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Abstract

This thesis focuses on maintenance practices and performance in the context of
underground mining. Analytical techniques for evaluation of a mine’s maintenance
performance using equipment failure and repair time data are presented. The efficacy of
these techniques is illustrated through a case study of the mobile equipment in an
underground mine operating at high altitude. Data from the case study is analyzed and
recommendations for improvement in the maintenance process at the mine are made.
Requirements for an effective condition based maintenance program are formulated based
on observation of the shortcomings of the oil analysis program in place at the mine. In a
similar manner, evaluation of the failure and repair data is used to identify where

imprecision of records limits the usefulness of the data.
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1.0 Introduction

1.1 Maintenance in a Mining Context
Muintenance accounts for 30% to 65% of the overall operating cost budget for a
typical mining company and represents the largest portion of the mine’s controllable
operating costs (Cutifani et al, 1996); (Cambell, 1997). The relative magnitude of this

percentage for different mine types and locations is shown in Table 1.1.

Mine Type and Lecation Maintenance Costs as % of Operating Cost

Open Pit Chile, Indonesia >60%

Open Pit Canada, Australia ~45%

Underground Canada <35%

Smelter Canada, U.S. ~25%

Table 1.1 Maintenance Costs as Percentage of Operating Costs (After Cambell,
1997)

The above, coupled with the fact that industry today is faced with an increasingly
complex and demanding marketplace, has led to an increasing interest in methods to
reduce maintenance costs.

Although significant effort has gone into developing effective maintenance strategies
for industry in general, application of these to the mining industry presents many

challenges. These challenges are mainly associated with the specialized equipment in the



mining industry, and the susceptibility of this equipment to the mine environment. Some
specific contributors to the challenges faced by the mining industry are:
1 A major portion of the equipment used in the mining industry is mobile or semi-
mobile.
2 Factors influencing maintenance costs of mobile equipment include,
o Increased failures induced by disassembly and re-assembly of semi-mobile
equipment.
o Mobile equipment can fail in inopportune locations that make repair extremely
difficult and costly.
eThe mobility of the equipment hinders the application of techniques such as
continuous condition monitoring.

3 The physical environment under which mining equipment operates is less than ideal.
These physical conditions can include: wide temperature ranges, restricted access,
poor lighting, vibration and shock, and changing ore characteristics.

4 Logistics can be difficult, depending on the geographical location of the mine: parts
and labor can be difficult to obtain in remote locations. Parts requiring very large lead
times due to location of the mine can necessitate very high inventory levels.

5 The operating environment of the mine is dynamic, with many unknowns that can
affect the life of equipment. Operator practices, varying production demand and
changes within the ore characteristics can all have significant influence on the failure

patterns of equipment.



Additionally, the increase in mechanization, automation and amalgamation of
processes within the mine has further complicated the issue of maintenance (Kumar,
1996).

One company actively pursuing operational -effectiveness through continual
improvement of maintenance practices is Barrick Gold Corporation. The El Indio mine,
located in Chile, is one of their primary focuses. The company is in the process of re-
engineering their maintenance philosophy with the initial focus on preventative
maintenance and long term objectives to include the implementation of suitable condition
based monitoring systems (CBM). To aid in this re-engineering process, an analysis of
mobile equipment maintenance data was performed for the period covering January 1996

to March 1997.

1.2 Objectives
The research presented in this thesis represents the culmination of four months of
onsite investigation at Barrick Gold’s El Indio mine in Chile. The primary focus of this
work was the collection and analysis of maintenance data for the underground mobile
equipment at El Indio mine. The analysis of such data provides valuable information to
assist in optimization of the maintenance function. The objectives of the analysis were:
e Develop a methodology for grouping failure data for each type of equipment
such that repair time and failure distributions can be compiled.
e Using the grouped failure data, develop distributions of repair times and time
between failures for unplanned maintenance.

¢ Determine major causes of downtime.



e Demonstrate the potential benefits of using applied statistics to model reliability.
e Develop a methodology for identifying potential areas of improvement.
Results from the above can benchmark the mine with respect to its maintenance practices
and provide the necessary baseline for measuring the effects of any changes implemented.
Furthermore, this thesis illustrates the usefulness of Pareto Analysis combined with
Statistical techniques to identify and prioritize areas where improvement in the

maintenance process can be made.



1.3 Scope of Work
Within the constraint of a limited four month period spent at the mine, the analysis was
restricted to the following:
e failure data was only analyzed for selected equipment: scoops, trucks and drills.
e The analysis was based on data extracted from the computer based maintenance
management software package in use at the mine.
e Detailed statistical analysis was performed on critical equipment as identified by

the first level Pareto Analysis.

1.4 Thesis Overview

The organization of this thesis is as follows: Chapter 2 provides a review of
current maintenance strategies. Chapter 3 provides a description of El Indio mine.
Chapter 4 presents the methodology used for the data analysis. Chapters 5, 6 and 7
present the results obtained and a discussion of their implications. Chapter 8 presents the

conclusions derived and recommendations for future work.



2.0 Literature Review

Attainment of an optimal maintenance strategy requires detailed knowledge of the
interaction of the factors affecting maintenance. Figure 2.1 presents the interrelation of the
factors that need to be considered when contemplating changes to a maintenance process.
From this figure we see that maintenance policy is strongly tied to production policy and
site conditions. Consequently, to determine the optimum maintenance policy a model
would need to account for the effects of both the site and production dependence. In
general this is not possible. Normally, the site and production factors are considered as a
fixed environment and maintenance strategies are developed from this. This simplification
reduces the number of parameters necessary for an analysis, but at the cost of reduced
flexibility. For example, the analysis presented later determines specific areas for
improvement of the maintenance process however, the net effect of these changes may not
be what is anticipated due to the simplifying assumption of fixed operating and site

conditions.
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Figure 2.1 Factors Affecting Maintenance Strategies (After Watson, 1968)
There are three basic maintenance strategies which can be applied in practice. These
strategies are illustrated in Figure 2.2. In general, a combination of these is used. The

exact combination can be determined by an economic analysis of the benefits of the

different options.
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Figure 2.2 Maintenance Strategies

2.1 Run To Failure

The run until failure method, as its name implies, operates a piece of equipment until
failure, following which repair or replacement is performed. At first glance, this may
appear an ineffective strategy. However, if the consequences to the operation due to the
unplanned failure are less than the value added to the operation by changing the
component prior to failure, run until failure is a viable option. Unfortunately, most run
until failure strategies are not the result of a careful evaluation of the cause and effects of
the failure, but instead result from an improper maintenance program. These unplanned
failures result in the maintenance department being in a reactive mode. As indicated by
Mobley, the cost of an unplanned repair can be in excess of three times that of a planned
repair (Mobley, pg 5. 1990). Reasons for this include,

e Extended downtime due to unavailability of parts, or labor.
e Unplanned repairs can result in overtime.

e Unplanned repairs are not executed as efficiently as planned repairs.




2.2 Planned Preventive Maintenance (Scheduled Maintenance)

The excessive costs of unplanned run to failures spawned the second maintenance
strategy, planned preventive maintenance. This strategy involves servicing of components
at pre-determined intervals. This approach to maintenance is a substantial improvement
over the unplanned run until failure approach for most cases. Replacing, or repairing, the
components at pianned intervals allows effective scheduling of resources to minimize cost
and downtime. This strategy is feasible when:

e Equipment is subject to wear out type failures.

e The cost of a preventative replacement is advantageous in comparison to an

unplanned replacement.

e A condition based strategy is not an appropriate altemative.

A major obstacle in the effective application of this strategy is determining the
optimal replacement/repair time. If the repair is made too early, the components may not
have been utilized to full capacity. If the interval is too long the result is an unplanned
repair. To complicate matters, most manufacturers recommend preventive maintenance
intervals that must be followed to preserve warranty rights. The determination of these
intervals by the manufacturer may not be optimum for a particular mining operation,

resulting in excessive maintenance costs to the company.

2.3 Condition Based Maintenance

Condition based maintenance (CBM), sometimes called predictive maintenance,
involves knowing the condition of equipment in order to schedule maintenance “The

axiom of Condition-Based Maintenance is that servicing is permitted only when



measurements shows it to be necessary” (Brilel &Kjer, 1989, pg. 6). Using measured
parameters and statistical history, maintenance managers can evaluate the probability of
failure based on the machine condition. In doing so, they are able to utilize the benefits of
planned maintenance and minimize premature replacement of parts. An additional and
sometimes overlooked benefit of CBM is its ability to aid in fault diagnosis. Other benefits
of CBM are that it:

¢ Reduces the likelihood of maintenance induced failures by increasing maintenance

intervals.

e Lowers inventory levels since parts can be ordered when needed.

¢ Allows scheduling of maintenance to consider production needs. Thus, reducing lost

production due to maintenance downtime (Courrech, 1988).

The growth of CBM in traditional plant environments has led to a wealth of tools
being developed to monitor the condition of machines. The most widely accepted
monitoring techniques for CBM can be grouped under the categories of> vibration
analysis, chemical analysis and temperature monitoring. Within each of these a variety of
techniques are utilized. Figure 2.3 shows the common methods used and their

applications.
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2.3.1 Vibration Monitoring

Vibration monitoring has two primary objectives: fault detection and fault diagnosis.
Fault detection is the process of determining when the machine is running in a2 condition
other than normal. Fault diagnosis is the process of determining what is causing this
abnormal operating behavior of the equipment (Burrows, 1996). In using vibration
monitoring for fault detection, an assessment of the machine condition is being
performed. Based on this assessment, a fault can be detected and repaired, or by suitable
data trending a prediction can be made as to when a repair is necessary.

The methods utilized for condition based monitoring using vibration data depend on
the type of equipment being monitored and the particular fault. Normally, velocity or
acceleration is monitored and the data is displayed in either the time or frequency domain.
Many techniques are available for the analysis of vibration data: overall rms level,
spectrum analysis using Fast Fourier Transforms (FFT), waterfall plots, crest factor, peak
level detection, shock pulse, spike energy, and enveloping (Burrows, 1996).

Most of the current literature on implemented vibration programs for CBM deals with
factory environments, where rotary equipment operating in a static environment is
monitored. Unfortunately, mobile equipment in the mining industry does not fall into this
category. Implementing a vibration monitoring program on a fleet of underground mobile
mining equipment faces the challenges discussed in section 1.1 . Nonetheless, this
technology has been employed on mobile surface mining equipment with excellent results
when used as a predictive and diagnostic tool (Brown et al, 1987);(Burrows, 1996).

A promising new instrument for vibration monitoring of mobile mining equipment is the

Mechanic’s Stethoscope™ . It is used to monitor and diagnose engine health problems. It
12



is a periodic monitoring system which allows equipment to be tested in the shop under
controlled conditions (Fauteux et al, 1995). The monitoring system uses a high speed
velocity sensor to measure instantaneous rotational velocity of the crankshaft. Software
linked to the sensor is capable of detecting defective engine cylinders and of identifying
whether the cylinder has an injection or a compression problem (Johnson et al, 1994)
Additionally, the software has the capability to provide online maintenance manuals to

assist the mechanic in the diagnoses of faults.

2.3.2 Tribology

The word Tribology is derived from the Greek word “tpifog” which
means rubbing. It is an interdisciplinary science and technology that deals
with chemical and physical phenomena that occur at interacting surfaces in
relative motion. It encompasses all aspects of the friction, lubrication, and
wear of relatively moving mechanical components; and the design and
selection of materials for the fabrication of machine parts (Ko, 1997).

The most common method of determining the condition of a machine using tribology
is through sampling and analysis of its lubricating oil. Extraction of the oil from a machine
for analysis must be done in 2 manner that ensures the sample is representative of the oil in
the machine. For example, sampling downstream from a filter would not provide accurate
information about the true condition of the machine. If possible, the sample should be
taken immediately downstream from the lubricated surface while the machine is
operating under normal conditions and temperatures (Lockwood and Dalley, 1995).

Analysis of the oil sample can be done using: spectrometric metal analysis,
ferrography, infrared (IR) spectroscopy, gas chromatography and viscometry. These

techniques provide information about the condition of the oil which, with proper
13



interpretation, reveals the machine condition. Proper interpretation of the results from the
oil analysis requires knowledge of: the limitations of each test, the composition of the oil
and how wear and contamination modify the oil composition. In general, one or more of
these tests need to be performed to accurately determine the condition of a machine
2.3.2.1 Spectrometric Analysis

“Spectrometric metal analysis determines the concentration of soluble metals and
metal particles up to 10 pum in size. Therefore, it follows mild (benign sliding) rubbing
wear and the early stages of fatigue quite well, because in these wear modes the
predominant distribution of wear particles is within the detectable (10 pum) range”
(Lockwood and Dalley, 1995). The results from a spectrometric analysis are in parts per
million (ppm) and provide an overall number for contamination levels in the oil
However, the results are of limited use in diagnosing the type and cause of failure
occurring and in the case of rapidly deteriorating components which generate particles

>10 um in size, failure may occur before the analysis reveals it.

2.3.2.2 Ferrography and Particle Counting

“Ferrography provides significantly more information than spectrometric analysis and
covers a wider particle size ,<1 to 250 um range” (Lockwood and Dalley, 1995).
Ferrography enables the concentration, shape and size of the metallic particles to be
determined. It not only provides information of an impending failure it also allows
determination of the particular wear type occurring. The type of wear occurring can be

determined with the use of a bichromatic microscope equipped with cameras (Lockwood

14



and Dalley, 1995). The images viewed under the microscope are compared with images
that represent known wear types.

A limitation of ferrography and spectrometric analysis is that they primarily identify
metallic elements. Non metallic contaminants can arise in mechanical systems through
infiltration of dust, sand and cement. A method for identifying all particles is particle
counting. Particle counting measures the number of particles per volume of fluid within a
given size range. Particle counting can be done using light interruption or laser scanning
equipment. A more labor intensive method is the use of filters to collect the particles and
then count them using a microscope. Like ferrography, particle counting detects the
onset of severe wear. “Problems with particle counting include difficulty in obtaining
consistent samples and incorrect counting” (Lockwood and Dalley, 1995).
2.3.2.3 Viscometry and Gas Chromatography

Viscometry is used to measure the viscosity of the lubricant and is of primary
importance in evaluating its effectiveness. Gas chromatography is used to determine fuel
dilution or water contamination of the oil.
2.3.2.4 Interpretation of Analysis Resuits

The successful use of oil analysis results requires that they be received before wear has
caused a failure and that the results can be used to measure the condition of the machine
compared with what it was when the last sample was analyzed. To ensure timely receipt
of the analysis results sample turn around time should be kept short.

Interpretation of the results from an oil analysis is best illustrated using the results
obtained from an actual sample. Table 2.1 presents the results received for several

samples. Table 2.2 provides an insight into what each one of the results may be

15



representative of and possible sources of contaminants. By trending the results obtained
from the oil analysis a base line can be established for the appropriate levels of each wear
element in the oil. Break down of additives and oxidation of the oil can found by
comparing the analysis results to those from an analysis done on new oil. It is important to
analyze a sample of new oil with the used sample to ensure that the new oil meets its
required specifications. Cases have been found where changes in the oil chemistry by the

manufacturer have led to maintenance problems (Kincaid, 1993).
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Elements Indicates Sources
Iron (Fe) wear cylinders, oxidation, crankshaft,
gears
Copper (Cu) wear and additive bearings, coolant system
Aluminum (Al) wear, additive and | bearings, pistons
dirt
Chromium (Cr) wear Cylinders, rings, gears,
crankshafts
Molybdenum (Mo) wear and additive rings
Lead (Pb) wear and fuel line, grease, paint, l;mringiT
Tin (Sn) wear bearings, cooler
Silver (Ag) wear bearings
Nickel (Ni) wear camshafl, rings, gears
Vanadium (V) wear vaives, catalysts
Titanium (Ti) wear and din turbines, springs
Silicon (Si) dirt sand, dirt
Sodium (Na) coolant and additive | coolant system
Boron (B) coolant and additive coolant system or sca walcr
Magnesium (Mg) additive bearings, sca water
Calcium (Ca) additive
Zinc (Zn) additive bearings, coatings
Phosphorus (P) additive pears, coolant system
Barium (Ba) additive water, grease
Antimony (Sb) additive grease
Potassium (K) coolant
Sulfur (S) additive
Chlorine (Cl) contaminant and
additive
Nitrogen (N) additive and fuel
oxidant
Compounds
Water Contamination
Physical Properties
Viscosity oxidation or fuel oil
Total acid number | oxidation

(TAN)

Table 2.2 Relationship between contaminants and sources (Aduvire E
et al, 1992) and (Lockwood and Dalley, 1995).
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2.3.3 Temperature Monitoring

Monitoring of a machine’s temperature can provide valuable insight into its
operating condition. Methods for monitoring the temperature of a machine include:
thermometers, thermocouples, resistance temperature detectors (RTD’s) and
thermography. Of these, thermography is the most recent to be used for CBM and the
only one that allows non-contact measurement of a machine temperature.

Thermography is a predictive maintenance technique that can be
used to monitor the condition of plant machinery, structures, and
systems. It uses instrumentation designed to monitor the emission
of infrared energy (i.e. heat) to determine the operating condition.
By detecting thermal anomalies - areas that are hotter or colder
than they should be - an experienced surveyor can locate and define
incipient problems within the plant (Mobley, 1990, pg. 22).

Common instrument types used for measuring thermal energy are: pyrometers, line
scanners and thermal imaging devices. Pyrometers use various methods to measure
infrared energy, such as total radiation, optical and two color. Regardless of the
method used by the pyrometer, it is limited to measuring the temperature at a single
spot. Additionally, depending on the distance from the measurement point the
background area can have significant effects on the reading. Line scanning provides a
one dimensional temperature profile of the part being scanned compared to full
imaging devices which provide a two dimensional view of the temperature of a part.

Thermography has been widely used by the electrical industry since high voltage
equipment and transmission lines require non-intrusive monitoring because of safety
and physical location. However, the use of thermal imaging to find potential problems

in mechanical processes is growing. For example, thermal imaging can be used to

detect abnormal temperature levels in bearings and gear boxes caused by lubrication
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or alignment problems (Dumpert,1997). Additionally, thermal imaging has been found
to be useful for monitoring: manufacturing processes, refractory and insulation
materials, heat leakage from structures, and fire flare ups in waste dumps (Rao et

al,1996);(Laird, 1994).



2.4 Statistical Techniques

The application of statistics to analyze maintenance data in the mining industry
can lead to opportunities for cost reduction (Mueller, 1995). Figure 2.4 shows
the relationship between maintenance costs, lost production cost due to downtime,

and the total cost to the operation.

Total cost of
maintenance
and lost time

Optimal

policy

_:E'_‘ Cost of

:-_ maintenance

e ' policy

3

‘J)

(o]

O ' Cost of lost
time due to
breakdowns

o

_* Maintenance policy (frequency of overhauls, say)

Figure 2.4 Maintenance Cost Relationships (from Jardine, 1973)

Figure 2.5 shows the standard life cycle, m:,“bathtub”, curve for mechanical
equipment. By applying statistical techniques to maintenance data it is possible to
determine where on the life cycle curve a piece of equipment is operating. This
enables determination of equipment reliability and probability of failure. When
coupled with cost data for planned replacements and unplanned replacements,

reliability data can be used to determine optimal replacement time.
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Figure 2.5 Life Cycle Curve (from Jardine, 1973) “A” represents increased

failure rate, “B” represents constant failure rate period in life cycle and “C” is near

the end of the useful life with the failure rate increasing.

Fitting distributions to the failure and repair times of equipment provides insight

into variations amongst components and labor practices.

This can help highlight

problems such as poor quality parts and improper repairs. Additionally, knowing the

probability of failure of components based on data collected from equipment provides

a basis for planning of component replacement intervals. Thus, the decision as to

when to repair or replace components can be made by the owner using actual data

instead of having to rely on manufacturer’s recommendations which tend to be

conservative.
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There are many distributions that have been found to represent the life cycle of
equipment. These can generally be divided into two categories, stationary and non-
stationary models. Stationary models will be used for the work presented in this thesis.
“Stationary models are models where the probability distribution at any time t;.t;. ..ty
must be the same as the probability distribution at times t;.x, ta...,tmx Where k is an
arbitrary shift along the time axis” (Bovas et al 1983, pg. 194). In the context of
maintenance the assumption of a stationary process implies that the distribution of
failures after a repair is the same after every repair. This implies that the equipment is
in exactly the same condition after a repair or part change as it was when new. In
reality this is not true due to
e Variation in maintenance practices.

» Replacement components will not be identical. Each will have its own lite cycle.
¢ Some failures may be introduced as a result of the maintenance procedure.
Nevertheless, stationary models are commonly applied to failure data when tests for
time variant trends reveal localized trends. Examples of such applications are given by
(Paraszcak et al,1994) and (Vagenas et al, 1997). The stationary models that are
considered for modeling the failure data in this thesis are the: Weibull, exponential and
lognormal distributions. In presenting the functions that represent a distribution the
following definitions apply

1) probability density distribution for failures.

R(Y) Reliability function providing the probability of survival to time t.

M) Instantaneous failure rate.
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2.4.1 Weibull Distribution

The Weibull distribution is advantageous in that it can be fitted to many life

distributions (O’Connor, 1981, pg. 37). The Weibull distribution is given by

o= [ (Hﬂ !
f()==|—=| exp|-|—=| | fort=0and O otherwise (1
n\n n

R() = exp{— (’—:71) ﬂ} 2]

-2

where  is the shape parameter, 1} scaling parameter and vy is a location parameter.
These equations represent the 3 parameter Weibull. For the 2 parameter Weibull, 7 is
set to zero. The shape parameter f indicates whether the failure rate is increasing,
decreasing or constant.

e f3>1 represents an increasing failure rate.

e B <1 represents a decreasing failure rate.

¢ [} = 1 represents a constant failure rate.
The location parameter is the time that the equipment will run without any failures and
has the affect of shifting the distribution along the time axis. “Changing the scaling
parameter has the same effect as changing the scale on the abscissa. If 1 is increased

while B and y are kept the same, the distribution gets stretched out to the right and its
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height decreases while maintaining its shape and location” (Kececioglu, pg 272,

1991).

2.4.2 Exponential Distribution

The exponential distribution is the simplest and most widely used reliability
distribution. Systems whose failures follow the exponential distribution exhibit a
constant failure rate. One implication of this is that, for systems operating in the
constant failure rate region of their life cycle, planned preventative maintenance does

not enhance the reliability of the system. The exponential distribution is given by

S(1) = Aexp(- A) (4]
R(r) = exp(— &) (5]
A(¢) = 2 where X is constant (6]

2.4.3 Lognormal Distribution
“A random variable is lognormally distributed if the logarithm of the random
variable is normally distributed” (Kececioglu, 1991, pg. 399). The two-parameter

lognormal distribution is given by

20

f()=20,120,-0< 4,6>0
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l(')JR—% [9]

The parameters p and G represent the mean and standard deviation of the natural
logarithms of the data. An increase in p indicates an increase in the mean time
between failures and an increase in ¢ indicates that there is more varnation in the TBF.

Additionally, p is the scale parameter and o is the shape parameter (Kececioglu,

1991, pg. 404).

2.4.4 Tests for Data

Prior to fitting the data with a distribution the underlying assumption of
independent and identically distributed failure time should be verified. A common
graphical test used to determine if a trend is present in the data is to plot the
cumulative time between failures versus the cumulative failure numbers. A straight
line indicates lack of a trend in the data. A convex or concave curve indicates a
system with a decreasing and increasing failure rate respectively (Ascher et al, pg 74-
75, 1984). A test for serial correlation is to plot the ith TBF against i-1:th TBF. If
the data are dependent or correlated, the points will lie along a line. It is important that
the data should be plotted in the order of occurrence as sorting of the data will induce

correlation (Vagenas et al, 1997).
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2.4.5 Fitting Failure Distributions

Calculation of the model parameters does not guarantee that the appropriate model
has been selected. To ensure that the best model is chosen the parameters are
estimated for each candidate model and a comparison of each model is performed to
determine which model results in the best fit.
2.4.5.1 Parameter Estimation

The two methods considered for parameter estimation in this work are Maximum

Likelihood and Rank Regression. For a continuous function
f(x,6,.6,,...6,) [10]

where the ©’s represent the parameters to be estimated from a data set of N

observation of x. The likelihood function is given by,
N
L(x,,%;,...,%,16,,6,,...6,) = [ | £ (x.;6,.6;....6,) [11)
i=t

the logarithmic likelihood function is given by,
r=lnL=3"Inf(x;6,.6,,..6,) [12]

The maximum likelihood estimators (MLE) of the unknown parameters 0 are obtained
by maximizing L or A. Generally, maximizing A is simpler than maximizing L.
Maximization can be accomplished by taking the derivative of A with respect to each
0, setting the equations equal to zero and solving them simultaneously (Reliasoft™,

1997). For example, consider the exponential distribution:
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S(r)= Aexp(- ) [13]

its likelihood function is given by:

L5105 5..50,) = f'[f(t,) [14]

N
]2
i=1

N
-3 Ay

= AVe 7

The log likelihood function is,

N
A=NhnA-Y A, [15]
i=1
N
r Y sy =0 [16]
A A T
A= [17]

Thus, for a given data set, equation 17 can be used to estimate the value of A. A
similar approach can be used for the lognormal and Weibull distribution, but the
resulting equations require numerical solutions.

An alternate method to estimating the parameters is Rank Regression. Rank
Regression is actually a least squares estimate of the parameters of the function.

However, since least squares estimation requires values for both the x and y a method
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is needed for estimating the value of y (in this case y is the probability of failure). One
method is to use median ranks. Median ranks are determined from the cumulative

binomial distribution given by

(1—:—) ZHa-2)8* [18]

P-3

N
k=j

where, P is the calculated probability of a successful event.
N is the sample size
j is the order number of the failure times, ranked in increasing order.
Z represents the probability of an unsuccessful event.
By setting P to 0.5 and solving equation 18 for Z we determine the median rank with a
50% confidence level. This value is then used as the probability of failure for the ju
failure time. This, allows the least squares method to be used to calculate the
parameter values for the distribution (Reliasoft™, 1997).
2.4.5.2 Goodness of Fit Tests

Once the parameters have been fitted to the candidate model(s) it is necessary to
determine how well they fit the data. Tests that are commonly applied to data include
the Chi Square test (x°), Kolmogorov-Smimov test (K-S) and comparison of the
correlation coefficient (R).

The Chi Square test involves comparing the number of data that fall into selected
classes with the number that would be expected to fall in those classes from the

assumed distribution.
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' =§|:T [19]

where

X;is the observed quantity in the iy, class

E; is the expected value from the given distribution

x? is the calculated value of Chi Square

N is the number of classes

Equation 19 can be used to calculate the value of Chi Square from the data. This
value can be compared to the Chi Square vaiue for N-P (P is the number of parameters
estimated) degrees of freedom at a given confidence level. If the calculated value of x*
is greater than the tabulated value then the assumed distribution of the data is not
supported at the chosen confidence level.

The Kolmogorov-Smirnov test uses a comparison of the ranked value of the
data with what the expected value of the ranks would be from the assumed
distribution. It looks at the largest absolute difference between the observed and
expected rank value and compares this to a tabulated K-S value. If the calculated
value is greater than the tabulated value then the assumed distribution of the data is
not supported at the chosen confidence level.

The correlation coefficient is a measure of the goodness of fit from the least

squares estimate. It is given by:
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r= d [20]

Ko TE7

Generally, values of R greater than .9 indicate a good fit to the data.

2.5 Reliability Centered Maintenance

The goal of reliability centered maintenance (RCM) is to provide the maintenance
engineer with a tool that will allow determination of the most cost effective mix of
maintenance policies. Effective use of the RCM approach requires that clear goals in
terms of the appropriate level of reliability and the acceptable operating standard for
the equipment be established (Ing et al, 1996).

Beginning with the knowledge that the reliability of a machine is an inherent
function of its design the RCM approach develops a maintenance program to try and
attain this level of reliability. Development of the plan includes consideration of the
costs associated with maintenance and with failure. These costs include: repair, health
and safety, environmental and lost production. To achieve the optimum maintenance
program the following steps are performed:

e Failure mode effects and criticality analysis (FMECA) is performed. This
involves starting with an analysis of the core functions of 2 machine and
working through the possible failure modes. Once the failure modes have been
identified, their effects and their criticality must be determined. The criticality
can be based on probability of occurrence and cost, or severity as discussed
above.
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e Using the identified failure modes and based on their criticality select the
appropriate maintenance tasks. These appropriate tasks being: repair on
condition, overhaul (traditional preventive maintenance), replace, run to failure
and redesign. Details of criteria for acceptance of each of these options are
given by Ing (Ing et al, 1996).

Application of RCM in the mining industry has grown slowly. However, some
companies have implemented it very successfully. One example is the Hammersley
Iron open pit mine in Australia (Knowles, 1994). The fact that RCM provides a
structured methodology for arriving at the correct balance between breakdown
maintenance, planned interval repair and repair on condition, makes it an attractive

technique for mining companies striving to optimize the maintenance process.

2.6 Mine Maintenance Management

Organization and management of the maintenance program can have dramatic
effects on its success. A sound technical maintenance program will not reduce
maintenance costs if the management structure does not allow proper execution of
work and provide clear lines of communication. Figure 2.6 shows the current trend in
the mining industry towards 2 more robust organizational structure for maintenance.
The structure shown in this figure allows accountability at each level within the
organization by placing a manager in charge of each area with lower level managers

who again are given specific responsibilities.
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Area Manager Area Manager Area Manager
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Shops
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Figure 2.6 Typical Mine Organizational Structure (after Tomlingson,1994)

The use of a craft pool for labor enables the optimization of resources by allowing
division of the work between a fixed crew who do the normal day to day work and a
resource pool from which resources can be drawn upon as necessary. Normally, the
resource pool spends 2 week in a specific area to assist the fixed crew in clearing any
backlog of work. The benefits of having a fixed crew to do the day to day work is that
they become familiar with the equipment in their area which allows them to be more

efficient (Tomlingson, 1994)
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3.0 Background to Case Study: El Indio Mine

The E! Indio Belt is a prolific gold, silver and copper district
approximately 175 km long and 10 km wide, located in the Andes
Mountains. It lies in 2 north-south orientation, primarily within
central Chile.

Barrick’s El Indio property covers 1,300 km’, making it the
largest on the Belt. It is located at a 3,960 m elevation, 380 km
north of Santiago and 160 km east of the coastal town of La
Serena, the staging area for all supplies and services. The
Argentinean border lies a few kilometres to the east. (Dawes, 1996)

The mining operations of Barrick at the El Indio site consist of: two underground
mines, Viento and El Indio, and an open pit operation, Tambo. There is a process
plant at both the open pit location(6500 t/d) and the underground location (3,150 t/d)
(Dawes, 1996). Discussion will be limited to the mobile equipment at El Indio mine.

A brief outline of the departments which provide maintenance services will be
given to provide an understanding of how maintenance is accomplished in the mine.

This discussion is presented for completeness, and evaluation of the performance of

the these departments is beyond the scope of this work.

3.1 Mobile Equipment Fleet

The maintenance history of the following equipment was reviewed for the purpose
of this thesis: 11 scoops, 9 trucks, and 7 jumbo drills. Details on manufacturer, model,

age and capacity of equipment are given in Table 3.1.
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Description | Manufacturer Model Year Capacity | Quantity
Scoop Eimco Jarvis Clark | EJC-100 1990-1991 27YD® |7
Scoop Wagner ST-2D 1989 25YD' |2
ST-3.5 1995 2.7YD’
Scoop Puma 9000 1994 7YD* |2
Truck Eimco Jarvis Clark | EJIC-415 1990-1994 15 ton 4
Truck Eimco Jarvis Clark | EJIC-416 1995 16 ton 3
Truck Eimco Jarvis Clark | EJC-430 1994 30 ton 2
Drill Tamrock H-105 1987-1995 55 kW 5
Drilt Tamrock H-103 1991 1995 345kW |2
Drill Gardner Denver MK-20 1994 55 kW 1

Table 3. 1 Equipment at El Indio

3.2 Organizational Structure and Staffing

The maintenance organizational structure at El Indio is shown in Figure 3.1 .

Details for the central maintenance shop are only shown where they directly service

the mine’s equipment. Table 3.2 shows the maintenance staffing at El Indio mine,

Table 3.3 shows the staffing at the central shop associated with servicing heavy

equipment (drills, scoops trucks, etc.). It should be noted that the staffing shown for

the central shop services all three mines, El Indio, Viento and Tambo.
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Mine Manager
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Preventive Corrective
Maintenance Maintenance
Foreman Foreman
Foreman Foreman
Underground Surface
Crew Crew Repair Repair
Crew Crew

Crew —l Crew

Figure 3.1 Maintenance Organizational Structure for El Indio Mine

Description Personnel
Maintenance Manager 1
Maintenance Foreman 2

Planner 1
Planning Clerk i
Preventive Maintenance Crew 6

Scoop and Truck Crew 28

Drill and Utility Crew 3

Total 42

Table 3.2 Maintenance Staffing at El Indio Mine
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Description Personnel
Manager 1

Shop Supervisor 1
Foreman 2
Planners 3
Mechanics 30
Boilermaker-Welder 2

Total 39

Table 3.3 Maintenance Staffing at Central Shop

Examination of Figure 3.1 reveals that the organizational structure differs from that

shown in Figure 2.6. The significant differences are:

e No one unit is responsible for the maintenance function for El Indio mine. The
mine and the central shop are each responsible for certain aspects of the mine’s
maintenance. This type of structure leaves room for ambiguity with regards to
solution of problems and assignment of responsibility. Both of these can reduce the
effectiveness of the maintenance program.

o Support functions - purchasing, external contracting, and warchousing - do not
report to anyone responsible for maintenance at a functional level. Consequently,
these departments are not directly accountable to the maintenance process. The
result being that each function may optimize its process according to the demands
of whom they are accountable which may not be optimum for the organization as a
whole.

o The central shop has divided its crew foremen into underground and surface

equipment. As discussed in section 2.6 the trend is to use crews specialized by
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equipment type and supplement the base work force using a craft pool of multi-

skilled workers.

3.3 Flow of Work Maintenance Process

The maintenance staff at El Indio mine serves two functions: performance of
preventive maintenance every 125 machine operating hours, and repair of failures. [If
the failure is of a nature such that it cannot be repaired with the mine’s resources the
equipment is sent to the central shop. Capabilities of the maintenance resource in the
mine are discussed in section 3 4.

The central shop’s purpose is to provide extended services to the mine. This
includes repairing failures which the mine cannot handle and performing one thousand
hour maintenance on equipment. This arrangement puts the central shop in the
position of being in a reactive mode the majority of the time.

Coordination of the activities between the mine and the central shop is
accomplished through weekly planning meetings. Representatives from external
services are also present at these meetings due to the fact that for some failures, parts

or outside contractors are an issue.

38



3.4 Shop Capabilities

3.4.1 El Indio Mine Shop

Work done in the mine consists of numerous activities which include: cleaning and
painting, oil changes, tire changes, hydraulic hose inspection and repair, electrical
troubleshooting and changing of small components, etc. The shop has a small buffer
warehouse to store commonly used parts such as, hoses, filters, etc. The shop is
limited to doing work that can be turned around quickly since long repairs would
prevent staff from dealing with the numerous short time repairs and take up valuable

shop space.

3.4.2 Central Shop

Typical repairs that are done at the central shop are:
e Changing: transmission, motors, differentials, bearings, hubs, knuckle joints
and brakes.

e Structural repairs.

e Bucket repairs.

e Coolant system repairs.
The central shop does not overhaul engines, transmission, differentials or other
components that require precision millwright work. These jobs are sent offsite to be

repaired by outside contractors.
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3.5 Supporting Services
The departments which directly provide support to the maintenance activities at El
Indio mine are:
o The external services department which handles all long term service agreements
for component rebuild.
e The purchasing department which buys all consumables and special orders.
e The warehouse whose role is to ensure proper inventory of parts to meet the needs

of the mine.

3.6 Data Management

Maintenance data management at the mine utilizes work cards filled out by
maintenance personnel on a daily basis. Selected information from these cards is
input into the maintenance management software package. The data is entered by the
planning clerk in the mine. He enters data for work done at both the mine shop and the
central shop. The mine is in the process of changing its maintenance management

software from Rushton™ software to Performance Manager™ software.
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3.7 Existing CBM

Existing condition based monitoring at the El Indio mine consists of an oil analysis
program. Oil samples are obtained from equipment at predetermined intervals and
shipped to an offsite laboratory. The laboratory is about 1000 kilometers from the
mine and has a S day sample turn around time from receipt of sample. Analysis at the
laboratory include: viscosity measurement, element concentration, flashpoint
determination and contaminate identification. The laboratory sends a report to the
mine with the results from the analysis. It does not provide any interpretation of the
resuits. The oil analysis program does not use ferrography or particle counting as
discussed in section 2.3.2. Thus, their analysis is not useful in determining the type of
wear going on in the equipment. Observations at the mine revealed that samples
seemed to be sitting in the maintenance shop for long periods of time before analysis
and when the analysis results were received no trending was being done to develop a
history of the equipment condition. This is contrary to what is required for effective
use and interpretation of results as discussed in section 2.3.2.4. In contrast, decisions
were made on an arbitrarily chosen upper limit for contaminants with no consideration
of the relative change in contaminant level from one sample to the next. A detailed

discussion of the consequences of this will be presented in chapter 7.
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4.0 Case Study: Data Analysis

The analysis of the maintenance data at El Indio mine was performed at two levels
of detail. The first level analysis was performed to identify problem areas within the
maintenance program and identify equipment that might be suitable candidates for a
condition based maintenance program. This level relied on a Pareto Analysis for
problematic equipment/system identification. The second level analysis involved the
use of a statistical approach to gain further insight into the critical items identified from
the first level analysis.

Data used for both levels of analysis was extracted from the maintenance
information software Rushton™ (Rushton) being used at the El Indio mine. Rushton
is a menu driven data base, and the only way to access the data was to have it print
generic reports to a file. These generic reports were then imported into Microsoft

Access™ and Microsoft Excel™ for analysis.

4.1 Maintenance Indicators

The first indicator used to assess maintenance effectiveness is the mechanical
availability of equipment. The maintenance data management software at El Indio
mine provides this as a standard report. Table 4.1 shows the level of mechanical
availability and several other performance indicators for El Indio mine for 1995 and

1996.
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1995

1996

MA |PA |UA

EU

MA

PA

UA

)

Trucks [62.1(76.9]/49.2

38

Trucks

60.8

75.1

513

39

Scoops |50.568.4|147.3

32

Scoops

49.5

66.2

50.1

33

Jumbos |42.7 |68 [35.2

24

Jumbos

49.3

70.8

40

28

Table 4.1 Equipment Availability at El Indio Mine

A description of the performance indicators is as follows (Lyonnet, 1988, pg 58):

ma=_ 9P
OP + MH
PA=OP+SB
SH
OP
UA“0P+SB
oP
EU = SH

[21]

(22]

(23]

(24]

The relationship amongst operating, standby, maintenance and scheduled hours is

shown in Figure 4.1 A written description of the significance of these indices is as

follows:
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SH

I3

op SB MH

Figure 4.1 Relationship between Hours
MA: Mechanical Availability. This gives an indication of the effectiveness of the
maintenance program. If no hours were spent on maintenance this number would be
100% meaning that the equipment was available 100% of the time. In reality this is
not attainable due to necessary maintenance such as oil changes, lubrication etc and
diminishing returns.
PA: Physical Availability. This gives an indication of how much time the equipment
is physically availabie to do work.
UA: Utilization of Availability. Is a measure of how effective the production
operation is at using the equipment when it is physically available.
EU: Effective Utilization. s an indicator of how much the equipment is being utilized
compared to the scheduled production hours.
OP: Operating Hours. The hours that the equipment spends in operation.
SB: Standby Hours. The time that the equipment was ready to operate but was
delayed due to non-maintenance issues.
MH: Maintenance Hours. Total hours spent on maintenance, includes preventative
maintenance.

SH: Scheduled Hours (based on a 24 hour day) Hours scheduled for production.
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The levels of MA shown in Table 4.1 range between 50%and 60% for 1996. These

numbers are low and indicate problems with the maintenance process or equipment.
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5.0 Data Analysis: Probiem Area Identification

The indicators discussed in section 4.1 provide a top level evaluation of both the
maintenance and production effectiveness. However, they do not provide any insight
into what might be contributing to problem areas. One method used for identifying the
most significant contributors to maintenance cost is Pareto Analysis. The usual
approach for this type of analysis is to decompose a piece of equipment into suitable
systems e.g. hydraulics, motors, drivetrain. Then using recorded failure data and
repair and replacement costs for the associated failures, the cumulative percentage cost
is plotted as a function of cumulative percentage of failures. What is typically found
when this is done is that approximately 80% of the cost is a result of 20% of the
failures.  This indicates that the maintenance department should focus on these
failures. Once specific systems have been identified a Pareto Analysis can then be
performed on each system to identify where the problems are arising within the
system.

Cost data was not available to do the Pareto Analysis. In its place total down
hours were used. To complete the Pareto Analysis for the scoops, trucks and drills it
was necessary to make several assumptions regarding the data:
¢ In some cases, when equipment was noted as being under repair for three or more

consecutive days, this downtime was treated as one event. The criteria for
determining this were: if it was in for more than 10 hours on any of the three days
and if, based on engineering judgment, it seemed reasonable that the type of repair

was not the repetitive type.
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e For the repairs identified by the above procedure, actual hours were replaced by
twice the repair time estimated by Central Maintenance staff. The focus of this
analysis was on identifying potential CBM candidates. Consequently, inclusion of
repair times that were excessively high due to problems in the maintenance process
would bias the results. Twice the estimated hours was used to provide a
conservative estimate of what the repair time would be if the maintenance process
was working effectively.

o When analyzing the data for avoidable time in the shop, for those dates on which a
machine was listed under repair for two or more failure codes, the dominant failure
code was used. For example, in the case of overlapping failure records: 700
(Brakes) recorded between 05/03/96-13/03/96 and 110 (Hydraulic Pumps)
recorded between 11/03/96-22/03/96 the latter event would be changed to 110-
14/03/96- 22/03/96

e Where the downtime was listed against a failure code as 24 hours, it was changed
to 20 to reflect the actual shift used at the mine.

The results from the Pareto Analysis for each fleet of equipment are shown
graphically in Figures 5.1, 5.2 and 5.3 for scoops, trucks and drill respectively. Tables
5.1, 5.2 and 5.3 show the calculated results. The graphs in these figures are not what
was expected. Instead of identifying critical systems that account for significant
amounts of downtime, these graphs indicate a near linear relationship between
cumulative percent of failures and cumulative percent downtime. The linear
relationship between number of failures and downtime indicates that on average the

time to repair a piece of equipment is approximately the same regardiess of what fails.

47



A plausible reason for this is that factors other than actual time to repair are

contributing to the down time. These factors could include,
ewaiting for resources such as parts, labor or shop space,
eexcessive time from failure to arrival at the shop,
e low level of equipment utilization resulting in no rush to repair.

Also, shown in Tables 5.1, 5.2 and 5.3 are the average time to repair each system
and the average repair time per failure for the fleet. The high average time to repair
shown for the miscellaneous category is due to its inclusion of failures caused by
accidents and structural failures, which tend to have long downtimes. The average
time to repair a failure amongst the fleets ranges from 4.3 to 4.7 hours. The closeness
of these values amongst entirely different types of equipment and components tends to
support the hypothesis that some factor other than actual repair time is influenciiig the

time to repair.
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Figure 5.1 Pareto Analysis of Scoop Fleet
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Truck Fleet
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Figure 5.2 Pareto Analysis of Truck Fleet
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Description |Hours |Cumulative [%Cum |Failures|Cumulative |%Cum jAverage
Repair time
Hydraulics (5154 5154 26.9% |1233 |1233 30.4% [4.2 Hr
Motors 4699 9852.5 51.5% 980 2213 546% (4.8
Drivetrain 2494 12346 64.6% {411 2624 64.7% (6.1
Misc. 2178 14524 75.9% (104 2728 67.3% [20.9
Electrical [1789 16312.5 85.3% (679 3407 84.0% 2.6
Brakes 1149 17461.5 91.3% (187 3594 88.7% |61
Structure  |847 18308.5 95.7% (196 3790 93.5% 4.3
Wheels and|816 19124.5 100% (264 4054 100% |3.1
Tires
Total Fleet {19124 4054 47

Table 5.1 Scoop Fleet Pareto Analysis Calculation Results
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Description {Hours [Cumulative |%Cum |Failures [Cumulative (%Cum |Average
Repair time
Motors 2399.5 [2399.5 23.5% |485 485 21.0% |49 Hr
Hydraulics {2375.5 |4775 46.8% |548 1033 448% (4.3
Wheels 1723 6498 [63.7% (421 1454 63.0% [4.1
and Tires
Drivetrain {1523.5 {8021.5 78.7% {222 1676 72.6% |6.9
Electrical |961 8982.5 88.1% |387 2063 89.4% |2.5
Misc. 477.5 (9460 92.8% (81 2144 92.9% [5.9
Structure |382.5 |9842.5 96.6% (111 2255 97.7% 3.4
Brakes 351.5 |[10194 100.0% |52 2307 100.0%(6.8
Fleet Total |10194 2307 4.4

Table 5.2 Truck Fleet Pareto Analysis Calculation Results




Description |Hours |Cumulative |%Cum |[Failures |Cumulative|%Cum |Average
Repair time
Drills 4248 4248 39.1% [966 966 38.5% |44
Hydraulics |4046 (8294 76.3% {1087 |2053 81.9% (3.7
Electrical ({978 [9272 85.3% |[252 2305 91.9% (3.9
Misc. 616  |9888 91.0% (25 2330 92.9% (24.6
Brakes 276 10163.5 93.5% |34 2364 94.3% (8.1
Wheels and|230 10393 95.6% (51 2415 96.3% (4.5
Tires
Drivetrain {207 10600 97.5% (27 2442 97.4% (7.7
Motors 176 10775.5 99.1% (44 2486 89.2% |4.0
Structure |96 10871.5 100.0% |21 2507 100.0% [4.6
Fleet Total {10871 2507 4.3

Table 5.3 Drill Fleet Pareto Analysis Calculation Results

The Pareto Analysis revealed that at the fleet level repair time was being influenced

by outside factors. To further evaluate the maintenance program an evaluation of the

estimated repair times versus times to repair was performed Tables 5.4, 5.5 and 5.6

show that for trucks, scoops and drills, 156, 221 and 90 machine days of production

were lost due to avoidable downtime. The large discrepancy between the estimated

repair times and the times to repair again tends to support the earlier finding that

factors other than actual repair times are affecting the time to repair. These hours
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were determined by obtaining estimates for repzair times from the Central Shop Staff

and subtracting twice the maximum estimated time from the actual repair times. The

value obtained represents an estimate of unproductive non-active maintenance time,

this was then multiplied by the utilization of availability (UA) to give an estimate of

lost production. Twice the maximum estimated repair time was used to provide a

conservative estimate of the downtime and to account for the range of failures

contained in each code. A table of repair codes is attached in Appendix A.

Description |2*Estimated |# of Failures |Days in shop |Hours |Hours needed|Difference | Hours lost
time hrs. to repair
400 24 11 96 1920 |264 1656 850
604 40 5 48 960 {200 760 390
410 6 6 27 540 |36 504 259
500 20 5 30 600 (100 500 257
650 10 6 24 480 |60 420 215
310 3 3 17 340 19 331 170
520 16 1 17 340 |16 324 166
140 5 4 16 320 |20 300 154
110 7 3 14 280 |21 259 133
600 30 7 22 440 1210 230 118
624 3 1 9 180 |3 177 91
610 10 3 10 200 130 170 87
606 16 2 9 180 (32 148 76
524 10 2 7 140 |20 120 62
130 3 1 5 100 |3 97 S0
100 S 1 4 80 |5 75 38
Days 156
Lost

Table 5.4 Maintenance Hours in Excess of Estimated Repair Times for Trucks
Jan 96- Mar 97 (Refer to Appendix A for definition of failure codes.)
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Code |2°Estimated |# Failures Days in Shop |Hrs. |Hrs Needed|Difference |Hrs. Lost
time hrs. to repair
400 |24 24 154 3080{576 2504 1255
430 {24 9 57 1140|216 924 463
140 |8 10 49 980 |80 300 451
500 |20 9 43 860 (180 680 341
650 |10 6 37 740 {60 680 341
110 |7 5 32 640 |35 605 303
700 [24 5 36 720 |120 600 301
604 (40 10 43 860 [400 460 230
600 {30 4 22 440 {120 320 160
100 (5 2 13 260 |10 250 125
610 |10 2 9 180 |20 160 80
440 |24 2 10 200 (48 1562 76
606 |16 1 8 160 |16 144 72
520 |18 1 8 160 |18 142 71
620 |8 1 7 140 |8 132 66
310 {3 2 6 120 |6 114 57
420 |4 1 3 60 |4 56 28
Lost 221
Days

Table 5.5 Maintenance Hours in Excess of Estimated Repair Times for Scoops
Jan 96-Mar 97 (Refer to Appendix A for definition of failure codes.)
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Code |2*Estimated|# Failures [Days in Shop [Hrs. Hrs. Needed|Difference [Hrs. Lost
time hrs. to repair
110 |10 4 67 1340 |40 1300 520
100 |8 7 35 700 {56 644 258
234 |14 1 30 600 |14 586 234
806 (40 6 40 800 240 560 224
850 |32 8 30 600 |256 344 138
140 |6 2 13 260 |12 248 99
700 (30 2 12 240 60 180 72
250 |3 2 7 140 |6 134 S4
842 |32 2 8 160 |64 96 38
154 |10 1 4 80 |10 70 28
520 {16 1 4 80 |16 64 26
604 |20 1 4 80 (20 60 24
130 (3 1 3 60 (3 57 23
210 (3 1 3 60 |3 57 23
870 |6 1 3 60 |6 54 22
500 j20 1 3 60 |20 40 16
Lost 90
Days

Table 5.6 Maintenance Hours in Excess of Estimated Repair Times for Drills
Jan 96- Mar 97 (Refer to Appendix A for definition of failure codes.)

5.1 Detailed Breakdown of Failures

To gain further insight into what was happening an analysis of total down hours by
system and equipment type was performed. Figures 5.4 through 5.9 present a
summary of failures by equipment and a summary of the major failure categories by
equipment manufacturer. Tables 5.7, 5.8 and 5.9 give a detailed breakdown of the
failures by code. A summary of the lost machine days due to maintenance, adjusted as

indicated in section 5.0, is 956, 510 and 544 for scoops trucks and drills respectively.
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For scoops 617 machine days representing 65% of the total time is due to repair
of hydraulics, motors and drivetrains. Examining the breakdown by code given in
Table 5.7 for scoops it is evident that:

I. For the hydraulic system: cylinders, oil leaks, valves and pumps account for
4126 of the total hours or 80% of the downtime.

II. For motors: temperature, scrubbers, turbos, mator changes, injector pumps,
problems with acceleration, cylinder heads and fuel system valves account
for 3963 hours or 85% of the total downtime.

Il For the drivetrain: torque converters, knuckle joints and differentials
account for 1979 hours or 79% of the total downtime.

Within the scoop fleet, EJC-100 scoops required significantly more time for
maintenance per machine for motor repairs. The Puma scoops required more
downtime per machine for hydraulic maintenance.

For trucks, 325 machine days representing 64% of the total time is due to repairs
of motors, hydraulics and wheels and tires. Examining the breakdown by code given in
Table 5.8 for trucks it is evident that:

I. For motors: oil leaks, cylinder heads, over temperature, turbos, scrubbers
and motor changes account for 1872 hours or 76% of the total downtime.

II. For the hydraulic system: valves, hoses, oil leaks and pumps account for
1847 hours or 79% of the total downtime.

Within the truck fleet, 15 ton trucks required more maintenance hours for; motor,

hydraulic system and drivetrain repairs.
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For drills 415 machine days representing 76% of the total downtime is due to
repair of hydraulics and drill specific components. Examining the breakdown by code
given in Table 5.9 for drills it is evident that:

I. For Drill Components: bits, chains, heads, booms, advance motors, water

pumps and valves account for 3432 hours or 81% of the total downtime.

1I. For the Hydraulic System: hoses, valves and oil leaks account for 3027

hours or 75% of the total downtime.
Within the drill fleet The Gardner-Denver drill required the most downtime per

machine for maintenance.
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Figure 5.7 Major Scoop Failure by Equipment Manufacturer
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THydraufics T [Motors | T ~IDrivetrain TWiscelia 1
Code  |Hrs [Failures [Code  |Hrs |Failures™ [Code  [Hrs. [Fallures  [Code  [Hrs [Faitures |
130 1492 326 650 1029 163 400 870 67 102 1447 2%
154 1194 ar 630, 577 287, 500 604 184 996 418 3a_
100 834 192 610 557 74 430 505, 53 995 282 72
110 606 96 604 497 z 410 321 67 1000 2 3
140 573 84 620 491 90 4“0 104 )
120 197 92 640 409 147 420 91 3
150 170 54 600 403 3
152 88 18 624 258 85
660 217 a3
606 93 17
622 52 .
602 67 18
632 12 8
!
Emcirical }Tnm }ﬁ Stucture Wheeis and Tires
Code Hrs. Failures |Code |Hrs. Failures |Code Hrs, Failures |Code Hrs. Failures
20 T4 256 700 675 %8 520 353 %0 310 751 240
230 267 102 710, 336 6. §22 141 a8 220 66 24
210 254 80 720 107 17 530 119 15
240 204 65 702 2 6 510 111 17
200 126 81 512 82 3
20 14 67 . 524 42 5
22 87 27 1 | | I
234 4 1 | [ | |
Table 5.7 Scoop Fleet Failures by Code(Hours modified per section 5.0)
“[Wotors | T ~ [Hydraulics T [Wheeils and Tires | TOrivetrain] |
Code  |Hm. [Faitures |Code  |Hrs._ [Failures [Code |Hrs [Failures |Code  [Hrs. [Failures | |
660 403 68 100 544 108 310 1486 334 410 628 101
600 323 19 130 515 143 320 27 Car 400 504 43
650 291 51 154 426 138 500 214 48
610 284 3 110 362 53 420 94 fa)
630 267 151 140 245 32 440 44 4
604 259 10 150 168 “ 430 40 2
640 166 57 120 60 p<! 412 1 1
620 138 36 152, 57 7
624 90 23
€6 T2 10
602 64 11
622 40 15
632 6 3
l’:‘hcmw Miscellaneouss Stucture “[Brakes
Code  |Hrs  [Failures [Code  [Hrs. ~ JFailres [Code  [Hrs ~  [Faiures [Code  [Hm — [Failures
250 248 129 995 199 72 520 142 51 700 148 21 |
230 154 75 996 167 3 524 118 16 710 126 20
L Z\2 a2 27 w2 100 3 522 M % T0 78 1
L2100 137 48 1000 12 3 512 .4 13
20 131 78 510 7 3
200 51 0 530 4 2
] ] | [

Table 5.8 Truck Fleet Failures by Code{(Hours modified per section 5.0)
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1 ! ) | i
drauilice Drille Electrt Miscellaneous i
Code HY | Feues | Cooe Hs | Fetues | Come Ws | Fefums | Cooe Hs | Fefues I
130 1776 512 850 1290 208 210 .3 1R @ 258 12 i
100 634 124 870 [.v-] 142 2% 324 jgd 998 200 2 |
154 617 216 810 48 fz2§ <] 20 16 () 158 [ !
F__‘Ilo 362 56 806 [} 36 e 60 9 i ¢
4] f2X) 12 804 300 86 p7) 47 28 ! !
40 268 41 866 256 63 200 43 17 ( I
50 76 16 [T 217 24 230 24 3 !
00 197 [T) |
862 119 2% |
820 100 28 !
[+7] 82 P2 i
344 36 4 )
340 X 5
346 F-] 3 i j
M0 1 6 i | ]
864 | 4 2 ! !
80 ; 3
| 1 1
Brakes Wheels and Tires Ovivetrain Motors | Stucture |
Hs Felures | Code HY Fmﬁ-_+ Cods s Felurss | Cods s Fedures | Code Hs  Falues
188 p] 310 214 [} 500 148 21 604 50 3 2 [X] 18|
49 4 3 16 3 400 54 ] 840 2 11 524 8 1
N 5 412 6 1 600 2 | 2 2 6 2
8 2 60 14 7 7 |
i | [¥1} 14 |
) | 602 13
! 1 62 12 t
! ] 660 8 | )
1 650 v T T
60 | 1
[:X7] 4 1 j
] | 606 1 1 t
i 1 ( 4 i

Table 5.9 Drill Fleet Failures by Code(Hours modified per section 5.0)

5.2 Discussion of Identified Problem Areas

The loss of 156, 221 and 90 machine days of production for trucks, scoops and
drills as presented in tables 5.4, 5.5 and 5.6 indicate a high level of excess maintenance
time. This high level of unproductive maintenance time is effectively biasing the repair
time data such that effects of the actual repair time are hidden, resulting in a near linear
relationship between downtime and number of failures. This could be attributed to
poor labor productivity or waiting for resources to become available (spare parts,
labor and shop space). Another plausible reason is that the low level of effective
utilization is a result of an excess of equipment. Consequently, when equipment is
down there is no rush to repair it. However, the view expressed by personnel at the
mine is that availability of parts is the primary cause of the high level of unproductive

maintenance downtime.
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From the data it is apparent that for the fleet of equipment studied, motors,
hydraulics, drivetrains, wheels and tires and drills account for the majority of the lost
machine hours. Within these grouping of components the following is noted:

o The number of hours lost due to motor related failures is in the top two
categories for trucks and scoops, but for drills, motors show up as the second
lowest hours. The reason for this is that the drills used at the mine are
electrically powered and electric motors are less prone to problems than the
internal combustion engines on the scoops and trucks.

e The number of hours lost due to hydraulic related failures is in the top two
categories for trucks, scoops and drills. For trucks and drills, oil leaks, valves
and hoses are the primary causes of downtime within the category of hydraulic
system failures. Whereas, for scoops cylinders, oil leaks and valves are the
three most significant contributors to downtime. It is expected that cylinders
would factor heavily in hydraulic failures for scoops due to the nature of the
work performed by the scoops.

e It is interesting to note that for trucks wheels and tires are in the top four
contributors to lost hours, yet for scoops wheels and tires are the lowest
contributor to lost hours. This is not what is expected since, the scoops are
working closest to the muck pile and thus are more apt to run over sharp rock
fragments. Additionally, due to the method of filling the bucket by driving into
the muck pile the scoop tires have a higher probability of wheel slip which
would generally lead to an increased number of failures. A possible explanation

for the role reversal of truck and scoop tire failures is that the trucks are
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required to travel longer distances as they drive up out of the mine with ore to
the plant.
e For scoops and trucks problems with the torque converter are among the top

two contnibutors of lost hours.
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6.0 Data Analysis: Evaluation Using Statistical Approach

The statistical analysis of the data presented in this thesis was performed using
Weibull++™. This software has the capability of fitting: one and two parameter
exponential, two and three parameter Weibull and two parameter lognormal
distributions. The program has a built in “wizard” that will select the best fit for the
data based on the Chi Square and Kolmogorov Smimov (KS) goodness of fit tests
discussed in section 2.4.5.2 . The user has various options for identifying the types of
data being analyzed, censored, uncensored, grouped etc. Additionally, the two

methods discussed in section 2.4.5.1 are available for calculating the parameters.

6.1 Treatment of Data

! software several

Due to the nature of the data available from the Rushton™
assumptions had to be made to fit distributions to it. The primary problem with the
data was lack of information concerning Time Between Failures (TBF). The data
available from the software contained only the date of the failure, the failure code and
the hours to repair (TTR). Consequently, when more than one failure was recorded
on the same date it was unclear as to what hours were operated between the failures.
To compensate for this lack of information and obtain estimates for the time between
failures the following approach was used:

e When more than one failure was recorded on the same day, the sum of the
TTR’s for all failures occurring on that date was used and the event was

treated as one failure. For instances where the sum of the hours equaled 20 or

greater, 20 was used since it represents the production operating hours.
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e For failures that had multiple TTR’s of 20 hours the first TTR less than 20
was included, even if it was against a different code. This was done to avoid a
calculated zero TBF.

e Using the TTR as determined above the TBF was calculated using:

TBF =[(D, - D,)*20 - TTR)} EU [25]

Where:

D, is the date the failure occurred.
D, is the date the previous repair was completed.
20 is to convert days to shift hours.
TTR is the time to repair the previous failure.
EU: is the effective utilization of the equipment as given in section 4.1
equation 24.
e Obvious double entries of times to repair were adjusted. For example, if
equipment was in on the same date for the same number of hours for motor

overheating and motor change, the TTR hours were only used once.

Using the modified time to repairs will have the following implications:

e The TBF will be a rough approximation and their distribution will be
influenced by the TTR distribution which may not represent their true
distribution.

e Grouping TTR’s on the same day into one event will tend to shift the
distribution to the right.

e The estimate for the TBF will be shorter than the actual values.
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6.2 Tests for Independence and Identicai Distribution

Prior to fitting distributions to the data, tests to validate the assumption of

independent and identically distributed data (IID) were performed. Figures 6.1 to 6.4

show samples of results obtained using the graphical techniques for trend and

independence testing as discussed in section 2.4.4.

Trend Test for P-48 ECJ-100 Scoop
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Figure 6.2 Correlation Test for P-49
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Trend Test for T-14 15 Ton Truck
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Figure 6.3 Trend Test for T-14
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Figure 6.4 Correlation Test for T-14
The trend tests show that there are localized trends in the TBF’s. These are

indicated by the localized areas of deviation from the linear relationship. For example,
between 300 and 350 cumulative TBF hours for P-49 the graph curves upward
indicating that for this period of time the failure distribution is non-stationary. These
localized trends are evident in all of the trend tests for both scoops and trucks. The
test for comrelation shows no discernible pattern for all cases. Consequently, the

assumption of IID has
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not been rejected and distributions can be fit to the data using the stationary techniques

discussed in section 2.4.

6.3 Distribution of Time Between Failures Entire Machine

Table 6.1 and 6.2 show the parameters obtained for a theoretical distribution fitted to
the TBF of the scoops and trucks. The best fit is the lognormal distribution given by
equation (7]

Figures 6.5 and 6.6 show sample plots of the probability of failure, the reliability,

the failure rate and the probability density corresponding to the fitted distributions.

T-10 T-11 T-14 T-15 Fleet
M 2.2501 20616 |[2.1440 |2.1353 |2.1418
o 09205 [0.8697 |09446 |0.972] 0.9163
MTBF | 144944 | 11.4706 | 13.3316 | 13.5690 | 12.9566
N 182 234 181 200 797

Table 6.1 Lognormal distribution parameters for TBF for 1S ton trucks

P-44 P45 |P46 |[P-48 (P49 |P-50 |P-51 Fleet
11 2.1237 | 1.7694 | 1.9369 | 1.8145 [ 1.9626 | 1.9135 | 1.8163 | 1.8972
c 0.9083 ]0.8332 | 0.8355 | 0.7729 | 0.7680 | 0.8106 | 0.8213 | 0.8162
MTBF | 12.6316 | 8.3021 | 9.8348 | 8.2746 | 9.5593 | 9.4125 | 8.6155 | 9.3026
N 178 242 225 228 234 233 230 1570

Table 6.2 Lognormal distribution parameters for TBF EJC-100 scoops
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6.4 Distribution for TBF of Truck Components

To investigate the critical components for the trucks indicated in section 5,

distribution were fitted to the data for motors, drivetrains and hydraulic systems. The

resulting best fit distribution and corresponding parameters are shown in Table 6.3.

Testing of the component data for IID showed no correlation, but the hydraulics

systems showed evidence of trends.

Motors Drivetrain Hydraulics
T-10 B=0.7028 B=0.6083 p=2.9958
n= 48.6823 n=103.046 o=1.4694
¥=3.0094 v=1.1998 Y=n/a
Mean life (hrs) m=64.4120 m=153.5262 m=58.8722
Failures =50 N=22 N=58
Distribution Weibull Weibull Lognormal
T-11 B=0.8445 B=0.9428 u=3.2433
n=46.7676 n=157.7742 o=1.1461
7= 0.5997 =0 Y=n/a
Mean life (hrs) m=51.6889 m=59.3448 m=49.4060
Failures N=58 N=55 N=72
Distribution Weibull Weibull Lognormal
T-14 B=0.7462 B=0.5560 B=0.6465
n=30.6291 n=51.7540 n=35.7017
7= 1.7409 1=2.6799 v=3.6753
Mean life (hrs) m=38.3629 m=89.3401 =52.7486
Failures N=50 N=32 N=62
Distribution Weibull Weibull Weibull
T-15 =3.3490 B=0.6841 B=0.6236
0=1.3570 n=87.2276 n= 34.8861
Y=n/a r=0.8166 1= 3.0640
Mean life (hrs) m=71.5019 m=113.7372 m=53.0729
Failures N=57 N=29 N=62
Distribution Lognormal Weibull Weibull
Fleet B=0.8449 B=0.7492 =3.1419
n=45.9070 n= 69.0348 0=1.2968
vy=0.3881 y=0.7596 y=n/a
Mean life (hrs) m=50.5221 m=83.0275 m=53.6641
Failures N=238 N=138 N=254
Distribution Weibull Weibull Lognormal

Table 6.3 Distribution for Truck Components
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6.5 Distributions for Time to Repair

Tables 6.4 and 6.6 show the parameters obtained for a theoretical distribution

fitted to the TTR for the trucks and scoops respectively, before they were grouped as

discussed in section 6.1. Tables 6.5 and 6.7 show the parameters obtained for the

scoops and trucks after treatment of the data. For both the original and treated data

the best fit is the lognormal distribution given by equation [7]

T-10 T-11 T-14 T-15 Fleet
71 1.1245 | 1.1785 1.1337 | 1.0750 | 1.1305
o] 1.0641 | 0.9875 1.1361 1.1256 | 1.06625
MTTR 5.4234 52914 59243 {55206 |5.4679
N 295 367 300 303 1265

Table 6.4 Lognormal distribution parameters for original TTR for 15 ton

trucks
T-10 T-11 T-14 T-15 Flect
T 1.4673 | 1.5783 | 15931 |1.4302 |1.5192
c 1.0139 |1.0782 | 1.3003 |1.2321 |1.1467
N 182 234 181 200 797

Table 6.5 Lognormal distribution parameters for modified TTR for 15 ton

trucks
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P-44 P-45 P-46 P-48 P-49 P-50 P-51 Fleet
T} 1.0266 | 1.0431 | 1.0357 | 0.8862 | 0.8702 | 0.8970 | 0.9832 { 0.9599
c 1.0121 | 1.0350 | 0.9431 | 0.9591 | 1.0088 | 1.0238 | 0.9985 | 0.9922
MTTR | 4.6403 | 4.8487 | 4.3948 | 3.8426 | 3.9711 | 4.1416 | 4.4004 | 4.2722
N 294 407 379 414 387 404 419 2704

Table 6.6 Lognormal distribution parameters for original TTR EJC-100

sCoops
P-44 P-45 P-46 P-48 P-49 P-50 P-S1 Fleet
M 1.4415 [ 1.5426 | 1.5125 | 1.4826 | 1.3059 | 1.3953 | 1.5506 | 1.4621
o 1.1446 | 1.1483 | 1.0386 | 0.9838 | 1.1217 | 1.1456 | 1.1091 | 1.0894
N 178 242 225 228 234 233 230 1570

Table 6.7 Lognormal distribution parameters for modified TTR EJC-100

scoops

6.6 Discussion of Statistical Results

The results for the individual machine and for the fleet presented in tables 6.1 and
6.2 allow several observations to be made. Looking at the u parameter for the
lognormal function and realizing that this is the mean of the natural logarithm of the
data it can be seen that for both scoops and trucks there is no one single piece of
equipment whose mean time between failures (MTBF) is dramatically different from

that of the fleet. This shows that no one piece of equipment is significantly worse than

any other. Additionally, the overall MTBF is extremely low, ranging from 11.5 to
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14.5 hours of production for trucks and 8.3 to 12.6 hours for scoops. This fow MTBF
suggests that equipment may not be repaired properly when it leaves the shop. Other
factors that can cause low MTBF are:

e Equipment or its components are not suitably designed for the application.

e The equipment has been improperly selected for the given mining conditions.

e Personnel are operating the equipment in an abusive manner resulting in
premature failures.

Table 6.3 lists the distributions fitted to the failure data of the 15 ton trucks for the

three critical systems. Among these we see that:

o The best fit distribution for the data for the hydraulic system and motors varies
between Weibull and Lognormal. In contrast, the Weibull distribution provides
the best fit in all cases for the drivetrain data.

e Within the analysis of the fleet, the MTBF is 51, 54, and 83 operating hours
for motors, hydraulics and drivetrains. This ordering implies that motors are
more troublesome than hydraulics which are more troublesome than drivetrains.
This ranking of mean time between failures confirms what is shown in Figure
5.5 which was obtained by a simple plot of the hours spent in the shop.

o In all cases where the Weibull distribution was found to provide the best fit, {3 is
less than one. This corresponds to a decreasing failure rate which is indicative
of infant mortality type failures. Thus, the failures are being induced by
improper maintenance procedures or replacement components which are faulty.
Plots of the failure rate for the instances where the Lognormal distribution

provides the best fit also indicate a decreasing failure rate.
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The results for the distributions fit to the original TTR when compared to those for the
modified TTR indicate that:

e Modifying the TTRs as discussed in section 6.1 did not change the type of
best fit distribution. In all cases the Lognormal distribution provides the
best fit distribution.

e As expected, grouping the hours in the shop for more than one failure on
the same day resulted in a shift of the distribution to the right. This is
indicated by the increase in p.

e Judging by the reduction in the data set between the original TTR and the
modified TTR it appears that the TBF calculated from the modified TTR
should be conservative.

From the original data the mean time to repair was found to vary between 5.3 and 5.9
hours for 15 ton trucks and 3.8 and 4.8 hours for scoops. In comparing these numbers
with those shown in tables 5.1 and 5.2 which show the mean time to repair as 4.4 and
4.7 hours for trucks and scoops it can be seen that the difference in estimated time to
repair each piece of equipment is slightly higher using the original data, as would be

expected.

6.7 Effects of Treatment of Data

The discussion in section 6.6 presents valid observations based on the data and
the assumptions made in its treatment. However, Figure 6.5 shows obvious points of
discontinuity in the data at around 7.8 and 15.6 hours. Although not shown

graphically, these discontinuities appear in all of the data sets. The consistency with
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which these discontinuities occur suggests that they are being induced by the treatment
of the data. Recall that due to the lack of records of operating hours between failures
it was necessary to estimate the TBF using equation [25], repeated below.

TBF =[(D, — D,)*20-TTR}* EU where EU =0.39

From this equation it can be seen that for failures one day apart the maximum
estimated TBF will be 7.8 hours which corresponds to a zero time to repair.
Furthermore for failures occurring two days apart the maximum estimated TBF would
be 15.6 hours. Thus, when the difference between D, and D, changes from one day to
two, the TBF jumps from slightly below 7.8 hours to something above. The actual
magnitude of the jump is determined by how small the last TTR was on the previous
day. This process repeats itself in multiples of 7.8 hours.

Figure 6.6 shows a plot of reliability for Load Haul Dump machines derived by
analyzing data presented by Kumar (Kumar, 1990) which exhibits discontinuities at
approximately, 8, 19, 38, 55 and 77 hours. In this paper no mention is made of these
discontinuities. The discontinuities in the TBF data appear to be occurring at
multiples of 19 hours. This highlights a problem with collection of failure data in
general, in that a continuous distribution is fit to data recorded at fixed time interval
resolutions. For the data presented in this thesis, the cause of the discontinuities has
been identified as an artifact of the data treatment. If the data used toc fit Figure 6.5
was not being influenced by the data treatment, the data would tend to spread itself
out in a manner consistent with its distribution. Thus, the curve fit to the distribution
which estimates the least square fit amongst the points actually does a good job of

approximating the underlying behavior. Although the exact location of the
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Figure 6.6 Reliability Plot For Load Haul Dump Machines Data from

Kumar. (Kumar, 1990)
curve might change slightly, the fitted distribution is consistent with the actual
behavior and consequently presents a valid estimate of the reliability of the equipment
given the limitations of the data available

If the shape of the distribution fitted to the data as shown in Figure 6.5 was not
due to the treatment of the data it could be due to the failure data representing
different periods in the life cycle of the equipment. In essence, the data could contain
sub-populations which represent a particular stage of the equipment’s life. Under
these circumstances it would require that a multi-population Weibull distribution be
fitted to the data. For illustrative purposes this has been done to the data for truck T-

11. Figure 6.7 and 6.8 show the reliability and failure rate graphs for a 2 and 3
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population Weibull distribution fitted to the failure data for T-11. From these figures

it can be seen that the resulting curves tend to follow the data better.

This is

particularly apparent in the 3 population failure rate graph which shows the

discontinuity in the data. The parameter obtained for these distributions are shown in

Table 6.8.
Population | 1 2 1 2 3
(2 Subsets) [ (2 Subsets) | (3 Subsets) | (3 Subsets) | (3 Subsets)
B 9.479 1.1366 2.4309 14.0202 1.6671
1 6.727 13.223 43558 6.9890 17.4646

Table 6.8 Multi-Population Weibull Distribution Calculated Parameters for T-11
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7.0 Oil Analysis

To investigate the impact of the existing oil analysis program on maintenance, the
results from oil samples from January 1996 until December 1996 were obtained from
Esso’s laboratory in Antofogasta. From this database the samples specific to the EJC-
100 scoops and the 15 tons trucks were extracted. Tables 7.1 and 7.2 show motor
failures and the comresponding oil sample history for EJC-100 scoops and 15 ton
trucks respectively. Definitions of the symbols used in Tables 7.1 and 7.2 are shown
in section 2.3.2 .

To determine if the data in Tables 7.1 and 7.2 could have predicted an incipient
motor failure it was necessary to determine prediction criteria. To accomplish this a
frequency distribution of each element was plotted and the 90" and 95" percentiles
were calculated. The X percentile of a population gives the value of which X
percentage of the data fall below. For example, the 95“ percentile of copper
concentration was calculated to be 71 parts per million (PPM) for EJC-100 scoop
motors, which implies that only 5% of the EJC-100 motor results were copper
concentrations greater than 71(PPM). As an example, Figure 7.1 shows the
distribution of Iron (FE) for EJC-100 scoop motors. All of the frequency distribution
plots are included in Appendix B. Based on the shape of the frequency plots and the
fact that obvious anomalies were included in the percentile calculations it was decided
that the 95" percentile would be used as the cut off. This failure criteria is
independent of trending results from previous oil samples. Using the 95" percentile

for the cut off for each element measured, the data in Tables 7.1 and 7.2 were



analyzed to determine incidences where oil samples revealed abnormal levels of
elements prior to engine failure. The results are shown in Table 7.3

According to this table a shorter turn around time and appropriate trending
analysis of oil sample data would have indicated at least seven incipient motor
failures. Five of these failures resulted in motor changes, (four for EJC-100 scoops

and one for 15 ton trucks).
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Equip. # |Failure Date |Repair Date |Description Sampla Dates |Arival at Laboratory |Analaysis Complete |[FE [CR{AL [CU |[PB [SI {NA [B [CA {Water |VISC
P-44 16-Jan-88 08-Feb-96 13-Feb-06148 |1 [4 (13131 (2129 17796 |No 21.42
P-44 17-Feb-068| 22-Feb-968|Change Motor 07-Fab-956 14-Mar-96 16-Mar-96164 {1 [17 |72 [17 |21 (13 |283|105!Trace [17.91
P-44 14-Mar-98| 18-Mar-96(Over Tempersture

|P-44 3-Sep-96] _7-Sep-03/Over Temperature| _ 23-Aug-96 05-Sep-96 11-Sep-96(55 12 13 [8 |7 [|15]5 [131}77 [No 19.26
P-45 21-Nov-88 27-Dec-98 10-Jan-97139 11 |21 |14 114 [11[216 157 |55 [Yes [45.47
P-45 8-Dec-96 17-Dec-98/Change Motor 04-Dec-98 27-Dec-96 10-Jan-87123 |1 {24 [11 |7 [10]218145|47 [Yes [18.27
P48 02-Jun-86 17-Jul-88 18-Jul-98|38 [0 |6 (8 [0 {14{2 [145/88 |[No  {22.89
{P-48 20-Aug-96{ 3-Sep-86(Change Motor 27-Jun-98 05-Sep-98 11-Sep-96/78 |3 |12 [24 |S |27 [24 [173[120|No 30.82
P48 06-Mar-96 14-Mar-96 16-Mar-96[28 10 [24 18 [2 [23]86 |265(62 [Yes [18.72
P48 6-Apr-98]  6-Apr-96|Cyiinder Head 16-Mar-96 12-Apr-96 19-Apr-96[31 |0 [14|0 |4 |20176 |368]67 |No  [20.67
[P0 15-Jan-98] 17-Jan-98|Cylinder Head 28-Dec-95 15-Jan-96 25-Jan-96i32 10 |1 16 [2 112/61 [176186 |No  {16.98
[P-49 16-Jan-86 08-Feb-96 13-Feb-86]60 |1 [15]9 |5 12045 [192[88 |No  [22.68
P-49 12-Feb-98| 17-Feb-98|Turbo 31-Jan-88 08-Feb-96 13-Feb-98{103 |4 {14 |129(66 |31 42 [150(99 (Trace {2245
P-50 21-Dec-85 15-Jan-96 25-Jan-96(44 12 |1 |20 (15 {1615 [173]89 [No 17.76
P-50 9-Jan-98| 11-Jan-98|Change Motor 08-Jan-96 08-Feb-96 13-Feb-96(43 [1 |1 |8 |5 [11]14 14781 |No 18.32
P-50 19-Nov-68 27-Dec-98 10-Jan-97|36 |0 [10 (24 (6 [12113[113]234|Yes [22.60
|P-50 4-Dec-98]  6-Dec-96|Valves Fuei Sys. 02-Dec-96 27-Dec-96 10-Jan-97{37 (2 19 [12 16 [17[94 [164]77 [No  [20.40
[P-51 27-May-96 17-Jul-98 18-Jul-98{14 [0 {1 [4 (0 |7 |2 [143|78 [No 17.00
[E3) 9-Aug-96| 14-Aug-96|Change Motor 17-Jul-98 05-Sep-96 11-Sep-96/58 |2 |4 [10 {6 [13]{4 ([144i90 |No 18.4
Table 7.1 EJC-100 scoop motor failures and corresponding oil analysis data (Concentration in PPM)

Equip. # |Failure Date |Repair Date |Description Sample Dates |Arrival at Laboratory |Analaysis Complete |FE |AL |CU{PB |Si [NA |B [CA [Water (VISC

T-11 31-Jan-98| 2-Feb-96|Over Temperature) 24-Jan-96 8-Feb-96 13-Feb-96[32 |1 |8 & |15]8 [153(88 |Trace [17.86

T-11 4-Jun-86 17-Jul-96 18-Jul-96{19 |4 {8 |0 (11]0 |146(73 [No 17.77

T-11 21-Jun-96 17-Jul-96 18-Jul-98i16 |3 |8 [0 [11]0 [127]75 |[No  [18.06

T-11 26-Jul-96|  28-Jul-98|Cylinder Heads 23-Jul-98 6-Sep-98 11-Sep-96(5 [0 |4 |3 13 [2 1138/69 |No  [15.11

T-11 9-Aug-96 6-Sep-96 11-Sep-96|27 |8 |15 |5 |20]10 |147[75 |[No _ |17.68

T-11 11-Sep-96 8-Nov-96 19-Nov-98|15 |1 (7 |3 [11|3 |148(58 [No 15.59

T-11 19-0a-98] 21-Oc-96|Change Motor 15-0x-96 11-Nov-96 19-Nov-96{38 (2 (18 (16 {19925 (179 (85 {No 18.57

T-14 7-Jan-86} 19-Jan-96|Change Motor 3-Jan-96| 15-Jan-96 25-Jan-96(25 [0 (5 [3 [10[25 [154|68 [No 15.56

T-14 28-Apr-968 17-May-96 22-May-96{16 (0 [5 [0 {13(45 (120(84 [No  [16.79

T-14 26-May-96|  7-Jun-96/Motor Air Cond 9-May-96 17-May-96 22-May-96|39 (0 [16 [0 [33]151 185198 [No 16.54

T-14 22-Jul-98 6-Sep-96 11-Sep-96|32 |2 |14 |6 (147 [14885 |No 17.60

T-14 31-Aug-98| 5-Sep-96)/Over Temperature]  23-Aug-96 6-Sep-96] ~ 11-Sep-98|35 {11 |18 |7 [13]195]158(76 |No  [18.40

T-14 25-0ct-96 11-Nov-96 ~ 19-Nov-98[62 {1 [18 [7 [13]216[155(66 [No  [18.52

T4 [ " 8-Nov-96 27-Dec-96] 10-Jan-97|73 |13337[15 [30[57 [159|76 |No  |19.64

T-14 | 16-Dec:86| _ 3-Jan-97|Change Motor 26-Nov-98 27-Dec-96 10-Jan-97/134 |84 [35 [21 |40]204{171(78 {No  [28.82

T-15 8-Feb-98 14-Mar-96 16-Mar-98{23 |10 |5 |3 |8 {1 1228|77 iNo 15.45

Table 7.2 15 ton truck motor failures and corresponding oil analysis data(Concentration in PPM)




FE Histogram

Figure 7.1 Iron (FE) distribution for EJC-100 scoop motors Jan 96 to Dec 96
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7.1 Discussion of Oil Analysis Results
Section 7.0 showed that proper utilization of the existing oil analysis program could
have turned 5 unplanned motor repairs into planned repairs. As stated earlier, the cost of
an unplanned repair is significantly higher than a planned one. To attain an estimate for the
effects these unplanned motor failures had on the mine, an estimate for the cost of lost
production due to an unplanned failure was performed. The estimate of lost production
was calculated using the data in Tables 7.4 and 7.5 and is based on the following
assumptions:
o Planned repair hours are those that were estimated by central maintenance staff
assuming availability of labor and parts. Actual average repair hours were
obtained from maintenance data.
e Total tons produced were directly proportional to scoop and truck operating
hours.

e Ore prices are based on Barrick’s 1996 budget values.

Production verage Grade Hours Utilized Av. Tons per hr
1996 Tons | Au(oz) | Ag(0z) | CuTM | Au Ag Cu/ton Scoop Truck Scoops | Trucks
gm/ton | gmfton hours hours TPH TPH

435,045 139,278 | 613,369 | 15,098 | 9.09 40.04 0347 211,653 | 197,764 | 2.06

220

Table 7.4 Production Data for 1996
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Production Ore Prices and Costs per Hour | Maintenance Hours Cost
TPH
Au(oz) Ag(oz) | Cu (Ib) | Total Planned Unplanned | (B-A)* Cost
repair (A) | repair (B) Utilization | per failure
$400 $5.25 $1.11
Scoops $264/hr | $15/hr | $175Mhr | $454/hr 20 63 22 $9780
2.06 TPH (.501)
Trucks $282/hr | $S16/hr | $186/Mhr | $484/hr 20 116 49 $23,840
2.2 TPH (.513)

Table 7.5 Cost difference estimate for unplanned and planned motor failures

Using Tables 7.4 and 7.5 it was possible to estimate the cost of lost production. This
was accomplished by dividing the total tons for the year by the total operating hours for
scoops and trucks respectively to get an estimate of average hourly production for each.
Then using the average grade and price for the year an estimate for the cost of production
for scoops and trucks was calculated. This number was then used to estimate the cost of
excessive hours in the maintenance shop. The corresponding results shown in Table 7.5
indicate that the estimated extra cost of an unplanned motor repair is $9,780(US) and
$23,840 (US) for EJC-100 scoops and 15 ton trucks respectively, considering lost
production only.  Thus, for the five motor changes that could have been predicted for
1996, the projected value of lost production is $62,960 (US). The actual savings would

likely be higher since the ability to predict the incipient failure would enable earlier
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shutdown and repair, thus mitigating secondary damage to the motor and subsequent
Costs.

Table 7.6 shows average Deutz motor repair cost for motors overhauled between
January 1996 and March 1997. It is difficult to distinguish repair costs for planned
versus unplanned motor replacements. Nevertheless, as discussed in section 2.1 the cost
of an unplanned failure is typically three times that of a planned failure (Mobley, 1990).
This implies that the total cost of the unplanned failures due to improper use of the oil
analysis program could be as high as $400,000 US. This number was arrived at by taking
the average cost for both motor types and multiplying it by 3 for an unplanned failure,

multiplying this result by 5, the number of failures, and adding the cost of lost production

given above.
Deutz Total Status of | Number of | Average Repair
Motor Hours Motors Repairs hrs Cost
For 1996 between $US per
repairs motor
F6LA13FW | 27219 Change 11 2500 21,500
F8L413FW | 45695 Change 12 3800 23,500

Table 7.6 Actual Repair Costs for Deutz Motors From January 1996 to date

In analyzing the oil analysis data an attempt was made to determine possible reasons
for the failure of the existing program to predict failures it was noted that:
¢ On average the elapsed time from sample extraction to arrival at the laboratory was 29
days for EJC-100 scoops and 31 days for 15 ton trucks.
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¢ The average elapsed time from sample arrival at the laboratory until the results were sent
to the mine was 7 days.

e Through discussion with maintenance personnel at the mine it appears that no trending
of the data received from the laboratory was done. When a sample was obtained with
abnormal levels the only steps taken were to decrease the time between filter changes.
Due to staff turnover it was impossible to find out exactly what criteria was being used

to determine abnormal levels.



8.0 Conclusions and Recommendations for Future Work

8.1 Conclusions

8.1.1 Condition Monitoring

The evaluation of the oil analysis program at the mine has indicated that to operate an

effective CBM program the following is necessary:

o The turn around time of the data must be short enough to ensure that pending

failures can be recognized before they occur.

e To ensure that the data can be used to determine the condition of a machine thought
must be given to what indicators need to be extracted from the data and what
constitutes abnormal conditions for these indicators.

e Successful CBM requires proper compilation of the data in a manner such that it can
be interpreted and alarms generated when abnormal levels of the particular
indicator(s) are found.

e Results from the indicators require trending to enable prediction of failures within a

reasonable time frame to allow scheduled repair or replacement.

8.1.2 Identification of Problem Areas

e Repair time estimates from maintenance personnel do not accurately reflect actual
values observed. Better estimates of repair time could be obtained under a

controlled study.
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¢ Equipment downtime tends to be dominated by factors other than actual repair time.
These factors could include delays caused by lack of resources- spare parts, labor,
shop space- or lack of priority for repairs.

e A Pareto Analysis of failure data is useful for identifying problems within the
maintenance process. In the case study presented the Pareto Analysis indicated that
downtime was independent of equipment type and component type. This led to the

above inference that something other than repair time was dominating the downtime.

8.1.3 Statistical Analysis

e Usefulness of the failure and repair data is compromised by the lack of precision in
recording time of failure and associated downtime.

e Assumptions made to compensate for the data’s lack of precision lead to artificial
segregation of the data sets into distinct populations.

o Fitting of models to the data yielded fairly good results. The fits appear to reflect
the equipment behavior more so than the treated data. This is indicated by the
smoothing effect the fit curve had in the area of discontinuities.

e The fitted models show reasonable correspondence with the underlying mean time

between failure and mean time to repair.

8.2 Future Work

1. An investigation into the costs versus benefits of an improved CBM program at the

mine should be performed. This should consider the following:
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e Benefits of a faster turn around time for oil samples. This might include
investigation into the viability of an onsite laboratory to service all mines on the
site.

e The possibility of using additional analysis should be evaluated. This should
include consideration of using ferrography on the oil samples to aid in
determination of failure causes and the possible implementation of a vibration
monitoring program.

e The appropriate methods for interpreting and trending of CBM data should be
determined.

2 An investigation into downtime factors should be initiated. This would necessitate a
more detailed leve! of data recording, so that reasons for downtime could be identified.
This could include recording downtime in categories like: actual repair time, waiting for
parts, waiting for labor and spare equipment (implying low priority on repair). This
level of recording could be accomplished by the use of a maintenance management
information systems (MMIS) which would require appropriate data entry and training
of personnel.

3 A theoretical study could be performed to model the effects of imprecision in the failure
and repair data. This would require more precise data which could be obtained from a
properly utilized MMIS. Alternatively, precise data could be collected by relying on the
operator using a production monitoring system.

o Software simulations could be constructed using the fitted models. These simulations
could include cost studies for various levels of equipment availability. They could also

be used to run production studies.
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e Reliability models could be formulated for these types of equipment from generic
component reliability databases. These models could be compared to those identified in
this thesis. This would provide an indication of the influence of the mining environment

on component and equipment reliability.
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Appendix A

Failure Code Definitions
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100

VALVULAS, HIDRAULICO

Hydraulic Valves

1000(REVISION DEL EQUIPO Revision to Equipment
102|ACCIDENTE DE EQUIPO Accident
110{BOMBAS, HIDRAULICO Hydraulic Pumps
120{FITTING,HIDRAULICO Hydraulic Fittings
130|MANGUERAS HIDRAULICO Hydraulic Hoses
140(CILINDROS, HIDRAULICO Hydraulic Cylinders
150[ACUMULADOR, HIDRAULICO Hydraulic Accumulator
152|ENFRIADOR,HIDRAULICO Hydraulic Cooler
154|FUGAS DE ACEITE HIDRAULICO Hydraulic Oil Leaks
200|LUCES ELECTRICO Electric Lights
210|CABLES,ELECTRICO Electric Cables
220 BATERIA,ELECTRICO Battery
230/ALTERNADOR,ELECTRICO Alternator
232|MOTOR DE PARTIDA Starter
234MOTOR ELECTRICO Electric Motor
240[CONTROL REMOTO,ELECTRICO Remote Control
250/SELENOIDES BOBINAS,ELECTRICO Solenoids, Coils
310|[NEUMATICO,RODADO Tires
320|PERNOS, TUERCAS,RODADO Tire Bolts and Nuts
330|0RUGAS,RODADO Caterpillar Tracks
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332|RESORTES, RODADO Springs
400/CONVERTIDOR/TRANSMISION, Torque Converter
410{CARDAN/CRUCETAS, TRANSMISION Universal Joint
412|EMBRAGUE, TRANSMISION Clutch
420|PILLOW BLOCK, TRANSMISION Bearing
430|DIFERENCIAL, TRANSMISION Differential
440|MASAS, TRANSMISION Hubs
500{INSERTO,ROTULAS PASADOR, TRANSMISION |Knuckle Joint
510|TOLVA,BALDE,CHASIS Bucket
512[EXTINTORES,CHASIS Fire Extinguisher
520{TECHO,CARROCERIA,CHASIS Roof, Body
522|ASIENTO OPERADOR,CHASIS Operator's Seat
524|ESTANQUE,CHASIS Tank
530(HORQUILLA,CHASIS Forks
600|CULATAS MOTOR Cylinder Head
602|[ENFRIADOR,MOTOR Motor Air Conditioning
604/CAMBIO MOTOR, MOTOR Change Motor
606|TURBINA, MOTOR kMotor Turbine
610/TURBOS,MOTOR  Turbo Motor
620{BOMBA INYECTORA,MOTOR Motor Injector Pump

622

BOMBA CEBADORA,INYECCION

Injector Prime Pump

624

VALVULAS, SISTEMA COMBUSTIBLE

Valves Fuel System
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624|VALVULAS,SISTEMA COMBUSTIBLE Valves Fuel System
630|PTX,FILTROS, MOTOR Scrubbers
632|CORREAS,MOTOR Belts
640|ACELERACION,MOTOR Motor acceleration
650|TEMPERATURA MOTOR Motor Temperature
660|FUGAS ACEITE,MOTOR Oil Leaks Motor
700|FRENO HUMEDO,FRENOS Brakes
702|BOMBA FRENOS Brake Pumps
710|CALIPER,FRENOS Brake Calipers
720(PEDAL,FRENOS Brake Pedals
800|CENTRALIZADOR,PERFORACION Drill Center Device
802|MORDAZAS,PERFORACION Drill Jaw
804|MOTOR DE AVANCE,PERFORACION Drill Advance Motor
806|PLUMA, PERFORACION Drill Boom
810/CULATIN,PERFORACION Drill Head
820/AGUA,PERFORACION Drill Water
830|CANDADO,PERFORACION Lock
840!CABEZAL,PERFORACION Drill

842 ﬁOTA BOOM,PERFORACION Boom Rotation
844/CRUDLER,PERFORACION Drilt
846|CHUK,PERFORACION Drill Chuck
850|PERFORADORA,PERFORACION Drill Bit
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860

SITEMA DE AIRE

Air System

862|COMPRESOR,SISTEMA DE AIRE IAir Compressor
864/VALVULAS, SISTEMA AIRE Valves Air System
866|BOMBAS, VALVULAS . SISTEMA DE AGUA Water Pumps and
Valves
870{CADENA,PERFORACION Drili Chain
880|BOOSTER,PERFORACION Drill Booster
970|MANTENCION EN LINEA ( ALPM ) Preventative
Maintenance
980|MANTENCION 3000 HORAS(OVER HAUL) 3000 Hr. Service
985(REPARACION EN MAESTRANZA Repairs in Central Shop
990|MANTENCION 1000 HORAS 1000 hr. Maintenance
995|REPARACION EN MINA Repairs at Mine
996|{REPARACION EN SERVICIO EXTERNO Outside Repairs
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Appendix B

Oil Contaminant Histograms
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