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Abstract

Data mining is the nontrivial extraction of implicit, previously unknown, and po-
tentially useful information from data. As one of the most important background
knowledge, concept hierarchy plays a fundamentally important role in data mining.
[t is the purpose of this thesis to study some aspects of concept hierarchy such as the
automatic generation and encoding technique in the context of data mining.

After the discussion on the basic terminology and categorization, automatic gen-
eration of concept hierarchies is studied for both nominal and numerical hierarchies.
One algorithm is designed for determining the partial order on a given set of nominal
attributes. The resulting partial order is a useful guide for users to finalize the concept
hierarchy for their particular data mining tasks. Based on hierarchical and partition-
ing clustering methods, two algorithms are proposed for the automatic generation of
numerical hierarchies. The quality and performance comparisons indicates that the
proposed algorithms can correctly capture the distribution nature of the concerned
numerical data and generate reasonable concept hierarchies. The applicability of the
algorithms is also discussed and some useful guides are given for the selection of the
algorithms. As an important technique for efficient implementation, encoding of con-
cept hierarchy is investigated. An encoding method is presented and its properties are
studies. The superior advantages of this method are shown by comparing the storage
requirement and performance with some other techniques. Finally, the applications
of concept hierarchies in processing typical data mining tasks are discussed.
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Chapter 1

Introduction

With the rapid growth in size and number of available databases in commercial,
industrial, administrative and other applications, it is necessary and interesting to

examine how to extract knowledge automatically from huge amount of data.

Knowledge discovery in databases (KDD), or data mining is the nontrivial extrac-
tion of implicit, previously unknown, and potentially useful information from data[17].
Through the extraction of knowledge in databases, large databases serve as rich, re-
liable sources for knowledge retrieval and verification, and the discovered knowledge
can be applied to information management, decision making, process control and
many other applications. Therefore, data mining has been considered as one of the
most important and challenge research areas. Researchers in many different fields,
including database systems, knowledge-base systems, artificial intelligence, machine
learning, knowledge acquisition, statistics, spatial databases and data visualization,
have shown great interest in data mining. Many industrial companies are approaching
this important area and realize that data mining will provide an opporturity of major

revenue.
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A popular myth about data mining is to expect that a data mining engine (often
called a data miner) will dig out all kinds of knowledge from a database autonomously
and present them to users without humans instructions or intervention. This sounds
appealing. However, as one may aware, an overwhelmingly large set of knowledge,
deep or shallow, from one perspective or another, could be generated from many
different combinations of the sets of the data in the database. The whole set of
knowledge generated from the database, if measured in bytes, could be far large than
the size of the database. Thus it is neither realistic nor desirable to generate, store,

or present such set of the knowledge discoverable from the database.

A relatively realistic goal is that a user or an expert communicate with a data
miner using a set of data mining primitives for effective and fruitful data mining.
Such primitives include the specification of the portion of a database in which one is
interested, the kind of knowledge or rules to be mined, the background knowledge that
a mining process should use, the desired forms to present the discovered knowledge,

etc.

As one of the useful background knowledge, concept hierarchies organize data or
concepts in hierarchical forms or in certain partial order, which are used for expressing
knowledge in concise, high-level terms, and facilitating mining knowledge at multiple
levels of abstraction. Concept hierarchies are also utilized to form dimensions in

multidimensional databases and thus are essential components for data warehousing

as well[29].

In this chapter, the tasks of data mining are described in section 1.1, where differ-
ent kinds of rules are introduced. In section 1.2, the role of concept hierarchies in the
basic attribute-oriented induction (AOI) and multiple-level rule mining is discussed.
Motivation of this thesis is addressed in section 1.3. Section 1.4 gives an overview of

the thesis.
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1.1 Data Mining and Knowledge Discovery

There have been many advances on researches and developments of data mining, and

many data mining techniques and systems have recently been developed. Different

philosophical considerations on knowledge discovery in databases may lead to differ-

ent methodologies in the development of KDD techniques. Based on the kinds of

knowledge to be mined, data mining tasks may be classified as follows.

(3]
.

. Characteristic Rule Mining, the summarization of the general characteristics of a

set of user-specified data in a database. For example, the symptoms of a specific

disease can be summarized by a set of characteristic rules.

Discriminant Rule Mining, the discovery of features or properties that distin-
guish one set of data, called target class, from some other set(s) of data, called
contrasting class(es). For example, to distinguish one disease from others, 2
discriminant rule summarizes the symptoms that differentiate this disease from

the others.

. Association Rule Mining, the discovery of association among a set of objects, say,

{Ai}2, and {B;}%,, in the formof AjA---A A — BiA---A By. For example,
one may discover that a set of symptoms often occurs together with another set

of symptoms.

Classification Rule Mining, the categorization of the data into a set of known
classes. For example, a set of cars associated with many features may be clas-

sified based on their gas mileages.

. Clustering, the identification of clusters (classes or groups) for a set of objects

based on their attributes. The objects are so clustered that the within-group

similarity is minimized and between-group similarity is maximized based on
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some criteria. For example, a set of diseases can be clustered into several clusters

based on the similarities of their symptoms.

6. Prediction, the forecast of the possible values of some missing data or the dis-
tribution of certain attribute(s) in a set of data. For example, an employee’s
salary can be predicted based on the salary distribution of similar employees in

a company.

7. Evolution Rule Mining, the discovery of a set of rules which reflect the general
evolution behavior of a set of data. For example, one may discover the major

factors which influence the fluctuations of certain stock prices.

The data mining tasks described above are part of widely recognized ones. Other data
mining tasks in the form of different knowledge rules have also been studying. Even
for the above stated rules, there exist special forms or variants in different cases. For
example, quantitative association rule mining is the new development of the general

case association rule mining.

1.2 The Role of Concept Hierarchy in Data Min-
ing

Usually, data can be abstracted at different conceptual levels. The raw data in a
database is called at its primitive level and the knowledge is said to be at a primitive
level if it is discovered by using raw data only. Knowledge discovery at the primitive
level has been studied extensively. For example, Most of the statistic tools for data

analysis are based on the raw data in a data set.

Abstracting raw data to a higher conceptual level, and discovering and expressing



CHAPTER 1. INTRODUCTION 5

knowledge at higher abstraction levels have superior advantages over data mining at
a primitive level. For example, if we have discovered a rule at a primitive level as

follows.

Rule 1: 80% of peoples who are titled as professor, senior engineer,

doctor and lawyer are have salary between $60,000 and $100,000.
After abstracting data to certain higher levels, we may have the following rule.
Rule 2: General speaking, well educated people get well paid.

Obviously, Rule 2 is much conciser than Rule 1, and, to certain extent, convey more
information. What we have done here is to abstract people titled with professor, senior
engineer, doctor and lawer to a higher conceptual level, i.e., well educated people. And

we generalize salary between $60,000 and $100,000 to higher level concept well paid.

Different sets of data could have different abstractions and then organized to form
different concept hierarchies. A formal definition of concept hierarchy will be given

in §3.1.

Concept hierarchies can be used in the processing of all the tasks stated in the last
section. For a typical data mining task, the following basic steps should be executed

and concept hierarchies play a key role in these steps.

1. Retrieval of the task-related data set. Generation of a data cube.

[ S

. Generalization of raw data to certain higher abstraction level.
3. Further generalization or specialization. Multiple-level rule mining.

4. Display of discovered knowledge.
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Before proceeding to the next section, It is worth pointing out that concept hi-
erarchies also have the fundamental importance in data warehousing techniques. In
a typical data warehousing system, dimensions are organized in the form of concept
hierarchies. Therefore, the OLAP operations roll-up and drill-down can be performed

by concept {or data) generalization and specialization.

1.3 Motivation

The incoperation of concept hierarchies into data mining and data warehousing tech-
niques has produced many important research results as well as useful systems. How-
ever most of the effort in research and industry has been put on the utilization of
concept hierarchies. Of course, it is the ultimate goal of all the studies on concept
hierarchies. However, their efficient use should be based upon the complete under-
standing of different aspects and techniqﬁes concerning concept hierarchies. Some of

the problems related to concept hierarchies are listed as follows.

1. Basic terminology is necessary for unifying the study on concept hierarchies.

o

Different attributes in a database may be of different types, and concept hier-
archies for those attributes may also have different types. Thus, what possible
types of concept hierarchies can we have and what are their properties? How

do we specifiy or define those concept hierarchies?

3. Construct a large concept hierarchy is tedious and very time-consurmming even
for a domain expert. Can we generate concept hierarchies automatically? How

do we design generation algorithms and how to use those algorithms?

4. In our mind a concept hierarchy may have a layered structure, in a data mining

system, however, how to store and manipulate it? How to provide a machinisim
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to concept hierarchies to realize efficient use in data mining?

These and other problems let us recognize the fundamental importance of concept
hierarchies and motivate us to conduct an indepth study on concept hierarchy. The
concept hierarchies may be applied to other areas and may have other problems, but

we confine our study in the context of data mining and data warehousing.

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, a brief survey of the
related work on concept hierarchies is given. Some interesting problems concerning

concept hierarchies are also stated there.

In Chapter 3, the preliminaries of concept hierarchy such as its formal definition,
properties, classification, language specification and basic terminology are described

and discussed. These will serve as the base of our study in latter chapters.

In Chapter 4, we focus on the automatic generation of concept hierarchies for
nominal and numerical attributes. The algorithm presented there for the automatic
generation of schema hierarchies is based on the statistics of data in a relation. The
two algorithms proposed for automatic generation of numerical hierarchies are based
on clustering methods with order constraints. Both hierarchical and partitioning clus-
tering techniques are utilized as components in our design of generation algorithms.
The quality and performance comparison of the algorithms gives a guidance for the

selection of different algorithms.

Chapter 5 discusses the techniques for efficient implementation of concept hier-

archies in our new version of DBMiner system. The relational table approach is
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addressed with a comparison with the traditional file operating approach. The en-
coding technique of concept hierarchies and its application substantially improve the
performance of our data mining system. An algorithm is developed for the purpose of
hierarchy encoding. The performance comparison of the employment of encoded hier-
archies against non-encoded ones conducted there shows the evendence of the superior

of our encoding technique.

Chapter 6 considers the application of concept hierarchies in the typical data
mining system, DBMiner. Where we will discuss how to utilize concept hierarchies in
DMQL query processing, concept generalization, handling information loss problems

in use of rule-based hierarchies and display of finial mining results.

Finally, we summarize the thesis in Chapter 7, in which some interesting problems

are addressed for future study.



Chapter 2

Related Work

In the early studies or in areas other than data mining, concept hierarchy is commonly
called taronomy. We adopt the term concept hierarchy because of the popularity of

this term in the community of data mining and knowledge discovery.

In this chapter, we briefly go through the previous work related to concept hier-

archy in the context of data warehousing, data mining and some other areas.

2.1 Concept Hierarchy in Data Warehousing

While operational databases maintain state information, data warehouses typically
maintain historical information. Although there are several forms of schema, e.g.,
star schema and snowflake schema, in the design of a data warehouse, the fact tables
and dimension tables are its essential components. Users typically view the fact tables
as multidimensional data cubes. Usually the attributes of a dimension table may be

organized as ore or more concept hierarchies,
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The use of concept hierarchies in a data warehousing system provides the foun-
dation of operations roll-up and drill-down. Harinarayan, Rajaraman and Ullman{29]
studied the view materialization problem when hierarchical dimensions are involved
in the construction of data cubes. To improve the performance of executing OLAP
operations, a lattice framework is used to express dependencies among views. These
dependencies are actually introduced by using concept hierarchies. A more recent re-
search by Wang and Iyer[49] proposed an encoding method of concept hierarchies for
benefiting the roll-up and drill-down queries of OLAP. The post-order labeling method
used in [49] demonstrates better performance than the traditional join method in the
DB2 V2 system. Different from other researches, this work focuses on the topic of how

to efficiently use concept hierarchies to improve the performance of OLAP queries.

Many commercial products of OLAP systems are available, and Cognos PowerPlay
[42], Oracle Express[8] and MicroStrategy DSS[11] are among the most popular ones.
Since the analysis of historical information for decision support is the ultimate goal
of any data warehousing systems, at least one time dimension should be involved in
the construction of data cubes. Once the time period is specified, a time dimension
is reasonably stable. The flexibility of time schema lets PowerPlay, Express and DSS
put a great deal of effort to handle different time dimensions. One interesting thing is
that, usually numerical attributes are taken as measurements and thus assigned as a
measure or fact in the fact tables. Of course, one can take attribute age as a measure-
ment and obtain some aggregates such as avg(age) over a set of data. However, when
we compare attributes account_balance with age we can find that account_balance has
more meaning of measurement. It could be more useful to build a concept hierarchy
for age and place attribute age in a dimension table. The vacancy of the generation
of concept hierarchies for numerical attributes is the common disadvantage of the

current commercial OLAP products.
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2.2 Concept Hierarchy in Data Mining

The formal use of concept hierarchies as the most important background knowledge
in data mining is introduced by Han, Cai and Cercone[24]. The incorporation of
concept hierarchy into the attribute-oriented induction (AOI) leads AOI to be one
of the most successful techniques in data mining. Concept hierarchies have been
used in various algorithms such as characteristic rule mining[24] {27], multiple-level

association mining[26], classification[31] and prediction.

Association rule and its initial mining algorithm is proposed by Agrawal, Imielinski
and Swami[2] and fast algorithms are reported in Agrawal and Srikant[3]. However,
they do not consider any concept generalization and only discover patterns using
raw data, in other words, the discovered knowledge is solely at the primitive level.
Upon recognizing the importance of concept hierarchies, they proposed algorithms
for mining generalized association rules in Srikant and Agrawal[46], in which concept
hierarchies are used for mining association rules and interesting rule detections. In-
terestingness is an important measure to determine the value of the discovered knowl-
edge. In [21], the complexity of a concept hierarchy is defined in terms of the number
of its interior nodes, and the depth and height of each of these interior node. This
complexity is then used to measure the interestingness of the discovered knowledge

rules.

In the term of structured attributes, Michalski, et al [39, 33] studied the discovery of
generalization rules using concept hierarchies. For numerical attributes, a generation
method called ChiMerge is employed. ChiMerge is proposed by Kerber[36] in order
to discretize numerical attributes such that classification could be done with higher
accuracy. ChiMerge is designed solely for classification in which several classification

attributes must be pre-specified. Otherwise, the x2 value is impossible to be obtained
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if there is no any classification attributes given.

In 1994, Han and Fu{25] reported a study on the automatic generation and dynamic
adjustment of concept hierarchies based on data mining tasks. The role of concept
hierarchies in the attribute-oriented induction is clarified and several algorithms are

developed for the generation and adjustment of concept hierarchies.

The term rule-based concept hierarchy is first used in Cheung, Fu and Han[7] for
the purpose of extending generalization of concepts from unconditional to conditional.
Some difficulties are discussed in using rule-based concept hierarchies and an algorithm

is presented to solve the problems and to complete the AOI procedure.

Date mining and data warehousing are not the two totally independent fields.
Actually, when we look at their internal architectures, we find that they are essen-
tially built on the same data source called data cube. One can take data mining as
an extension of data warehousing by adding many more powerful functionalities or
functional modules for discovering more types of knowledge rules. In this sense, we do
not differentiate the techniques, especially those for concept hierarchies, used in data
mining and data warehousing. As a matter of fact, the integration of the function-
alities of data warehousing and data mining has been implemented in our DBMiner

system. Refer to Han[23] for more details on this issue.

2.3 Concept Hierarchy in Other Areas

Concept hierarchies have long been used in other areas in the name of taxonomies. As
a matter of fact, many important research results on data mining are from machine
learning and statistics, etc. Concept hierarchies play an important role in knowledge

representation and reasoning[38, 5]. As the size of concept hierarchies increases, there
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is a growing need to represent them in a form that is amenable to performing op-
erations efficiently. Encoding hierarchies in a manner that permits quick execution
of such operations has been a goal in logic programming and other areas of com-
puter science[14]. Many encoding schemes have been proposed such as in Dahl[9, 10],
Brew(5] and Ait-Kaci, et al [4]. Although those encoding schemes are successful in
their particular fields, research is ongoing in the quest for general purpose, compact,

flexible and efficient encoding techniques.

Interesting studies on the automatic generation of concept hierarchies for nominal
data can also be seen in other areas, which can be categorized into different ap-
proaches: machine learning approaches[40, 15}, statistical approaches[2], visual feed-

back approaches{35], and algebraic (lattice) approaches[41].

Machine learning approach for concept hierarchy generation is a problem closely
related to concept formation. Many influential studies have been performed on it,

including Cluster/2 by Michalski and Stepp[40], COBWERB by Fisher[15], hierarchical
and parallel clustering by Hong and Ma[30].

As a fundamental component in the automatic generation of concept hierarchies
which will be discussed in Chapter 4 of this thesis, data clustering techniques have
been used in many field such as biology, social science, planning and image processing
(see [43]). Although its statistical background is not that strict, numerous researches
on clustering have been conducted since Sokal and Sneath[45] introduced methods for
numerical taxonomy which made a big progress from subjectivity to objectivity. Clus-
ter analysis is highly empirical. Different methods can lead to different grouping[l}.
Furthermore, since the groups are not known a prior, it is usually difficult to judge
whether the results make sense in the context of the problem being studied. That is
also the reason we reconsider the particular clustering methods when order constraints

are involved in the automatic generation of numerical hierarchies.
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2.4 Summary

Some related work on the research of concept hierarchy in the context of data ware-
housing, data mining and some other areas such as machine learning, statistics, plan-
ning and image processing are summarized. A great deal of those researches is con-
cerning the utilization of concept hierarchies in different algorithms. The research
work on the generation and techniques for efficient implementation of concept hierar-
chy is relatively little. These are the major topics of the thesis and will be studied in

the rest chapters of the thesis.



Chapter 3

Specification of Concept

Hierarchies

The importance of concept hierarchies stimulate us to conduct a systematic study on
them. In this Chapter, we give a formal definition of concept hierarchy, and study
its properties in section 3.1. Some basic terms such as nearest ancestor, level name,
schema level partial order are introduced. In section 3.2, the portion of DMQL for
specifying concept hierarchies is described. In section 3.3, concept hierarchies are
categorized into four types based on the methods of specifying them. Finally, we

summarize this chapter in section 3.4.

3.1 Preliminaries

The definition of concept hierarchy is introduced in this section. Some basic terms

are also discussed.

In traditional philosophy, a concept is determined by its extent and intent, where

15
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the extent consists of all objects belonging to the concept while the intent is the
multitude of all attributes valid for all those objects. A formal definition of concept
can be found in [50]. For the purpose of data mining and knowledge discovery, we
simply take a concept as a unit of thoughts, expressed as a linguistic term. For
example, “human being” is a concept, “computing science” is a concept, too. Here we
do not explicitly describe the extent and intent of a concept and assume that they

can be reasonably interpreted in the context of a particular data mining task.

Definition 3.1 (Concept hierarchy) A concept hierarchy H is a poset (partially
ordered set) (H, <), where H is a finite set of concepts, and < is a partial order ‘on
H.

There are some other names for concept hierarchy in literatures, for example, taxonomy

or is-a hierarchy [46, 48], structured attribute [33], etc.

E F G D H 1
D C
F G
C B
A B A A B C DE
() ) 4

Figure 3.1: Four sample concept hierarchies.

Example 3.1 Since posets can be visually sketched using Hasse diagrams{20], we can
also use such kind of diagrams to express concept hierarchies. Figure 3.1 illustrates

four different concept hierarchies.

A partial order on set H is an irreflective and transitive relation[20}.
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Definition 3.2 (Nearest ancestor) A concept y is called the nearest ancestor of
concept z if z,y € H with z <y, = # y, and there is no other concept z € H such

that z < z and z < y.

Definition 3.3 (Regular concept hierarchy) A concept hierarchy H = (H, <) is
regular if there is a greatest element in H and there are sets H;, Il = 0,1,...,(n — 1),
such that
H= nolﬂl and Hi(VH;=0 for i#j,
=0

and, if a nearest ancestor of a concept in H; is in H;, then the nearest ancestors of

the other concepts in H; are all in H;.

Example 3.2 Following definition 3.3, we find that concept hierarchies {2) and (3)
in Figure 3.1 are regular concept hierarchies. For concept hierarchy (3), the greatest
element is N and we have Ho = {N}, H, = {L,M}, H, = {H,I,J,K} and H; =
{A,B,C,D,E,F,G}.

From now on, we will focus our discussions on regular concept hierarchies and call

regular concept hierarchy as concept hierarchy or, simply, hierarchy.

Usually, the partial order < in a concept hierarchy reflects the special-general
relationship between concepts, which is also called subconcept-superconcept relation
(see [50, 47]). Another important term for describing the degree of generality of
concepts is level number. We assign zero as the level number of the greatest element
(called most general concept) of H, and the level number for each of the other concepts
is one plus its nearest ancestor’s level number. A concept with level number [ is also

called a concept at level .

Due to the layered structure of a hierarchy as described in definition 3.3, we notice
that all the concepts with the same level number must be in set H; for one and ounly

one ([, {=0,...,(n—1). We thus simply call H; as level { of the concept hierarchy.
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Now, let us define function g : H — H as

z if z € Hy,
g(:r)={ °

y if y is a nearest ancestor of z.

If we impose a constraint that function g is single valued, that is, for any z, y € H,
if gi(x) # gi(y) then z # y, then the Hasse diagram of a concept hierarchy is actually
a tree. Therefore, all the terminology for a tree such as node, root, path, leaf, parent,
child, sibling etc. are applicable to the concept hierarchy as well. It is not difficult to
see that g(H;) C H;—; foreach 1 =1,2,...,(n —1). In the case that g(H;) = H;_; for
each [ =1,2,...,{n — 1), we conclude that every node except the ones in H,_; has

at least one child.

Definition 3.4 (Level name) A level name is a semantic indicator assigned to a

particular level.

If level numbers are already assigned to the levels of a hierarchy, a simple way to
figure out a level name to each level is to combine word level with its level number.

For example, we assign level2 as the level name of the level with level number 2.

Based on the above discussion, when we talk about a level in a concept hierarchy,

we could use a set of concepts, or the level name assigned to it without any difference.

Example 3.3 A concept hierarchy location for provinces in Canada is shown in Fig-
ure 3.2, which consists of three levels (n = 3) with level names country, region and
province, respectively. We have Hy={Canada}, H, = {Western, Central, Maritime},
and H, = {BC,AB,MT,SK,ON,QU,NS,NB, NF, PEI}, and relation < is defined
as

BC < Western < Canada;

AB < Western < Canada;
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Canada country
Western Central Maritime region
BC AB MB SK ON QC NS NB NF PE province

Figure 3.2: A concept hierarchy location for the provinces in Canada.

MB < Western < Canada;
SK < Western < Canada;
ON < Central < Canada;
QC < Central < Canada;
NS < Maritime < Canada;
NB < Marttime < Canada;
NF < Maritime < Canada;
PE < Maritime < Canada;

All the other expressions for this relation, such as BC < Canada, ON < Canada,

can be derived from the above expressions using transitivity of the relation. a

Definition 3.5 (Schema level partial order) A schema level partiai order of a con-
cept hierarchy H is a partial order on S, the set of level names of concept hierarchy

H.
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Let us derive a relation < on S from the relation < on H as follows: There is a
relation between level names a and b, i.e. a < b, if there are two concepts z and y
such that z is in H; whose level name is a, y is in H; whose level name is b, and a < b.

It is not difficult to prove the following

Theorem 3.1 The derived relation < is not only a partial order on S, but a total

order as well.

For example, the derived schema level partial order on the set of the level names in
Example 3.3 is

province < region < country.

On the other hand, if a partial order is given on the set {H;}}7, we can define
a partial order on set Uiy H;. This is convenient especially when we are concerned
with a relational database, in which H; could be a set of values or instances of an
attribute for each [. A possible relationship between a pair of concepts from different

levels can be naturally created if they belong to the same tuple in a relational table.

Based on this observation, we will use only one notation < to denote a partial
order defined for a concept hierarchy regardless of it is defined on the set of concepts
or the set of levels (or level names). Accordingly, a concept hierarchy can be specified

on either schema level or instance level.

Example 3.4 A concept hierarchy date can be defined as:
day < month < quarter < year.

This hierarchy is basically regarded as a schema hierarchy which will be discussed
in section 3.3. Here we actually define a schema level partial order from which a

equivalent partial order for the set of the instances of these level names can be derived.
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For example, the following two expressions demonstrate the application of the partial

order on the set of instances of date values.

Jan.12,1996 < January 1996 < Q1 1996 < 1996,

Jul.25,1997 < July 1997 < @3 1997 < 1997. )

In general, functions ¢; for { = 1,2, ..., n can also be multi-valued. In this case, the
concept hierarchy cannot be illustrated as a tree. A lattice-iike graph is employed to

visually describe it. More detailed discussion can be seen in §3.3.4 and §6.4.

Example 3.5 A lattice-like hierarchy science is shown in Figure 3.3. where the dis-

cipline data mining has three parents A[l, database and statistics. a
all science
compyting sci. math & stats physics
/N
Al . - . database statistics .. n .-

s+ + .« datamining ...
Figure 3.3: A lattice-like concept hierarchy science.
To ease the latter discussion, we need the following

Definition 3.6 (Root-leaf path) A root-leaf path in a concept hierarchy H is a
path from a node in Hy (called root) to a node in H,_, (called leaf).
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3.2 A Portion of DMQL for Specifying Concept

Hierarchies

A data mining query language, DMQL, has been designed and implemented in our
data mining system, DBMiner, for mining several kinds of knowledge in relational
databases at multiple levels of abstraction [28]. It can be employed to specify different
mining tasks such as mining characteristic rules, discriminant rules, association rules,
classification rules and prediction rules. DMQL can also be used for specifying and

manipulating concept hierarchies.

This section describes the portion of DMQL for the specification of hierarchies.

The applications of it will be illustrated using examples in the next section.

The top-level syntax of DMQL for specifving concept hierarchies is shown in Fig-

ure 3.4.

(hierarchy definition) ::= define hierarchy (hierName) {on (relName)] as {hierDef)
(hierDef) ::= {atttNameList) [where (condition)]
| (levelName): (setValue) (partialOrder)
(levelName): (oneValue) [if (condition)]
| (usingOperation)

(attrNameList) ;= (attribute){, {(attribute)}

(attribute) ::= [(dbName)..] [(relName).]{attrName)
(setValue) ::= {oneValue){, (oneValue)}

(oneValue) = (string)

(partialOrder) =<

Figure 3.4: Top-level DMQL syntax for defining concept hierarchies

The syntax of the DMQL is defined in an extended BNF grammar, where ¢[ |”

represents Q or one occurrence, “{ }” represents 0 or more occurrences, and the words
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in sans serif font represent keywords.

3.3 Types of Concept Hierarchies

Concept hierarchies can be categorized into four basic types: schema, set-grouping,
operation-derived and rule-based concept hierarchies. The following subsections give
detailed discussion of these types of concept hierarchies concerning their definitions

and language specifications.

3.3.1 Schema hierarchy

This kind of hierarchy is formed at the schema level by defining the partial order to
reflect relationships among the attributes in a database. For example, the attributes
house_number, street, city, province, and country form a partial order at the schema
level,

house_number < street < city < province < counitry.

For a concrete address, such as “351 Powell street, Vancouver, BC, Canada”, its
partial order is determined by the partial order at the schema level for the whole data
relation, and there is no need to specify the generalization or specialization paths for

each record in that data relation.

The following example shows how to use DMQL to define schema hierarchies.

Example 3.6 The home address of the attributes of a relation employee in a2 company

database is defined in DMQL as follows.

define hierarchy locationHier on employee as

[house_number, street, city, province, country]
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This statement defines the partial order among a sequence of attributes: house_number
is at one level lower than street, which is in turn at one level lower than city, and so on.
Notice that multiple hierarchies can be formed in a data relation based on different

combinations and orderings of the attributes.

Similarly, a concept hierarchy for date(day, month, quarter, year) is usually pre-
defined by a data mining system, which can be done by using the following DMQL

statement.

define hierarchy timeHier on date as

[day, month, quarter, year]

A concept hierarchy definition may cross several relations. For example, a hier-
archy productHier may involve two relations, product and company, defined by the

following schema.

product(product_id, brand, company, place_made, date_made)

company(name, category, headquarter_location, owner, size, asset, revenue)

The hierarchy productHier is defined in DMQL as follows.

define hierarchy productHier on product, company as
[product_id, brand, product.company, company.category]

where product.company = company.name

In this definition, an attribute name which is shared by two relations has the
corresponding relation name specified in front of the attribute name using the dot
notation as in SQL, and the join condition of the two relations is specified by a where

clause. a
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An alternative to define a hierarchy involving two or more relations is to define a view

using the relations and where clause, on which the hierarchy is then specified.

Although a hierarchy defined at the schema level determines its partial order and
the generalization and specialization directions, for the purpose of executing a data
mining task, we need to instantiate this schema hierarchy over the related data in a
database to get a concrete or instance hierarchy. The partial orders at both schema
level and instance level should be stored for the purpose of data mining. Some of the

related issues will be discussed in Chapter 5.

3.3.2 Set-grouping hierarchy

This kind of hierarchy is formed by defining set grouping relationships for a set of
concepts (or values of attributes) in order to reflect semantic relationships character-
istic to the given application domain. It is in this sense that Michalski {39] introduced
structured attribute to name this kind of concept hierarchies. A set-grouping hierar-
chy is also called a instance hierarchy because the partial order of the hierarchy are
defined on the set of instances or values of an attribute. We prefer set-grouping to

others because it has more operational sense.

Example 3.7 The concepts freshman, sophomore, junior, senior, undergraduate,
and M.Sc, Ph.D, graduate, which are values of the attribute status in a university

database, form a hierarchy statusHier, such as

{freshman, sophomore, junior, senior} < undergraduate

{M.Sc, Ph.D} < graduate
{undergraduate, graduate} < allStatus
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Here we use the notation that {4, A,, ..., At} < B is equivalent to that A; < B for
each ¢ = 1,2,..., k. This hierarchy can also be visually expressed in Figure 3.5.

allStatus
graduate undergraduate
M.Sc Ph.D freshman sophomore junior senior

Figure 3.5: A set-grouping hierarchy statusHier for attribute status
The following statement gives the specification of this hierarchy in DMQL.

define hierarchy statusHier as

level2: {freshman, sophomore, junior, senior} < levell: undergraduate;

level2: {M.Sc, Ph.D} < levell: graduate;

levell: {graduate, undergraduate} < level0: allStatus

A set-grouping hierarchy can be used for modifying a schema hierarchy or another
set-grouping hierarchy to form a refined hierarchy. For example, one may define a set

grouping relationship within WesternCanada as follows:

{AB, SK, MB} < Prairies
{BC, Prairies} < WesternCanada

These definitions add a refined layer to the existing definition in the schema hier-

archy location shown in Figure 3.2.
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3.3.3 Operation-derived hierarchy

This kind of hierarchy is defined by a set of operations on the data. Such operations

can be as simple as range value comparison, such as
{20, 000.00, ...,39,999.99} C 20 ~ 40K,

or as complex as a data clustering and distribution analysis algorithm, such as deriv-
ing a hierarchy of three levels for university student grades based on the data value

clustering and distribution.

The following example illustrates how to use DMQL to define a hierarchy using a

predefined algorithm.

Example 3.8 The GPA values of students are real numbers ranging from 0 to 4.
However, the GPA values are usually not uniformly distributed, and it is preferable

to define a hierarchy gpaHier by an automatic generation algorithm.

define hierarchy gpaHier on student as

AutoGen(AGHC, gpa, 4)

This statement says that a default algorithm AGHC which will be discussed in the
next chapter is performed on all the GPA values of the relation student, and 4 is the

value of fan-out. m]

Operation-derived hierarchies are usually defined for numerical attributes. Chap-
ter 4 will address more on the automatic generation of numerical concept hierarchies

based on different clustering principles.
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3.3.4 Rule-based hierarchy

The concept hierarchies defined above have the characteristics that, for each concept,
there is only one higher level correspondence, hence a concept can be generalized to
its higher level correspondence unconditionally. For example, in a concept hierar-
chy gpaHier defined for the attribute GPA of database student, a 3.6 GPA (in a 4
points grading system) can be generalized to a higher level concept, say, excellent.
This concept generalization depends only on the GPA value but not on any other
information of a student. However, in some cases, it may necessary to represent the
background knowledge in such a way that concept generalization would depend not
only on the concept itself but also on other conditions. The same 3.6 GPA may only
deserve a good, if the student is a graduate; and it may be ezcellent, if the student is

an undergraduate.

A rule-based hierarchy is defined by a set of rules whose evaluation often involves
the data in a database. A lattice-like structure is used for graphically describing this
kind of hierarchies, in which every child-parent path is associated with a generalization

rule.

Example 3.9 Suppose we have a database university, in which a relation student is
defined by the schema student(name, status, sex, major, age, birthPlace, GPA). A
rule-based concept hierarchy is shown in Figure 3.6 for its graphical expression and
Figure 3.7 for its generalization rules. Using DMQL, we can define this hierarchy by

statements such as:

define hierarchy gpaHier on student as
level3: “2.0~2.5" < level2: average
if status = “undergraduate”
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we strong
R1 R R1 13
poor average good excellent
R1 R R4 R R R8
0.0~2.0 2.0~25 2.5~30 3.0~-35 3.5-~38 3.8~4.0

Figure 3.6: A rule-based concept hierarchy gpaHier for attribute GPA

Ry : {0.0~2.0} — poor;

R, : {2.0~2.5} A {graduate} — poor;

R3 : {2.0~2.5} A {undergraduate} — average;
Ry : {2.5~3.0} — average;

R : {3.0~3.3} — good;

Re : {3.5~3.8} A {graduate} — good;

R; : {3.5~3.8} A {undergraduate} — excellent;
Rg : {3.8~4.0} — excellent;

Ry : {poor} — weak;

Ryo: {average} A {senior, graduate} — weak;
Ryq: {average} A {freshman, sophomore, junior} — strong;
Riy: {good} — strong;

Ry3: {excellent} — strong.

Figure 3.7: Generalization rules for concept hierarchy gpaHier.

For the seek of simplicity, we have adapt the following convention in the thesis for
numerical ranges: a value z of an attribute A is in range “a ~ §” if a < z < b. The
only exception is when b is the maximum value of the attribute, in that case we can

havea <z < 6.

Sometimes it is possible to convert the lattice-like structure of a rule-based hier-

archy to a tree-like correspondence. Assume that each of the generalization rules is
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in the form of

A(z) A B(z) — C(z)

that is, for a tuple z, concept A can be generalized to concept C (higher level at-
tribute values) if condition B can be satisfied by z. If B is also a value of certain
attribute, we can take A A B as a new concept and the above rule is actually a
subconcept-superconcept relationship. Therefore, a tree-structured concept hierarchy

can be derived from the given generalization rules.

Consider again the above hierarchy gpaHier, we can see that, besides gpa, there
is one more attribute status involved in the generalization rules. With the assistance
of hierarchy shown in Figure 3.5, we can replace the higher level concepts of status
with their corresponding leaf level concepts and transform one generalization rule into

several ones. For instance, rules R and R;; can be split into

Rio.1 : {average} A {senior} — weak;

Ry : {average} A {M.Sc} — weak;

Rios : {average} A {Ph.D} — weak;

Ri1 : {average} A {freshman} — strong;
Ry, : {average} A {sophomore} — strong;

Ry 3 : {average} A {junior} — strong.

The other rules can be dealt with similarly. Finally there are 30 detailed generalization

rules.
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Figure 3.8: A variant of the concept hierarchy gpaHier.
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Figure 3.8 shows the hierarchy derived from those rules where we use fr, so, ju
and se to represent freshman, sophomore, junior and senior, respectively, and every
concept (node) is a pair of concepts for attributes gpa and status. The sign “-” means
any value of an attribute. This hierarchy is equivalent to the one shown in Figure 3.6
in the sense that we will obtain the same result if we generalize a tuple using these
two hierarchies separately. This kind of transformation from a rule-based hierarchy
to a equivalent but non-rule-based one is important in order to apply our encoding
algorithm which will be addressed in Chapter 5. Another advantage of the splitting
is that we can avoid the information loss problems (see [7]) encountered during the

attribute-oriented induction. We will return to this issue in Chapter 6.

Finally, it is necessary to notice that, in practical applications, a concept hierarchy
can be composited as a mixed type of hierarchy which could be formed by merging

several different types of concept hierarchies described in the above three subsections.

3.4 Summary

As the base of our study on concept hierarchies, we first defined and discussed some
terminology and characteristics of concept hierarchies. The top-level data mining
query language (DMQL) portion for specifying concept hierarchies is stated and illus-
trated by examples for defining different hierarchies. Concept hierarchies are classified
into four types, i.e., schema, set-grouping, operation-derived and rule-based, each of

which is discussed concerning their characteristics and specifications.



Chapter 4

Automatic Generation of Concept

Hierarchies

As we mentioned in earlier chapters that concept hierarchies could be provided by
knowledge engineers, domain experts or users. The effort of constructing 2 concept
hierarchy is mostly depends on the size of the hierarchy. It is feasible to manually
construct a hierarchy of small size. However, it could be too much work for a user or an
expert to specify every concept hierarchy, especially large sized ones. Moreover, some
specified hierarchies may not be desirable for a particular data mining task. Therefore,
mechanisms should be introduced for automatic generation and/or adjustment of
concept hierarchies based on the data distributions in a data set. The data set could
be the whole database or a portion of it, or the whole set or a portion of the set
of the data relevant to a particular mining task. The former is independent of a
particular mining task and is thus called a static data set or a database data set;
whereas the latter is generated dynamically (after the mining task is submitted to
a mining system), and is thus called a dynamic data set or a query-relevant data set.

In this context, the generation of a concept hierarchy based on a static (or dynamic)

33
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data set is called static (or dynamic) generation of concept hierarchy.

In this chapter, algorithms are proposed for the automatic generation of nominal
hierarchies, i.e., concept hierarchies involving nominal (or categorical) attributes, in
section 4.1 and numerical hierarchies, i.e., concept hierarchies involving numerical at-
tributes in section 4.2. The analysis and comparison for the generation algorithms
of numerical hierarchies are given in §4.2.4. All these algorithms can be applied to

either static or dynamic data sets.

4.1 Automatic Generation of Nominal Hierarchies

Attributes can be classified into nominal and numerical types. For example, attribute
profession is nominal (or called categorical), whereas attribute population is numerical.
In this section we discuss the automatic generation of concept hierarchies for nominal

attributes and leave the same problem for numerical attributes to the next section.

We base our study on the assumption that a set nominal attributes are given,
and the problem is to figure out a partial order over this set based on the given
data relation (or view) in a database. An algorithm is proposed in §4.1.1 and some

discussion on the date/time hierarchies is given in §4.1.2.

4.1.1 Algorithm

Intuitively, based on the structure of a concept hierarchy, we may say that the hierar-
chy is reasonable if any level H; has fewer nodes (or concepts) than each of its lower
levels. This consideration leads the following algorithm to find out the hidden partial

order on a set of nominal attributes.
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Algorithm 4.1 {(Automatic generation of nominal hierarchy) Work out a par-
tial order on a set of attributes based on the numbers of distinct values for the subsets

of the atiributes in a given database.

Input: A set of nominal attributes § = {A;}%,, and a relation B in a database.

Output: A partial order < over the set S, or equivalently, reorganize S to S =
{B:}™, such that By, < Bp_1 < --- < B,.

Method: Execute the following steps.

1. Let Q := §, find an attribute B; € Q such that the number of distinct

values of By in R is the minimal among all the attributes in §;

2. while (k < m) {
Q:=0Q— {Bx};
minNum := oc;
for (each attribute A; in Q) {
count the number of distinct tuples with respect to attribute
list By, B, ..., Bk, A; . Denote this number by myNum;
if (minNum > myNum), then {
minNum := myNum;
Bryr = A
} // end of if
} //end of for loop
k:=k+1;
} //end of while loop

3. Assign the only attribute in (2 to Bp,. a
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The major operations in the above algorithm can be implemented by SQL func-
tionalities. For example, the operation count the number of distinct tuples in R with

respect to attribute list B;, B,, ..., Bi, A may be fulfilled by the following SQL query:

SELECT DISTINCT Bi, B2, ..., Bk, A
FROM R

and count the number of the retrieved tuples.

Theorem 4.1 A partial order on a set S of attributes can be worked out by Algo-
rithm 4.1 in O(m3nlogn) time, where m = |S|, and n is the total number of tuples

with respect to the attribute set S in a database table.

Proof Assume that there are no indices on the target database table. It is easy to
see that the time for retrieving distinct tuples with respect to a set of ¢ attributes is
(tnlogn). Since, for each t = 1,2,...,m, we need to execute this kind of retrieval

(m —t) times, the total time is

m-—1

> [(m —t)O(tnlog n) + (m — t)] = O(m®nlogn).

t=1
Thus the theorem follows. ]

It is important to point out that users have the freedom of adjusting the partial

order obtained from the algorithm because they may have a better understanding
about the database schema. A partial order worked out from the semantics of those
attributes may result in a better interpretation for the final mining results. Base on

the same reason, sometimes, it may not be necessary to apply the above algorithm

and use the initially assigned order on a set of attributes as the partial order.

Example 4.1 Consider database CITYDATA consisting of statistics describing in-

comes and populations, collected for cities and counties in the United States. We can
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find that a schema hierarchy could be formed using attributes state, areaname and
county which are attributes in relation cif_pop. By applying the algorithm 4.1, we
obtain the partial order: areaname < county < state, which is consistent with the

real geographic natures in the United States.

4.1.2 On date/time Hierarchies

Date/time hierarchies are special schema ones and are useful especially for business
data mining applications, where people may need to obtain the summary information

over different time categories.

Usually, date/time categories include day, week, month, quarter, year, etc. The
data in a database relation may involve one or several datetime attributes. Once
the user has determined the attributes for defining the schema hierarchy, the partial
order is not difficult to decide since we only need to compare the attributes given by
the user with the predefined partial order and rearrange, if necessary, the order of
the given attributes. The partial order of a date/time hierarchy can be identified by
assigning a positive number to each attribute and a higher level is given a relatively

smaller number than that for any lower levels.

To generate a date/time hierarchy, we need to use so called date/time function
for each level. For example, there should be three functions for generating values
for week, month and quarter if a value, say, “May 28 1995 1:34PM?", is given for a

datetime attribute.

Obviously, month is not a parent of week in strict sense because a particular week
may across two months. Our relational table approach which will be addressed in the

next chapter can be used to solve this problem naturally.

The manipulation of date/time hierarchies should be flexible such that it can



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 38

handle irregular time period, for example, fiscal year, semester year, etc., are usually
employed in different companies or institutions, the resulting hierarchies should be

able to characterize those cases.

4.2 Automatic Generation of Numerical Hierar-

chies

Numerical attributes occur frequently in databases. Generation of numerical hier-
archies might be able to avoid user’s subjectivity and save data mining cost. In a
numerical concept hierarchy, each node or concept is actually a range or interval. A
higher level node (which is semantically more general than some lower level concepts)
is formed by merging one or more lower level nodes. Therefore, the problem of the
automatic generation of concept hierarchies for numerical attributes can be divided

into the following subproblems:

1. How to form the leaf level nodes? This is equivalent to the problem of descretiz-
ing the numerical attribute into a number of subintervals. One method called
equal-width-interval is to partition the whole interval of the attribute into equal
width subintervals. The width or number of these subintervals can be adjusted
in order to obtain reasonable granularity of the partition. Because the leaf level
can be replaced with any higher level, finer partition of the whole interval will
give us good feature of the row data distribution. However, more computational
time is needed in the finer partition case. An alternative, called equal-frequency-
interval, is to choose the interval boundaries so that each subinterval contains

approximately the same number of values of the attribute.
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2. How to merge the leaf level nodes to form higher level nodes? Any higher
level node is obtained by merging some leaf nodes. One constraint is that
only contiguous nodes could be merged. The methods equal-width-interval or
equal-frequency-interval could also be used to produce higher level nodes. Other
methods could be designed based on different purposes of using the numerical
hierarchies. In §4.2.1, a basic algorithm for generating numerical hierarchies is
described. An algorithm based on hierarchical clustering with order constraint
is proposed in §4.2.2, and another algorithm based on partitioning clustering is
developed in §4.2.3. Performance analysis and quality comparison are presented

in §4.2.4.

4.2.1 Basic Algorithm

Han and Fu[25] reported an algorithm for the automatic generation of numerical
hierarchies. The idea is based on the consideration that it is desirable to present
rules or regularities by a set of nodes with relatively even data distribution, i.e., not
a blend of very big nodes and very small nodes at the same level of abstraction. Thus
the equal-width-interval method is used for producing leaf level nodes and a histogram
is produced. The higher levels are obtained using a method similar to that of the
equal-frequency-interval method. The algorithm provides a simple and efficient way of
generating numerical hierarchies. The computational complexity of the algorithm is
O(n), where n is the total number of bins of the histogram. For latter reference, this

algorithm is called AGHF.

Example 4.2 Suppose a histogram has been produced as shown in Figure 4.1 for
attribute A. Applying the algorithm AGHF we generate a concept hierarchy shown in

Figure 4.2. If we look at the count for each node at level 1, we observe that the count
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is 14 for node “0 ~ 507, 19 for node “50 ~ 90”7, and 17 for node “90 ~ 120”. This is

an approximately even distribution of counts. a

0 20 40 60 80 100 120

Figure 4.1: A histogram for attribute A.

Figure 4.2: A concept hierarchy for attribute A generated by algorithm AGHF.
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4.2.2 An Algorithm Using Hierarchical Clustering

The algorithms equal-width-interval, equal-frequency-interval and AGHF described above
in most cases can produce reasonably good concept hierarchies for numerical at-
tributes. However, there are many situations where they perform poorly. For ex-
ample, if attribute salary is divided up into 5 equal-width intervals when the highest
salary is $500,000, then all people with salary less than $100,000 would wind up in
the same interval. On the other hand, if the equal-frequency-interval methods is used
the opposite problem will occur: everyone making over $50,000 per year might be put
in the same category as the person with the $500,000 salary (depending on the dis-
tribution of salaries). With each of these methods it would be difficult or impossible
to lean certain knowledge. The primary reason that these methods fail is that they
ignore the grouping structures hidden in the raw data, making it very unlikely that
the interval boundaries just happen to occur in the places that best facilitate accurate

categorization.

Kerber(36] proposed an algorithm ChiMerge to descretize a numerical attribute by
trying to capture the natural structure in the data set. But the algorithm is used
only for classification because certain number of classification attributes should be

available to execute the algorithm.

For the purpose of generating concept hierarchies for different data mining tasks,
we develop in this subsection an algorithm based on hierarchical data clustering with
order constraints. First, we give a brief description of a method of clustering a set of
objects with order constraints. Then our algorithm is presented with some discussion

and illustration by examples.

Clustering with Order Constraint



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 42

The problem of clustering involves the partitioning of a set of objects into groups or
clusters in order to maximize the homogeneity within each group and to also maximize
the discrimination between groups. See [19], [43] and [13] for detailed discussion of
clustering algorithms and their applications. By obtaining clusters we expect to figure
out the hidden structures of the data. Two types of clustering approaches are available
in literature: hierarchical and partitioning ones. The algorithms proposed in this and

next section are based on these two approaches, respectively.

As addressed before, we can only merge contiguous intervals (or nodes) to form
a higher level nodes in a numerical hierarchy. If we take an interval as an object, in
the terminology of clustering, we confront the problem of clustering a set of objects
with order constraint (see [19} and [37]). For example, given a set of nonoverlapped
intervals Oy = (0,2), O, = [2,3), 03 = [4,7) and O, = [7,9], we are actually given
order “<” which is defined as: 0, < Oy < O3 < Q4. During the clustering, object Oy
can be merged only with O,, but O, cannot be merged with O3 without the involving

of 02.

Some algorithms for clustering with order constraint are developed in [19] and
[37]. The algorithm we will utilize in the automatic generation of concept hierarchies
is outlined below. Refer to Lebbe and Vignes[37] for a detailed discussion of the
algorithm.

Assume that there is a set of IV objects on which an order between objects is
N

also given. Thus the N objects are denoted by O = {o;};2, where the indices of the
objects are the representation of the order. A hierarchical clustering H on the set O
of N objects is defined as a set of clusters, that is H = {c;}ML,, where M is a positive

integer and c; is a set of objects, such that
(1) Oe€8#;
(2) 0€0 = {o} € H;



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 43

B) cocde€eH = cnde{dcc).
The quality of the clustering is defined as
g(H) =Y ¢'(c)

c€H
where ¢’(c) is a similarity measure on cluster ¢. Notice that there are a large number

of similarity measures proposed[13] and the use of different measures could produce
different clustering results. In the discussions below we employ the sum of squared
deviation which has been widely used in clustering researches and applications. Let
@ = [qi;] and P = [p;;] be the matrices for storing the qualities and splitting positions

respectively. The algorithm is described as follows:

Algorithm 4.2 (Hierarchical clustering with order constraint)
for (i=1;e < N;i++) {
0i = q (cii);
pii=0; }// end for ¢
for (k=2k < Nik++4) {
for(i=Li< N—-k+1;:4+4){
j=ti+k—1;
qi; = 00
for(l=41<j—-1;14+4){
if giv + qre15 < gi5 {
Qi; = @it + Qi1
pi; =14} // end if
} // end for !
gij = qij + q (¢i3);
} // end for i
} // end for k
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Generation Algorithm

After applying algorithm 4.2 to a set of objects with order constraints, we actually
obtain two matrices P and Q. The resultant clustering is formed by tracking back in
matrix P. Because only two clusters are involved in each merge, the final clustering
of the algorithm is a binary tree. This tree might be used as our concept hierarchy
directly in data mining. However, this kind of concept hierarchy may have a large
number of levels, and thus cannot make the drill-down or roll-up focus on interesting

results quickly. Moreover, this kind of concept hierarchy may need much more storage.

Usually, a parameter called fan-out[32] is specified by for a tree and this param-
eter can be used in the generation of a desirable concept hierarchy. The algorithm
presented below is based on the data clustering algorithm 4.2 and reconstruction of
the clustering result such that the fan-out condition is satisfied for each node except

the leaf nodes at the bottom level.

Algorithm 4.3 (AGHC) Automatic generation of a numerical concept hierarchy

based on the clustering of values of a numerical attribute.

Input: A histogram of attribute A; a fan-out F.
Output: A concept hierarchy H with fan-out F for attribute A.
Method: Execute the following steps.

1. Use algorithm 4.2 to obtain a hierarchical clustering on a set of bins derived

from the histogram. Denote by H the resultant clustering.

o

Take the whole interval [min, maz] of attribute A as the top level node of

H; k= 0; mo :=1; Hy := {Ag, } 24 is the set of nodes at level k.

=1
3. Hi4r = Hg; mryr := my. Make node Ay, i =1,...,my, in Hyy, the child

of node Ay, in Hi.
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4. Select a nonleaf node, say Aj, from Hj,,, which has the greatest quality
among all the nodes in Hyy; expand Hi,; by replacing Ag, with its two
children in A and make the parent of Ay, the parent of these two children;

Meyy 1= Miyr + 1.

5. Repeat the above step until the fan-out condition is satisfied for each non-

leaf node in Hj except those whose children are all leaf nodes of H.

6. If each node in Hyy, is a leaf node of H, stop; otherwise k := k + 1, go to
step 3. a

Theorem 4.2 The computational complezity of algorithm AGHC is O(n®), where n

is the number of bins of the given histogram for attribute A.

Proof First of all, consider algorithm 4.2. Since for each group of consecutive bins
from bin z to bin j, wheret = 1,2,...,n; 7 =74+ 1,i + 2,...,n, we have to examine
(7 — 1) positions and perform a comparison, the time for detecting the best position
is 2(j — 1). The computation of quality for this group is of time 4(j — ). Thus the
time for process this group is 6(j — ¢} and the total time for executing algorithm 4.2
is

S 3 oo = 8[54

=1 j=i+1 i=1

= n° + lower order terms

= O(n3) (41)

Now, let us examine step 2 through 6 of the algorithm 4.3. Since we need to perform
F’ operations to form the nodes at level 7, the total time for these steps is proportional

to
logp n—1

> F=0(n) (4.2)

j=0



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 46

Summing up the above calculations (4.1) and (4.2), we conclude that the time com-

plexity of algorithm AGHC is O(n3). a

Example 4.3 Consider the histogram shown in Figure 4.1 for attribute A. Applying
algorithm AGHC we produce a concept hierarchy illustrated in Figure 4.3. a

Figure 4.3: A concept hierarchy for attribute A generated by algorithm AGHC.

4.2.3 An Algorithm Using Partitioning Clustering

Based on the distribution of values of an attribute, a concept hierarchy can be gen-
erated by reconstructing or adjusting the clustering result for the set of bins in a his-
togram of the attribute as described in the last subsection. The generated hierarchy
is reasonably good in the sense that a natural grouping of data will be corresponding
to a node in the hierarchy. However, some important groups or patterns may not be
produced at the same level of the hierarchy. In addition, the algorithm 4.3 is based
on the hierarchical clustering which could introduce a distortion of the structure in
the data[l6] because a merged group can never be split later in the clustering pro-

cess. Different from hierarchical clustering, partitioning clustering methods attempt
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to search an optimized grouping of the data for a certain number of groups and may

be a better way of finding structures in the data.

In this subsection, we present an algorithm of generating numerical hierarchies
using partitioning clustering methods. A new quality measure is provided based on
the characteristics of our clustering problem. Examples are given to demonstrate the

selection of quality measures.

As in the previous subsection, we assume that a histogram of a numerical attribute
1s given. The collection of the bins of the histogram is the set of objects on which
clustering algorithms are performed. Denoted by f; the frequency of bin o;. Based on
the nature of the set of objects with order constraint, for a given number of clusters,
say k, we try to find (k — 1) partition points such that the resultant & clusters will
have an optimal quality. In the second round, the clustering method is applied to
each of these k clusters. This procedure is repeated until each cluster has no more
than certain number of objects. Clearly, a hierarchical structure is built up during
this iterative application of the partitioning clustering method.

Assume that the (k—1) partition points are {0k, }=!. Define kg = —1 and k% = n.

The quality measures or within-group similarities (WGS) for the j—th group specified
from point ok 41 to or,, widely employed in literature (see for example [19]) are as

follows:

1. Sum of squared deviation:

kJ
WGS; = }: (fi = mj)2 (4.3)
f=k,_|+l
2. Information content:
kJ
WGS; = Z filog(fi/m;) (4.4)

t=ky.1+1
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where m; = Ef;k’_,.n fi/(kf'i-l - k.i)‘

In our algorithm, we also propose to use the following within-group similarity,

called variance quality:

k, ky+1
WGS; = ) @pi—( ) ip)? (4.5)
i=k,_) +1 i=k, +1
where
fi

Pi= g,
Zi‘;kj_l +1 fi

No matter which within-group similarity is used, the criteria for determining the

(k—1) optimal partition points is that the resultant k groups are of the minimal total

within-group similarity.

The following partitioning clustering algorithm which will be utilized in algo-
rithm 4.5is designed based on the traditional PAM (Partitioning Around Medoids){34]
method and can be taken as a variant of PAM applied in the case of clustering with

order constraints.

Algorithm 4.4 (Partition Clustering) Partition a set of n objects with order con-

straint into k groups such that certain quality measure is optimized.

Input: A set of ordered objects; a positive integer k.
Output: k clusters or (k — 1) partition points.
Method: Execute the following steps.

1. Select (k — 1) initial partition points Q = {ok)}f;{ arbitrarily; Calculate

the total within-group similarity

k
WGSO = E VVGSJ';

i=1
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2. For any pair of objects o; and on, where o; € Q and o, € Q, compute
quality improvement A if o; is replaced with oy, that is, replace o; with o,
calculate total within-group similarity WGS,, for the set of partition points
2, = (2 — {0;}) U {oxn}, and compute A = WGS, — WGS,;

3. Select the pair o; and o such that the corresponded A is the minimal
among all A’s; swap o; and o, if the A is negative, i.e., Q := (2 — {0;}) U
{on}, and go back to step 2;

4. Otherwise, i.e., A > 0, output the (k — 1) partition objects in  or the &

clusters formed by these (k — 1) partition objects. a

Before presenting the clustering results using different quality measures, we de-
scribe our algorithm of generating numerical hierarchy for a numerical attribute for

which a histogram is given based on the distribution of this attribute in a database.

Algorithm 4.5 (AGPC) Based on the data distribution of a numerical attribute,

recursively apply partitioning clustering algorithm 4.4 to construct a concept hierarchy.

Input: A histogram for attribute A; a fan-out F'.
Output: A concept hierarchy H with fan-out F.
Method: Execute the following steps.

1. Initialization: let § := {0;}%, which is the set of bins of the given histogram

and S is associated with the top level node [min,maz] of hierarchy H;

2. If |S| < F), return; else apply algorithm 4.4 to S to get F' groups denoted
by $:, t = 1,2,...,F. These F groups are used to form F nodes in the

hierarchy H and are the children of the node associated with S;
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3. For each S; fort=1,2,...,F, let S := S, goto step 2;

As we pointed out before, different quality measures may produce different results.
The following example illustrates the effect of the selection of different within-group

similarity measures when applying the algorithm 4.5 to a particular data distribution.

Example 4.4 Again, let us consider the attribute A with histogram shown in Figure
4.1. Applying algorithm 4.5 to this data distribution using the within-group similarity
measures given in (4.3), (4.4) and (4.5), we obtain three concept hierarchies with

F =3 shown in Figures 4.4, 4.5 and 4.6.

Figure 4.4: A concept hierarchy for attribute A generated by Algorithm 4.5 using WGS
(4.1).

It is easy to see from the histogram (Figure 4.1) that there are three modes in
the data distribution. The boundary bins are (30~40) and (70~80). Clearly, the
hierarchy shown in Figure 4.6, which is generated by algorithm 4.5 using within-group
similarity measure (4.5), captures the structure of the data. However, the hierarchies
shown in Figures 4.4 and 4.5, which are produced by the same algorithm using within-
group similarity measures (4.3) and (4.4) respectively, distort the structure. Actually,

if we look at level 1 of these two hierarchies, the hierarchy displayed in Figure 4.4
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Figure 4.5: A concept hierarchy for attribute A generated by Algorithm 4.5 using WGS
(4.2).

Figure 4.6: A concept hierarchy for attribute A generated by Algorithm 4.5 using WGS
(4.3).
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merged the first two modes together, whileas the hierarchy shown in Figure 4.5 cannot
demonstrate the last two modes. The effect illustrated here lets us choose the variance
quality as the within-group similarity measure in the generation of numerical concept

hierarchies using algorithm 4.5. u

Using variance quality as the measure in algorithm AGPC, we have the following

complexity result.

Theorem 4.3 The worst case computational complezity of algorithm AGPC is O(n®)
and its best case computational complexity is O(n?), where n is the number of bins of

the given histogram for attribute A.

Proof Assume that there are m nodes at level j of the hierarchy. These m nodes
correspond to m groups of bins in the given histogram. Denote by n; the number of
bins in the ith group, = 1,2....,m. It is not difficult to see that to split the ith
group into F' subgroups, we have to perform kF(n; — F)(5n; + 1) operations, where
k is the number of iterations to find the best boundary bins. Thus to construct the

nodes at level ;j + 1 we have to take time
m m
Z EF(n,— F)3n;+1)=a Z n?+b
i=1.n,>F i=1.n,>F
where a = 5mF and b = (1 — 5F)n — F. Using the methods of calculus we find the
the above function achieves its maximum when only one of these n;’s is (n — m + 1)
and the rest of them are all equal to 1. And the minimum of this function is reached

when each of these n;’s is equal to 2. These two cases are respectively corresponding

to the worst and best cases computational complexities of the algorithm.

In the worst case, there are ';?_:L:' levels in the hierarchy and we need to take time
kF(n —iF +¢)[5(n —if + 1) + 1] to form level (j + 1) from level ;. Adding together

the times for constructing these levels, we can see that the total time is O(n3).
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In the best case, there are totally (logrn) levels in the hierarchy and the time

needed for generating level (7 + 1) from level j is

i1y T oy On
kF (F" F)(F +1)

i

By summation, we conclude that the total time for the best case is O(n?). a

4.2.4 Quality and Performance Comparison

We have presented three algorithms, i.e., AGHF, AGHC and AGPC, for the automatic
generation of numerical concept hierarchies in the last three subsections. It is worth
comparing their performance and quality. In this subsection, we first give the quality
comparison of the hierarchies generated by the algorithms by using different his-
tograms as the inputs. Second, we compare the execution time of the algorithms as a
function of the number of bins of the input histogram and the fan-out of the expected

concept hierarchy. Finally, some discussions are given.

Comparison of Quality

Notice that the concept hierarchies shown in Figures 4.2, 4.3 and 4.6 are respectively
generated by using algorithms AGHF, AGHC and AGPC to the same input histogram
given in Figure 4.1. Obviously, the hierarchy (Figure 4.2) generated by AGHF does
not catch the structure of the data. The effort of balancing count or frequency for the
nodes at each level makes the algorithm totally ignore the modes in the distribution
of the data. The simplicity and the efficiency of the algorithm is still attractive in
certain situations such as the data distribution is approximately uniform or there are

too many modes in the distribution.

The concept hierarchy generated by algorithm AGHC is good in the sense that
the hidden structure of the data is reasonably represented by the hierarchy (Figure
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4.3). Comparing Figure 4.3 with Figure 4.6 which is produced by algorithm AGPC,
we notice that the difference occurs only at the boundary bins. In most applications
it does not make much difference to include boundary bins into their left-hand groups
or right-hand groups. Thus we consider the two hierarchies shown in Figures 4.3 and

4.6 have the same quality.

Now, we consider another input histogram, shown in Figure 4.7, which is an exten-
sion of that shown in Figure 4.1. Here we add some perturbations in the third mode.
Executing algorithms AGHC and AGPC, we obtain two concept hierarchies shown in

Figures 4.8 and 4.9, respectively.

)
Y

0 20 40 60 80 100 120 140

Figure 4.7: Another histogram for attribute A.

As we can see from level 2 of the two hierarchies that both of the algorithms
successfully detect the three modes in the histogram (Figure 4.7), even though the
third mode has been added some noisy data, and all the branches in the hierarchies
correspond to the reasonable boundary bins. Both algorithms are robust because the
perturbations in the third mode does not confuse the algorithms to capture the overall

structure of the data.
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Figure 4.8: A concept hierarchy for attribute A generated by algorithm AGHC with
input histogram given in Figure 4.7.

Figure 4.9: A concept hierarchy for attribute A generated by algorithm AGPC with
input histogram given in Figure 4.7.
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Based on our testing of the two algorithms AGHC and AGPC, we conclude that
these two algorithm are robust and in most cases they can produce very similar con-

cept hierarchies.

Comparison of Execution Time

Now, let us examine the execution times of the three algorithms AGHF, AGHC and
AGPC. Actually, the computational complexity analysis of the algorithms has given
us some insight view of their efficiency. However, several factors may influence the
performance of the algorithms. The execution times of the algorithms are closely
related to the distribution of the input data, the size (number of bins) of the histogram,

and the fan-out of the final hierarchy.

In Figures 4.10 and 4.11 we show two graphs, which are obtained using simulation,

of the execution times of the three algorithms when the fan-out is 3 and 5 respectively.

From the figures we can see that, comparing to algorithms AGHC and AGPC,
the execution time of the algorithm AGHF is almost nothing. Actually it is a linear
function of the number of bins of the input histograms. Thus the high efficiency of

algorithm AGHF make it attractive in many cases.

Comparing algorithm AGHC with algorithm AGPC, we find that, in the case that
the fan-out is 3, AGHC is faster than AGPC when the number of bins of the input
histogram is less that 60. Once the number of bins is greater than 60, AGPC becomes

more efficient. Figure 4.11 for fan-out 5 illustrates a result similar to Figure 4.10.

Here the critical point is approximately 110. In other words, when the number
of bins is less than 110, algorithm AGHC is better, whileas algorithm AGPC is faster

when the number of bins is greater than 110.

Recall from the last paragraph that the qualities of the algorithms AGHC and AGPC
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Figure 4.10: Comparison of execution time when the fan-out is 3.
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Figure 4.11: Comparison of execution time when the fan-out is 5.
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U:f_an-outjnumber of bins |

[ 3 60
4 80
5 110
6 130
7 150
8 170
9 185
10 215
11 235
12 260
13 280
14 305
5 325

Table 4.1: Optimal combination of fan-out and number of bins

are, in most cases, very close. Therefore the number of bins of the input histogram
and the fan-out could be used to determine which algorithm to use. Based on our
experiment, Table 4.1 is obtained and may be used as guidance for the selection of

the algorithms.

To utilize Table 4.1, we check the input fan-out, say 8, and look up its correspond-
ing number of bins from Table 4.1, in this case it is 170. If the number of bins of a
input histogram is less than 170, then we chose algorithm AGHC to perform automatic
generation of a concept hierarchy. Otherwise, we select algorithm AGPC to generate

a concept hierarchy.



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 59

4.3 Discussion and Summary

Algorithms have been proposed for the automatic generation of nominal and numer-
ical concept hierarchies. The purpose here is to dig out the hidden structures of the
data and represent them by concept hierarchies. By hidden structure here we mean
the data distribution. Actually, the generation of concept hierarchies is itself a knowl-
edge discovery process. In the nominal case, the automatic generation algorithm can
be used for assisting users of a data mining system to figure out better organization
of schema hierarchies. But what we need to watch out is that the generated hierar-
chies are sometimes possibly incorrect. For example, given a set of attributes year,
month, weekday, a partial order month < weekday < year could be generated, which

is apparently wrong. Users have the freedom of adjust the generated partial order.

In the numerical case, hierarchical and partitioning clustering approaches have
been employed as basic components in the design of automatic generation algorithms
of numerical hierarchies. The variance quality proposed for measuring within-group
similarity is more suitable for our order-constraint clustering problems. Algorithms
AGHF, AGHC and AGPC can be utilized in different situations depending on data
mining tasks, user preference and the parameters (i.g., fan-out of expected concept
hierarchy and the number of bins of an input histogram). The qualities of concept
hierarchies generated by algorithms AGHC and AGPC are approximately the same
and both algorithms are robust. Table 4.1 provides a guide for selecting a hierarchy
generation algorithm. Concerning the assumption that a histogram of a numerical
attribute is already given, we point out that the histogram should correctly represent
the distribution of the attribute. A generated hierarchy is not reliable if the input
histogram distorts the data distribution. Another issue related to the automatic
generation of numerical hierarchies is the specification of fan-out. Intuitively, we need

to specify a fan-out such that all the important modes in the data distribution should



CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 60

be presented at the same level of the generated hierarchy. However, the number of
modes is not known a priori. Users can obtain some idea on this number by visually
observe the given histogram, but the histogram may include some noise or distortion.
In addition, even if the number of modes is known there is no simple way to guarantee
the all the nodes corresponding to those modes can be produced at the same level of
the hierarchy. These and other unclear features of the generation algorithms make it

difficult to judge the qualities of the generated hierarchies.



Chapter 5

Techniques of Implementation

In this chapter, we discuss the implementation of concept hierarchies. A relational
table strategy is employed for storing concept hierarchies in section 5.1 by consider-
ing that we are discovering knowledge from relational databases and, as an important
background knowledge, concept hierarchies should be a natural component of data
sources. To incorporate the concept hierarchies into a data mining system, encod-
ing plays a key role. A generic encoding algorithm is developed in section 5.2. By
“generic” we mean that the encoded hierarchies can be used for any data mining mod-
ules when concept generalization is involved. The performance comparison between
with-encoding and without-encoding hierarchies is conducted concerning the storage
requirement and disk access time. The superior performance of our encoding approach
is demonstrated on both of the two factors in section 5.3. Finally, we summarize the

chapter in section 5.4.

61
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5.1 Relational Table Approach

To implement the operations of concept hierarchies, we can use file-processing ap-
proach. That is we use files to store the concept hierarchies, and use read and write
and other operations to manipulate them. However, the conventional file-processing

approach has several disadvantages, for example,

o There are problems to restrict the data duplication and inconsistency.

o It is difficult to specify indices on a file, and hence difficult to access the data

in the file efficiently.
o When there are multiple users, it is hard to solve the concurrency problem.

o It is difficult to enforce security to a file.

These and other problems with the file-processing approach let us take relational
database approach. The theory and practice of the relational database have been
arrived at a very mature stage. The problems with the file-processing approach men-
tioned above have been successfully solved by relational database management sys-
tems (DBMS). We favor the relational table approach which will be discussed below is
also because we are dealing with data mining problems in large relational databases.
It will make the storing and manipulating concept hierarchies consistent with the
mining knowledge from a relational databases if we store the background knowledge

in a database using relational tables and utilize it by the facilities of the relational

DBMS.

Three kinds of tables are employed for storing hierarchies. Tables chHeader and
chlLevel are used to store header and level information which is essentially conceptual
information of the hierarchies. Metadata and schema level partial order are stored in

these tables. The schema of the two tables are described as follows.
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chHeader = (chID, chName, alias, attrName, relName, type, numNodes, numLevels),

where
chiD - A positive integer assigned to each hierarchy;
chName ~ The name of a concept hierarchy;
alias ~ The nick name of the hierarchy;
attrName -~ The name of an attribute for which the hierarchy is specified;
relName — The relational table name from which the hierarchy is derived;
type -~ The type of the hierarchy;
numNodes - The total number of nodes in this hierarchy;
numlevels - The number of levels of this hierarchy.
and

chlevel = (chiD, levelName, alias, type, levelNum, numNodes, mazNumSiblings),

where
chiD — The join key with the chHeader table;
levelName ~ The name of a level in the concept hierarchy;
alias — The nick name of the levelName;
type — The type of this level;
levelNum — The level number assigned to this level;
numNodes — The number of nodes at this level;
maxNumSiblings - The maximum number of siblings at this level.

In addition to tables chHeader and chlevel for storing general information for concept
hierarchies, we need to have third kind of tables, called hierarchy tables, to store the
contents of hierarchies. Actually, there are several approaches to implement this task.
One possible approach is to store all the parent-child relations of a hierarchy as tuples
in relational tables. This approach is adopted in Oracle’s OLAP tool Express. In

our old version of the DBMiner system, a variant of this approach is used for storing
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hierarchies, in which there is a concept id (cid for short) for each node in the hierarchy.
In a typical tuple of the table, we record a node’s cid, name, its parent cid and other

useful information. This approach is also widely used in other OLAP systems[49].

The advantages of these methods are that each of the child-parent relationships
can be directly represented by tuples of a relational table and the contents of all
the hierarchies might be put in one table, thus all those hierarchies can be handled
uniformly. However, once we need to use several dimensions organized as hierarchies
to generate a data cube for executing data mining tasks, the disk space consumed may
be very large, and the disk access time might be very long because the disk access is

required for each concept generalization.

In order to handle large databases and large number of dimensions, and manipulate
data cubes efficiently, we adopt the following approach: each hierarchy has its own
table (also called hierarchy table) for storing it contents. Each tuple of the table
records a path of the hierarchy from the root to a leaf node. The reason of using
different tables for different hierarchies is that different hierarchies may have different
number of levels, and thus the lengths of root-leaf paths for different hierarchies may

be different. The advantages of this method will be addressed in the next two sections.

Example 5.1 For the concept hierarchy shown in Example 3.3 (Figure 3.2), its hier-
archy table is shown in Table 5.1. Notice that a default top level allLocation, which
has one node ANY, is added to the hierarchy in order to guarantee that the hierarchy
is regular. It is not really necessary for the current hierarchy because at the country
level there is only one node Canada. However, as an uniform method, adding a default

top level can be used to handle any hierarchies. o

This relational table strategy for storing concept hierarchies can be used for solving

the concept duplication problem frequently encountered in date/time hierarchies. The
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[ allLocation | country | region [ province |

ANY Canada | Western BC
ANY Canada | Western AB
ANY Canada | Western MB
ANY Canada | Western SK
ANY Canada | Central ON
ANY Canada | Central QC
ANY Canada | Maritime NS
ANY Canada | Maritime NB
ANY Canada | Maritime NF
ANY Canada | Maritime PE

Table 5.1: Hierarchy table for location

solution is discussed in the following remark.

Remark 5.1 (On date/time hierarchies) In § 4.1.2, we have mentioned the prob-
lem when the attribute week is included in a date/time concept hierarchy. For exam-
ple, week 27 may across June and July. Once we need to generalize concept week 27
to the month level, which one should we take as its high level correspondence? June
or July? This problem can be naturally solved using our relational table approach.

The following example explains the solution.

Example 5.2 Table 5.2 gives a hierarchy table which is instantiated using schema
hierarchy allDate < year < month < week < day defined on relation title in database
pubs which is a sample database in MS SQL server. It can be seen that W27 1991
crosses two months, i.e., Jun 1991 and Jul 1991. During the concept generalization of
W27 1991, we only need to follow the paths specified by the two different tuples, in
this case the second and third tuples, and find its higher level correspondences. So
Jun 1991 is the parent of the first W27 1991 and Jul 1991 is the parent of the second

W27 1991. By this way, confusion will never occur because each raw data value has
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[allDate | year | month | week |  day |

ANY [ 1991 | Jun 1991 | W24 1991 | Jun 12, 1991
ANY | 1991 | Jun 1991 | W27 1991 | Jun 30, 1991
ANY | 1991 | Jul 1991 [ W27 1991 | Jul 2, 1991
ANY 1991 { Oct 1991 | W40 1991 | Oct 5, 1991
ANY | 1991 | Oct 1991 { W43 1991 | Oct 21, 1991
ANY 1994 | Jun 1994 | W25 1994 | Jun 12, 1994
ANY (1995 | Jun 1995 | W23 1995 | Jun 7, 1995

Table 5.2: An date/time hierarchy table

its unique higher level correspondence. i,

Finally, it is valuable to notice that to achieve the goal of efficient access, related
indices are created on the tables described above. The advantage of our relational
table approach for storing hierarchies is gained incorporating with the hierarchy en-

coding strategy which is presented in the next section.

5.2 Encoding of Concept Hierarchy

As addressed in the last section, concept hierarchies can be stored in relational
databases by using three kinds of tables: chHeader and chlevel and hierarchy ta-
ble. To use the hierarchies for concept generalization in data mining, however, the
above described hierarchy tables still does not fit our need. It is not feasible to retrieve
the tables to memory or put concepts directly into corresponding cube cells because
some hierarchies might be as large as or bigger than the database on which we are
executing mining tasks, and the character strings for describing those concepts could

be very long. The direct concept retrieval might only allow us to handle small size
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data cubes, and in this case we need to spend a lot of time to process mining tasks
because of the memory page swapping. Hierarchy encoding strategy is introduced to
tackle this problem. We attempt to encode a concept hierarchy in such a way that
the partial order of the hierarchy is exactly represented by the codes so that we only
need to manipulate the codes when we process mining tasks. The access of the stored
concept hierarchy is only needed when we want to create a data cube and to display

a mining result once a mining task is fulfilled.

16 store
7 15 department
3 6 11 14  category
item
o1 2 4 5 8 910 12 13

Figure 5.1: Post-order traversal encoding of a small hierarchy.

A hierarchy encoding method is proposed in Wang and Iyer[49] according to a
post-order traversal of the hierarchy. For example, Figure 5.1 illustrates an encoded
simple hierarchy for a retail store data. The post-order traversal encoding has the
following property: for any node with label 7, if the smallest label of its descendents
is 7, then : < j and it has exactly (7 — ) descendents with labels from 7 to (57 — 1).
Thus all the integers in the range [¢,7 — 1] gives the labels of all its descendents.
This encoding scheme is suitable for the drill-down operation in OLAP, especially
when cooperated with the DB2 features[6]. However, there does not appear to be any

reasonable way to extend it to the other operations or data mining functionalities.
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5.2.1 Algorithm

A new hierarchy encoding algorithm is proposed in this subsection which can be
treated as a generic purpose encoding strategy suitable for any data mining function-
alities. The main idea is to assign each node (or concept) of a hierarchy a unique
binary code which consists of j fields, where j is the level number of the node in
this hierarchy. Once a hierarchy is encoded, we only need to retrieve the codes of
the hierarchy to the memory and realize generalization and specialization by manip-
ulating the codes. The performance analysis discussed in the next section will clearly

demonstrate the advantage of our hierarchy encoding scheme.
To describe our encoding algorithm, let us first introduce several notations.

Denote by {P;}7, the set of all the distinct root-leaf paths in the hierarchy H,
and let

ID:' = (ai01 Qily ey ai,l—l)a i = 11 23 ceey M.

where a;; is the jth node which corresponds to the jth level of the hierarchy on the

path P;. The encoding algorithm is described as follows.

Algorithm 5.1 (Encoding of Concept Hierarchy) Assign a binary code to each
node of a concept hierarchy such that the partial order of the hierarchy is represented

by the set of codes.

Input: A concept hierarchy H from which the set of root-leaf paths { P}, is sorted
in ascending order and the maximum number of siblings, denoted by s; for each

level j =0,1,...,(I — 1) is given.

Output: A set of binary codes which are assigned to the root-leaf paths of hierarchy
H.
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Method: The encoding algorithm consists of the following steps:

L. Initialize the array of binary numbers (co,c1, ..., ¢1—1), i€, ¢; ;=1 (§ =

0,1,...,({ = 1)), where each binary number ¢; has [log,(s; + 1)] bits.

2. Assign code ¢ = cpcy...c; which is the concatenation of j binary numbers

¢, k=0,1,..,7, to node a,; for each j =0,1,...,({ — 1); set = 2 and do

while (: <m) {
for (j=0;7 <Lj++){
if aij # ai—1j {
¢ci:=cj+1;
assign code ¢ = ¢g...c; to node a;;;
for (k=7+Lk<lk++){
cr:=1;
assign code ¢ = ccx to node a; }
j=0-11}}
ir=i4+1;} o

To ease our discussion below, we call ¢; a partial code corresponding to level j in a

code cocy...Cj~1€jCp1---Cl1-

Example 5.3 Apply the above algorithm to the concept hierarchy shown in Fig-

ure 3.1, we get an encoded hierarchy demonstrated in Figure 5.2. =

5.2.2 Properties

For the computational complexity of the encoding algorithm 5.1, we have the following
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Figure 5.2: An encoded concept hierarchy.

Theorem 5.1 The computational complezity of the algorithm 5.1 is O(Im), where |
is the number of levels, and m is the number of leaf nodes of a hierarchy.
Proof The theorem follows from the fact that we have to perform [ operations for

each root-leaf path and there are m paths. G

To explain the relationship between the partial order of a concept hierarchy and

its codes produced by algorithm 5.1, we first give a property of the codes.

Lemma 5.1 For any two nodes A and B with codes cq,cp,...ca, and cg,cp,...C8,,
respectively, A is a child of B ifand only if i =3+ 1 end ¢4, =c¢p, for k=0,1,...J.
Proof If Ais a child of B, then the code for A has one more field than of B and the
code of A is formed by concatenating a binary number to that of B, thus: = 7 + 1

and cy4, =cp, for k=0,1,...5.

On the other hand, if : = +1 and ¢4, = ¢p, for £ =0,1,...7, but A is not a child
of B, we attempt to generate contradiction. We only need to consider the situation
that A and B are not at the same level, since otherwise we will have ¢ = j which is
an obvious contradiction to ¢ = j + 1. Since A is not a child of B, we have the cases
of either they are on the same root-leaf path or on two different root-leaf paths. Let

us first consider the same path case. Since A is not a child of B, according to the
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algorithm, the number of fields in the code for A is at least two more or no larger
than that of B, in other words, i > 7 4+ 2 or ¢ < j. This contradict to z = j + 1.
Now let us consider the case that A and B are on two different root-leaf paths and
. = j + L. In this case, A’s parent P with code, say, cpcp,..-cp,, is at the same level
as B. P # B since A and B are on different paths, thus there must be at least one
t such that 0 < ¢t £ j, eg, # ¢p,- Since the code for A is formed by concatenating
CpyCp, -.-cp, With another binary number, we have ¢4, = ¢p, for k = 0,1,...,7, and

thus cg, # c4,, which contradicts to that c4, =cpg, for k =0,1,...5. o

From this Lemma, it is easy to see that the code for the parent of a node at level
J with code cpey...¢; can be formed by dropping its partial code ¢; corresponding to
level j and get cqcy...cj—;1. Based on this property, we only need to store the codes of
leaf nodes. The codes for other nodes can be easily obtained by simply chopping off

one of its leaf node code to certain levels.

The following theorem reveals the relationship between the partial order of a hi-

erarchy and its codes.

Theorem 5.2 Given the partial order < of hierarchy H and the codes obtained by
applying algorithm 5.1 we have, for any pair of nodes A and B with codes c,c4,.--Ca,
and cpgocpy...cpj, respectively, A < B if and only if i > j and ca, = cg, for k =
0,1,...5.

Proof A < Bif and only if B is an ancestor of A. The theorem follows by repeatedly
applying Lemma 5.1. |

According to this theorem, we can realize the manipulations of a concept hierarchy
by only using its codes. This is the base of executing concept generalization and

specialization in our data mining system.
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5.2.3 Remarks

In the input statement of the encoding algorithm 5.1, we posed the requirements that
the set of root-leaf paths is sorted and that the maximum number of siblings at each
level is available. These requirements can be achieved using the methods discussed in

the remarks below.

Remark 5.2 As discussed in the previous section, the content of a hierarchy is stored
in a relational table. So the requirement that the set of root-leaf paths is sorted in
the input of the above algorithm is easy to be implemented using a SQL query by
specifying an attribute list on which an order by statement is formed. This utilization
of SQL allow us to avoid coding sorting algorithms and, together with the indices
created on the hierarchy table, to obtain efficient execution. For example, assuming
that we have level names aq, a, ..., and a;-;, and the hierarchy table is hierTable,
then the following SQL query realizes the sorting task and the result is stored in table

tempHierTable.

SELECT a0, a1, ..., al-1
INTO tempHierTable

FROM hierTable

ORDER BY a0, al, ..., al-1 ASC

Remark 5.3 To satisfy the second requirement that the maximum number of siblings
sy for each level{ = 0,1, ..., ({—1) is calculated, we need to execute several SQL queries
and introduce a couple of auxiliary tables. The solution is detailed in the following

algorithm.

Algorithm 5.2 (Count Maximum Numbers of Siblings) Count the marimum

number of siblings at each level of a hierarchy based on its hierarchy table.
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Input. A concept hierarchy H whose hierarchy table is hierTable and level names are

ag, @y, ..., and a;_.
Output. The maximum number of siblings for each level.

Method. Execute the following SQL queries sequentially for each ¢ = 0, 1, ..., ({ - 1).

1. SELECT a0, ..., ai, theCount = COUNT(*)
INTO tempStatsl
FROM hierTable
GROUP BY a0, ..., ai

2 SELECT theCount = COUNT(*)
INTO tempStats2
FROM tempStatsl
GROUP BY a0, ..., ai-1

3. SELECT MAX(theCount)

FROM tempStats2

To ease the task of calculating the maximum numbers of siblings, an alternative

is to count the number of nodes at each level by executing queries:

L. SELECT a0, ..., ai, theCount = COUNT(*)
INTO tempStatsil
FROM hierTable

GROUP BY a0, ..., ai

2. SELECT  COUNT(*)
FROM tempStatsil

If we replace the maximum numbers of siblings with the numbers of nodes, and still
denoted by s;, 7 = 0,1,...,({ — 1), the method in the algorithm 5.1 can be executed
for hierarchy encoding without any modification. Although s;, j = 0,1,...,(I — 1)
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might be larger in the case of numbers of nodes, |log,(s; + 1)|, j = 0,1,...,({ - 1),
are excepted to be not much larger than the corresponding numbers in the case of
maximum numbers of siblings. Hence, it is feasible to employ this simple approach in

Step 2 of algorithm 5.1.

Remark 5.4 Because each tuple in the hierarchy table represents a root-leaf path in
H, and the codes generated for the leaf nodes are actually associated with these paths
respectively, we can record these codes by adding one more attribute (column), say
code, to the hierarchy table. An index can also be created on this attribute in order

to efficiently access the codes of the hierarchy.

| allLocation | country | region | province | code |

ANY Canada | Western BC TA
ANY Canada | Western AB 79
ANY Canada | Western MB B
ANY Canada | Western SK 7C
ANY Canada | Central ON 69
ANY Canada | Central QC 6A
ANY Canada | Maritime NS 73
ANY Canada | Maritime NB 71
ANY Canada | Maritime NF 72
ANY Canada | Maritime PE 74

Table 5.3: An encoded hierarchy table

Example 5.4 After applying the encoding algorithm 5.1, the hierarchy table 5.1 be-
comes Table 5.3. Where the data type for attribute code is binary. Since one byte
of binary data is expressed by a group of two characters, the values of code look like
hexadecimal data, but in fact they are in bit patterns. For example, 64 is actually

01101010.
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| cName | pName |

BC Western
AB Western
MB Western
SK Western
ON Central
QC Central
NS Maritime
NB Maritime
NF Maritime
PE Maritime

| cName | pName |

Western | Canada
Central | Canada
Maritime | Canada

Table 5.4: Hierarchy tables for approach A

5.3 Performance Analysis and Comparison

In this section, we analyze the performance of using concept hierarchies without and

with encoding. Analytical estimates for both storage requirement and disk access

time are given for the following three approaches:

Approach A: without encoding. Use a collection of several tables for storing one

concept hierarchy in which real concepts are used as join key.

A concept hierarchy consists of several relations, each of which is a map table

from a lower level to its next higher level. For example, the hierarchy location

shown in Figure 3.1 is stored by using the two tables shown in Table 5.4.

Approach B: without encoding. Use a collection of several map tables for storing

a hierarchy in which concept identifier is used as join key.

Adopted by usual OLAP systems (see [49]), this approach is similar to approach

A, but, instead of using real concept name as join key between tables, here an

unique integer identifier is assigned to each node for the purpose of table join.
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| <ID | cName [ pID |

1 BC 11

2 AB 11

z ZII? 11 {cID| cName [pID]

5 ON ii 11 | Western | 14 l CID1 cName J
5 Qc 1; 12 | Central | 14 [ 14 | Canada |
7 NS 13 13 | Maritime | 14

8 NB 13

9 NF 13

10 PE 13

Table 5.5: Hierarchy tables for approach B

Again we use the hierarchy location to illustrate the idea of the approach. The
collection of the three tables in Table 5.5, which have the schema of (ctD, cName,

pID), gives the whole hierarchy.

Approach C: with encoding. Use one relational table for each concept hierarchy.

This is the approach we employed in our implementation. An example is given

in Table 5.3.

Before proceeding to the comparison of storage requirement and disk access time,
we state the assumptions and notations used in the analysis below. First, for a typical
concept hierarchy, say, hierarchy H;, we denote by [; its number of levels, F; its fan-out,
n;; its number of nodes at level j and s;; its maximum number of siblings at level j for
J=0,1,...,(li = 1). We assume that each concept in this hierarchy is represented by a
character string with length R; bytes. Second, we assume that B*—tree indices have
been built on the related attributes on relational tables for storing concept hierarchies
and a node of the Bt —tree just fits one page having size of B bytes in the disk storage.

Hence, if the sizes of a search key value and a pointer in a B*—tree are B bytes and
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P bytes, respectively, the number of search key values in a node of the tree is (k —1)
and the number of pointers in a node of the tree is k, where k£ = I_gﬁij , L is the size
of the search key. Therefore, the number of levels of the B*—tree with N search keys
is [log(_y) V]. It is easy to see that we need to have at most 1 + [log_,) V] disk
accesses to access a tuple in a relational table on which a B* —tree index is built on

the search key.

5.3.1 Storage Requirement

Storage requirement includes disk space for storing both hierarchy tables and data

cubes. Let us first consider the disk space for storing a typical hierarchy H;.

For approach A, we need to use ({; —1) tables. There are n;; tuples for the table of
representing the relationship between level j and level (j — 1). Since a concept is of

length R;, the size of this table is n;;2R;. Thus the total size of the ({; — 1) tables is

li=1

fi~1
Su, = z n;;2R; = 2R; E n;; (bytes). (5.1)

i=1 =1
For approach B, [; tables are needed. There are n;; tuples for the table of rep-
resenting the relationship between level j and level (7 — 1). If we assume that each
integer occupies I bytes, then each tuple of the table needs (R; + 2I) bytes. So the
size for this table is (R; + 2I)n;; bytes. Totally, we need

-1 {i—-1

Sug = Z(Rg +2)n;; = (R: +21) Z n;; (bytes) (5.2)

1=0 7=0

to store a hierarchy.

For approach C, since the maximum number of siblings at level j is s;; for j =

0,1,...,(li = 1), we can easily figure out that the length of the code for a leaf node is

;-1

L; = E log,(sij +1)/8 (bytes) (3.3)

J=0



CHAPTER 5. TECHNIQUES OF IMPLEMENTATION 78

There are n;,_,) tuples in the encoded hierarchy table and each tuple is of size

(liR: + L;), thus the size of this hierarchy table is

SHe =nig-1y(LRi + Li) (bytes). (5.4)

Now, let us consider the storage requirement for a typical least generalized data
cube. Suppose there are d dimensions in the data cube, each of which is organized
as a hierarchy. We also assume that the measurements of the data cube requires m

bytes to store in each cube cell.

Since there are totally [1%,(n;u.—1) + 1) cube cells in the least generalized cube,

we conclude that the storage requirements for approaches A, B and C are respectively

d d
Sc, = [H(ni.u.—u + 1)] (m+3 Ri) (5.3)
i=1 i=1
d d
Scg = [H(ni.u.-n + 1)} (m+31) (5.6)
=1 i=1
and
d d
See = [H(ni.(f.-n + 1)} (m+) L) (5.7)
=1 =1

bytes, where L; is given by (5.3).

Summing up the above analysis, especially equations (5.1)-(5.7), we have the

following

Theorem 5.3 The storage requirements of both d concept hierarchies and the cor-
responding least generalized data cubes consisting of d dimensions organized as the

hierarchies for approaches A, B and C, denoted by S, Sp and Sc¢, are respectively

d {{—1 d d
Sa=2) 3 nijRit [H(ni.u.-—n + 1)] (m+)_ R:) ' (5.8)
i=1 j=1 i=1 =1
d -1 d
Sg = Z Z(R, + 21)?‘!..')' + [‘H(n;,(;,._l) + 1)] (m =+ dI) (59)
i=1 j=0 i=1



CHAPTER 5. TECHNIQUES OF IMPLEMENTATION 79
Sec = Z"r -yl + L) + [H(n: -1 +1 ] (m+ ZL (5.10)
i=1 =1
a
In the special case of n;; = F;j fori =1,2,...,dand j = 0,1,...,({i = 1), we can
simplify the above formula and have
: 1) Tt -
= S BE D [T + 0] e+ 3 R 5.11)
=1 =1 =1
d 9 F!d-l d ‘
-3 (R' t I?( ) [Hw!*-l N 1)] (m +dI) (5.12)
= =1
d
Sc = Y FF LR+ L) + [H(F‘*“l + 1)] (m+3°L) (5.13)
=1 =1 i=1

where L; = [1 + (; — 1) log,(F; + 1)]/8.

Example 5.5 Let us consider the case that R; = R, [; =, F;= Ffort1 = 1,2,..,d.
And I = 4(bytes), m = 4(bytes). Figures 5.3, 5.4, 5.5, 5.6 and 5.7 demonstrate the

comparisons of storage requirement for the following five cases:

1. We vary the number of dimensions from which a data cube is built, and the

other parameters are fixed as R = 20, { = 4, F = 6. Figure 5.3 is plotted
using a linear scale for z—axis and a logarithmic scale for y—axis. As shown
in the figure, the required disk space is increased exponentially with respect to
the number of dimensions for each of these approaches. approach C needs less
space than the other two. For each different number of dimensions, the encoding
approach saves more than 80% and 36% of the space required by approaches A

and B respectively.

. We change the number of levels of concept hierarchies and the other parameters

are fixed as d = 3, R = 20, F = 6. By the semilog plotting for the total disk
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space, we can see from Figure 5.4 that, with the increase of number of levels, the
required space is also increasing exponentially for each approach. And approach
C needs the least space among the three methods. It respectively saves more

than 84% and 37% of the space needed by approach A and approach B.

3. We change the fan-out of concept hierarchies from 2 to 10 and fix the other
parameters as d = 3, R = 20, { = 5. Figure 5.5 shows, again, that the encoding
approach is the best among the three and it respectively saves about 84% and
38% of the space needed by approach A and approach B when the fan-out is no
larger than 8. The degree of the space savings is decreasing when the fan-out
is increasing. Notice that the number of leaf nodes of each hierarchy is also

increasing in this case.

m ¥ R L) t L) L)

-
roach

g

ft

total space (10M)

Figure 5.5: Storage comparison for different fan-out in hierarchies.

4. We vary the average length of character strings representing concepts from 3 to

30 and fix the other parameters as d = 3, | = 5, F = 6. In this case, the disk
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Figure 5.6: Storage comparison for different concept lengths.

spaces needed for approaches B and C are increasing very slowly. We even cannot
detect the changes from Figure 5.6. The linear increasing nature for approach A is
obvious. The conclusion we can draw from this observation is that the changing
of the concept length has little affect to the length of code in approach C and
the spaces required for storing data cubes in the three approaches dominate
the total spaces. Again, the approach C is the best and it saves from 70% to
89% space relative to approach A when the concept length varies from 10 to 30.

Approach B is 37% better than approach A in any case.

The number of leaf nodes of each hierarchy is fixed as N = 5000. And d = 3,
R =10. Let the fan-out vary from 2 to 30 and the number of levels is calculated
using ! = 1+ [log N1]. In this case the number of nodes at the last but one level
may not exactly follow the formula r;; = F}. The formula in Theorem 5.3 is used

in the calculation. We can find from Figure 5.7 that all the three approaches are
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Figure 5.7: Storage comparison the number of leaf nodes in hierarchies is fixed.

not sensitive to the changing of fan-out and number of levels while the number
of leaf nodes are fixed, which indicates that the overall storage is dominated by
the number of leaf nodes. Again, the encoding approach (approach C) is the best
among the three methods and it is about 61% and 19% better than approaches
A and B respectively when the fan-out is greater than 2. The curve for approach
C also gives us indication of how to choose a reasonable fan-out. Apparently,
too large fan-out will make the number of levels too small, and too small fan-out
will give us too large number of levels. In the current case, fan-out around 6

give us better saving of storage.
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5.3.2 Disk Access Time

Assume that a least generalized data cube is in memory and we need to generalize the
concepts represented by their real names or codes from bottom level ({—1) to a higher
level with level number l;. Here we only consider the generalization of one concept
in one hierarchy because the total disk assess time of generalizing the cube to certain
higher level is the summation of that for each individual concept generalization when
more concepts and more than one hierarchy are involved. We retain the assumption
made right before subsection 5.3.1. And, for the seek of simplicity, we only consider
the case that n;; = F7, i.e., the number of nodes at each level is the power of its

fan-out.

Let us start with analyzing approach A. If I = (I — 1) we do not need to have disk
access because the concept is in its real form already. When Iy < (I — 1), we need
to access (! — lp — 1) hierarchy tables. Since the table associated with level ¢ has F*
tuples, we need to have 1 + [log(,_;) F *] disk accesses to read a tuple from the table
since a Bt —tree index is created on the attribute cName, where k4 = L%i—g |, and R
is the length of attribute cName. Therefore the total disk access time for generalizing
a concept at level ({ — 1) to level [y is

i—1

> (1 + {logk ,—1) Fi]) ts (5.14)

i=lg+1
where t, is the time of one page disk access (see Elmasri and Navathe[12] for disk

access parameters), and we assume that 3°;_, =0if s > ¢.

For approach B, we need to access (I —l) hierarchy tables to generalize the concept
id at level (! — 1) to it’s ancestor’s id and look up the corresponding real concept

name. So there are 3"\2) (1 + [log(kz-1) F"]) disk accesses, where kg = | £+]]. Thus
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we conclude that the total disk access time for approach B is

-1

2. (1 + [logkg-1) Ff]) ts (5.15)

i=lg

For approach C, to generalize a concept with a code from level ({ — 1) to level g
we only need to chop off the code by (I —lp — 1) fields. Disk access is need to look up
the real concept name corresponding to this generalized code in order to display the
mining result. The method of chopping off code and looking up real concept names
will be addressed in the next chapter. Again, since a B*—tree index is created on
the attribute code for the hierarchy table, we need to access disk 1 + [log._;y £/~']
times, where k¢ = l_gf:_'—f,;‘- |, and L is the length of a code. Thus, the disk access time

for approach C is
(1+ Noggee—1y F71) e (5.16)

Based on the above discussion, we have the following
Theorem 5.4 The disk access times of generalizing a concept in hierarchy H, with
number of levels | and fan-out F, from bottom level (I — 1) to its ancestor at level Iy

for approaches A, B and C are, respectively

Ta = (I—lo—1)[L+ (I +o)[log,—1) F1/2] ts (5.17)
Ts = (I—lo) [L+ (I + o~ 1)[log(s,—1) F1/2] ts (5.18)
Te = (1+(—1)[logu,_1) F1)ts (5.19)

Example 5.6 Figure 5.8 illustrates the comparison of disk access times for the three
approaches. The typical values of parameters used in plotting the graph are as follows:
B = 512(bytes), P = 5(bytes), t;, = 30(msec), F =6, R=20,1 =4, =5. The
z-axis is the number of generalized levels, i.e., ({ — lp — 1). As shown in the figure,
the disk access time using encoded hierarchy (approach C) is constant which can also

be detected from equation (5.19). It is more important to notice that the disk access
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Figure 5.8: Comparison of disk access time for generalizing 2 concept.

time of approach C is much less than that of approaches A and B, except that we do not
perform any generalization and display only the result in the least generalized cube.
With the increasing of the number of generalized levels, the performance superior
of the encoding method is also increasing. For example, the encoding approach is 4
times faster than approach A or approach B when a concept is generalized from level
4 to level 1. Finally, we point out that approach B is slower that approach A because,
comparing to approach A, we need to access one more hierarchy table in using approach

B to generalize a concept to a certain level. 0

Based upon the comparison of storage and disk access time for the three approaches,
we can conclude that the encoding approach outperforms the two without-encoding
approaches. The encoding method gives us a way to spend less storage and obtain

more efficient processing of data mining tasks.
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5.4 Discussion and Summary

After discussing the relational table method of storing concept hierarchies, we focus on
study of the encoding technique in order to efficiently implement concept hierarchies
in data mining systems. The idea of assigning binary numbers to the nodes of concept
hierarchies has also been employed in other areas such as logic programming, digital
source coding and data compression. The encoding algorithm we developed here can
be natural integrated with the relational database approaches. The algorithm could
be utilized for any task of data mining when concept generalization is the base of a
data mining system. Actually, the encoding algorithm implemented in our DBMiner
system is used for data cube creation as well as for all the functional modules such
as summarizer, comparator, associator, classifier and predictor. The performance
analysis for both storage requirement and disk access time shows the superior of our

encoding approach.

We emphasize that the encoding algorithm we proposed is useful and efficient
especially for concept generalization. There may exist other encoding techniques for
other applications of concept hierarchies. We did not perform a comparison study
for those ones because there are no applications in data mining. We even did not
compare our technique with the one proposed by Wong and Iyer[49] because their
encoding technique can only be used for the drill-down operation. Further research is
needed to examine other encoding methods in artificial intelligence, data compression

and other fields in order to extend their applications to data mining.

Notice that, the CPU times of executing functional modules are not compared
here because, for any particular module, once shorter codes (compared to real concept
names) are involved in the related operations, less computational time will also be

gained.



Chapter 6

Data Mining Using Concept

Hierarchies

As one of the core parts of the DBMiner system, concept hierarchies play a central
role in processing data mining tasks. In this chapter, we will discuss the application of
concept hierarchies in mining knowledge from databases, especially, in the DBMiner
system. The system is briefly addressed in section 6.1. Following the flow of executing
a particular data mining query (or task), we will discuss why and how to expand the
query in order to correctly retrieve the so called task-relevant data in section 6.2. In
section 6.3, the issue of concept generalization is discussed. The problem of using
rule-based concept hierarchies is examined in section 6.4. In section 6.5, we consider
the issue of concept lookup which is the last step of processing a data mining task for

displaying final results. Finally, this chapter is summarized in section 6.6.

88
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6.1 DBMiner System

A data mining system, DBMiner, has been developed, which is the integration of
functional modules, including data mining modules, data communication module,
GUI and concept hierarchy module. Figure 6.1 illustrates the architecture of the

system. It is clear that the utilization of concept hierarchies is the base of the system.

( h
Graphical User Interface
N J/
A
4
DB Server Discovery Modules
f \
Data Concept Hierarchy

Figure 6.1: Architecture of the DBMiner system.

Discovery modules include summarizer, comparator, associator, classifier and pre-
dictor. The application of concept hierarchies is involved in the data cube generation
and each of the above functional modules. The major applications are discussed in

the rest sections.

6.2 DMQL Query Expansion
First of all, let us consider a data mining example:

Example 6.1 Suppose that a database UNIVERSITY has the following schema:
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student(name, sno, status, major, gpa, birth_date, birth_city, birth_province)
course(cno, name, department)

grading(sno, cno, instructor, semester, grade)

In order to discover some hidden regularities in this database, we specify the following
DMQL query:

USE database UNIVERSITY

MINE CHARACTERISTIC RULE

FROM student

WHERE major="cs" and gpa="3.574.0" and birth_place="Canada"
IN RELEVANCE TO gpa, birth_place

ANALYZE count

One may immediately find from this query that birth_place is not an attribute in table
student, and "3.5~4.0" is not a value for attribute gpa. Actually, the two dimension
gpa and birth_place appearing in the IN RELEVANCE TO statement are associated with
concept hierarchies gpa and birth_place. And "3.5~4.0" and Canada are two concepts

in the mentioned hierarchies, respectively.

To transform this query into a SQL query to retrieve task-relevant data and to

complete the mining task, we need to get the following two things done.

Expand dimensions. The dimensions involved in the "in relevance to” clause should
be expanded in order to get a SQL select statement. The attributes in the SQL
select statement must be available in database tables. In the above DMQL query,
dimension gpa is an attribute in table student, but birth_place is not. Assume that
hierarchy birth_place has level names all_place(C), country(C), birth_province(S)
and birth_city(S), where the letters C or S in the parentheses indicate the type of
the levels. The dimension birth_place is replaced with birth_province and birth_city
which are of type S(schema). Now, the SQL select statement is
SELECT gpa, birth_province, birthcity
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Expand where clause. The higher level concepts in the where clause of DMQL
query have to be expanded so that only raw data values are involved in the
formed SQL where clause. For example, " Canada” is not a value in table student.
We use concept hierarchy birth_place, which is identical to hierarchy location
shown in Figure 3.2, to find the nearest descendents of schema type which
have level name birth_province and values of the nine provinces. Thus, after

expanding, the condition birth place = “Canada" is replaced with

birth.province = BC OR birth province = "AB"

OR birth province = "MB" OR birth.province = "SK"
OR birth province = "ON" OR birth province = "QC"
OR birth_province = "NS" OR birth province = "NB"
OR birth._province = “NF" OR birth province = "PE".
Other conditions having higher level concepts can be handled similarly. o

6.3 Concept Generalization

Roll-up and drill-down are two of the most useful and attractive operations in data
mining and data warehousing. These two operations are all cooperated with concept
generalization using concept hierarchies. We have considered some of the operations
in Chapter 5 for the purpose of estimating disk access time. Here are the detailed

discussions.

Intuitively, roll-up corresponds to concept ascension using concept hierarchies.
Whileas drill-down corresponds to concept specialization, i.e. find the children or
descendents and perform related operations. In our DBMiner system, the two oper-
ations are implemented in a uniformed way, that is they are all realized by concept

generalization. Actually, a least generalized data cube is stored as a base data for all
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the operations. Once we need to roll up to a particular level of a concept hierarchy, we
generalize the data in the least generalized data cube to that level and perform related
computation. On the other hand, if we need to drill down to some level, we also use
that data cube and generalize its data to that level. Therefore, concept generalization

is core part of roll-up and drill-down.

Using the concept hierarchies which have been encoded using the method ad-
dressed in Chapter 5, concept generalization is an easy task. Since there is a code
for each root-leaf path in a hierarchy, that is there is a code for each leaf node. The
codes of the concept hierarchy will be retrieved when we create the least generalized
data cube. Recall that our codes are structured as a concatenation of several fields or
levels, hence a simple chop off of last several fields of a code will realize the concept

generalization to a particular level.

1| 0010f 01001 | 010111

Figure 6.2: A sample procedure of code chopping off

Example 6.2 Figure 6.2 illustrates the procedure for concept generalization, where
the related concept hierarchy is assumed to have four levels, and we want to generalize
the cid to level one. So the last two fields or levels are chopped off, and the code 9257

is changed to z9000. o
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6.4 On the Utilization of Rule-based Concept Hi-

erarchies

In the basic attribute-oriented induction (AOI), the values of attributes can always be
uniquely generalized to their ancestors at a given level of the corresponding concept
hierarchies. However, this is not the case in concept generalization using rule-based
hierarchies which are not converted to the non-rule-based ones like we did in §3.3.4.
Generalization may sometimes results in the loss of information[7], which could be

crucial in the following cases:

1. A generalization rule may depend on an attribute which has been removed;

o

A generalization rule may depend on an attribute value whose abstraction level

is too high to match the condition of the rule;

3. A rule may depend on a condition which can only be evaluated against the

initial relation.

To solve this information loss problem, a backtracking algorithm is proposed in
[7], in which a covering-tuple-id is introduced for each tuple in the prime relation.
To get a final mining result, the algorithm must go back to the original data relation
to find the corresponding tuple which is marked by it covering-tuple-id and execute
concept generalization again. This solution has the obvious drawback that we have
to access raw data every time when we need to perform concept generalization and

display the consequent results.

The conversion principle we presented in §3.3.4 can be used to solve the information
loss problem naturally. As a matter of fact, after a rule-based concept hierarchy

is transformed into its non-rule-based equivalence, we can perform any operations
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applicable to a usual hierarchy, such as storing into relational tables and encoding.
To create a data cube, one needs to relate the attributes appeared in that rule-based

hierarchy together and pick up the corresponding code from the hierarchy table.

Once the data cube has been created, we no longer need to access the raw data

and all the other data mining functionalities can be executed normally.

6.5 Concept Lookup for Displaying Results of Data
Mining

By using concept codes we can perform computations related to a mining task until
we get the final stage of displaying mining results. Obviously, it does not make sense
to display the results such as rules or graphs using codes because they are meaningless
to users. We need to use the given codes to look up their corresponding concept names

from concept hierarchy tables by submitting SQL queries.

However, a simple look up will not solve the problem since, at most times, the
given codes are generalized ones, that is they are produced by concept chopping off as

described in §6.3. These codes usually does not exist in the encoded hierarchy tables.

A method for solving this problem is to find the original correspondences of the
given codes. Observing that a generalized code must have some fields which are of
value zero, we add those fields of value zero by 1 to construct a new code. This
newly formed code must appear in the hierarchy table by investigating the hierarchy
encoding algorithm 5.1. Concept name can be obtained by submitting a SQL query,

and retrieve a concept at a level corresponding to that of the generalized code.
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Example 6.3 Using Example 6.2, we consider the concept look up for cid
1 0010 00000 000000
By adding a 1 to each of the chopped off fields we get
lookupCode = 1 0010 00001 000001 = z9041
which can be used to specify a SQL query such as

SELECT a1, a2
FROM aHierTable
WHERE code = lookupCode

95

where a1 and a2 are the first two level names of the concerned concept hierarchy.

Finally we can use the retrieved values for a1 or (a1, a2) for displaying our mining

results.

6.6 Summary

The architecture of the DBMiner system is briefly introduced. Concept hierarchies

]

are used in the data cube construction and all the other functional modules. The

major applications of concept hierarchies, including DMQL query expansion, concept

generalization, the use of rule-based hierarchies and display of mining results, are

discussed using examples. Many other applications, including the retrieval and search

of hierarchy-related information, and the special treatment of time/date hierarchies,

are also implemented in the DBMiner system.



Chapter 7

Conclusions and Future Work

Data mining and knowledge discovery in databases have been attracting a signifi-
cant amount of research, industry and media attention. As one of the important
background knowledge for data mining, concept hierarchy provides any data mining
methods with the ability of generalizing raw data to some abstraction level, and make
it possible to express knowledge in concise and simple terms. Concept hierarchies also
make it possible to mining knowledge at multiple levels. This thesis is focused on the
study of concept hierarchy concerning its specification, generation, implementation
and application. In this last chapter of the thesis, we give a brief summary of the
work we have done in the thesis and discuss some related topics which are important

and interesting for future research.

7.1 Summary

The efficient use of concept hierarchy in data mining is the ultimate goal of the study.

Different aspects of the concept hierarchy are investigated in the thesis, including its

96
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properties, specification, automatic generation, implementation and application. In

particular, we consider the following as the major contributions of this thesis.

1.

[V
h

The terminology and properties of concept hierarchies have been discussed. A
set of basic terms and their definitions have introduced. The relationship be-
tween the set of concepts and the set of level names has indicated the flexibility
of specifying a hierarchy. The discussion on the four types of concept hierar-
chies has clarified their general properties and made it possible to apply specific

techniques to different types of hierarchies.

The automatic generation of concept hierarchies has been studied. The algo-
rithm designed for detecting a partial order on a set of nominal attributes is a
useful guide for users to defining their hierarchies. The two algorithms proposed
for automatic generation of numerical hierarchies and the performance analysis
have provided us novel tools of handling the concept generalization of numerical
attributes. The introduction of the variance quality in the partitioning cluster-
ing method has resulted in a better similarity measure for a group of objects.
Due to the popularity of numerical attributes in databases, the automatic gen-

eration of numerical hierarchies is desirable for any data mining systems.

. The strategy for the implementation of concept hierarchies has been investi-

gated. The encoding technique of concept hierarchies has been presented. The
analysis on the storage requirement and disk access time has ensured the effi-
ciency and effectiveness of the application of concept hierarchies in data mining

systems.
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7.2 Future Work

There are still many interesting problems which are worth continuing research, some

of which are discussed as follows.
(1) How to specify fan-out in the automatic generation of a numerical hierarchy?

In the applications, we can display the histogram of an attribute on which a
hierarchy is to be built, and decide the value of the fan-out based on the number of
modes in the histogram. However, if this number is too large or the histogram is too
mess for us to find this number, we should have a method to make reasonably good

decision.
(2) How to measure the qualities of hierarchies generated by different algorithms?

There are quality measures for clustering methods. However they cannot be ap-
plied directly to measure the qualities of hierarchies. In Chapter 4, we basically
compare the qualities of hierarchies using our observation on the given histogram. It
might be difficult to judge their qualities when the given histogram is very compli-

cated.

Figure 7.1: A concept hierarchy for attribute age.

As we mentioned in Chapter 2, (21] defined the complexity of a concept hierarchy in

terms of its number of interior nodes, and the depth and height of each of these interior
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nodes. This complexity is then used to measure the interestingness of discovered
rules. It seems that the quality of a concept hierarchy could be measured also by this
complexity because more interesting a rule is, higher quality the concept hierarchy
is. However, the situation is not that simple. For example, we have two concept

hierarchies as shown in Figures 7.1 and 7.2.

Figure 7.2: Another concept hierarchy for attribute age.
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Figure 7.3: A histogram for attribute age.

Each of them is constructed by using the input histogram as shown in Figure 7.3.
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If we use the measure defined in {21], we find that the second concept hierar-
chy (Figure 7.2) has a higher quality than that of the first hierarchy (Figure 7.1).
Nevertheless, only the first hierarchy correctly describes the hidden structure of the
attribute on which the histogram is produced. Therefore, one can make sure that
knowledge rules discovered using the second hierarchy are definitely worse than those
using the first hierarchy. How to measure the quality of a concept hierarchy is still

an open problem.
(3) How to handle complex rule-based concept hierarchies?

A deductive generalization rule has the form: A(z) A B(z) — C(z), which means
that, for a tuple z, concept A can be generalized to concept C if condition B is satisfied
by z. The condition B(z) can be a simple predicate or a very complex logic formula
involving different attributes and relations. The technique used in Chapter 3 can
only deal with simple predicate cases. Further researches are needed on implementing

complex rule-based concept hierarchies.
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