
Concept Hierarchy in Data Mining:
Specificat ion, Generat ion and Implementat ion

Yijun Lu

M.Sc., Simon Fraser University: Canada, 1993

B.Sc., Huazhong University of Science and Technology. China, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER O F SCIENCE
in the School

of

Computing Science

@ Yijun Lu 1997

SIMON FRASER UNIVERSITY
December 1997

.U rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National tibrary I*I of Canada
Bibliothèque nationale
du Canada

Acquisitions and . Acquisitions et
Bibliographie Services senrices bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 ûttawaON KlAON4
canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence dowing the exclusive permettant à la
National Library of Canada to BWiothèque nationale du Canada de
reproduce, loan, distribute or seIl reproduire, prêter, disîribuer ou
copies of this thesis in microfonn, vendre des copies de cette thèse sous
paper or electronic fomats. la forme de microfiche/fïlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or othewise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Data mining is the nontrivial extraction of implicit, previously unknown, and po-

tentialIy useful information from data. As one of the most important background

knowledge, concept hierarchy plays a fundamentally important role in data mining.

It is the purpose of this thesis to study some aspects of concept hierarchy such as the

automatic generation and encoding technique in the context of data mining.

After the discussion on the basic terminoiogy and categorization, automatic gen-

eration of concept hierarchies is studied for both nominal and numerical hierarchies.

One algorithm is designed for determining the partial order on a given set of nominal

attributes. The resulting partial order is a useful guide for users to finalize the concept

hierarchy for their particular data mining tasks. Based on hierarchical and partition-

ing clustering methods, two algorithms are proposed for the automatic generation of

numerical hierarchies. The qualitÿ and performance comparisons indicates that the

proposed algorithms can correctly capture the distribution nature of the concerned

numerical data and generate reasonable concept hierarchies. The applicability of the

algorithms is also discussed and some useful guides are given for the selection of the

algorithms. As an important technique for efficient irnplementation, encoding of con-

cept hierarchy is investigated. An encoding method is presented and its properties are

studies. The superior advantages of this method are shown by comparing the storage

requirement and performance with some other techniques. Finally, the applications

of concept hierarchies in processing typical data mining tasks are discussed.

Acknowledgment s

1 would like to express my deepest gratitude to my senior supervisor, Dr.Jiawei Han.

He bas provided me with inspiration both professionally and personally during the

course of my degree. The completion of this thesis would not have been possible

without his encouragement, patient guidance and constant support.

1 am very grateful to Dr.Veronica Dahl for being my supervisory cornmittee mem-

ber and Dr.Qiang Yang for being my external examiner. They were generous with

their time to read this thesis carefdly and rnake thoughtful suggestions.

My thanks also go to Dr-Yongjian Fu for his valuable suggestions and comments,

and to my fellow students and colleagues in the Database Systems Laboratory, Jenny

Chiang, Sonny Chee, Micheline Kamber, Betty Xia, Cheng Shan, \Van Gong, Nebojsa

Stefanovic, and Kris Koperski for their assis tance and friendship.

Financial supports £rom the research grants of Dr.Jiawei Han and from the School

of Computing Science at Simon Fraser University are much appreciated.

Finally, my special thanks are due to my wife, Ying Zhang, for her love and care

t hese years.

Contents

Abstract .
Acknowledgments .
List of Tables .
List of Figures .
1 Introduction .

1.1 Data Mining and Knowledge Discovery - .

1.2 The Role of Concept Hierarchy in Data Mining

1.3 iMotivation .
1.4 Outline of the Thesis .

2 Related Work .
2.1 Concept Hierarchy in Data Warehousing
2.2 Concept Hierarchy in Data Mining
2.3 Concept Hierarchy in Other Areas

2.4 Summary .
3 Specification of Concept Hierarchies

3.1 Prelirninaries

3.2 .4 Portion of DMQL for Specifying Concept Hierarchies

3.3 Types of Concept Hierarchies

3.3.1 Schema hierarchy . 23

3.3.2 Set-grouping hierarchy 25

3.3.3 Operation-derived hierarchy 27

3.3.4 Rule-based hierarchy 28

3.4 Surnmary . 32

Automatic Generation of Concept Hierarchies 33

4.1 Automatic Generation of Nominal Hierarchies 34

. 4.1.1 Algorithm 34

4.1.2 Ondate/timeHierarchies 37

Automatic Generation of Numerical Hierarchies . . 38

4.2.1 Basic Algorithm . 39

4.2.2 An Algorithm Using Hierarchical Clustering 41

4.2.3 AnAlgorithmUsingPartitioningCluste~ng 46

4.2.4 Quali ty and Performance Cornparison 53

4.3 Discussion and Summary . 59

Techniques of Implementation . 61

5.1 Relational Table Approach . 62

5.3 Encoding of Concept Hierarchy 66

. 5.2.1 Algorithm 65

5.2.2 Properties . 69
m 5.3.3 Remarks . i f !

C I Performance Analysis and Cornparison i~

5.3.1 S torage Requirement 77

5.3.2 Disk Access Time 54 .
Discussion and Summary . 87

6 Data Mining Using Concept Hierarchies 88

6.1 DBMiner System . 89

6.2 DMQL Query Expansion . 89

6.3 Concept Generalizat ion . 91

. 6.4 On the Utilization of Rule-based Concept Hierarchies 93

6.5 Concept Lookup for Displaying Results of Data Mining 94

. 6.6 Summary 93

7 Conclusions and Future Work . 96

7.1 Summary . 96

7.2 FutureWork . 98

Bibhography . 101

vii

List of Tables

4.1 Optimal combination of fan-out and number of bins 55

5.1 Hierarchy table for location . 65

.5 .2 An date/time hierarchy tabIe . 66

5.3 An encoded hierarchy table . 74

- - 5.4 Hierarchy tables for approach A . i n

5.5 Hierarchy tables for approach B . 76

List of Figures

3.1 Four sarnple concept hierarchies .

3.2 A concept hierarchy location for the provinces in Canada

3.3 A lat tice-like concept hierarchy science
3.4 Top-level DMQL syntax for defining concept hierarchies

3.5 A set-grouping hierarchy statusHier for attribute sta tu

3.6 X nile-based concept hierarchy gpaHier for attribute GPA

3.7 Generalization rules for concept hierarchy gpa Hier

3.8 A variant of the concept hierarchy gpaHier

4.1 A histogram for attribute A .

4.2 -4 concept hierarchy for attribute A generated by algorithm AGHF . . .

4.3 A concept hierarchy for attribute A generated by algorithm AGHC . .

4.4 A concept hierarchy for at tribute A generated by Algorithm 4.5 using

WGS (4.1).

4.5 A concept hierarchy for attribute A generated by Algorithm 4.5 using
WGS (4.2).

4.6 A concept hierarchy for attribute A generated by Algorithm 4.5 using
WGS (4.3).

4.7 Another histogram for attribute A .

4.8 A concept hierarchy for at tribute A generated by algorithm AGHC ~ i t h
input histogam given in Fi-e 4.7.

4.9 A concept hierarchy for attribute A generated by algorithm AGPC with
input histogram given in Figure 4.7.

4.10 Cornparison of execution time when the fan-out is 3

4.11 Cornparison of execution time when the fan-out is 5

5.1 Post-order traversal encoding of a small hierarchy

5.2 An encoded concept hierarchy .

5.3 Storage comparison for different number of dimensions

5.4 Storage cornparison by varying number of levels

5.3 Storage cornparison for different fan-out in hierarchies

5.6 Storage cornparison for different concept lengths

5.7 Storage comparison the number of leaf nodes in hierarchies is fixed . .
5.8 Cornparison of disk access time for generalizing a concept

6.1 Architecture of the DBNiIiner system

6.2 A sample procedure of code chopping off

7.1 A concept hierarchy for attribute age

7.2 Another concept hierarchy for attribute age

7.3 A histogram for attribute age .

Chapter 1

Introduction

With the rapid growth in size and number of available databases in commercial,

industrial, administrative and other applications, it is necessary and interesting to

examine how to extract knowledge automatically from huge amount of data.

Knowledge discovery in databases (KDD), or data mining is the nontrivid extrac-

tion of implicit, previously unknown, and potentialIy useful information from dataIl71.

Through the extraction of knowledge in databases, large databases serve as rich, re-

Iiahle sources for knowledge retrieval and verification, and the discovered knowledge

can be applied to information management, decision making, process control and

many other applications. Therefore, data mining has been considered as one of the

most important and challenge research areas. Researchers in many different fields,

including database systems, knowledge-base systems, artificial intelligence, machine

learning, knowledge acquisition, statistics, spatial databases and data visualization,

have shown great interest in data mining. Many industrial companies are approaching

this important area and realize that data mining will provide an opportunity of major

revenue.

CHAPTER 1. INTROD UCTlOlV 2

A popular myth about data mining is to expect that a data mining engine (often

c d e d a data miner) will dig out al1 kinds of knowledge from a database autonornous~y

and present thern to users without humans instructions or intervention. This sounds

appealing. However, as one may aware, an overwhelmingly large set of knowledge,

deep or shallow, from one perspective or another, could be generated £rom many

different combinations of the sets of the data in the database. The whole set of

knowledge generated from the database, if measured in bytes, could be far large than

the size of the database. Thus it is neither realistic nor desirable to generate, store,

or present such set of the knowledge discoverable from the database.

A relatively realistic goal is that a user or an expert communicate wit h a data

miner using a set of data rnining primitives for effective and fruitful data mining.

Such primitives include the specification of the portion of a database in which one is

interested, the kind of knoivledge or niles to be rnined, the background knowledge that

a mining process should use, the desired forms to present the discovered knowledge,

etc.

As one of the useful background knowledge, concept hierarchies organize data or

concepts in hierarchical forms or in certain partial order, which are used for expressing

knowiedge in concise, high-Ieve1 terms, and facilitating mining knowledge at multiple

levels of abstraction. Concept hierarchies are also utilized to form dimensions in

multidirnensional databases and thus are essential components for data warehousing

as well[29].

In this chapter, the tasks of data mining are described in section 1.1, where differ-

ent kinds of rules are introduced. In section 1.2, the role of concept hierarchies in the

basic attribute-oriented induction (AOI) and multiple-level rule mining is discussed.

Motivation of this thesis is addressed in section 1.3. Section 1.4 gives an overview of

the thesis.

INTRODUCTION

1.1 Data Mining and Knowledge Discovery

There have been rnany advances on researches and developments of data mining, and

many data mining techniques and systems have recently been developed. Different

philosophical considerations on knowledge discovery in databases may lead to differ-

ent methodologies in the development of KDD techniques. Based on the kinds of

knowledge to be mined, data mining tasks may be classified as follows.

1. Characteristic Rule Mining, the summarization of the general characteristics of a

set of user-specified data in a database. For example, the symptoms of a specific

disease can be summarized by a set of characteristic rules.

7. Discriminant Rule M ining, the discovery of feat ures or properties that distin-

guish one set of data, called target cfass, from sorne other set(s) of data, called

contrasting class(es). For example, to distinguish one disease from others, a

discriminant rule summarizes the symptorns that differentiate this disease from

the others.

3. Association Rule Mining, the discovery of association among a set of objects, Say,

{ A i) E , and {Bj};==, , in the form of Al A A A, -, BI A - A B,. For example,

one may discover that a set of symptoms often occurs together with another set

of syrnptorns.

4. Classification Rule Mining, the categorization of the data into a set of known

classes. For example, a set of cars associated with many features may be clas-

sified based on their gas mileages.

5. Clustering, the identification of clusters (classes or groups) for a set of objects

based on their attributes. The objects are so clustered that the within-group

similarity is minimized and between-group similarity is maximized based on

CHAPTER 1. INTRODUCTION

some criteria. For example, a set of diseases can be clustered into several clusters

based on the similarities of their symptorns.

6. Prediction, the forecast of the possible values of some rnissing data or the dis-

tribution of certain attribute(s) in a set of data. For example, an employee's

salary can be predicted based on the salary distribution of similar employees in

a Company.

7. Evolution Rule Mining, the discovery of a set of rules which reflect the general

evolution behavior of a set of data. For example, one may discover the major

factors which influence the fluctuations of certain stock prices.

The data mining tosks described above are part of widely recognized ones. Other data

mining tasks in the form of different knowledge rules have aIso been studying. Even

for the above stated rules, there exist special forms or variants in different cases. For

example, quantitative association rule mining is the new developrnent of the general

case association rule mining.

1.2 The Role of Concept Hierarchy in Data Min-

ing

Usually, data can be abstracted at different conceptual levels. The raw data in a

database is called at its primitive level and the knowledge is said to be at a primitive

Ievel if it is discovered by using raw data only. Knowledge discovery at the primitive

level h a been studied extensively. For example, Most of the statistic tools for data

analysis are based on the raw data in a data set.

Abstracting raw data to a higher conceptual level, and discovering and expressing

CHAPTER 1 . ZNTRODUCTiON

knowledge at higher abstraction levels have superior advantages over data mining a t

a primitive level. For example, if we have discovered a rule at a primitive level as

follows.

Rule 1: 80% of peoples who are titled as professor, senior engineer,

doctor and l a v y e r are have salary between $60,000 and $1 00,000.

After abstracting data to certain higher levels, we may have the following rule.

Rule 2: G e n e r a l speaking, well educated people get lue11 paid.

Obviously, Rule 3 is much conciser than Rule 1, and, to certain extent, convey more

information. What we have done here is to abstract people t itled wi t h professor, senior

engineer, doctor and lawer t o a higher conceptual level, i.e., well educated people. And

we generalize salary between $60,000 and $100,000 to higher level concept well paid.

Different sets of data could have different abstractions and then organized to form

different concept hierarchies. A forma1 definition of concept hierarchy will be given

in 83.1.

Concept hierarchies can be used in the processing of al1 the tasks stated in the last

section. For a typical data mining ta&, the following basic steps should be executed

and concept hierarchies play a key roIe in these steps.

1. Retrieval of the task-related data set. Generation of a data cube.

2. Generalization of raw data to certain higher abstraction level.

3. Further generalization or specialization. Multiple-Ievel rule mining.

4. Display of discovered knowledge.

CHAPTER 1. INTRODUCTIOlV

Before proceeding to the next section, It is worth pointing out that concept hi-

erarchies also have the fundamental importance in data warehousing techniques. In

a typical data warehousing system, dimensions are organized in the form of concept

hierarchies. Therefore, the OLAP operations roll-up and drill-down c m be performed

by concept (or data) generalization and specialization.

Motivation

The incoperation of concept hierarchies into data mining and data warehousing tech-

niques has produced many important research results as well as useful systerns. How-

ever most of the effort in research and industry has been put on the utilization of

concept hierarchies. Of course, it is the ultimate goal of al1 the studies on concept

hierarchies. However, their efficient use should be based upon the complete under-

standing of different aspects and techniques concerning concept hierarchies. Some of

the problems related to concept hierarchies are listed as foIlows.

1. Basic terminology is necessary for unifying the study on concept hierarchies.

2. DifEerent attributes in a database may be of different types, and concept hier-

archies for those attributes may also have different types. Thus, what possible

types of concept hierarchies can we have and what are their properties? How

do we specifiy or define those concept hierarchies?

3. Construct a large concept hierarchy is tedious and very time-consurmrning even

for a domain expert. Can we generate concept hierarchies automatically? How

do we design generation algorithms and how to use those algori thms?

4. In our rnind a concept hierarchy may have a layered structure, in a data rnining

system, however, hoiv to store and manipulate it? How to provide a machinisim

CHAPTER 1. INTRODUCTION

to concept hierarchies to realize efficient use in data mining?

These and other problems let us recognize the fundamental importance of concept

hierarchies and motivate us to conduct an indepth study on concept hierarchy. The

concept hierarchies may be applied to other areas and may have other problems, but

Ive confine our study in the context of data mining and data warehousing.

Outline of the Thesis

The rernainder of the thesis is organized as follows. In Chapter 2, a brief survey of the

related work on concept hierarchies is given. Some interesting problems concerniag

concept hierarchies are a1so stated t here.

En Chapter 3, the preliminaries of concept hierarchy such as its formal definition,

properties, classification, language specification and basic terminology are described

and discussed. These will serve as the base of our study in latter chapters.

In Chapter 4, we focus on the automatic generation of concept hierarchies for

nominal and numerical attributes. The algorithm presented there for the automatic

generation of schema hierarchies is based on the statistics of data in a relation. The

two algorithrns proposed for automatic generation of numerical hierarchies are based

on clustering methods with order constraints. Both hierarchical and partitioning clus-

tering techniques are utiIized as components in our design of generation algorithms.

The quality and performance cornparison of the algorithms gives a guidance for the

select ion of different algorithms.

Chapter 5 discusses the techniques for efficient implementation of concept hier-

archies in our new version of DBMiner system. The relational table approach is

CHAPTER 1. INTRODUCTION 8

addressed with a cornparison with the traditional file operating approach. The en-

coding technique of concept hierarchies and its application substantidly improve the

periormance of our data mining system. An algorithm is developed for the purpose of

hierarchy encoding. The performance cornparison of the employrnent of encoded hier-

archies against non-encoded ones conducted there shows the evendence of the superior

of our encoding technique.

Chapter 6 considers the application of concept hierarchies in the typical data

mining system, DBMiner. Where we will discuss how to utilize concept hierarchies in

DMQL query processing, concept generalization, handling information loss problems

in use of rule-based hierarchies and display of finial mining results.

Finally, we surnmarize the thesis in Chapter T , in which some interesting problems

are addressed for future study.

Chapter 2

Related Work

In the early s tudies or in areas other than data mining, concept hierarchy is comrnonly

called tazonomy. We adopt the term concept hierarchy because of the popularity of

this term in the community of data mining and knowledge discovery.

In this chapter, we briefly go through the previous work related to concept hier-

archy in the context of data warehousing, data mining and some other areas.

2.1 Concept Hierarchy in Data Warehousing

While operational databases maintain state information, data warehouses typically

maintain historicai information. Although there are several forms of schema, e.g.,

star schema and snowflake schema, in the design of a data warehouse, the fact tables

and dimension tables are i t s essent ial components. Users typicaliy view the fact tables

as multidimençional data cubes. Usually the attributes of a dimension tabIe may be

organized as one or more concept hierarchies.

CHAPTER 2. RELATED WORK

The use of concept hierarchies in a data warehousing system provides the foun-

dation of operations roll-up and drill-down. Harinarayan, Rajaraman and UIlman(29]

studied the view materialization problem when hierarchical dimensions are involved

in the construction of data cubes, To improve the performance of executing OLAP

operations, a lattice framework is used to express dependencies among vieivs. These

dependencies are actually introduced by using concept hierarchies. A more recent re-

search by Wang and Iyer[49] proposed an encoding method of concept hierarchies for

benefiting the roll-up and drill-down queries of OLAP. The post-order labeling method

used in [49] demonstrates better performance than the traditional join method in the

DB2 V2 system. Different from other researches, this work focuses on the topic of how

to efficiently use concept hierarchies to improve the performance of O LAP queries.

Many commercial products of OLAP systems are available, and Cognos PowerPlay

[42], Oracle Express[S] and MicroStrategy DSS[11] are among the most popular ones.

Since the analysis of historical information for decision support is the ultimate goal

of any data warehousing systems, at least one time dimension should be involved in

the construction of data cubes. Once the time period is specified, a time dimension

is reasonably stable. The flexibility of time schema lets PowerPlay, Express and DSS

put a great deal of effort to handle different tirne dimensions. One interesting thing is

that, usually numerical attributes are taken as measurements and thus assigned as a

measure or fact in the fact tables. Of course, one can take attribute age as a measure-

ment and obtain some aggregates such as avg(age) over a set of data. However, when

ive compare attributes account-balance with age we can find that account-balance has

more meaning of measurement. It could be more useful to build a concept hierarchy

for age and place attribute age in a dimension table. The vacancy of the generation

of concept hierarchies for numerical attributes is the common disadvantage of the

current commercial OLAP products.

CHAPTER 2. RELATED WORK

2.2 Concept Hierarchy in Data Mining

The formai use of concept hierarchies as the most important background knowledge

in data mining is introduced by Han, Cai and CerconeL24]. The incorporation of

concept hierarchy into the attfibute-oriented induction (AOI) leads AOI to be one

of the most successful techniques in data mining. Concept hierarchies have been

used in various algori t hms such as characteris tic rule mining[24] [2(], multiple-level

association mining[26], classification[31] and prediction.

Association rule and its initial mining algorithm is proposed by Agrawal, Imielinski

and Swami[i2] and fast algorithms are reported in Agrawal and Srikant [3]. However,

they do not consider any concept generalization and only discover patterns using

raw data, in other words, the discovered knowledge is solely at the primitive level.

Upon recognizing the importance of concept hierarchies, they proposed algorithrns

for mining generalized association rules in Srikant and Agrawal[46], in which concept

hierarchies are used for mining association rules and interesting rule detections. In-

terestingness is an important rneasure to determine the value of the discovered knowl-

edge. In [XI , the complexity of a concept hierarchy is defined in terms of the number

of its interior nodes, and the depth and height of each of these interior node. This

complexity is then used to rneasure the interestingness of the discovered knowledge

rules.

In the term of structured attributes, Michalski, et a l [39,33] studied the discovery of

generalization rules using concept hierarchies. For numerical attributes, a generation

method called ChiMerge is employed. ChiMerge is proposed by Kerber[36] in order

to discretize numerical attributes such that classification could be done with higher

accuracy. ChiMerge is designed solely for classification in which several classification

attributes must be pre-specified. Otherwise, the X2 value is impossible to be obtained

if there is no any classification at tributes given.

In 1994, Han and Fu[25] reported a study on the automatic generation and dynamic

adjustrnent of concept hierarchies based on data mining tasks. The role of concept

hierarchies in the at t ribute-oriented induction is clarified and several algori t hms are

developed for the generation and adjustment of concept hierarchies.

The term rule-based concept hierarchy is k s t used in Cheung, Fu and Han[ï] for

the purpose of extending generalization of concepts from unconditional to conditional.

Some difficulties are discussed in using rule-based concept hierarchies and an algorithm

is presented to solve the problems and to complete the AOI procedure.

Date mining and data warehousing are not the trvo totally independent fields.

Actually, when we look at their interna1 architectures, we find that they are essen-

tially built on the same data source called data cube. One can take data rnining as

an extension of data warehousing by adding rnany more poiverful functionalities or

functional modules for discovering more types of knowledge rules. In this sense, we do

not differentiate the techniques, especially those for concept hierarchies, used in data

mining and data warehousing. As a matter of fact, the integration of the function-

alities of data warehousing and data mining has been implemented in our DBMiner

system. Refer to Han[23] for more details on this issue.

2.3 Concept Hierarchy in Other Areas

Concept hierarchies have long been used in other areas in the name of taxonomies. As

a rnatter of fact, many important research results on data mining are from machine

learning and statistics, etc. Concept hierarchies play an important role in knowledge

representation and reaçoning[35,5]. As the size of concept hierarchies increases, there

CHAPTER 2. RELATED WON< 13

is a growing need to represent them in a form that is amenable to performing op-

erations efficiently. Encoding hierarchies in a manner that permits quick execution

of such operations has been a goal in logic programming and other areas of corn-

puter science[l4]. Many encoding schemes have been proposed such as in Dahl(9, 101,

Brew[5] and Ait-Kaci, et al [4]. Although those encoding schemes are successful in

their particular fields, research is ongoing in the quest for general purpose, compact,

flexible and efficient encoding techniques.

Interesting studies on the autornatic generation of concept hierarchies for nominal

data con also be seen in other areas, which can be categorized into different ap-

proaches: machine learning ap proaches [4O, 151, st at ist ical approaches[t] , visual feed-

back approaches(351, and algebraic (lat tice) approaches[4l].

Machine learning approach for concept hierarchy generation is a problem closely

related to concept formation. Many influentid studies have been performed on it ,

including ClusterlP by Michalski and Stepp[40], COBWEB by Fisher[l5], hierarchical

and parallel clustering by Kong and Ma[30].

As a fundamental component in the autornatic generation of concept hierarchies

which will be discussed in Chapter 4 of this thesis, data clustering techniques have

been used in many field such as biology, social science, planning and image processing

(see [43]). Alt hough its statistical background is not that strict, numerous researches

on clustering have been conducted since Sokal and Sneath[45] introduced methods for

numerical taxonomy which made a big progress from subjectivity to objectivity. Clus-

ter analysis is highly empirical. Different methods can lead to different grouping[l].

Furthermore, since the groups are not known a priori, it is usually dificult to judge

whether the results make sense in the context of the problem being studied. That is

also the reason we reconsider the particular clustering met hods when order constraints

are involved in the automatic generation of numerical hierarchies.

CHAPTER 2. RELATED WORK

2.4 Summary

Some related work on the research of concept hierarchy in the context of data ware-

housing, data mining and some other areas such as machine learning, statistics, plan-

ning and image processing are summarized. A great deal of those researches is con-

cerning the utilization of concept hierarchies in different algorithms. The research

work on the generation and techniques for efficient implementation of concept hierar-

chy is relatively little. These are the major topics of the thesis and will be studied in

the rest chapters of the thesis.

Chapter 3

Specification of Concept

Hierarchies

The importance of concept hierarchies stimulate us to conduct a systematic study on

them. In this Chapter, we give a forma1 definition of concept hierarchy, and study

its properties in section 3.1. Some basic terms such as aearest ancestor, leuel name,

schema leuel partial order are introduced. In section 3.2, the portion of DMQL for

specifying concept hierarchies is described. In section 3.3, concept hierarchies are

categorized into four types based on the methods of specifying them. Finally, we

summarize t his chapter in section 3.4.

The definition of concept hierarchy is introduced in this section. Some basic terms

are also discussed.

In traditional philosophy, a concept is determined by its extent and intent, where

CHAPTER 3. SPECIFICATIOiV OF CONCEPT HIERARCHIES 16

the extent consists of d l objects belonging to the concept while the intent is the

multitude of all attributes valid for al1 those objects. A formal definition of concept

can be found in [50]. For the purpose of data mining and knowledge discovery, we

simply take a concept as a unit of thoughts, expressed as a linguistic term. For

example, "human being" is a concept, "computing science" is a concept, too. Here we

do not explicitly describe the extent and intent of a concept and assume that they

c m be reasonably interpreted in the context of a particular data rnining ta&.

Definition 3.1 (Concept hierarchy) A concept hierarchy H is a poset (partiully

ordered set) (H, +), where H is a finite set of concepts, and + is a partial order 'on

H.

There are some other names for concept hierarchy in literatures, for example, taxonomy

or is-a hierarchy [46, 451, structu red attribute [33], etc.

Figure 3.1 : Four sample concept hierarchies.

Example 3.1 Since posets can be visually sketched using Hasse diagrams(201, ive can

also use such kind of diagrams to express concept hierarchies. Figure 3.1 illustrates

four different concept hierarchies.

'A partial order on set H is an irreflective and transitive relation[20].

CHAPTER 3. SPECIFiCATZON OF CONCEPT HIEIWRCHIES 17

Definition 3.2 (Nearest ancestor) A concept y 2s called the nearest ancestor of

concept x i f x , y E H with x 4 y, x # y, and there is no other concept z E H such

that x i z and r 4 y.

Definition 3.3 (Regular concept hierarchy) A concept hierarchy 'H = (H , 4) is

regular if there is a greatest element in H and there are sets Hl , 1 = 0,1, ..., (n - 2) ,

such that
n-1

H = U H l and H i n H j = O for i f j ,
[=O

and, if a nearest ancestor of a concept in Hi is in Hi, then the nearest ancestors of

the other concepts in Hi are al1 in H j .

Example 3.2 Following definition 3.3, we find that concept hierarchies (2) and (3)

in Figure 3.1 are regular concept hierarchies. For concept hierarchy (3), the greatest

element is N and we have Ho = {N), Hl = (L , M), H2 = {H, I , J, K) and H3 =

{A, B, C, D, E? F, G).

From now on, we will focus our discussions on regular concept hierarchies and call

regular concept hierarchy as concept hierarchy or, simply, hierarchy.

Usually, the partial order 4 in a concept hierarchy reflects the special-general

relationship between concepts, which is also called subconcept-superconcept relation

(see [50, 471). Another important term for describing the degree of generality of

concepts is level nurnber. We assign zero as the level number of the greatest element

(called most general concept) of H, and the level number for each of the other concepts

is one plus its nearest ancestor's level number. A concept with Ievel nurnber 1 is also

called a concept a t level 1.

Due to the layered structure of a hierarchy as described in definition 3.3, ive notice

that ail the concepts with the same level nurnber must be in set Hf for one and only

one 1, I = O, . . . , (n - 1). FVe thus simply call Hl as level l of the concept hierarchy.

CHAPTER 3. SPECZFICATION OF CONCEPT HIERARCHlES

Now, let us define function g : H -, H as

z if z E Ho,

y if y is a nearest ancestor of x.

If we impose a constraint that function g is single valued, that is, for any x, y E H!,

if g i (x) # gl (y) then x # y, t hen the Hasse diagram of a concept hierarchy is actually

a tree. Therefore, al1 the terminology for a tree such as node, root, path, leaf, parent,

child, sibling etc- are applicable to the concept hierarchy as well. It is not difficult to

see that g (H l) Ç for each I = 1,2,. . . , (n - 1). In the case that g(Hr) = Hl,l for

each 1 = 1,2,. . . , (n - l) , we conclude that every node except the ones in H,-l has

at least one child.

Definition 3.4 (Level name) A level name is a senaantic i,ndicator assigned to a

particular level.

If level numbers are already assigned to the levels of a hierarchy, a simple way to

figure out a level name to each level is to combine word level with its level number.

For example, we assign level2 as the level name of the level with level number 2.

Based on the above discussion, when we talk about a level in a concept hierarchy:

we could use a set of concepts, or the level name assigned to it without any difference.

Example 3.3 A concept hierarchy location for provinces in Canada is shown in Fig-

ure 3.2, which consists of three levels (n = 3) with level names country, region and

province, respectively. ?Ve have Ho= {Canada), Hl = (Western, Central, ~bIaritime),

and Hz = { BC, AB, MT, S K , ON, QU, NS, NB, NF, PEI), and relation 4 is defined

as

BC 4 Western 4 Canada;

AB 4 Western 4 Canada;

CHAPTER 3. SPECIFICATION OF CONCEPT HXEMRCHIES

Canada country

BC AB MB SK ON Qc NS NB NF PE province

Figure 3.2: A concept hierarchy location for the provinces in Canada.

Mi3 W e s t e r n + Canada;

SI< 4 Western 3 Canada;

O N + Central i Canada;

QC + Central 4 Canada;

NS 4 Mari t ime 4 Canada;

NB 4 Mari t ime 4 Canada;

N F 4 Mari t ime 4 Canada;

PE 4 Mari t ime i Canada;

Al1 the other expressions for this relation, such as BC 4 Canada, ON 4 Canada,

can be derived from the above expressions using transitivity of the relation. O

Definition 3.5 (Schema level partial order) A schema level partial order of a con-

cept hierarchy 'H is a partial order on s, the set o j leuel names of concept hierarchy

'FI.

CHAPTER 3. SPECIFICATION OF CONCEPT H I ' R C H I E S 20

Let us derive a relation 5 on S from the relation 4 on H as follows: There is a

relation between level names a and b, Le. a 5 1, if there are two concepts x and y

such that x is in H i whose Level name is a, y is in Hj whose level name is 6, and a 4 b.

It is not difficult to prove the following

Theorem 3.1 The derived relation is not only a partial order on S , but a total

order as well.

For exarnple, the derived schema level partial order on the set of the level names in

Example 3.3 is

province 4 r e g i a 4 country.

On the other hand, if a partial order is given on the set {Hl)", ive can define

a partial order on set 6:: Hl. This is convenient especially when we are concerned

with a relational database, in which HI could be a set of values or instances of an

attribute for each 1. A possible relationship betmeen a pair of concepts from different

levels can be naturally created if they belong to the same tuple in a relational table.

Based on this observation, wre will use only one notation 4 to denote a partial

order defined for a concept hierarchy regardless of it is defined on the set of concepts

or the set of Ievels (or level names). Accordingly, a concept hierarchy can be specified

on either schema level or instance level.

Example 3.4 A concept hierarchy date can be defined as:

day 4 month 4 qvarter + year.

This hierarchy is basically regarded as a schema hierarchy which will be discussed

in section 3.3. Here we actually define a schema level partial order from which a

equivalent partial order for the set of the instances of these level names can be derived.

CHAPTER 3. SPECfFICATION OF CONCEPT HIERARCHIES 21

For example, the foIlowing two expressions demonstrate the application of the partial

order on the set of instances of date values.

Jan.l2,1996 4 January 1996 4 QI 1996 4 1996,

Ju1.25,1997 July 1997 4 93 1997 4 1997. 13

In general, functions gi for 1 = 1,2, ..., n can also be multi-valued. In this case, the

concept hierarchy cannot be ilhstrated as a tree. A lattice-iike graph is employed to

visually describe it. More detailed discussion can be seen in $3.3.4 and 96.4.

Exarnple 3.5 A lattice-like hierarchy science is shown in Figure 3.3. where the dis-

cipline data mining has three parents AI , database and statistics. O

physics . . .

Ai . . . database statistics

Figure 3.3: A lat tice-like concept hierarchy science.

To ease the latter discussion, we need the following

Definition 3.6 (Root-leaf path) A root-leaf path in a concept hierarchy 31 is a

path j'rorn a node in Ho (called mot) to a node in H,.,,l (called leaf).

CHAPTER 3. SPECIFICATlOrV OF CONCEPT HIERARCHIES 22

3.2 A Portion of DMQL for Specifying Concept

Hierarchies

A data mining query language, DMQL, has been designed and implementd in our

data mining system, DBMiner, for mining several kinds of knowledge in relational

databases at multiple Ievels of abstraction ['28]. It can be ernployed to specify different

mining tasks such as mining characteristic rules, discriminant rules, association rules,

classification rules and prediction rules. DMQL can also be used for specifying and

manipulating concept hierarchies.

This section describes the portion of DMQL for the specification of hierarchies.

The applications of it wiil be illustrated using examples in the next section.

The top-level syntax of DMQL for specifying concept hierarchies is shown in Fig-

ure 3.4.

(hierarchy definition) ::= define hierarchy (hierName) [on (relName)] as (hierDef)
(hierDef) ::= (attrNameList) [where (condition)]

((IevelName): (setvalue) (partialorder)
(1evelName) : (onevalue) [if (condit ion)]

[(usingoperation)
(at trNameList) ::= (attribute) {, (attribute))
(attribute) ::= [(dbName) ..] [(selName) .] (attrName)
(set Value) : := (onevaiue) { , (oneValue))
(oneVaIue) ..- ..- (string)
(partialorder) ::= <

Figure 3.4: Top-level DMQL syntax for defining concept hierarchies

The syntax of the DMQL is defined in an extended BNF grarnmar, where "[1"
represents O or one occurrence, "{)" represents O or more occurrences, and the tvords

CHI1PTER 3. SPECIFICATION OF CONCEPT HTERARCHIES

in sans serif font represent keywords.

3.3 Types of Concept Hierarchies

Concept hierarchies can be categorized into four basic types: schema, set-grouping,

operation-derived and mle-based concept hierarchies. The following subsections give

det ailed discussion of these types of concept hierarchies concerning t heir defini t ions

and language specifications.

3.3.1 Schema hierarchy

This kind of hierarchy is formed at the schema level by defining the partial order to

reflect relationships arnong the attributes in a database. For example, the attributes

house-number, street, city, province, and country form a partial order at the schema

level,

ho.use-number 4 street 4 city 4 province 3 country.

For a concrete address, such as "351 Powell street, Vancouver, B c Canada", its

partial order iç determined by the partial order at the schema level for the whole data

relation, and there is no need to specify the generalization or specialization paths for

each record in that data relation.

The following example shows how to use DMQL to define schema hierarchies.

Example 3.6 The home address of the at tributes of a relation employee in a Company

database is defined in DMQL as follows.

define hierarchy IocationHier on employee as

[housenumber, street, city, province, country]

CHAPTER 3. SPECIFICATION OF CONCEPT HIERARCHZES

This statement defines the partial order among a sequence of attributes: house-number

is at one level lower than street, which is in turn at one level lower than city, and so on.

Notice that multiple hierarchies can be iormed in a data relation based on different

combinat ions and orderings of the at tributes.

Similarly, 8 concept hierarchy for date(day, month, quarter, year) is usudy pre-

defined by a data mining system, which can be done by using the following DMQL

statement.

define hierarchy timeHier on date as

[day, month, quarter, year]

A concept hierarchy definition rnay cross several relations. For example, a hier-

archy productHier may invofve two relations, product and company, defined by the

following schema.

product(product-id, brund, Company, place-made, date-made)

company (name, cat egory, headquarter-location, O wner, s k e , asset, revenue)

The hierarchy productHier is defined in DMQL as follows.

define hierarchy product Hier on product, company as

[productid, brand, product.company, cornpany.category]

where product.company = company.name

In this definition, an attribute name which is shared by two relations has the

corresponding relation name specified in front of the attribute name using the dot

notation as in SQL, and the join condition of the two relations is specified by a where

clause. 0

CHAPTER 3. SPECIFICATZOIN OF CONCEPT HlERARCHIES 25

An alternative to define a hierarchy involving two or more relations is to define a view

using the relations and where clause, on which the hierarchy is then specified.

Although a hierarchy defined at the schema level determines its partial order and

the generalization and specialization directions, for the purpose of executing a data

mining ta&, we need to instantiate this schema hierarchy over the related data in a

database to get a concrete or instance hierarchy. The partial orders at both schema

level and instance level should be stored for the purpose of data mining. Some of the

related issues will be discussed in Chapter 5.

3.3.2 Set-grouping hierarchy

This kind of hierarchy is formed by defining set grouping relationships for a set of

concepts (or values of at tributes) in order to reflect semant ic relat ionships character-

istic to the given application domain. It is in this sense that Michalski [39] introduced

structured attribute to name this kind of concept hierarchies. A set-grouping hierar-

chy is also called a instance hierarchy because the partial order of the hierarchy are

defined on the set of instances or values of an attribute. We prefer set-grouping to

others because it has more operational sense.

Example 3.7 The concepts freshman, sophomore, junior, senior, undergraduate,

and il.I.Sc, Ph.D, graduate, which are values of the attribute status in a university

database, form a hierarchy statusflier, such as

{freshman, sophomore, junior, senior} 4 undergraduate

{EvI.Sc, Ph.D) 4 graduate

{ undergraduate, graduate) 4 allstatus

CHAPTER 3. SPECIFICATION OF CONCEPT HIERARCHIES 26

Here we use the notation that {Al , A*, ..-, Ak} 4 B is equivaient to that Ai + B for

each i = 1,2, ..., k. This hierarchy can also be visualiy expressed in Figure 3.5.

graduate undergraduate

A
M.Sc Ph.D freshman sophomore junior senior

Figure 3.5: A set-grouping hierarchy statustiier for at tribute stat u s

The following statement gives the specification of this hierarchy in DbIQL.

define hierarchy statusHier as

level2: (freshman, sophomore, junior, senior) < levell : undergraduate;

level2: {M.Sc, Ph.D) < levell: graduate;

levell: {graduate, undergraduate) < leve10: allstatus O

A set-grouping hierarchy can be used for modifying a schema hierarchy or another

set-grouping hierarchy to form a refined hierarchy. For exampie, one may define a set

grouping relationship within WesternCanada as foliows:

{AB, SK, MB) -< Prairies

{BC, Prairies) 4 WesternCanada

These definitions add a refined layer to the existing definition in the schema hier-

archy location shown in Figure 3.2.

3.3.3 Operat ion-derived hierarchy

This kind of hierarchy is defined by a set of operations on the data. Such operations

can be as simple as range value cornparison, such as

or a s complex as a data clustering and distribution andysis algorithm, such as deriv-

ing a hierarchy of three levels for university student grades based on the data value

clustering and distribution.

The following example illustrates how to use DMQL to define a hierarchy using a

predefined algorit hm.

Example 3.8 The GPA values of students are real nurnbers ranging from O to 4.

However, the GPA values are usually not iiniformly distributed, and it is preferable

to define a hierarchy gpaHier by an autornatic generation algorithrn.

define hierarchy gpaHier on student a s

AutoGen(AGHC, gpa, 4)

This statement says that a default algorithm AGHC which will be discussed in the

next chapter is performed on al1 the GPA values of the relation student, and 4 is the

value of fan-out. 0

Operat ion-derived hierarchies are usually defined for numerical attribut es. Chap-

ter 4 will address more on the automatic generation of numerical concept hierarchies

based on different clustering principles.

CHAPTER 3. SPECIFICATION OF CONCEPT HIERARCHIES

3 -3 -4 Rule-based hierarchy

The concept hierarchies defined above have the characteristics that, for each concept,

there is only one higher level correspondence, hence a concept can be generalized to

its higher Level correspondence unconditionally. For example, in a concept hierar-

chy gpaHier defined for the attribute GPA of database student, a 3.6 GPA (in a 4

points gading system) can be generalized to a higher level concept, Say, ezcellent.

This concept generalization depends only on the GPA value but not on any other

information of a student. However, in some cases, it may necessary to represent the

background knowledge in such a way that concept generalization would depend not

only on the concept itself but also on other conditions. The same 3.6 GPA may only

deserve a good, if the student is a graduate; and it rnay be ezcellent, if the student is

an undergraduate.

A rule-based hierarchy is defined by a set of rules whose evaluation often involves

the data in a database. A lattice-like structure is used for graphically describing this

kind of hierarchies, in which every child-parent path is associated with a generalization

rule.

Example 3.9 Suppose we have a database university, in which a relation student is

defined by the schema student(name, status, sex, major, age, birthplace, GPA). A

rule-based concept hierarchy is shown in Figure 3.6 for its graphical expression and

Figure 3.7 for its generalization rules. Using DMQL, we can define this hierarchy by

statements such as:

define hierarchy gpaHier on student as

level3: "2.04.5" < level2: average

if status = 'kdergraduaten

CHAPTER 3. SPECIFICATION OF CONCEPT HIERARCHZES

poor average good excellent

Figure 3.6: A rule-based concept Eiicrarchy gpa Hier for at tribute GPA

Ri : (0.0-2.0) -, poor;
R2 : (2.0-25) A {graduate) 4 poor;
R3 : (2.0-2.5) A (undergraduate) -t average;
& : (2.5-3.0) -, average;
R~ : (3.0-3.a) -, good;
& : (3.5-3-8) A {graduate) 4 good;
Rï : (3.5-3.8) A (undergraduate) -, excellent;
R8 : (3.8-4.0) 4 excellent;
R9 : {poor) -+ weak;
RIO: {average) A {senior, graduate) -, weak;
RI1: {average) A {freshman, sop homore, junior) + st rong;
Rt2: (good) 4 strong;

{excellent} -, strong.

Figure 3.7: Generalization rules for concept hierarchy gpaHier.

For the seek of simplicity, we have adapt the foIlowing convention in the thesis for

numerical ranges: a value x of an attribute A is in range "a - 6" if a 5 x < b. The

only exception is when b is the maximum value of the attribute, in that case we can

have a 5 x < b.

Sometimes it is possible to convert the lat tice-like structure of a rule-based hier-

archy to a tree-like correspondence. Assume that each of the generalization rules is

CHAPTER 3. SPECIFICATIOiV OF CONCEPT HIERARCHIES

in the form of

that is, for a tuple x , concept A can be generalized to concept C (higher level at-

tribute values) if condition B can be satisfied by x. If B is also a value of certain

attribute, Ive can take A A B as a new concept and the above rule is actually a

subconcept-superconcept relationship. Therefore, a tree-structured concept hierarchy

can be derived fiom the given generalization rules,

Consider again the above hierarchy gpaHier, ive can see that, besides gpa, there

is one more attribute status involveci in the generalization rules. With the assistance

of hierarchy shown in Figure 3.5, we can replace the higher level concepts of status

with their corresponding Ieaf level concepts and transform one generalization rule into

several ones. For instance, rules Rto and RI1 can be split into

RIO.1 : {average) A (senior) -, weak;

Rio., : {average) A {MSc) + weak;

Rla.s : {average) A {Ph-D} -, weak;

R1l.l : {average) A {freshman) -, strong;

RLt,2 : {average} A {sophomore) + strong;

R11.3 : {average) A {junior) 4 strong.

The other rules can be dealt with similarly. Finally there are 30 detailed generalization

rules.

CHAPTER 3. SPECIFICATION OF CONCEPT HIERARCHIES

Figure 3.8: A variant of the concept hierarchy gpaHier.

Figure 3.8 shows the hierarchy derïved from those rules where we use fr, so, ju

and se to represent freshman, sophomore, junior and senior, respectively, and every

concept (node) is a pair of concepts for attributes gpa and status. The sign means

any value of an at tribute. This hierarchy is equivdent to the one shown in Figure 3.6

in the sense that we will obtain the same result if we generalize a tuple using these

two hierarchies separately. This kind of transformation from a rule-based hierarchy

to a equivalent but non-mle-based one is important in order to apply our encoding

algorithm which will be addressed in Chapter 5. Another advantage of the splitting

is that we can avoid the information loss problems (see [TI) encountered during the

attribute-oriented induction. We will return to this issue in Chapter 6.

Finally, it is necessary to notice that, in practical applications, a concept hierarchy

can be composited as a mixed type of hierarchy which could be formed by merging

several different types of concept hierarchies described in the above three subsections.

3.4 Summary

As the base of our study on concept hierarchies, we first defined and discussed some

terminology and characteristics of concept hierarchies. The top-level data mining

query language (DMQL) portion for specifying concept hierarchies is stated and illus-

trated by examples for defining different hierarchies. Concept hierarchies are classified

into four types, i.e., schema, set-grouping, operation-derived and rule-based, each of

which is discussed concerning their characteristics and specifications.

Chapter 4

Automatic Generation of Concept

Hierarchies

As we mentioned in earlier chapters that concept hierarchies could be provided by

knowledge engineers, domain experts or users. The effort of constructing a concept

hierarchy is mostly depends on the size of the hierarchy. It is feasible to manually

construct a hierarchy of small size. However, it couId be too much work for a user or an

expert to specify every concept hierarchy, especially large sized ones. Moreover, some

specified hierarchies may not be desirable for a particular data mining task. Therefore,

mechanisms should be introduced for automatic generation and/or adjustment of

concept hierarchies based on the data distributions in a data set. The data set could

be the whole database or a portion of it, or the whole set or a portion of the set

of the data relevant to a particular mining task. The former is independent of a

particular rnining task and is thus cailed a static data set or a database data set;

whereas the latter is generated dynamicdly (after the mining task is submitted to

a rnining system), and is thus called a dynamic data set or a query-relevant data set.

In this context, the generation of a concept hierarchy based on a static (or dynamic)

CHAPTER 4. AUTOhL4TK GENERclTrZON OF CONCEPT HIERARCHIES 34

data set is called static (or dynamic) generation of concept hierarchy.

In this chapter, algorithms are proposed for the automatic generation of nominal

hierarchies, i.e., concept hierarchies involving nominal (or categorical) at tri butes, in

section 4.1 and n urnerical hierarchies, Le., concept hierarchies involving numerical at-

tributes in section 4.2. The analysis and cornparison for the generation algorithms

of numerical hierarchies are given in $42.4. Al1 these algorithms can be applied to

either static or dynamic data sets.

4.1 Autornat ic Generat ion of Nominal Hierarchies

Attributes can be classified into nominal and numerical types. For example, attribute

profession is nominal (or called categorical), whereas attribute population is numerical.

In this section we discuss the automatic generation of concept hierarchies for nominal

attributes and leave the same problem for numerical attributes to the next section.

Vie base our study on the assumption that a set nominal attributes are given,

and the problem is to figure out a partial order over this set based on the given

data relation (or view) in a database. An algorithm is proposed in &4.1.1 and some

discussion on the date/time hierarchies is given in §4.1.2.

4.1.1 Algorit hm

Intuitively, based on the structure of a concept hierarchy, we may Say that the hierar-

chy is reasonable if any level Hl has fewer nodes (or concepts) than each of its lower

levels. This consideration leads the following algorithm to find out the hidden partial

order on a set of nominal attributes.

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 35

Algorithm 4.1 (Automatic generation of nominal hierarchy) Work out a par-

tial order on a set of attributes based on the numbers of distinct values for the subsets

of the attributes in a given database.

Input: A set of nominal attributes S = {Ai}&, and a relation R in a database.

Output: A partial order 4 over the set S, or equivalently, reorganize S to S =

{B;)Z"=,uch that B,,, 4 8,-1 4 - - - -i BI .

Method: Execute the following steps.

1. Let R := S, find an attribute BI E 0 such that the nurnber of distinct

values of BI in R is the minimal among al1 the attributes in i1;

2. while (k < rn) {

R := Q - {Bk);

minNum := cm;

for (each attribute A; in 0) {

count the number of distinct tuples with respect to attribute

list BI, B2,.. . , Bk, A; . Denote this number by myiVum;

if (minNum > myNum), t h e n {

minNum := myNum;

Bk+l := Ai ;

) // end of if

) //end of for loop

p .- .- k + 1;
} //end of while loop

3. Assign the only attribute in R to B,.

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 36

The major operations in the above algorithm can be implemented by SQL func-

tionalities. For example, the operation count the number of distinct tu ples in R with

respect to attribute fist BI, Bz, . . . ,Bk, A may be fulfilled by the following SQL query:

SELECT DISTINCT Bi, 82, . . , Bk, A

FROM R

and count the number of the retrieved tuples.

Theorem 4.1 A partial order on a set S of attributes c m be worked out by Algo-

rithm 4.1 in 0(m3nlogn) t ime, where m = ISI, and n is the total number O/ taples

with respect to the uttribute set S in a dafabase table.

Proof Assume that there are no indices on the target database table. It is easy to

see that the time for retrieving distinct tuples with respect to a set of t attributes is

(tn log n). Since, for each t = 1.2, . . . , m, we need to execute this kind of retrieval

(m - t) times, the total time is

m-1

C [(m - t)O(tn log n) + (m - t)] = 0(m3n log n) .
t=l

Thus the theorem follows.

It is important to point out that users have the freedom of adjusting the partial

order obtained from the algorithm because they may have a better understanding

about the database schema. A partial order worked out from the semantics of those

attributes may result in a bet ter interpretation for the final mining results. Base on

the same reason, sometimes, it may not be necessary to apply the above algorithm

and use the initially assigned order on a set of attributes as the partial order.

Example 4.1 Consider database CITYDATA consisting of statistics describing in-

cornes and populations, collected for cities and counties in the United States. W e can

CHAPTER 4. A UTOMATTC GENERATlON OF CONCEPT HIERARCHlES 37

find that a schema hierarchy could be formed using attnbutes state, areaname ruid

county which are attributes in relation cif-pop. By applying the algonthm 4.1, we

obtain the partial order: areaname + county + state, which is consistent with the

real geogaphic natures in the United States.

4.1.2 On date/time Hierarchies

Dateltirne hierarchies are specid schema ones and are useful especially for business

data mining applications, where people rnay need to obtain the summary information

over different time categories.

Usually, dateltirne categories include day, week, month, quarter, year, etc. The

data in a database relation may involve one or several datetime attributes. Once

the user has determined the attributes for defining the schema hierarchy, the partial

order is not difficult to decide since we only oeed to compare the attributes given by

the user with the predefined partial order and rearrange, if necessary, the order of

the given attributes. The partial order of a date/time hierarchy can be identified by

assigning a positive number to each attribute and a higher level is given a relatively

smaller number than that for any lower levels.

To generate a dateltirne hierarchy, we need to use so called dateltirne function

for each level. For example, there should be three functions for generating values

for week, nonth and quarter if a value, say, "May 28 1993 1:34PMn, is given for a

datetime attribute.

Obviously, month is not a parent of week in strict sense because a particular week

rnay across two months. Our relational table approach which will be addressed in the

next chapter can be used to sotve this problem naturally.

The manipulation of dateltirne hierarchies should be flexible such that it can

CHAPTER 4. A UTOMATiC GENERATION OF CONCEPT HIERARCHIES 38

haadle irregular time period, for exarnple, fiscal year, semester year, etc., are usually

employed in different cornpaaies or institutions, the resulting hierarchies should be

able to characterize those cases.

Autornat ic Generat ion of Numerical Hierar-

chies

Numerical attributes occur frequently in databases. Generation of numericd hier-

archies might be able to avoid user's subjectivity and Save data mining cost. In a

numerical concept hierarchy, each node or concept is actually a range or interd. A

higher level node (which is semantically more generai than some lower level concepts)

is formed by merging one or more lower Ievel nodes. Therefore, the problern of the

automatic generation of concept hierarchies for numerical attributes can be divided

into the following subproblems:

1. How to form the leaf level nodes? This is equivalent to the problern of descretiz-

ing the numerical attribute into a nurnber of subintervals. One method called

equal-width-interval is to partition the whole interval of the attribute into equal

width subintervals. The width or nurnber of these subintervals can be adjusted

in order to obtain reasonable granularity of the partition. Because the leaf levet

can be replaced with any higher level, finer partition of the whole interval wiIl

give us good feature of the row data distribution. However, more computational

time is needed in the finer partition case. An alternative, called equal-frequency-

interval, is to choose the interval boundaries so that each subinterval contains

approximately the same number of values of the attribute.

CHAPTER 4. AUTOMATE GENERATION OF CONCEPT HIERARCHIES 39

2. How to merge the leaf level nodes to form higher level nodes? Any higher

level node is obtained by merging some leaf nodes. One constraint is that

only contiguous nodes could be merged. The methods equal-width-interval or

equal-frequency-interval could also be used to produce higher level nodes. Other

methods could be designed based on different purposes of using the numerical

hierarchies. In 54.2.1, a basic algorit hm for generating numerical hierarchies is

described. An algori thm based on hierarchical clustering wi t h order constraint

is proposed in $42.2, and another algorithm based on partitioning clustering is

deveIoped in 34.3.3. Performance analysis and quality cornparison are presented

in 54-24.

4.2.1 Basic Algorit hm

Han and Fu[%] reported an algorithm for the automatic generation of numericd

hierarchies. The idea is based on the consideration that it is desirable to present

rules or regularities by a set of nodes with relatively even data distribution, i.e., not

a blend of very big nodes and very small nodes at the same level of abstraction. Thus

the equal-width-interval method is used for producing leaf level nodes and a histogram

is produced. The higher levels are obtained using a method similar to that of the

equal-frequency-interval method. The algorit hm provides a simple and efficient way of

generating numerical hierarchies. The computational complexity of the aIgorithm is

O(n) , where n is the total number of bins of the histogram. For latter reference, this

algorithm is called AGHF.

Example 4.2 Suppose a histogram has been produced as shown in Figure 4.1 for

attribute A. Applying the algorithm AGHF we generate a concept hierarchy shown in

Figure 4.2. If we look at the count for each node at level 1, we observe that the count

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 40

is 14 for node - 50n, 19 for node "50 - 90n, and 17 for node "90 - 120". This is

an approximately even distribution of counts.

Figure 4.1: A histogram for attribute A.

Figure 4.2: A concept hierarchy for attnbute A generàted by algorithm AGHF.

CHAPTER 4. AUTOkIATIC GENERATION OF CONCEPT HIERABCHIES 41

4.2.2 An Algorit hm Using Hierarchical Clustering

The aigorithms equal-width-interval, equal-frequency-interval and AGH F described above

in most cases can produce reasonably good concept hierarchies for numerical at-

tributes. However, there are many situations ivhere they perform poorly. For ex-

ample, if attribute salary is divided up into 5 equal-width intervals when the highest

sdary is $500,000, then al1 people with salary less than $100,000 would wind up in

the same interval. On the other hand, if the equal-frequency-intenml met hods is used

the opposite problem will occur: everyone making over $50,000 per year might be put

in the same category as the person with the $500,000 salary (depending on the dis-

tribution of salaries). With each of these methods it would be difficult or impossible

to Iean certain knowledge. The primary reason that these methods fail is that they

ignore the grouping structures hidden in the raw data, making it very unlikely that

the interval boundaries just happen to occur in the places that best facilitate accurate

categorizat ion.

Kerber[Jô] proposed an algorit hm ChiM erge to descretize a numerical attribute by

trying to capture the natural structure in the data set. But the algorithm is used

only for classification because certain number of classification at tributes should be

available to execute the algorithm.

For the purpose of generating concept hierarchies for different data mining tasks,

we develop in this subsection an algorithm based on hierarchical data clustering with

order constraints. First, ive give a brief description of a method of clustering a set of

objects with order constraints. Then our algorithm is presented rvith some discussion

and illustration by examples.

Clustering wit h Order Constraint

CHAPTER 4. AUTOMATE GENERATION OF CONCEPT HIERARCHIIES 42

The problem of clustering involves the partitioning of a set of objects into groups or

clusters in order to maxirnize the homogeneity within each group and to also maximize

the discrimination between groups. See [19], [43] and [13] for detailed discussion of

clustering algorithms and their applications. By obtaining clusters ive expect to figure

out the hidden structures of the data. Two types of clustering approaches are available

in literature: hierarchical and partitioning ones. The algorithms proposed in this and

next section are based on these two approaches, respectively.

As addressed before, ive can only merge contiguous intervals (or nodes) to form

a higher level nodes in a numerical hierarchy. If we take an interval as an object, in

the terminologv of clustering, we confront the problem of clustering a set of objects

with order constraint (see [19] and [37]). For example, given a set of nonoverlapped

intervals Ol = [O,S), 0 2 = p2,3), = [4,1) and o4 = [7,9], we are actually given

order "<" which is defined as: QI < U2 < O3 < 04. During the clustering, object Oi

can be merged only with Cl2, but O, cannot be merged with O3 without the invoiving

of O*.

Some algorithms for clustering with order constraint are developed in [19] and

[37]. The algorithm we will utilize in the automatic generation of concept hierarchies

is outlined below. Refer to Lebbe and Vignes[37] for a detailed discussion of the

algori t hm.

Assume that there is a set of M objects on which an order between objects is

also given. Thus the IV objects are denoted by O = {o i }El where the indices of the

objects are the representation of the order. A hierarchical clustering H on the set O

of N objects is defined as a set of clusters, that is H = {c j }$, , where iCI is a positive

integer and cj is a set of objects, such that

(1) o E H;

(2) o E O 3 { o) € ~ ;

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHiES 43

The quality of the clustering is defined as

where q'(c) is a similarity measure on duster c. Notice that there are a large number

of similarity mesures proposed[l3] and the use of different measures could produce

different clustering results. In the discussions below we employ the s u m of squared

deviation which has been widely used in clustering researches and applications. Let

Q = [q i j] and P = bij] be the matrices for storing the qualities and splitting positions

respect ively. The algorithm is described as follows:

Algorithm 4.2 (Hierarchical clustering with order constraint)

for (i = I ; i 5 N ; i + +) {

Qii = (~, i) ;

pi; = 0;) / / end for i

f o r (k = 2 ; k < N;k++) (

for(i= l ; i < ni- k + I ; i + +) {

j = i + b - 1 ;

Qij = 00;

for (1 = i; t 5 j - 2; 1 + +) {

if ~ i , l + qr+~ j < Qij {

pij = Qi,t + ql+ i , j ;

pij = 1; 1 / / end if

) // end for t

4, = qij + q1(Ci.j);

) // end for i

) // end for k

CHAPTER 4. AUTOIIfATZC GELVERATION OF CONCEPT HIERARCHIES 44

Generat ion Algorit hm

After applying algorithm 4.2 to a set of objects with order constraints, we actually

obtain two matrices P and Q. The resultant clustering is formed by tracking back in

matrix P. Because only two clusters are involved in each merge, the final clustering

of the algorithm is a binary tree. This tree might be used as our concept hierarchy

directly in data mining. However, this kind of concept hierarchy may have a large

number of levels, and thus cannot make the drill-down or roll-up focus on interesting

results quickly. Moreover, this kind of concept hierarchy rnay need much more storage.

Usually, a parameter called fan-out[32] is specified by for a tree and this param-

eter can be used in the generation of a desirable concept hierarchy. The algorithm

presented below is based on the data clustering algorithrn 4.2 and reconstruction of

the clustering result such that the fan-out condition is satisfied for each node except

the leaf nodes at the bottom level,

Algorithm 4.3 (AGHC) Automatic generation of a numerical concept hierarchy

based on the clustering of values of a numerical attribute.

Input: A histogram of attribute A; a fan-out F.

Output: A concept hierarchy 'H with fan-out F for attribute A.

Method: Execute the following steps.

1. Use algorithrn 4.2 to obtain a hierarchical clustering on a set of bins derived

from the histogram. Denote by fi the resultant clustering.

2. Take the whole interval [min, max] of attribute A as the top level node of

H ; X. := O; m~ := 1; Hk := { A k ,) z l is the set of nodes at level k.

3. Hk+l := &; mk+~ := mk. Make node Ak,, i = 1, ..., mk, in Hk+l the child

of node Ak, in Hk.

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 45

4. Select a nonleaf node, say Ab from Hk+l, which has the greatest quality

among al1 the nodes in Hk+l; expand Hk+i by replacing Ah with its two

children in H and make the parent of Ah the parent of these two children;

5. Repeat the above step until the fan-out condition is satisfied for each non-

leaf node in Hk except those whose children are al1 leaf nodes of fi.

6. If each node in Hk+l is a leaf node of H, stop; otherwise k := k + 1, go to

step 3. O

Theorem 4.2 The computatiosal complezity of algorithm AGHC is 0 (n 3) , uhere n

is the number of bins of the given hidogram for attribute A.

Proof First of all, coosider algonthm 4.2. Since for each group of consecutive bins

from bin i to bin j, where i = 1: 2, ..., n; j = i + 1, i + 2, ..., n, we have to examine

(j - i) positions and perform a cornparison, the time for detecting the best position

is 2 - i). The computation of quality for this group is of time 4 (j - i). Thus the

time for process this group is 6 (j - i) and the total time for executing algorithm 4.2

i s

= n3 + lower order terms

= o(n3) (4.1)

Now, Let us examine step 2 through 6 of the algorithm 4.3. Since we need to perform

~j operations to form the nodes at level j, the total time for these steps is proportional

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 46

Sumrning up the above calculations (4.1) and (4.2), we conclude that the tirne corn-

plexity of aigorithm AGHC is 0 (n 3) . CI

Example 4.3 Consider the histogram shown in Figure 4.1 for attribute A. Appiying

algorithm AGHC we produce a concept hierarchy illustrated in Figure 4.3. O

Figure 4.3: A concept hierarchy for attribute A generated by algorithm AGHC.

4.2.3 An Algorithm Using Partitioning Clustering

Based on the distribution of values of an attribute, a concept hierarchy can be gen-

erated by reconstructing or adjusting the clustering result for the set of bins in a his-

togram of the attribute as described in the last subsection. The generated hierarchy

is reasonably good in the sense that a natural grouping of data will be corresponding

to a node in the hierarchy. However, some important groups or patterns rnay not be

produced a t the same lever of the hierarchy. In addition, the algorithm 4.3 is based

on the hierarchical clustering which could introduce a distortion of the structure in

the data[lô] because a merged group can never be split later in the clustering pro-

cess. Different from hierarchical clustering, partitioning clustering methods attempt

to search an optirnized gouping of the data for a certain number of groups and may

be a better way of finding structures in the data.

In t his subsect ion, we present an algori t hm of generating numerical hierarchies

using partitioning c l~s tenng methods. A new qudity measure is provided based on

the characteristics of our clustenng probkm. Examples are given to demonstrate the

select ion of quali ty measures.

As in the previous subsection, ive assume that a histogram of a numerical attribute

is given. The collection of the bins of the histogram is the set of objects on which

clustering algorithms are performed. Denoted by fi the frequency of bin oi- Based on

the nature of the set of objects with order constraint, for a given nurnber of clusters,

Say k, we try to find (k - 1) partition points such that the resultant k clusters will

have an optimal quality. In the second round, the clustering method is applied to

each of these A. clusters. This procedure is repeated until each cluster has no more

than certain number of objects. Clearly, a hierarchical structure is built up during

this iterative application of the partitioning clustering method.

Assume that the (k- 1) partition points are {o~,}:::. Define ko = -1 and l;k = n.

The quality measures or within-group sirnilarities (WGS) for the j-th group specified

from point ok,+l to okJ+, widely employed in literature (see for example (191) are as

follows:

1. Sum of squared deviation:

2. Information content:

CHAPTER 4. A UTOMATIC GENERATION OF CONCEPT HIERARCHIES 48

where

In

called

where

our algorithm, we also propose to use the following within-goup similarity,

variance quality:

No matter which within-group similarity is used, the criteria for determining the

(A- - 1) optimal partition points is that the resultant k groups are of the minimal total

wit hin-group similari ty.

The following partitioning clustering algorithm which will be utilized in algo-

rit hm 4% designed based on the tradi tional PAM (Partit ioning Around Medoids) [34]

method and can be taken as a variant of PAM applied in the case of clustering mith

order cons t raints.

Algorithm 4.4 (Partition Clustering) Partition a set of n objects with order con-

straint into k groups such that certain quality rneasure is optirni-ed.

Input: A set of ordered objects; a positive integer k.

Output: k clusters or (k - 1) partition points.

Method: Execute the following steps.

1. Select (k - 1) initial partition points fl = {%)Fit arbitrarily; Calculate

the total within-group similarity

CHAPTER 4. AUTOiblATlC GENERATION OF CONCEPT HIERARCHIES 49

2. For any pair of objects oi and oh, where oi E R and oh Q, compute

quality improvement A if O; is replaced with 4, that is, replace O; with oh,

calculate total within-group similarity WGS, for the set of partition points

Q, := (0 - f o i)) U {oh), and compute A = WGS, - WGS.;

3. Select the pair O; and oh such that the corresponded A is the minimal

among al1 A'S; swap oi and oh if the A is negative, Le., C l := (a - Io i)) U

{oh) , and go back to step 2;

4. Otherwise, Le., A 2 O, output the (k - 1) partition objects in R or the k

clusters formed by these (L - 1) partition objects. O

Before presenting the clustering results using different quality measures, we de-

scribe our algorithm of generating numerical hierarchy for a numerical attribute for

which a histogram is given based on the distribution of this a t t r i b u t e in a database.

Algorithm 4.5 (A G P C) Based on the data distAbvtion of a numerical attribute,

recursiuely app ly partitiming ciustering algorithm 4.4 to constnrct a concept hierarchy.

Input: A histogram for attribute A; a fan-out F .

Output: A concept hierarchy 'H wi th fan-out F.

Met hod: Execute the following steps.

1. Initialkation: let S := { o ~) ; . ~ whichis theset of binsofthegiven histogram

and S is associated with the top level node [min,rnax] of hierarchy X;

2. If IS(5 F, return; else apply algorithm 4.4 to S to get F groups denoted

by St , t = 1,2, . .., F. These F groups are used to form F nodes in the

hierarchy 'H and are the children of the node associated with S;

CHi1PTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 50

3. For each St for t = 1,2, --., F, let S := St, goto step 2; O

As we pointed out before, different quality rneasures may produce different results.

The following exarnple iliustrates the effect of the selection of different within-group

similarity measures when applying the dgorithm 4.5 to a particular data distribution.

Exarnple 4.4 Again, let us consider the attribute A wi th histogram shown in Figure

4.1. Applying algorithm 4.5 to this data distribution using the within-group similarity

measures given in (4.3), (4.4) and (4.51, we obtain three concept hierarchies mith

F = 3 shown in Figures 4.4, 4.5 and 4.6.

Figure 4.4: A concept hierarchy for attribute A generated by Algorithm 4 5 using WGS
(4.1).

It is easy to see from the histogram (Figure 4.1) that there are three modes in

the data distribution. The boundary bins are (30-40) and (70-80)- ClearIy, the

hierarchy shown in Figure 4.6, which is generated by algonthm 4.5 using within-group

similarity measure (4.5), captures the structure of the data. However, the hierarchies

shown in Figures 4.4 and 4.5, which are produced by the same algorithm using within-

group similarity measures (4.3) and (4.4) respectively, distort the structure. Actually,

if we look at level 1 of these two hierarchies, the hieratchy displayed in Figure 4.4

CHAPTER 4. AUTOMATE GENERATIOiV OF CONCEPT HIERARCHIES 51

Figure 4.5: A concept hierarchy for attribute A generated by Algorithm 4.5 using WGS
(4.2).

Figure 4.6: A concept hierarchy for attribute A generated by Algorithm 4.5 using CVGS
(4.3).

CHAPTER 4. AUTOiV..ATIC GENERzilTION OF CONCEPT HIERARCHIES 52

merged the first two modes together, whileas t he hierarchy shown in Figure 4.5 cannot

demonstrate the last two modes. The effect iihstrated here lets us choose the variance

quality as the within-group similarity measure in the generation of numerical concept

hierarchies using algorit hm 4.5. O

Using variance quality as the measure in algorithm AGPC, we have the following

complexity result .

Theorem 4.3 The worst case cornputatio~al complezity of algorithm AGPC is 0(n3)

and its lest case cornputational complezity is O(nZ), where n is the number of bins 01
the given histogram for attribute A.

Proof Assume that there are rn nodes at level j of the hierarchy. These n nodes

correspond to rn groups of bins in the given histogram. Denote by ni the number of

bins in the ith group, i = 1 . m. It is not difficult to see that to split the ith

group into F subgroups, we have to perform kF(ni - F)(5ni + 1) operations, where

k is the number of iterations to find the best boundacy bins. Thus to construct the

nodes at level j + 1 we have t o take tirne

where a = 5mF and b = (1 - 5F)n - F. Using the methods of calculus we find the

the above function achieves its maximum when only one of these ni's is (n - rn + 1)

and the rest of them are al1 equal to 1. And the minimum of this function is reached

when each of these ni's is equal to k. These two cases are respectively corresponding

t O the wors t and best cases computat ional complexi t ies of the algori t hm.

In the worst case, there are Ievels in the hierarchy and Ive need to take tirne

k F (n - iF + i)[5(n - if + i) + 11 to form level (j + 1) from level j. Adding together

the times for constructing these levels, we can see that the total time is 0(n3).

CHAPTER 4. A UTOMATIC GENERATION OF CONCEPT HIERARCHlES 53

In the best case, there are totally (logF n) levels in the hierarchy and the time

needed for generating level (j + 1) from level j is

By summation, we conclude that the total time for the best case is 0 (n 2) .

4.2.4 Quality and Performance Comparison

We have presented three algorithms, Le., AGHF, AGHC and AGPC, for the automatic

generation of numerical concept hierarchies in the last three subsect ions. It is wort h

cornparing their performance and quality. In this subsection, we first give the quality

cornparison of the hierarchies generated by the algorithms by using different his-

tograms as the inputs. Second, we compare the execution time of the algorithms as a

function of the number of bins of the input histogram and the fan-out of the expected

concept hierarchy. Finaliy, some discussions are given.

Comparison of Quality
Notice that the concept hierarchies shown in Figures 4.2. 4.3 and 4.6 are respectively

generated by using algorithms AGH Fr AGHC and AGPC to the same input histogram

given in Figure 4.1. Obviously, the hierarchy (Figure 4.2) generated by AGH F does

not catch the structure of the data. The effort of balancing count or frequency for the

nodes at each level makes the algorithm totally ignore the modes in the distribution

of the data. The simplicity and the eficiency of the algorithm is still attractive in

certain situations such as the data distribution is approximately uniform or there are

too many modes in the distribution.

The concept hierarchy generated by algorithm AGHC is good in the sense that

the hidden structure of the data is reasonably represented by the hierarchy (Figure

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 54

4.3). Comparing Figure 4.3 with Figure 4.6 which is produced by algorithm AGPC,

we notice that the difference occurs only at the boundary bins. In most appIications

it does not make much difference to include boundary bins into their Ieft-hand groups

or right-hand groups. Thus we consider the two hierarchies shown in Figures 4.3 and

4.6 have the same quality.

Now, we consider another input histogram, shown in Figure 4.7, which is an exten-

sion of that shown in Figure 4.2. Here we add some perturbations in the third mode.

Executing algorithms AGHC and AGPC, we obtain two concept hierarchies shown in

Figures 4.8 and 4.9, respectively.

Figure 4.7: Another histogram for attribute A.

As we can see from level 2 of the two hierarchies that both of the algorithms

successfully detect the three modes in the histogram (Figure 4.7), even though the

third mode has been added some noisy data, and al1 the branches in the hierarchies

correspond to the reasonable boundary bins. Both algorithms are robust because the

perturbations in the third mode does not confuse the algorithms to capture the overall

structure of the data.

CHAPTER 4 . A UTOMATIC GENERATION OF CONCEPT HIERARCHIES 55

Figure 4.8: A concept hierarchy for attribute A generated by algorithm AGHC with
input histogram given in Figure 4.7.

Figure 4.9: A concept hierarchy for attribute A generated by algorithm AGPC with
input histogram given in Figure 4.7.

CHAPTER 4. A UTOMATIC GENERATION OF CONCEPT HIERARCHIES 56

Based on our testing of the two algorithms AGHC and AGPC, we conclude that

these two algorithm are robust and in most cases they can produce very similar con-

cep t hierarehies.

Cornparison of Execution Time
Now, let us examine the execution times of the three algorithms AGHF. AGHC and

AGPC. Actually, the computational cornplexity analysis of the algorithms has @en

us some insight view of their efficiency. However, several factors may influence the

performance of the algorithms. The execution times of the algorithms are closely

related to the distribution of the input data, the size (number of bins) of the histogram,

and the fan-out of the final hierarchy.

In Figures 4.10 and 4.1 1 we show ttvo graphs, which are obtained using simulation,

of the execution times of the t hree algorit hms when the fan-out is 3 and 5 respectively.

From the figures we can see that, comparing to algorithms AGHC and AGPC,

the execution tirne of the algorithm AGHF is almost nothing. Actually it is a linear

function of the number of bins of the input histograms. Thus the high efficiency of

algorithm AGHF make it attractive in many cases.

Comparing algorithm AGHC with algonthm AGPC, we find that, in the case that

the fan-out is 3, AGHC is faster than AGPC when the number of bins of the input

histogram is less that 60. Once the number of bins is gea ter than 60, AGPC becomes

more efficient. Figure 4.1 1 for fan-out 5 illustrates a result similar to Figure 4.10.

Here the critical point is approximately 110. In other words, when the number

of bins is less than 110, algorithm AGHC is better, whileas algorithm AGPC is faster

when the number of bins is greater than 110.

Recall from the last paragrap h t hat the qualit ies of the algori t hms AG H C and AG PC

CXAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 57

4 I I I 1

AGHF -
AGHC +
AGPC t

Figure 4.10: Cornparison of execution time when the fan-out is 3.

AGHF -
AGHC +-

*A
60 80 100 120 *.

number of bfns

Figure 4.1 1: Cornparison of execution time when the fan-out is 5 .

CHAPTER 4. AUTOIMATIC GENERATION OF CONCEPT H I E U C H I E S 58

Table 4.1: Optimal combination of fan-out and number of bins

are, in most cases, very close. Therefore the number of bins of the input histogram

and the fan-out could be used to determine which algorithm to use. Based on our

experiment, Table 4.1 is obtained and may be used as guidance for the selection of

the algori t hms.

To utilize Table 4.1. a e check the input fan-out, say 8, and look up its correspond-

ing number of bins from Table 4.1, in this case it is 170. If the number of bins of a

input histogram is less than 170, t hen we chose algorithm AGHC to perform automat ic

generation of a concept hierarchy. Otherwise, we select algorithm AGPC to generate

a concept hierarchy.

CHAPTER 4. A UTOMATIC GENERATION OF CONCEPT HIERARCHlES 59

4.3 Discussion and Summary

Algorithms have been proposed for the automatic generation of nominal and nurner-

ical concept hierarchies. The purpose here is to dig out the hidden structures of the

data and represent them by concept hierarchies. By hidden structure here we meân

the data distribution. Actudly, the generation of concept hierarchies is itself a knowl-

edge discovery process. In the nominal case, the autornatic generation algorithm can

be used for assisting users of a data mining system to figure out better organization

of schema hierarchies. But what we need to watch out is that the generated hierar-

chies are sornetimes possibly incorrect. For example, given a set of attributes year,

rnonth, weekday, a partial order rnonth < weekday < year could be generated, which

is apparently wrong. Users have the freedom of adjust the generated partial order.

In the numerical case, hierarchical and partitioning clustering approaches have

been employed as basic components in the design of autornatic generation algorithms

of numerical hierarchies. The variance quality proposed for measuring within-group

similarity is more suitable for our order-constraint clustering problems. Algorithrns

AGHF, AGHC and AGPC can be utilized in different situations depending on data

mining tasks, user preference and the parameters (i.g., fan-out of expected concept

hierarchy and the number of bins of an input histogram). The qualities of concept

hierarchies generated by algori t hms AG H C and AG PC are approximately the same

and both algorithms are robust. Table 4.1 provides a guide for selecting a hierarchy

generation algorithm. Concerning the assumption that a histogram of a numerical

attribute is already given, we point out that the histogram should correctly represent

the distribution of the attribute. A generated hierarchy is not reliable if the input

histogram distorts the data distribution. Anot her issue related to the automatic

generation of numerical hierarchies is the specification of fan-out. Intuitively, we need

to specify a fan-out such that al1 the important modes in the data distribution should

CHAPTER 4. AUTOMATIC GENERATION OF CONCEPT HIERARCHIES 60

be presented at the sarne level of the generated hierarchy. However, the number of

modes is not known a priori. Users can obtain some idea on this number by visually

observe the given histograrn, but the histogram may include some noise or distortion.

In addition, even if the number of modes is known there is no simple way to guarantee

the dl the nodes corresponding to those modes can be produced at the same level of

the hierarchy. These and other unclear features of the generation algorithms make it

diflicult to judge the qualities of the generated hieradies.

Chapter 5

Techniques of Implement at ion

In this chapter, we discuss the implementation of concept hierarchies. A relational

table strategy is employed for storing concept hierarchies in section 5.1 by consider-

ing that we are discovering knowledge from relational databases and, as an important

background knowledge, concept hierarchies should be a natural component of data

sources. To incorporate the concept hierarchies into a data mining system, encod-

ing plays a key role. A generic encoding algorithm is developed in section 5.2. By

"genericn we mean that the encoded hierarchies can be used for any data mining mod-

ules when concept generalization is involved. The performance comparison between

with-encoding and without-encoding hierarchies is conducted concerning the storage

requirement and disk access tirne. The superior performance of our encoding approach

is demonstrated on both of the two factors in section 5.3. Finally, we summarize the

chapter in section 5.4.

CBAPTER 5. TECHNIQ UES OF IMPLEMENTATION

5.1 Relat ional Table Approach

To implement the operations of concept hierarchies, we can use file-processing ap-

proach. That is we use files to store the concept hierarchies, and use read and write

and other operations to manipulate them. However, the conventional file-processing

approach has several disadvantages, for example,

O There are problems to restrict the data duplication and inconsistency.

It is difficult to specify indices on a file, and hence difficult to access the data

in the file efficiently.

When there are multiple users, it is hard to solve the concurrency problem.

0 It is dificult to enforce security to a file.

These and other problems with the file-processing approach let us take relational

database approach. The theory and practice of the relational database have been

arrived at a very mature stage. The problems with the file-processing approach men-

tioned above have been successfully solved by relational database management sys-

tems (DBMS). We favor the relational table approach which will be discussed below is

also because we are dealing with data mining problems in large relational databases.

It will make the storing and manipulating concept hierarchies consistent with the

rnining knowledge from a relational databases if ive store the background knowledge

in a database using relational tables and utilize it by the facilities of the relational

DBMS.

Three kinds of tables are empIoyed for storing hierarchies. Tables chHeader and

chLevel are used to store header and Ievel information which is essentially conceptual

information of the hierarchies. Metadata and schema level partial order are stored in

these tables. The schema of the two tables are described as follows.

CHAPTER 5. TECHNIQUES OF I&iPLEbIENTATION 63

chHeader = (chlD, chName, alias, atfrName, relName, type, numNodes, numLevels),

where

chID

chName

alias

attrName

relName

type

numiNodes

n u m Levels

and

- A positive integer assigned to each hierarchy;

- The name of a concept hierarchy;

- The nick name of the hierarchy;

- The name of an attribute for which the hierarchy is specified;

- The relational table name from which the hierarchy is derived;

- T h e type of the hierarchy;

- The total number of nodes in this hierarchy;

- The number of 1eveIs of this hierarchy.

chLevel = (chiD, leveliVame, alias, type, leuelNum, numivodes, max~VumSiblings),

w here

chlD - The join key with the chHeader table;

IevetName - The name of a Ievel in the concept hierarchy;

alias - The nick narne of the 1evelName;

t Y Fe - The type of this level;

IevelN um - The level nurnber assigned to this level;

numNodes - The number of nodes at this level;

maxNumSiblings - The maximum number of siblings at this level.

In addition to tables chHeader and chLevel for storing general information for concept

hierarchies, we need to have third kind of tables, called hierarchy tables, to store the

contents of hierarchies. Actually, there are several approaches to implement this task.

One possible approach is to store dl the parent-child relations of a hierarchy as tuples

in relational tables. This approach is adopted in Oracle's OLAP tool Express. In

our old version of the DBMiner system, a variant of this approach is used for storing

hierarchies, in which there is a concept id (cid for short) for each node in the hierarchy.

In a typical tuple of the table, we record a node's cid, name, its parent cid and other

useful information. This approach is also widely used in other OLAP systems[49].

The advantages of t hese met hods are t hat each of the child-parent relationships

can be directly represented by tuples of a relational table and the contents of al1

the hierarchies might be put in one table, thus all those hierarchies can be handled

uniformly. However, once we need to use several dimensions organized as hierarchies

to generate a data cube for executing data mining tasks, the disk space consumed may

be very large, and the di& access time might be very long because the disk access is

required for each concept generalization.

In order to handle large databases and large number of dimensions, and manipulate

data cubes efficiently, we adopt the following approach: each hierarchy has its own

table (also called hierarchy table) for storing it contents. Each tuple of the table

records a path of the hierarchy from the root to a leaf node. The reason of using

different tables for different hierarchies is that different hierarchies may have different

nurnber of levels, and thus the lengths of root-leaf paths for different hierarchies may

be different. The advantages of this method will be addressed in the next two sections.

Example 5.1 For the concept hierarchy shown in Example 3.3 (Figure 3.2), its hier-

archy table is shown in Table 5.1. Notice that a default top leveel ailhocation, which

has one node ANY, is added to the hierarchy in order to guarantee that the hierarchy

is regular. It is not really necessary for the current hierarchy because at the country

level there is only one node Canada. However, as an uniform method, adding a default

top level can be used to handle any hierarchies. O

This relational table strategy for storing concept hierarchies can be used for solving

the concept duplication problem frequently encountered in date/ time hierarchies. The

CHAPTER 5. TECHNIQUES OF IMPLEMENTATION

Table 5.1: Hierarchy table for location

solution is discussed in the following rernark.

Remark 5.1 (On date/time hierarchies) In 5 4.1.2, we have mentioned the prob-

lem when the attribute week is included in a dateltirne concept hierarchy. For exam-

ple, week 27 may across June and July. Once we need to generalize concept week 27

to the month level, which one should we take as its high level correspondence? June

or July? This problem c m be naturally solved using our relational table approach.

The following example explains the solution.

Example 5.2 Table 5.2 gives a hierarchy table which is instantiated using schema

hierarchy allDate year 4 month 4 week 4 day defined on relation title in database

pubs which is a sample database in MS SQL server. It can be seen t hat W27 1991

crosses two months, i.e., Jun 1991 and Jul 1991. During the concept generalization of

W27 1991, we only need to follow the paths specified by the two different tuples, in

this case the second and third tupies, and find its higher level correspondences. So

J u n 1991 is the parent of the first W27 1991 and Jul 1991 is the parent of the second

W27 1991. By this way, confusion will never occur because each raw data value ha.

CHAPTER 5. TECHNIQUES OF IMPLELCiENTATION

1 allDate 1 year 1 month 1 week dav
I - 1

) ANY 1 1991 1 Jun 1991 1 W24 1991 1 Jun 12,1991 1

l ANY i 1994 i J U ~ 1994 i ~ 2 5 1994 i Jun 12: 1994 1

ANY
ANY
ANY
ANY

I

ANY 1 1995 1 Jun 1995 / W23 1995 1 Jun 7, 1993
I

Table 5.2: An date/time hierarchy table

1991
1991
1991
1991

its unique higher level correspondence. n

Finally, it is valuable to notice that to achieve the goaI of efficient access, related

indices are created on the tables described above. The advantage of our relational

table approach for storing hierarchies is gained incorporating with the hierarchy en-

coding strategy which is presented in the next section.

Jun 1991
Jul1991
Oct 1991
Oct 1991

Encoding of Concept Hierarchy

As addressed in the last section, concept hierarchies can be s h e d in reiational

databases by using three kinds of tables: chiieader and chLevel and hierarchy ta-

ble. To use the hierarchies for concept generalization in data mining, hoivever, the

above described hierarchy tables still does not fit our need. Et is not feasible to retrieve

the tables to memory or put concepts directly into corresponding cube cells because

some hierarchies might be as large as or bigger than the database on which Ive are

executing mining tasks, and the character strings for describing those concepts could

be very long. The direct concept retrieval might only allow us to handle small size

W27 1991
W27 1991
W40 1991
W43 1991

Jun-30, 1991
Jul2,1991
Oct 5, 1991
Oct 21. 1991

data cubes, and in this case we need to spend a lot of time to process mining tasks

because of the memory page swapping. Hierarchy encoding strategy is introduced to

tackie this problern. We attempt to encode a concept hierarchy in such a way that

the partial order of the hierarchy is exactly represented by the codes so that we only

need to manipulate the codes when we process mining tasks. The access of the stored

concept hierarchy is only needed when we ivmt to create â data cube and to display

a mining result once a mining ta& is fulfilled.

store

department

item

Figure 5.1: Post-order traversal encoding of a small hierarchy.

A hierarchy encoding method is proposed in Wang and Iyer[49] according to a

post-order traversal of the hierarchy. For example, Figure 5.1 illustrates an encoded

simple hierarchy for a retail store data. The post-order traversa1 encoding has the

following property: for any node with label j , if the smallest label of its descendents

is i, then i < j and it has exactly (j - i) descendents with labels from i to (j - 1).

Thus a11 the integers in the range [i, j - 11 gives the labels of al1 its descendents.

This encoding scheme is suitable for the drill-down operation in OLAP, especially

when cooperated with the DB2 features[ô]. However, there does not appear to be any

reasonable way to extend it to the other operations or data mining functionalities.

5.2.1 Algorithm

A new hierarchy encoding algorithm is proposed in this subsection which can be

treated as a generic purpose encoding strategy suitable for any data mining function-

alities. The main idea is to assign each node (or concept) of a hierarchy a unique

binary code which consists of j fields, where j is the level number of the node in

this hierarchy. Once a hierarchy is encoded, we only need to retrieve the codes of

the hierarchy to the memory and realize generalization and specialization by manip-

ulating the codes. The performance analysis discussed in the next section will clearly

demonstrate the advantage of our hierarchy encoding scheme.

To describe our encoding algorithm, let us first introduce several notations.

Denote by {Pi)g"=,he set of al1 the distinct root-leaf paths in the hierarchy H,

and let

f i = (ai07 ai11 - * - Y ai,/-1), i = I , 2 ,..., m.

where ai, is the j t h node which corresponds to the j t h level of the hierarchy on the

pat h Pi. The encoding algorithm is described as follows.

Algorithm 5.1 (Encoding of Concept Hierarchy) Assign a binary code to each

node of a concept hierarchy such that the partial order of the hierorchy is represented

by the set of codes.

Input: A concept hierarchy 'H from which the set of mot-leaf paths { P i) z , is sorted
I

in ascending order and the maximum number of siblings, denoted by s j for each

level j = 0,1, ..., (1 - 1) is given.

Output: A set of binary codes which are assigned to the root-leaf paths of hierarchy

CHAPTER 5. TECHNIQUES OF I'UPLEMENTATION

Method: The encoding algorithm consists of the fouowing steps:

1. Initialize the array of b i n q numbers (Q, cl, ..., ci-l), Le., cj := 1 (j =

0,1, ..., (1 - 1)), where each binary number cj has l1og2(sj + l)J bits.

2. Assign code c = Qcl...cj which is the concatenation of j binary numbers

c k , k = O, 1, .., j, to node a l i for each j = 0,1, ..., (1 - 1); set i = 2 and do

while (i 5 m) {

f o r (j = O ; j < l ; j + +) {

if aij # ai- l j {

Cj := C j + 1;
assign code c = co---cj to node aij;

fo r (k= j + l ; k < l ; k + +) {

Ck := 1;

assign code c = CCI; to node Uih; }

j : = l - l ; } }

i :=i+ 1; }

TO ease our discussion below, we cal1 cj a partial code corresponding to ievel j in a

code ~ 0 ~ 1 ..-cj-lcjcj+l ... cl-*.

Example 5.3 Apply the above algorithm to the concept hierarchy shown in Fig-

ure 5.1, we get an encoded hierarchy demonstrated in Figure 5.2. O

5.2.2 Properties

For the computational complexity of the encoding algorithm 5.1, we have the following

Figure 5.2: An encoded concept hierarchy.

Theorem 5 .1 The computational complexity of the algorithm 5.1 is O(lm) , where 1

is the nurnber of leuels, and m is the number of leaf nodes of a hierarchy.

Proof The theorem follows from the fact that we have to perform I operations for

each root-leaf path and tttere are na paths. O

To explain the relationship between the partial order of a concept hierarchy and

its codes produced by algorithm 5.1, we first give a property of the codes.

Lernma 5.1 For any two nodes A and B with codes c ~ , c ~ , ... c~~ and ceocel ... c ~ , ,

respectively, A is a chdd of B if and only if i = j + 1 and c.4, = c ~ , for k = O, 1, ...je

Proof If A is a chiid of B, then the code for A has one more field than of B and the

code of A is formed by concatenating a binary number to that of B, thus i = j + 1

and c.ik = CB& for k = 0 , l , ...j.

On the other hand, if i = j + I and CA, = c ~ , for E = O, 1, ...j, but A is not a chiId

of B, we attempt to generate contradiction. We only need to consider the situation

that A and B are not at the sarne ievel, since otherwise we will have i = j which is

an obvious contradiction to i = j + 1. Since A is not a child of B, we have the cases

of either they are on the same root-leaf path or on two different root-leaf paths. Let

us first consider the same path case. Since A is not a chiId of B, according to the

CHAPTER 5. TECHNIQ UES OF IikfPLEhIENTATION

algorithm, the number of fields in the code for A is a t le& two more or no larger

than that of B, in other words, i >_ j + 2 or i < j. This contradict t o i = j + 1.

Now let us consider the case that A and B are on two different root-Ieaf paths and

i = j + 1. In this case, A's parent P with code, Say, ch cp1 ..-cp, , is at the same level

as B. P # 8 since A and B are on different paths, thus there must be at Ieast one

t such that O 5 t 5 j , ce, # CF,. Since the code for A is formed by concatenating

cp,, CF, ... cp, with another binary number, Ive have CA, = c q for k = 0 , l , ..., j, and

thus cg, # CA,, which contradicts to that CA, = cg, for k = O, 1, ...j. O

From this Lemma, it is easy to see that the code for the parent of a node at level

j with code cocr..-cj can be formed by dropping its partial code cj corresponding to

level j and get cl ...cj-I. Based on this property, we only need to store the codes of

leaf nodes. The codes for other nodes can be easily obtained by simply chopping off

one of its leaf node code to certain levels.

The following theorem reveals the relationship between the partial order of a hi-

erarchy and its codes.

Theorem 5.2 Given the partial order 4 of hierarchy 7-1 and the codes abtained by

applying algorithm 5.1 we haue, for any pair of nodes A und B with codes CA, CA, ... c.4,

and c ~ ~ c B ~ . . . c B ~ , respectively, A 4 B if and only ifi > j and CA, = c ~ , for k =

O, 1, ...j.

Proof A 4 B if and only if B is an ancestor of A. The theorem foIlows by repeatedly

applying Lemma 5.1. 0

According to this theorem, we can realize the manipulations of a concept hierarchy

by only using its codes. This is the base of executing concept generalization and

specialization in our data mining system.

CHAPTER 5. TECHNIQ UES OF M P L EMENTATION

5.2.3 Remarks

In the input statement of the encoding algonthm 5.1, we posed the requirements that

the set of root-leaf paths is sorted and that the maximum nurnber of siblings at each

level is available. These requirements can be achieved using the methods discussed in

the remarks below.

Remark 5.2 As discussed in the previous section, the content of a hierarchy is stored

in a relational table. So the requirement that the set of root-leaf paths is sorted in

the input of the above algonthm is easy to be implemented using a SQL query by

specifying an attribute list on which an order by statement is formed. This utilkation

of SQL allow us to avoid coding sorting algorithms and, together with the indices

created on the hierarchy table, to obtain efficient execution. For example, assuming

that we have level names ao, a l , ..., and al-I , and the hierarchy table is hierTable,

then the following SQL query realizes the sorting task and the result is stored in table

tem pHierTa ble.

SELECT aO, al, ..., aï-1
INTO ternpHierTable
FROM hierTable
ORDER BY a0 , al, . . . al-1 ASC

Remark 5.3 To satisfy the second requirement that the maximum nurnber of siblings

si for each level 1 = 0 , l , ..., (I - 1) is calculated, we need to execute several SQL queries

and introduce a couple of auxiliary tables. The solution is detailed in the following

algorit hm.

Algorithm 5.2 (Count Maximum Numbers of Siblings) Count the maximum

number of siblings ut each leuel of a hierarchy based on its hierarchy table.

Input. A concept hierarchy 'H whose hierarchy table is hierTa ble and level names are

ao7 al, ..., and al-1.

Output. The maximum number of siblings for each level.

Method. Execute the following SQL queries sequentially for each i = 0,1, ..., (1 - 1).

1. SELECT aO, . . . , ai , thecount = COUNT(*)
IWO tempStats1
FROM hierTable
GROUP BY aO, . . . , ai

SELECT thecount = COUNT(*)
INTO tempStats2
FROM tempstatsl
GROUP BY a0 , . . . , ai-1

SELECT MAX(theCount)
FROM tempStats2

To ease the task of calculating the maximum numbers of siblings, an alternative

is to count the number of nodes at each level by executing queries:

1. SELECT aO, . . . , ai, thecount = C O W ï (*)
INTO tempstatsl
FROM hierTable
GROUP BY aO, ..., ai

SELECT COUNT(*)
FROM tempstatsl

If we replace the maximum numbers of siblings with the numbers of nodes, and still

denoted by s j , j = O, 1, ..., (1 - l), the method in the algorithm 5.1 can be executed

for hierarch~ encoding without any modification. Although s j , j = 0,1, ..., (1 - 1)

CHAPTER 5. TECHNIQUES OF IMPLEMENTATION 74

might be larger in the case of numbers of nodes, 11ogz(sj + 1) J , j = O, 1, ..., (1 - 1),

are excepted to be not much Iarger than the corresponding numbers in the case of

maximum numbers of siblings. Hence, it is feasible to employ this simple approach in

Step 2 of algorithm 5.1.

Remark 5.4 Because each tuple in the hierarchy table represents a root-leaf path in

'H, and the codes generated for the leaf nodes are actually associated with these paths

respectively, we can record these codes by adding one more attribute (column), Say

code, to the hierarchy table. An index can also be created on this attribute in order

to efficiently access the codes of the hierarchy.

1 allLocation 1 country 1 renion 1 ~rovince 1 code 1
ANY
ANY

l
~ -

1 I I

ANY' (Canada 1 Maritime 1 NF - I 12 1

ANY
ANY

AXY
ANY
ANY

1 1

1 ANY 1 Canada 1 Maritime 1 PE 74 1

1

7A
79

I V I A

Canada
Canada

Table 5.3: An encoded hierarchy table

Canada
Canada

7B
7C

I

Canada
Canada
Canada

ExampIe 5.4 After applying the encoding algorithrn 5.1, the hierarchy table 5.1 be-

cornes Table 5.3. Where the data type for attribute code is binary. Since one byte

of binary data is expressed by a group of two characters, the values of code look Iike

hexadecimal data, but in fact they are in bit patterns. For example, 6 A is actualIy

O1 101010.

Western
Western

Western
Western

MB
SK

Central
Maritime
Maritime

BC
AB

Qc
NS
NB

6A
73
7 1

CHAPTER 5. TECHNIQUES OF IMPLEMENTATION

ppzq
Central

d a m e

BC

Maritime

pNarne -

Western

Table 5.4: Hierarchy tables for approach A

5.3 Performance Analysis and Cornparison

In this section, we analyze the performance of using concept hierarchies without and

with encoding. Analytical estimates for both storage requirement and disk access

time are given for the following three approaches:

Approach A: without encoding. Use a collection of several tables for storing one

concept hierarchy in which real concepts are used as join key.

A concept hierarchy consists of several relations, each of which is a map table

from a lower levei to its next higher level. For example, the hierarchy location

shown in Figure 3.1 is stored by using the two tables shown in Table 5.4.

Approach B: without encoding. Use a collection of several map tables for storing

a hierarchy in which concept identifier is used as join key.

Adopted by usual OLAP systems (see [49]), this approach is similar to approach

A, but, instead of using real concept name as join key between tables, here an

unique integer identifier is assigned to each node for the purpose of table join.

CHAPTER 5. TECHNIQUES OF IhfPLEMENTATION

Table 5.5: Hierarchy tables for approach B

[CID (cName 1 pID (

Again we use the hierarchy location to illustrate the idea of the approach. The

collection of the three tables in Table 5.5, which have the schema of (CID. cName,

plD), gives the whole hierarchy.

CID
14

Approach C: with encoding. Use one relational table for each concept hierarchy.

cName

Canada

This is the approach we employed in our implementation. An example is given

in Table 5.3.

Before proceeding to the cornparison of storage requirement and disk access time,

we state the assumptions and notations used in the analysis below. First, for a typical

concept hierarchy, say, hierarchy 'Hi, we denote by li its number of levels, Fi its fan-out,

nij its number of nodes at level j and sij its maximum number of siblings at level j for

j = O, 1, ..., (1; - 1). We assume that each concept in this hierarchy is represented by a

character string with length Ri bytes. Second, we assume that Bf -tree indices have

been built on the related attributes on relational tables for storing concept hierarchies

and a node of the Bf -tree just fits one page having size of B bytes in the disk storage.

Hence, if the sizes of a search key value and a pointer in a Bf - tree are B bytes and

P bytes, respectively, the number of search key values in a node of the tree is (k - 1)

and the nurnber of pointers in a node of the tree is k, where k = LBJ, L is the s i x

of the search key. Therefore, the number of levels of the B+- tree wit h N search keys

is p ~ g ~ ~ - ~) A l . It is easy to see that we need to have at most 1 + p ~ g (~ - ~) disk

accesses to access a tuple in a relational table on which a Bf -tree index is built on

the search key.

5 -3.1 Storage Requirement

Storage requirement includes disk space for stonng both hierarchy tables and data

cubes. Let us first consider the disk space for storing a typical hierarchy Hi.

For approach A, we need to use (li - 1) tables. Shere are nij tuples for the table of

representing the relationship between level j and level (j - 1). Since a concept is of

length &, the size of this table is n$&. Thus the total size of the (li - 1) tables is

For approach B, f i tables are needed. There are n, tuples for the table of rep-

resenting the relationship between level j and level (j - 1). If we assume that each

integer occupies I bytes, then each tuple of the table needs (R , + 21) bytes. So the

size for this table is (& + 21)nG bytes. Totally, we need

to store a hierarchy.

For approach C, since the maximum number of siblings at level j is si, for j =

O, 1, ..., (Li - I), we can easily figure out that the length of the code for a leaf node is

CHAPTER 5. TECHNIQUES OF IiLIPLEMENTATION 78

There are ni,(li-l) tuples in the encoded hierarchy table and each tuple is of size

(li& + Li), thus the size of this hierarchy table is

Now, let us consider the storage requirement for a typicat l e s t generalized data

cube. Suppose there are d dimensions in the data cube, each of which is organized

as a hierarchy. We also assume that the measurements of the data cube requires rn

bytes to store in each cube cell.

Since there are totally JJbl(ni,cit-l, + 1) cube cells in the least generalized cube,

we conclude that the storage requirements for approaches A, B and C are respectively

and

bytes, where Li is given by (5.3).

Summing up the above analysis, especidly equations (5.1)-(5.7), we have the

following

Theorem 5.3 The storage reqvirements oJ both d concept hierarchies and the cor-

responding least generalized data cubes consisting of d dimensions organized as the

hierarchies for approaches A, B and C, denoted b y SA, SB and Sc, are respectively

CHAPTER 5. TECHNIQUES OF IR/IPLER/IENTATION 79

d d

Sc = C ni , (~ - i) (k& + Li) + (5.10)
i=I i=l

In the special case of nij = cl for i = 1,2, ..., d and j = O, 1, ..., (fi - l), we cari

simplify the above formula and have

d d

Sc = xJ')-'(ii~ + L i) c + 1.~1 (m + i i)
i=l i=l

where Li = [l + (1 ; - 1) log,(Fi + 1)]/S.

Example 5.5 Let us consider the case that R, = R, 1; = 1, Fi = F for i = 1,2, .., d.

And I = 4(bytes), m = 4(bytes). Figures 5.3, 5.4, 5.5, 5.6 and 5.7 demonstrate the

cornparisons of storage requirement for the following five cases:

1. LVe Vary the number of dimensions from which a data cube is built, and the

other parameters are fixed as R = 20, 1 = 4, F = 6. Figure 5.3 is plotted

using a linear scde for x-axis and a logarithmic scale for y-axis. As shown

in the figure, the required disk space is increased exponentially with respect to

the number of dimensions for each of these approaches. approach C needs less

space than the ot her two. For each different number of dimensions, the encoding

approach saves more than 80% and 36% of the space required by approaches A

and B respectively.

2. We change the number of levels of concept hierarchies and the other parameters

are fixed as d = 3, R = 20, F = 6. By the semilog plotting for the total disk

CHAPTER 5. TECHNIQUES OF IILfPLEhlEIVTATION

Figure 5.3: Storage comparison for different number of dimensions.

Approach A c
Appmab, 6 -e-
Appmach C +

Figure 5.4: Storage comparison by varying number of levels.

space, we can see fiom Figure 5.4 that, with the increase of nurnber of levels, the

required space is also increasing exponentiaily for each approach. And approach

C needs the least space among the three methods. It respectively saves more

than 84% and 37% of the space needed by approach A and approach B.

3. W e change the fan-out of concept hierarchies from 2 to 10 and fix the other

parameters as d = 3, R = 20, 1 = 5. Figure 5.5 shows, again, that the encoding

approach is the best among the three and it respectively saves about 84% and

38% of the space needed by approach A and approach 5 when the fan-out is no

Iarger than 8. The degee of the space savings is decreasing when the fan-out

is increasing. Notice that the number of Ieaf nodes of each hierarchy is also

increasing in this case.

Figure 5.5: Storage cornparison for different fan-out in hierarchies.

4. We Vary the average length of character strings representing concepts from 5 to

30 and fix the other parameters as d = 3, 1 = 5 , F = 6. In this case, the disk

22 I I I 1

15 20 25 30
average lengtti of a>ncepts

Figure 5.6: Storage comparison for different concept lengths.

spaces needed for approaches B and C are increasing very slowly. We even cannot

detect the changes from Figure 5.6. The linear increasing nature for approach A is

obvious. The conclusion we can draw from this observation is that the changing

of the concept length has little affect to the length of code in approach C and

the spaces required for storing data cubes in the three approaches dominate

the total spaces. Again, the approach C is the best and it saves from 70% to

89% space relative to approach A when the concept length varies from 10 to 30.

Approach 5 is 37% better than approach A in any case.

5. The number of leaf nodes of each hierarchy is fixed as N = 5000. And d = 3,

R = 10. Let the fan-out Vary from 2 to 30 and the number of levels is calculated

using i = 1 + [logF N] . In this case the number of nodes a t the last but one level

mây not exactly follow the formula n, = < j . The formula in Theorern 5.3 is used

in the calculation. We can find from Figure 5.7 that all the three approaches axe

CHAPTER 5. TECHNIQUES OF IMPLEMENTATION

Figure -5.7: Storage comparison the number of leaf nodes in hierarchies is fixed.

not sensitive to the changing of fan-out and number of levels while the number

of leaf nodes are fixed, which indicates that the overall storage is dominated by

the number of leaf nodes. Again, the encoding approach (approach C) is the best

among the three methods and it is about 61% and 19% better than approaches

A and B respectively when the fan-out is greater than 2. The curve for approach

C al50 gives us indication of how to choose a reasonable fan-out. Apparently,

too large fan-out will make the number of levels too small, and too smali fan-out

will give us too large number of levels. In the curent case, fan-out around 6

give us better saving of storage.

CHAPTER 5. TECHNIQUES OF ZMPLEMENTATION

5.3.2 Disk Access Time

Assume that a least generdized data cube is in memory and we need to generalize the

concepts represented by their real names or codes from bottom level(1- 1) to a higher

level with level number b. Here we only consider the generalization of one concept

in one hierarchy because the total disk assess tirne of generalizing the cube to certain

higher level is the surnmation of that for each individual concept generalization when

more concepts and more than one hierarchy are involved. LVe retain the assumption

made right before subsection 5.3.1. And, for the seek of simplicity, we only consider

the case that n, = F!, Le., the number of nodes at each level is the power of itç

fan-out .

Let us start with analyzing approach A. If b = (Z - 1) we do not need to have disk

access because the concept is in itç real form already. When Io < (1 - 1), we need

to access (2 - b - 1) hierarchy tables. Since the table associated with level i has F'

tuples, we need to have Z + r l ~ g { ~ ~ - ,) Fi] disk accesses to read a tuple €rom the table

since a Bf -tree index is created on the attribute cName, where b = LE], and R

is the length of attribute cName. Therefore the total disk access time for generalizing

a concept at level (i - 1) to level Io is

where tb is the time of one page disk access (see Elmasri and Navathe[l%] for disk

access parameters), and we assume that c:=, = O if s > t.

For approach B, we need to access (2 - lo) hierarchy tables to generalize the concept

id at level (Z - 1) to itls ancestor's id and look up the corresponding real concept

name. So there are C:=:, (1 + Pog(kg-l) ~ ' 1) disk accesses, where kB = 1%~. Thus

CHAPTER 5. TECHNZQ UES OF IMPLEMENTATION

we conclude that the total disk access time for approach B is

For approach C, to generalize a concept with a code from level (1 - 1) to level lo

we only need to chop off the code by (1 - Io - 1) fields. Disk access is need to look up

the real concept name corresponding to this generalized code in order to display the

mining result. The method of chopping off code and boking up real concept names

will be addressed in the next chapter. Again, since a B f -tree index is created on

the attribute code for the hierarchy table, we need to access disk 1 + p ~ g (~ ~ - ~) F'-']

times, where = 1% J , and L is the length of a code. Thus, the disk access time

for approach C is

(1 + bg&c-i) F'-'1) t b (u s)

Based on the above discussion, we have the following

Theorem 5.4 The disk access times of generalizing a concept in hierarchy 'H, tcith

number of levels 1 and fan-out F , from bottom leuel (1 - 1) to i f s ancestor at Ievel Io

for approaches A, B and C ore, respectiveiy

Example 5.6 Figure 5.8 illustrates the cornparison of disk access times for the three

approaches. The typical values of parameters used in plotting the graph are as follows:

B = 512(bytes), P = 5(bytes), t b = 3O(msec), F = 6, R = 20, 1 = 4, 1 = 5. The

x-âxis is the number of generalized levels, i.e., (1 - b - 1). As shown in the figure,

the disk access time using encoded hierarchy (approach C) is constant which can also

be detected from equation (5.19). It is more important to notice that the disk access

CHAPTER 5. TECHNIQ UES OF IRfPLER/IENTATiûN

Figure 5.3: Cornparison of disk access time for generalizing a concept.

timeof approach C is rnuch less than that of approaches A and B, except that ive do not

perforrn any generalization and display only the result in the least generalized cube.

With the increasing of the number of generalized levels, the performance superior

of the encoding method is also increasing. For exarnple, the encoding approach is 4

times faster than approach A or approach B when a concept is generalized from level

4 to level 1. Finally, we point out that approach B is slower that approach A because,

comparing to approach A, we need to access one more hierarchy table in using approach

B to generalize a concept to a certain level.

Based upon the cornparison of storage and disk access time for the three approaches,

we can conclude that the encoding approach outperformç the two without-encoding

approaches. The encoding method gives us a way to spend less storage and obtain

more efficient processing of data mining tasks.

CHAPTER 5. TECHNIQUES OF fi1PLEMEIVTATIO.N

5.4 Discussion and Summary
After discussing the relational table metbod of storing concept hierarchies, we focus on

study of the encoding technique in order to efficiently implement concept hierarchies

in data mining systems. The idea of assigning binary numbers to the nodes of concept

hierarchies has also been empIoyed in other areas such as logic programming, digital

source coding and data compression. The encoding algorithm we developed here can

be natural integrated with the relational database approaches. The algorithm could

be utilized for any task of data rnining when concept generalization is the base of a

data mining system. Actually, the encoding algorithm implemented in our DBMiner

system is used for data cube creation as well as for al1 the functional modules such

as summarizer, comparator, associator, classifier and predictor. The performance

analysis for both storage requirernent and disk access time shows the superior of our

encoding approach.

We emphasize that the encoding algorithm we proposed is useful and efficient

especially for concept generalization. There may exist other encoding techniques for

other applications of concept hierarchies. Ure did not perform a cornparison study

for those ones because there are no applications in data mining. We even did not

compare our technique with the one proposed by Wong and Iyer[49] because their

encoding technique can only be usecl for the drill-down operation. Further research is

needed to examine other encoding methods in artificial intelligence, data compression

and other fields in order to extend their applications to data mining.

Notice that, the CPU times of executing functional modules are not compared

here because, for any particular module, once shorter codes (compared to real concept

names) are involved in the related operations, less computationai time will also be

gained.

Chapter 6

Data Mining Using Concept

Hierarchies

As one of the core parts of the DBkfiner system, concept hierarchies play a centrai

role in processing data mining tasks. In this chapter, we will discuss the application of

concept hierarchies in mining knowledge from databases, especially, in the DBMiner

system. The system is bnefly addressed in section 6.1. Following the flow of executing

a particular data mining query (or task), we will discuss why and how to expand the

query in order to correctly retrieve the so cdled task-relevant data in section 6.2. In

section 6.3, the issue of concept generalization is discussed. The problem of using

rule-based concept hierarchies is examined in section 6.4. In section 6.5, we consider

the issue of concept lookup which is the last step of processing a data mining task for

displaying final results. Finally, this chapter is summarized in section 6.6.

CHAPTER 6. DATA MINING USING CONCEPT HERARCHIES

6.1 DBMiner System

A data mining system, DBMiner, has been developed, which is the integration of

functional modules, including data mining modules, data communication module,

GUI and concept hierarchy module. Figure 6.1 illustrates the architecture of the

system. It is clear that the utilization of concept hierarchies is the base of the system.

Graphical User Interface

lk A v J.
DB Server Discovery Modules

?)1(

Concept Hierarchy hh
Figure 6.1: Architecture of the DBMiner system.

Discovery modules include summarizer, comparator, associator, classifier and pre-

dictor. The application of concept hierarchies is involved in the data cube generation

and each of the above functional modules. The major applications are discussed in

the rest sections.

6.2 DMQL Query Expansion

First of all, let us consider a data mining example:

Example 6.1 Suppose that a database UNIVERSITY has the following schema:

CHAPTER 6. DATA hfINING USING CONCEPT HIEXARCHIES 90

student(name, sno, status, major, gpa, birth-date, birth-city, birth-province)

course(cno, narne, department)

grading(sn0, cno, instructor, semester, grade)

In order to discover some hidden regularities in this database, we specify the following
DMQL query:

USE database UNIVERSITY
MINE CHARACTERISTIC RüLE
FROM student
WHERE major="cs" and gpa="3.5'4.0" and birth,place="Canada"
I N RELEVANCE TO gpa , birth-place
ANALYZE count

One may immediately find from this query that birth-place is not an attribute in table

student, and " 3.5-4.0" is not a value for attribute gpa. Actually, the two dimension

gpa and birth-place appearing in the IN RELEVANCE TO statement are associated with

concept hierarchies gpa and birth-place. And "3.5-4.0" and Canada are two concepts

in the mentioned hierarchies, respectively.

To transform this query into a SQL query to retrieve ta&-relevant data and to

complete the mining task, we need to get the following two things doue.

Expand dimensions. The dimensions involved in the "in relevance ton clause should

be expanded in order to get a SQL select statement. The attributes in the SQL

select statement must be available in database tables. In the above DMQL query,

dimension gpa is an attribute in table student, but birth-place is not. Assume that

hierarchy birth-place has level names all-place(C), country(C), birth-province(S)

and birth-city(S), where the letters C or S in the parentheses indicate the type of

the levels. The dimension birth-place is replaced with birth-province and birth-city

which are of type S(schema). Noiv, the SQL select statement is

SELECT gpa, birth-province , birth-city

CHAPTER 6. DATA MINING USING CONCEPT HIE&UZCHIES 91

Expand where clause. The higher level concepts in the where clause of DMQL

query have to be expanded so that only raw data values are involved in the

forrned SQL where clause. For example, "Canada" is not a value in table student.

W e use concept hierarchy birt h -place, which is identical to hierarchy location

shown in Figure 3.2, to find the nearest descendents of schema type which

have level name birth-province and values of the nine provinces. Thus, after

expanding, the condition birthplace = 'Tanada" is replaced with

birthprovince = BC OR birth-province = "AB"

OR birthprovince = "MB" OR birth-province = "SK"

OR birth-province = "ON1' OR birth-province = "QC"

OR birthprovince = "NS" OR birth-province = "NB"

OR birthprovince = "NF" OR birthprovince = "PEU.

Other conditions having highet level concepts can be handled similarly. O

6.3 Concept Generalizat ion

Roll-up and drill-down are two of the most useful and attractive operations in data

mining and data warehousing. These two operations are al1 cooperated with concept

generalization using concept hierarchies. W e have considered some of the operations

in Chapter 5 for the purpose of estimating disk access tirne. Here are the detailed

discussions.

Intuitively, roll-u p corresponds to concept ascension using concept hierarchies.

Whileas drill-down corresponds to concept specialization, i.e. find the children or

descendents and perform related operatioas. In our DBMiner system, the two oper-

ations are implemented in a uniformed way, that is they are al1 realized by concept

generalization. Actually, a least generalized data CU be is stored as a base data for al1

CHAPTER 6. DATA MINING USING CONCEPT HIERARCHIES

the operations. Once we need to roll up to a particdar level of a concept hierarchy, we

generalize the data in the least generalized data cube to that level and perform related

cornputation. On the other hand, if we need to drill down to some level, we also use

that data cube and generalize its data to that level. Therefore, concept generalization

is core part of roll-up and drill-down.

Using the concept hierarchies which have been encoded using the method ad-

dressed in Chapter 5, concept generalization is an easy task. Since there is a code

for each root-leaf path in a hierarchy, that is there is a code for each leaf node. The

codes of the concept hierarchy will be retrieved when we create the least generalized

data cube. Recall that our codes are structured as a concatenation of severd fields or

levels, hence a simple chop off of last several fields of a code will realize the concept

generalization to a particular level.

Figure 6.2: A sample procedure of code chopping off

Example 6.2 Figure 6.2 illustrates the procedure for concept generalization, where

the related concept hierarchy is assumed to have four levels, and we want to generalize

the cid to level one. So the last two fields or levels are chopped off, and the code ~ 9 2 5 7

is changed to x9000. O

CHAPTER 6. DATA MINING CISING CONCEPT HLERARCHIES 93

6.4 On the Ut ilization of Rule-based Concept Hi-

erarchies

In the basic attribute-oriented induction (AOI), the d u e s of attributes can always be

uniquely generalized to their ancestors at a given level of the corresponding concept

hierarchies. However, this is not the case in concept generalization using rule-based

hierarchies which are not converted to the non-nile-based ones like we did in 53.3.4.

Generalization may sornetirnes results in the loss of in fonnation[7], which could be

crucial in the following cases:

1. A generalization rule rnay depend on an attribute which has been removed;

2. A generalization rule may depend on an attribute value whose abstraction level

is too high to match the condition of the nile;

3. A mle rnay depend on a condition which can only be evaluated against the

initial relation.

To solve this information loss problem, a backtracking algorithm is proposed in

[7], in which a covering-tuple-id is introduced for each tuple in the prime relation.

To get a final mining result , the algont hm must go back to the original data relation

to find the corresponding tuple which is marked by it covering-tuple-id and execute

concept generalization again. This solution has the obvious drawback that we have

to access raw data every time when we need to perform concept generalization and

display the consequent results.

The conversion principle we presented in 53.3.4 can be used to solve the information

loss problem naturally. As a matter of fact, after a rule-based concept hierarchy

is transformed into its non-rule-based equivalence, we can perform any operations

CHAPTER 6. DATA MINING USING CONCEPT HIERARCHIES 94

applicable to a usual hierarchy, such as storing into relational tables and encoding.

To create a data cube, one needs to relate the attributes appeared in that rule-based

hierarchy together and pick up the corresponding code fiom the hierarchy table.

Once the data cube has been created, we no longer need to access the raw data

and all the other data mining functionalities can be executed normally.

6.5 Concept Lookup for Displaying Results of Data

Mining

By using concept codes we can perform cornputations related to a mining task until

we get the final stage of displaying mining results. Obviously, it does not make sense

to display the results such as rules or graphs using codes because they are meaningless

to users. We need to use the given codes to look up their corresponding concept narnes

from concept hierarchy tables by submi t t ing SQL queries.

However, a simple look up will not solve the problem since, at most times, the

given codes are generalized ones, that is they are produced by concept chopping off as

described in $6.3. These codes usually does not exist in the encoded hierarchy tables.

A method for solving this problem is to find the original correspondences of the

given codes. Observing that a generalized code must have some fields which are of

value zero, we add those fields of value zero by 1 to construct a new code. This

newly formed code must appear in the hierarchy table by investigating the hierarchy

encoding algorithm 5.1. Concept name can be obtained by submitting a SQL query,

and retrieve a concept at a level corresponding to that of the generalized code.

CHAPTER 6- DATA hIINING USING CONCEPT HIERARCHES

Example 6.3 Using Example 6.2, we consider the concept look up for cid

By adding a 1 to each of the chopped off fields we get

which c m be used to specify a SQL query such as

SELECT ai, a2
FROM aZIierTable
WHERE code = lookupcode

where ai and a2 are the first two level names of the concerned concept hierarchy.

Finally we can use the retrieved values for a i or (a i , a2) for displaying our mining

results. 0

6.6 Summary

The architecture of the DBMiner system is briefly introduced. Concept hierarchies

are used in the data cube construction and ali the other functional modules. The

major applications of concept hierarchies, inciuding DMQL query expansion, concept

generalization, the use of rule-based hierarchies and display of mining results, are

discussed using examples. Many other applications, including the retrieval and search

of hierarchy-related information, and the special treatment of tirne/date hierarchies,

are also irnplemented in the DBMiner system.

Chapter 7

Conclusions and Future Work

Data rnining and knowledge discovery in databases have been attracting a signifi-

cant amount of research, industry and media attention. As one of the important

background knowledge for data rnining, concept hierarchy provides any data mining

methods with the ability of generalizing raw data to some abstraction level, and make

it possible to express knowledge in concise and simple terms. Concept hierarchies also

make it possible to mining knowledge at mukipie levels. This thesis is focused on the

study of concept hierarchy concerning its specification, generation, impIementation

and application. In this last chapter of the thesis, we give a brief summary of the

work we have done in the thesis and discuss some related topics which are important

and interesting for future research.

7.1 Summary

The efficient use of concept hierarchy in data mining is the uitimate goal of the study.

Different aspects of the concept hierarchy are investigated in the thesis, including its

CHAPTER 7. CONCL USIONS AND FUTURE WORh' 97

properties, specification, automatic generation, implementation and application. In

particular, we consider the foliowing as the major contributions of this thesis.

1. The terrninology and properties of concept hierarchies have been discussed. A

set of basic t e m s and their definitions have introduced. The relationship be-

tween the set of concepts and the set of level names has indicated the ftexibility

of specifying a hierarchy. The discussion on the four types of concept hierar-

chies has clarified their general properties and made it possible to apply specific

techniques to different types of hierarchies.

2. The automatic generation of concept hierarchies has been studied. The algo-

rithm designeci for detecting a partial order on a set of nominal attributes is a

useful guide for users to defining their hierarchies. The two algorithms proposed

for automatic generation of numerical hierarchies and the performance analysis

have provided us novel tools of handling the concept generalization of numerical

at tributes. The introduction of the variance quality in the partitioning cluster-

ing method has resulted in a better similarity measure for a group of objects.

Due to the popularity of numerical attributes in databases, the automatic gen-

eration of numerical hierarchies is desirable for any data mining systems.

3. The strategy for the irnplementation of concept hierarchies has been investi-

gated. The encoding technique of concept hierarchies has been presented. The

analysis on the storage requirement and disk access time has ensured the effi-

ciency and effectiveness of the application of concept hierarchies in data mining

sys tems.

CHAPTER 7. CONCL USIONS AND FUTURE WORK

7.2 Future Work

There are still many interesting problerns which are worth continuing research, some

of which are discussed as fotbws.

(1) How to specify fan-out in the automatic generation of a numerical hierarchy?

In the applications, we can display the histogram of an attribute on which a

hierarchy is to be built, and decide the value of the fan-out based on the number of

modes in the histogram. However, if this number is too large or the histogram is too

mess for us to find this number, we should have a method to make reasonably good

decision.

(2) How to measure the qualities of hierarchies generated by different algorithms?

There are quality measures for clustering methods. However they cannot be ap-

plied directly to rneasure the qualities of hierarchies. In Chapter 4, we basically

compare the quaiities of hierarchies using our observation on the given histogram. It

might be difficult to judge their qualities when the given histogram is very compli-

cated.

Figure 7.1: A concept hierarchy for attribute age.

As we mentioned in Chapter 2, [SI] defined the complexityof a concept hierarchy in

terms of its number of interior nodes, and the depth and height of each of these interior

CHAPTER 7. CONCL USIONS AND FUTURE W O M

nodes. This complexity is then used to measure the interestingness of discovered

rules. It seems that the quality of a concept hierarchy could be measured also by this

complexity because more interesting a rule is, higher quality the concept hierarchy

is. However, the situation is not that simple. For example, we have two concept

hierarchies as shown in Figures 7.1 and 7.2.

Figure 7.2: Annother concept hierarchy for attribute age.

Figure 7.3: A histogram for attribute age.

Each of them is constructed by using the input histogram as shown in Figure 7.3.

-

CHAPTER 7. CONCL USIONS AND FUTURE WORK

If we use the measure defined in [XI, we find that the second concept hierar-

chy (Figure 7.2) bas a higher quality than that of the fiat hierarchy (Figure 7.1).

Nevertheless, only the first hierarchy correctly descnbes the hidden structure of the

attribute on which the hiçtogram is produced. Therefore, one can make sure that

knowledge rules discovered using the second hierarchy are definitely worse than those

using the first hierarchy. How to measure the qudity of a concept hierarchy is still

an open problem.

(3) How to handle cornplex rule-based concept hierarchies?

A deductive generalization rule has the forrn: A(+) A B (x) -+ C (X) , which means

that, for a tuple x , concept A cm be generalized to concept C if condition B is satisfied

by x. The condition B (x) can be a simple predicate or a very complex logic formula

involving different attnbutes and relations. The technique used in Chapter 3 can

only deal with simple predicate cases. Further researches are needed on implementing

complex rule- based concept hierarchies.

Bibliography

[1] A. A. Afifi and V. Clark. Cornputer-aided multivariate analysis. 3rd edition,

Chapman and Hall, NY, 1996.

[2] R. Agrawal, S. Imielinski and A. Swami. Mining association rules between sets

of items in large databases. In Proc. of the ACM SIGiWD conJ on Management

of Data, Washington, D.C., 207-216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.

1994 Int. ConJ Very Large Data Bases, Santiago, Chile, 487-499, 1994

4 H. Ait-Kaci, R. Boyer, P. Lincoln and R. Nasr. Efficient implementation of lattice

operations. A C . Transactions on Programming Languagea, 11(1):115-146, 1989.

(5.1 C. Brew. Systemic classification and its efficiency. Cornputational Linguistics,

17(4):375-408, 1991.

[6] D. Chamberlin. Using the new DB2: IBM's object-relational database system.

Morgan Kaufmann, 1996.

[7] D. W. Cheung, A. W. Fu and J. Han. Knowledge discovery in databases: a rule-

based attribute-oriented approach. In Proc. 1994 Int. Symp. on Methodologies

for Intelligent Systems (ISMIS'gd), Charlotte, NC, 164-173, 1994.

[8] M. J. Corey and M. Abbey. Oracle data warehousing. Osborne McGraw-Hill:

Oracle Press, CA, 1997.

[9] V. Dahl. On database systems development through logic. ACM Transactions on

Database Systenas, 7(1), 1982.

[IO] V. Dahl. Incomplete types for Iogic databases. Applied kfath. Letters, 4(3):35-28,

1991.

[Il] DSSArchitect. MicroStrategy Incorporated, VA, 1997.

[l2j R. Elmasri and S. B. Navathe. FundamentaIs of database systems. The Ben-

jarnin/Cummings Publishing Company Inc., 1989.

[13] B. S. Everitt. Cluster analysis. Edward Arnold, 1993.

[14] A. Fail. Reasoning with taxonomies. Ph.D Thesis, School of Computing Science,

Simon Fraser University, 1996.

[l5] D. Fisher. Improving inference through conceptual clustering. In PTOC. 1987

il A A l Conf., Seattle, Washington, 461-465, 1957.

[16] L. Fisher and J. W. Van Ness. Admissible clustering procedures. Bipmetrika, 55,

91-104, 1971.

[l?] W. J. Frawley, G . Piateetsky-Shapiro and C.J.Matheus. Knowledge discovery

in databases: An overview. In G. Piatetsky-Shapiro and W. J. Frawley, eds.

f~nowledge Discovery in Databases, 1-27, AAAI/MIT Press, 1991.

[18] M. Genesereth and N. Nilsson. Logical foundations of artificial intelligence. Mor-

gan Kaufmann. San Francisco, CA, 1987.

BIBLIO GRAPHY 1 03

[19] A. D. Gordon. Classification: Methods for the Exploratory Aaalysis and Multi-

variate. Chapman and Hall, 1981.

[20] R. P. Grimaldi. Discrete and combinatorial mathematics: An applied introduc-

t ion. Addison-Wesley P ublishing Company, 1994,

[21] H. J. Hamilton and D. R. Fudger. Estimating DBLearn's potential for knowledge

discovery in databases. Computational Intelligence, 11(2), 280-296, 1995.

[22] J. Han. Mining knowledge at multiple concept levels. In Proc. 4th Int. Con6

on Infornation and IIilowledge rl/Ianagement (CIKM'9S), Baltimore, Maryland,

19-24, 1995.

[23] J- Han. Conference Tutorial Notes: Integration of data rnining and data ware-

housing technologies. 1997 Int'l Conf. on Data Engineering (ICDEY97), Birm-

ingham, England, 1997.

[24] J. Han, Y. Cai and N. Cercone. Data-driven discovery of quantitative rules in

relational databases. IEEE Tran. on Knowledge and Data Engineering, 5(1), 29-

40, 1993.

[25] J. Han and Y. Fu. Dynamic generation and refinernent of concept hierarchies for

knowledge discovery in databases. In Proc. AAAI'9-4 Workshop on Icnowledge

Discovery in Databases(KDDY94), Seattle, WA, 157-168, 1994.

[26] J. Han and Y. Fu. Discovery of multiple-level association rules frorn large

databases. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDBY95), Zurich,

Switzerland, 420-431, 1995.

[27] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in

data mining. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy,

edi tors, Advances in 1-nowledge Discover- and Data Mining, AAAI[/MIT Press,

399-421, 1996.

1281 J- Han, Y. Fu, K. Koperski, W. Wang and 0. Zaiane. DMQL: A data mining

query laquage for relational databases. 1996 SIGR/IODf96 Workshop on Re-

search Issues on Data Mining and Knowledge Discovery (DMKDS96), Montreal,

Canada, 27-34, June 1996.

[29] V. Harinarayan, A. Rajaraman and J. D. Ullman. Implementing data cubes ef-

ficiently. Proc. 1996 ACM-SIGMûD Int. Conf. Management of Data, 305-216,

Montreal, Canada, June 1996.

f30] J. Hong and C. Mao. Incremental discovery of rules and structure by hierar-

chical and parallel clustering. 1.n G-Piatetsky-Shapiro and W.J.Frawleyt editors,

Knowledge Discovery in Databases, 449-462, AAAI/MIT press, 1991.

[31] M. Kamber, L. Winstone, W. Gong, S. Cheng and J. Han. Generalization and

Decision Tree Induction: Efficient Classification in Data Mining. In Proc. of

1997 Int'l Workshop on Research Issues on Data Engineering (RIDE'W), Birm-

ingham, England, 11 1-120, 1997.

(321 N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional

nearest neighbor queries. In SIGMOD797, AZ, US.4, 369-380, 1997.

[33] K. A. Kaufman and R. S. Michalski. A method for reasoning with stmciured and

continuous attributes in the INLEN-2 multistrategy knowledge discovery system.

In Proc. The Second Int. Conf. on Knowledge Discovery & Data Mining, 232-237,

1996.

[34] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to

cluster analysis. John Wiley & Sons, 1990.

[35] D. Keim, H. Kriegel and T. Seidl. Supporting data mining of large databases by

visual feedback queries. In Proc. 10th Int. Con/. on Data Engineering, 302-313,

Houston, TX, Feb. 1994.

[36] R. Kerber. ChiMerge: Discretization of numeric attribute. In Proc. Tenth Na-

tional Conf. on Artificial Intelligence (AAAI-9) , San Jose, CA, 123-127, 1992.

[37] J. Lebbe and R. Vignes. Optimal hierarchical clustering with order constraint. In

Ordinal and Symbolic Data Analysis, E-Diday, Y.LechevaUier and 0-Opitt, eds.,

Springer-Verlag, 265-276, 1996.

[3Y] C. Mellish. The description identification problem. Ariifiial In tel l igeme,

52(2):151-167, 1991.

[39] R. S . hf ichalski. Inductive learning as rule-guided generalizat ion and concept ual

simplification of symbolic description: unifying principles and a methodology.

Workshop on Current Developments in Machine Learning, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 1980.

[40] R. S. Michalski and R. Stepp. Automated construction of classifications: Con-

ceptual clustering versus numerical tauonomy. IEEE Trans. Pattern Analysis and

ikfachine Intelligence, 5396-410, 1983.

[41] R. Missaoui and R. Godin. An incrementd concept formation approach for learn-

ing from databases. In V.S.Alagar, L.V.S.Lakshmanan and F.Sadri, editors, For-

mal Methods in Databases and Software Engineering, Springer-Verlag, 39-53,

1993.

[Q] Power Play: Packaging information with transformer. Cognos Incorporated, 1996.

[43] H. C. Romesburg. Cluster analysis for researchers. Krieger Publishing Company,

Malabar, Florida, 1990.

BIBLIOGRAPHY 1 06

[44] S. J . Russell. Tree-structured bias. In Proc. 1988 AAA I Conf., Minneapolis, M N ,

641-645, 1988.

[45] R. R. S i M and P. H. A. Sneath. Principles of numerical taxonomy. W.H.Freeman

and Co., London, 1963.

(461 R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 1995

Int. Conf. Very Large Data Bases, Zurich, Switzerland, 407-419, 1995.

[47] G. Stumme. Exploration tools in formal concept analysis. In Ordinal and symbolic

data analysis, E . Diday, Y . Lechevallier and O. Opitz (Eds.), 31-44, 1995.

[48] P. Valtchew and J. Euzenat. Classification of concepts through products of con-

cepts and abstract data types. In Ordinal and symbolic data analysis, E. Diday,

Y . Lechevallier and 0. Opitz (Eds.), 3-12, 1995.

[49] M. Wang and B. Iyer. Efficient roll-up and drill-down analysis in relational

database. In 1997 SIGibfOD Workshop on Research Issues on Data Mining and

Knowledge Discouery, 39-43, 1997

[50] R. Wille. Concept lattices and conceptual knowledge systems. Cornputer e' Math-

ematics with Applications, 23, 493-515, 1992.

1 MHbt LVALUATION
TEST TARGET (QA-3)

APPLIEO I M G E . lnc
a 1653 East Main Street -

-2 Rochester. NY 14609 USA -- -- -, Phone: 71W482-0300 -- a Fax: 716/28&5989

O 1993. &wUed 1%. Al Rigt~ghta Resanred

