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The Fifteen-Cent Guitar: Retempering the Standard Six-String Guitar is an 

attempt to address several issues pertinent to the expansion of harmonic/melodic 

resources available to composers and perforrners interested in just-intonation. Included is 

the presentation of a system of tuning for the standard six-string guitar that allows for the 

exploration of nearly-just intervals based on ratios occurring in the harmonic senes up to 

and beyond the 32" partial through the detuning of strings by a fifieen-cent increment or 

decrement. 

It is an educational tool, allowing the user to explore otherwise foreign 

relationships on an instrument that is very nearly a household item in North America, 

which requires no special adaptation of the instrument except for the precise retuning of 

strings. It is a corr,positional tool that ailows the composer to use complex harrnonic 

relationships even if the perforrners have no previous experience with expanded just- 

intonation. It can be useci as a source of reference tones for instruments capable of 

adjustable intonation but otherwise not predisposed to microtonaIity. 

Included in the body of the thesis is an introduction to basic tuning theory, a 

historical survey of melodic/harmonic lattices, and an addressing of issues concerning the 

defining of temperaments and a cornparison of the most cornmon twentieth century equal- 

temperaments. The central chapters of the thesis describe the fifieen-cent temperarnent for 

guitar tuning, which was invented by the author, and a set of compositions that utilize this 



system in a variety of ensemble settings. It is believed that this system is original and 

that this is a Iiighly effective temperarnent when applied in appropnate contexts, which 

the compositions serve to display. A vax-iety of cornpositional approaches are utilized 

addressing larger and more general compositional concems such as form, rhythm, 

dynarnics, and timbre, but the application of just-intonation to the guitar is the central 

uniQing theme of the works involved. 
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Introduction 

We have been handed down a musical system that only allows for the exploration 

of a small set of harmonic relationships, most of which are unsatisfactorily out of tune. 

Twelve-tone equal temperament is a system that robs the purity of intervals based on 

whole number ratios for the convenience of modulation and an economy of pitches with 

which to deal. 

The attempt to quanti& aimost everything perceptible has led to the establishment 

of prescnptive technologies that limit our compositional resources. Pitch is not rhe only 

parameter that has suffered; rhythmic notation rarely attempts to quantify beyond the 

resolution of factors of two and three, dynamic levels are reduced to no more than ten 

increments, and standard notation does not directly address the various parameters 

associated with timbre. 

While the present thesis attempts to at least address a few of the issues listed 

above, its prirnary concern is the expansion of h m o n i c  resources available to a 

composer or performer, primarily facilitated through the use of the six-string guitar. 

The Historical Background 

An understanding of the harmonic series leads to an understanding of pure 

harmonic relationships based on whole number ratios and insight into how European 

music has progressively corrupted these relationships in service of the West's obsession 

for quantification, standardization, and prescriptive technologies. While the harmonic 



series was not properly explained until 1673 by William Noble and Thomas Pigot, 

independently, the awareness for harmonic proportions has been present since at least the 

ancient Greeks. This discovery is generally attributed to Pythagoras of Samos, dthough 

it is unlikely that he was the first to describe or understand the properties of pure 

hannonic relationship. 

In Harry Partch7s openly anti equal-temperament treatise Genesis of a Music. the 

author provides a list of the "institutions" for which Pythagoras is responsible; 

insMtutions because they are at the root of many of the biases of our current popular 

musical system. These institutions established a bias for perfect fifths (3/2's), the 

generation of scales based on fi;,fths, the use of low-limit ratios, the acknowledgement of 

the Pythagorean comma, the division of a string length into twelve equal parts, and the 

increase in the number of strings on the lyre fiom seven to eight, establishing a 

precedence for seven-note scales (Partch, 363).  

Music in the early part of the first rnillennium AD began with few standardized 

techniques. Musical traditions had to be passed down orally, which meant less 

information was lost in an isolated transmission. Without the hindrance of notation, 

parameters such as timbre, pitch, dynarnics and rhythm can al1 be accurately passed on; 

"the ear has been capable of much more than has been required of it" (Partch, 146). 

Orally we can pass on far more complex sonic details than any notation system is 

capable. Pitch can be bending, wavering or "sounding between the cracks" of our equal 

tempered seven-note scale or twelve-note octave. The big drawback of the oral tradition 



is that "faulty recall, regional differences, and individual tastes" (Crosby, 141) do not 

insure accurate reproduction of the onginal performance. Certainly the body of 

plainchant codified by Pope Gregory would have been from a hodgepodge of traditions 

and sources, but for a Catholic Church interested in standardizing the religious practices 

of its practitioners, consistency was an important concern. 

Ways were devised to aid monks in the recall of the numerous chants . For many 

years the monks simply used a system of heightened neurnes drawn above the text of a 

chant "in campo aperto, 'in the open field' that is, without staff lines" (Crosby, 144), 

which vaguely referred to relative pitch. Evennially ledger lines were added, first one, 

then more, to make die system more exacting. This system was still only a memory 

device; a musician who did not already know the melody would presurnably not be able 

to perforrn the chant. 

Probing into performance practices of th is  era strongly suggests that Byzantine, 

Arabic and Jewish influence may have been present in early European music, but there is 

a good reason why those influences did not survive much past the Middle Ages. Early 

notation was intended as a memory aid to the monks who had to remember hundreds of 

different chants for diEerent occasions of the church calendar. Just as today, performance 

practices that are habitua1 or taken for granted are not usually identified in the notation. 

For example, we can7t know to what degree vibrato was applied a hundred years ago and 

oniy because of recorded music, not our notation system, will future generations know of 

our current musical habits. As music becarne less and less an oral tradition, what was 



heard as the most distinguishing aspects of these cultures' musics became the most 

difficult to notate in a quantified pitch and rhythm scheme. The very attributes by which 

we usually idrnti* these musics are those that our current system is least capable of 

representing. "It is ofien proudly asserted that the modem Western musical system is 

sufficient to express everything, but the slightest true contact with other musical systems 

immediately proves the opposite" (Danielou, 122). 

The early perforrners of plainchant would have orally learned the tradition of 

bending and tuning pitches but as these early notations evolved they also exchded the 

parameters that they took for granted. As musicians began to rely more on notation as a 

means of Iearning, the oral tradition's importance was lessened. When we look at early 

notation we can only guess at what the understood performance practices of the day 

would have been. 

Up until the early middle ages, Europe survived with essentially a qualitative 

mode1 of reality. Details, in the contemporary sense, were not as important for daily life. 

The Western world fùnctioned without currency, maps were proportionately vague and 

time was not a linear progression of seconds and minutes as we think of today. "Our 

chronic difficulty with medieval and Renaissance time is that, like an octopus, its shape 

was no more than approximate. Time, beyond the individual life span, was envisioned 

not as a straight line rnarked off in equal quanta, but as a stage for the enactment of the 

greatest of al1 dramas, Salvation versus Damnation" (Crosby, 28). 

With the Middle Ages and the Renaissance, Europe began to move away from a 



qualitative view of the worid towards an obsession for quantification. Several factors led 

to this, one important influence on the western world being an increasing exposure to 

Arabic numerals. Roman numerals did not lend themselves to complex calculations 

whereas Arabic numerals were better suited for this. As Europeans gained ski11 with 

Arabic numerals, mathematics flourished and nurnbers took on a greater significance in 

many aspects of daily life. Every aspect of nature was susceptible to quantification, 

including space, time, temperature, and musical pitch and rhythm. With the invention of 

the clock, sometime around the end of the thirteenth century, Europe "had entered the age 

of quantified time, perhaps already too deeply to tum around" (Crosby, 80). 

Polyphonic music evolved quickly with new developments in notation, but this 

also meant new limitations on what could be expressed. An approach so profoundly 

innovative systematically removed itself from its musical roots. "Modem Western music 

was able to develop its polyphonic system only by deliberately sacrificing the greater part 

of its possibilities and breaking the ties that comected it with other musical systems" 

(Danielou, 123). 

The late medieval penod saw a flourishing in al1 the arts of a fascination and 

superstition in numbers. The arts becarne something for God and only he could perceive 

the complicated details, hidden fiom the general public. The cathedrals were embellished 

with minute details hundreds of feet above the congregation. Composers began writing 

complicated musical games, such as canons with the instructions delivered in the form of 

a nddle. The melodies and rhythms were contrived with numencal significance. A 



ngidly codified musical system was developed and facilitated this music for God. "The 

West's distinctive intellectual accomplishent was to bring mathematics and 

measuxement together and to hold them to the task of making sense of a sensorially 

perceivable reality, which Westerners, in a flying leap of faith, assumed was tempordly 

and spatially uniform and therefore susceptible to such examination" (Crosby, 17). 

As the system developed and the urge to quanti@ pitch increased, the nature of 

harmonic relations had to be understood more thoroughly. However, this was a cornplex 

task as even in a simple seven-note scale each note c m  serve several different functions. 

In a C major zhord, the note 'E' is ideally tuned in a 514 frequency ratio to its root 'C', 

but in an alternate context the acoustical mot of a different chord will demznd that the 

pitch be adjusted to maintain harmonic purity. The twelve notes can only approximate 

their true acoustical functions, or else some relationships must be given preference over 

others. The usefulness of a notation system would demand that it be simple enough for 

musicians to Iearn and at the sarne time attempt to represent pertinent parameters. With 

simplicity carne the limitations of our popular system. 

The introduction of the keyboard M e r  complicated the issue. With string 

ensembles and voices, the players can easily adjust a pitch to its proper harmonic relation. 

With the keyboard however, each key is set to a fixed pitch. With the introduction of the 

keyboard came some important theoretical and practical problems in huiing. Since the 

Western world was already thinking in terrns of seven note scales and a twelve note 

octave, a system had to be devised that would address the fact that, especially with vocal 



and string music, individual notes have to serve several different functions. 

By the early baroque period, many rneantone temperaments had developed. In a 

major scale "purely" tuned to a 'C' root, two different sized major seconds occur. 

Between 'C' and 'D', the frequency ratio is 9/8. The ratio between 'D' and 'E' is 1 O B .  

The difference in size between these two intervals is 81/80 (calculated as 9/8 divided by 

10/9), this equals the syntonic comma and is 2 1.5 1 cents in size; meantone ternperarnents 

seek to average out this difference. 

Without M e r  specifications, meantone temperament generally implies a 

"quarter-comma" meantone. This means that d l  fifths are flattened by a quarter of the 

syntonic comma, except for one, which becomes "the wolf"; narned as such for its 

roughness. This system results in many pure 5/4 major thirds, except for four that are 

wide, and 9/8 major seconds, with the exception of two. Other rneantone systems c m  be 

similady constructed by applying srnaller fiactions to the fifis .  As the division of the 

comma gets higher, the out of tune fifihs irnprove, the thirds get wider and the minor 

thirds become narrower. If a tweifth of the Pythagorean comma is applied, equal 

temperament occurs. 

In the eighteenth century, theoreticians argued as to how the Western twelve-note 

octave should be tuned. In earlier years, the composer or head organist of a cathedra1 

would be responsible for the tuning of their keyboard instrument. Purcell, Bach, Mozart 

and others al1 had their own preferred systems, but as we moved towards the rigid 

standardizations of the Industriai Revolution, a need was seen for a standard to be 



established. The debates continued for years, with equal ternperament winning out 

somewhere around the end of the 19th century, 

As parîly a result of moving towards equal-temperarnent, and an expansion of 

chornatic melodic and harrnonic possibilities, music was gradually becoming less firmly 

rooted in any one key. Modulation in the Classical and Romantic sense required a 

flexible tuning system. Many theorists felt that equal temperament was the best means 

for this. This method, however, fails to represent any pure harmonic relations and some 

intervals are significantly out of tune. The major third? which c m  be seen as one of the 

fundamental intervals of late Baroque though to Romantic era hamony, is actually 

mistuned by fourteen cents. 

With the industrial revolution came a drive for standardization and economy of 

production. Industries wanted one way of completing a task and had to produce a product 

in as financially efficient a way as possible. "More" was (and still is) the econornic 

imperative. This took workers out of the holistic type cottage industries and put them 

into the factories to work on smaller portions of the final product, essentially an assembly 

Iine mentality. These ideals penetrated the mind set of the Western world. In music, a 

need for the standardization of instnunents, tunhg, and notation was strongly felt. 

As the piano gained in popularity and as music became more of a middle class 

pastirne, the standardization of instruments was a necessity for music to be performed by 

people with less intense musical training. The Industrial RevoIution not onIy allowed this 

kind o f  accessibility but was the impehis for the standardization of many elements of 



society. Music became a household endeavor as pianos and the printed page becarne 

more and more econornically available to the working and niddle classes. Teaching 

music had to becorne standardized to effkiently train the middle class as did the 

instruments they were playing on. No longer was tuning a fünction of the composer's 

will; decisions were now being made for the masses. 

A prescriptive technology such as the Western musical system (which includes 

the notation system, instrument construction, the perforrner, etc.) we have just briefly 

explored "leaves little latitude for judgment" and are "designs for cornpliance" (Franklin, 

23). As our system becarne more standardized, we increasingly ignored the many 

possibilities that our notation =id tuning systems limit. "Prescriptive technologies 

eliminate the occasions for decision-making and judgement in generd and especially for 

the making of principled decisions. Any goal of the technology is incorporated a priori in 

the design and is not negotiable" (Franklin, 25). It is a monumental task to atternpt to 

address d l  the musical parameters with a single system, but without addressing these 

issues we limit our means of musical expression. 

Tite Solution 

By the middle of the twentieth century, it seemed that we had exhausted most of 

the potential for European music's evolution. While not directly concerned with music, 

Ursula Franklin shares this view. "It is my conviction that we are at the end of a 

historical period in which processes and approaches that initially had been exceedingly 



constructive and helphl have run their course and are now in many ways 

counterproductive" (61). With the twelve-tone serialists Western music was taken to its 

hannonic and melodic extreme where tonality was abandoned in favour of atonality. At 

the other end of the spectnim, the minimalist movement stripped Western music to many 

of its foundations, exploring limited facets of its key elements. The only place lefi to go 

is to explore the rudirnentary elements of sound; to redefine and expand what music c m  

be. Because music is still pnmarily produced prescriptively, only those who are willing 

to take on the broadest roIe of what a musician is can explore these possibiIities, and this 

initially must be done via a holistic approach. 

Our most innovative modern composers have essentially had to produce music 

holisticaIIy to realize their vision. Harry Partch is one of these people concerned with 

pure harrnonic relationships. Primarily he looked at the limitations of the 12-note 

tempered scale as welI as turning to the regular flow of speech for rhythmic inspiration. 

By looking at fiequency ratios of an 1 1-limit as opposed to the traditional 5-lirnit he 

developed a 43-tone scale in which the smallest interval is 14.4 cents in size. ,'il1 pitches 

are generated fiom pure harrnonic relationships (i.e. whole number ratios). 

To implement his system, Partch essentially had to take over the entire musical 

process, beginning with building his own and adapting cornmon instruments. His new 

system also required him to train his own musicians, conduct them, perform and finance 

his own productions. The holistic approach, for the time being, is essential to the 

development of any new system. 



A Cornpromiie 

A purely holistic approach to making music is a huge undertaking and limits the 

potential for works to be performed by anyone unassociated with the composer. To 

facilitate the accessibility of the compositions presented in this thesis, traditional Western 

instruments (with one exception) and standard notationai conventions are modified in a 

rninimally invasive manner. Specifically, the guitar is adapted only through the retuning 

of strings and through the adaptation of conventional guitar notation. 

A unique system of temperament based on a fifieen-cent increment is employed 

that closely approximates alrnost al1 of the intervallic relationships found in the harmonic 

series up to and beyond the thirty-second partial. While just intonation punsts may argue 

that any temperament is an abomination, the fifteen-cent temperament approximates 

intervals found in a 3 1-limit system to a degree that is almost imperceptibly out of tune. 

This expansion of resowces aliows a composer or perfonner to work in a h m o n i c  

system that far exceeds the available matenals of Western harrnony. 



Chapter One: Introductory Tuning Theory 

This chapter introduces the basic materials of tuning theory required for an 

understanding of the discussion of the fifteen-cent temperament for guitar turing 

presented in chapter four, and as background to fùrther issues that &se in chapters 

detailing individud compositions. 

Ratios 

A "ratio" is a means of expressing the frequency rehtionship between two 

pitches. This thesis will use the following convention: the numerator represents the 

nurnber of cycles that the higher fiequency will generate over the same period that the 

Iower fiequency takes to generate the nurnber of cycles indicated in the denominator. For 

example, in the ratio 5/4, the higher fiequency generates 5 cycles for every 4 cycles of the 

lower fiequency (actual fiequencies c m  also be used in place of these terms - e-g., 

550 Hz / 440 Hz). This ratio is a pure major third and is smaller than an equal-tempered 

major third. 

In general, al1 fiequency ratios will be expressed in the simplest t e m s  and 

reduced to an interval smaller than or equal to an octave (2/1) except when voicing is an 

important concem. For example, the intervals (or ratios) 1 O/4, 5/2, and 35/28 al1 reduce 

to 5/4. Ratios are reduced by factoring out any prime coefficient cornmon ta both the 

numerator and denominator, and are condensed to within an octave by either halving the 



numerator, or by doubIing the denorninator until the ratio is reduced to an interval smaller 

than 211 (an octave). The terms "ratio" and "interval" will be considered synonymous for 

the purpose of this thesis. 

Harry Partch uses this convention of expressing al1 ratios in terms smaller than a 

211. "A system of music is determined for one 211; the system is then duplicated in every 

other 211, above or below, that is employed. Consequently. syrnbols-ratios in this 

exposition-are used to denote the degrees of one 2 1 ,  and the symbols are repeated in 

every 2/1 of the musical gamut" (Partch, 79). Partch's cûnvention allows for the use of a 

ratio to describe a "pitch class" or an interval smaller than 2/I, and avoids the 

inconvenience of having a different set of symbols (ratios) for each octave of a musical 

system. 

To calculate the cumulative size of two "stacked" intervals, for instance, a 5/4 

built upon another 5/4 (a just augmented triad), the ratios are multiplied. 514 x 5/4 = 

25/16. Or, conversely, to find the difference between the magnitude of two ratios, 

expressed as a ratio, divide. To divide ratios, invert the smaller interval, multiply, and 

simpliS.. 

( Z / I  6) / (5/4) = (2Yl6) x (415) = lOOl8O = 94. 

Any ratio added to its reciprocal (inversion) results in an octave. 514 x 815 = 40/20 = 211. 

Any ratio subtracted fiom an octave or unison results in the reciprocal of that ratio after 

the result is simplified. 



(dy  )(y/x) = 21 1 * 
(211) 1 (dy) = y/x* 

*these fornidas are only relevant to the 
conditions of tuning theory established above 

Cents 

In the appendix of his translation of Hermann Von HelrnhoItz' On the Sensations 

of Tone, Alexander J. Ellis provides a means for rneasuring interval size. The basic unit 

is the "cent", which is a logarithmic unit equal to 11100" of an equal-tempered semi-tone, 

dividing the octave (2/1) into 1200 parts. "Cents provide a logarithmic device which 

enables the theorist to add and subtract nurnbers representing the respective magnitudes 

of the various ratios, which he cannot do with the ratios thernselves" (Partch, 83). 

Expressing intervals in terrns of their size in cents provides a good means for 

cornparine just intervals to their closest equal-tempered equivalent, and to each other. 

W l e  it is somewhat backward to think in terms of 'Lout-of-tuneness" fiom equal 

temperament (because any temperament is a compromise between practicality and 

intonation), the notion of "cents-deviation" provides a good introduction to microtonality 

for anyone primarily fmiliar with the Western chromatic scale. Each equal-tempered 

semi-tone is 100 cents in magnitude and therefore, any twelve-tone equal-tempered 

interval is represented by a magnitude measured in multiples of 100 cents: a major third 

is 400 cents in size, a fifth is 700 cents, etc. But, as Hamy Partch concludes, it is much 

more efficient and practicd to develop a farniliarity with just-intervals, in and of 



themselves, than in relation to equal-tempered intervals. The notion that the piano is 

"right" and that just-intends are "out of tune" needs to be reversed. 

To calculate the size in cents of an interval, the Iog, of the ratio is taken and 

muitiplied by 1200 (representing 1200 equal parts to the octave). 

log2 Cf ' l f2)  x 1200 where f i  > f 2 

Many scientific calcula'ors do not allow for iogs to a base other than 10. To calculate the 

above formula on such a calculator, take the log,, of the ratio, multiply by 1200 and 

divide the result by the log,, of 2 (if your calculator has a log key without a base 

indicated, it is assurned that the base is 10). 

I find that it is easiest to commit log,,(2) to rnemory to make the calcuiation quicker. 

logl,(2) = 0.301 0299% 

For exarnple, plugging the interval 514 into either formula results in a size-in-cents 

value of 386.3 (rounded to the nearest 10& - the convention this paper will adopt). The 

closest equal-tempered interval is the major third (400 cents). A simple subtraction of the 

first value fiom the second reveals that the 514 interval is about 13.7 cents smaller than 





approximate equal-tempered representation of the hamionic (Often the 1 3b partial is 

represented as a major 6& rather than a minor oh, neither of which are particdarly 

appropriate). 

The harmonie series is an array of tones that occur over a given fundamental tone. 

The fiequency of these subsequent tones (harrnonics) are integer multiples of a 

fundamental fiequency. The relationship between a fundamental note and its harmonics 

will be the same as with any other fundamental tone and its harmonics. The relative 

weakness and strength of individual harrnonics varies with each instrument and is one of 

the distinguishing feahues of timbre. 

The fbndamental fiequency is the first partial, or first harmonic, and is referred to 

by the ratio 111. If the fundamental fiequency is 220 Hz, then the first partial is expressed 

as 220 Hz / 220 Hz or 1/1. The second partial is described by the ratio 2/1, in this case 

440 Hz / 220 Hz. This equals a purely tuned octave (Note: in equal temperament, only 

octaves are purely tuned). 

The third partial is in a 3/1 relationship to the fundamental or 3/2 from the second 

partial. This equals 660 Hz for this exarnple, an octave and a f i f i  (14th) above the 

fundamental or a perfect f i f i  above the second partial. An equal tempered fifth sounds 

approximately 2.0 cents flat of a pure 3/2 fifth. 

An equal-tempered approximation of the overtone series continues in this fashion: 



4/1 = 2 octaves 
511 = 15'" + maj 3rd 
6/1 = 15'" + PSh 
7/ 1 = 1 5'" + min 7k 

or 413 = P4& above the 3rd partial 
or 514 = rnaj 3rd above the 4th partial 
or 615 = min 3rd above the 5h partial 
or 7/6 = min 3rd ' above the 6Lh partial 

As the series continues upward, the interval behveen consecutive partials becomes 

increasingly small, so descriptions such as "major third", "minor third, "major second", 

etc. become less and less appropriate, and the language of ratios becomes more 

appropriate. For example: The ratio 918 produces an interval that is 203.9 cents in size, 

about four cents wider than an equal tempered major second. The ratio 1019 produces an 

interval 182.4 cents in size, 17.6 cents narrower than an equal tempered major second. 

These two intervals have histoncally been referred to as the large major second and the 

srnall major second respectively, but many other ratios can also be referred to as major 

seconds (8/7, 1 7/15, 19/17, etc.). Using descriptions in t e m s  of traditional interval 

names can quickiy become inefficient, inaccurate, or inappropriate. Many microtonalists3 

prefer simply to refer to intervals by ratio rather than by the conventions of twelve-tone 

equal-temperarnent (TET). At first this can seem intimidating but the benefits are quickly 

realized as one's familiarity with ratios increases. However, since many musicians are 

not familiar with the language of ratios, this thesis will allow for cornparisons related to 

TET. 

' The 716 is a smaller minor third than the 6/5 minor third. 
The term miciotonal refers to any tuning that deviates from ~elve-tone-equal temperarnent. 

Other temperaments, just-intonations, and arbitrary detunings are subsets of the larger 
microtonal umbrella. In this thesis, the term will usually irnply microtonalists interested in just 
intonation. 



With the above in mind, beIow is a representation of the overtone series in 

relation to equal temperament. It does not matter what fiequency we begin with, as long 

as it corresponds to an equaI tempered reference point. If Al = I l 0  Hz. is the fundamenta1 

fiequency, the relationship will be maintained between equal temperament and pure 

ratios. Note that my choice of representing the thirteenth partial with an 'F' rather than 

an 'F$ ' is not a comrnon textbook choice. 

Frequenc- 
Ratio 

1611 
l5ll 
14/1 
1311 
1211 
1111 
10/1 
911 
811 
711 
6/1 
5/ 1 
4/ 1 
311 
2/ 1 
1/1 

Size in Cents 
1200 x log2Cf'/f') 
= size in cents 

9600.0 cents 
4688.3 cents 
4568.8 cents 
4440.5 cents 
4302.0 cents 
4 15 1.3 cents 
3986.3 cents 
3803.9 cents 
4800.0 cents 
3368.8 cents 
3 102.0 cents 
2786.3 cents 
2400.0 cents 
1902.0 cents 
1200.0 cents 
0.0 cents 

Approximate In Hertz 
E. T. pifch with (partial x fünd.) 
A,=110 Hz as fund. 

- 1 1 -7 cents 
- 31.2 
+ 40.5 
+ 2  
- 48.7 
- 13.7 
+ 3.9 

- 31.2 
+ 2 
- 13.7 

+ 2 

Below is the harrnonic series to the 24th partial, built on CZ. Notice that the cents- 

deviation for the intervalic relationship fiom C2 is the same as in the above chart from A?. 



While it is disputed whether or not tonal melodic/harmonic materials deveioped as 

a result of hurnan sensitivity to the harmonic series, it cm be seen that al1 of our basic 

harmonic relationships are found in the series. The octave is the reiationship of the 

second partial to the first (2/1). The perfect fifth is the relationship between the third and 

second partials (3/2). The perfect fourth: 4/3, major second: 9/8 or 10/9, major third: 5/4, 

rninor third: 6/5, major sixth: 5/3, minor sixth: 8/5. 

It should also be noted that calculating the fiequency of any harmonic over a 

given fundamental tone is straightfonvard. Sirnply multiply the partial number by the 

fundamental fiequency. The fifth harmonic over Aî =110 HZ equals 550 Hz (1 1 O x 5).  

f ' x p = f P  

Limit 

The term Zirnit is used to define the largest prime number used in the generation of 

ratios in a given system. For example, the intervals that make up a typical just major 



scale - Il l ,  9/8,5/4,4/3, 3/2, 513, 1518 - are d l  constmcted with prime nurnbers of five or 

less. The interval 25/16 (augmented Sh (-'7.'ccn'Ii' ) is also a 5-lirnit interval because the 

nurnerator is a power of 5 (5' = 25) and the denominator is a power of 2 (2'' = 16). 

The Pyfhagorean Scale 

Very briefly, 1 would like to introduce two basic scales that will be important 

reference points for future discussions, the Pythagorean scale, and the Jusr chromatic 

scale (the discussion of the Just scale follows the section on complexity). 

[...W]e may take the opportunity to see how we select out of the whole range of 

audible fiequencies those privileged fiequencies to be used for practical musical 

purposes. It is in this area that rnathematicians and nurnerologists (the two terms 

are not necessarily exclusive) have been rnost diligent. Numerology--that branch 

of the occult arts dealing with the magic of numbers--ha a fascination for many, 

and unfortunately musicians are not exempt fiom its influence. This is best 

demonstrated by the history of musical scales (Backus, 134). 

For the Pythagoreans, the numbers 1 (unity), 2 (duality), and 3 (harrnony) had 

significant importance with regards to the soul, politics, the cosrnos, and virtually every 

elernent of life including music. This predilection is reflected in the Greek musical 

system for the generation of five-note scales which was later adopted by Medieval 

theorists for seven-note scales. The Pythagorean scale is constmcted entirely of ratios of 

a 3-limit. The Pythagorean scale is built on the 3/2 (the perfect fifth) and its inversion, 

the 413 (the perfect fourth). By stacking 3/2's and condensing the results into one octave, 



a seven-note scale is achieved (which is an arbitrary stopping point). Assuming that 

111 =C, the following pitches can be generated (the exponents indicate the cents-deviation 

fiorn TET). 

Rearranged into scalar form, the result is a type of C lydian (arbitrarily assurning that C is 

the generating tone): 

For a mixolydian scale, two 413 steps are taken fiom 111 giving a perfect fourth (F-'.O) and 

a minor seventii 1 6/9 (B b -3.9) which replace the F and B. 

If a twelve-note Pythagorean scale is desired (this was not typically a historicai 

concern), the rninor third is the inversion of the interval C to (27116) which is an 

Eb-S-9 (32127), the minor sixth is the inversion of C to E+7-8 (8 1/64) producing an Ab-'.' 

(12818 l), the minor second is the inversion of the C to B+9.8 (24311 28) giving Db-9.8 

(2561243). These can al1 be verified by calculating the interval between any two degrees 

of the original scale. For example, to BbJ-9 is the Phrygian minor second, its 

fiequency ratio is (1619) 1 (27/16) = (1619) x (1 6/27) = 2561243. 

One of the definitions of consonance and dissonance that Helmholtz and Partch 

provide is based on the relative levels of complexity (detemined by the size of the 



numbers involved in both the numerator and the denominator of the ratio). A 2/1 (octave) 

involves low nurnbers and is therefore considered highiy consonant. This is corirmed 

historically by the fact that the components of this interval are given the same name, 

which is a reflection of the aura1 experience in that it is somewhat difficult to distinguish 

the two tones due to the similarity of harmonic information. 

The most cornrnon explanation for predicting the level of dissonance in a ratio 

involves the interference that occurs between any two harmonic components, of two 

complex tones, that sound within a critical bandwidth4 of each other. 

Because of the pattern of harrnonics, when two complex tones are sounded, their 

component frequencies will coincide to the extent that their fiindamental 

frequencies of related by simple integer ratios. For example, if two tones, one an 

octave higher than the other, are sounded simultaneousIy, al1 the harrnonics of the 

higher tone will be present as harmonics of the lower tone. As the integers needed 

to express the ratios of the frequencies increase, the number of mismatches 

between harmonics of the two tones will also increase (52). 

As the complexity of the interval (or ratio) increases, so does the perceived 

dissonance. Kmmhansl distinguishes "tonal consonance" and "musical consonance" as 

two separate ideas. 

Tonal consonance refers to the attribute of particular pairs of tones that, when 

sounded simultaneously in isolation, produce a harrnonious or pleasing effect. 

AIthough the precise definition of this property varies in its many treatrnents in 

' ~ h e  term "critical bandwidth" is defined by Dowling and Harwood as "the frequency region 
over which stimuli interact in producing sensations of loudness7' (8 1)- It is generally difficult for 
the ear to process separately two tones sounding sirnultaneously within that frequency range. 



the literature, there is general consensus about the ordering of the intervals dong a 

continuum of tonal consonance. Musical consonance, on the other hand, refers to 

intervals that are considered stable or free from tension, and constitute good 

resolutions. This kind of consonance depends strongly on the musical style and 

also the particular context in which the interval is sounded. Thus, musical 

consonance may bear only a rough correspondence to tonal consonance ( 5  1). 

While it is beyond the scope of this paper to define definitively what constitutes a 

consonance or dissonance, it will address relative consonance and dissonance through the 

terms simpliciry and complexity ( A  5/4 is relatively more complex than a 3/2 because 5/4 

involves larger numbers). As well, Krumhansl uses the subjective terms, "harmonious" 

and "pleasing" which 1 find somewhat problematic. Perhaps the idea that simpler (more 

consonant) ratios are more easily processed should replace any notions of preferential 

treatment. "We are confident, then, that melodic intervals with simple fiequency ratios 

are inherently easier to process than those with more complex ratios" (Trehub, 1 16). 

Relative complexity will only be discussed with regards to intervals fully 

simplified and reduced to within the size of an octave, Le.; no cornparisons of compound 

intervals to simple intervals are contemplated. 1 also generally assume that the limit of a 

given ratio is not significant in contributing to complexity. Higher lirnit ratios, however, 

may be responsible for a sense of unfmiliarity or exoticism5 in certain situations. 

' 1 use this term with reservation but have included it because of its regularity of use in the 
responses of people hearing certain intervals for the first time. The term "bluesy" should 
probably also be included for this reason. 



Looking at the Pythagorean scaie, it should be noticed that the interval of a major 

third is represented by a very cornplex ratio - 8 1/64. This is the result of constraining the 

system to a 3-limit. Mathematically, the scale seems justified; however, it does not 

necessarily represent the inclinations of the human aura1 expenence. While it is easy to 

tune a stringed instrument to Pythagorean intonation, it seems unlikely that an 

unaccompanied voice would sing this third in rnost harrnonic contexts. 

If the Pythagorean 3-limit is increased to a 5-lirnit, new thirds and sixths can be 

generated that are less complex. In the overtone series, a major third occurs between the 

fifth and fourth partials, a minor third between the sixth and fifth partials, a minor sixth 

between the eighth and fifth partials, and a major sixth between the fifth and tfiird 

partials; 514, 6/5, 815, 513 respectively. By substituting these simpler five-limit ratios for 

the more complex ratios of the Pythagorean scale, the following chromatic scale is 

generated: 

This is one of the most common forms of a 5-limit just-intonation scale. There is, 

however, some flexibility, especially in the choice of tritone and minor seventh. In the 

version indicated above, the tntone is generated by a pure major third built off of the 



major second (918 x 514 = 45/32) and the minor seventh is calculated as a minor third 

f?om the perfect fifth (312 x 615 = 915). 

Immediately it c m  be seen that many anomalies arise when the root modulates. 

For the most part, al1 the ratios are relatively simple in relation to the root 'C'. but if the 

tonal centre changes, the relationships are in many cases no longer ideal. For example, a 

minor chord built on the second degree is fairly complex. Assurning 'D' is now 111, the 

chord built from it is 111 - 32/27 - 40/27. The bottom interval of the triad. 32/27, does not 

sound particularly foreign to most ears as it is a rninor third that is close to an equal 

ternpered minor third (294.1 cents), however it does sound "out of tune". 32/27 to 40127 

sounds in tune, as it is simply a 514 major third ((40127) 1 (32/27) = 40/27 x 27132 = 

10801864 = 514). The interval fonned by the outer tones is 40127, and sounds like an out 

of tune 312 (flat by about 19.6 cents). The resdtant chord simply sounds out of tune due 

to the overall complexity of the ratios involved in the sonority. 

Further problems and issues of scale generation and tuning will be approached 

after a more efficient means of discussion and cornparison has been developed in chapter 

two. 

Commas 

In the generation of a ratio built fiom a succession of twelve 3/2's, it can be 

proven that a pure octave is never fully achieved. The "Pythagorean comma" is 23.5 

cents in size, described by the ratio 53 1441 152428 8, and is the difference between the 



ratio (3/2)12 and an octave. The mathematical fact that no power of any single ratio will 

result in a pure octave (2/1), or a compound of 2/1, has been at the root of hining issues 

since its discovery. 

A 'komma" generally descnbes the difference between any two close intervals of 

different limit values. The difference between a 3-limit major third and a 5-limit major 

third is (8 1/64) / (Y4) = 8 1/80. The 5/4 is srnaller than 8 1/64 by 21.5 cents and this is 

generally known as the "syntonic" comma. 

This is obviously not a complete account of tuning theory but it does cover most 

of the issues involved in understanding the discussion of the compositions of this thesis. 

Further issues w-ill be addressed in the following chapters. The texts that have 

contributed most to rny understanding of the above are: Hany Partch's Genesis of a 

Music, Hermann Von H e l ~ ~ o l t z '  On the Sensations of Tone and its appendices by 

Alexander J. Ellis, and Arthur H. Benade's Fundamentals of Musical Acoustics. 1 refer 

the interested reader to these important texts. 



Chapter Two: Models of Harmonic Relationship (Lattices) 

This chapter presents severd mociels that aid in the dernonstration of harmonie 

relationships and further clari@ several theoretical tuning issues. These models have 

been important to my own understanding of tuning theory and have influenced the 

development of rny hybrid model, which is presented later in this chapter. 

Eariy Melodic Diagram 

Several approaches to dealing with tuning systems and scales have been presented 

over the centuries. Although Pythagorean tunings only involve one class of interval (in 

addition to 2/1), the 3/2, graphical representations are historically relatively convoluted. 

This is partly due to the fact that nurnerological relationships had greater significance 

than their simple harmonic/melodic function. Musical intervals represented many aspects 

of the naturd universe, the soul, and politics for the Greeks. Accordingly, graphical 

representations had to portray more than just abstract musical meaning. Ernest G. 

McClain has authored two books, The Pvtha~orean Plato: PreZude to the Song fiselfand 

The Myth of Invariance: The Origins of the Gods, Mathematics and Musicfi.am the Rg 

Veda to Plato, which extensively investigate the relationships between music and Greek 

thought. In these texts, McClain tries to reconcile the mathematics and syrnbolisrn of 

Pythagorean and Platonian nurnerology. 



Pitch Herght Diagruns 

One of the sirnplest rnodels for the demonstration of scales or pitch sets is on a 

vertical or horizontal axis with points indicating the pitch height, or distance, of each 

given interval in the system within a 2/X. Unlike the division of a string, the division of 

the pitch height axis is achieved logarithmically so that ratios display comparative sizes 

based on the perception of pitch rather than fiequency. 

Pitch height models are effective in demonstrating the size of scalar steps within a 

given system but provide no information about the inherent relationship between any two 

pitches. The models presented below provide harmonic relations without regard for pitch 

height information, with the exception of James Tenney's, which provides a solution to 

representing both concems. Because my primary interests in composition are harmonic 

rather than rnelodic (the two are not entirely independent), my models have gravitated 

towards the display of harmonic relationship over pitch height. 

Harmonie Modeis 

Graphical representations of tuning systems help to visualize comrnon harmonic 

properties within a system and aiso may reflect symmetrical relationships, a continiium of 

relative harmonic complexity, and the occurrence of various types of commas. As will be 

seen, modeis become increasingly complex with the introduction of new generating 

nurnbers. Several composer/theorists have devised their own graphical systems, and the 

following provides a lineage of models that have contributed to my own understanding of 



hining theory and to the development of my own hannonic models. 

With the Pythagorean scaie, harmonic relationships are easily described with a 

linear, horizontal model, portraying a succession of Y2 relationships, as shown in chapter 

one. With the addition of five-limit intervals, a new dimension is required show-ing both 

3/2 relationships and 9 4  relationships. Most models tackie this by describing 3/2 

relationships horizontdiy and 9 4  relationships vertically. With the addition of higher 

iimit intervals cornes the problem of demonstrating multiple "dime~isions" of harmonic 

relationship. "For a given set of pitches, the number of dimensions of the impiied 

harmonic space would correspond to the nurnber of prime factors required to specie their 

fiequency ratios with respect to the reference pitch" (Temey, 1983, 15). 

This is true of the following except that most models are generally not concemed 

with octaves and therefore al1 of the following models have one less dimension than the 

number of prime factors involved in the system, Le. the prime number two is basically 

ignored. A "pc projection space" is James Temey's term for lattices that demonstrate 

pitch class relations through the exclusion of the octave, or the prime nurnber 2. 

The following are some of the more influentid twentieth cenhiry models of tuning 

relationship and represent a conceptual Iineage leading to the models 1 have adopted for 

the realization and discussion of my own work. 



J. Murray Barbour 

J. Murray Barbour uses a system, which he describes in the introduction to his 

text Tuning and Tem~erament, devised by K.A. Eitzl in which exponents are used to 

relate intervals connected by their prime coefficient. Pitches connected by fifdis have an 

exponent of zero (O), the fundamental has no exponent and a~ exponent of -1 indicates a 

detuning by the syntonic comma fiom its fifih related equivalent. A major third is 

indicated as Co - B', This indicates that the E is to be tuned 2 1.5 cents flat of E0 which, in 

relation to a C root is approximately 7.8 cents sharp of its equal tempered equivalent. 7.8 

cents minus 2 1.5 cents equals -1 3.7 cents, which is the correct tuning for a pure 514 

interval [1200 x log,(514) = 386.31. 

Barbour m g e s  pitches according to intervalic relationship. The major third 

(5/4) is situated at a 45-degree angle above the root. Relations of fifths (312) and fourths 

(413) are arranged horizontally: 

A- ' E- ' B-l F$-' C g 1  

Co Go Do A0 

Minor diird (615) relations are indicated by an exponential difference of + l .  It can be 

seen in the above example that these relations are already present. For example, B" to Do 

is a minor third (615), with an exponential difference of +l. Any other pair situated in a 

sirnilar relative spatial relationship will represent a 615. Chahs of SI4 and 615 

' Barbour does not provide any references to Eitz in Tunine and Tem~erament except with the 
- 

mention o f  his name in the introduction. 1 have not been able to find any further information on 
this individual. 



relationships are simply represented in increasing increments of the syntonic comma. For 

exampie, a 25/16 is represented as: 

G# -* (25/16) 

E-' (5/4) 

Co (111) 

Barbour's text, Tuning and Tem~erarnent: A Historical Survey, is concemed 

mainly with the discussion of historical tuning systerns and therefore concentrates on 5- 

limit tuning systems (European music is historically concerned with tertian based 

hannony which is in turn aimost exclusively based on 5-lirnit intervals"). Because of this 

preference, Barbour's method of indicating the difference of the syntonic comma is only 

applicable to 5-limit tuning systems, and therefore not useful on its own in systems of 

tiigher-limit ratios. 

Barbour also uses fractions to indicate portions of a syntonic comma, which is 

usefùl in his discussions of historical mean-tone tunings. For example x -Il4 indicates a 

detuning of 114 of the syntonic comma, approximately 5.5 cents. In Barbour's own 

words, the preceding can be summarized by his defuiition of exponents in the glossary. 

"In tuning theory exponents are used to indicate deviations from the Pythagorean tuning, 

the unit being the syntonic comma. Plus values are sharper and minus values flatter than 

the corresponding Pythagorean notes. Fractional exponents indicate subdivisions of the 

* This is not to Say that higher limit tuning systems were never contemplated prior to the 
twentieth century. The theorists Giuseppe Tartini, Jean Adam Serre, and Leonard Euler al1 
proposed 7-limit systems in the mid-eighteenth century (Partch, 386-3 88). 



comma, as in meantone and many irregular temperarnents" (ix). 

Figure 2.1 demonstrates the occurrence of the syntonic comma in the comrnon 

. . 
chord progression: 1 - vi - 11 - V - 1. In this exarnple, the proper intonation for each 

chord is notated, and each voicing maintains as many cornrnon tones as possible. 

Beginning with the tonic chord, C major shares hyo pitches with the A minor chord ('C' 

and 'E7), which shares an 'A7 with the D minor chord, which shares 'D' with the G chord, 

which shares 'G7 with the new tonic chord C major, now tuned one syntonic comma 

Iower than the original tonic. 

This figure demonstrates two important points; that al1 similar harmonic structures 

share a comrnon shape, in this case major chords are found in upright triangular 

formations, and minor chords by an inverted triangular formation. Also, this figure 

demonstrates James Tenney's observation that traditional harmonic progressions with 

strong root movements tend to progress upwards and to the left in "liarmonic space" (in 

similarly arranged lanices3) (Tenney 1 987,72). 

Warry Partch - Tonaiity Diamonds 

Probably the most influential figure in contemporary tuning theory is Hany 

Partch. His models stand aione in modem tuning theory and are not ones that are directly 

reflected in my own models, but they have contributed to my understanding. His work 

' James Tenney's lattices are similarly arranged, with 3/2 (fifth) relations represented 
horizontally to the right and 5/4's (major thirds) vertically upward, although his lattices do not 
share the 45-degree positioning of the 5/4. 





warrants explanation due to its innovation and popularity, and also because 1 have chosen 

to adapt a few of his terms to label variations of my system. 

In Genesis of a Music, H a .  Partch introduces his readers to the concept of 

'tonality diamonds'. Harmonic relationships are arranged in a diamond shaped lattice, 

with the reference pitch, which Partch calls the prime un@, Iocated in the bottorn corner. 

Ascending upward and to ùie right is a series of fiequency ratios, in scalar order, based on 

the odd nurnbers up to the limit number of the system in use, or a power of one of those 

numbers. In the example (figure 2.2), an 1 1-limit system is presented, which generates 

the scale: 1/1 - 9/8 - 5/4 - 11/8 - 312 - 7/4. Partch calls these pitch sets "Otonalities". 

"O" for "overtone", and these represent the first eleven overtones of I /17 excluding octave 

equivdence4- 

Ascending to the Ieft fiom 111 is a descending scale based on the inversions of the 

Otonality scale: 1/1 -16/9 - 8/5 - 16/11 - 4/3 - 8/7. Partch calls these pitch sets 

"Utonalities", "U" for the theoretical "undertone". From each of these ratios, an 

ascending scale is built based on the ratios of the first Otonality. The result is a lattice 

with the generating tone ninning upwards through the middle of the diamond, expressed 

by a ratio where the numerator and denominator are the same: 1/1 - 9/9 - 5/5 - 1 1/11 - 

3/3 - 7/7. The nurnber involved in each defines the idenMy of each scale that it is a part 

of, and the generating tone is called the Numerary Nexus. Looking at the 9/9, it can be 

seen that 9 is the denominator of each interval of the Otonality scale that it is a part of and 

1/1- 211 (octave of 1 / 1 )  - 311 (3/2) - 4/1 (double octave of 111) - 511 (94) - 611 (octave of Yl) 
- 711 (714) - 811 (third octave of 1 11) - 9/1 (918) - 1011 (octave of 5/ 1 )  - 1111 (1 118). 





that 9 is the numerator of each interval of the Utonality it is a part of. This tonality 

diamond efficiently represents fiequency ratios based on the first eleven overtones for 

each tone of the undertone series, representing 29 distinct pitch classes. 

Ben Johnston 

Ben Johnston uses a system in some ways very similar to Barbour's, but expanded 

to include higher-lirnit intervalic relationships. Johnston's starting point is slightly 

different fiom Barbour's in that Johnston assumes al1 unmarked pitches to correspond to 

the 5-limit just scale shown below. In Johnston's lattices, relations of a 5h (3/2) are 

represented vertically, major thirds (5/4's) horizontally to the right. Al1 intervals are 

described in relation to a single fundamental pitch, 1/1. 

Instead of using exponents as Barbour does, Johnston uses the symbol "+" to 

indicate that a pitch is to be raised by an increment of the syntonic comma (8 1/80), 

approximateIy 2 1.5 cents in size, and the symbol "-" to lower a pitch by the same 

increment (Von Gunden, 62). A pitch is to be detuned by as many syntonic commas as 



there are syrnbols. 

Sharps and flats have a unique, yet accurately descriptive, interpretation in 

Johnston's system. A sharp or flat changes the pitch by approximately 70.7 cents which 

is the interval 25/24 (Von Gunden, 62) and describes the difference between a 5/4 and a 

6/5. In other words, Through the use of the syrnbols "8 ", " b ", "-", "+", Johnston is able 

to notate any extended 5-lunit tuning system. 

To represent higher limit intervals, additionai planes or dimensions are required. 

Johnston maintains the 5-limit configuration and adds a third dimension indicating 

relations of a 714 (pure seven-limit minor seventh) back and to the right, and its inversion, 

8/7, towards the front and lefi. To notate a 7-limit system, the additional use of the 

symbo1s "7" and "L" (an up-side-down seven) are required to raise or lower a pitch by 

approximately 48.8 cents (nearly a %-tone). This comma, 36/35, is the difference 

between a 7/4 minor seventh and a 5-limit minor seventh 9/5. A 7/4 'B b ' fiom 'C' 

would be notated "B7 b". (B = 15/8 = 1088.5 cents - 70.7 cents - 48.8 cents = 968.8 

cents). 

Using a three-dimensional model, Johnston can indicate harmonic relationships in 

a seven-limit system. 45-degree angles indicate 714 and 8/7 relations, vertical positioning 

indicates 3/2 and 413 relations, and the horizontal plane represents 5/4's and 8/5's. Figure 

2.3 is an example of a 3-5-7 lattice diagram, copied fkom Von Gunden, pg. 129. 

Johnston also allows for higher limit systems. Each new prime coefficient 

requires a new symbol. The prime nurnber eleven requires the addition of the symbols 



'T' and "i". Prime numbers above and including 13 simply use the nurnber as the 

symbol, and an upside down version for the inversion. Johnston also combines these 

symbols into speciai configurations. For exarnple, often an arrowhead is attached to one 

of the arrns of the sharp signs or the stem of a flat. 

For lattice diagrarns requiring more than three dimensions, Johnston uses parallel 

diagrams, each in three dimensions, usual1y separated by a 9 4  relation. For exmple, an 

I 1 -1imit system is diagramed in several sets of 3-7-1 1 spaces related by 5/4's. A small 

1 1 -Iimit space is presented in figure 2.4. 

The symbols used in Johnston's lattices a e  the sarne used in his musical notations. 

While Johnston's system is very elegant and theoretically efficient, the amount of 

decoding required of a musician a n  be quite extensive. It is for this reason that 1 have 

not adopted Johnston's notations. However, his system has been extremely helpfid in my 

understanding of tuning theory. Elements of Johnston's lattices are apparent in my own 

diagrams, which are presented later in this chapter. 

A lot of information is contained in any tuning lattice. Two pitch sets represented 

by the sarne shape, with the same directional orientation, have the same interval structure. 

For example, in the lattice in figure 2.3, a major triad always appears as a vertical step 

upward fiom the fundamental and a horizontal step to the rïght of the fundamental. 

James Tenney - Harmonic Space 

James Tenney's lattices represent not only harmonic relationships but also pitch 







height, the combination of which contributes to Tenney7s concept of harrnonic space 

(defined below). 

Cage has aiways emphasized the multidimensional character of sound-space, with 

pitch as just one of its dimensions. This is perfectly consistent with curent 

acoustical definitions of pitch, in which - iike its physical correlate, fiequency - it 

is conceived as a one-dimensional continuum running from low to high. But our 

perception of relations between pitches is more complicated than this. The 

phenornenon of "octave-equivalence," for exmple, cannot be represented on such 

a one-dimensional continuum, and octave-equivalence is just one of several 

specifically hannonic relations between pitches - i.e. relations other that merely 

"higher" or "lower." This suggests that the single acoustical variable , fiequency, 

must give rise to more than one dimension in sound-space - that the "space" of 

pitch-perception is itself multidimensional. This multidimensional space of pitch- 

perception will be called harrnonic space. (James Tenney, 1983, 69). 

In lattices that consider octave compounds, a central axis represents pitch-height. 

For each generating prime nurnber, a new axis is generated that denotes intervallic 

relationships extending outward and upward from a reference tone on the pitch-height 

axis. The position of an individual fiequency ratio represents its relationship to 

surrounding tones and its pitch height in relation to that "central mis of projection". The 

position of that point of projection is calculated logarithrnically in relation to the 

fundamental fiequency. As well, the harrnonic distance between any two points in the 

lattice can be calcuIated by taking the logarithmic distance of the shortest path connecting 



the two tones5. The compactness of a set of pitches is indicative of the set's relative 

complexity. nhe lattice can also be collapsed to within a 2/1 to yield "a reduced pitch- 

class proiection space with one fewer dimensions" (1 8). Figure 2.5 Shows a couple 

variations of James Tenney's harmonic space in which the first example preserves pitch- 

height and the second does not. 

I have also adopted one of James Tenney's notation devices, a system that 

indicates the cents deviation fiom equal temperament above the note heads in a score via 

a plus or minus nurneric value. This notation is used for al1 instruments that are capable 

of adjusting their intonation while playing (most winds and bowed strings). This notation 

represents an ideal towards which the musician is to strive. 

t attices Used in the DrScussion of Compositions 

My own lattices borrow heavily fiom those of Ben Johnston and James Tenney. 

For the most part, mine are simplified versions that represent hannonic relationships 

without respect to accurate harmonic distance. They do allow for the representation of 

multipIe "dimensions" associated with higher limit intervals. For the most part, my 

system serves as a compositional aid rather than an analytical tool, which is why 1 have 

dlowed for a simplified representation. 

Where Tenney and Johnston represent higher iimit materials with additional 

planes or dimensions, 1 have used the angle of a trajectory fiom a central reference to 

See John Cage and the ïheory of Harmony for a more corn plete explanation of harrnonic 
distance and its calculation. 



The 3,5 plane of harmonic space as a pitch-class projection plane wilhin 2,3,5 space. 

Primas, harmonic relations wifhin the chromatic scale 

Figure 2.5: Examples of James Tenney 's Harmonic Space (Tenney, 72- 74) 



differentiate ratio limits. The horizontal plane represents 312 relations and vertical planes, 

5/4's. The lattice can theoretically extend infïnitely in any direction, but for my purposes, 

I usually limit the space to a fairly compact size. 

Assuming a 13-limit systern, 7-limit materials extend at a 15-degree angle from 

the 5-limit reference. 1 1-limit materials are positioned a further 15-degrees, 30-degrees 

off the vertical axis. 13-Iimit materials are positioned at a 45-degree angle. Using this 

system, Figure 2.6 shows al1 of the intervals found in the first sixteen partials of the 

hannonic series. 

This mode1 clearly shows the relationship between al1 the intervals involved. For 

example, it can be seen that 14/9, 7/6, and 714 are related by 3/2's from tlieir horizontal 

positioning with respect to one another. Or that 1 118 is a 514 from 1 111 0, reflected in 

their vertical relat ionship. 

It should also be noted, as is the case in Johnston and Temey lattices, that 

inversions occur in syrnmetrical geographic positions. For exarnple, trace a path from 

1 116 to its inversion 1211 1 through 1 /1. The path to 111 is syrnmetrical to the path from 

111 to 12111. 

Problems arise when a ratio extends from a high-limit reference (seven and up). If 

a series of intervals were to be projected fiom one of these ratios, the lattice would 

become quite complicated and messy. This is solved by the initiation of a separate lattice 

in which the new reference is connected by a dashed line to its position in the source 

lattice. An example of this is demonstrated in the generation of a 7/4, 1 118, and 1318 





from 16/11 and 8/7. 

in future chapters, this mode1 will be used to describe the materials of individual 

compositions. When the space is relatively simple, the exact angle associated with 

different limit-ratios may be ignored for convenience. 



Chaptet Three: Temperament 

In Genesis of a Music Harry Parcch states that "the word temperarnent originally 

meant simply a system of tuning, any system, but in modem usage it applies specifically 

to a system which deliberately robs its intervals of their purity in order to implement the 

idea of every-tone-in-severd-senses?' (74). Equal temperament means specifically that an 

octave is divided into any nurnber of equal parts, usually compromising the intonation of 

pure ratios for the convenience of fewer notes and the facilitation of modulation. The 

most common equd temperament is twelve-tone equal temperament (TET) in which the 

system is intended to approximate just Nimit scales and harmonies. 

The weakness of any temperarnent is the fact that the purity of the ratios is 

compromised. The power of a temperarnent is that each pitch is potentiaily ambiguous 

allowing for easy modulation and the ability to function in many different harmonic 

contexts. As well, tempering is a way of dealing with the anomalies that arise with 

various commas; for example, in TET three stacked major thirds equals an octave, this is 

not the case with just major thirds (Y4 x 5/4 x 5/4 = 125/64) which fa11 short of the 

octave by 4 1.1 cents. 

With the rise of interest in just intonation, two camps have emerged: those that 

accept only absolutely pure ratios, and those that support convenience, good 

approximations, and a finite set of pitches with which to work (of course many crossover 

figures exist). Several equal temperaments have becomc popular in the twentieth century, 



most common are: 24-tone', 72-tone', 3 1-tone, and 1 9-tone3. Al1 of these, to a varying 

extent, can be seen as an improvement with regards to tuning accuracy over twelve-tone 

equal-temperament in that al1 but one are capable of approximating 5-limit and higher 

ratios with greater accuracy. The 24-tone temperament is the exception in that it provides 

no improvement upon 3- and 5-limit materials. It does however approximate basic 7- 

limit ratios slightly better than TET and 1 1-limit ratios are aimost perfect. 

A cornparison of these temperaments witl be considered at the end of this chapter 

after the pertinent parameters have been established. 

Defning a temperarnent 

Several factors should be taken into consideration in establishing an effective 

temperament. Fundamental to any proposed temperament should be a consideration for: 

a) the threshold of pitch discrimination; b) the establishment of an allowable range of 

tuning that maintains harrnonic fùnction; c) the establishment of an allowable range of "in 

tuneness" that maintains harrnonic "fusion" or "smoothness"; d) an acknowledgment of 

the capabilities of the intended performers; and e) an understanding of how these 

boundaries will change with the harrnonic and rnelodic intention of any given 

composition4. 

' More commonly known as 114 tone temperament. 
"ore commonIy known as 1/12 tone temperament. 
' Joseph Yasser was the twentieth century theorist who charnpioned 3 1- and 19-tone 
temperament, reviving the 17* century theories of Christian Huygens. 
' This last concem will be addressed in the discussions pertaining to  individual compositions. 



The Th reshold of Pitch Dkcrimination 

Several authors in the field of musical acoustics have established values for the 

threshold of pitch discrimination. In Information Theory and Esthetic Perception, by 

Abraham Moies, the author approximately defines three threshoIds of pitch perception. 

"...for pitch, one has (a) a lower threshold on the order off min = 16 cps; (b) an upper 

threshold on the order off max = 16,000 cps; (c) a difference threshold (which varies 

greatly with f )  averaging 0.5 per cent or I comma. As a result, there are about 1,200 

distinct pitch levels" (1 2). 

Looking at (c), the difference threshold, Moles provides three diflerent nurnencal 

approximations. If the average, 0.5 per cent, is taken, a size-in-cents difference c m  be 

calculated for any fiequency at 8.63 cents. 

Eg. log, (402 Hz / 400 Hz) x 1200 = 8.63. 

The second approximation is established as being in the neighborhood of the size 

of a comma. Moles does not Say to which comma he is refemng, but regardless, it is easy 

to see that a 22-cent syntonic comma or a 23.5-cent Pythagorean comma is more than 

twice as large as the diffeïcnce that the 0.5 per cent approximation reveais. 

The third approximation daims that there are "about 1,200 distinct pitch levels". 

If his two 'Lhresholds of pitch perception are taken, 16 Hz and 16,000 Hz, then a 

difference threshold can be calculated at approximately 10 cents. The difference behveen 

16 Hz and 16,000 Hz is approximately 10 octaves. 1,300 divided by 10 equals 120 

increments per octave; 120 divided by 12 equals 10 increments per semi-tone (Le. 10 



cents). This value cornes much closer to the 0.5 per cent value of 8.63 cents. It should 

be noted however, that these incrernents are not equal across the range of hearing. 

In The Acoustical Foundations of Music, John Backus claims pitch discrimination 

levels to be on the order of 0.5 per cent for fiequencies above 400 Hz (-3 per cent for 

exceptional ears or 5 cents), and quite a bit larger for lower fiequencies (as great as 10 

percent for a fiequency of 30 Hz r o g 2  (33/30) = 165 cents!]). It should be noted that 

Bachxs' methodology involves the perception of the frequency modulation of a tone 

rather than the perception of the consecutive sounding of two distinct pitches. 

Car1 E. Seashore establishes an average difference threshold of 111 7 of a tone in 

Psvcholoev of Music. "The average threshold for an unselected group of adults is about 

3- 'at the level of international pitch, 435-. This is 111 7 of a tone, but a very sensitive 

ear can hear as small a difference as 0.5- or less, which, at this level, is less than 0.01 of a 

tone" (56). This puts his calculations in line with the other two authors. 111 7 multiplied 

by 200 cents (a tone) equals 1 1.76 cents. The sensitive ear c a n  distinguish a change on 

the order of 2 cents at 435 H i  

A generous value based on the findings of these three authors is 5 to 10 cents for a 

difference threshold of pitch perception. If it is assumed that most subjects were non- 

musicians in these studies, than a slightly Iower threshold is reasonable for the 

capabilities of the average musician. Seashore claims that although pitch perception does 

not improve with training, people with good pitch perception are more likely to be drawn 

' The symbol "-" is the equivalent of "cycIes per second" or "Hz". 



to music as a profession; therefore the pitch discrimination of musicians shodd be finer 

than that of the general population (58-59). 

The Sense of Harrnonic Function 

For a temperament to work effectively, the function of a pitch in relation to other 

pitches must be maintained. In twelve-tone equal temperament, although the system 

closely resembles a Pythagorean tuning, the way in which the pitch materials are 

commonly used ofien irnplies a tuning systern based on higher-limit ratios. 

In a C7 chord6, for exarnple, a 'G' is well approximated in TET, being only two 

cents out of tune fiom a pure Y2. The 'E' is tuned more closely to an 8 1/64 Pythagorean 

major third but its context strongly implies a 5/4 major third. The tempered 'E' sounds 

approximately 7.8 cents flat of an 8 1/64 and 13.7 cents sharp of a 9 4 .  The seventh, B b ,  

is tuned 6.1 cents flat of a 16/9 minor seventh and 3 1.2 cents sharp of a 7/4 minor 

seventh. James Temey argues that the 714 minor seventh is the implied interval and the 

one to which a listener tries to adjust. If the chord is extended fùrtber, function and 

tuning become increasingly more dificult to reconcile. A major ninth (D) does not 

present any red problem, as it is a well-approximated 3-limit ratio (9/8), out by 3.9 cents. 

An augmented eleventh added to this chord, however, is extremely problematic. Does the 

listener hear the F $ as a 5/4 built fiorn the 9" (45/32 from C) sounding 9.8 cents sharp? 

6This explanation applies specifically to a chord sounding in isolation; i.e. without regard for the 
occurrence of  a chord through circumstances of voice-leading where the "ideal" tuning of the 
sonority may be different fiom its simplest rationalization in harmonic space, the subject of 
which is beyond the scope of  this paper. 



1s it heard as an eleventh partial of the root 'C' (1 1/8) sounding 48.7 cents sharp? Or is it 

heard as a 7/5 augmented eleventh, sounding 17.5 cents sharp? A thirteenth added to the 

chord creates sirnilar problerns with regards to implied harmonic function. The voicing 

of a chord will d so  contribute to the understanding of harmonic function. 

For a temperament to be truly effective. ambiguities should not exist when a pitch 

is used in a specific context. Deciding on a practical margin of tolerance is difficult. 

Obviously, our European predecessors felt that a 14-cent margin of error was acceptable 

for 5-limit intervals. However, the majority of 18" century tuning theorists were not 

thinking in terms of 7-liait systems so it would be unfair to speculate that a 3 I -cent 

margin of error for dominant seventh chords was supported. 

The second problem in choosing a tolerance range is that, as harmonic complexity 

increases so does the fineness of hining required to maintain the sense of harmonic 

function. James Temey States on page 1 5 of his article John Cage and the Theory of 

Harmony that: 

Since our perception of pitch intervals involves some degree of approximation, 

these fiequency ratios must be understood to represent pitches within a certain 

toIerance range - Le. a range of relative fiequencies within which some siight 

mistuning is possible without altering the harmonic identity of an interval. The 

actual magnitude of this tolerance range would depend on several factors, and it is 

not yet possible to specifi it precisely, but it seems likely that it would vary 

inversely with the ratio-complexity of the interval. That is, the smallcr the 

integers needed to designate the fiequency ratio for a given interval, the larger its 

tolerance range would be. 



An octave can be quite out of tune before it is considered something other than an 

octave. An 1 1/8 interval, however, must be tuned much more precisely in order for it to 

be recognized as such. But context also influences the sense of function, sometimes 

reducing the need for fine-tuning. The triadic exarnple of European music (1 600- 1900) 

proves this point to a ceriain degreee, but conditioning must also be taken into 

consideration, 

Another phenornenon that may help to define an aliowable rnargin of error for the 

maintenance of harmonic function is explained by a series of expenment conducted by 

Moore, Peters, and Glasberg descnbed in Thresholdsfor the detection of inharmonicity in 

complex tones. "The object of the experiment was to detemine the amount by which a 

partial in a complex tone had to be mistuned fiom its hannonic vdue in order for 

inharmonicity to be detected" (1 862). The results of this experimznt state that: 

Thresholds for inharmonicity, expressed as percent rnistuning of the partial 

concemed, decreased progressively with increasing harmonic number and with 

increasing fundamental frequency.. . The pattern of results appears somewhat 

different if the thresholds are expressed simply as mistuning in Hz. Then 

thresholds vary little with harmonic number or fundamental frequency, covering a 

range from 2.4-7.3 Hz (1863). 

Using a mean value of 4 Hz, the second partial of a tone generated at 400 Hz has a tuning 

threshold of 8.6 cents. The third, fifih, seventh, eleventh, and thirteenth partials have 

thresholds of 5.8, 3.5,2.5, 1.6, and 1.3 cents respectively. 



The actual thresholds defined above are not directly useful in this discussion as 

the experiment was conducted with very short tones of Iess than 16 10 ms, however the 

tolerance supports a range of less than 10 cents. The conclusion that the thresholds 

decrease (when measured logarithmicaily) with harmonic nurnber seems analogous to the 

supposition that the intonation threshold for harrnonic fûnction decreases as ratio 

complexity increases. 

The Maintenance of Harmonic Fusion 

We saw above that as frequency ratios become more complex, tuning must 

become more precise in order to maintain harmonic understanding. The reverse is true in 

order to maintain harmonic fusion (or "srno~thness")~. While an out of tune octave is 

easy to understand as such, the roughness of a mistunine, is more difficult to reconcile. 

This notion is supported (although conditioning is likely a major factor) through the 

general acceptance of twelve-tone equal-ternperarnent: Octaves are tuned pure (ignoring 

the fine points of piano tuning - i.e. the stretching of the octaves, etc.); Sths, 4ths and 9 t h  

(3-limit ratios) are approximately 2 to 4 cents out of tune; 3rds, 6ths, major 7ths, and 

rninor 2nds (5-limit ratios) are f 2 to 16 cents out of tune; and minor 7th (7-limit ratios) 

are 3 1-cents out of tune. This shows a historical precedence for the finer tuning of simple 

ratios and greater latitude for more complex ratios. 

' These are subjective terms used to describe how welI the components of an interval or chord 

blend with each other. The terms are somewhat inversely related to "roughness" or "beating". 



Twelve-tone equal temperament demonstrates a certain level of tolerance with 

regards to tuning, dthough the only intervals that maintain harmonic fusion or 

smoothness to my e a s  are octaves, Sths, Çths, and 9 th~ .  As well, though only through 

coincidence, 17 and 19-limit intervals are well enough approximated by TET to maintain 

harmonic fusion. For example, a chord voiced above middle C: Root - maj.9h - min. IO" 

(111 - 914 - 19/8) or Root - maj.2" - mimin9" (111 - 918 - 17/8) sounds relatively smooth. 

These are purely subjective responses, and admittedly, more sensitive ears claim not even 

to accept equal-tempered Sh and 4&. 

A possible, though not proven, theory for tuning tolerance is provided by Arthur 

H. Benade in his text, Fundamentals of Musical Acoustics. (Pg. 27 1-277). With complex 

tones, the nurnber of partials that line up in a harmonic relationship is most cornplete with 

simple intervals. Each partial has the potential to beat when out of tune with any other 

partial of the other tone when it is within a close frequency range8. The strongest 

heterodyneg fiequencies are also considered in these measurements. The group of 

fiequencies that f d l  within this close range are known as "indicators", the number of 

which occur determines the type of indicator; either "double", "triple", "quahple7', etc. 

Benade uses two tones with four hannonics in each to calculate the number of 

tuning references between the two tones. In a 211, he identifies one triple indicator, four 

The difference of the two frequencies must be less than the Iower threshold of hearing, 
otherwise the result is a hyterodyne tone (see below). 

Heterodyne frequencies are caused by non-linearities in the ear producing sum and difference 
tones between the partials of one or more source tones. A sine tone can aiso induce a perceived 
complex tone. Heterodyne fiequencies are also referred to as subjective tones or combination 
tones. 



quadruple indicators, and three quintuple indicators. Compare this to a 7/6, for example, 

which oniy has three double indicators (274). The following deduction can be made from 

this: as the complexity of a ratio increases the nurnber of indicators for tuning decreases. 

The ahysioiogicaf Limits of Intonation 

AIthough it is not an issue with the guitar itself, a consideration for the 

capabilities of performers on other instruments may be usefùl in defining a reasonable 

margin of error for an effective ternperament. This criterion is most pertinent when fixed- 

pitched instruments (such as the guitar) are used in combination with variable-pitched 

instruments (violins, voice, winds). 

Car1 Seashore States the obvious in that ''naturally one c m o t  control pitch any 

finer than he can hear it" (74). Therefore, the physiological limit (Le. muscular control) 

can only ever approach the cognitive limit, defined by the fidelity of the ear. 

In Fundarnentals of Musical Acoustics, Arthur Benade identifies three groups of 

tuning tecdencies in musicians playing common intervals. 

A tabulation comparing.. .the location of a given equally tempered note with the 

places it would need to be to permit perfectly tuned transitions to it fiom any 

other note in the scale shows that the most-needed settings gather themselves 

roughly into three groups. One group extends over a range of about 7 cents 

clustered at a point about 12 cents below the equally tempered setting; a similar 

group collects around a setting that is 12 cents above equal temperament, and a 

third collection of settings is found in the irnrnediate neighborhood of the equal- 

tempered note (295). 



It would seem naturai to assume that the clusters at plus/minus 12 cems pertain to 5-Iirnit 

ratios and that the clusters in the equal ternpered vicinity pertain to 3-limit intervais; 

however, in The Acoustical Foundations of Music, John Backus States that in testing 

violinists, the tendency for tuning major thirds is towards sharpening the pitch, and the 

tendency for minor ùrirds is to flatten. This, he claims, indicates a tendency towards 

Pythagorean intervals. While it seerns ulikely to me that musicians are predisposed to 

Pythagorean intonation in classical musical settings, and that voice-leading seems a more 

likely explanation for this phenornenon, it is beyond the scope of this thesis to investigate 

for what reasons these tendencies exist. 

Benade also notes that if a musician is asked to play a Iittle sharper or a little more 

flat, the tendency is to change the pitch by approximately 10 cents (196). It is not ciear 

whether this value suggests a physiological or cognitive threshold, but it does lend 

additional support to other measures of pitch discrimination. 

The Five-Cen f Margin of Error 

Although the information presented above al1 point to a reasonable margin of 

error for an effective temperament at roughly less than ten cents, 1 had already adopted a 

five-cent margin for my own work prior to this research. James 'ïemey, whose work 

ofien uses this same tuning margin, originally suggested this nurnber to me. 

James Tenney uses a 5-cent margin to explain how accurately a pitch must be tuned to 

ensure that it is interpreted as the ratio intended. For example, to ensure that a 7/6 minor 



third is differentiated fiom a 32/27 minor third and fiom a 615 minor third, a 5-cent 

resolution will help to clari@. A 7/6 is 33 cents flat fiom an equal-tempered rninor third. 

Any pitch tuned between -27 and -38 cents should be interpreted as a 7/6. A 32/27 is 

approximately -6 cents from its equal-tempered equivalent and therefore must be tuned 

between -1 and -1 1 cents, however as this is a relatively complex ratio, even an 

absolutely pure tuning may not chri@ its fimction when taken out of context. A 6 6  is 16 

cents s h q  of an equal-tempered third and must be tuned between +11 and +2 1 cents to 

be interpreted as such. 

Between these tuning "radii", some confusion will exist as to the fùnction of the 

interval. While context has a great deai to do with interpretation and increases the 

acceptable lirnits, the five-cent deviation Iimit heIps to cl&@ fùnction. An area of 

ambiguity lies between intervals that occur in close intonational proximity, although it is 

not likely that a 75/64 would be the interpreted interval over a 7/6 with a pitch tuned 

-25 cents fiom equal-temperament. Generally, the simpler of two intervals that are 

closely in tune with each other will be the preferred interpreted function. 

A Cornpariion of Pupular Temperamenfs 

For the sake of cornparison, al1 of these temperaments will be rneasured for 

effectiveness in approximating the following expanded 13-Iimit just scale: 1/1 - 16/15 - 

918 - 817 - 716 - 6/5 - 16/13 - 514 - 4/3 - 11/8 - 715 - 10/7 - 16/11 - 3/2 - 815 - 13/8 - 5/3 - 

12/7 - 7/4 - 16/9 - 1518. This scale is built fiom the 5-limit scale presented in chapter one, 



to which is added missing reciprocal Himit intervals, some comrnon 7-, 1 1 -, and 13-limit 

ratios and their inversions, and 7/4 replaces the 9/5. The harmonic space of this scale is 

presented in figure 3.1. It can be assumed that any temperament will approximate the 

inversion of any ratio as well as the original ratio. Therefore, the following comparison 

will only consider the simpler of any two reciprocal ratios. 

To calculate the fiequency ratios involved in a temperament, the nh root of hvo is 

taken where n = the number of pitches per octave. This provides a frequency ratio for the 

distance between any two adjacent tones in the system. For twelve-tone equal- 

temperarnent, the 12" root of 2 is taken giving a ratio of 1.059463094 for a semitone. 

The size-in-cents of this ratio is, predictably, 100. 

The fiequency ratio for a step in a given equai-temperament to the power of x, 

where x = the number of steps in an interval, gives a ratio for any interval found in the 

scale. 

n i e  following table presents the ratio involved in adjacent degrees of each of the 

temperaments mentioned above, and a size-in-cents value for each. 





TET 24-ione 72-tone 19-tone 31-tone 

freq. ratio 1 .O59 1 .O29 1 .O10 1 .O37 1 .O23 

sire-in-cents 1 00 50 16.67 63.16 38.71 

We c m  now compare how well each of these temperaments approximates the 

ratios of the just scale laid out above by finding the closest interval available ficorn each 

ternperament. 

9/8 716 5/4 4/3 11/8 7/5 13/8 5/3 7/4 15/8 

JI 203.9 266.9 386.3 498.0 551.3 582.5 840.5 884.4 968.8 1088.3 

TET 200 300 400 500 600 600 800 900 1000 1100 

24 200 300 400 500 550 600 850 900 950 1100 

72 200 266.7 383-3 500 550 583.3 833.3 883.3 966.7 1083.3 

19 189.5 252.6 378.0 505.3 568.4 568.4 821.1 884.2 947.4 1073.7 

31 193.5 271 .O 387-1 503.2 541.9 580.6 851 -6 890.3 967.7 1083.9 

By taking the average error of each temperament, we can begin to consider which 

temperaments most effectively approximate the just intervals. These errors are slightly 

weighted toward to the more prominent 3- and 5-limit ratios and away fiom the lower 

occeence  of higher-Iimit ratios. 

A verage Error 

TET 21.8 cents 

24-tone 12.7 cents 

72-tone 2.66 cents 

19-tone 13.1 cents 

3 1 -tone 5.4 cents 



These measurements only convey the accuracy of intonation for each system. The 

practicality issue h a .  been ignored. Obviously, the more tones per octave, the smaller the 

maximum possible error. If the smallest interval in the 72-tone temperarnent is 16.7 

cents, we cannot expect the average error to be any greater than half; 8.35 cents. The 

maximum possible error is 1 /6" the size of TET's. 

Although the 3 1-tone temperarnent, at half the pitches, appears to be as accurate 

as the 72-tone temperarnent, closer inspection reveals a flaw. While 5-limit ratios are 

well approximated, 3-limit ones (especially the 9/8) are poorly approximated. In terms of 

accuracy of intonation, it is clear that the 72-tone temperarnent is the superior one. 

However, other factors should be taken into consideration, such as the number of tones 

and the limit number of the system it is intended to represent. Al1 the above 

temperarnents have their strengths. In general an economy of pitches is sacnficed as 

tuning accuracy increases. 

For the purposes of this thesis, the 72-tone temperament is the one to which the 

proposed 15-cent temperarnent will be compared in the next chapter, as the 

approximation of just-intervals, not an economy of means, is the most important issue to 

the compositions involved. 



Ch apter Fouc The Fifteen-Cent Guitar 

Conventions and Notation 

To indicate the fingering for specificdy tuned pitches and chords, the following 

convention is used; guikir strings are numbered VI through 1, beginning with the low E- 

string (VI) and ending on high E-string (1), and frets are nurnbered using Arabic 

numerals, zero indicating that an open string is to be senick. For example, a basic G 

major chord is indicated VI-3, V-2, IV-O, 111-0, 11-0, 1-3. This is consistent with 

conventional orchestration methods but is reversed fiom typicd pop guitar conventions in 

which the frets are typically indicated by Roman numerals rather than Arabic. 

On a staff, only Roman numerals are used above each note head. If more than one 

pitch is sounding at once then the Roman nurnerds are placed vertically above the chord 

or interval in a placement respective to the voicing of the sonority. The performer must 

play the note at the fret where the indicated pitch occurs on that string. 

If a string has been dehined more tlan 50 cents, the score will be transposed so 

that the performer plays as if tuned to the standard equal-tempered pitches. As well, the 

notation maintains the standard of being written an octave higher than it sounds. 

The "Oguifar " 

The 15-cent temperament for guitar tuning is a flexible system which sprouts 

fiom this basic setup: Starting with the A-string, each subsequent (higher) string is 



detuned in hcreasing decrements of 15 cents fiom their normal equal-tempered tuning. 

The A-string remains tuned to 'A7=1 10 Hz., the D-sûing is flattened by 1 15 cents to 

C $ ;15, the G-string is flattened by 30 cents to G3 -30, the B-string by 45 cents to B, JS, and 

the high E-string by 60 cents to D $ ,"O. For Partch fans, this basic setup can be thought 

of as the "Oguitar" (fiorn Partch's "Otonality"), in that each string represents a higher 

prime- numbered harmonic fiom the previous. If the open A-string represents the 

iîmdarnental, then the open C $-string has a 5/4 relationship to As, the open G-string is in 

a 7/4 relationship, an E b, played on the B-string has an 1 1/8 relationship, and an F@, on 

the high E-string has a 13/8 relationship (note that the 'F # ' actually sounds closer to an 

equal tempered 'F'). This chord is fingered V-O, VI-O, III-0,II-4,I-2. 

Relationsir ip Between Strings 

Looking at this basic set up, several observations can be made: Between any 

adjacent strings (ignoring the low E-string for now), the lower pitched string c m  

represent the fundamental and a senes of tempered fifths and fourths in a 3-limit system. 

The next higher string represents the 5-axis. The 5-axis string also represents a string of 

tempered fifths and fourths dong that 5-axis. This relationship is true of any two 

adjacent strings. 

Any two adjacent strings can actually represent any two adjacent prime number axes in a 

13 -1irnit system: 3 and 5 (as above), 5 and 7,7 and 1 1, and 1 1 and 13. 



Between any IWO non-adjacent strings separated by one string (Le. between V and III, IV 

and II, or III and 1), the lower string can represent the 3-axis and the higher string the 7- 

axis (in a string of tempered 5 t h  and 4th). Or any non-adjacent axes separated by one 

prime number, up to 13; 3 and 7 (as above), 5 and 1 1, or 7 and 13. 

Non-adjacent strings separated by two strings represent the relationship between a 3-mis 

and an 1 1 -mis, or a 5-axis and a I h x i s .  Separated by three strings, a 3-axis and a 13- 

axis are represented. 

Cornplex Harmanic Relationsh ips 

Harrnonic relationships of higher complexity can also be represented in th is 

system. An augmented triad can be represented by a pitch on a string serving as a 3-axis 

(I l l ) ,  a 514 relationship above that and another Y4 interval fiom the second pitch (or 

25/16 fiom the fundamental). Although 25/16 is a 5-limit ratio, it appears on a separate 

axis above the 5-axis in harmonic space (the 25-mis) but is available on the 7-axis string. 

Therefore, three adjacent strings could represent the 3,s and 25-axes of h m o n i c  space. 

In harmonic terms, an augmented triad built on 'A' is A (1/1), C$-13-' (5/4), and E$ -'7-4 

(2511 6), fmgered V-12, IV-1 2, III- 10. It can be seen that al1 these pitches fa11 into the 

allowable 5 cent tuning range (C $ is 1.3 cent out of tune and E # is o d y  2.6 cents out of 

tune fiom pure). 

Other cornplex spaces can ako be approximated. Imagine a chord built h m  an 'A7 

fundamental: 1/1 - 513 - 35/24 (A - F E -16-8), fingered V-O, IV-4,114. The 35/24 is a 



7/4 fiom the 5/3. Again, the largest deviation from pure is well within the allowable 

limit, 5/3 is out by 0.6 cents and 35/24 is 1.8 cents out, 

A pure sounding tritone c m  sound on adjacent strings. The 7/5 is 582.5 cents in 

size, which is 17.5 cents flat of a ternpered tritone. In harmonic space, this intervai 

occurs at a 714 fiom 8/5 and is fingered V-O, IV-2. 

On occasion, I will use the Oguitar in a very slightly modified version based on 

the low E-string instead. The A-string will be flattencd by 15 cents, the D-swing by 30 

cents, the G-string by 45 cents, the B-string by 60 cents to B b ,+Io. The High E-string can 

be treated in two different ways. Detuned by 75 cents, it can be used in any 13-limit or 

lower relationship with any other string other than the low E-string. Most ofien, 1 will 

tune this high E-string normally (Le. with no cents deviation). This aliows for voicings of 

3-limit materials above the lower strings; it also approxirnates 17- and 19-limit ratios very 

well. 

The "Uguitar" 

The "Uguitar", as the name implies, facilitates the easy execution of intervals 

based on the theoretical undertone series, which is derived by ifiteger divisions of a 

fundamental fiequency. For the purpose of this thesis, these ratios are simplified as 

specified in chapter one. For example, a set of ratios based on the first six prime numbers 

is 1/2, 1/3, 115, 1/7, 1/11, 1/13. These simplifi respectively to 1/1.4/3,8/5, 8/7, 16/11, 

and 16/13. On the Uguitar, each subsequent string relates to increasing divisions of the 



generating tone. The A-string is tuned to A2=l 10 Hz., the D-string is huied 15 cents 

sharp, the G-string is 30 cents sharp, the B-string is 45 cents sharp, and the E-string is 60 

cents sharp (or F It should be noted that both types of intervals are available on either 

guitar, except that the particular setup makes one type more e a d y  accessible on the 

corresponding guitar. For example, a 1017 can be sounded on the Uguitar with IV-5 and 

111-6, or a 715 on IV-1 1 and 111-0. 

Pifch-Heigh t Projection a d  Tuning Diagram 

Figure 4.1 shows a rnethod I've developed for showing the cents-deviation of a 

given ratio in a 15-cent temperament fiom twelve-tone equal-temperarnent, and its pitch 

height within an octave. Each radius extends in 15-degree increments fkom the central 

vertical plane, any group of which can be thought of as adjacent strings on either the 

Oguitar (looking fiom left to right), or the Uguitar (looking right to left). The central 

vertical plane represents the string on which the generating tone occurs. On each radius, 

a group of intervals are indicated and positioned according to where they fdl in respect to 

the octave, scaled intervals are projected ont0 the central vertical 

plane to show the relationship of al1 the pitches in scdar form. This diagram, like the 

pitch-height diagram explained in Chapter Two does not endeavor to portray hannonic 

relations 





Implication of the Fzyteen-Cent Increment 

While the decay portion of the amplitude envelope of a plucked guitar string can 

be tuned within a relatively precise measure, the nature of plucked strings limits how 

accurately the fifieen-cent temperament can be implemented, since the frequency of the 

attack phase of an excited string will tend to sound sharper than its decay frequency. 

Intonation challenges are even greater for instruments of unfixed pitch. The fifteen-cent 

increment represents an ideal towards which the musician strives (we can expect fiom the 

discussion in the preceding chapter that no musician can consistently achieve an 

intonation better than within five cents). However, the true goal of the fifteen-cent 

temperament is to push the musician toward a class of interval, or an area of implied 

harmony, which his or her instincts would not necessarily go in certain harmonic, or 

especiaily melodic, situations. 

The fifteen-cent incrernent allows for the quick processing of interval class by its 

association with certain limit nurnbers. In a simple 13-limit tuning system, plus or minus 

15 implies a 5-limit interval (514, 5/3, 1 518, 815, 615, 16/15), plus/minus 30 implies basic 

7-lirnit materials (7/4, 7/6,2 111 6, 817, 12/7), etc. 

Just~jZcafion of a 13-limit 

My initial interests in just intonation were primariiy concerned with a 13-limit 

system. For the most part, this is a logical stopping point. Although it is arguable that 

the TET can be thought of as an approximation of a 7-lirnit systern, representing the first 



four grime numbers, each of these prime nurnbers has one interceding integer (with the 

exception of 2-3), al1 of which are even nurnbers. Harry Partch made the logical step of 

expanding to the next higher prime nurnber eleven, which is separated fiom the prime 

number seven by two even numbers (8 and 10) and the first non-prime odd number (9). 

While Partch adrnits that eleven was an a r b i t r q  stopping point, the expansion of 

nanno~ic reiationships is quite large and represents the first jump to vastly unfamiliar 

pitch materials. As well, the 1 1-lirnit closely resembles the efforts of other microtonalists 

not concemed with jus1 intonation (Ives, Varese) who were using quarter tones in the 

earl y twentieth century . 

Once the Ieap to eleven has been made, the expansion to thirteen seems to 

naturally fa11 into place because of its numeric proximity to the nurnber eleven. Although 

this is a subjective observation, prime nurnbers ofien occur in pairs in the lower digits; 1 

and 3,5 and 7, 1 1 and 13, 17 and 19,23 (an exception), 29 and 3 1.37 (exception), 41 and 

43, etc. It seems natural to me that the expansion of hannonic materials based on new 

bit-numbers shou1d occur in these pairs. 

The approximation of a thirteen-limit system was my initial goal, primarily 

motivated by the simple fact that Partch had stopped at eleven. However, once the 

fifteen-cent temperament had been laid out, the possibilities for higher-limit systems 

becarne apparent. I arbitrarily decided to stop at the prime number 3 1 for compositional 

work but the fifteen-cent temperament is very effective well beyond the 3 1" partial. 



A Cornparison to the 72-Tone Temperament 

Below is a cornparison between the 72-tone temperament and the 15-cent 

temperament in their ability to approximate a selection of intervais occurring in the first 

3 1 partials of the harmonic series, listed first in limit-number order and then by relative 

cornplexity (again, reciprocals are not considered). 

Ratio J m  72-tone 

498.0 cents 
203.9 
884.4 
3 86.3 
2017.6 
1088.3 
772.6 
968.8 
582.5 
435.1 
470.8 
55 1.3 
347.4 
782.5 
840.5 
1071.7 
105.0 
297.5 
1 145.0 

Average Error: 

500 cents 
200 
883.3 
383.3 
1016.6 
1 O83 -3 
766.7 
966.7 
583.3 
433 -3 
466.7 
550 
350 
783.3 
833.3 
1066.7 
1 O0 
300 
1150 

Error 

2.0 cents 
3.9 
1.1 
3 .O 
1 .O 
5.0 
5.9 
2.1 
0.8 
1.8 
3.1 
1.3 
2.6 
0.8 
7.2 
5 .O 
5.0 
2.5 
5.0 

3.2 cents 

15-cent 

500 cents 
200 
885 
385 
1015 
1 O85 
770 
970 
585 
430 
470 
555 
345 
785 
840 
1 O70 
1 O0 
300 
1145 

Error 

2.0 cents 
3 -9 
0.6 
1.3 
2.6 
3.3 
2.6 
1.2 
2.5 
5.1 
0.8 
3.7 
2 -4 
2.5 
0.5 
i .7 
5.0 
2.5 
0.0 

2.3 cents 

Both systems are really quite effective according to the terms defrned in Chapter 

Three and without weighting, the average error is not very telling on its own. Although 

the two systems are not significantly different, they each seem to be stronger where the 

other is weakest (compare 13/8 and 1 1/8). Importantly, the 15-cent temperament is 



strongest with low number ratios, the notable exception being the 9/7, and oniy one other 

interval has an error above or equal to the 5-cent margin; the 174 6, which the 72-tone 

system similarly approximates. It can be concluded that the 15-cent temperament is 

marginally superior with respect to tuning accuracy, however, the clean logic and 

recurring semitones of the 72-tone temperament is an advantage that cannot be ignored. 

Tuning the 15-cent Guitar 

Assuming the basic Oguitar set-up CE - A - C # -15 - G-30 - BG5 - E-60] where the 

open A-string is tuned to 1 IO Hz, the foIIowing relationships can be tuned by ear, 

facilitated through the counting of beats that occur between the fundamental tones of 

stopped and open strings. 

On the A-string, stop the C $, at the fourth fret. The fiequency of this tone is 

138.59 Hz, an equal-tempered major third above A 1 10 Hz. This is calculated by 

multiplying 1 10 Hz by the 12" root of 2, four times, or: 

110 Hz (2"") = 138.59 Hz 

This tone is compared to the open 4%hing, a C #, which is dehined by 15 cents. To 

calculate the fkequency of each fietted pitch on a single string, multiply the fiequency of 

the open string by the 12" root of two as many times as the value of the fiet number: 

f (open swing) 2d12 - -f (fret 

(where x = fret nurnber (or number of semitones above open string)) 



To calculate the fiequency of an open string in relation to the next lower pitched string 

(which will be narrowed by 15 cents), multiply the frequency of the lower open string by 

the 12" root of 2, as many times as there are semitones between the two open strings, and 

divide the result by 2'"1200 (215"'00 is the ratio equivalent of 15 cents)'. 

f (open string 1) 2.dlZ / 2 l5/l?OO - (open string 2) -f 

(where x = number of semitones between string 1 and string 2) 

This formula is easily adapted to the Uguitar tuning by multiplying the first half 

of the equation by 215'12W instead of dividing: 

Vopn l' 
X2d12)X215!1>00- (opcnstring2) -f 

To calculate the nurnber of beats that will occur when the fketted lower string is 

sounded sirnultaneously with the next open string of the sarne note narne, subtract the 

open string fiequency from the fktted string fiequency. The difference is the number of 

beats per second that should be heard when properly tuned in a 15-cent temperarnent. For 

example, to tune the open C # -string we need to know the fiequency of a C $, stopped at 

the fourth fret of the A-string; 

1 1 0 HZ x P = 138.5913 Hz 

the desired fiequency of the open C#-string; 

(1 10 Hz x 2"12 = 138.59 13 HZ) / 2'Y1'W = 137.3957 Hz 

' 2'"'2W is equivalent to the 1200" root of 2 to the power of 15. 1200 in the equation represents 
1200 cents to the octave (2). 



and the difference beîween the two fiequency values; 

138.5913 Hz-137.3957Yz= 1.1956Hz 

Figure 4.2 shows the fiequency of every pitch on the 15-cent 'U'-guitar fretboard 

up to the twelfth fiet. 

Tuning using the above method can be verified in several ways. Al1 adjacent 

strings (excluding the E-string) should produce very pure major thirds and sixths and 

should sound equaily in tune. As well, 1 test the tuning by fingering a pure chord based 

on the first six prime numbered partials of the h m o n i c  series: A (1/1) - C $-15(5/4) - 

G "'(7/4) - D#45(l 1/8) - F +"(13/8), Fingered: V-O' IV-O, III-0,II-4,I-2. 

Disadvantages of the 15-Cent Guitar 

One of the disadvantages of the fifteen-cent guitar, or likewise a guitar tuned in a 

72-tone temperament, is that melodic passages are curnbersome and in some cases 

impossible. Unlike a standard TET tuning, or on a refietted JI guitar, the performance of 

a simple scale requires the musician to jurnp around fiom string to string and f?om 

position to position to execute a step-wise progression of tones. In fact, if the pitch set 

has not been designed specifically with the fifteen-cent guitar in mind, some scales may 

be impossible to perform on one guitar. 

1 did however have the oppomuüty to test the system for melodic passages in a 

somewhat objective manner. Composer David Lidov presented me with a microtonal 



Open: 82.41 110.00 137.40 192.63 240.61 318.40 

Bb D Ab C F 

164.8 1 220.00 274.79 385.26 48 1.2 1 636.80 
*number of beats that occur when the open siring is tuned 
to the same stopped note of the next adjacent lower string 

Figrtre 4.3: Haririosic Space 

for '%lar DRWI~"  by D. Lidov 

Figure 4.2: Tirning by Beats 



piece entitled Polar Dawn (for guitar, flute and cello) for which he had sketched out the 

scale: 

G2(1/1)- G3(lll) -A3-3'(l 1110) - B3-14(5/4) -C#449(ll18) 

- D4"(3/2) - Ey3'(33/20) - Fi3'(714) - G4(111). 

Although the use of string harmonies had to be employed, the following temperament 

worked quite well and allowed for fluid execution: 

Open strings: E - G - D - G-'O - B-IS - CBd5 

Figure 4.3 (on page 76) shows the hannonic space for Polar Dawn. 

Some simultaneous tones may also be impossible in the 15-cent temperament. 

Two tones that exist on the same axis of harrnonic space cannot be sounded together, 

unless two or more strings have been similarly tuned, and some tones with different 

generating numbers may exist in positions that are not physically possible to bridge. To 

solve these problems, many of the compositions presented employ more than one guitar. 



Chapte? Five: Development of the Fifteen-cent Guitar 

This chapter traces the development of the fifteen-cent guitar through some of my 

earlier experiments. These short pieces coincide with my learning of tuning theory and 

represent my atternpts to understand and hear just intexvals and harrnonic sonorities. 

Siudy 1 

Study I represents my first attempt at composing in just intonation and utilizes a 

system similar to the fifieen-cent guitar in that each string is retuned by a precise amount 

that allows for the execution of specific intervallic relations. The important difference 

fiom the fifteen-cent temperament is that each string is tuned to produce a specific prime 

nurnbered hannonic; the rnulti-fùnction of strings is not considered at d l .  The tuning of 

the open strings is E O - A O - D -" - G 49 - B - 31 - E -". These strings correspond 

respectively to the 3-axis ('E' and 'A'), 5-mis, 11-ais, 7-axis, and another 5-ais .  This 

allows for the perfect intonation of an 1 1-limit hannonic chord. The tuning is also used 

to approximate adjacent ratios along any one of these axes. For example, along the 5-axis 

513,5/4, and 1 5/8 are available, the 5/4 is in tune, the 513 and 15/8 are each about bvo 

cents out of tune. 

To build up sonorities, a delay and volume pedal is used. The volume pedal is 

used to hide the attack of the plucked string and the delay pedal creates a long sustain that 



rings beyond the excitation period of the string, creating a lasting sonority to which more 

tones can be added. 

The piece is essentially a written out improvisation and is simply an exploration 

of what was then, to me, unfarniliar harmonic relationships. The first two bars consist 

simply of a 7/4 minor seventh interval to which is added a 1518 major seventh in the third 

bar. Figure 5.1 shows the harmonic space of the first sixteen bars of "Study 1". 

Assuming A=l/l, the second system builds up a sonority consisting of the 

following pitch classes: 7/4,7/6, 5/3, 11 1, and 33/32. 

While there is nothing remarkable compositionally about this piece, the use of a 

single string in approximating several ratios related by 3/23 was an important step 

toward the realization of a more flexible tempered tuning system. 

8- Track Improvisation 1 

A couple of early attempts at using the guitar as a microtonal instrument involved 

tuning a single chord and recording repetitive rhythmic patterns using those pitches. By 

overdubbing several related chords or intemals, a harmonic bed was created over which a 

simple melodic lïne was improvised. The initial generating chord is a pure dominant 

seventh - 111, 5/4, 7/4,3/2 - to which was added a repeated rhythrnic figure sounding a 

single tone based on the ratio1 1/8. The chord is extended M e r  but the added tones 

were figured more intuitively and 1 no longer rernember the exact relationships 1 had in 

mind. 





Using the G- and B-strings tuned a 5/4 apart., I bent pitches to their approximate 

correct intonation in the just scale to create a simple improvised rnelody. 5-limit ratios, 

and to a lesser extent 7-lirnit ratios, were relatively easy to tune by ear. However, at the 

time 1 was unable to be confident that 1 was accurately tuning the scale degrees based on 

the ratios 1 1 /8 and 13/8. 

8- Track Improvisation II 

This second improvisation is sirnilar to the first in that harmonic sonorities are 

built up by overdubbing several rclated chords. The ratios involved are slightly more 

complex than those of hprovisarion 1, and the improvisation additionally employs the 

use of string harmonies, which by their nature are strongly related to the open string 

involved. No melodic materials exist on the recorded track. 

15-Cent CampfTre Song and Study II 

These two pieces are the first examples of the fifteen-cent temperament applied to 

the guitar. Both are concerned primady with the execution of chords that are 

manageable by a single guitarist. Again, these are simple, written out improvisations and 

are more experimental than compositional in intent. They also represent the two 

extremes of simple and complex harmonic sonorities. 

The Ij-Cent Campfre Song uses a familiar picking pattern to build up a sonority. 

Begining with an interval sounding on two adjacent strings, additional tones are gradually 



added until the chord is fülly realized. Each additional tone is of a simple relation to the 

previous but as the chord extends through hamionic space, the relationship to the root 

becornes very complex. Figure 5.2 shows the harmonic space of the first few chords of 

this composition. 

Study II is in a 7-limit system that is not harmonically adventurous. I was curious 

as to the system's abiiity to realize familiar traditional chord structures; for example: the 

first three pitches make a purely tuned E-major triad, the second three pitches create an 

A-major chord in second inversion. In bar two a pure dominant seventh chord, missing 

its fifth, is sounded in the second and third beamed groups: A (111) - C# (Y4) - G (714). 

The harmony continues in a relatively traditional harmonic language. 

The issues that arose in the creation of these experiments are represented in the 

concems of the larger compositions presented in the following chapters. 



Section I 

Section II 

Section 111 

[ 1 6 / 9 1 [ 4 / 3 ]  1/1 

Figure 5.2: Warmonic Space for "15-Cent Campfire Song" Wrst three sections) 



Chapter Sir: 45-Cents Worth 

Gfor three electric guirars) 

This structureci improvisatory piece is for three guitars; each tuned to a variation 

of the basic fifteen-cent temperarnent. Each of the three sections explores a unique and 

moderately complex "harmonic space" by providing an expanding set of available pitches 

fiom which the perfomers are expected to improvise'. 

Harrnon ic Materials 

Each section begins with the most complex harmonic relationships in the set, to 

which are added tones that "contextualize", or give "relevance'" to. the preceding 

materials. The desired result is that the listener is presenred with a series of pitches that 

appear to have no easily understood harmonic relationship to each other, but as new 

pitches are added, the relationships become increasingly comprehensible, although still 

rather complex. 

The pitch materials are presented, in approximate order, fiom the most complex 

ratios to the most simple. My melhod for the ordered selection is to exhaust the highest 

James Tenney uses the expression miZublepitchprocess to describe this type of structured 

improvisation. Critical Band and Forms are exarnples o f  his works that use this proceedure. 
Ben Johnston prefers this term. 



limit ratios before going on to lower nurnbered ones and also moving lefi to right in the 

harrnonic space generated by the ratios. For example, in section 1 the first group of 

classes are, in order: 13/8, 1 1/8, 7/6. Next, 714 is added and subsequently 5/3, Y4, 1/1 

and 3/2. 

The pitch classes involved in the third section of the piece clearly point to the root 

'D'. In the frrst two sections however, the root is more ambiguous. The implied root of 

both sections 1 and II is most likely a 'G7, but it is neither provided nor strongly 

supported, especially in section II where only the 716 points to a 'G' (in which case the 

interval woul d be a 714 fiom G). 

Each of the three guitars is tuned uniquely so that pitch materials are available in a 

variety of registers. 1 have chosen not to explore al1 registers, especially with high limit 

ratios where they are generally confined to higher registers. The system is however 

capable of a larger fiequency range than indicated in the score. 

Form 

The overall fonn is derived fkom the Fibonnaci series. Section 1 is divided into 

three parts with the relative durations 3:2:3. Section II is in two parts in a 2: 1 relation. 

Section III is three parts, 2: 1 :2. The relative duration of the three larger sections is in the 

ratio of 8:3:5. 



Dyn amies 

The dynamics also have a loose Fibornaci relationship. The magnitude of the 

dynamic range is equd in each section but the average amplitude is in a relationship of 

8:s: 13. By roughly assigning a number to each dynamic indicator, section 1 has an 

average level of mf (pp tom,  II =p-pp (ppp to mf) and III = f-ff(p t o m .  If ppp = I then 

mf = 4 andp-pp = 2.5 and f-ff= 6.5. If these values are doubled then a relationship of 

8:s: 13 is achieved. 

Figure 6.1 outlines the important parametric profiles and structural concerns of 

45-Cents Worth. 
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Chapter Seven: Music Box II 

(trio for guitar, Columbine, and tunable keyboard) 

This piece is primady concerned with controlling vertical harmonic density over 

time. Three instruments each play two lines simultaneously, an ascending and a 

descending scale, creating six independent scalar lines. By mapping out the pitch 

trajectory of each line, the frequency range of the ensemble is precisely controlled, and 

consequently the harmonic density. 

Form 

Al1 instruments begin on the pitch class 'C', each in a different octave. The total 

span is six octaves; Cl to C,. At the Golden Section, al1 the lines converge on a 

predefined h m o n i c  sonority: 7/4 - 13/8 - 5/4 - 918 - 1/1 - 312, confined to a range of 

about a rninor tenth. Al1 lines reverse their position in the voicing so that the instrument 

beginning on C, is now the bonom voice, the voice beginning on Cl is now the top voice, 

and al1 other inner voices are inverted. The voice reversal creates a dense, harmonic 

convergence around 45 seconds before the Golden Section, in which the bandwidth spans 

less than a major third. 

For the second portion of the piece, the process is reversed, this time resolving on 

a harmonic sonority consisting of the ratios, bottom to top: 1/1 - 7/6 - 312 - 5/3 - 4/3 - 

1116, spanning about two and a half octaves. Again, the voices cross and reverse, 



converging at a moment around 40 seconds after the Golden Section, with a bandwidth 

slightly larger than a major second. 

While the piece has two moments of harmonic resolution, at the end and at the 

Golden Section, the two moments of maximum vertical harrnonic density vie for the 

climaxes of the piece. Fig. 7.1 diagrams the pitch projection of each voice. 

Harmonic Materials 

Each instrument has a unique set of pitches. The CoIumbine' is a 23 pitch-per- 

octave metallophone designed and built by Gayle Young. The Columbine uses three 

basic 5-limit just scales based on the pitches 'E' (1/1), 'Cr#' (5/4), and 'C' (8/5), with the 

addition of a major second 1019 and a minor seventh 9/5 fiom each of these roots. Fig. 

7.2 shows the entire h m o n i c  space of the Columbine. The bold text indicates the 

prirnary just scale fiom which Gayle Young works. 

For the purpose of this piece, 1 have defined 'C' as the generating pitch class, 

therefore, the score does not match that of Gayle Young's system. However, 

intervalicalIy, the two are identical. 

The keyboard part is ideally played on a Rhodes piano, or on an instrument with a 

similar amplitude envelope. The pitch set of the keyboard part is of a 13-limit and uses a 

repeating octave. Generally, the pitches fil1 in much of the harmonic space surrounding 

the fundamental. The scale set is: 111 - 33/32 - 817 - 7/6 - 917 - 21/16 - 1118 - 3/2 - 

"The instrument was narned Columbine after the five-petaled flower of the sarne name, native 
to North America" (Young, 54). 







1318 - 1 SI7 - 714 - 1 1/6. The only pitch classes that occur in both the Columbine and the 

keyboard parts are the 111 and 3/2. Fig. 7.3 shows a concentrated area of the Columbine 

scale set and the 13-limit materials of the keyboard part, now in bold. 

The guitar, unlike the other two instruments, does not use a repeating octave. Its 

pitch material spans two octaves and extends the harmonic space of the piece into ratios 

in which both the numerator and denominator can be of a high limit value. In ascending 

order, the pitch set is: 

C; (111) - Db3+" (15/14) - D3"0 (1 1/10) - D3(9/8) - E b3-jo (716) - E3"' (1411 1) - F3 (4/3) - 

F$3"5 (1017) - G3 (312) - A b , J O  (1419) - Ab?'' (1 l/7) - B b3"' (714) - B3-'0 (1 116) - 

B<30(13/7) - C4 (111) - D,"O(12/11) - D4-j0 (1 1/10) - EbiS0 (15113) - Eb4-30 (716) - 

E b4-I5 (1 3/11] - EL'' (1 119) - E4'40 (917) - F4-'0 (1 311 0) - F4*40 (1 511 1) - F p4-'0 (1 118) - 

Ffli' ' (715) - F $4'40 (1 3/9) - G,JO ( l6 / l l )  - Ab;'' (1 117) - A b4*40 (13/8). 

It can be seen in figure 7.4 that the harrnonic space of the guitar pitch set serves to 

M e r  ernphasize the harmonic region immediately surrounding C 111. Figure 7.5 shows 

the fret and string location of each pitch in the set; the darkened areas represent M e r  

available pitches that are not utilized in the piece. 

The harmonic "cohesiveness" of any moment of the piece is most strongIy defined 

by the pitches of the Columbine. I f  a pitch defined by a relatively complex ratio is 

sounding, Iikely the pitches of other instruments are aIso in a complex relationship to that 

tone. The overall, desired effect is that of a fluctuating harmonic relativeness, with a 

guaranteed maximum dissonance occurring at the two moments of high vertical harmonic 







Figure 7.5: Fretboard for Guitar itz "Music Box II" 



density and maximum consonance occurring at the beginning, end, and Golden Section. 

Otherwise, regardless of the mathematical predictability, the moment-to-moment 

complexity is of an unpredictabIe quality for the listener. 

Rhyth mic Concept 

The rhythm of each part is also defined by the ratios involved in each instruments' 

scak set. In this case, ratios define a portion of time. To calculate the rhythrnic units in 

each part, the total duration of each of the two sections is divided logarithmically 

according to the ratios of the scale. These proportions are approximated with a maximum 

resolution of a quintuplet eighth note (where a quarter note equals one second). 



Chapter Eight: Music Box 111 

(for string quintet and two electrir guitars) 

In this piece two guitars are used as a tuning reference for the bowed instruments. 

Each string of each guitar is tuned to the average pitch of al1 the pitches thar occur on any 

a i s .  This is a slight variation of the 15-cent guitar. 3-limit ratios are tuned to their 

standard twelve-tone equal-tempered equivalent. 5-limit ratios are tuned +/- 1 5 cents 

fkom their TET equivalent. 7-limit ratios are tuned to W- 32 cents (a better 

approximation than the 15-cent guitar's 30 cents). 1 1-Iimit ratios are tuned to +/- 50 

cents (as opposed to +/- 45 cents). 13-limit ratios are tuned to +/- 60 cents (+/- 40 cents). 

The 15-cent guitar tuning was adapted to di is because a very specific pitch set that does 

not modulate is being utilized, whic h means that the multi-fünctional capabilities of each 

string are not required, therefore, it makes more sense to use better approximations than 

the 15-cent temperament allows. A twelfïh-tone temperament was also considered, but 

the use of 13-limit ratios negated this possibility (as 13-limit ratios are out of nuie by a 

margin greater than 5-cents). 

Harmonic and Rhy fhmic Materials 

Each stringed instrument h a  a unique scale set that is executed at an independent 

rate defined by a fiequency ratio that relates al1 the parts. The following lists each 

instruments scale set and the relative fiequency at which each pitch of the set occurs: 



Vln. I 

Vin* II 

Ha. 

Vcl. 

Bs. 

Although not designed to dernonstrate any particular point, the scaie sets for the 

viola, cello and bass warrant some attention. The scales for the viola and cello are 

symmetricd; the top half of each scale is derived fiom the inversions of the bottom hdf  

of the scales. As well, the bottorn half of the cello and bass scales are made up of 

consecutive superparticular ratios (a superparticular ratio is a ratio in which the numerator 

is one integer larger than the denominator, these ratios occur at adjacent partials in the 

harmonic series and have historically been given special attention by tuning theorists). 

It should be noticed that simple, low-limit ratios have been reserved for the lowest 

pitched instruments. The bass part consists of 5-limit ratios, al1 of which are found in our 

traditional scales. The ce110 part is within a 7-limit, the viola is an 1 1-limit scale, and the 

violins are in a 13-limit system. This bias exists because complex ratios tend to fuse 

rnost poorly in lower registers. 



The Role of the Guitars 

The prirnary h c t i o n  of the guitars in this piece is to provide tuning references for 

the string players. Initially, 1 had considered hiding the attack of the guitars through the 

use of a volume pedd, but allowing the attack added a timbra1 element that seemed more 

interesting and gave the guitars a fimction beyond a simple supportive role. 

In several cases, it is impossible for the guitars to provide a tuning reference for 

every pitch in a given sonority, especially where the parts line up rhythmicdly. In 

several cases 1 opted to leave a tuning reference out for tones that were generated by a 

simple or familiar ratio, especiaIly 3- and 5-limit ratios. 

The two guitars are tuned as follows, one is an Oguitar variation, the other a 

Uguitar variation: 

Gtr. 1 (Oguitar) E 

Gtr. II (Uguitar) E 

R/.yt/rzmic Concept and Form 

If the rate of the bass is represented by the value 2 than the cello's rate = 4, the 

violas = 3:4, violin II = 5:4, and violin 1 = 7:4. 

Violin II and the Cello begin the piece. At the first instance of rhythmically coinciding 

pitches, the viola begins its scalr. When al1 three instruments coincide rhythmically, the 

first violin enters, and upon the next four coinciding pitches, the Bass enters. Al1 

instruments continue for seven more points of rhythmic unison. 



Chapter Nine: Quartet for Six Guitars 

This piece attempts to tackle an approach to dissonant counterpoint. A couple 

simple rules are set up defining the harmonic possibilities. For any given moment, at 

least one 5-Iimit dissonant' interval is present, a 5-limit tertian interval' from one of the 

two dissonant tones, and either a 7/4 minor seventh or a 7/6 nlinor third usually fiom the 

root (though some exceptions occur), This attempts to imitate and extend (through the 

introduction of 7-limit ratios) the harmonic tendencies of composers such as Car1 

Ruggles, Tom Takemitsu and the early works of Schoenberg, aithough in an entirely less 

sophisticated manner. 

The counterpoint is generated by allowing only one or two pitches to change at a 

time, al1 other tones are common to both sonorities and maintain the conditions above. 

To facilitate the hannonic planning of this piece 1 resorted to diagrarns that resernble 

those of Barbour's, described in chapter IWO. Placing the tertian relations at a 45-degree 

angle visually irnplies an equal harmonic relativeness for major and minor thirds and 

sixths. 

Six basic 5-limit harrnonic possibilities were pre-established, each with two or 

three 7-limit extension options. Figure 9.1 shows the basic shapes on the top half of the 

diagram, the bottom half indicates the frequency ratios involved in each shape. In the 

For the purpose of this discussion, dksonant simply implies the presence of a major seventh 
(1518) or minor second (1611 5) relation or a compound. 
Major or minor third or a major or minor sixth (514, 615, 513, 8/5 respectively). 





first three shapes, the root is quite strong. This is reflected in the root's positioning in the 

bottom lefi corner of the lattice. Spaces 4 and 5 have a weaker foundation because the 

implied root is rnissing. 1 opted to establish the Iowest position as the root to maintain a 

sense for the complexity of the ratios involved, facilitating cornparison with the first three 

lattices. It should be noted that in space 5,  the 15/8 relation occurs between 25/16 and 

5/3. Space 6 has the potential to be the most complex sonority available, depending on 

the 7-limit ratio involved. The sense of root is slightly usurped by the absence of both a 

5/4 and a 3/2. 

It can be seen that in diagrams 3 through 6 at least one ratio is missing that would 

connect two otherwise distant ratios. A question arose regarding the capability of these 

sonorities for harrnonic fusion. 1 conducted an informal experiment of which the results 

loosely correiated "complete" spaces with a stronger sense of harrnonic fusion and 

"incomplete" spaces with a lower sense of fusion. With these particular sonorities, 

relative complexity m u t  also be regarded as a factor. In general, spaces missing 

connecting pitch classes were less likely to convincingly füse. 

Figure 9.2 outlines a portion of the harmonic progression for this piece with the 

tuning for each horizontal plane indicated on the Ieft, in a fifieen-cent temperarnent. 

It was necessary to use six guitars to cover the four voices involved in the 

composition. By using six distinctly tuned guitars to play four voices, parts trade off 

when the available truiing is no longer available on a given guitar. Because d l  of the 

guitars are to have similar timbres, the overall effect is that of four contrapuntal melodic 





Rhythrnic Concept and Form 

The piece is in fivc short sections of which the temporal density is manipulated on 

a logarithmic scale. each section begins with a higher level of rhythmic activity than the 

previous section, with the exception of the f i f i ,  and slow through the course of the 

section to an average temporal density of one icius per bar. The average number of 

independent attacks was predetermined but the specific rhythmic materials were 

intuitively generated to simulate a sense of indeterminacy. 

Each section recycles the harmonic material of the previous section and adds to 

the progression, which is extended to fùlfill the predetermined ictus requirements of the 

section. 



Summury and Conclusions 

The compositions presented in this thesis al1 reflect a simiIar aesthetic approach. The 

pieces are primarily about "harmony", h m o n y  in the very basic concept that is the relationship 

between two or more tones in any instant of time; in other words, they are mostly about "the 

harmonic moment". The pieces are not about larger scale aspects of harmony which may involve 

modulation, meludic development, or structural harmonic approaches (although a harmonic 

process may be expressed). An effort has been made to emphasize the importance of the 

harmonic moment by intentionally downplaying other musical parameters. Specifically, the 

rhythmic component of each piece possesses a perceptually sporadic quality. It is believed that 

by generating rhythms that provide no sense of pulse, pattern, or predictability and are essentially 

statistically flat, that the attention of a listener will quickly move away fiom the rhythmic 

elements towards those that are changing, in this case the harmony. As weli, the pieces are 

generally dynarnically and texturally flat M e r  reducing the attention given to non-harmonic 

elements. 

For myself, the listening experience is somewhat meditative, requinng or forcing the 

listener to be in a state that exists somewhere between attention and unconsciousness. One can 

listen for the details of harmonic interaction, which change constantly but unpredictably, or one 

can simply accept the music on a larger scale which is often of a statisticaily flat, or a steadily 

changing quality. 

The aesthetic aims of these pieces do not necessarily reflect those of my other 



compositions or intentions for future works. Where these works are conceived almost entirely in 

the precompositional stage, fiiture works will consider and shift where the intuitive breaks fiom 

the structural. Where the works of this thesis are strongly linked to the fifteen-cent tuning 

systern and micro-level harmonic conditions, future works will focus on large-scale 

compositional concerns of which the choice of tuning system is an important but secondary 

consideration. 

The writing of this thesis has been a discovery process that has considerably improved 

rny potential for using high-limit harmonic relationships in an informed manner. Many of the 

pieces presented in this thesis resulted from a question of which the composition was designed to 

answer. 

A tuning system can influence or be influenced. Twelve-tone equal temperament 

gradually developed out of the tonal approach of 17", 1 SLh, and 1 9h century composers. In tum, 

the atonal compositions of the early twentieth century may never have corne about without the 

establishment of TET. 24-tone equal temperament was a solution for composers who felt 

restricted by the limitations of twelve notes. However, it is unlikely that without TET would 24- 

tone ET have followed. 

Hany Partch's 43-tone tuning system was very much a response against the restrictions 

and arbitrariness of TET. He suggested an approach that has heen an example for many just- 

intonation musicians. His legacy includes Ben Johnston, James Tenney, and many others, al1 of 

whom have developed unique systems that tackle various compositional concerns. Most 

irnportantly, Johnston and Tenney have not limited their harmonic language by adopting a single 



"perfect"systern for al1 their work. Rather, they have been exarnples of how a thorough 

understanding of harmonic proportion can lead to many diverse and satisfying answers to equaily 

diverse cornpositional problems. 

The need is still felt by some for a universal tuning system; many suggest that the 19- and 

3 I -tone systems of Yasser should replace TET. But the replacement of one system for another is 

not a solution at d l ;  it is as restrictive as the first and is a M e r  "design ... for cornpliance" 

(Franklin, 23). By suggesting an approach that simply informs the musician of the properties of 

harmonic proportion, the composer/rnusician is free to develop a system that best supports her or 

his music. In many cases, the desire may be to usiup pure harmonic relationships rather than 

encourage, in which case an understanding of tuning theory is still advantageous. 

No temperament c m  claim universal superiority; the definition of a 6 n g  system is 

inherently linked to the compositional process and should therefore change with intent. The 

fifteen-cent temperament that has just been explored is intended as an approach to a particular set 

of problems and is only one of many possible solutions. The purpose of this thesis is not to 

suggest that the fifteen-cent temperament is a system to be universally adopted, rather, it suggests 

an approach to developing tuning systems according to the aims of the composer or purpose of 

individual compositions. 
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SCORES 



Study 1 

Tuning (cents deviaiion): 
E O,AO, D - 1 ? , C 1 9 ,  B - 3 1  E -14 

Perform with medium dcla): several repeats, long deuy.  Each note swells from O with volume pedal (no atncks an: heard). 

Bar lines indicate phrases, brerith marks indicate longer pauses. Rhythmic values are only vaguc quideines for note durations. 

Romm numenls indicate string to be used. 
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