing must be assigned to the more frequently used
lattice points. In this chapter, two methods to index the large number of lattice
points that fall inside the prescribed boundary, are proposed. Both these methods
are based on grouping of the lattice points according to their frequencies of occur-
rence. In the first method, these points are grouped based on the non-zero elements
of the quantized scaled DCT coefficients. In the second one, the grouping is carried

out according to the radial parameter.

Chapter 6 highlights the important findings of the investigation carried out in

thesis and gives suggestion for further study.



Chapter 2

BACKGROUND



!

2.1 INTRODUCTION

Transform coding and predictive coding are two well-known methods for redundancy
reduction in image coding. Both techniques remove the linear dependency between
the neighbor pixels. In transform coding we use only the linear orthogonal transfor-
mation. A variety of techniques can be used to quantize the transformed coefficients
or error signals. Scalar quantizer is simple to implement. and vector quantization
performs better but is more complex. Lattice-based vector quantizer reduces this
complexity using the structured lattice points as a codebook. Entropy coding is an
efficient method for encoding the predicted or transformed image information. This
chapter is a brief review of these techniques which have also been used and refereed

to in this study.

2.2 PREDICTIVE CODING

Among the many different predictive coding methods. the Differential Pulse Code
Modulation (DPCM) is the most common one. In this method, error signal, the
difference between the previously quantized samples and the new samples, are quan-
tized and encoded. Figure 2.1 shows the block diagram of the encoding and decoding

operation involved with a DPCM. The correlation between the different samples of
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Figure 2.1: DPCM block diagram.
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Figure 2.2: Correlation coefficient of some images.

the error signal is much less than the correlation between the original signal samples.
In other words, the redundancy of the quantized samples is reduced. In this way
the image can be quantized more efficiently. The correlation of the adjacent pixels
for different images are shown in Figure 2.2. Figure 2.3 compares the correlation of
pixels of the error signals and original samples. As it can be seen, the error signals
are less correlated than the original image. The distribution function of the error
signal is shown in Figure 2.4. As expected, the dynamic range of the error signal
is smaller than the original one. For example, for the image Lenna the samples’
amplitudes are between 0 and 255; however, as it can be seen in the Figure 2.4, the
error samples are almost between -30 and 30. Hence, less number of bits are needed

to encode an error signal.
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In general, for a linear prediction, a sample can be predicted as

#r) = 3 hya(n = )

where h; is the prediction coefficients. If the prediction gain is defined by

Gp = az/of,
it can be shown that
SNR|ppcar = SNR|pcy + 10 log Gy,
and the reduction in bit rate for DPCM compared to PCM is given by
R|pcar — Rlppcar = %1082(05/03),

12
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where ¢? is the input variance and o? is error signal variance.

For the first-order prediction, Z(n) = hyz(n — 1), the error signal is given by
(2.3)

e(n) =z(n) — hz(n - 1).

In order to have a maximum gain, the energy of e(n) has to be minimized. It can
be shown that for this purpose, the prediction coefficient ~; has to be equal to the
correlation coefficient p; defined by [4]
EIX(r)X(n —1)]
pL = S (r),,)( )I’ (2-6)
ELN(n)]

As a result, the gain for the first-order prediction is
1
GPmuz = 2 2'7
1-pi (2-7)
(2.8)

and the bit rate reduction is given by
. 1 ,
Ripcyr — Rlppcar = — 35 10g, (1 — p1).

As an example, for p = 0.97, SNR of a 6-bit PCM can be achieved by a 4-bit DPCM.

For the second-order prediction. Z(r) is defined by

z(n) = hiz(n — 1) + hsz(n — 2).

In this case, the optimum prediction coefficients are given by [4]
higye = p1(1 = p2)/(1 = p7) (2.10)
and
hagpe = (o2 — p})/ (1 = PY), (2.11)
where
EX(n)X(n —2)]

2 = . 2.12

7= TR ()] (2:12)
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2.2.1 Two-dimensional prediction

The idea of the DPCM can be extended to the two-dimensional space. In this case,
a pixel can be predicted using its adjacent pixels in two dimensions, i.e.,

#m,n)= Y > hijz(m—i,n—j), (2.13)

(1.j)el

where U is a two-dimensional prediction region and h;;’s are the prediction coeffi-
cients. Prediction can be causal or non-causal. Examples of causal and non-causal
predictions are shown in Figure 2.5. In a causal prediction, the prediction of a
sample depends onlyv on the previous samples, but in a non-causal prediction, some

future pixels also used in the prediction.

It has been shown that for typical images using more than four nearest pixels
for the prediction of a sample is not useful and cannot increase the prediction gain

(1!, [24] . Thus, a sample in a two-dimensional DPCM can be predicted as
#{m,n) = hyz(m—-1,n-1)+hyz(m—1.n)+hsz(m, n—1)+hz(m—1,n+1). (2.14)

Maximizing the prediction gain requires the minimization of the error variance.
Minimizing the error variance, in the special case of a separable correlation function,

results in the following relations (1},
hs = py hs = pp hi = —pupn hy =0 (2.13)

where py and p, are horizontal and vertical correlation coefficients as given by
vy = Rez(1,0)/0? o = R:2(0,1)/c2. (2.16)
A separable model for covariance function is defined as

R..(m,n) = o%p; ™ p; ™. (2.17)

14
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Figure 2.5: Examples of two-dimensional prediction. (a) Causal prediction. (b) Non
causal prediction.

2.2.2 Drawbacks of DPCM

Although the DPCM is a simple scheme and results in a better performance com-
pared to the PCM, three types of degradation are common in a DPCAI quantizer
design: granularity, slope overload and edge-busyness [4]. Granularity is because of
the step-like nature of the output where the input signal is almost constant. Slope
overload happens when there is a sharp change in the input signal (edges). In this
case the quantized output cannot follow the input and a few steps are needed to
match the output with the input. Edge-busyness is caused at less sharp edges when
the input in the adjacent lines are quantized into different levels. Another draw-
back of the DPCM is its sensitivity to channel noise and image statistics. Adaptive

techniques have been used to compensate these drawbacks.

2.3 TRANSFORM CODING

For a typical image, the correlation between the adjacent pixels is high. Transform

coding uses this correlation in order to achieve a high compression ratio. To show

-
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Figure 2.6: The correlation of adjacent pixels for the image Lenna.

this correlation, we group two consecutive pixels of image Lenna as a vector (x,y),
and the dependency of v on x is presented in Figure 2.6. It can be seen that most

of these points are concentrated near bisector v=x, as indicated dense area.

Quantizing any two consecutive samples independently results in an ineffi-
ciency, since the quantization levels for both dimensions are the same. For example,
the quantizer allocates the same bit rate to the upper-left as to the dense area.
However, the probability of a vector being in this area is very low. To improve
the quantizer efficiency, after grouping the samples, the coordinate system can be
rotated by a certain angle such that one of the axes is placed in the middle of the
dense area as shown in Figure 2.6. In this case, more bits can be allocated to the
u-axis and less to the v-axis. Hence, with the same average bit rate, better precision
is achieved. After quantization and encoding, the inverse of this rotation is carried
out in the decoder. The main idea of all image transformations in coding is to
convert the original samples to new coefficients such that the new coefficients are

less correlated than the original samples. Furthermore, these transformations have a

16



tendency to pack a large amount of energy into a few transform coefficients. The op-
timum transform which has the best ”input-decorrelating™ and " variance-ordering”
properties is called the Karhunen Loeve Transform (KLT). The KLT completely
decorrelates all pixels. The problem is that it depends on the statistics of the input
samples, and it is hard to implement. Other transforms includes Discrete Fourier
Transform (DFT), Discrete Walsh Hadamard Transform (DWHT), Discrete Sine
Transform (DST) and Discrete Cosine Transform (DCT) [4], [1]. For image compar-
ison, the DCT transform is very close to an optimum transform. Furthermore, it is
signal-independent and it can be implemented using Fast Fourier Transform (FEFT).
As a result, it is the most popular transform used for image and video compression.
Warvelet transform, which is a generalization of the conventional transforms has also

been used for image compression [23].

In addition to the tyvpe of transform used, the bit allocation for the coefficients
plays an important role in the performance of a compression scheme. There are
many adaptive and non-adaptive methods for bit allocation. These includes opti-
mum bit allocation. zonal sampling, threshold sampling and switched bit allocation

26;. [27.

In general, a transform coding scheme has three major blocks: transformer,
quantizer and lossless encoder. For an optimum bit allocation, the set of N trans-
form coefficients usually needs N different quantizers. Figure 2.7 shows an image

transform encoder and decoder.

Many efforts have been made for improving the quantizer and noiseless en-
coder. The Joint Photographic Expert Group (JPEG) [14] is a result of these

efforts. The JPEG is accepted as a standard for compression techniques by the
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International Telegraph and Telephone Consultative Committee (CCITT), Inter-

national Organization for standardization (ISO) and International Electrotechnical

Commission (IEG).

2.3.1 Linear Transform

For a one-dimensional sequence X7 = {z(n) : 0 < n < N — 1}, a transformation

can be written as

N-1

U=AX, u(k) = Y a(k,n)x(n) (2.18)
n=0

X =A"1U, z(n) = Ni:l u(k)a™ (k. n) (2.19)
k=0

where U7 = {u(n):0 < n < N — 1} are transform coefficients and
AT = {a(0),a(1),....,a(N = 1)}7
is an N x N transform matrix. a*(k) = {a*(k,n),0 < n < N — 1} are called the

basis vectors.

For example, for .N = 2. the transformation matrix A. resulting from 45°

rotation of the coordinate system, is given by

A=at=L |1 1 (2.20)
V2|1 -1
The basis vectors are
a7 =[5, 5. (2.21)
a7 = (5.l (2.22)



For orthonormal transform, the transformation matrix satisfies the property
A-! = AT  The basis vectors of some of the popular transformations are shown
in Figure 2.8. Among these transformations, only the basis vectors of the KLT is

defined by the statistics of the source.

Two-dimensional linear transform is defined by

N-1N-—
u(l.k) = Zl le(m,n)a(k,l, m, n) (2.23)
m=_0 n=0
N—LN-1
z(m.n) =) Z (k. Da"(k,l.m,n) (2.24)
k=0 I=

If a separable and unitary transformation matrix is chosen, i.e., a*(k.l.m,n) =
a.(k.m)an(l.n), Eqn 2.23 becomes

N—1

u(k.l) = au(k, m) Z m,n)as(l,n) (2.25)

m=0 n=0

where a, and a; are the column and row transform basis vectors. The above equation

can be re-written as

U=A/XAT (2.26)

In the case of symmetric kernels, Ay = A, = A and the transformation equations

can be written as

U = AXAT u(k.,l) AZI vi a(k,m)z(m,n)a(l,n) (2.27)

m=0 n=0

N—-1N-1

X = ATUA z(m,n) =3 3 @ (k, mu(k, Da (I, n) (2.28)

k=0 (=0
As a result of this separable transform, the image X becomes to be a superposition

of a series of representations for the image called the "basis images”, as given by

N-1N-1

X=3 3 uk Ak (2.29)
k=0 (=0
— «T 9
Ak[ —_— ak al (_.30)

20
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Figure 2.8: Basis vectors of some transforms with N=8$, reproduced from [1]
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where a; is a vector corresponding to kth column of the matrix A. In other words,
each image is reconstructed by the superposition of the basis images weighted by

the transform coefficients. Figure 2.9 shows these basis images for different trans-

formations.

2.3.2 Some well-known transforms

Karhunen-Loeve Transform (KLT): The Karhunen-Loeve transform, which is
also called eigenvector or Hotelling transform, is defined by the eigenvectors of the

correlation matrix of the input samples. The correlation function is defined as

Reo(k) = E[X(n)X(n = B)]. (2.31)
and the correlation matrix is given by
R.. = {R((k=1])} k.l=0.1,...,N =1L (2.32)

The correlation matrix R, has a set of eigenvalues \;’s and eigenvectors I',’s defined

by

R I, = \\T;. (2.33)

Here R,; is a real svmmetric matrix, and thus its eigenvalues are real and there

are exactly N eigenvectors which are orthogonal and can be normalized to form an

orthonormal set I;, ¢ =10,1,.... N — 1, that is,
IF.L = 8- (2.34)

The transform matrix of KLT is composed of eigenvectors of R.;. In other words,

the basis vectors are eigenvectors of R, that is,

ar = Ik, (235)
thus (2.19) takes a form given by
N-1
X=ATU = Z u(k)I, (2.36)
k=0

[SV]
N
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Figure 2.9: Basis images of some transforms, reproduced from [1]. (a) Cosine. (b)
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implying that, the input signal X is a superposition of weighted eigenvectors which
are derived from the correlation matrix of X. Therefore, the basis vectors depend
on the statistics of the input samples. The correlation matrix of the transformed
coefficients is a diagonal matrix with the eigenvalues of the correlation matrix of the

input samples as its diagonal elements, that is

(% 0 0 . . 0
0 A 0. . 0

Ry, = (2.37)
0 0 . . 0 Ay,

Discrete Hadamard Transform (DHT): In this transform. the transform matrix
is constructed by a recursive operation, given by

U = HX "M = b1 2 "H TH (2.38)

V2 | YH _YH

where VH represents the transform matrix with a dimension of NV x N. The coef-
ficient variance of this transform does not monotically decrease with the coefficient
index. To have ordered coefficients, the ordering of rows in the transform matrix
is changed. This new transform is called the Discrete Walsh Hadamard Transform
(DWHT). To get the DWHT transform matrix, the DHT matrix is "sequency” or-
dered. The term ”"sequency” of a basis vector is defined by the number of sign
changes in the vector. The concept of sequency for basis vectors is similar to the

frequency in DCT or DFT. The transform matrix for a DHT and a DWHT for

N =4, for example, are given by



1 1 1 1]0 1 1 1 1

) 1|1 -1 1 -1/|3 11 1 -1 -t
H(DHT) = 5 ‘H(DWHT) = 5

211 1 -1 -1 1 211 -1 -1 1

1 -1 -1 1] 2 1 -1 1 -1

(2.39)

the numbers beside the transform matrix are the sequency of the basis vectors. Al-
though this transform is very easy to implement, it is not optimum, i.e. it does not

diagonalize the covariance matrix.

There are some other fast transforms such as the Haar transform which is
suitable for feature extraction, or the Slant transform which has a very good energy
compaction property for images [1]. The basis vector and basis images of these

transforms are shown in Figures 2.8 and 2.9, respectively.

Discrete Fourier Transform (DFT): The discrete Fourier transform of a se-

quence {z(n),n=0,1,....,.N — 1} is defined by

u(k) Z x(n)e I3 kN k=0,1,...N =1 (2.40)
\/.V =
N-1

Z u(k)ed*™ Thn/N n=0,1,....N-1 (2.41)
k-—O

Thus, the transform matrix of the DFT is given by

F= {\/_%e-ﬂxm/y}k,n=o,1....,N—1- 24

The most important point in the DFT is that it can be implemented using
some fast methods called the Fast Fourier Transforms (FFT). With these methods
the complexity of operation is reduced from N? to (\Vlog V) [28]. The problem with
the DFT is that it is not an optimal transformation, since it does not diagonalize

the covariance matrix. In addition, the inverse DFT generates samples which are

25
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Figure 2.10: Side effect in DFT.
periodic extension of the first N samples, that is,
c(n) = z(n) n=01..,N-1

and

c(n) # z(n) n=N,N+1,..

c(n+ N) =c(n)

This periodicity in DFT causes discontinuities at the beginning and end of each

block. This effect can be seen in Figure 2.10.

Discrete Cosine Transform (DCT): Among the different transforms, the DCT

has the decorrelation property very close to that of the KLT for most images. The

discrete cosine transform is defined by

[2 &= 2n + 1)k=
u(k) = Va(k) >_ z(n)cos (Lj-w—)— k=0,1,...:

n=0

a(0) = L and a(k) =1 k #

2

2 Nt (2n + 1)kw

z(n) = -/:—I > a(k)u(k)cos v n=0,1,.,N—1.
<7 k=0 =-

26
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In the matrix form, this transformation can be written as
U=CX X =C™u. (2.48)

The DCT basis vectors can be obtained from

2 2n + 1)kw .
bz."z {\/Va(k) cos % n=20,1,....N ——1} fork=0,1....N -1
(2.49)

It can be shown that the cosine transform is very close to the KLT for a
first-order stationary Markov sequence when the correlation parameter p is close to
1. Because of strong correlation between adjacent pixels of a typical image, this
transform is very close to the optimum transform for most images. The DCT has
an excellent energy compaction property for highly correlated data. Further, it can
be easily implemented using fast implementation methods. These properties make
the DCT a popular transform for image coding. The energy distribution of DCT
coefficients of a typical image, Lenna, is examined. The 8 x 8 DCT coefficients
are scanned in a zig-zag order as shown in Figure 2.12, starting from the lowest
to highest frequency. It is seen that most of energy is contained in low-frequency
coefficients and energy, in general, decreases very rapidly as the frequency increased,
as it can be seen in figure 2.11. The implementation of the DCT causes the input
block of N-samples to extend into the blocks of 2N samples with an even symmetry,
that is

o) — z(n) n=01,.,N-1 . (2.50)
2N -1-n) n=N,N+1,..,2N -

This periodic extension has smaller end-effects than the DF'T operation (Figure 2.13).

[}
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Figure 2.11: The energy distribution of DCT coefficients of image Lenna.

Figure 2.12: Zig-zag order of transform coefficients.
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Two-dimensional DCT: Two-Dimensional DCT (2D-DCT) is defined by

u(k,l) = a(A Ja(l) Ny‘_‘l Nzlr(m n) cos mk(2m 7V_ 2 cos Wl(gf\? L (2.31)
m=0 n=0 =
2 = wk(2m + 1) 7l(2n + 1) o
z(m,n) = ¥ ; ; k)a(Du(k,l) cos 5N cos —=~ (2.52)
2(0) = % ak)=1 k#0 (2.53)

where r(m,n) is an NV x N block and £,{,m.,n=0,1,....N — L.

Figure 2.14 compares the KLT, DCT and DFT transform coding gains ver-
sus block length for a first-order Gauss-Markov source with p = 0.95. As the graph
shows, for a Gauss-Markov source, the gain of DCT almost equals that of KLT, with
a difference of less than 0.1 dB. In this figure G, is the maximum gain achievable
by a transform coding. It can be shown that G, = (1 — p*). and for p =095, G, is
equal 10.11 dB. This is the upper limit for any transform. As it can be seen. DFT

is asymptotically optimum.

Table 2.1 compares the SNR of different transforms for an image modeled by
isotropic covariance function with p = 0.95. This table also shows that the DCT
is very close to an optimum transform when the correlation of the adjacent pixels
is high (p = 0.93). An isotropic or circularly symmetric function must satisfy the
property

R;r.'z('m: TL) = zpd (2‘54)
d=vm?2+n? p = exp(—|a|) when o =ar)=a
where o) and as are the correlation factor in the horizontal and vertical directions

respectively.



Figure 2.14: Transform coding gains versus b = log, NV for a first-order Gauss-

G-TC (dB)

Markov source with p = 0.935.

Table 2.1: SNR comparison of various transform coders for random fields with

n
~

isotropic covariance function p = 0.95, reproduced from [1]

Rate SNR(dB)
Block size | bits/pixels | KLT { DCT | DST | DFT | Hadamard
8 x8 0.25 11.74 | 11.66 | 9.08 | 10.15 10.79
0.3 13.82 | 13.76 | 11.69 | 12.27 12.65
1.00 16.24 | 16.19 | 14.82 | 14.99 15.17
2.00 20.95 | 20.80 | 19.53 | 19.73 19.86
4.00 31.61 | 31.54 | 30.17 | 30.44 30.49
16 x 16 0.25 12.35 | 10.37 | 10.77 10.99
0.5 14.25 { 12.82 | 12.87 12.78
1.00 16.58 | 15.65 | 15.52 15.27
2.00 21.26 | 20.37 | 20.24 20.01
4.00 31.9 | 31.00 | 30.88 30.69
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2.3.3 Bit allocation in transform coding

After having chosen a suitable transform. the next step is to allocate bits to different
coefficients. Since the variances of different coefficients are not equal, they need
different number of bits. A given number of bits should be distributed between
coefficients such that the overall distortion is minimized. All orthogonal transforms
preserve the variance. To show this, consider a source with variance o2 and its
transform coefficients with variances 2. The total energy of the coefficients can be

expressed as

¥ Iike 0F = Tis E[(R)]
%E[UTU]
= +E[XTATAX]
= -\ITE[XT}U
= v Tico ELV3(R)]

N=1 2.4,
= ¥ Lico 02(k)

o
= 0'_;_.

Furthermore, for orthogonal transforms, the reconstruction error variance in trans-

form coding equals that introduced by the set of quantized coefficients, as given

by

(%]
Z

== o 2.5
N P> Tk (2.36)

4
-ﬁto

g. =g

where ¢? is the reconstructed error variance, a'“’ is the quantization error variance

and a(;k is the variance of the quantization error of the kth coefficients. After finding
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an orthogonal transform matrix, the problem is to minimize 03 with the constraint

of a given average bit rate defined by

where Ry is the bit rate for the kth coefficient. This requires solving the following

equation which is obtained from using the Lagrange multiplier method,

a , 1 N-1 A
— g2 — - — )] = G = sy IV — 2.5
. (07 — MR ~ f‘;“a Ri)] =0 k=0,1,.. 1 (2.58)
An optimum bit allocation is thus achieved as
1 Ok -
RL =R+ 5 IOgZ N1 o I~ - (2 09)
[t

Optimum bit allocation for each coefficient depends on the distribution of

coefficient variances. For example, for N=2, the bit allocation is given by

1 ofs) .
Ry=R+ 5 10g2 O'_I’ (260)
1 (o1} E
R, =R- 3 log, o (2.61)
In the case of equal variance , we have R, = Rfor k =0, 1,...,N — 1. The depen-

dency of bit allocation on the variance is illustrated in Figure 2.15. For a uniform
quantizer to have the equal quantization error variance, all quantizers have to have
equal step size. Since the dynamic ranges of the coefficients are different, the coef-
ficient with a higher variance needs more quantization levels than a coefficient with
a lower variance. For example, in Figure 2.15, the coefficient A can be quantized by

16 levels or 4 bits; however, for the coefficient B, 2 bits are enough.

For practical considerations, the second term in ( 2.39 ), for the small values

of o, could be negative with a magnitude greater than R. This will cause a negative
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Figure 2.16: Bit allocation for 16 x16 DCT of image modeled by an isotropic covari-
ance function with p = 0.95 with an average bit rate of 1 bps, reproduced from [1].

bit allocation. To avoid negative values of R, the equation can be modified as
1 Jk 9 K
Ri = mazx{0,R + 5 log, —5} (2.62)

where D is the geometrical average of the variances of the coefficients. Figure 2.16
demonstrates the application of this bit allocation method toa 16 x 16 block DCT
coding of an image modeled by an isotropic covariance function with p = 0.95 and

an average bit rate of 1 bit per sample.

Zonal coding: Figure 2.16 shows that only a small zone of the transformed image
contains elements with non-negligible values. This is the main idea behind zonal
coding. In zonal coding the coefficients with the index less than a specified value

are retained and the rest are set to zero. In other words, the coefficients are masked
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Figure 2.17: A typical mask for (a) Zonal coding. (b) Threshold coding.

with a zonal mask defined by

1 k<K, ,I<L
m(k,l) = (2.63)

0 otherwise

Figure 2.17(a) shows a typical mask for zonal coding.

Threshold coding: In threshold coding the variance of the coefficients rather

than their indices are considered for masking. The mask for a threshold coding is

defined by
1 ¥k, 1) >
m(k, 1) = (k.0) > (2.64)
0 otherwise
The threshold n is chosen to get a desirable bit rate. Figure 2.17(b) shows a typical

mask for the threshold coding.

2.3.4 Image transform coding

The closeness of the DCT to the optimum transform makes it the popular transform
for image coding. In the DCT, the first coefficient is the dc coefficient and remaining
coefficients are ac coefficients. Usually, the dc coefficient of the transform coding is
coded separately using the DPCM. As shown in Figure 2.18, encoding the ac coef-

ficients involves two steps: first, quantizing and then, indexing the output points of
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Figure 2.18: The block diagram of transform coding.

the quantizer. For the first step. many lossy scalar and vector quantizer techniques
have been designed. Depending on the quantizer, different noiseless coding schemes

have been used to index the output points of the quantizer.

JPEG [14] partitions each image into 8x8 blocks. DCT is computed over these
blocks. After the transformation, the DCT coefficients are scaled and truncated in
order to reduce the dynamic range of the data. The scaled DCT coefficients are
ordered into a zig-zag sequence. The non-zero amplitudes of this one-dimensional

sequence and the runlength of zeros are entropy coded.

Due to the regular structure of lattices, many researchers have used the Lattice-
Based Vector Quantizer (LBVQ) for quantizing the DCT coeflicients , but only a few
methods have been suggested for indexing the output points [15]. Fischer 291 has
combined an lattice-based vector quantizer with a noiseless code to encode the DCT
coefficients of images. The output lattice points are labeled by using an enumeration

method for a Laplacian source, and it is shown that the combination of the LBVQ

and noiseless code outperforms the uniform scalar quantizer combined with noiseless

coding for each coefficient.
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2.4 PRINCIPLES OF JPEG STANDARD

Like any transform coding scheme, the block diagram of JPEG scheme consists of
two basic blocks, a DCT based compression followed by a lossless variable length
coding (a special case of Huffman coding). Each 8 x 8 block of input goes through
the processing steps giving a stream of compressed data at the output. In the first
step, each block is converted into 64 DCT coefficients whose values are uniquely
determined by the 64 input pixels. The DCT coefficients are quantized by a set of
uniform scalar quantizers defined in a quantization table. The goal of this step is to
omit information which is not visually important. Several quantization tables have

been defined and the quality of a coded image is controlled by these tables.

After quantization, the scaled DCT coefficients are coded. In this step, be-
cause of the strong correlation between the DC coefficients of successive blocks, they
are coded differentially (Differential Pulse Code Modulation DPCM). The AC co-
efficients are scanned in a zig-zag sequence, as shown in Figure 2.12. This ordering
places the low-frequency coefficients before the high-frequency coefficients which are
usually zero (after scaling). The last step in JPEG is entropy coding. Two entropy
coding schemes is used in JPEG: Huffman coding [2] or arithmetic coding [3]. After
scaling there are only a few non-zero elements in the quantized AC coefficients. Each
of these non-zero elements is represented in combination with runlength, the number
of consecutive zero-valued coefficients which precede the non-zero coefficients. Two
svmbols are used to show the combination of runlength and non-zero-coefficients.
The first symbol represents two pieces of information, the runlength and the size.
The second symbol represents the amplitude of the non-zero coefficients. The run-
length is the number of consecutive zero-valued AC coefficients and the size is the
number of bits used to encode the amplitude of a non-zero coefficient. A special
codeword is generated for the End Of Block, symbol EOB, which is viewed as the

terminator of an 8 x 8 sample block. For the DC coefficients, two symbols are also
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used. However, the first symbol represents only the number of bits used to encode
the amplitude of the DC coefficient, size of the symbol. The second symbol rep-

resents the amplitude of the difference signal. Finally, these symbols are encoded

using a variable-length code.

2.5 VECTOR QUANTIZATION

A fundamental result of Shannon’s rate-distortion theory [6], a branch of information
theory devoted to data compression, is that a better performance can be achieved by
coding vectors instead of scalars. This holds even if the data source is memorvless,
i.e.. the sequence of source samples are independent. However, a greater perfor-
mance improvement can be achieved if the source samples are correlated. It has
been proven that vector quantizer is asymptotically the optimal structure for source
coding when the vector dimension tends to infinity [7]. Before 1980, this theory had
a limited impact on system design. because it did not provide constructive design
techniques for encoders. After the publication of the paper by Linde et al. [30],
in which the Llovd algorithm [31], an algorithm for the design of an optimal scalar

quantizer, was generalized to vector space, vector quantization gained popularity.

Formally, a Vector Quantizer (VQ) can be defined as a mapping Q(.) of the

N-dimensional Euclidean space R into a finite subset Y of RV. i.e.

Qx): RV =Y (2.65)
where x = {1;,Zs,....,.z5y} € RY is an input vector and ¥ = {y; € RY;i =
1.2, .... A} is the codebook, and its elements {y;} are called code-vectors or repro-

duction vectors. Vector quantization is a combination of two functions, an encoding
and a decoding. The encoder receives the N-dimensional input vector x and searches
through the codebook to find the address of a reproduction vector X = y;, which is

closest to the input vector. The index of this reproduction vector is transmitted and
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the decoder uses this address to look up for the reproduction vector. For choosing
the address of X, a distortion measure d(x, %) has to be defined. It represents the
penalty associated with reproducing x by X. One simple distortion measure is the

Mean Squared Error (MSE), defined as
dx, %) =[x -%’= ¥ (z: — £:)? (2.66)

An optimum VQ is a quantizer which generates the reproduction vectors,

minimizing the expected distortion. defined as
D = E{d(x.%X)} (2.67)

The optimum VQ may be generated from the training images using the clustering
technique introduced by Linde et al. in 1980 [30]. This technique, called the Gen-
eralized Lloyd Algorithm (GLA), is a generalization of the Lloyd’s scalar algorithm
[31] to vector space. This technique begins with an initial codebook and an iteration
process comprising the following two steps yields an optimum codebook. The first
step is to encode the training sequence and to calculate the average distortion. In
the next step, each codeword is replaced by the centroid of the input vectors encoded
into it. The size of a VQ codebook is usually a power of 2, i.e., Af = 2, so that the

index of reproduction vector can be represented using b bits.

The initial codebook in the GLA algorithm is very important, because regard-
ing the initial codebook the method results in different locally optimum codebook.
One of the method to generate the initial codebook is the spiliting method. It starts
with the average of training sequence and then with a small change in the average
and using the GLA algorithm constructs a codebook with size 2. In the same way
with a small changes in the code-vectors a double size codebook is constructed until

a desirable size codebook is achieved. The codebook is used as an initial codebook

for GLA algorithm.
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The encoding complexity for an optimum VQ, where each input vector is com-
pared with all the vectors in the codebook, increases exponentially with the rate R
and dimension N. This complexity and the memory requirement of an optimum VQ
can be greatly reduced by imposing a structure on the codebook. Several schemes
have been proposed for reducing the complexity of a full search VQ. These methods
include Tree-Search Vector Quantizer (TSVQ) [8], Lattice-Based Vector Quantizer

(LBVQ) [11] and Finite-State Vector Quantizer (FSVQ).

In addition, techniques such as classified VQ have also been proposed to match
the codebook to certain properties of the source in order to improve the perfor-
manc. Many other efforts have been made to improve vector quantization tech-
niques. These include adaptive VQ and variable-dimension VQ. Some techniques
such as gain/shape VQ [11], predictive VQ and transform coding do some prepro-

cessing on the input vector before encoding. Gray [3] has presented a good review

of these techniques.

2.5.1 Lattice-based vector quantizer

Because of the regular structure of the lattice-based V'Q, its use can result in a dras-
tic reduction in the complexity in comparison to the GLA algorithm for the same
rate and dimension. It is optimum for uniformly distributed sources. Hence, it may
not give a good performance for other sources. Some works [19], [21] have been
reported in which the lattice-based VQ is used for Gaussian and Laplacian sources.

Jeong and Gibson [19], [32] have used a lattice-based VQ to encode the 2D-DCT

coefficients of images.

A lattice is an infinite regular array that covers N-dimensional space uniformly.

A lattice can be defined as a set of vectors

A={A:A=ua; +uwas+- - - +uyay} (2.68)

40



where {a; : ¢ = 1,2,...,NV} is the set of basis vectors of the lattice and u;’s are

integers. Matrix G with its rows composed of the basis vectors a;’s is called the

generator matrix. The determinant of the lattice A\ is defined as,

detA = |det(G.GT)|Y/?

(2.69)
If G is a square matrix then det\ = detG.
Any N-dimensional lattice .\ has a dual lattice \*, given by
A={AeRY AN EZ VAeA} (2.70)

where (.) is the inner product , and Z is the set of integer. Voronoi region, R,(.\),

is the set of points x in N-dimensional space that are closer to the origin than to
any other lattice point, i.e.,

Ro(A) = {x:| x|’ x=A|]? VAeA} (2.71)

The fundamental volume of .\, v(.\), is the volume of its voronoi region R,(\) . The

determinant of a lattice determines the volume of its voronoi region.

Lattices frequently used in image coding include the cubic lattice Z% and the

root lattices Ay. Dy, Ev [32]. These lattices can be defined using their generator
matrices.

The lattice-based VQ encodes the source vectors by mapping them into the
lattice points.

LOx):x—yie A if xe R, ()\) (2.72)

where R, (A) is the voronoi region when the origin is translated to y;.

Using a lattice as a codebook involves three steps: truncating, scaling, and

arranging the lattice points which are outside of the truncated region. For a given
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dimension N and bit rate R, 2¥%® is the number of lattice points used. The lattice
is truncated in such a way that the desired number of output points fall inside the
boundary. Hence, in truncating lattice points, two parameters should be defined:
the shape of the boundary and the radial parameter. For minimum distortion, the
shape of the boundary is the shape of the contour of constant probability density
function (pdf) [21]. This contour is spherical for Gaussian source and a pyramid for
Laplacian source. To determine the radial parameter, we can use the theta function
of a lattice, which specifies the number of lattice points at a certain distance from

the origin [20]. Theta function of the lattice A is defined as

o
O.:(2) => ¢ =3 n(m)g™ (2.73)
A m=0

where n(m) is the number of lattice vectors with norm squared m (i.e., the number
of lattice points at a distance m from the origin), z is a real number and ¢ = ™.
Conway and Sloane have investigated the theta functions of several lattices [20].
Theta functions of some lattices can be expressed in terms of the Jacobi theta
functions. For example, consider the Jacobi theta function 6;(=) which is useful for

expressing the theta function of cubic lattice:

oo
§3(z) = Y g™ =1+2¢+2¢"+2¢° +2¢"° + ... (2.74)
m=—oc

In this case, the theta function is given by
O.x(2) = [03(2)]" (2.73)

For some dimensions, explicit expressions for defining the coefficients of ¢™ in the
theta function are obtained [20]. For cubic lattice, the expressions for dimension
2,4,8, for example, for these coefficients are given by:

L(mzf—!lj

ma(m) = 4 3 (1)),

i=1




ny(m) = 8 amd odd m
n =
24 ¥ gimoac s d €ven m

ng(m) = 163 (=1)""4d,
dim

where ny(m) is the coefficient of ¢™ for dimension N, |z| means the greatest integer
less than or equal z, and 34, d represents the summation of these integers from 1
to m that can divide m. For NV = 16, no explicit formula is known, and the direct
expansion of (63(z))* is used to compute n16{m).

The truncated lattice points must be scaled to achieve minimum distortion.
The best scaling is found by repeated experiments. Although. this method is not
a precise procedure, it is the best method when the pdf of the source is unknown.
Jeong and Gibson [19] have developed an analytical solution for the scaling of inde-

pendent, identically distributed, i.i.d., Gaussian and Laplacian sources.

For finding the nearest lattice point, a fast quantization algorithm has been
devised by Conway and Sloane [33]. This method is appropriate for root lattices
A,, D,. E, and their duals. First, for a real number z. they have defined a simple
function f(z) having an integral value closest to r. In the case of a tie, the integer
with the smallest absolute value is chosen. For a vector x = (x,z3,...z5) € RV,
f(x) is defined as

fx) = (f(z1). f(z2), oo flz))- (2.76)

A function g(x) is defined in the same manner as f(x) except that the worst com-
ponent of x, that is the element of z that is farthest from its corresponding integer,

is rounded the wrong way. If w(z) denotes a real number z rounded the wrong way,
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then

(k+1 if k<z<k+}
Jk if k+l<z<k+1
w(z) = N (2.77)
k-1 if —k-3<z< -k
| -k if —k-l<z<-k-1}

where k is a non-negative integer. The nearest lattice point to a point in RV is found
using f(x) and g(x). For example, for a cubic lattice, f(x) is the nearest lattice
point to x € R¥; however, quantizing with lattice Dy requires calculating f(z) and

g(x) and choosing the one with an even coordinate sum {34}.

The last step in the lattice-based quantization is encoding the input points
which fall outside the truncated region. These points are reflected on the contour
surface along their radial line. The nearest lattice point which lies inside the lattice

region is selected as the output.

2.6 ENTROPY CODING

A discrete-amplitude source is a source taking values from a finite set, i.e., z(n) &
X = {zr,1s,....,xx}. The source alphabet X is associated with a set of probabilities
{p1.p>.....px’}. where p; = Pr.{X(n) = z;} = p(z;). z; € X. The source is called a

memoryless source if its samples are statistically independent.

The entropy of a discrete random variable X is defined by
K

H(X) = = 3 plec) log () = Efiog p(_l,{.)

If a base-2 logarithm is taken, the entropy is expressed in bits. Entropy is a positive

J- (2.78)

number with the following boundaries:
0< H(X) <log, K. (2.79)
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An entropy H(X) = 0 means that there is no uncertainty and the source is totally
predictable. This condition happens only if all the source alphabet values have the
probability of zero except one of them. An entropy H(X) = log, A corresponds to

the case when all probabilities are equal.

If there is an statistical dependency between the samples, the source has mem-
ory. To take advantage of this dependency, N successive samples (z(n).z(n +
1}).....x(n + N — 1)) are arranged in a block designated as vector X. The prob-
ability of a specific block is p(x). and the entropy per symbol of this vector is given

by

Hy(X) = %E[_ log, p(X)]
",iv Y Caux - 2 p(x) logy x (2.80)
H(Y) = limy.. Hy(X),

and for a memoryless source
Hy(X) = H(X). (2.81)

2.6.1 The Asymptotic Equipartition Property

The weak law of large numbers [35] states that for independent, identically dis-
tributed (i.i.d.) random variables, %Z,’-‘zlri is close to the expected value of X for
large values of n. The law of large number in information theory is the Asymptotic
Equipartition Property (AEP). This property is formalized in the following theo-
rem [2].

AEP Theorem: If X, X5, .... arei.i.d. with the probability of observing p(z), then

in probability
1
-5 log p(.X1, X, ..., Xy) = H(X). (2.82)

This theorem suggests dividing each sequence into two sets, the typical set and the

non-typical set.

Definition: The typical set A" with respect to p(z) is the set of sequences
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(X1, Xa, ..., Xy) € XY with the following property
9 NH(N)+) < p(r 1, zy) < 2-NUH(X)-9 (2.83)
This set has the following properties:
1. If (21,22, ... zv) € AN then

H(X)—e< —% log p(z1, Ta, o zy) < H(X) + € (2.84)

[)

. p(AEY)) > 1 — € for sufficiently large V.

AWM < 2-NHIN)+) wwhere | 4| denotes the number of elements in the set A.

w

AP > (1 = €)20HWN)-9) for sufficiently large 2V .

H—

Hence. a typical set has a probability close to 1, and all of its elements are nearly
equiprobable with the probability 2=V#(Y)| Figure 2.19 shows the typical and non-
tyvpical sets. If this set is found then a special code can be defined. All elements in
the typical set can be coded using N(H + ¢) + 1 bits and all elements of the non-
tyvpical set can be expressed using log, |¥¥| = N log, |X|. We can use one prefix bit
to show whether or not the vector belongs to the typical set. For example, a 0 as
the first bit indicates that the code belongs to the typical set and the code length is
N(H +¢€) + 1. On the other hand, a 1 as the first bit shows that the code belongs

to the non-typical set and the code length is longer.

2.7 RATE DISTORTION FUNCTION

The rate distortion function, R(D), specifies the minimum rate at which one must
receive the information about the source output in order to be able to reproduce it
with an average distortion that does not exceed a given D. To find an expression for

R(D), first the notation is defined, then a brief introduction to information theory
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Non-typical set
Description: Nlog % | +2bits

N N
% 1zl elements

Typical set
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A o2

Description:N(H ~g} = 2bits

Figure 2.19: Tyvpical and non-typical sets.

is presented [36].

A source with alphabet X = {z,.z,,...,zx}. and a set of the associated prob-
abilities P = {pi.pa..... Px}, is denoted as (X, P). For convenience, the random

variable X'(.) and the probability P(XY{.)) are denoted as
X(U)=J and P(X(j)) = P(j) = P;.

With these notational definitions, the entropy of a discrete random variable can be

written as
1 K )

ph= -2 FilogF, (2.85)
7

where H(X) is the average uncertainty as to value X will assume. Let X and Y

H(X) = E[log
1=1

be two alphabets and P;; be the joint distribution defined on the product space of
random variables .X(j) and Y'(k), and P; and @, be the marginal distributions. The
conditional entropy is the amount of uncertainty that remains as to the a value X
will assume, if the value of Y has been specified. Formally, the conditional entropy
is given by

H(X|Y) = -3 Pjlog Pj. (2.86)

ik
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The mutual information, /(X;Y") is the amount of information that the knowledge
of Y provides about the value assumed by X. The mutual information can thus be

written as I(.X;Y") is defined as

I(X:Y)=— E P».log 2.
( : ) < 7k Pij ( 81)
[t can be shown that is
I .\.';3' - H X - H _Y Y
( ) ( ) ( ] ) (‘2.88)

= H(Y) - H®Y|X).

Distortion measure: The cost function p(X.Y) which specifies the penalty charged
for reproducing the source word X by vector Y is called word distortion measure.
Let {z,,t = 0,=%1,+2, ...} be a time-discrete stationary source. A sequence of word

distortion measures, called the fidelity criterion, is given by

FP = {pn(XY) 1 S n < OC},

where
1 & - -
pu(x1 Y) = - Z p(‘\tt }'t)’
n =1
For the magnitude-error criterion p(-\', Y} = |.\' =Y., and in the case of the squared-
error criterion p(X.Y) = (X — Y)2. The average distortion associated with the

conditional distribution @ is denoted by
d(Q) = >_ P;Qxj;0j¢: (2.89)
ik

where p;Qx; = Pji is the joint distribution. The conditional probability is said to

be D-admissible iff d(@) < D.

For a fixed D the rate distortion function with respect to a specified fidelity

criterion F), is defined as

R(D) = min I(Q), (2.90)
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where
Qp = {Qu; : d(Q) < D}

In other words, the rate distortion function is the least information about the source
that must be conveyed to the user in order to achieve a prescribed fidelity. Let D,
be the minimum value that d(Q) as given by (2.89) can assume. In general, R(D) is
a continuous, monotonically decreasing, convex U function in the interval D = 0 to
D = Do and R(D) = 0 for D > Dp,,. It can be shown that R(D) always exists
and 0 < R(D) < log K, where K is the size of the source alphabet. For all cases
R(0) < H(X) and the equality holds if reproducing alphabet images the source
alphabet in the sense that for each source letter there is a unique reproducing letter

such that p(j. k) = 0.

2.7.1 The application of R(D)

Let p.(.\',Y) be the distortion measure for words of length n, and B = {y;,....yux}
be a codebook of size M and block length n. If p(B) = E[p.(Y|B)] < D, then B
is a D-admissible code. The smallest size of any D-admissible code is denoted by

M(n, D).

The fundamental source coding theorem establishes that for any ¢ > 0 and
D > 0, an integer n can be found such that there exists a (D + ¢)-admissible code

of block length n with rate R < R(D) + ¢. In other words
%log M(n,D+¢€) < R(D)+ ¢ for sufficiently large n. (2.91)

The converse of this theorem states that no D-admissibie source code has a rate less

than R(D).

These theorems show that with given fidelity the rate distortion function is a

lower bound to encode any discrete memoryless source (d.m.s.). As a consequence
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of the source coding theorem and its converse, we have that for all D > 0
.1 5 q
Jim Elog M(n, D) = R(D), (2.92)

which sometimes is referred to a definition of R(D). It can also be proved (informa-
tion transmission theorem) that it is impossible to reproduce a d.m.s. with fidelity

D at the receiving end of any discrete memoryless channel of capacity C < R(D)

bits per source letter.

These theorems also provide the practical significance of the rate distortion

function for communications.

2.7.2 Continuous amplitude stationary sources

All the definitions that were given for discrete sources can also be extended to

continuous-amplitude or analog sources.

Let X be a random variable with cumulative distribution P(z) = Pr(\X < z).
If P(z) is continuous, .\ is called continuous random variable. Let p(z) = P'(z) be

the probability density function for X. The differential entropy A(.X) is defined as
h(X) = [ p(z) logp(z)dz. (2.93)

where S is the support set of the random variable X. The differential entropy for a

continuous random vector X = (X1, ..., .X;) is given by
A(X) = E[~ log P(X)] = - [ p(x) log p(x)dx (2.94)

where dx = dz,dzs...dz,. For two continuous random variables X' and Y, the

conditional differential entropy is defined by
R(XIY) = = [ [ p(z.y)logp(z, y)dzdy (2.95)
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and the average mutual information is given

I(X:Y) = //p (z.y) logpI(Ji) ?j)d dy (2.96)

= h(X)—h(X]Y).

For any one-to-one transformation of coordinates, the differential entropy changes
by an amount equal to the expected value of the log of magnitude of the Jacobian.

In the new coordinate [z; = f(x;) .1 <7 < n], the differential entropy is given by
h(Z) = A(X) + E [log 1] (2.97)

where J is the Jacobian of the transformation. Since I(.X;}") is the difference of

two differential entropies, it is not changed under a one-to-one transformation.

Rate distortion function for continuous source: For a continuous source,
p(x) is defined the measure of accuracy of the reproduction source. The average
distortion and the average mutual information assigned to any conditional density

q(Y;X), are defined as

=//p(r)q(r)q(f \z)p(x. y)dzdy (2.98)
q(yfl) _ .
I(q) = f/p(l &0y dzdy. (2.99)

The rate distortion function of a source with respect to a fidelity criterion F, is
defined by

R(D) = inf (I(q)). (2.100)
where Qp = {q(y|z) : d(q¢) < D}. With some mathematical operations the minimum
can be achieved for

a(ylz) = A(z)q(y)e =Y, (2.101)

where \ is given
-1
2@ = [[awe otz vdy] (2.102)
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and

R(D) = sD + / p(z) log A dz, (2.103)
D= // z)p(z)es” =V dxdy. (2.104)
It can be shown that
-1
) = |[ atye=sidy] (2.105)

1 for ¢g(y) >0 Vy
0 otherwise.

2.7.3 Shannon lower bound

The distortion measurement is called a difference distortion, if p(z) = p(z — y). In

the case of difference distortion measures , it can be proved that
R(D) > h(p) +sD — log [ e#9dz = R (D). (2.106)

where R (D) is called the Shannon lower bound.

The following theorem gives the condition that a rate distortion function equals

to its lower bound.

Given any s < 0, R(D;) = Rp(Ds), if and only if the source z can be
expressed as the sum of two statistically independent random variables one of which
is distributed according to the probability density function gs(.) given by

eP(z)

o
[\



For magnitude error distortion measure p(z — y) = |z — y|, this probability density
function and the Shannon lower bound is given by

|l

9:(Y) = el (2.108)
R (D) = h(p) —log(2eD) (2.109)
where
-1
st

On the other hand, for squared-error distortion measure p(z — y) = (x — y)?, the

probability density function and the lower bound can be obtained by

9:(X) = '—f—l es¥* (2.110)
R (D) = h(p) — log(2weD) (2.111)
where
-
2si

An tmportant special case is when p(.) is the normal density,

N(p,0?) = (270*)"? exp [#{‘ : (2.112)
202
In this case, it can be shown that
y) = |27 2 _ -1/2 .. r—(y - /J')g B
ot0) = [2r(o® - D 2expl g4 (2.113)

that is, the output has a normal distribution, N (g, c? ~ D). We can deduce that for
a memoryless Gaussian source and squared error criterion, the difference between
the input source and its reproduction, Z = X — Y, is normal with variance D. Also

for normally distributed source

R.(D)=R(D) , 0< D < 02 = Dz,

and

IA

o

O ©
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1 a-
R(D) :{ 2logs 0 (2.114)



It has been proved that the upper bound of the rate distortion function of any

source with zero mean and variance o2 is the rate distortion function of a Gaussian

source, that is,
(2.115)

(VAN
S}

R(D) < > log

with equality sign holding iff p(z) is normal.
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Chapter 3

RESIDUAL VECTOR
QUANTIZER
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3.1 INTRODUCTION

Optimum vector quantizers, designed using generalized Lloyd algorithm [30], can be
used for a variety of sources. However, their practical applications are limited by
the complexity of codebook search and codebook storage. Lack of a structure in an
optimum Vector Quantizer (VQ) is the reason for the complexityv. This explains the
interest in VQ schemes with structured codebooks, such as tree searched [8], residual
(multi-stage) [9], gain/shape [10], and lattice-based vector quantizers [11]. In order
to reduce the search complexity, Buzo et al. [8! have proposed a tree searched en-
coder. In their method, the encoder searches a sequence of small codebooks instead
of a large one. In this way. the complexity of search is reduced with a small increase
in the distortion. but the codebook storage requirement is greater than that in the
full-search VQ. Multi-stage VQ [9] divides the quantization task into several suc-
cessive stages. resulting in a reduction of codebook search and storage complexity,
but it increases the encoding distortion. For example, in a two-stage VQ, after the
input vector X is quantized by the first stage, the error is quantized by the second
stage, and the final reproduction of X is the summation of the two quantized levels.
If the two-stage VQ has 1/, code-words in the first stage and 1/, code-words in the
second one, it requires W/} + 1/, distance computation, Where as the corresponding
single-stage VQ would have required M; x 35 memory space and 1/, x A, dis-
tance computations. Thus, with the same rate and dimension. the complexity of
a two-stage VQ is much less than that of a single-stage VQ. This reduction in the

complexity comes at the expense of an increased distortion.

The point in the multi-stage quantizers is to find the condition under which the
source can be successively reconstructed without loss of optimality [37], [38]. Several
researchers have investigated the problem of successive refinement of information.
The goal of these studies is to achieve an optimal description at each stage to ensure

that the on going description is optimal whenever it is interrupted. Equitz et al.
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(37] have shown that a source is successively refinable if and only if the individual
solution of the rate distortion problem for the source can be written as a Markov
chain. Since it can be shown that there exists a Markov chain for a Gaussian dis-

tributed signal under the MSE criterion, a Gaussian source is successively refinable

(37].

From the rate distortion theory, for most memoryless sources and many Gaus-
sian sources with memory, the ideal encoding noise under MSE criterion, for small
distortion is memoryless and Gaussian. Based on the modeling assumption of a
Gaussian distributed first-stage VQ encoding error, Pan and Fischer{39] introduced
a two-stage quantizer with a lattice vector quantizer with a spherical codebook for

the second-stage for memoryless sources.

In [40], Lee et al. have shown that if the source density is smooth and the
first-stage is a high-rate VQ, then it can be assumed that the first-stage error is uni-
form over each quantization cell. They have also shown that the overall encoding
distortion approaches asymptotically to that of a single stage VQ as the size of the

first-stage codebook approaches infinity.

However, the assumption of a Gaussian quantization error cannot be extended
to sources with memory, such as images. In this chapter, it is shown that the resid-
ual vectors normalized by the zonal energyv have a distribution close to a Normal
distribution. Therefore, a quantizer designed for a Gaussian source is almost opti-

mal for these normalized error samples.

This adaptation is particularly efficient, since for a fixed compression ratio,
the same codebook is used for any residual samples of images. This method is also

applicable for the raw Synthetic Aperture Radar (SAR) data, since the raw data
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statistics is Gaussian with zero mean and also they are uncorrelated [41].

This chapter is organized as follows. Section 3.2 gives a brief introduction to
multi-stage residual VQ and discusses the problem of successive refinement. Section
3.3 describes the distribution of error signal. The problem of the mismatch of
distribution of the codebook and the distribution of the source is investigated in
Section 3.4. Section 3.5 presents the Kolmogorov-Smirnov test (KS) [42] which is a
test for goodness of fit of distribution to the different distributions. Finally, Section

3.6 presents the results of simulation. Section 3.7 gives a summary of study carried

out in this chapter.

3.2 MULTI-STAGE VQ

A Multi-stage Residual Quantizer (RQ) consists of a cascade of quantizer stages,
each operating on the residue of the previous stage. The block diagram of a resid-
ual quantizer is shown in Figure 3.1. In a residual quantizer the total distortion
is the distortion of the final stage. For probability mass function p(z) and condi-
tional probability mass function of g(y|z), in a K-stage quantizer, the total rate and

distortion are, respectively, given by
D =Dk = //p(l'h')Q(yKIII\')d(x!\‘sy[\’)dl'f\’dylx’ (3.1)

and
R=R;,+Ry)+..+ Rpg. (32)

where X, and Y% are the input and output of the last stage, and R; and D; are the
rate and distortion of the ith stage. The residue of each stage is the input to the

next stage. For example, the input of stage i is given by

Xi=Xi - Y

58



ENCODER

T . T - e e - - - .- = - - -

O
tn
o)
Q
o]
™
X

Figure 3.1: The block diagram of a K-stage residual quantizer.

For an unknown source. the multi-stage quantizer is not optimum in the sense
of rate and distortion. Several researchers have published results on the condition
under which a multi-stage quantizer can be an optimum [37] [38]. All these investi-
gations are based on the jointly good description [38]. In the jointly good description
the goal is that by sending two descriptions of the source, each describing it well,

at the receiver the combination of the descriptions can give the maximum possible

information.

Consider a stochastic process X, .Xs,..., where each .X; is an independent,
identically distributed, i.i.d., random variable with a known distribution p(z). X

is encoded twice with rates R, and Ry bits per symbol. Given three single letter
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distortion measures, d;, d» and dg, the problem is to find the information that should
be sent at rate R; and Ry so that a receiver given only R; can reconstruct X with
distortion Dy, given only Ry can recover X with distortion Dy, and given both de-
scriptions can recover X with distortion D,. The problem of multiple descriptions
was posed by Witsenhausen [43], Wolf et al. [44], and Ozarow [45]. Gamal and
Cover [38] in their work exhibit an achievable rate region of (Rg. R;) pairs as a func-
tion of the distortion vector D = (Dy, D,. D>).

Consider a sequence of blocks X = (X}, X, ...X;), where X;’s are i.i.d. random
variables with a known distribution p(x). By definition, the achievable rate for
distortion D = (Dy. Dy, D2) is (Rg, R;). if there exist a sequence of descriptions
i(x) € {1,2,...,2"%} and j(z) € {1,2,...,2"R}, and reconstruction functions £ (i),

T9{Jj), T2(i. J) such that for a sufficiently large n

E[dn(X,Xm)! < Dy, m=0.1,2, (3.3)

where d,(.,.) is the distortion measure defined by the average per-letter distortion,
- 1>
dm(xt Xm) = ;l. Z dm(-riri'mi)f
=1

and X is the sequence of the reconstruction vectors. The rate distortion region is
the closure of the set of achievable rate pairs (Ro. R;) inducing a distortion less
than or equal D. An achievable rate region is any subset of the rate distortion
region. Gamal and Cover [38] proved that the achievable rate region for distortion

D = (Dgy, Dy, D,) is given by the convex hull of all (Rg, R;) pairs such that

Rq > I(X; Xo)
R, > I(X; X)) (3.4)

Ro+ R > I(X; X X1, Xo) + I(Xg; X1)
if there exists a probability mass function p(z, £y, Z1, Z2) = p(z)p(Zq, £1. Z2|T) such
that
Dy > Eldn(X, X)) m=0,1,2 (3.5)
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agiven ( Dy, D, D.)

Figure 3.2: Multiple description and achievable rate region.

where 7(0) denotes Shannon mutual information. Ahlswede [46! showed that the
above conditions are both necessary and sufficient in the “no-excess rate case,” i.e.
Ry + R, = R(D-). For clarity, we use R for the rate and R(.) for rate distortion
function. Figure 3.2 shows the case where two receivers receive individual descrip-
tions and the third has access to both descriptions. The lower diagram in this figure

shows the achievable rate region.

The successive refinement problem which is shown in Figure 3.3 is a special
case of the multiple description problem. In this case, there is no constraint on
Dy = E[dO(X,Xo)] and we require R = R(D,) and Ry = Rg + Ry = R(D2). In
general, the successive refinement from distortion D; to distortion D; is achievable
if there exists a sequence of encoding function 7 : X* — {L,2,...,2"%1} and j :

X" — {1,2,...,2MR~R)} and reconstruction functions ¢, : {1, 2,...2""} — X and

61



/\ -
X (1) :D,

} }_(2 (1 .] ) :D 5
Figure 3.3: The successive refinement.

go: {1.2,..27"R:}{1,2, . 2{R:=RIY _, X7 such that for

o= qulixm) (3.6)
and
X3 = @(i(X7"), 5 (X)), (3.7)
we have
lim sup E[(X™, X7)] < D(R) (3.8)
and
lim sup E{d(\™", X3)] < D(R). (3.9)

In 3.8 and 3.9, D(R) is the distortion rate function defined by

D(R) = min E[d(X, X)] (3.10)
p(X].X)

In other words, the sequence X, X5, ..., X}, is successively refined if R, = R(D,)

and R, = R(Da,), i.e., the rate distortion limit in each of the two stages is achieved.
The successive refinement for the quantization of a single variable is not achiev-
able. However, if long blocks of i.i.d. variables were considered , the successive

refinement in some cases is possible. For example, for long blocks of i.i.d. Gaussian
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Figure 3.4: The block diagram of a two-stage residual quantizer for a Gaussian
source.

random variables, the successive refinement is always possible.

Equitz and Cover [37] have proved that successive refinements from description

X, with distortion D; to description X, with distortion D> < D, is achievable if

and only if there exists a conditional distribution p(Z;, Z»|r) such that .\, AYTA

can be written as a Markov chain X' — X’g — i’l. In this case the joint conditional
distribution becomes

p(Z1. #2]z) = p(Z2|z)p(Z1|22). (3.11)

As an example, consider the random variable .V(0, ). Under the MSE crite-

rion, the error signal is Gaussian with the variance D. It means that if X is N (0, ¢?)

then p(#) = N(0,¢% — D) and p(z|Z) = N(Z, D). It can be shown that the source

is refinable. For the two-stage residual quantizer.shown in Figure 3.4, we can write

p(£)) = N(0.0> - Dy) (3.12)
p(x|ta) = N(Z2.Ds) (3.13)
p(.ig]i’l) = .’\(’(il,Dl-—Dg) (314)

It can be shown that 3.13-3.14 vield a joint function
p(z. Z1. Z2) = p(£1)p(Z2121)p(z|22). (3.15)

implving that X, X,, X5 can be written as a Markov chain, X — X, - XL
Since there exists a Markov chain satisfying the Equitz and Cover theorem [37], the

Normal source with MSE criterion is successively refinable. The existence of the
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Markov chain also guarantees the achievebility of

1 - 1 a?
(R, R2) = (R(D1). R(D2)) = (§log AL log 5;)' (3-16)
In the following, we present an alternative proof showing that the Gaussian source

under MSE criterion is refinable and R(D) = R,(D;) + R2(D-).

Under the mean-squared error criterion, the rate distortion function of the first

stage with a Gaussian input N(0,0?) is given by [36].

log Z-. (3.17)

ERI(Dl):. °D1

[AVEIE

Since the input to the second-stage is also Normal with variance D), the rate dis-

tortion function for the second stage is given by

1 D,
SRQ(D-_),) = 5 lOg Dg‘ (318)
For the two stage, D = D,. Thus,
1 D, )

For the two-stage residual quantizer, the rate distortion function is given by

R(D) = Ri(D1) + Ra(Ds) (3.20)
1 0'2 1 D1
= - _— = O — 9
3 log D, 3 log Fa) (3.21)
1 02 I

Extending this result to a K-stage quantizer we have

R(D) = Ry(Dy) +Rao(D2) +... + R (Dk) (3.23)
1 (72 , 1 Dl \ 1 D[{_l ;

= §log—5-1--:-§log3+...-:-§log-—D—- (3.24)
1, o _
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It can also be shown that the Laplacian source under the absolute error criterion,

d(r,) = |z — £|, is refinable [37].

As a result, dividing the quantization task into several successive stages does
not affect the accuracy of the quantizer. In addition, the residual quantizer can

achieve a great deal of savings in terms of storage and computational complexity.

According to the fundamental source coding theorem, for a block quantizer
with dimension n and codebook size K, the average rate of any D-admissible code
is R(D), that is,

1
.1 . _ 39
nlgxgc - log(K, D) = R(D). (3.26)
Thus, using a block coding with a large dimension, the multi-stage quantizer for

Normal distribution is successively refinable.

3.3 DISTRIBUTION OF ERROR SAMPLES

Under the MSE criterion, the rate-distortion function of a wide class of memoryless
sources for small distortions ( equivalently, for high rates), approaches the Shannon
lower bound. As a result, for high rate, the ideal encoding noise is memoryless and
Gaussian. For many Gaussian sources with memory, a critical rate exists such that
for the rates larger than this critical rate, the encoding error becomes white and
Gaussian [36]. For example, for a Gauss-Markov source with parameter p. the rate
distortion function is given by

1 pgloe (3.27)

D “1l+4+p

R(D) = %log2
For this source the critical rate corresponding to D = (1 — p)/(1 + p) is
R = log,(1 + p). (3.28)
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Figure 3.53: Normalized histogram of the VQ encoding error for memoryless Lapla-
cian source with dimension 8 and codebook sizes ranging from 16 to 1024

In other words, if the source encoding rate is R > R, then the optimum quantiza-
tion noise is white and Gaussian. In the case R < R., the optimum encoding noise
is not Gaussian. As a consequence, as the rate increases, the error signal tends to
be memorvless Gaussian, so that it becomes successively refinable. This justifies
the use of a multi-stage residual quantizer for the error signal without significant
loss of optimality. Figure 3.5 shows the histogram of error signals corresponding to
memoryless Laplacian sources for dimension L = 8 and for various codebook sizes

M = 2LR Ag Figure 3.5 shows, for large codebook, the error signal is close to a

Gaussian source with the same variance.

For Gaussian sources with memory, the effectiveness of an encoding method

is dependent on the feasibility of using a large enough first-stage vector quantizer
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Figure 3.6: Normalized histogram of the VQ encoding error for image Baboon with
dimension 4 and different codebook sizes.

codebook to exploit most of the source memory. We have studied the effect of the
increase in the rate for a constant dimension and the effect of increase in the dimen-
sion for a constant rate for different images on the distribution of the error signal.
These results show that for the implementable rates, the idea cannot be extended
to the sources with memory like images. For example, Figure 3.6 shows the com-
parison of the distribution of error signal for image Baboon with that of a Gaussian
source. It can be seen even for bit rate 2.5 bps, the distribution is not a good fit to

a Gaussian distribution.
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For a multi-stage VQ with a reasonable rate quantization in the first-stage,
the error signal is far from having a global distribution. This is due to the different
statistical parameters in different regions of the image. Also, by using a low rate
quantizer in the first stage, the errors samples follow the same distribution. The
normalized histogram of the error signals with a low bit rate VQ in the first stage
for different images is shown in Figure 3.7. It can be seen that the distributions
of the error signal for different images are different and cannot be quantized by a
single quantizer. However, by normalizing the error vectors by the zonal energy.
their distribution become close to a Normal distribution. In order to carry out this
normalization, the two dimensional error signal is divided into different zones and
the average energy of each zone is calculated. The error samples in each zone are

then divided by the energy of the corresponding zone. The energy of a zone is

defined as
2 1 2
C=— > I (3.29)
H:“I all zin =,
where z; refers to the ith zone and {[.{| denotes the cardinality given by
S lall=n,. (3.30)
all zones

and n; is the total number of samples. The locally normalized error signal has a

variance of unity. If z is a locally normalized error signal, then its variance is given

by
1
o = — Y (3.31)
Ns ont samples

1 T
-1y v (3.32)

U all zones all samples in z; czi

1 1 2
5 all zones *=i all samnples in =;

2
Ns all zones g-’i
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Figure 3.7: Normalized histogram of the VQ encoding error for the different images
with dimension 4 and codebook size 16 (1bps).
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Figure 3.8: Normalized histogram of the VQ encoding error for image Lenna with
dimension 4 and codebook sizes ranging from 4 to 236.

= = Y (3.33)

S all zones

= 1 (3.36)

To obtain a distribution close to a Normal distribution, the bit rate in the first-stage
should not be too low. For example, for image Lenna, when quantized by 0.5 bps
optimum VQ, the normalized distribution of error samples follow the distribution of
the original image. By increasing the bit rate in the first stage, this can be changed.

Figure 3.8 shows the effect of bit rate in the first stage for the image Lenna.

The histograms of the locally normalized error samples for different images
are shown in Figures 3.9. The eftect of normalizing the error samples locally can be

seen from this figure. As seen from figure the error signal has a distribution very
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close to Normal. Figure 3.10 shows the comparison of the histograms of error sign

and one of the locally normalized error signals.

Since the locally normalized curves are close to a Normal distribution, we co:
clude that a quantizer designed for a Gaussian source can be considered as almo
optimal for these error signals. In the next section, it will be shown that in the ca:
of a mismatch between the actual distribution and a normal one, the distortion
less than the case where the locally normalized error signal is actually Gaussia
even though the distortion that one gets is generally more than in the case whe

the codebook is optimally designed for the source.

3.4 MISMATCH

It is well known [36] that for all sources with a given second moment o2, the sourc
that is most difficult to describe within a mean square error distortion D is the men
oryless zero-mean Gaussian source. If the rate distortion function for a memoryle:
Gaussian source is given by R,(D) and for a general source having the same secon

moment ¢° is R(D), then
R(D) < R,(D). (3.3;

Let us now assume that a Gaussian codebook of rate R4(D) is used to compress
source that is not Gaussian or memoryless. In [47], Sakrison has shown that using
codebook designed for a memoryless Gaussian source with a given second momer
to compress a non-Gaussian source with the same second moment does not resu
in a distortion higher than the distortion corresponding to the original Gaussia
source. Lapidoth [48] has shown that the resulting distortion is also no smaller tha
the distortion corresponding to the Gaussian source. These results demonstrat

that the distortion that one can expect due to the use of a Gaussian codebook fc
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close to Normal. Figure 3.10 shows the comparison of the histograms of error signal

and one of the locally normalized error signals.

Since the locally normalized curves are close to a Normal distribution, we con-
clude that a quantizer designed for a Gaussian source can be considered as almost
optimal for these error signals. In the next section, it will be shown that in the case
of a mismatch between the actual distribution and a normal one, the distortion is
less than the case where the locally normalized error signal is actually Gaussian,
even though the distortion that one gets is generally more than in the case when

the codebook is optimally designed for the source.

3.4 MISMATCH

It is well known [36] that for all sources with a given second moment o2, the source
that is most difficult to describe within a mean square error distortion D is the mem-
orvless zero-mean Gaussian source. If the rate distortion function for a memoryless
Gaussian source is given by R,(D) and for a general source having the same second

moment o is (D), then
R(D) < R,(D). (3.37)

Let us now assume that a Gaussian codebook of rate R,(D) is used to compress a
source that is not Gaussian or memoryless. In [47], Sakrison has shown that using a
codebook designed for a memoryless Gaussian source with a given second moment
to compress a non-Gaussian source with the same second moment does not result
in a distortion higher than the distortion corresponding to the original Gaussian
source. Lapidoth {48] has shown that the resulting distortion is also no smaller than
the distortion corresponding to the Gaussian source. These results demonstrate

that the distortion that one can expect due to the use of a Gaussian codebook for
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Figure 3.9: Normalized histograms of the locally normalized error for the different
images with dimension 4 and codebook size 16 (1bps).
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17 Image Baboon
Image Lenna 0.5

Figure 3.10: Comparison of the histograms of the error signal and the histogram of
the locally normalized error for the different images.



a non-Gaussian source with the same variance is exactly the same as the distortion
one would get if the non-Gaussian source were actually Gaussian. Indeed, the loss in
performance due to the use of a Gaussian (non-optimal) codebook is exactly offset
by the use of excess rate. To state this result Lapidoth proved the following theorem

[48].

Theorem: Consider a random codebook whose 2"% code words are drawn indepen-
dently and uniformly over the n-dimensional sphere of radius r, centered around
the origin. Let x be an n-tuple of source samples generated by an ergodic source
with a second moment ¢2, and let 0 < D < o>.

a) If R < Llog(c?/D) then irrespective of the radii

n—oc

Pr(Gi e C: ||z — |I? < nD) =3 0.

b) If R > }log(c®/D) and r, = \/n(c? — D), then

)

l ,

—

8

Pr(3t € C:{lz — i}]* < nD) 1.

This result shows that using a universal Gaussian codebook for the multi-stage quan-

tizer is a promising method to achieve a given distortion with low complexity.

To show how much locally normalized error signal is close to the Gaussian
source, we have performed the well known Kolmogorov-Smirnov(KS) [42] test for

goodness of fit of the distribution.

3.5 KOLMOGOROV-SMIRNOV TEST

The Kolmogorov-Smirnov test (KS) [42] is a test for goodness of fit of a given
distribution to various well known distributions. The test statistic is based on

a distance measure between the sample distribution function and a well defined
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distribution or a test distribution. Let X = (zy,......,z3s) be a given set of data.
The KS test compares the sample distribution Fy(.) to a given distribution function

F(.). If yo,n = 1,2,.., M are the order statistic of the data X, then the sample

distribution is given by

0 z <y
Fx(z2)=q¢ & ypn<z2<ypt1 n=12,... M (3.38)
. 1 < Z yx‘{'
The IS test is defined by
t = _max [|Fx(z;) - F(z)]. (3.39)

When different distributions are tested, the one that yields the smallest KS statistic,
t. is the best fit for the data. The result of this test for the error signal and the
normalized error signal for some images are shown in Table 3.1. The normalized er-

ror signal in all cases yields a smaller KS statistic for Gaussian distribution function

than the other tested distributions.

3.6 SIMULATION AND RESULTS

The proposed method was investigated in the context of coding of 8-bit monochrome
images of size 512 x 512 with different contexts, face and scenery. Also images from
Canadian Remote Sensing Satellite, Radarsat, are tested. A set of 2!® normally
distributed samples were generated and the generalized Lloyd algorithm [30] was
used to generate an optimum codebook. The error samples are divided into 16 x 16
vectors (zones), and the samples in each zone were normalized to the magnitude of

that zone. Eight bits were used to encode the energy of each zone, i.e., 1/32 bits per
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Table 3.1: Kolmogorov-Smirnov test for the error signals of some images

image Scheme Gaussian | Laplacian | Cauchy

Error signal | 0.0175 0.0049 82.41
Lenna | Normalized
error signal | 0.0012 0.0038 83.41

Error signal | 0.0078 0.0011 83.1837
Bridge | Normalized
error signal 0.0018 0.0029 83.4436

Error signal 0.01 0.0018 83.37

Baboon | Normalized
error signal | 3.54e-04 | 0.0067 83.71

sample (a negligible rate with respect to the total bit rate). The normalized error
samples were encoded using the codebook generated for the Gaussian source. The
distortion of the quantized images were compared with the distortion of the images
quantized using an optimum VQ. The objective measure for the coder performance
used in this study is the mean square criterion. It refers to the average of the squares

of the error between the original image and the reconstructed one. That is,
D = E[|lx — %|[*]. (3.40)

The mean square error is expressed in terms of the Peak Signal-to-Noise Ratio

(PSNR) which, for images with 8-bit pixel values, is defined as

(&

-
PSNR = 10log (“Zo) . (3.41)

The result of some of tests are shown in Table 3.2 and 3.3. In most cases the

differences were found to be less than 1 dB. For example, for the image Lenna, if
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the first stage is an optimum VQ with dimension 2 x 2 and codebook size 1024, the
difference is 0.1 dB. Similar results were observed for other images. To encode the

images in the first stage, an optimum vector quantizer was used.

Three different examples of the reconstructed images using the two-stage op-
timum VQ and the Gaussian codebook shown in Figures 3.11 to Figure 3.13. For
the image Lenna in Figure 3.11, a 4 dimensional VQ is used in the first-stage and
the size of the codebook is 64. Figure 3.11a shows the reconstructed image when
a universal Gaussian codebook is used in the second stage. Figure 3.11b shows the
result of using an optimum VQ in the second stage. The dimension of vectors for
both cases is 4 x 4 and the size of codebook in this stage is 256. For the image
Bridge and the image Lansatd shown in Figures 3.12 and 3.13, the codebook size in
the first-stage is 64. The codebook for the second-stage is the same as the one used

for the image Lenna. As it can be observed, the images reconstructed by the two

methods are very close.

3.7 MERITS

In the proposed method, a universal Gaussian codebook is used for the second stage.
For quantizers with more than two-stages, the distortion is smaller in the later stages
and the distribution of the error samples is closer to a normal distribution. Hence,
for later stages the Gaussian codebook is even closer to an optimum codebook, and
only a single generalized codebook needs to be designed and used for all images in
different stages. This is a significant advantage of the proposed method in which,
almost without loss of optimality, one universal codebook can be used in different

stages for different sources.

Since the codebook designed for a Gaussian source is fixed, different structures

~1
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Table 3.2: Comparison of using an optimum codebook for second stage of a two-stage
vector quantizer with universal Gaussian codebook for different images

First stage Second stage
Images Locally normalized
PSNR | bps | Dim || bps | Dim | Gaussian | Optimum

PSNR PSNR
Lenna | 33.83 | 1.5 | 2x2 { 0.3 | 2x2 33.32 36.02
36.79 | 2.0 | 2x2 | 0.5 | 4x4 39.93 40.47
1 39.69 | 2.5 | 2x2 || 0.5 | 4x4 41.29 42.18
Baboon | 25.31 | 0.5 | 4x4 || 0.5 | 4x4 27.83 28.59
28.95 | 1.5 | 2x2 || 1.0 | 2x2 33.79 33.92

31.84 | 2.0 | 2x2 || 1.0 |{ 2x2 36.79 36.98

Bridge | 285 | 1.5 | 2x2 || 0.5 | 4x4 31.06 31.68
31.33 | 2.0 | 2x2 § 1.0 | 2x2 36.00 36.17
Giza 25.09 | 1.0 | 2x2 || 0.5 | 4x4 27.52 28.15
2869 | 1.0 | 2x2 || 0.5 | 4x4 31.25 31.78
Lansat3 | 27.28 | 1.5 | 2x2 || 0.3 | 4x4 29.87 30.18
30.23 | 2.0 | 2x2 || 0.5 | 4x4 32.97 33.24
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Figure 3.11: Comparison of the results for image Lenna, for bit rate 2 bps. (a)
Reconstructed image quantized by the universal Gaussian codebook. (b) Recon-
structed image quantized by an optimum codebook.
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(b)

Figure 3.12: Comparison of the results for image Bridge, for bit rate 2 bps. (a)
Reconstructed image quantized by the universal Gaussian codebook. (b) Recon-
structed image quantized by an optimum codebook.
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Figure 3.13: Comparison of the results for image Lansat3, for bit rate 2 bps. (a)
Reconstructed image quantized by the universal Gaussian codebook. (b) Recon-
structed image quantized by an optimum codebook.
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Table 3.3: Comparison of using an optimum codebook for second and third stage of
a residual vector quantizer with universal Gaussian codebook for different images

First stage Second stage Third stage
Images

PSNR { bps | Dim || bps | Dim | Gaus. | Opt. || bps | Dim | Gaus. | Opt.
PSNR | PSNR PSNR | PSNR

4x4 | 39.93 | 4047 §| 0.5 | 4x4 | 40.51 | 41.4

o
e
31

Lenna 36.79 } 1.5 | 2x ¢

4x4 | 32,12 | 3248 || 0.5 | 4x4 | 33.52 | 33.76

o
o
(1}

| Baboon | 28.95 | 1.5 | 2x

Bridge 28.5 15 |2x 2| 0.5 | 4x4 | 31.06 | 31.68 || 0.5 | 4x4 | 33.20 | 33.76

can be imposed for reducing the complexity of the encoder. For instance, the code-
vectors can be localized and the search can be started from the code-vectors which
are closer to the origin, or a mapping can be carried out based on the energy of the
vectors. Having one generalized codebook for all stages gives an opportunity to find
some mathematical mapping between the source vectors and the codevectors which
can considerably reduce the complexity of search. The distribution of the codebook
is well known and this makes it possible to define a lossless entropy coding. Use of

the entropy coding can reduce bit rate and makes this method more efficient.

3.8 SUMMARY

In this chapter, the idea of using a universal codebook for a multi-stage vector
quantizer for image compression has been presented. It has been shown that the
locally normalized error vectors of an image have a distribution close to a normal
distribution. Since 2 memoryless Gaussian source is successivelyv refinable, the error
signal is successively refinable as well. As a consequence, the codebook designed

for a memoryless Gaussian source can be used in different stages of a multi-stage




VQ to quantize the image error samples. An optimum codebook designed for a
normally distributed source has been used to quantize the error samples of different
images, and the results were compared with the reconstructed images quantized
by an optimum VQ. The results were very close. In some cases the difference is
less around 0.1 dB, but in general, the difference was found to be less than 1 dB.
Since with the proposed method only one codebook is needed in different stages of
a residual VQ, different structures and mapping techniques can be used to reduce

the search complexity.
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Chapter 4

TWO-STAGE RESIDUAL
LATTICE-BASED VECTOR

QUANTIZER
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4.1 INTRODUCTION

As explained in the previous chapter, Vector Quantization (VQ) theory aims at
achieving the highest VQ performance as a function of rate and dimension, but the
application of a VQ is concerned with obtaining a high level of VQ performance at
an affordable cost. The memory and computation which are required for VQ imple-
mentation, depend on the VQ rate, vector dimension, and the constraint imposed

on the quantizer’s structure. Imposing carefully selected structural constraints can

reduce the complexity of a VQ.

A class of structured quantizers that reduce both memory and computation is
the product code vector quantization. A product code vector quantizer is a struc-
tured VQ in which different components of the VQ quantize different features of the

source. The gain-shape VQ and the residual VQ are two examples of product code

VQ.

A residual vector quantizer is a simple product code VQ with a direct sum
codebook structure and a sequential search procedure. The quantizer has a sequence
of encoder stages where each stage encodes the residual vector of the previous stage.
Residual VQ, similar to other structured VQs, is not able to provide performance
as good as that of the unstructured VQ for a given rate and vector dimension, but

it provides a better performance for a given complexity.

In Chapter 3, we discussed the condition of optimality of a multi-stage VQ.
It was shown that in the limit for a class of memoryless sources and sources with
memory, multi-stage VQ’s codebook can be optimaily designed, or in other words,
the sources are successively refinable. It was also shown that for sources with mem-
ory, like images, the locally normalized error samples, defined by normalizing the

residual samples by the magnitude of the zone to which the sample belongs, are
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successively refinable. The effectiveness of the encoding method in Chapter 3 is
dependent on the feasibility of using a large enough vector quantizer codebook in
the first stage to obtain for low distortion a rate that is close to the lowest rate
achievable by the rate-distortion theory. The computation and memory complexity
required for unstructured VQ implementation to achieve this requirement limits the

application of the proposed method.

Imposing an additional structure on the product code makes the code more

amenable to sequential searches. Multi-stage VQ with a lattice structured codebook

is such an example.

The lattice-based VQ, which is an extension of the uniform scalar quantiza-
tion to the multi-dimensional case, offers some advantages over the classical vector
quantization. It reduces the computational time for comparable performances and
no memory is required to store the codebook. Due to the relative ease of lattice
vector quantization, optimum encoding is feasible for moderate to large values of

rates and vector dimensions.

To exploit most of the source memory, transform coding in the first stage can
be used. Transform coding decorrelates the pixel values and distributes the energy

among a small set of transform coefficients.

The work presented in this chapter is based on a two-stage residual lattice VQ.
Two different schemes are presented. In the first one, each block is converted into
DCT coefficients. The low-frequency coefficients are quantized using a high-rate
Lattice-Based Vector Quantizer (LBVQ) in the first stage. In the second scheme,
we use a low-rate JPEG encoder, for the first stage. For both schemes, in the second

stage, the difference of the quantized image in the first stage and the original one is
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quantized with an optimum VQ, an LBVQ), or a codebook designed for a memory-
less Gaussian source. The results of three methods are compared. Although using
LBVQ reduces the complexity of quantizer, encoding of the lattice points when the
vector dimension increases is not a trivial task. Some efforts have been made in
this direction, but still indexing of these points for boundaries other than cubical is
still difficult. The enumeration method [15] introduced for indexing needs too many

recursive computations. The indexing problem is discussed in Chapter 3.

In this chapter the energy of different coefficients, for some images are also

presented and they are compared with the DCT coefficients of the error samples.

4.2 TWO-STAGE RESIDUAL LATTICE-BASED
vQ

By dividing the quantization task into several successive stages. residual vector
qguantization achieves a great deal of savings in terms of storage and computational
complexity. A residual vector quantizer consists of a cascade of VQ stages, where
each stage operates on the residue of the previous stage. The codebook design sug-
gested in {49} is based on a sequential design of each stage by using GLA. This
method has been reported to provide a poor reproduction quality when the number
of stages exceeds two [9]. Some algorithms have been introduced to improve the

performance of residual VQ [9].

The block diagram of a residual VQ encoder is shown in Figure 3.1. It is based
on successive quantizations of residual signals. A K-stage residual VQ, each with
the codebook size M, can be uniquely represent M ¥ vectors with only ALK code-

words. This structure results in tremendous reduction in the codebook search and
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the storage complexity. The overall encoding rate is +[K log, M bits per sample,

where [b] denotes the smallest integer larger than b.

The codebook for the residual VQ can be designed in two ways. In the first
method, the codebook in each stage is designed separately. For example, a gener-
alized Lloyd algorithm [30] can be used to design each stage. Let x be the input
vector, and X; the quantized error vector from stage {. The input to stage [ + 1 is
given by

e =x-Y X (4.1)

Then, ({ + 1)th stage has to choose X;.; = y; to minimize the squared error given
by

dis1 = [le; — Yj“2 J=5L2,.. M. (4.2)

In the second method, (jointly optimum encoding). the indices of quantized

error vectors are jointly selected.

For reducing the complexity of the encoder, a lattice-based VQ can be used
in each stage. Because of the regular structure of an LBVQ, its use, in general,
results in a drastic reduction in the complexity in comparison to an optimum VQ
for the same bit rate and vector dimension. Although an LBVQ, similar to other
tvpes of structured VQs. is incapable of providing a performance as good as that of
an optimum VQ for a given rate and dimension, it provides a good performance for
a given memory and computational complexity. One reason for this is that by using

structured quantizers, one can implement codes with large vector dimensions.
The lattice points form a subset of the Euclidean space RV which are uni-

formly distributed. Hence, using an LBVQ is optimum for uniformly distributed

sources. However, LBVQs have also been used for Gaussian and Laplacian sources,
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showing good performance [21] [16]. In [21], it has been shown that by an appro-
priate shaping of the support region of the codebook, an LBVQ offers the granular

gain of the lattice codebook as well as the boundary gain.

The use of Lattice structured codebooks for non-uniform sources has been the
subject of several investigations. For example, piecewise uniform LBVQ has been
designed to produce the codebooks for a Gaussian and a Laplacian sources [19]. In
this method, the scale-factor (step-size) is defined by the density of the input points

in different areas.

The use of lattices with variable step-size has also been suggested in [23], [30].
A Scalar Vector Quantizer(SVQ) [23] is a fixed-rate entropy-coded scalar quantizer.
An SVQ combined with trellis-coded quantization [50] provides an excellent fixed-
rate encoding performance. Similar to other trellis encoding techniques, it involves

a considerable encoding delay.

In image compression, the use of the above-mentioned quantization techniques
in conjunction with a transformation yields a better performance. For a typical im-
age, the values of the adjacent pixels are highly correlated. Transform coding uses
this correlation between the neighboring pixels to achieve a considerable compres-
sion. The goal of transform coding is to decorrelate the pixel values. The result
of transformation on the correlated image samples is that the signal energy is dis-
tributed among a small set of transform coefficients. Hence, in transform coding
many coefficients with negligible information content are neglected. The number of
the retained coefficients is a trade-off between distortion (quality of the retrieved
image) and the compression rate. For most images, the Discrete Cosine Trans-
form (DCT) is very close to an optimum transform (Karhunen-Loeve transform.)

The DCT consists of cosine terms of different frequency components and results in a
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spectral decomposition of the original image. Using Kolmogorov-Smirnov test, it has
been shown that the DCT of an image has Gaussian dc components and Laplacian
ac components {51]. This makes the combination of transform coding and geometric
coding an efficient source coding scheme. Figures 4.1 - 4.2 show the distribution of
some of the coefficients for different images. These coefficients are normalized by
energy of each coefficient. For example, for the image Bridge, the distribution of the

coefficients are quite close to the distribution of a Laplacian source.

Since most images have a low-pass power spectrum, the low-frequency coef-
ficients are usually retained while the high-frequency coefficients are omitted. A
major drawback of this method is that it is possible that some of the coefficients
which are not in the coefficients retention set can have non-negligible energy, and

by neglecting them, a great deal of information could be lost.

Tables 4.1 - 4.3 show the energy of the coefficients of images Lenna. Bridge
and Light respectively. For some images with a plain background, the energy of
the high-frequency coefficients is not too large. As it can be seen from Table 4.1,
for image Lenna, the ratio of the energy of the low-frequency coefficients and that
of the high-frequency coefficients is more than 1000. However, for the image Light
(Table 4.3), this ratio is reduced to less than 7. For these images, neglecting the
high-frequency transform coefficients is not effective. It can be observed that even
if a lossless quantizer is used for encoding of a fixed number of low-frequency coef-
ficients, there is a limitation for improving the quality of the image. For example,
even in an 8-bit image Lenna, if 15 lowest-frequency coefficients are chosen from an

8 x 8 blocks, the maximum achievable PSNR is 33.38 dB.
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Figure 4.1: Distribution of some DCT coefficients of the image Lenna. (a) Coef.(0,1).
(b) Coef.(1,1) (c) Coef.(3,1). (d) Coef.(5,3).

Table 4.1: The energy of the coefficients for the image Lenna

-0.0 7371.3 1399.3 4727 2124 96.0 44.3 23.8
2844.3 1366.9 620.0 300.7 1146 61.1 34.1 19.3
447.6 459.0 3544 173.8 84.1 48.7 22.8 15.2
136.6 133.2 1231 86.1 53.2 294 18.7 11.6
47.2 46.0 449 433 289 186 11.8 9.8
21.4 20.9 21.2  19.5 156 114 9.6 8.3
12.2 11.8 10.7 111 103 85 73 6.6
9.2 8.7 7.7 .7 75 7.2 6.3 3.7
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Figure 4.2: Distribution of some DCT coefficients of the image Bridge.
(a) Coef.(0.1). (b) Coef.(1,1) (c) Coef.(3,1). (d) Coef.(5,5).

Table 4.2: The energy of the coefficients for the image Bridge

0.0 5523.9 1988.1 920.5 513.3 298.9 200.7 146.1
9524.3 2001.3 1012.7 5355.2 348.1 211.6 149.6 113.1
3817.7 1115.2 668.1 4084 269.5 173.0 1274 978
1685.9 646.0 443.3 2995 215.4 141.0 105.3 80.2

807.2 373.1 2724 2208 161.5 111.5 88.1 71.6
475.1 2375 1843 143.8 1142 8.1 723 56.5
323.0 158.7 138.8 103.3 &86.3 659 53.7 46.4
195.3 121.4 99.0 788 704 586 46.2 38.4
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Table 4.3: The energy of the coefficients for the image Light

-0.0 4867.3 2315.0 1566.4 1283.7 1160.3 875.8 796.7
3606.4 2089.4 1465.9 1262.3 1130.3 1047.1 930.8 820.3
1687.4 1300.0 1193.5 1095.7 1147.3 981.9 9129 796.3
1167.9 1031.8 1007.5 990.9 1022.6 979.4 838.4 829.9

923.5 8771 928.8 927.0 955.7 941.6 891.4 805.6
8559 836.8 869.3 948.1 981.0 9183 839.2 830.5
30v.9 796.6 830.1 913.3 953.2 926.3 900.5 808.7
7143 7276 831.0 9849 9724 939.2 8743 7644

For retaining the high-frequency information, many techniques have been de-
veloped some of which were explained in Section 2.2. In order to retain more in-
formation that is contained in an image, we now propose the use of a two-stage
quantizer. The function of the first stage is to encode the more important low-pass
components of the image. The second stage encodes the high-frequency components
ignored in the first stage. Since the correlation between the image pixels at the in-

put of the first stage is high, a transform coding scheme is appropriate for this stage.

Tables 4.4 - 4.6 show the energy of the various DCT coefficients of the resid-
ual images after quantizing the low-frequency coefficients. It can be observed that
even though the low-frequency coefficients are quantized in the first stage, in some
images, the low-frequency coefficients of the error signal have a considerable amount

of energv. These coefficients are also quantized one more time in the second stage.

We present two versions of the proposed algorithm. In the first version a DCT
transform coding scheme along with an LBVQ for the first stage (Figure 4.3) is used,

while in the other version as shown in Figure 4.4 a standard JPEG encoder is used

for the first stage.

In either case the second stage works on an "error” or residual image formed
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Table 4.4: The energy of the coefficients for the residual image Lenna

-0.0 3274 108.0 719 47.8 96.0 443 258
167.2 83.1 74.1 54.2 114.6 61.1 34.1 19.3
62.3 634 546 173.8 84.1 487 228 15.2
41.1 425 123.1 86.1 53.2 294 18.7 11.6
28,7 460 449 433 289 186 11.8 9.8
214 209 212 195 156 114 96 8.3
122 118 107 11.1 103 &85 7.3 6.6
9.2 8.7 7.7 7.7 75 7.2 6.3 5.7

I

-

Table 4.5: The energy of the coefficients for the residual image Bridge

0.0 2319 127.1 1109 96.9 2989 200.7 146.1 |
440.4 1333 115.2 100.7 348.1 211.6 149.6 113.1
194.0 120.8 106.7 408.4 269.5 173.0 127.4 97.8
135.7 115.0 443.3 299.5 215.4 141.0 105.3 80.2
116.3 373.1 2724 220.8 161.5 111.5 88.1 716
475.1 2375 184.3 143.8 1142 881 72.3 536.3
323.0 158.7 138.8 103.3 86.3 659 33.7 464
1953 1214 99.0 788 70.4 386 46.2 384

Table 4.6: The energy of the coefficients for the residual image Light

0.0 2259 130.6 1104 113.1 1160.3 873.8 796.7
200.2 1339 1149 111.9 1130.3 1047.1 930.8 820.3
123.6 114.0 108.2 1095.7 1147.3 9819 9129 796.3
116.0 107.5 1007.5 990.9 10226 979.4 838.4 8299
109.4 877.1 9288 9270 955.7 9416 891.4 805.6
855.9 836.8 869.3 948.1 981.0 9183 839.2 830.5
807.9 796.6 830.1 913.3 953.2 926.3 900.5 808.7
7143 7276 831.0 9849 9724 939.2 8743 764.4
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Figure 4.3: The block diagram of the two-stage residual VQ using transform coding
for the first stage.
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Figure 4.4: The block diagram of the two-stage residual VQ using JPEG for the
first stage.
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by subtracting the output of the first stage from the original image. Since the
correlation between pixels of the "error” image is low, a compression scheme suitable
for a memorvless source would suffice. To observe this, the distribution of the error
signals are found. Since the bit rate in the first stage is low, the distribution of the
error signal is far from a Gaussian distribution. To see the effect of the quantizer on
the distribution of the error samples, the first 14 coefficients are kept, and the rest
set to zero. Then, the distribution of error samples are plotted. As shown in Figures
4.5 - 4.7 even if a fine quantizer is used in the first stage. the distribution does not
fit to that of a Gaussian source. The differences are more, in the case of having a
lossy quantizer in the first stage. Thus, using a Gaussian codebook in this case is
not very effective. An optimum VQ. a Gaussian codebook and an LBVQ is used for
the second stage. Using a lattice-based vector quantizer for the second stage gives a
better performance. This is due to the simplicity of the search in lattice, that allows

us to have a high-dimensional VQ. The results are presented in the next section.

4.3 SIMULATION AND RESULTS

The proposed two-stage LBVQ is applied to the images Light. Bridge. Beaboon,
Lenna. each of size 5312 x 312, and the bit rate is compared with the standard
JPEG. The objective measure for the coder performance used in this section is the
mean square criterion. It refers to the average of the squares of the error between
the original image and the reconstructed one. The mean square error is expressed

in terms of the Peak Signal-to-Noise Ratio (PSNR).

To simulate the first version of the proposed method (Scheme 1), each image
is partitioned into 8 x 8 blocks and DCT is computed over each block. The DC
coefficients are quantized separately. Because of the strong correlation between the

DC components of the adjacent blocks, differential pulse code modulation is used
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Figure 4.7: Distribution of error signal for the image Bridge with the first 15 DCT
coefficients quantized. (a) Lossless quantizer. (b) LBVQ. (c¢) Locally normalized
error signal from lossless quantizer. (d) Locally normalized error signal from LBVQ.
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Figure 4.8: The quantizing order of DCT coefficients in the first stage.

for quantizing them. In the first stage a fraction of AC coefficients are quantized.
As shown in Fig (Figure 4.8), the first 14 AC coefficients are chosen in a zig-zag
order. As a result, the coefficients corresponding to the 14 lowest frequencies (i.e.
the information contained in the static region of the image) are quantized. The rest

of the coefficients are set to zero.

For quantizing the DCT coefficients, a lattice-based VQ is used. e use the
cubic lattice z!® with a spherical contour for truncating. The scale factor is obtained
using an iterative algorithm. The encoder uses a fast quantization technique due
to Conway and Sloane [33] for finding the nearest lattice point for each vector. To
calculate the bit rate in this stage, two methods are used. In the first method. a
theoretical entropy coding is assumed and in the second method, the bit rate is
estimated by the number of lattice points on each hyper-sphere and the number of

points falling on that sphere after quantization.

In the second stage. the difference between the original image and the one
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Table 4.7: Performance comparison of optimum VQ and Gaussian codebook in the
second stage

First stage : Second stage
Image LBVQ Optimum VQ Gaussian-codebook
PSNR | bps | DIM | bps | PSNR | DIM | bps | PSNR

Lenna | 31.76 | 0.106 | 4x4 [ 0.25 | 33.44 | 4x4 | 0.5 | 31.93
ix4 | 0.5 | 35.81
2x2 | 1.0 | 36.14
Bridge | 26.04 | 0.181 | 4x4 | 0.5 | 28.69 | 4x4 | 0.5 | 26.15

i 2x2 | 1.0 | 30.078
Baboon | 25.02 | 0.181 | 4x4 | 0.5 | 28.69 | 4x4 | 0.5 | 25.11
4x4 | 0.25 | 26.67
2x2 | 1.0 | 29.4
Light | 19.53 | 0.163 | 4x4 [0.25] 19.9 | 4x4 | 05 | 19.53
4x1 | 0.5 | 20.89
2x2 | 1.0 | 23.84 1

Table 4.8: Performance comparison of LBVQ in the second stage and JPEG

Proposed Scheme 1 JPEG
Image First stage | Second stage | Total
Ent. | Enum. | Ent. | Enum. | Ent. | Enum. | PSNR | Rate | PSNR
! bps bps bps bps bps bps dB bps dB
I
Lenna | 0.106 0.98 1.2 40.84 | 1.86 | 40.68
0.080 | 0.16 | 0.80; 1.18 1.0 1.3 35.70 | 0.66 | 35.76
Bridge | 0.181 0.99 1.3 38.05
0.169 ] 037 | 0.94 | 1.30 1.2 1.9 31.98 | 1.93 | 32.05
Baboon | 0.181 0.99 1.4 37.26
0.168| 0.40 | 090 | 1.61 1.2 2.1 33.00 | 1.94 | 31.77
Light | 0.160 0.93 1.2 32.28 | 3.06 | 31.06
0.150 0.36 0.87 1.57 1.1 2.0 27.29 | 2.50 | 27.89

Ent. denotes the result of entropy coding and Enum. the result of enumeration method.
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Table 4.9: Performance comparison of two-stage VQ (Scheme 1) using entropy cod-
ing and JPEG

PSNR Radius bps

dB First stage | Second stage | Two-stage VQ | JPEG |
40.56 9 9 1.2 1.8
39.4 9 7 1.13 1.41
38.25 4 9 1.05 1.15
36.7 9 4 0.98 0.83

quantized from the first-stage is quantized. In this stage, an optimum VQ and a
Gaussian codebook are used to quantize the error image. Table 4.7 compares the
results of the two methods of using the optimum VQ and Gaussian codebook for the
second stage. As it was expected from the distribution of the error image, using the
Gaussian codebook is not effective and does not result in a good performance. In the
second stage, a lattice-based VQ is also used, and the lattice points are truncated
as those bounded by a sphere. The bit rate is estimated by theoretically as well as
by applyving an enumeration method. The simulation results are shown in Table 4.8
in which the bit rates as obtained by using the proposed two-stage RVQ and the
standard JPEG are depicted for various PSNRs. As it is seen from this table, the
result of the proposed method is better than that of the JPEG except for image
Lenna for which the performance using JPEG is better for PSNR = 35.7dB. Ta-
ble 4.9 compares the performance of the proposed method for the imagelenna and
that of JPEG for more extensive value of PSNR. It can be seen that two-stage VQ
shows better results for PSNRs more than 38 dB. As seen in Table 4.1, for the image
Lenna, most of the energy is distributed among the low-frequency coefficients. By
neglecting the high-frequency coefficients, the JPEG still has a good performance.

However, for other images the high-frequency coefficients are not negligible.

In the other version of the algorithm (Scheme 2), all the methods used in

scheme 1 are again applied to the residual image obtained by using the standard
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Figure 4.9: Distribution of the error signal for some images when the first stage is
a 50% JPEG. (a) Image Baboon. (b) Image Bridge. (c) Image Lenna. (d) Image
Light.

103



JPEG with a low rate as the quantizer of the first stage. Figure 4.9 shows the
distribution of the error image which is the difference of quantized image obtained
by using a JPEG compression technique and the original image. As it can be ob-
served, the distribution of error samples is far from a Gaussian distribution. For
this version, only an LBVQ is used as a quantizer in the second stage. The results
for different images are shown in Table 4.10. Using the LBV Q for two stages shows
a superior result compared to the JPEG. Even the use of the enumeration technique
to calculate the bit rate results in a better performance. Table 4.11 compares the
result of this scheme with that of the JPEG for only the image Lenna. The results
in this table are calculated by an approximation of the the entropy coding. From
this table, it can be seen that for moderate to high bit rate the rate achieved by
applying the proposed scheme is considerably better than that obtained by using

the JPEG for the same quality coded image.

For lower rates, the performance of JPEG is better than that of the proposed
schemes. For example, a PSNR of 36.0 dB can be achieved at a rate of 0.7 bps using
the JPEG. The same PSNR is achieved with the proposed Scheme 2 at a rate of 1.05.
This is due to the fact that for lower values of PSNR, almost all the savings in the
bit rate comes from the first stage. The bit rate of the second stage remains almost
a constant, since the error signal on which the second stage operates is uncorrelated,
and the entropy coding in this case is not very effective. This can be seen from the

third column of Table 4.11.

In the first row of Table 4.11, JPEG compression with the quality value (de-
fined by XVIEW swhich determines the compression rate) of 50% is used. The output
of the second stage is equivalent to the output of a standard JPEG when the quality
value is more than 97%. Such a quality value can be achieved by the JPEG with a

rate of 3.9 bps. In our algorithm the second stage needs only one additional bit per
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Table 4.10: Performance comparison of Two-stage VQ (JPEG in the first stage and
LBVQ in the second stage) and JPEG

First stage Second stage Total JPEG |
Image | JPEG | PSNR | Ent. | Enum. | PSNR PSNR | Rate
bps dB bps bps dB bps dB bps
Lenna 0.66 35.77 } 0.187 | 0.57 40.11 | 1.23 | 40.35 | 1.73
Bridge 1.3 29.54 | 0.186 0.57 33.80 | 1.87 | 33.29 | 2.22
Baboon | 1.28 28.96 | 0.187 | 0.38 33.00 | 1.86 | 3295 | 2.2
Light 1.84 24.36 | 0.181 0.50 29.73 | 2.34 | 29.26 | 2.74

Ent. denotes the result of entropy coding and Enum. the result of enumeration method.

Table 4.11: Performance comparison of JPEG and two-stage RV'Q (Scheme 2)

Two-stage RVQ JPEG
PSNR | First stage(JPEG) | Second stage | Total
dB bps bps bps bps
17.73 0.66 0.94 1.6 3.9
43.66 0.37 1.05 1.42 3.0
41.62 0.25 0.98 123 | 2.15
36.0 0.14 0.9 1.05 | 0.7

sample with total rate of 1.6 bps to achieve this resulr.

4.4 SUMMARY

In this chapter, we have proposed a two-stage residual quantization method for
image compression. Two schemes have been presented. In the first scheme, an
LBVQ is used to quantize the low-frequency transform coefficients. In the second
one the standard JPEG is used to quantize the input image. It has been shown that
the error signal does not have a distribution close to Gaussian. In both schemes,

a high-rate LBVQ has been applied to quantize the residual signals comprising the
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difference between the original image and the reconstructed image in the first stage.
The results have been compared with the standard JPEG, showing an improvement

of upto 2 bits for high-bit rate compression.
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Chapter 5

INDEXING OF LBVQ USED IN
TRANSFORM CODING
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5.1 INTRODUCTION

Encoding the Discrete Cosine Transform (DCT) coefficients of an image involves
two steps: quantizing and indexing the quantized points (Figure 2.18). For the first
step, many lossy scalar and vector quantization techniques have been designed. For
the second step, depending on the quantizer, different noiseless coding schemes are

used to index the output points of the quantizer.

Due to the regular structure of lattices, many researchers have used lattice-
based vector quantizer for quantizing DCT coefficients of images, but only a few
methods have been suggested for indexing the output points [13]. Fischer [29] has
combined an Lattice-Based Vector Quantization (LBVQ) with a noiseless code to
encode the DCT coefficients of images. In [15], the output lattice points are labeled
using an enumeration method for Laplacian sources. and it has been shown that the
combination of LBV(Q and noiseless code outperforms the uniform scalar quantizer
combined with a noiseless coding for each coefficient. Fischer has also shown that
the result can be further improved by using several quantizers [29]. The problem
with the enumeration method is that full enumeration requires too many recursive

calculations. This can be avoided if the mapped points are localized.

Due the asymptotic equipartition property of random variables, any sequence
of blocks gets divided into two sets, typical set and non-typical set. For a sufficiently
large dimension, the typical set has a probability close to 1, and all of its elements
are nearly equiprobable. According to this property, the DCT coefficients of an

image can be localized and the high probability area can be found.

In this chapter, an LBVQ is used to quantize the DCT coefficients of images.
For reducing the effective bit rate, first, the output points are grouped according

to the different parameters of blocks, which correspond to the probability density
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function of the blocks. Then, shorter representations are assigned to more frequently
used lattice points. Grouping is done in two ways. In the first method, the output
points are grouped depending on the number of their non-zero components and
their values. These output points are indexed with respect to their groups and the
positions of non-zero elements in their respective blocks. In the second method, the
output points are grouped according to a radial parameter defined by
N-1
r=3 ol (5.1)
i=0
where v = 2 for spherical boundary and v = 1 for a pyramid boundary. In this
work, spherical boundary is used. i.e. v+ = 2. Only the output points on the most
probable spheres are indexed using the enumeration method. Since these spheres
have small radii, the number of points on them is not too large, thus making their
enumeration not too difficult. For the indexing of the points on the spheres with

large radii, the positions of the non-zero elements and their values are used. We use

a prefix variable length code to index these values.

5.2 LATTICE-BASED VQ

For a vector quantizer, the image samples are segmented into A blocks and the pix-
els in each block are considered as a vector. In an optimum vector quantizer, most
of the output vectors belong to the typical set. In fact, with the iteration method
such as Generalized Lloyd Algorithm (GLA), the codevectors are mostly concen-
trated in the typical set, A(Y). As it was mentioned in Section 2.5, the asymptotic
equipartition property is valid when the dimension is large. The problem with an
unstructured VQ is that the complexity of the quantizer increases exponentially as
the the block dimension increases. Using lattice points as a codebook can solve this

problem.
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Usually in a lattice-based vector quantizer, the lattice is truncated such that
the desired number of lattice points fall inside the truncated boundary. For example,
for a given dimension V and a bit rate R, 2¥% is the number of lattice points that
are used. As a result, for a large value of N the radius of truncation is small, so
different values that each pixel can assume is limited to two or three levels. For
instance, for a cubic lattice when the dimension is 16 and the bit rate is 0.5 bps the
codebook size is 28. If the lattice points are truncated with a spherical boundary,
the radius of truncation has to be chosen such that 2% points (code words) fall inside
the boundary. In this case, the 16-dimensional lattice has to be truncated with a

sphere of radius 2.

%]

16
Z:L‘- = 4

=1

~

It means that there are only 5 different levels given by (-2.-1,0,1,2).

For a source with a given probability density function, only a few of these
lattice points are used. For example, in an image, where the correlation between the
adjacent pixels is high, most of the output points are near the hyper-plane bisectors.
Another illustration of this fact is that the DCT coefficients of an image are concen-
trated near the origin or axes. To take advantage of these regularities. a geometric
vector quantizer has been suggested [15], [22]. It is known [L3] that almost all code-
words lie in the high probability region specified by the entropy of the source. The
geometrical shape of the region of high probability depends on the source statistics.
For example, these shapes are spheres for the memorvless Gaussian source, pyra-
mids for the Laplacian source, and hypercubes for a uniform source. The probability
density function is constant and, therefore, the codewords are uniformly distributed
in this region. This is the idea behind geometric source coding. The intersection of
the lattice points and the region of high probability for the source is chosen as the
codebook. As a result, with simple encoding and decoding algorithms, this approach

yields a good VQ for memoryless Gaussian, Laplacian and uniform sources.
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Using Kolmogorov-Smirnov test, it has been shown that the DCT of an image,
computed block wise, has Gaussian dc components and Laplacian ac components
[51]. This makes the combination of the transform coding and the geometric coding

an efficient source coding scheme.

Since the quantization step for an LBVQ is simple, using lattices for the high-
dimensional VQ is possible, and according to the asymptotic equipartition property,
in high dimension the output points are localized in the typical set. Hence, using
an LBVQ in high dimension is a promising scheme for data compression. In order
to have a good quality image, we propose a high-dimensional LBVQ with a large
radius of truncation. However, the indexing of the lattice points, even for the low
dimension is still a problem. Efficient algorithms exist for implementing a lattice
quantizer with an N-dimensional hypercube boundary. In this case, indexing can be
done by using one-dimensional code components over a bounded interval. However,
for other desirable boundaries, such as spherical or pyvramid, indexing requires an
excessive storage or complex enumeration algorithms. In this work, we present a

method for indexing the lattice points used as codewords of an LBVQ.

5.3 PRINCIPLE OF THE PROPOSED METHOD

In order to achieve a high-quality and low-complexity source coding, the lattice
points are truncated with a large enough radius, making a large number of lattice
points to fall inside the boundary. The problem of high-bit rate due to this large
number of points is resolved by assigning a shorter representation to more frequently
used lattice points. Grouping is done in two ways. In one method, all the output
points are grouped depending on the number of their non-zero components. The

output points are indexed with respect to their groups and the position of non-zero
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elements in each group. In the other method, the output points are grouped based

on the radial parameter, and a prefixed coding is used to index the output points.

5.3.1 Method based on grouping according to non-zero

values

The correlation between the adjacent pixels of a typical image is high. As a result,
if we divide the whole image into small blocks, usually there will not be significant
changes in the pixel values of one block. This explains the concentration of the DCT
coefficients of a typical image near the origin or axes. As a result, after scaling, there
are only a few non-zero components in each block. These non-zero elements are the
basis for indexing each block. In an LBVQ, the infinite lattice is truncated with
a defined boundary. Here, we use a spherical boundary for truncation. Using an

iterative procedure, the scale factor is selected such that the average distortion is

minimized.

Depending on the radius of truncation, the components of each output vector
can take only a few values. For example, if the radius of truncation is 9 in lattice
z'®, symbols can only take values 0 to 9. We group the output points according
to the number of their non-zero elements and the absolute value of these elements.
For instance, the group with only two 1's and fourteen zeros includes vectors such
as [1000100....0], [00.. — 10.. — 10..0] and [010..0..0.. — 1]. Our simulation results
indicate that, if the DCT coefficients of an image, e.g., Lenna , are quantized with
a cubic lattice z'8 truncated with radius 9, there will be around 500 groups. Forty
four per cent of the output vectors are mapped into the origin, sixteen per cent of
the points are encoded into the vectors having a single 1 and fifteen 0’s, and 6 per
cent have two 1's and fourteen 0’s. In more than fifty percent of the 500 groups,
only one block is encoded. Table 5.1 shows some groups of the DCT coefficients of

the image Lenna , and the number of blocks in each group. The total number of
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Table 5.1: Selected groups for the image Lenna, block size 4 x 4

Group’s | Number of block elements in the | Number of
number | group with absolute values of | blocks in the
1 2 3 4 5 6 7 8 groups
1 0 0 0 00 0O 0 6881
2 1 00 0 0 00 0 2598
3 2 0 0 0 0 00 0 1025
4 3 00 0 0 00 0 543
38 3 01 0 0 O 0O 1 7
112 6 2 1 0 0 0 O 0 3
465 8§ 0 01 1 G O 0 1
494 10 0 1 1 0 0 O 0 1

Table 5.2: Distribution of codevectors and number of bits used for blocks in each
category for the image Lenna

[ Category | Output distribution | Number of bits ||
1 45% 1 l
2 34% 9-19
3 21% 17 - 40

blocks is 15,360. The numbers in the first row of the table show the absolute values,
and the numbers in the other rows show the number of non-zero symbols in each

group.

Depending on the distribution of the output blocks in each group, these groups
can be classified into different categories. For example, in the image Lenna , we
divide these groups into three different categories: the origin or all-zero vectors, the
next seven most probable groups, and the rest. As a result, 44 per cent of the points
are represented by the first category, 34 per cent belong to the second category, and
only 22 per cent are in the last category. Table 5.3.1 shows the distribution of the
output points for each category and the number of bits used to index the output

points in each category for the image Lenna .
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The first category, i.e., the one containing all-zero vectors can be indexed with
only one bit. In this way about one-half of the 16-dimensional blocks can be encoded
only with one bit per block. The second category consists of seven most probable
groups. These usually consist of code-vectors with one or two non-zero symbols.
To index the code-vectors in the second category, we need 9 to 19 bits. The first
four bits specify the category and the group and the remaining five to fifteen bits
specify the positions of the non-zero symbols in the vector and its sign. Finally. in
the last category, 12 bits are used to specify the category of the group and 5 to 30
bits are used for defining the positions of the non-zero components. Although in
category 3, sometimes more than 30 bits are used to index a block, the effect on the
overall bit rate is negligible, since only one or two blocks belong to these groups.
Figure 5.1 shows the code-length in different categories using this method. These
observations show that using this grouping method, a considerable bit reduction
can be achieved. In addition, most of these non-zero elements are low-frequency

components. Considering this fact results in a lower bit rate for high dimensions.

5.3.2 Method based on grouping according to the radial
parameter

In this method, the lattice points are grouped according to the radial parameter,
r ( see Eqn. 5.1). If the DCT components of an image are quantized with a z'®
lattice truncated with a sphere of radius 9, there are eighty one different groups.
For the image Lenna, forty four per cent of the output vectors are mapped into the
origin, sixteen per cent of the points on the sphere with a radius 1 and six per cent
on the sphere with a radial parameter of 2. In most of the spheres (groups), only
a few output points are mapped on the sphere. For example, in the simulation of
the DCT components of the image Lenna, only 22 output points fall on the sphere
with 7 = 24, and only 7 output points are mapped on the sphere with the radial

parameter 31.
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Figure 5.1: The code length in different categories for the method based on grouping
according to non-zero values.
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For indexing the output points on each sphere, the enumeration method
explained in [15] can be used. The number N,(V,r) of integer points on the

N-dimensional sphere with the radial parameter r can be calculated using the re-

currence relation given by

ot
o
~—

m
Ne(N,T) = Ne(N = L,r) +23 N(NV = 1,7 — j3), (5.
j=1

where m is the largest integer such that m®> < r. Using this equation, the index of
each point can be calculated recursively. The codeword assigned to each point con-
sists of two parts. The b most significant bits specify the sphere on which the point
lies. The rest of the bits identify the location of the point on the sphere. Since the
number of the points on the spheres with large radii is huge, and a full enumeration
requires too many recursive calculations, the enumeration of these points is quite
difficult. Using a partial enumeration, i.e., enumerating only the points on small

spheres can reduce the search complexity considerably.

In this work, only the output points on the most probable spheres are indexed
using the enumeration method. Since these spheres have small radius, the enumera-
tion is not very difficult. For the indexing of a points on a sphere with large radius,
the values of its vector components are used. Most of these values are less than
3. (quite often 0); thus we use a prefix variable length code to index these values.
Although for indexing the points on a sphere with a large radial parameter, as many
as 40 bits may be used, the effect on the overall bit rate is negligible, since only a

few points are mapped onto such a sphere.

For different groups (i.e., spheres with different radii), Table 5.3 shows per
cents of points falling on them, number of lattice points on each sphere and the
number of bits used to index the output points mapped onto these spheres in a 16-

dimensional space. The table also shows the number of bits obtained by using a full
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Table 5.3: Distribution of codevectors and number of bits used for blocks in selected

groups
Per cent of Number of
radius | output points | Lattice points Number of bits
on the sphere | on the sphere | Group with radius | Enumeration | Group with values
0 44 1 1 1 1
1 16 32 3+(5) 2+(5) 4+(3)
2 6 480 3+(9) 3+(9) 4+(10)
3 3 4480 3+(13) 5+(13) 4+(14)
4 3 29152 3+(8-20) 5+(15) 4+(5-20)
5 2 140736 3+(12-24) 7+(18) 4+(10-20)
p 21 0.001 3.9e+9 3-+(24-48) 22+(33) 13-+(24-40)

enumeration method and by employving the method based on grouping according to
the number of non-zero elements (Section 3.3.1). In full enumeration, the prefix bits
which indicate the sphere, are an estimation for Huffman coding suggested in [29].

The code presentation is shown in Figure 5.2.

5.4 SIMULATION AND RESULTS

Images which are quantized and encoded using the proposed methods are shown in
Figure 5.4. Each image is partitioned into 8 x 8 blocks and the DCT is computed
over each block. The DC coefficients are quantized separately using differential pulse
code modulation. A scalar quantizer is designed to quantize the difference compo-
nent of the DC coefficients. The quantized coefficients are then entropy coded. The

=V The infinite

ac coefficients are quantized with an LBVQ using z* cubic lattice.

lattice is truncated with spherical contours with different radii . In each case, the

Conway and Sloane’s fast quantization technique [34] [33] is used for finding the

nearest lattice points.

In the first method, grouping according to the values of the non-zero elements,
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Figure 5.2: The code length for different groups in the proposed method based on
grouping according to the radial parameters.
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Figure 5.3: The test images Light, Lenna, Baboon, Bridge, Girl and Tree.

Table 5.4: PSNR and bit rate using the method based on grouping according to the
radial parameter for the image Lenna

Radius Scheme 1 Scheme 2 | PSNR
# of groups | bpb bpb dB

3 18 11.69 7.3 28.55

6 222 21.36 17.6 31.21

9 6353 32.44 27.3 32.49

according to the density of the non-zero elements, the categories are defined. These
categories should be specified in the header. In some cases, when the radius is large.
some groups are common for different images. These groups can be predefined for
the decoder in order to make the header shorter. In all our simulations, there are

only three categories as mentioned in Section 5.3.1.

Table 5.4 shows the number of groups, the bit rate for one block, (bpb) and
the PSNR for different radii of truncation for the ac coefficients of the image Lenna.
In this case, the two methods, Scheme 1 and Scheme 2, have been used. In the

first scheme, the location of the non-zero elements are represented by 6 bits. After
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specifving the group of non-zero elements, their signs and locations are transmit-
ted. In this method, there is no restriction on the location of the coefficients within
the block. Since most images have a low-pass spectrum, the non-zero elements are
usually concentrated in the left-upper corner of each block (the low-frequency coeffi-
cients). Hence, in the second scheme, the blocks are divided into four quadrants. In
this scheme, each coefficient is specified by the quadrant number and the position of
the coefficient within the quadrant. However, with this scheme, savings in bit rate
is achieved by determining the quadrant number of the coefficients belonging to the
first quadrant by default. Table 5.4 also shows the result of using this scheme for

the image Lenna (Scheme 2).

Tables 3.5 and Table 5.6 compare the performance of the proposed method
with JPEG. It is seen that the proposed methods, for the image Lighi , yields supe-
rior performance compared to JPEG. For the bit rate around 1.8, the PSNR with
the new method is 26.4 dB, while JPEG results in a PSNR of 24.3 dB. For the
image Lenna, however, JPEG performs better than the proposed method. Using
quantization table, JPEG has different scale factors for different coefficients. In this
way, the high frequency coefficients almost vanish. In the image Lenna where pixels
are highly correlated, by doing entropy coding twice, JPEG achieves higher com-
pression. However, in images with lower correlation, JPEG cannot deliver similar
results. In such cases, our method yields better performance, since high-frequency

coefficients are also taken into consideration.

In the second method, based on grouping according to the radial parameter
values, the output points which are mapped into the origin are only quantized with
one bit. For the next two spheres (with radii 1 and 2), enumeration method is used.
The rest of the output points are indexed with the values of non-zero elements. The

advantage of this method compared to the first one is that the header is very small
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Table 5.5: The performance comparison of Method 1 and JPEG for the image Lenna

PSNR | JPEG Method 1
Schemel | Scheme 2
dB bps bps bps
32 0.35 0.58 0.5
31 0.29 0.4 0.37
28.5 0.2 0.25 0.21

Table 5.6: The performance comparison of Method 1 and JPEG for the image Light

PSNR Method 1 JPEG
dB bps bps
26.4 1.8 2.25
24.0 1.4 1.78

20.01 0.39 0.62

and the groups need not be defined in the header. Besides, the code is not dependent,
on the image. Since the number of lattice points chosen inside the boundary is
very large, the performance of this method is better than other LBVQ’s, where the
number of the lattice points are limited by the bit rate. Furthermore, indexing of the
lattice points in this method is not based on enumeration which requires too many
recursive operations. In the piecewise uniform VQ [32], the lattice points are divided
into several zones and each zone has its own scaling factor. Although the most
probable sections are quantized by a fine quantizer, the number of codewords are
limited by the rate and its indexing method is still employs enumeration. Table 5.7
compares the result of a uniform LBVQ, full enumeration which is suggested in
(153] (PVQ) and piecewise uniform VQ with the proposed method (these results are
taken from {32]). For some images our method outperforms these methods. For
example, for the image Lenna, the proposed method yield an improvement of about

5dB over the other methods. For some other images the result is comparable to

other methods. Figure 5.4 compares the result of this method with the PVQ for
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Figure 5.4: The comparison of the method based on grouping according to the radial
parameter and PVQ.

image Girl and Tree.

This method is also compared with JPEG in Table 5.8. For most images, this
method outperforms the JPEG. For example, in the image Light, this method uses
1.3 bits per sample for a PSNR of 24 dB while the JPEG needs 1.8 bits per sample
to get the same result. Among the images tested, only for the image Bridge, the
JPEG shows better performance than the proposed method. Figure 5.5 compares
the performance of this method with that of the JPEG. For the image Lenna, the
PSNR is only slightly better than that of the JPEG. However, for the image Light
an improvement of up to 3 dB is achieved. Figure 5.6 compares the quantized image
Lenna obtained using this method for the bit rate 0.27 with the output of JPEG for

the same bit rate. It is seen that the blocking effect is reduced with the proposed

method.

To show the efficiency of the method in regard to its complexity, the proposed
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Table 5.7: The performance comparison of the method based on grouping according
to the radial parameter and other indexing method for some images

I Image | Uniform 1P VQ PVQ Piecewise Uniform Z'® | Grouping method
PSNR(bps) | PSNR(bps) PSNR(bps) PSNR (bps)
Lenna |  28.13(0.5) 27.62(0.5) 28.23(0.5) 33.89(0.44)
Girl 32.78(0.5) 31.9(0.5) 32.95(0.5) 32.35(0.5)
Tree 26.31(0.5) 26.05(0.5) 26.43(0.5) 26.33(0.53)

Table 5.8: The performance comparison of the method based on grouping according
to the radial parameter and that of JPEG for some images

Image | Grouping with radial parameter JPEG
PSNR(bps) | PSNR(bps)
Lenna 32.8(0.33) 32.90(0.374)
30.98(0.25) 31.37(0.29)
Light 26.65(1.6) 26.70(2.3)
23.97(1.4) 24.36(1.838)
Bridge 28.88(1.3) 28.70(1.095)
27.03(1.0) 26.90(0.692)
Baboon 30.32(1.3) 30.95(1.75)
28.0(1.17) 28.84(1.28)
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Figure 5.5: The comparison of the method based on the grouping according to the
radial parameter and JPEG for the images Light and Lenna.

method is compared with an optimal VQ for some images. Table 5.9 shows the
complexity of the two methods. The results of VQ are for low to medium dimen-
sions. Although the VQ shows better performance with higher dimensions, but the
complexity of calculation is higher. In some cases the codevector is far from the
input vector such that it is not necessary to calculate the distortion between all the
elements of the input vector and the vector in the codebook. Thus, in the calcu-
lation of complexity for the VQ, the number of multiplications and additions are
considered to be one-half of a full search. In the calculation of the complexity, each

comparison is counted as equilvalent to an addition.

We also tested the error samples of an LBVQ to investigate the advantages
of using the universal Gaussian codebook to quantize the error sample. It has been
observed that, the error samples are far from having a Gaussian distribution func-
tion, a result that was also obtained when quantizing the low frequency coefficients

of image. Figure 5.7 shows the distribution of error samples when the first stage is
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Figure 5.6: The comparison of the method based on grouping according to the
radial parameter and JPEG for the image Lenna for bit-rate 0.27 bps. (a) Proposed
method. (b) JPEG. 125



Table 5.9: The comparison of complexity of VQ and proposed method for some

images
Optimal VQ Proposed method
Image | Dim | Rate | PSNR Complexity Dim | Rate | PSNR Complexity
bps | dB Multiplication/ bps dB Multiplication/
Addition Addition
Lenna || 4 x4 | 0.5 | 31.37 128 / 256 4x4| 029 | 31.37 2/5
Baboon || 2 x 2] 1.5 | 28.95 32 / 64 4x4] 1.17 | 28.0 2/5
Bridge || 2 x2| 1.5 28.5 32 /64 4x41! 1.3 28.88 2/5
Light [[2x2] 1.5 | 24.11 32 / 64 4x4] 1.4 | 2397 2/5
2x2} 20 27.04 128 / 236 4x41 2.3 26.7 2/5

LBVQ for the images Lenna and Bridge. Next, the JPEG data compression scheme
is used in the first-stage. The distribution of error samples for low to high compres-
sion for image Lenna and Bridge. is shown in Figure 5.8 Our investigation shows
that, if a transform coding is used in the first stage of a two-stage vector quantizer,
the distribution of error samples are far from having a Gaussian distribution. and

using a universal Gaussian code book is not efficient.

5.5 SUMMARY

In this chapter, two methods using a combination of LBVQ and noiseless coding for
the encoding the DCT coefficients of an image have been presented. The first method
is based on the grouping of the quantized coefficients according to the number of
their non-zero elements. The second one classifies the output points according to

their radii. Simulation results for different images have been presented and compared
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Figure 5.7: The distribution of error image, first stage LBVQ. (a) r=4, image Bridge.
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with the JPEG and other LBVQs. The first method gives better results for some
images, but the second method outperforms the JPEG for most of images used to

test the method.
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Chapter 6

CONCLUSION
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6.1 CONCLUDING REMARKS

Vector quantization is an efficient method of data compression, especially for speech
and images. This thesis has been concerned with the problems of search and code-

book memory requirements of vector quantizers for image compression.

In order to reduce the search complexity of vector quantizers, a multi-stage
vector quantizer with a unique codebook has been introduced. A low-rate optimum
vector quantizer has been used in the first stage and a universal Gaussian codebook,
designed for a memoryless Gaussian source, for the other stages. It has been shown
that the locally normalized error samples of images have a distribution close to a
normal distribution. Since a Gaussian memoryless signal is successively refinable,
the error samples are also successively refinable. As a consequence, the codebook
designed for a memoryless Gaussian source can be used in different stages of a multi-
stage vector quantizer to encode the image error samples. An optimum codebook
designed for a normally distributed source has been used to quantize error sample of
different images, and the results have been compared with the reconstructed images
quantized by an optimum vector quantizer. The results from the proposed technique
is very close to that from the optimum vector quantizer. Since with the proposed
method only one codebook is needed in different stages of the residual VQ, different

structures and mapping techniques can be used to reduce the search complexity.

Since the compression search complexity can also be reduced by quantizing
only the more important parts of of an image, the low-frequency coefficients have
been quantized in the first stage of a residual multi-stage quantizer. In this way
the smaller size of the source results in a reduced search complexity of search. The
second stage is then used to restore the information neglected in the first stage. The
function of the second stage is to work on the residual image obtained by subtracting

the output of the first stage from the original image. This task has been implemented
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in two ways. In the first scheme, a lattice-based vector quantizer has been used as
the quantizer, while in the other one, a standard JPEG with a low rate has been
used as the quantizer of the first stage, and a lattice-based vector quantizer for the
second stage. The resulting bit rate of the two-stage lattice-based vector quantizer
in either scheme has been found to be considerably lower than that of the JPEG
in the same quality of the encoded images in moderate to high rates applications.
With the proposed two-stage lattice-based vector quantizer, an improvement of up

to 2 bits has been achieved.

Although the proposed two-stage vector quantizer provides considerably bet-
ter performance than the JPEG for high bit-rate compression, it is not effective for
lower rates. This is due to the fact that a major fraction of the bit rate comes from
the second stage and the bit rate associated with this stage remains almost constant.
Thus, the third part of this thesis has been concerned with the low bit-rate com-
pression. In this part, the DCT coefficients have been quantized with a lattice-based
vector quantizer in which the lattice points are truncated with a large radius. As
a result, a large number of points fall inside the boundary of the hyper sphere or
the codebook, and thus, images are encoded with high quality and low complexity.
In order to reduce the bit rate, a shorter representation is assigned to the more fre-
quently used lattice points. To index the large number of lattice points falling inside
the boundary, two methods have been proposed. Both these methods are based on
the grouping of the lattice points according to their frequencies of occurrence. In
the first method, these points are grouped according to the non-zero elements of
the quantized DCT coefficients. In the second scheme, the grouping is carried out
according to the radial parameter of the lattice points. After grouping, a lattice
point is indexed according to its group and position of its non-zero elements. For
most of the images tested, the proposed methods have been found to outperform the

JPEG in terms peak signal to noise ratio and visual quality of reconstructed image
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at the same computational complexity. However, for the other lattice-based vector
quantizer schemes, the proposed method vields better performance with lower com-

putational complexicy.

6.2 SCOPE FOR FURTHER INVESTIGATION

Availability of a universal codebook for coding any source with no loss in quality
would be very attractive. In one of the proposed methods in this thesis, an optimum
codebook has been used in the first stage, and a universal Gaussian codebook in the
other stages. It would be of interest to investigate the use of an universal Gaussian
code book in all stages of a quantizer for applications in which has a Gaussian dis-

tribution such as row SAR data.

The idea of having a universal codebook could be extended to the frequency
domain. It is well known that the ac coefficients of an image has a Laplacian distri-
bution. On the other hand, random variables drawn from a Laplacian distribution
are successively refinable when the distortion is measured using the absolute distor-
tion criterion. It may be desirable to design a Laplacian universal codebook, under
the absolute distortion criterion, to encode the ac coeflicients of an image. It is
obvious that in this case, the different stages should be able to work on the differ-

ence of quantized and the DCT original coefficients, rather than on the error samples.
Developing some structures and mapping techniques for the universal code-

book would also be of interest to investigate. One approach could be the one in

which the codevectors are grouped according to their norm squares.
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In Chapter 5, the indexing of the lattice points in a lattice-based vector quan-
tizer has been carried out by choosing cubical lattice and a spherical boundary.
Further investigation is needed with the use of different boundaries and lattices in

order to improve the performance of the proposed lattice-based vector quantizer.
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