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Abstract

Cooklev in his Ph.D thesis has presented a new method for half-band filter design
(which structurally incorporates the regularity constraint into the design procedure)
for constructing orthonormal wavelets. His design method however, suffered from
certain limitations such as : splitting of the multiple zeros at z = —1 into simple
zeros and the non-convergence of the magnitude response of the product filter.

This thesis deals with the elimination of both these limitations in Cooklev’s de-
sign method. We deal with the zero-splitting problem in a very simple manner, by
factoring out the zeros at z = —1. The problem of non-convergence of the magni-
tude response of the product filter is dealt with by using the Goldfarb-Idnani (GI)
dual algorithm to achieve the nonnegative frequency response as is necessary for the
construction of orthonormal wavelets.

We observe that not only does the Gl-algorithm guarantee convergence of the
magnitude response of the product filter, but it also helps to construct orthonormal
wavelets even when the optimization takes place with respect to an odd number of
coefficients, something that was thought of as being not possible before. The use
of the Gl-algorithm not only ensures that the new scaling and wavelet functions
are more regular than those obtained using Cooklev’s method, but it also in some
cases is instrumental in achieving scaling and wavelet functions more regular than

the celebrated Daubechies scaling and wavelet functions.
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Chapter 1

Introduction

1.1 Introduction

Wavelets are functions that satisfy certain mathematical requirements and are used in
representing data or other functions. This concept is not new. Approximation using
the superposition of functions has existed since the early 1800’s, when Joseph Fourier
discovered that he could superpose sines and cosines to represent other (periodic)
functions. However, in wavelet analysis, the scale that one uses in looking at data
plays a special role. Wavelet algorithms process data at different scales or resolutions.
If we look at a signal with a large "window,” we would notice gross features. Similarly,
if we look at a signal with a small "window,” we would notice small discontinuities.
The result in wavelet analysis is to "see the forest and the trees” [1].

For many decades, scientists have wanted more appropriate functions than the
sines and cosines which comprise the bases of Fourier analysis, to approximate choppy
signals. By their definition, these functions are non-local (stretch out to infinity), and
therefore do a very poor job in approximating sharp spikes. But with wavelet analysis,

we can use approximating functions that are compactly supported, or at least are
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concentrated about some mean in time. Wavelets are well-suited for approximating
data with sharp discontinuities.

Since the original signal or function can be represented in terms of a wavelet
expansion (using coefficients in a linear combination of the wavelet functions), data
operations can be performed using just the corresponding wavelet coefficients. And if
you further choose the best wavelets adapted to your data, or truncate the coefficients
below a threshold, your data is sparsely represented. This ”sparse coding” makes
wavelets an excellent tool in the field of data compression. Wavelets in general can

be said to have three basic properties :
o Wavelets are building blocks for general functions.

o Wavelets have Time-Frequency localization (i.e., most of the energy of the signal
is concentrated about a certain mean time and mean frequency which in turn

implies that the rms duration and rms bandwidth of the signal are narrow).
e Wavelets have fast transform algorithms.

It must be pointed out that these three properties are not unrelated. For example,
if the wavelet basis is orthogonal, then the coefficients are simply given as the inner
product of the function with the basis functions, which greatly simplifies the transform

algorithm.



1.2 Why Are Wavelets Useful ?

The properties mentioned in the previous section are important. Most of the data
which we encounter in real life is not totally random but has a certain correlation
structure. Think for example of audio signals, images, solutions of differential equa-
tions, etc. The correlation structure of many of these signals are similar. They have
some correlation in space (or time), but the correlation is local. For example, neigh-
bouring pixels in an image are highly correlated but ones that are far from each other
are uncorrelated. Similarly, there is some correlation in frequency, but again it’s local
i.e., around a particular interval.

This motivates approximating these data sets with building blocks that have space
and frequency localization as well. Such building blocks will be able to reveal the
internal correlation structure of the data sets. This should result in powerful ap-
proximation qualities: only a small number of building blocks should already provide
an accurate approximation of the data. And hence, these properties of wavelets are

extremely useful.
1.3 Applications of Wavelets

A major application of wavelets to technology has been in the area of data compres-

sion. The following list indicates the breadth of this application area [2]:

e Audio compression 8 : 1.

e Still-image compression 20 : 1 (BW), 100 : 1 (Color).



e Seismic compression 20 : 1.

Radiology images 20 : 1.

e Video compression (color) 140 : 1.

The basic idea in a compression algorithm in all of the above examples is to represent
the digitized signal in terms of a wavelet expansion. Using a statistical analysis of
the data type involved one carries out a systematic dropping of bits of these wavelet
expansion coefficients at specific scales to represent the same signal effectively with
fewer bits.

Wavelets have recently become popular in many different scientific fields, including
signal processing. Because of the appealing properties mentioned earlier, wavelets
appear to be promising signaling waveforms in communications [3]. Motivation for the
use of wavelets for waveform coding stems from the fact that the two ideal waveforms
often used to benchmark analog pulse shaping performance, namely, the time-limited
rectangular pulse and the band-limited sinc pulse, are examples of so-called scaling
functions and have corresponding wavelets. Thus, wavelet theory appears to have the
potential for analog pulse shaping applications.

Other applied fields that are making use of wavelets are: astronomy, acoustics,
nuclear engineering, sub-band coding, neurophysiology, music, magnetic resonance

imaging, speech discrimination, optics, fractals, turbulence, earthquake-prediction,



radar, human vision, and pure mathematics applications such as solving partial dif-

ferential equations.
1.4 Motivation and Objective of the Thesis

Around 1985 Ingrid Daubechies started work on wavelet bases and some two years
later she made an important mathematical discovery. She put the wavelet theory
in proper perspective by showing the intimate relationship between filter banks and
wavelets and constructing orthonormal basis functions with finite support that are
smooth [4].

Dilations and translations of the mother wavelet, elegantly give rise to multireso-
lution analysis, which was advanced mainly by Mallat [5] and Meyer [6]. The merging
of filter banks, wavelets and multiresolution analysis stimulated an enormous amount
of research activity in many areas.

Not all filter banks give rise to wavelet bases. Only regular filters do. Cooklev
in his Ph.D. thesis [7] investigated and designed a regular filter bank that leads
to orthonormal wavelet bases. However, it has been shown in Zarowski [8], that
Cooklev’s approach has certain limitations which would give rise to irregular (non-
smooth) wavelet bases. The main aim of this thesis is to formulate an alternate design
algorithm which is more efficient and faster than the ones suggested in [9] and that

completely eliminates the problems that appear in Cooklev’s theory.



1.5 OQOutline of the Thesis

This thesis is organized as follows:

Chapter 2, entitled Orthonormal Wavelet Filters presents an introduction and
some mathematical preliminaries of the concepts of wavelets and multiresolution anal-
ysts and construction of wavelets. It explains the relationship between wavelets and
filter banks. Finally, the chapter presents a comprehensive account of Cooklev’s the-
ory of half-band filter and wavelet design and it’s limitations.

Chapter 3, entitled New Algorithm for the Design of Half-Band Filters discusses
the approach taken to eliminate the limitations in Cooklev’s theory. The highlight of
this chapter is the use of the Goldfarb-Idnani dual algorithm to solve the optimization
problem and the simulation results that validate it’s use, and also demonstrates that
the new design algorithm is more efficient and it’s implementation time faster than
the methods suggested in Zarowski [9].

Chapter 4, entitled Spectral Factorization and Orthonormal Wavelets explains the
need and presents the theory of spectral factorization of the product filter. The suit-
ability of Bauer's method is explained and it also presents the Interpolatory Graphical
Display Algorithm (IGDA), which is an iterative procedure used to construct scal-
ing and wavelet functions. The simulation results demonstrate the validity of the
new design algorithm and the choice of Bauer’s method for spectral factorization.
It also authenticates our claim that the new design algorithm is much superior to

Cooklev’s method. This chapter also consolidates our claim by comparing the reg-



ularity property and the frequency characteristics of the scaling function created by
the new design algorithm, with that of Daubechies and Cooklev’s scaling function,
respectively.

Chapter 3, entitled Conclusions and Suggestions for Future Research summarizes
the major contributions made in this thesis and suggests some modifications, new

techniques and a few extensions that could be done for future research.



Chapter 2

Orthonormal Wavelet Filters

2.1 Introduction

7If you steal from one author, it’s plagiarism;
if you steal from many, it’s research”

- Wilson Mizner, The Legendary Mizners (1953)

These lines happen to be the spirit of this chapter, as this chapter can be considered
to be as a literature review introducing the concept of wavelets and multiresolution
analysis (MRA). It looks into various methods of constructing wavelets and also
elucidates the relation between wavelets and filter banks. In particular this chapter
explains in detail Cooklev’s (7] theory of half-band filter and wavelet design and its

limitations.
2.2 What are Wavelets ?

Wavelets are functions that are generated from one single function often called the
"mother wavelet”, by translations and dilations, and provide a series expansion of

functions belonging to L%(R), where R is the set of real numbers. We may regard
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L?(R) as the space of finite energy analog (i.e., continuous time) signals. We shall
let Z denote integers, and C denote the complex numbers. If z(t) € LZ#(R) and
z(t) € C then ||z||2? = [ |z(t)]* d¢ < oo. The name wavelet comes from
the requirement that the function should have a mean of zero, i.e., fy{ijdi = 0,
thus, waving above and below the time axis. The diminutive connotation of wavelet
suggests the function has to be well localized. Wavelet basis functions are localized in
time and frequency and hence wavelet analysis is an ideal tool for representing signals
that contain discontinuities (in the signal or its derivatives) or for signals that are not
stationary. Wavelet analysis is an alternative to Fourier analysis. As with the Fourier
transform, the point of wavelets is not the wavelets themselves; they are a means to
an end. The goal is to turn the information in a signal into numbers (coefficients),
that can be manipulated, stored, transmitted, analyzed, or used to reconstruct the

original signal.

2.2.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) of g(¢) with respect to wavelet ¥(t) is

defined by

1 o .[t—b
WT{giab} = ——= [ gt {—) dt , (2.1)
|a| -0 a
where, a # 0 and b are called the scale and translation parameters, respectively. The
asterix superscript denotes complex conjugate as ¥(t) may be complex valued, i.e.,

¥(t) € C. Furthermore, the Fourier transform of the wavelet 1(t), denoted ¥(w), is
Y(w) = /°° w(t)e~ it dt |
-0

9



and must satisfy the following admissibility condition:

C¢=/°°Md¢u<oo, (2.2)

—00 (93}

which shows that ¥(t) has to oscillate and decay. This condition guarantees the

existence of an inverse transform. These facts are considered in detail in [4].

2.2.2 Multiresolution Analysis

There are two ways to introduce wavelets: one is through the continuous wavelet
transform as described earlier, and another is through multiresolution analysis. Here
we begin by defining multiresolution analysis, and then point out some connections
with the continuous wavelet transform.

The idea of multiresolution analysis is to write L3-functions f(z) as a limit of
successive approximations, each of which is a coarser version of f(z), with more
and more details added to it. The successive approximations thus use a different
resolution, whence the name multiresolution analysis. To achieve this we seek to
expand the given function f(z) in terms of basis functions ¢(z) which can be scaled
to give multiple resolutions of the original signal. In order to develop a multilevel
representation of a function in L2(R) we seek a sequence of embedded subspaces V;

such that
{0y ---cVva,cVoc Vi c V-~ Cc LAR) (2.3)
with the following properties :

1. V; C Vj4 (containment)

10



2. v(r) € V; & u(2r) € V)4 (scaling property)
3. v(z) € W & v(z+1) € V (translation)

4. ij V; is dense in L?(R) (completeness) and ﬁ V; = 0 (uniqueness)

j==c j=—o0

5. A scaling function ¢ € Vp, with a non-vanishing integral, exists so that the
collection {¢(z — ) | { € Z} is a Riesz basis of Vo (A set {fi} C Vis
called a Riesz basis if every element s € V of the space can be written as
s = Y i cxfr for some choice of scalers {ci} and if positive constants X and Y
exist such that X||s||z < ‘%[ckP < Y|s||? where || - || stands for 2-norm, i.e.,
lzl|? = 22, |=(2)? dt, clearly, by the definition, the set {fi} is a basis if {ck}

are unique for any s € V).

We will use the following terminology: a level of a multiresolution analysis is one of
the V; subspaces and one level is coarser (respectively, finer) with respect to another
whenever the index of the corresponding subspace is smaller (respectively, bigger).
An introduction to the concept of multiresolution analysis and its usefulness can be
found in [5], [4]).

From the above mentioned properties we deduce that if we seek a scaling function
#(z) € Vp such that its integer translates {¢(z — k), | k& € Z} form a Riesz basis
for the space Vp, then {22¢(2'z — k) | k € Z} form a Riesz basis for the space V;.
The detailed argument is lengthy, but may be found in [5]. Since, in particular, the

space Vp lies within the space V|, we can express any function in V5 in terms of the
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basis of V]. Consequently, for appropriate A

o(z) = V2 fj hi ¢ (22 — k) , (2.4a)

k=-oc0
in which Az, & € Z is a square summabie sequence. The construction of dyadic
orthonormal wavelets is based on Equation (2.4a) as will be shown in the succeeding

sections. For scaling functions supported on interval [0, V]

N
Hz) = V2 Y he # (22 —k) (2.4b)

k=0
where N is odd {4]. It has been shown in [4] that the sequence h; must be of even

length. The sequence h must also satisfy the following conditions [4], [10] :

S he = V2 (2.5)
3 ki higom = 6(m) (2.6)

Y (-1)*k™hy = 0 ,¥Vm = 0,1,---,L—1, (2.7)

where L > 1 and where §(m) denotes a discrete Kronecker delta function. The
parameter L is very important. As shown in [4], the larger L is, the smoother the
solution ¢(z) to Equation (2.4a) will be. Furthermore, L is equal to the number of
vanishing moments of the wavelet corresponding to ¢(z) [4, 10] (L vanishing moments
of the wavelet function ¥(z) corresponds to [ z*¥(z)dz = 0, k = 0,1,~-,L —
1). The functional Equations (2.4a,b) go by several different names: the refinement

equations, the dilation equations or the two-scale difference equations.
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We can now also define

¢ix(z) = 259 (Pz-k) , (2.8)
in which case {¢;x(z) | & € Z} forms a Riesz basis for the space V), as noted earlier.
2.2.3 The Wavelet Function

We now investigate the difference between subspaces Vj_; and V;. We define a new

subspace W;_, such that it is the orthogonal complement of Vj_, in V] i.e.,
Vi = Via @ Wist 5 Vian LW, (2.9)

where @ represents a direct sum. If f(z) € V;_;, g(x) € W;_, then their inner

product is

(f9) = [ fla)g@)ds = 0.

It follows then that the spaces W; are orthogonal and that

P w; = L¥R) (2.10)
jezZ

Now let us introduce a wavelet function ¥ (z) such that {)(z —k) | k € Z} formsa

Riesz basis for the subspace Wy. Then, it turns out that,
Yik = 289 (Pz—k) k€ Z (2.11)

is a Riesz basis for W; [5]. If in addition, the set {¢(z — k), & € Z} forms an
orthonormal set, then it follows that {¢;«, 7,k € Z} forms an orthonormal basis
for LZ(R).

13



Now, since the space Wj is contained in the space V), we can express the wavelet

function in terms of the scaling function at the next higher scale [10], i.e.,

oiz) = V2 Y aé(2z—k), (2.12a)

k=-0c0

and for y¥(z) on interval [0, V]

N
¥(z) = V2 Y g2z ~k) , (2.12b)
k=0
where for (2.12a)
g = (=1 A1 , (2.13a)
and for (2.12b)
g = (-1)*Ry_; . (2.13b)

2.3 The Relation Between Wavelets and Filter Banks

The connection between continuous-time wavelets and the discrete filter banks, was
originally investigated by Daubechies [4]. According to Daubechies a 2-band parauni-
tary FIR filter bank as shown in Figure 2.1 can be used to generate a multiresolution
analysis with compactly supported orthonormal wavelets. Let us define H(z) and

G(z) to be the ztransforms of the sequences h; and g, i.e.,

N

H(z) = ) hez* (2.14)
k=0
N

G(z) = ngz'k . (2.15)
k=0



The filters H(z) and G(z) are called scaling and wavelet filters, respectively. Equation
(2.13b) implies that H(z) and G(z) are quadrature mirror filters (QMF’s) (seen in

Figure 2.1), i.e., assuming h;y € R
G(z) = =z NH(-z71) (2.16)

where N + 1 is the filter length (V is the degree of the filter). Therefore, only one
filter, e.g., low-pass filter H(z) has to be designed. The paraunitary condition [11],
[12], [13], is given as

P(z) + P(-z) = 2, (2.17)
where the ”product filter” is

P(z) = H(2)H(z"") . (2.18)

Equation (2.17) indicates that P(z) is a halfband filter and Equation (2.18) shows
that P(e’*) must be nonnegative.

The connection between the paraunitary solutions (H(z) and G(z)) and wavelets
can be described as follows. Suppose that the analysis stage of the filter bank of
Figure 2.1 is iterated on the low pass branch at each step of the decomposition [12],

then this generates equivalent band-pass filters of the form [14]
Gi(z) = H(z)H(z})--- H(Z*T)G(z*7") . (2.19)
Letting 1 — oo gives the "mother wavelet” (t) [4]. That is,

W(t) = lim gl - (2.20)

=300
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where ¢! is the impulse response of G*(z).

In the next section we describe two

examples of orthonormal wavelets. This is one possible way to obtain plots of wavelets.

Another is via the interpolatory graphical display algorithm (IGDA) considered again

in Section 4.4, though only briefly.

-
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Figure 2.1: Paraunitary two-band FIR filter bank.
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low-pass and high-pass filters, respectively.

16

- G(z)

H(z) and G(z) are half-band

X(z)



2.4 Orthonormal Wavelets

Recall that a function ¥(¢t) € L?(R) is called an orthonormal wavelet if the collection
of functions ¥,i{¢),7,& € Z, is an crthenormal basis of L2(R). We now summarize

various methods of constructing such ¥(¢).
2.4.1 Meyer Wavelets

The Meyer wavelets are orthonormal wavelets defined over the entire set R, i.e., they
are not supported on a finite interval. The Fourier transform of the Meyer’s scaling

function is given by

O(w) = /: B(t)e™ dt .

In this case,
1 Jwl 2 233
®(w) = { cos [%}v (%‘r—lwl - 1)] E L |Jw| £ F (2.21)
0 , otherwise |,

where the real-valued function v(z) satisfies

_JO0 ,z <0 2
e = {90250 (222)
and the symmetry condition
v(z) + v(l—z) =1 (2.23)

on the interval [0,1]. A procedure for finding ¥(w) from ®(w) is in Vetterli and

Kovacevic [15].
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Because of the definition in Equation (2.21) we can readily show that the Meyer
scaling function satisfies

Yo @tk =1, (2.24)

k=—c0
Consequently, the set {¢(¢ — k) | & € Z} is orthonormal and hence this establishes
the orthonormality of the Meyer wavelets. As noted earlier, the Meyer wavelets are
not supported on a finite interval, hence they are not compactly supported. Another
scaling function that is very much like the Meyer scaling function has been recently
proposed by Xia [16]. A recent contribution by Sheikholeslami and Kabal [17], pro-
poses a general family of Nyquist functions of which the raised cosine function is
a special case. It must be noted that the Meyer scaling functions are actually a

generalization of the square root raised cosine functions [18].
2.4.2 Daubechies Wavelets

Various procedures exist for constructing wavelets with different properties aside from
orthogonality alone. The approach used by Daubechies is to introduce a new MRA
of L?(R) that is generated by compactly supported scaling functions. In [19] a con-
structive procedure for obtaining the sequence {hi}i,, with Ay € R has been
provided. We give a statement of the main result, which is drawn from the summary
of Daubechies’s work in [4].

Define p, = V2hi (and similarly define g, = v2g;), and let

- 1
P(z) = EZpkzk , z€C.



From Daubechies [4]

Theorem 2.1 (Daubechies) Let S(z) be a Laurent polynomial (i.e., S(z7') is the

z-transform of an auvtocorrelation sequence) satisfying

m

] fl 1S(z)] < 24! (M > 1) (2.25)

and

| S(e™) | = Mz—:l( M+kk—1 ) (sin;—))% + (sin %{)2M To (co;w)

k=0

for some odd polynomial Ty. Then

B(z) = (1‘;"’)‘" S(z) .

The wavelet and scaling function obtained from this P(z) are compactly supported
and orthonormal.

Daubechies considered the special case where 7y, = 0. Condition (2.25) is
satisfied for all M > 1 in this instance. It turns out that ¥ € {1,3,5,7,---} as
N = 2M — 1. That is, the sequences hg, and g, are of even length. Theorem 2.1

characterizes all orthonormal wavelets supported on an interval.

2.4.3 Cooklev’s Theory of Wavelet Design

Cooklev [7] has presented a theory of wavelet design based on the eigenfilter approach
to the design of half-band filters. This theory also involved Bernstein polynomial
expansions since these made it easy to incorporate regularity into the design of the
half-band filter. The incorporation of regularity is vital in wavelet construction since
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wavelets are essentially constructed from lowpass filters, and it is desirable to have at
least one zero at z = —1 in the filter’s transfer function. The presence of such zeros
is to be seen in the expression P(z) of Theorem 2.1. A filter having at least one such
zero is said to be regular. A zero at this location is sufficient to ensure convergence of
the iterative procedures (e.g., the IGDA [20]) used to construct the wavelet function
from the lowpass filter coeficients. The approach to half-band filter design in [1] is
also very useful in the design of orthogonal and regular QMF filter banks.

Cooklev’s method was motivated by another method by Rioul and Duhamel [14].
The method in [14] modifies the Remez exchange and results in equiripple and regular
filters. On the other hand, Cooklev’'s method as mentioned earlier is based on the
eigenfilter approach [21]. The advantages of the eigenfilter approach as compared to

the Remez exchange are:
e The eigenfilter formulation is numerically efficient and can be used in the or-

thogonal and biorthogonal cases (see [10}).

e It is more general, since it allows time-domain constraints which cannot be

taken care of in the Remez exchange approach.
¢ Eigenfilter method allows nearly-equiripple designs, if they are necessary.

e The eigenfilter formulation can be extended to the 2-D case [22], while the

Remez exchange does not generalize to multiple dimensions.

It must be noted that Cooklev’s method can be considered as a technique to evaluate
To of Theorem 2.1.

20



2.5 Cooklev’s Theory of Half-Band Filter Design

2.5.1 Introduction

Zarowski [8] has presented a very detailed derivation of the half-band filter design
method found in Chapter 3 of {7], and we repeat (8] almost verbatim in this section.
A useful modification has been included in {8] to the original procedure in [7] that
avoids the computation of eigenvalues and eigenvectors and this appears in Section
2.5.5.

In [7] a least squares approach, similar to eigenfilter design, is employed. It is also
seen that Bernstein polynomials ! are central to the theory. They are important in
that they make it relatively easy to incorporate regularity constraints into the filter
design. The method makes it possible to develop new types of wavelet functions as
well. We see that the presentation in Zarowski [8] is more detailed in some respects
than that in [7], and also, amongst other things, it points out the fact that the method
in (7] does not generally give a unique solution.

What follows now is in essence, the sequence of transformations that we carry out
on the product filter P(z) to ensure that it is available to us in a form that makes
it easy to use it for our optimization problem. We show how we transform P(z)
having real valued coefficients pi, into P(e’*) which is a function of the coefficients
br and also ¢ (with the help of a lemma that we use), which are also real valued.

We then show that the type of filter that we consider can be a half-band filter, whose

!Bernstein polynomials for half-band filters were first considered by others. See Section 4.3 in
[23].
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spectrum is a function of the real-valued coefficients di which in turn are related to
the coefficients p;,. We show how the coefficients c; are related to another set of real-
valued coefficients e, which finally leads us to a form of the product filter (by now
transformed into P(r)) which has been transformed to an equation (in terms of the
parameters o, and the Bernstein polynomials), which we can use for our optimization
problem such that the energy of the product filter P(z) in the stopband is minimized,

and the frequency response is nonnegative, 1.e., P(z) > 0.
2.5.2 Some Preliminaries

It is useful to begin with the following Lemma.

Lemma 2.1 ¢ We may write

cos (nf) = Z Buy cost @ | (2.26)
k=0
where
6m+1.k = 2Bm,k—-l - ﬁm—l,k . (227)
The initial conditions for this recursion are B1o = 0, B1qy = 1, and By =

-1 ] B’Z,l = Oy ,3‘2'2 = ?..
Proof e The proof is by induction and can be found in Zarowski [8].

An immediate consequence of the lemmais g9 = land By = 0VEk < 0and

k > n. This result is employed in the theory to follow.

S
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We now consider a Type [ FIR filter (i.e., a filter whose impulse response is finite

in length [24]) with system function

Pz) = Y pt . (228)

Being a Type I FIR filter (according to the definitions in Oppenheim and Schafer

[24]) N is odd and

Pr = PN -k (2.29)

fork = 0,1, ... ,N—-1.

We observe that we may write

2N IWES 2N
Piz) = Ymz ™ =pnz™™ + Ypez™ + Y ez
k=0 k=0 k=N+1

N-t N-1
=pnz ™V + Y pz ™ + Y pan -z N (2.30)
k=0 ji=0
and so
N-1
P(z) = pv2™ + Y pilz™F 4+ 27OV H] (2.31)
k=0
We may write
. . N
P(ev) = e N > b cos (kw) (2.32)
k=0

where

1,2, ... ,N) . o (2.33)

b0=pN1 br=2pN—r (7’
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From (2.32) we must have, with the aid of Lemma 2.1,

N
P(e¥) = N > cos* w . (2.34)
k=0

We use Lemma 2.1 to obtain an expression for {ci} in terms of {b;}. Thus,

N N k _
>~ bi cos (kw) = Z bi l:z Br. i cos’w} (2.35)
k=0 k=0 7j=0
N N )
= Z bk l;Z ,Bk'j COSJQJ] (236)
k=0 1=0
N [N 7 )
= Y | D biBkj| cos'w (2.37)
j=0Llk=0 y
N [N ) _
= Z z bkﬁk'j cos’w (2.38)
j=0 _k=j i

=CJ

which reveals the following upper triangular linear system of equations that relates

{ck} to {bk}

[ Boo ﬁm ﬁN-l,o Bno 1 [ bo ] [ Co ]
0 Bia -+ Bn-1g Bn.a b, a
P : : o= : (2.39)
0 0 T .BN—I.N-I ﬂN.N-l bn-1 CN-1

o0 0 - 0 Bun || v | | ev

Let us denote the matrix in (2.39) by B. Since Bix # 0 for all k£ this linear system

always has a unique solution. In fact, from (2.27)

Brerht1 = 28kx — Br-1.k+1 = 20k (2.40)

$0 Brx = 2F ! for k > 1.



2.5.3 Half-band Filters

If we now assume pyr 1 = 0, but that py # 0, then the odd indexed elements of
{p«} are forced to zero, except for element py which is in the middle of the sequence.

For these assumptions we see that from (2.31)

N-1
P(z) = pnz™" + 3 melz7F + 27OV 8] (2.41)
k=0
(N-1)/2 (N-1)/2
= pNz'N + z: sz[?"zk + Z-(2N—2k)] + Z pzk_l[z—&k—l) + z-(2N—2k+1)]
k=o k=1
(N-1)/2
= pNz-N + E p?k[z_zk + z—(2N—2k)] (as p?k-l — 0) , (2.42)
k=0
and so
(N-1)/2
P(=z) = —pnz™™ + 3 pufz7H + 7N -2 (2.43)
k=0

for which we conclude immediately that
P(z) — P(—z2) = 2pnz~V . (2.44)

This is called the half-band condition, and a filter that satisfies it is called a half-band
filter. We have therefore shown that Type I FIR filters can be half-band.

From the preceding we also see that

(N-1)/2
P(z) = 27V [pN + pa[zV T + z'N"'z"]} (2.45)
k=0
so that
) ) (N=-1)/2 . _
P(eju) = e—JwN {PN + Z p‘zk[ejw[N—2k] + e-Jw[N—Zk]]:I
k=0
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T (N-1)/2
= e Nlpy +2 Y pucos (N — 2kw)
k=0

| - (N=1)/2
= e™Vilpy +2 Y pv-1-2cos((2n + Lw)| ,

L n=0

where (2n = N — 1 — 2k) and for which we have
_ _ (N-1)/2
P(e) = e [dinenys + Y, dncos((2n + 1)w)} , (2.46)
n=0

where we have

dNty2 = PNy dn = 2pN-1-22. (o = 0,1, ... J(N-=1)/2). (2.47)

The half-band condition may be described in a different but equivalent manner.

Suppose that the FIR filter is noncausal with system function

N
P(z) = mz (2.48)
k=-N

where N is again assumed to be odd, and py = p_i. Thus, except for noncausality,
this filter is Type I as before. As well, we impose condition px = 0, but pop # 0. It

is then easy to show that
P(z) + P(-z) = 2po (2-49)

which is an equivalent definition of the half-band condition, i.e., is equivalent to (2.44).

Since —e = e/(“+7) we also see from (2.49) that
| P(e) + P(e/“*™) | = constant . (2.50)

(The filter coefficients in (2.48) are the same as those of (2.28) except for indexing.)
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2.5.4 Bernstein Polynomials and Half-band Filter Design

The kth Bernstein polynomial of degree N is defined to be

N
N ! k N-k
b {z) = ( 2 )x (1 — z) . (2.51)

(@ - z)f = i(—l)j ( k )zfa"‘f , (2.52)
;=0 J
and this gives
k e .
(1 -2 =Y (-1Y ( ].):z:’ . (2.53)
1=0

Letz = (1 — cosw)/2sothatcosw =1 — 2z = (1 — z) — z. Now,
recalling (2.34), we can write
N

i creosfw = Y af(l —z) - z)f (2.54)
k=0 k=0

N k . k )
= Y| (1) ( - ) (27| (2.55)
k=0 |j=0 J
where the second equality has employed (2.52) (witha = 1 — z). For some suitable
{ex} we may also write
N N N N
> e cost w = Z ek( & )1:"(1 —)N-Fk = > exd (z) . (2.56)
k=0 k=0 k=0

Here e = [ege; - - en]T, and we define

D=diag{(1(\)/)’(1¥)"“’(NAil)’(x)} ’
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and

Again, letting ¢ = [co 1 --- cn]T, and defining
A = diag {20, —2!, 22, ... ,(—1)k2k, ... (=)V2N}

and

— e~ O
N~ O N
N

'7
o
o
o

VS

2=

N’

it can be shown that
ACc = EDe . (2.57)

At this point we have well-defined matrix or linear transformations between all of
the different expressions for P(z) and/or P(e’).

From (2.48) with the given constraints

N
P(z) = po + Y pelz™ + 2f] (2.58)
k=1
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and so

P(e¥) =

P cos wk

n [V]z

Thus, for suitable {¢cz}
_ N
P(e*) = ) « cosfw .
k=0

From (2.56) we may therefore define
N N
P(z) = Y ebp(z) = Z ¢k cos*w

k=0

As a result of this we may write

| P(e™) + P(e@*™) | =| i ck cosFw + i\’: ek cost{w + 1) |

k=0 k=0

N N
= | Z ¢k cosfw + Z (—1)"4:;c costw
k=0 k=0

Now via (2.55), and cosw = 1 — 2z we have

N N
P(z) = Z all —z) —zf = Y cosfw
k=0 k=0
and
N
Pl —z)= ) afz -1 - o)
k=0
N
= Z(—l)ka cos*w
k=0
so that (2.62) becomes
| P(e) + P(€“*™) |=| P(z) + P(1 — z} | = constant
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Thus,
P(z) + P(1L — z) = 1 (2.66)

satisfies {(2.50), and so is an equivalent half-band condition.

We shall now show that if

1 , k < L
N 1 —agzy1 , L £k < (N-1)/2 9
* =\ evors L (N+DR < k< N-L (2:67)
0 , N+1-L <k <N
then the condition in (2.66) is met. Clearly, for this to be well-defined, we must have

L £ (N -1)/2. We shall also see that for (2.67) P(z) has a zero of order L at

z = 1. This may be used to impose a certain regularity on the half-band filter (i.e.,

zeros at z = —1 in the lowpass filter leading to wavelets).
We have
N
P(z) = ) exbl (z) . (2.68)
k=0

Using (2.67) it can be shown that

(N-1)/2 (N+1)/2-L N . |
Pz) = Y @)+ > o . [zNH-L-3(1 = )b+t
k=0 i=1 ] + L - 1
.‘L‘j+L_1(1 _ x)N+l—L—-jl :
and so
NN
P(I)+P(1-.'L‘) = Z(k)x"(l—z)N"‘
k=0
N
= Y &) =1, (2.69)
k=0



(Proof of which is provided in Zarowski [8] where the last equality can be argued
from probability theory (bY(z) is a binomial pdf (Papoulis [25]); use the binomial
theorem)). Thus, we have shown that if (2.67) holds then (2.66) holds.

In the previous paragraph we have shown that

(N-1)/2 N
P(z) = 3 ( . )rk(l - )Nk 4

k=0

(N+lz)§2-[. N
R\ k+L-1

)[2N+1_L-k(l _ I)L+k-l _
k=1

$k+L-1(1 _ z)N+1—L—k]. (2.70)

By inspection of this expression we see that P(z) under the condition of (2.67) has a

zeroof order L at z = 1.

2.5.5 A Least Squares Approach

The half-band filter P(z) has frequency response denoted by P(e’*), for which we
normally consider w € [0,7]. Recalling that z = (1 — cos w)/2, this interval maps
toz € [0,1]. Thus, we consider P(z) for z € [0,1]. As a half-band filter is lowpass,
it has a passband [0, w,], and a stopband [wy, 7], where w, < w,. Thus, for P(z) the
passband is [0, z,], and the stopband is [z,, 1].

Refer to Equation (2.70). Define the polynomials

v()_(Ng:)/z(N)kl_ Nk (2.71)
olT) = k $( 1’) , .

k=0
and
N —L— -
vk(z) = (k+L-1)[2N+1 £ k(l - x)L+k b —

J.’_Ic+£,-l.(]_ _ l,)N-H—L-k] , (272)
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wherek = 1,2, ... ,(N+1)/2—L. Definingay = l,ande = [aga; az --- a(N“)/z_L]T,

and v(z) = [vo(z) vi() va(Z) --- 'U(N+1)/2-L(I)]T then
P(z) = aTv(z) . (2.73)

One way to design P(z) is to select vector a such that the energy of the filter in

the stopband is minimized. This energy may be defined to be

E,(a) = L j[aTU(r)][aTu(:r)]T dz (2.74)
= of []1 v(z)vT(z) d:r] a . (2.75)
R ~ ’

In this expression B = [rjilik=0.1,.. (N+1)/2-L, and R = RT. Of course
1
Tik = / vi(z)ve(z) dz . (2.76)

One approach, considered in [7], minimizes (2.75) subject to the constraint that
aTa = 1. We thus select the eigenvector of R corresponding to the smallest eigen-
value of R (R > 0, i.e., R is positive definite), and normalize it so the first element
is unity (to satisfy ap = 1). This is the desired value for a.

However, there is another possibility, apparently not considered in [7]. Since

ay = 1 we may partition e as a = [l af]T, wherea = [o; --- C!(N+1)/2_L]T.
Similarly
T
_ Too T -
R = [ R ] , (2.77)
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wherer = [rigryo --- 1y N_,.l)/g_L,o]T. Thus, the stopband energy expression can be

rewritten as

T
E,a) = [1a7) { r(::o ;?, ] [é] = ro0 + 22'r + aTRa . (2.78)

- -

Since R is positive definite, R will be as well. Thus, (2.78) can be rewritten as {upon

completing the square)
Efa) = [ + R7'r"Rle + R7'r] + ro0 — rTR7Ir . (2.79)
The optimum choice of a, which we shall denote by &, therefore satisfies
Ra = —r . (2.80)

Clearly, this choice minimizes the stopband energy. This approach to designing the fil-
ter is easier (or computationally more efficient) than the eigenproblem approach since

solving a linear system of equations is typically simpler than solving an eigenproblem.
2.5.6 Half-band Filters With Nonnegative Frequency Response

If half-band filters are to be employed in the construction of orthonormal wavelets it
is necessary to create half-band filters with a nonnegative frequency response. Recall
that P(z) is real-valued, so we therefore want P(z) > 0forallz € {0,1]. To obtain
half-band filters with this property consider the following approach which is based on

that as suggested in [7].

Suppose we solve (2.80). In this case the optimum choice for ais @ = [L &T]7.
Find the £ = ., such that P(z) is minimized for a = a, i.e.,
P(.’Bmgn) = &T‘U(l‘m,‘n) = Jmin <0 . (281)
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Let dmin = ¢T0(Zmin). Now define a new stopband energy function

E!(a) = /l[gm;n — aTv(z)][dmin — aTv(z)] dz (2.82)
= of [ / (2min) — 0(@)|[0(Zmin) — v(@)] dx] a . (2.83)
=2 :

It is clear that matrix @ replaces R in (2.75). At this point ¢ to minimize E;(a) in
(2.83) may be found using the procedure in Subsection 2.5.5 earlier.

From (2.83)

1

Q= _/;[U(l'm.'n) — 0(z)][v(Zmin) — v(@)]T dz =

)

2 [0(@Emin)VT (Zmin) = V(@) (Zmin) — [0(2)0T(@min)]T + v(z)T(2)] da .(2.84)

Clearly, the last term corresponds to matrix R in (2.75). Similarly to (2.77) we may

partition @ according to
T
= | P09 2.85
o=[® 4] (2.85)
Thus, the optimum new choice for a is & satisfying
Qd = —q . (2.86)

This is similar to (2.80). Note that in [7] (see p. 46) it is remarked that the number
of elements in & of (2.86) must be an even number. This assertion will be challenged

later on.



From (2.84) we see that

UO(Imtn

vl(l'm
f;’ U(Im:n)ur(zmm) dr = (1L - r-i) [ :n ["D(‘-'mm) Vl(rmuu) a4 ‘-'[N+l]/2—L(1'm:n]] .

UN+1)/2- L(Imm)

/1 o(z)vT(c)dz = R |

and

f;‘ vo(z) dz
[ v(z) dz

f:' U(I)UT(.‘I:,,““) dr = . ["O(Imln) Ul(:mln) e U(N+1)IQ—L(IMRH)] . (2'87)
I, 'U(N+1.)/2-L dz

It is important to note that the above procedure may need to be iterated, and
that there is no known proof it will converge [8]. This fact is not at all clear from

reading {7]. In fact, it will be shown later that this procedure is not very satisfactory.
2.6 A DFT/FFT Approach

The direct approach to finding pi given e; was defined in Subsection 2.5. However,
this procedure involves inverting the matrices Band C. For N > 15 (approximately)
the condition numbers of these matrices rises rapidly. Hence this procedure is not
recommended except for small V.

Zarowski [8] shows the implementation using an alternative DFT/FFT-based ap-
proach (i.e., solving a Discrete Fourier Transform using Fast Fourier Transform al-
gorithms [24]). The idea is similar to the use of the DFT in obtaining the impulse

response of an equiripple FIR filter obtained from the Parks-McClellan algorithm
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using the polynomial representation of the filter’s frequency response. This idea was
noted in the last paragraph of Section 7.6.3 (p. 478) of Oppenheim and Schafer [24].

From the expression for P(z) in Equation (2.56)

. ~ N "N \[l — cosw]®fl + coswi™V—*
Jw — —jwiN
Ple®) = e ,Eoe"(k)[ 2 J[ )
2N _
= Z pne” " (2.88)
n=0
where cos w = 1 — 2z. Now we define P, = P(e) for w = 33%r, where
r = 0,1, ... ,2N. Taking the inverse DFT of the sequence {F.} (via an FFT

algorithm) will give {px}. This turns out to be a more numerically reliable method

of getting p, than the direct method for both large N, and large L.
2.7 Limitations of Cooklev’s Design Method

Cooklev’s approach to the design of half-band filters with a nonnegative frequency
response in Section 2.5 was shown to have two significant difficulties in Zarowski (8]

as explained below.

2.7.1 Zero Splitting

As shown in Zarowski [8], Cooklev’s theory of design for half-band filters via Bernstein
polynomial expansions suffers from the problem of the splitting of the desired multiple
zero at z = -1 into simple zeros if care is not exercised in its implementation. This
will likely cause problems in the spectral factorization stage which is necessary in the
construction of wavelets based on this approach. A similar problem of zero splitting

has also been observed in the case of Daubechies polynomials [26]. Actually, if some
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or all the coefficients of a polynomial are known only to a specified accuracy - as
is ordinarily the case in scientific computing - the concept of multiple zeros become
meaningless : An arbitrary small change of the coefficients leads to the disintegration
of an m-fold zero into a dense cluster of m distinct zeros {27].

Figure 2.2 shows a typical plot of filter zeros for P(z) obtained via the direct

method and via the DFT/FFT method. We see that both of the filter designs do not

posses the multiple zero at z = —1. This multiple zero splits into several simple
zeros in the vicinity of z = —1. However the splitting is less severe in the DFT/FFT
method.
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Figure 2.2: Plot of the zeros of a half-band filter for z, = 0.6, ¥ = 19, and
L = 7. The circles are the zeros for the filter using the matrix inverse or direct

approach (Section 2.5) while the plus signs are the zeros for the filter using the
DFT/FFT method (Section 2.6).
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2.7.2 Non-Convergence of Frequency Response

It was noted in (8] that the procedure for half-band filters with a nonnegative fre-
quency response considered in Cooklev [7] may need to be iterated, and that conver-
gence is not guaranteed. By this we mean that the stopband energy is not minimized,
as evidenced by the local minima in the stopband not touching the frequency axis.
Clearly, not being able to be sure of convergence is a major problem since this leads
to sub-optimal results which leads to irregular wavelets as will be shown in the next
chapter.

The plot in Figure 2.3 shows a typical magnitude response of the half-band filter
with z, = 0.6, N = 17, and L = 5 designed using Cooklev’s method of Section
2.5. We notice that the frequency response fails to converge. This is evident from the

failure of the two local minima in the stopband to touch the frequency axis.
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Figure 2.3: The magnitude response of the half-band filter for z, = 0.6, N = 19,

and L = 7 designed using the matrix inverse method (Section 2.5).
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Chapter 3

New Algorithm for the Design of
Half-Band Filters

3.1 Introduction

In this chapter we discuss the approach we take to eliminate the limitations in Cook-
lev’s theory of half-band filter and wavelet design as was alluded to in Chapter 2.
We first discuss the elimination of the zero-splitting problem and then introduce a
new design algorithm that completely eliminates the non-convergence problem of the
magnitude response of Cooklev’s half-band filter. We then present some important
simulation results that show the validity of the new design algorithm and it’s superi-

ority over the other methods including Cooklev’s [7] and Zarowski’s [8].
3.2 Elimination of Zero-splitting

As shown in Zarowski [8], Cooklev’s theory of design for half-band filters via Bernstein
polynomial expansions suffers from the problem of the splitting of the desired multiple
zero at z = —1 into simple zeros if care is not exercised in its implementation. This

is likely to cause problems in the spectral factorization stage, which is necessary in
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the construction of wavelet functions based on this approach. MATLAB’s mroots(-)
function (version 5.x of MATLAB) can prevent the splitting, but only "up to a point,”
and is not capable of preventing the splitting from arising in the first place. It therefore
only masks but does not solve the underiying probiem. and so is not satisfactory in
this respect.

Zarowski (8] observed that the transformation matrices denoted by Equation (2.39)
and Equation (2.57) are in fact ill-conditioned for large V. This could be a probable
cause for the splitting of the multiple zero at z = —1. A similar ill-conditioning
problem has been successfully overcome in [28], by using the Chebyshev polynomials
which are orthogonal. Motivated by this we derived Chebyshev polynomial expres-
sions (see Appendix A) to orthogonalize the Bernstein polynomials which have been
used in [7] in the design of the half-band filter. However, this did not yield the
expected result.

It is observed that, for low-order polynomials, commonly available subroutine
packages for root-finding work quite well. For higher order filters, the burden on the
root-finding program can be considerably reduced by taking advantage of the fact
that the locations of all the unit circle double zeros of the product filter are known a
priori, i.e., they correspond to the stopband zeros of the frequency response. Hence,
we present here a very simple solution to the zero-splitting problem that involves
factoring out the offending factor of (1 — z)¢ from the expression for P(z) in
Equation (2.71) (a similar technique has been used in [14]). We then compute the

transfer function corresponding to the factor that remains. This is a numerically
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well-behaved process because this factor usually only consists of a z-polynomial with
simple zeros (or low multiplicity multiple zeros). The process is equivalent to factoring
(1 + z7Y)2L out from P(z), which is the desired half-band filter system function.

The multiple zero at z = —1 of order 2L can be "put back later on” if desired.

3.2.1 Factoring out (1 + z71)%f

We may restate Equation (2.71) for convenience here as

(N-1)/2 N
P = % ()t - e h
k=0
(N+1)/2~L N N4i1—L—k Lyk~1 k4 L—1 N4i—L—k (3 l)
k=1 | b1 (= (1 -z) -z (1-x) 1. )

We observe that in term no. 1 factor (1 — z)* has k in the range of (N + 1)/2 to
N, while term no. 2 has it in the range L to (N —1)/2, and term no. 3 has it in the

range of (N +1)/2 to N — L. We recall that L < (N —1)/2. Suppose that

P(z) = (1 - 2)'G(z) (3.2)
then from (3.1)
(N-U/2 ¢ o
G(z) = Y ( N ):z:"(l — )N-L-k
k=0

(N+1)/2-L N
2 ( k+L-1

)[IN+1—L—k(1 - I)k—l _ Ik+L—l(1 _ x)N+l—2L—k].(3'3)
k=1

Now we recall that z = (1 — cos w)/2, and if we use analytic continuation (i.e.,
replace e/ with z) then since cosw = (e + e™/¥)/2

z + replaces e
2 P 2 ’
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and so from (3.2)

t3L -1
1 24 z" 1 . 3
P(z) = z7% [—+ 5 ] G(————_) 2 ) ) (3.4)

& <

where the factor ==V

is included to make the impulse response sequence that gives
P(z) into a causal sequence. This factor corresponds to e~V in (9.1) of [1]. We may

rewrite (3.4) as

—_ ~— z_l
P(z) = -2-21Tz_(N—L)(1 + z'l)zLG( i i ) . (3.5)

From this we see that it is possible to find the zeros of G(z) independently from those
of P(z) and put the multiple zero at z = —1 back afterwards. Note that the degree
of P(z) is 2N while the degree of G(z) is 2(N — L).

This solves our problem.

Routine makeh3.m implements the above procedure. Routine check.m compares
the output of this routine with that provided by makehl.m; these routines can be
found in Appendix B . It does this by producing a plot of the zeros of both filter
designs. Typical output appears in Fig. 3.1, and we see that our problem is truly

solved.
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Figure 3.1: Typical output from check.m in Appendix C. The parameters are z, =
0.6, N = 17,and L = 8. The plusses are the zeros of the half-band filter using the
DFT/FFT method given in Chapter 2, while the circles are the zeros of the half-band
filter given by the procedure in this Section.
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3.3 New Design Algorithm

To eliminate the problem of non-convergence of the magnitude response of Cooklev’s
half-band filter we rephrase the original optimization problem and use the Goldfarb-
Idnani (GI) Dual Algorithm [29] to solve it. The Gl-algorithm is particularly useful
since it has an excellent reputation for efficiency [30] and also it has been successfully

used in the design of FIR filters before [31].

3.3.1 The Optimization Problem

We restate the optimization problem as given in Equation (2.77) of Chapter 2. Recall

that
P(z) = aTu(x) (3-6)

for which we only let z € [0,1], i.e.,  is confined to the unit interval. Equation
(3.6) is the frequency response of the half-band filter, and for us we want P(z) = 0
for all z € [0,1]. This necessitates finding the proper vector a. However, we also
want to minimize energy in the stopband [z,,1] (see Equation (2.75)). From (2.78)

in Chapter 2, this energy is given by
fla) = a"™Ra + 2aTr + oo (3.7)

where ¢ = [I a7]%, and the remaining quantities in (3.7) are defined in Section V
of [2]. We have what is commonly called a Quadratic Programming (QP) problem

with a linear inequality constraint P(z) > 0.
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The optimization occurs over the elements of the vector a = [a; a7 --- a;(]T,
(and we define oy = 1) which has A = (N +1)/2 — L elements. The Goldfarb-
[dnani (GI) algorithm expects the problem to be phrased as

min fle) = éaT(Q’R)a + 2rTa + rgp (3.8)

subject to the inequality constraint

Sa) =CTa-~-b2>0 . (3.9)

Equation (3.9) is explained below : The value of z is evaluated in a manner similar

to the one given in [32]. We let
p= o=y 4+ o (3.10)
where k = 0,1,---,M -1, 05< y < 1l and M = the number of sample points.
Now let us express for all k the scalar $(a) = P(zr,a) = aTv(zi) = v(zi)Ta

in matrix-vector form as

P(zo) vo(zo) ui(ze) - vk(zo) Qo
P(:rl) _ vO('Il) vl(:rl) UK(:’L'L) C%l (3.11)
P(zp-1) vo(l'M-l) vi(zm-1) - vk(Za-1) aK
L A JEA . SN ,
=S =V =a
where P(z,a) = P(z)is a change in notation to reflect the dependency of P on

both scalar z, and vector . The R.H.S of Equation (3.11) can further be written as

(using the partition property)

vo(zo) v1(zo) va{ o) Tt vi (o) a)
UO(.:L'I) 4 "1(:21) Uz(‘lh) UK(.xl) sz (3.12)
vo(Tar-1) vi(zar-1) va(zm-1) - vr(Tm-1) ak
— -— — - ~ e, o
==} =C7T =a

which is the same form as Equation (3.9).
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3.3.2 Justification Of The Use Of The GI-Algorithm

Adams and Sullivan [31] state that both the minimax (MM) and the least-squares
(LS) optimality criteria used in the design of digital filters can be viewed as special
cases in the class of peak-constrained least-squares (PCLS) optimization problems.
In PCLS optimization problems, the peak error is constrained while the total squared
error is minimized. Figure 3.2 shows the trade-off between the total squared error
and the peak error. The best solutions for most practical applications are in the
knee of the trade-off curve. The LS and MM are at the end-points (as shown in Fig-
ure 3.2), where the slopes are the most extreme. Therefore the LS and MM solutions

are the two special cases of PCLS solutions that have the worst performance trade-off.
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Figure 3.2. Tradeoff between total squared error and peak error.
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Starting from the LS solution, a very large reduction in the peak error can be
obtained at the expense of a very small increase in the total squared error. Start-
ing from the MM solution, a very large reduction in the total squared error can be
obtained at the expense of a very small increase in the peak error. Therefore as men-
tioned in [32]-[33], LS and MM are inherently inefficient. The primary advantage of
the PCLS optimization is the ability to control the trade-off between peak error and
total squared error. Second, in most practical applications, it is important for the
designer to have the ability to specify inequality constraints on the gains at the band
edge frequencies.

Noting these advantages, we believe that in the design of the required half-band
filter, instead of using the minimax criterion as was done by Rioul and Duhamel [14],
or using the least-squares method used by Cooklev (7], we could use the PCLS opti-
mization to achieve a more efficient design. In [32]-[33], a strategy for PCLS based
on the theory of the "multiple exchange algorithm”, has been suggested. Most con-
strained algorithms use a single exchange of active constraints from one iteration to
the next. Single exchange algorithms are appropriate for solving general constrained
least-squares (CLS) problems, where the constraints are arbitrary. Unfortunately,
single exchange algorithms converge very slowly. If a CLS problem includes peak-
error constraints on a smooth function, then multiple exchanges improve the rate of
convergence. In [34, 35] it has been proven that the generalized multiple exchange
algorithm is guaranteed to converge to a unique optimal solution of any feasible pos-

itive definite quadratic programming problem. In [32] it was proposed to combine
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the multiple exchange and the Gl-algorithm to exploit the convergence property of
the latter. Also, the Gl-algorithm does not require primal feasibility until the last
iteration is completed, which makes it more efficient to be combined with the multi-
ple exchange algorithm since most quadratic programming algorithms require primal
feasibility at the beginning and end of each iteration.

Since the Gl-algorithm forms the core of the method suggested by Adams and
Sullivan in [31], we demonstrate the use of the Gl-algorithm in conjunction with
the matrix inverse problem as suggested by Zarowski [8], in the design of the half-
band filter with non-negative frequency response. We observe that this method is far
better than those suggested in [9], since this algorithm converges both quickly and

accurately.

3.3.3 The Goldfarb-Idnani (GI) Algorithm

We now outline the Gl-algorithm. There are certain errors (typographical and omis-
sions) in the algorithm as presented in [5], which have been corrected in this outline.
This dual algorithm is of the active set type and is both efficient and numerically
stable.

The Gl-algorithm is concerned with the strictly convex (positive definite) quadratic
programming problem,

min

, f2) = %zTGr +a’z + fo (3.13a)

subject to the inequality constraint

S(z) =CTz-b>0 , (3.13b)
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where z and a are n-vectors, G is a n x n symmetric positive definite matrix, C is a
n X m matrix, b is a m-vector, and the superscript T denotes transpose.

As already mentioned, the dual algorithm is of the active set type. By active
set we mean a subset of the m constraints in Equation (3.13b) that are satisfied
as equalities by the current estimate of z of the solution to Equation (3.13a). We
shall use W to denote the set {1,2,---,m} of indices of the constraints (3.13b) and
A C W to denote the indices of the active set.

We define a subproblem P(J) to be the Quadratic Programming Problem (QPP)
with the objective function 3.13a subject only to the subset of constraints (3.13b)
indexed by J C W. For example P(@), where @ denotes the empty set, is the
problem of finding the unconstrained minimum of (3.13a).

If the solution z of the subproblem P(J) lies on some linearly independent active
set constraints indexed by A € J we call (z, A) a solution-(S) pair. Clearly, if (z, A)
is an S-pair for subproblem P(J) it is also an S-pair for the sub-problem P(A).

In order to describe the algorithm, it is necessary to introduce some notation.
The matrix of normal vectors of the constraints in the active set indexed by A will
be denoted by N (i.e. N is a subset of the coefficients of z in the rows of S(z) in
Equation (3.13b), and the cardinality of A will be denoted by q. When the columns

of N are linearly independent one can define the operators

N* = (NTG'N) 'NTG-! (3.14a)



and

H = GY(I — NN™). (3.14b)
3.3.3.1 Dual Algorithm

The algorithm given below conforms to the dual approach and it's details are as

follows:
® Step 0 : Find the unconstrained minimum :

a:(——-G"‘a,f(—%a%,H(——G“,N(—-@,A — 0, q «0

o Step 1: Choose a violated constraint, if any :

Compute S;(z) (the row j of Equation (3.13b)), forall j € W\ A. IV =

{7 € W\A | Sj(z) < 0} = @, STOP, the current solution r is both feasible
and optimal;

otherwise, choose p € V and set n* « n and ut « [ g ] Ifqg = 0, set

u « 0.

® Step 2 : Check for feasibility and determine a new S-pair :

(a) Determine step direction

Compute z = Hn™ (the step direction in the primal space) and if¢ > 0,

r = N*n* (the negative of the step direction in the dual space).

(b) Compute step length
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(1) Partial step length t; (maximum step in dual space without violating

dual feasibility). If r < 0 (i.e.,all elements in vector r are non-

positive) or ¢ = 0, set {; « oc, otherwise set

min PN

u u¥
tl ¢ ry >0 r = r?
S - 2
J = l?"'sq

where u} is the jth element of the vector of Lagrange multipliers.
In Step 2(c) below, element & € W corresponds to the {th element
in A.

(i1) Full step length t, (minimum step in the primal space such that the

pth constraint becomes feasible).

=Sp(T

zln+ °

If |z] = 0, set t; « oo otherwise, set t, «
(iii) Step length t

Set t < min(t,,t3).

(c) Determine new S-pair and take a step

(i) No step in primal or dual space If t = oo, STOP, subproblem and

hence Quadratic Programming Problem (QPP) are infeasible.

(ii) Step in dual space If t; = oo, then ut « ut + ¢ [ -lr ], drop

constraint k, i.e. set A « A\ {k},q = q — 1, drop the {th element
of ut, drop {th column of N, update H and N* using Equation (3.14),
and goto Step 2(a).

(iii) Step in primal and dual space
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Set r «— r + tz,ut « ut + t[—lr]. WIft = ¢, (full set) set
u ¢ u*, add constraint p; i.e.,set A « AU{p}, ¢ = ¢ + 1, add
new constraint to V. Goto Step 1.

Ift = ¢, (partial step) drop constraint k, i.e.,set A « A\ {k},q =
g — 1, drop the {th element of u*, drop [th column of N, update H

and N~ using Equation (3.14), and goto Step 2(a).

Some slight modifications have been made to the above algorithm to make it more

efficient and to account for round-off errors. They are :

o Instead of choosing any violated constraint as given in Step 1, we choose the
most violated constraint, by selecting the most negative value of S from Equa-
tion (3.13b). This not only reduces the number of iterations required for con-

vergence, but it is also a good strategy to help prevent numerical instabilities

as stated by Goldfarb in [36].

e We have introduced a small perturbation parameter E in the evaluation of S(z)

as given in Equation (3.13b), which now becomes :
Sa) =CTa —b—E>0=CTa>b+ E.

This has been done to shift the frequency response by an extremely small value
E above zero to ensure convergence in certain cases which will be dealt with in

the next section.
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e Convergence is achieved when all the elements in the set S as given by Equation
(3.13b) are greater than or equal to zero while minimizing f(z) in Equation
(3.13a). However there may be certain round-off errors which we account for

by adding an extremely small tolerance parameter.

3.4 Simulation Results

We now give various examples showing certain successful implementations of our
design algorithm and showing that this method is more efficient and faster than the

other existing methods [7], [9].
3.4.1 Example No.l1

We first show an example that was quoted in [9] for the specifications z, = 0.5, N =
7, L = 1,M = 9,y = 0.64d and £ = 0.001, where M and z are as defined
by Equation (3.10), and E is the perturbation parameter. For this example it is
clear that K = 3 so the optimization is with respect to three parameters. This
converges in 8 iterations only, which is a big improvement over the methods given
in [9], since for these specifications the MATLAB optimization toolbox simulation
resulted in failure to converge. Figure 3.3 shows the result produced by the GI-
algorithm. The parameters a and b seen on top of the figure define the stop-band
region [a,b) = [0.5,1), and so a = z,.

In Appendix C is the MATLAB code that implements the Gl-algorithm using the

routine GI_Algo.m and plots the figures in this section using the routine H_to_plot.m
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and Hxplot.m. The supporting routines are in Appendix B, these consist of fact.m,

binco.m, u.m, maker.m, makeR.m v0.m, vk.m (which have been taken from [8]) and

H.m.
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Figure 3.3: Magnitude response plot for a half-band filter produced for the specifica-
tions, z, = 0.5, N = 7,and L = 1.
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3.4.2 Example No.2

Figure 3.4 shows an example again that was quoted in [9], for the specifications,
z, = 06, N =7, L =2, M = 11,y = 0.5and £ = 0. The new algorithm
results in convergence in 2 iterations, as compared to the POCs algorithm [9] that
resulted in convergence in 75 iterations.

The impulse response sequence of both the filters, one designed using the POCs
algorithm (taken from [9]) and the other designed by the new method proposed is

tabulated as follows :

k Pk Pk
l[POCs solution after 75 iterations | GI-Algorithm solution after 2 iterations
0 -0.0164 -0.0152
1 0 0
2 0.0499 0.0476
3 0 0
4 -0.0828 -0.0830
S 0 0
6 0.2993 0.3006
7 0.5000 0.5000
8 0.2993 0.3006
9 0 0
10 -0.0828 -0.0830
11 0 0
12 0.0499 0.0476
13 0 0]
14 -0.0164 -0.0152

The impulse response sequence of the filter designed using the POCs solution
was found using MATLAB routines that have been described in Appendix D of the
report [4], whereas the impulse response sequence of the filter designed using the

Goldfarb-Idnani (GI) algorithm was found using the MATLAB routine GI_Algo.m.
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Amplitude

This example shows that the POCs method is too slow to converge, hence not very
efficient. It must be noted that the above tabulated comparison is risky in the sense
that the POCs was not implemented very efficiently in [4] and hence the comparison

will not be considered fair.
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Figure 3.4: Magnitude response plot for a half-band filter produced for the specifica-
tions, z, = 0.5, N = 7,and L = 2.
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3.4.3 Example No.3

The plot in Figure 3.5 below illustrates a typical magnitude response for the specifi-
cations r, = 05, NV = 35, L = 16, M = 10,y = 05and £ = 0. Again,
for this example it is clear that A = 2 so the optimization is with respect to two
parameters. This converges in only 3 iterations, which is a big improvement in terms

of speed of convergence, compared to the methods given in [9].
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Figure 3.5: Magnitude response plot for a half-band filter produced for the specifica-
tions, z, = 0.5, N = 35,and L = 16.
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Figure 3.6 is a plot of the zeros of the half-band filter of Example No.3. The figure
shows suitable double transmission zeros as would be appropriate for spectral factor-
ization which will be discussed in the next section. The zero-plots in this section have

been plotted using the MATLAB routines zeroplot.m and H _to_piot.m {Appendix

C).
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Figure 3.6: Zero plot for the half-band filter (Example No.3) produced by the proposed
new algorithm for the specifications z, = 0.5, N = 35, L = 16, M = 10,y =

0.5, and E

0,where M and y are as defined by Equation (2.4), and E is the

tolerance parameter.
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3.4.4 Example No.4

Figure 3.7 shows another example with the specificationsz, = 0.5, N = 23, L = 2,
M = 10,y = 05and £ = 0. For this example it is clear that A = 10 so
the optimization is with respect to ten parameters. This converges in 11 iterations.
Examples 3 and 4 both show that our design method can be used for high-order
filters. A comprehensive list of the specifications for which half-band filters with non-
negative frequency response were successfully created for all cases up to N = 25 can

be found in Appendix D.
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Figure 3.7: Magnitude response plot for a half-band filter produced for the specifica-
tionsz, = 0.5, N = 23,and L = 2.
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Figure 3.8 is a plot of the zeros of the half-band filter of Example No.4. This
figure too shows suitable double transmission zeros on the unit circle as would be

appropriate for spectral factorization.
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Figure 3.8: Zero plot for the half-band filter (Example No.4) produced by the proposed
new algorithm for the specifications z, = 0.5, N = 23, L = 2, M= 10,y = 0.5
and £ = 0.
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3.4.5 Example No.5

We now show an example where it is observed that in the case when the optimization
takes place with respect to an odd number of parameters, if the input specifications
are correctly chosen then we can succeed in getting two additional zeros at = = —1.
Figure 3.9 shows the magnitude response of a half-band filter having the following

specifications z, = 0.5, N = 3,L = L. M = 11,y = 0.5 and £ = 0.00068175.
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Figure 3.9: Magnitude response plot for a half-band filter produced for the specifica-
tionsz, = 05, N = 3,and L = 1.
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Figure 3.10 is a plot of the zeros of the half-band filter of Example No.5. We
observe the presence of two additional zeros at = = -1 in this case. The presence of

this additional pair of zeros is of importance and will be discussed in the succeeding

sections.
FIR Filter Zerosa=0.5; b=1, N=3; L=1; M=11; y=0.5; E =0.00068175
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Figure 3.10: Zero plot for the half-band filter (Example No.53) produced by the pro-
posed new algorithm for the specifications z, = 0.5, N = 3, L = 1,M= 1ll,y =
0.5 and £ = 0.00068175.
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3.4.6 Some observations

In all of the examples in this section, we notice that the Gl-algorithm seems to work
extremely well for our purposes. It is more efficient in the sense that it is more
accurate and it converges very quickly and hence it’s computation time is much less

than the methods proposed in [9]. We also observe the following :

e As noted in [7],the optimization process occurs with respect to the elements of
the vector @ = [a; a2 --- ax|T, where A = (N +1)/2 — L. We recall that
the half-band filter that results will have 2N + 1 (N is odd) impulse response
coefficients, and it’s system function P(z) will have 2L zerosat = = —1. A large
L implies a high regularity. For a solution to the spectral factorization problem
to exist, it is stated in [7] (p. 46) that K must be an even number. Using the
new design algorithm we notice a phenomenon that is inconsistent with what
is stated in [7]. We notice that a solution to the spectral factorization problem
exists for all K. In fact in some cases we even manage to get an additional
pair of zeros at z = —1. And hence the claim made in [7] and a similar claim
made in {14] are both inaccurate since they maintain that the technique used
in designing the half-band filter works only when the number of coefficients of

K are even.

e When K is even, i.e., when the number of elements in the vector a are even,
then the number of alternations in the frequency response in the stop band (i.e.,

the number of times the frequency response in the stop band changes from zero
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to a positive value and vice-versa) is exactly equal to K. When A’ is odd, the

number of alternations in the frequency response in the stop band is exactly

equal to A" — 1.
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Chapter 4

Spectral Factorization and
Orthonormal Wavelets

4.1 Introduction

In Chapter 3 we have discussed a new design algorithm for a half-band filter. To
obtain the low pass filter that parametrizes a wavelet, essentially one must spectrally
factorize an appropriately designed half-band filter. The basic theory is summarized

as follows in Cooklev [1]:

Theorem 4.1 (Cooklev) [7] e To design a two-channel perfect reconstruction (PR)
filter bank it is necessary and sufficient (i) to find a P(z) satisfying Equation (2.17),

and (i) factor it as P(z) = Ho(z)Go(z2)-

Proofe The proof of this theorem has been discussed in Herley and Vetterli [37].0
In this theorem filter Hg(z) is low pass. For orthonormal wavelets, P(z) must
have a nonnegative frequency response !. This is also needed for orthonormal filter

banks. More specifically, we wish to find H(z) such that P(z) = H(z)H(z!). The

1The necessity of this should be apparent from considering the function R(z) in Chui [19], pp.
229-230.
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Féjer-Riesz theorem (see {10], p. 157) guarantees the existence of the low pass factor
H(z). The theory in Chapter 3 shows how to find P(z), and we see that H(z) is a
spectral factor of P(z).

In this chapter we summarize different methods of spectral factorization and de-
termine the most suitable one. Having found the spectral factor we then discuss an
iterative procedure to construct orthonormal wavelets and present some simulation
results, which again authenticates our claim that the new design algorithm is superior
and more efficient than the methods that were used before in [7], [9]. We substanti-
ate our claims by comparing the regularity and the frequency response of the scaling
function constructed using the new design algorithm with that of the widely used
Daubechies scaling functions. We also compare the frequency response of the scaling
functions obtained by the new design algorithm with the ones designed by Cooklev’s

original design method.

4.2 Spectral factorization for the Design of Two-
channel Orthonormal Filter Banks

Theorem 4.1 illustrates that the design of a two-channel orthonormal filter-bank con-
sists of essentially two steps : obtaining P(z) = H(z)H(z™!') (which we call the
product filter) which is the analytic continuation of a nonnegative magnitude re-
sponse function of a half-band filter on the unit circle, and then finding H(z) by
spectral factorization. In general, no solution exists in closed form. The spectral fac-

tor is not unique, and we can find all possible solutions by finding the zeros of P(z)
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and grouping them appropriately. We are interested in the minimum phase spectral
factor, since it is unique. We now describe some commonly used spectral factorization
methods. It must be noted that we are dealing with half-band filters having only real

coefficients.

4.2.1 Spectral Factorization by Completely Factoring a Poly-
nomial
The most straightforward method of spectral factorization is to perform a complete

factorization of the polynomial. The advantages are :

o Complete factorization of a polynomial works very well for polynomials of low

order.

e Any spectral factor (not only the minimum phase one, i.e., having no zeros

outside the unit circle) can be found.

The disadvantage of this method, however, is that for higher order polynomials, this is
slow and /or numerically unreliable. While the zeros of the polynomial can be found,
the numerical error can be quite significant, especially when the impulse response

coefficients are computed from these zeros.

4.2.2 Spectral Factorization Using the Cepstrum

This is a method for finding the unique minimum-phase spectral factor without finding
the zeros of the polynomial. The technique uses some fundamental properties of the
complex cepstrum of a sequence, which is the inverse z-transform of the natural loga-

rithm of the z-transform. The idea is to convert multiplication P(z) = H(z)H(z™!)
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into addition. Formally, log (3" p(n)z™") (where p(n) is the impulse response of the
product filter P(z)) is easily separated into positive and negative powers of z. The
easy separation into log H(z~'} + log H(z) is the key advantage of this method. Let
the sequence {(n) be the complex cepstrum of p(n) [10]. The series for L(z) converges
in an annulus of the complex plane. However, if a root of P(z) is present on the unit
circle, then L(z) = log P(z) will be infinite at that root and the series would not
converge. Hence, this method fails in the case when zeros are present on the unit

circle.

4.3 Bauer’s Spectral Factorization and it’s Suit-
ability

There are significant practical difficulties in computing the spectral factorization of

P(z), especially when P(z) has zeros on the unit circle, which is a frequent occurrence.

Half-band filters with a non-negative frequency response generally have multiple zeros

on the unit circle, other than those imposed at = = —1.

An efficient matrix spectral factorization algorithm is necessary that can handle
zeros on the unit circle and also one that is sufficiently reliable for polynomials hav-
ing a high degree (i.e., filter’s having large support). We observe from the various
examples provided in the previous chapter that we do have zeros on the unit circle.
Some of the widely used spectral factorization algorithms mentioned in the previous
section cannot handle such zeros. Cooklev [7] suggested the use of the Bauer-type

factorization of Youla and Kazanjian (38], because it can handle zeros on the unit
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circle. We therefore use the same algorithm. An outline of the Bauer factorization
has been given in Cooklev [39] and is briefly described here. It must be noted here
that the Bauer method is slower (though perhaps it can be sped up using fast Toeplitz
factorizers) and less accurate as compared to the other popularly used algorithms.
The Bauer method is based on Cholesky factorization of a banded Toeplitz corre-
lation matrix. The nonzero elements in the rows of the Cholesky factor converge to
the minimum phase solution. We restate the problem once again:
Given P(e’¥) > 0 for all real w; find a polynomial H(z) that satisfies P(z) =
H(z)H(z™'). This is a problem of spectral factorization of scalar polynomials that
are nonnegative on the unit circle.
It is clear that if the polynomial P(z) is Hermitian (i.e.,P(z) = PH(z) where
PE(z2) is the transpose conjugate of P(z) obtained by conjugating every element of

P7(z), the transpose of P(z)), then the Toeplitz matrices

p(0) p(1) -+ p(m)
T = P(Tl) P(:O) P(m:" 1) (4.1)
p(—m) p(-m+1) ---  p(0)

of respective sizes (m+1) x (m+1), wherem > N, are Hermitian and p(k) = p*(—k).
The choice of m influences the numerical precision and should be as large as possible.
For polynomials with real coefficients (as in our case) T, is a real symmetric matrix.
The matrices T}, are also nonnegative definite.

The coefficients of the minimum phase factor can be determined by means of the

following two-step procedure:
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® Step 1 : For every m > N calculate the unique Cholesky factorization

Tw = LY L (4.2)
where
m 0 --- 0
mooymo
L, = ‘:° i : (4.3)
l:o % lrmnm

is lower triangular with positive diagonal entries.

® Step 2 : For every fixed rand k,r > k£ >0,

lim [ = h(r) (4.4)

These two steps have been presented in [39], and represent the algorithm of Bauer.

4.4 The Interpolatory Graphical Display Algorithm
(IGDA)

We have enumerated the basic steps leading to the design of a two-channel orthonor-
mal filter-bank in the previous section. The main objective of this is to design or-
thonormal wavelets. There are two main approaches to computing the wavelet and
scaling functions. One is an iterative procedure sometimes called the cascade algo-
rithm [40], and the other is the Interpolatory Graphical Display Algorithm (IGDA) as
given in [19] and [20], which is also called dyadic expansion [40]. An advantage [41] of
the IGDA over the cascade algorithm is that, in principle, it gives the exact answer in
a finite number of steps, though only on dyadic points, i.e.,277Z = {k/2/ |k € Z},
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where Z is the set of integers, and j > 0. Noting this advantage we use the IGDA to
construct the wavelet function from the low pass filter coefficients k(n) of H(z) that

are obtained after spectral factorizing the product filter.
4.5 Simulation Results

Now using Bauer’s method for spectrally factorizing the product filter P(z) and using
the IGDA, we present some simulation results which will confirm our claim that the
new design algorithm produces better results than Cooklev’s approach and we will
also compare the regularity and the frequency response characteristics of the new
scaling functions with the well known Daubechies scaling functions [4]. The first
example illustrates a comparison of the scaling and wavelet function constructed
using Cooklev’s original method [7] with their counterparts constructed using the

new design method.
4.5.1 Example No.1

Figures 4.1 and 4.2 are the plots of the scaling and wavelet functions constructed
from the low-pass filter derived by spectrally factorizing the product filter having
the specifications zs = 0.5, N = 17 and L = 7 using Cooklev’s design and
the new design algorithm, respectively. We observe that the scaling and wavelet
function obtained using the new design algorithm is " visually smoother” than the one
obtained using Cooklev's method, this demonstrates that unlike Cooklev’s method

the new design algorithm leads to the convergence of the magnitude response of
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the product filter (as seen in the previous chapter), which in turn is responsible for
the construction of smoother scaling and wavelet functions. Hence, the new design

algorithm is superior to Cooklev’s approach.
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Figure 4.1: Scaling and wavelet functions constructed from the low-pass filter de-
rived by spectrally factorizing the product filter using Cooklev’s method, having the
specifications z, = 0.5, N = 17,and L = 7.
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Figure 4.2: Scaling and wavelet functions constructed from the low-pass filter derived
by spectrally factorizing the product filter using the new design algorithm, having
the specifications z, = 0.5, N = 17,L= 7, M =11,y = S5and £ = 0.
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4.5.2 Example No.2

This example shows that the new design algorithm is also suitable for filters having
large support since it leads to smooth scaling and wavelet functions. Figure 4.3 is the
plot of the scaling and wavelet functions constructed from the low-pass filter derived
by spectrally factorizing the product filter having the specifications z, = 0.5, N =
35 and L = 16 (Example No. 3 of Chapter 3). This example authenticates the

claim in [4] that the larger the support length the smoother the wavelet.
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Figure 4.3: Scaling and wavelet functions constructed from the low-pass filter derived
by spectrally factorizing the product filter using the new design algorithm, having
the specifications z; = 0.5, N = 35, L =16, M =10,y = .5and £ = 0.
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4.5.3 Example No.3

Figure 4.4 is a plot of the scaling and wavelet functions derived by spectrally factor-
izing the product filter of Example No.5 of Chapter 3. This example is particularly
interesting since it looks exactly the same as the 4-tap Daubechies scaling and wavelet
functions. It is also observed that as the size m of the Toeplitz matrix representation
of the product filter P(z) given by Equation (4.1) (used in the spectral factorizer)
increases, the new scaling and wavelet function tends to the Daubechies scaling and
wavelet functions. In this case the size of the matrix T, is 300. It must be noted
here that this is an example in which there is an extra pair of zeros at z = —1 and
hence it has similarity to it’s Daubechies counterpart (since not only is the support

length the same, but the number of zeros at z = —1 is also the same).
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Figure 4.4: Scaling and wavelet functions constructed from the low-pass filter derived
by spectrally factorizing the product filter using the new design algorithm, having the
specifications 2z, = 0.5, N = 3,L = 1, M = 11,y = .5and £ = 0.00068175.
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4.6 Regularity

In this section we introduce an important property relating to the wavelet function.
The continuous time measure of wavelet smoothness is regularity. Since the wavelet
is determined from the scaling function by means of high pass filter taps [4], it is the
smoothness of the scaling function (infinitely iterated low pass filter) which determines
the smoothness of the overall wavelet system. Smooth wavelet bases are deemed to be
important for several applications, and particularly for image compression where the
goal is to limit spurious artifacts due to non-smooth basis functions in the presence
of quantization of the individual subbands.

In Chapter 2, Section 2.7.2, we claimed that the non-convergence problem of the
magnitude response of the half-band filter would lead to irregular wavelets, which
has been shown in Section 4.5.1. In this section we compare the regularity of the
wavelets constructed using the Daubechies method [4], to the new method that we
have designed.

Daubechies [4] showed that the L-vanishing moment construction led to scaling
functions of arbitrary differentiability, if L is taken large enough (L is the number of
zeros at z = —1). Another refined tool for measuring the regularity (differentability)
of the scaling function is the Sobolev notion of differentiability {42], [43].

Given a real number s, the Sobolev space H?® is defined by

H = {$w) | /R 16(w)2(1 + |w[?)* dw < oo} , (4.5)

where @(w) is the Fourier transform of the scaling function. (Note that dw) =
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®(w).) It has been shown [42], [43] and [44] that the Sobolev smoothness of the
scaling function is determined by the maximum eigenvalue of a finite dimensional
linear operator T associated with the coefficient sequence h(n) of the low pass filter
(i.e., H(z) factor of the product filter P(z)).

As described in [42], [43] and [10], the explicit formula of the Sobolev smoothness

s(¢) of the scaling function ¢ is given by
s(¢) = — logs(|Amax(T)]) , (4.6)

where T = (| 2)2HHT and Ame:(T) is the maximum eigenvalue of T excluding

A = 1,...(l)2L-l

2
Now using Equation (4.6) we compare the regularity of the wavelet system based

on both the design methods mentioned above. The results are tabulated for a few

examples with specifications as follows:

Filter length {| Daubechies design | New design

s(¢) s(¢)

4 tap 1 1

6 tap 1.415 1.42

8 tap 1.775 1.7809

10 tap 2.096 2.0535

12 tap 2.388 2.3613

14 tap 2.658 2.4780

The following points are worth observing:

e Equation (4.3) is of importance since it signifies that the factor (1 + |w|?)*
grows when w goes to +oo, so for the integral to be finite, |#(w)[?> must be
decreasing sufficiently rapidly with |w|. This also tells us about the smoothness
of ¢(¢) : If the integral in Equation (4.5) is finite then by Parseval’s relation
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the sth derivative of ¢(t) is an L2-function. Relating this back to ordinary
derivatives, there is a theorem called the Sobolev embedding theorem that says
if the sth derivative of ¢(t) is in L?(R), then ¢(t) is {(s—3)] times differentiable

(differentiability implying smoothness).

e The Sobolev regularity of the scaling functions constructed using the new design
in the 4-tap, the 6-tap and the 8-tap (where tap refers to the filter coefficients)
cases is equal to or greater than those obtained using the Daubechies construc-
tion method. The presence of an additional pair of zeros at z = —1, as noted

in Section V, is the main cause of this.

o Even though the half-band filter is designed in such a way that it will always have
one zero less at z = —1 as compared to the Daubechies filters (except in certain
cases where additional zeros can be obtained when optimization takes place
with respect to an odd number of parameters as seen earlier), we notice that

the scaling function obtained using the new design algorithm is quite regular.

e The size of the Toeplitz matrix T,, given in Equation (4.1), representing the
product filters used in the above cases for the spectral factorization (using the

Bauer method) was m = 300.
4.7 Additional Observations

In this section we make some observations regarding the frequency spectrum of the

scaling functions obtained by using the Gl-algorithm and compare it with the well-
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known Daubechies scaling functions [4] and to the scaling functions obtained using
Cooklev’s algorithm. In communications, especially in waveform design, it is impor-
tant to have functions that have spectra with steep roll-off (narrow transition band),
and have low side lobes, to avoid adjacent channel interference.

It is interesting to compare the frequency response of the Daubechies 4-tap scaling
function with that of the 4-tap scaling function obtained using the new algorithm,
because both the scaling functions not only appear to be very alike, they also have
the same Sobolev regularity. Figure 4.5 shows this comparison. In this case, we
observe that the two frequency responses overlap perfectly. The Fourier transform of

the scaling function ¢(t) was computed using

dw) = [ H(H) | (4.7)
k=1
where
. 1N .
H(e¥) = 53 h(k)e™* . (4.8)
~ k=0
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Figure 4.5: Comparison between the spectrum of the scaling function of the
Daubechies 4-tap scaling function and the 4-tap scaling function obtained using the
new design algorithm.

90

35



Figure 4.6 shows the comparison between the spectra of the 8-tap scaling function
obtained using Cooklev’s design [7] and the scaling function obtained using the GI-
algorithm. Here we notice that the spectrum obtained using the Gl-algorithm is
superior to that obtained using Cooklev’s method in terms of having much lower
side lobes. This figure is evidence of the efficiency of the new design algorithm over

Cooklev’s method.
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4.8 Conclusions

In this section we observed that the scaling and wavelet functions constructed using
the new design algorithm are smoother than those constructed by Cooklev’s method
for the same specifications. An important point to be noted here is that using the new
algorithm it is possible in certain cases, when optimization takes place with respect
to an odd number of parameters, to achieve an additional pair of zeros at z = —1.
As a result of this phenomenon we actually obtain scaling functions that not only are
more regular than those of it’s Daubechies counterparts, but they also have similar

frequency responses.
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Chapter 5

Conclusions and Suggestions for
Future Research

5.1 Introduction

” In reasearch, the horizon recedes as we advance, and is no
nearer at 60 than it was at 20. As the power of endurance
weakens with age, the urgency of pursuit grows more in-

tense...and research is always incomplete ”

- Mark Pattison (1875)

This thesis presented an algorithm for the design of half-band filters which was
then used to construct orthonormal wavelets and it completely eliminated the limi-
tations in Cooklev’s method.

In this chapter we first summarize the thesis, and then along with our conclusions

we provide some suggestions for future research.
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5.2 Summary and Conclusions

We first introduced a general overview of the concepts of wavelets and multiresolution
analysts in Chapter 2. We presented a detailed outline of Cooklev’s half-band filter
design method via Bernstein polynomial expansions. We also stated the limitations
of Cooklev’s method, namely zero splitting and non-convergence of the magnitude
response of the product filter.

The most important contribution of our theory is presented in Chapter 3. As
mentioned earlier, the main aim of this thesis was to eliminate the limitations that
existed in Cooklev’s method. We completely eliminate the zero splitting problem
by factoring out the zeros at = = —1, and the problem of non-convergence of
the magnitude response of the product filter was eliminated by using the Goldfarb-
Idnani (GI) Dual Algorithm for the optimization problem. We observed from the
various simulation results provided that not only does the Gl-algorithm guarantee
convergence of the magnitude response of the product filter, but it also leads to another
contribution of this thesis: the rebuttal of the claims made in [7] and [14], that the
technique used in designing half-band filters to construct orthonormal wavelets works
only when the optimization process occurs with respect to even number of coefficients
(i.e.,even K’). We observed that the half-band filters designed using the Gl-algorithm
also worked for an odd number of coefficients of (i.e., odd K).

Having eliminated the limitations we proceeded to construct the scaling and

wavelet functions as described in Chapter 4 using Bauer’s spectral factorizer, and
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the IGDA was used to plot solutions to the two-scale equations that yielded the scal-
ing and wavelet functions. From the simulation results provided in this chapter it
seems clear as stated in [45], that many smooth wavelets are similar in shape. It
is observed that the scaling and wavelets functions iook simiiar to their Daubechies
counterparts both in the time and frequency domains. We also observed that not
only are the new scaling and wavelets functions more regular than those obtained by
Cooklev’s method, but also in some cases they are more regular than their Daubechies

counterparts.
5.3 Suggestions for Future Work

? Every solution breeds new problems ”

- Arthur Bloch

Even though we have been successful in obtaining a more efficient design method
than Cooklev’s (7], or Zarowski's [9], there still remain some loop holes to be closed.
We suggest the following steps that could be taken in the hope of achieving a better

design method :

e The Multiple Exchange (ME) approach [31] should be adopted. Apparently,
since it also uses the K-T conditions to check for optimality, this should be a
useful strategy. This would also convert the problem into a PCLS optimization
problem, and therefore the advantages of the PCLS design as described in [31]

could be used.
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e The numerically stable method of QR decomposition for the Gl-algorithm [29]
could be implemented in the hope of making the algorithm even more numeri-

cally robust.

Not only could the algorithm be modified as explained above, but we could also
explore other methods of comparing the performance of the new design algorithm,
with that of Daubechies. Cooklev in his Ph.D thesis (7] mentions that his filter bank
outperformed the filters of Daubechies (in a number of computer simulations in image
coding), in terms of the S/N ratio, assuming the same compression ratio. The same
tests could be conducted to compare the new design algorithm with Cooklev’s and
Daubechies method.

To construct symmetric wavelet functions, a future research direction may be to
extend the usage of the new algorithm to design biorthogonal filter banks. Biorthog-
onal filters allow linear phase and lead to symmetric scaling and wavelet functions.
In this thesis we have considered filter banks having real-valued coeflicients only. It
would be interesting to extend the new design to the complex coefficient case, which
can also lead to symmetric wavelet functions (see Lawton [46]).

Another interesting avenue of research could be to extend this theory to M-band
and also multidimensional filter banks. Linear-phase M-band wavelets are useful in
image coding [47], whereas multidimensional filter banks and wavelets are extremely
useful when 2-D and 3-D still images and video signals are coded.

Lastly, further work needs to be done in developing a better spectral factorizer for

the case where there are zeros on the unit circle. It must be noted here that the Bauer
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method is slower (though perhaps it could be sped up using fast Toeplitz factorizers)
and less accurate as compared to other popularly used algorithms, except for the fact

that most other methods do not cope well with zeros on the unit circle.
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Appendix A

Chebyshev Polynomial Expressions
to Orthogonalize the Bernstein
Polynomials

According to the orthogonality relation of Chebyshev polynomials of the first kind
L -1
/ Tu(2)Tn(z) (1 - 2%) dz = Sumha (A1)
-1

where ho = 7 and h, = 7 (n # 0). Now let the Bernstein polynomial given in
Equation (2.51) in Chapter 2 be expressed as a series expansion in terms of Chebyshev

polynomials according to

N
bY(z) = Y caTu(cos w) (A.2)

n=0

where also for z € [0, 1] we define
cosw = 1—-2z .
Therefore,

N
W(z) = 3 caTu(l —2z) . (A.3)

n=0
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Using y = 1 — 2z, multiplying by Chebyshev polynomials, and using their orthogo-

nality property relations gives

(V)L (BY re0-0" a -a [ menwo-n e

-1 =

(A.4)
so that
N .- 1 ! —k—L
( k )2 VL a—nf R T Ty = eahn (4.5)
and therefore
-1 1 1 1
ahn( §) = [a-wtaen e ()
Now using Gauss’ hypergeometric series we have
Ta(z) = Z (—1')’;%’ 27P°(1 —z)? (A.7T)
p:O p'(-Z.)P
where
['(a +
(@ = ala+D(a+D)@+p=1) =~ D (48)

Therefore (A.6) becomes

N -1 N " (—n)y(n)p2P [1 -y Nkl
c"hn(") ? = 2, [ a-prt iy ray o (A9)

Now using the beta integral in Equation (3.196.3) of [48]
a 1

[ b @ty s = (a=8) 9 Bz, ) = [ (L) (1=t = 2707 Bz, )
b -1

Now, we may define y according to

1 1 1
p+k—§—p+k+§-1:y_p+k+§
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and similarly, we may let

Therefore,

1 ' 1
[ o ta—etae = 2Vl p(e,y) = BN —k+ 2, p+k+3) -
-1 - -

According to Equation (6.12.1) of [49]

_ [(p) F(q)
Bra) = T,

so that

1
T=101 _ =iy — oN+p
La+ota—gra =2 TN +p+1)

Also from Equation (A.8),

1 _I‘(p+k+§)
(k+§)p' C(e+d)

Using (A.11) and (A.12) in Equation (A.9)

Z": (=n)p(n)p o Clp + K+ LNV —k+3)

p

v Cmsmds (B +5) p(k + DOV = k+ §)
=" (g)p(¢v+ 1) (N +1)

oN (—n)p(n)p (k + %),, T(k+ LN —k+13)
1
= p(3), (V+ 1)y N?
Therefore, from Equation (2.1.1.2) of [50]

O(N—k+3Hl(p+k+3)

nD(k+HD(N —k+ 1)

11
= 3F2(—n,n,k+§;§,N+1)2 NI
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Using (A.15) in (A.9) we get

h (N)—lzN _ [(k+4HT(N —k+3)

11
N ¥ 3F2(—n,n,k+3;§,N+1)2N (A.16)
\ [T(k+HI(N —k+ 1) ) 11 ..
=, = ;zl—( IZ - 2 N' 2'_,Fg(—n,n,k+;;3,[v+1). (A.17)
Therefore,
en = gty PN Py (—mom b+ B 5 N +1) (A.18)

From Equation (2.25) of [51]

1 (2k)!
P(k+3) = gog V7 - (A.19)
Using this in (A.18) we get

(2k1) lng-kn!
22F k1 2200=F) (N —k)!

11
k!(N—k)! 3F2(_n7n’k+§|§1N+1)1

_71'
c‘l‘l_hn

or

. = T _CRLRN —k)

11
hn 22N (KN)Z (N — k)12 3F2 (—n,n,k * 3 §,N + 1) : (A.20)

Hence, (A.3) becomes

W (z) = TN, & poarineny oF2 (—n,n,k+§;§,N+1) Ta(l — 22). (A.21)
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Appendix B

Matlab Routines Implementing
Supporting Functions

The following routines are the functions that are called by the main programs. The
equation numbers cited in the in-line comments of the routines contained in this

appendix refer to equations in Chapter 2 and 3 of this thesis.

%
% fact.m
%

% This function computes n ! (i.e., n~factorial).
function m = fact(n)
ifn >0

j=1

for i = 1:n

i = 3%

end

% binco.m
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%
% This function returns binomial coefficient

% “n choose m".

function b = binco(n,m)
if (m >=0) & ( (n-m) >= 0 )
b = fact(n)/( fact(m)*fact(n - m) );

else

%

% u.m

%

% This routine computes certain integrals needed by
% Cooklev’s theory of half-band filter design.

% The integrals are used to compute the elements of a
% certain matrix and a certain vector that ultimately

% give the filter coefficients.

% The integral computed is:

% b m n
% y=int x (1 -x) dx
% a

% We have a <= b, and m,n >= 0.

function y = u(a,b,m,n)

y =0;

for k = 0:n
terml = ((b~(m+1))*((1 - b)~k));
term2 = ((a~(m+1))*((1 - a)~k));
y = terml - term2 + k*y;
y=y/(k +m+ 1);
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end;

%
%
%

makeR.m

% This routine makes the matrix R (calligraphic font) in (2.81)

%
A
%
A

of the document "Cooklev’s Theory of Half-Band Filter Design."

Note that 0 < a < b = 1, and that 0 <= L <= (N-1)/2.

function R = makeR(a,b,N,L)

for k = 1:(N+1)/2 - L

h
4
4
%
%
h
%
%

for j = k:(N+1)/2 - L

terml = u(a,b,2«(N+1-L)-j-k,2%*(L~1)+k+j);
term2 = u(a,b,N+j-k,N+k-j);
term3 = u(a,b,N+k-j ,N+j-k);
term4 = u(a,b,2%(L-1)+k+j,2%(N+1-L)-j-k);
R(k,j) = terml - term2 - term3 + term4;
R(k,j) = binco(N,j+L-1)*binco(N,k+L~1)*R(k,j);
R(j,k) = R(k,j);
end;

end;

maker.m

This routine makes the vector r in (2.81)
of the document "Cocklev’s Theory of Half-Band Filter Design."

Note that 0 < a < b =1, and that 0 <= L <= (N-1)/2.
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function r = maker(a,b,N,L)

for k = 1:(N+1)/2-L
r(k) = 0;
for i = 0:(N-1)/2
u(a,b,N+i+1-L-k,N+L+k-i-1);
u(a,b,L+k+i-1,2*N+1-L-k-1i);
r(k) = r(k) + binco(N,i)*binco(N,k+L-1)*(terml - term2);

end;

terml

term2

end;
%
A maker00.m
%
% This routine makes the matrix element r00 in (2.78)
% of the document "Cooklev’s Theory of Half-Band Filter Design."
%
% This involves the use of Equation (2.73).
%
% Note that 0 < a < b = 1.
%

function r00 = maker00(a,b,N)

r00 = 0;
for k = 0:(N-1)/2
for j = 0:(N-1)/2
r00 = r00 + binco(N,j)*binco(N,k)*u(a,b,j+k,2*N-j-k);
end;
end;
%
% v0.m

%

% This routine implements the function in Equation (2.72)
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% of "Cooklev’s Theory of Half-Band Filter Design."
%

% NOTE: N is odd.

A

function y = v0(x,N)

0;

for k = 0:(N-1)/2

y = binco(N,k)*(x"k)*((1 - x)~"(N-k)) + y;

end;
%
% vk.m
%
% This routine implements the function in Equatiom (2.73)
% of "Cooklev'’s Theory of Half-Band Filter Design."
%
% NOTE: N is odd, and 0 <= L <= (N-1)/2. As well, we have
% k=1,2, ..., (N+1)/2 - L .
%

function y = vk(x,k,N,L)

(x~ (N+1-L-k))*((1-x) " (L+k-1)) ;
(x~(k+L-1) ) *((1-x) “(N+1-L-k));
y = binco(N,k+L-1)*(terml - term2);

terml

term2

%

h H.m

h

% This routine evaluates the matrix V in Equation (2.5)
% of this report.

h

% NOTE: N is odd, and 0 <= L <= (N-1)/2.
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%

function Vx = H(x,N,L)

vk2 = [I;

for k = 0:(N+1)/2 - L
if k ==
vo2 = vO0i(x,N);
end;
if k>0
vk2 = [vk2 vki(x,k,N,L)];
end;
end;
Vx = [v02 vk2];
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Appendix C

Matlab Routines Implementing
Main Programs

%****************************************************
%

% Implementation of the Goldfarb-Idnani Algorithm

% based on the paper

% " A Numerically Stable Dual Method for Solving

% Strictly Convex Quadratic Programs "

% Mathematical Programming 27 (1983) pp. 1-33

% GI_Algo.m

%************************************************#***

% G =n X n positive definite matrix

% a2 = n vector

% C=n x m matrix

% b = m vector

% E = perturbation parameter (only used sometimes to
% assist in convergence to the Magnitude response
% in most cases it’s value is zero).

% AUTHOR : Sanjay C.Verma (Queen’s Univerity)
Y e mmm— e e



%
function [x,iter] = GI_Algo(G,a,C,b,E)

A e e et &
%

% Step 0 : Find the unconstrained minimum

%

Z********************************** F ok e e e ek ek e ok K kK kK

Gl = inv(G);
= =Gl#*a;

G1;

.—.0;

Qo om K
"
O

% initialize variables for iterative loop

iter = 1;
add = 0;
del = 0;

% Evaluate constraint function

S = (C'*x - b)’;

% # of constraints in the constraint set

=~
"

size(S,2);

O e e e e o s e s o ko e e e ke e ek ook e o A ek e ok ke ok ok
%

% Step 1 : Choose a violated constraint if any
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%

%**********************#**********#******************

while min(S) < -10e-10

if add == 1 | iter == 1

% Reinitialize the add variable

add = 0;

% To evaluate the MOST violated constraint

% (i) First evaluate the set V such that it

% covers all constraints that do not
% belong to the active set A
w=[;

for vcon = 1:K

if isempty(A) "= 1

if A "= vcon
w = [w vcon];

end;

else
w = [w vcon];

end;

end;

% (ii) Now find the MOST violated constraint
% ie: find the most negative value of S

wsize = size(w,2);
s2 = [1;
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for vconl = l:wsize
s2 = [82 s(:,w(vconl))];

end;

constraint = min{S2);

% (iii) Once the most violated constraint has
% been selected, assign this constraint

% number to "p".

for vcon2 = 1:K
if S(vcon2) == constraint & A "= vcon2
p = vconZ2;
end;

end;

% Select the pth column of the matrix C

nplus = C(:,p);

if q ==
u = 0;
uplus = 0;
else
uplus = [u;0];
end;
end; % End of the condition (if add == | iter == 1)

%********************************************************#**

h
h
h

Step 2 : Check for feasibility and determine a new S-pair

%***********************************************************
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if del == 1 | iter >= 1

Y reinitialize the del variable

if isempty(A) ==

H = G1;
Zz = H*nplus;
r = 0;

else

Ns = N'*G1i*N;

Nstar = inv(Ns)=*N’*G1;
N2 = N*Nstar;

cl = size(N2,2);

H = Gi*(eye(cl) - N2);
Z = H*nplus;
r = Nstar*nplus;

end;

'/. ---------------------------------
% Step 2(b) : Compute step length
’/. .................................

% (i) Partial step length t1

% realmax is equivalent to infinity

if r <=0 | q ==
t1 = realmax;

else
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ur = [;
for j = 1:q
if r(j) > 0
ur = [ur wplus(j)./r(j)]1;
end;
end;

t1 = min(ur);

% selecting the constraint that needs to be dropped

%, if a case arises

Ymmm————— e e e e ke e e

cu = size(ur,2);
for cdrop = 1l:cu
if ur(cdrop) == ti1
k = cdrop;
break;
end;
end;

end;
% (ii) Full step t2
if abs(z) ==
t2 = realmax;
else
t2 = -S(p)/(z’*nplus);
end;

% (iii) Step length t

t = min(t1,£2);
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'/. _______________________________________________
% Step 2(c) : Determine new S-pair & take a step

-
Y emm e m e ————————m e
S
if t == realmax

00Ps = 1

break;

end;

% (ii) Step in dual space

./. ________ - - - -

if t2 == realmax

ifr==0

uplus = uplus + t;

else

uplus = uplus + t*[-r;1];

end;

0/‘ ___________________
+ DROP CONSTRAINT k

Yo e

e

Y mm e e e
A Update A : Drop the kth constraint from A

c/. ___________________________

o~
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for dropA = 1:q
if (dropA) "=k
A1 = [A1 A(dropA)];
end;
end;
A=Al

n/. ___________________
% Decrease q by one

o/. ___________________

ul = [0;
cul = size(uplus,1);
for dropu = l:cul
if dropu "= k
ul = [ul;uplus(dropu)];
end;

end;

Ndrop = [1;
%42 = sort(4);
for Nd = 1:q
Ndrop = [Ndrop C(:,A(Nd))];
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end;
N = Ndrop;

A - -

% GOTO Step 2(a)

del = 1;
end; % end of (if t2 == realmax)

% (iii) Step in primal and dual space

Y- - -

if del "= 1

% Evaluate the x variable

X = X + t*z;

Y- e e e e e o e P o

% Evaluate the tolerance parameter to shift the impulse
% response slightly above zero so that there is no

% splitting of double zeros on the unit circle.

ep = size(b,1);
Etol = [J;
for e = 1:ep

Etol = [Etol;E];

end;

% Use this tolerance parameter to evaluate matrix S
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S = (C’#x - b-Etol)’;

P— - e
% If ALL the elements in S are greater than ZERO then
% EUREKA !'!!! :) CONVERGENCE has been achieved. STOP.
S

if min{S) > -10e-9
EUREKA = 1
break;

end;

% Update iteration counter

iter = iter + 1;

% Break out of the loop if the iteration count exceeds

% pre-determined limits

if iter == 100

disp(’Iteration Limit Exceeded....User should try using different ...

INPUT parameters’);
break;

end ;

% Update uplus

if r ==0

uplus = uplus + t;
else

uplus = uplus + t*[-r;1];
end;
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if t == t2

u = uplus;

% Add constraint p

./' ________________
l/. __________
% Update A

C/. __________
A= [Apl;
0/. __________
% Update q

'/. __________
qQ=q+1;
'/‘ __________
% Update N

‘/. __________
Nadd = [;
for Na = 1:q

Nadd = [Nadd C(:,A(Na))];
end;
N = Nadd;

119



% Goto Step 1

add = 1;
end; % end of (if t == t2)

% Update A : Drop the kth constraint from A

A1 = [1;
for dropA = 1:q
if (dropA) "=k
A1 = [A1 A(dropA)];
end;
end;
A = AL,

./. ___________________

% Decrease q by one

o/. ___________________

120



Y%- —_— e ——e————————

% Drop the kth element of uplus

ul = [;
cul = size(uplus,1);
for dropu = 1i:cul
if dropu "= k
ul = [ul;uplus(dropu)]l;
end;
end;

uplus = ul;

% - ——rm———————————— -

% Update matrix N ie: drop the kth constraint

Ndrop = O;
for Nd = 1:q
Ndrop = [Ndrop C(:,A(Nd))];
end;
N = Ndrop;

del = 1;
end; % end of (if t == t1)
end; % end of (if del ~= 1)
end; % end of (if del == 1 | iter >= 1)
end; % end of (while min(S) < -10e-10)
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%***********************************************************
% H_to_plot.m

A

% This routine creates the half-band filter impulse

% response sequence h.

%

% Note that 0 < a < b = 1, and that 0 <= L <= (N-1)/2.

%******************************************#****************

function h = H_to_plot(a,b,N,L,M,x,E)

% Create the alpha parameter vector (Equation (2.81))

x1l = x;
Mi = M;
El1 = E;
bl = b;

= 0;

= 0;

=0;
Nia = [J;
Tha = {1;

R = 2*makeR(a,b,N,L);
r = 2*maker(a,b,N,L);
ro0 = maker00(a,b,N);

% to evaluate Equation (3.12).

c2 = 0;
M = Mi*N;

122



for k = 0:(M-1)
x = x1 + (1 - x1)/(M)*k;
Vx = H(x,N,L);
c2 = [C2;Vx];

end;

sizeC = size(C2,2);

b2 = -C2(:,1);

C1 = C2(:,[2:sizeC]);

c2 = C1’

(alpha,iter] = GI_Algo(R,r.’,C2,b2,E1)

no_of_iterations = iter;

%, Create the e parameter vector (Equation (2.67))

ifL>0
for k = 0:L-1
e(k+1) = 1;
end;
for k = L:(N-1)/2
e(k+1) = 1 - alpha(k-L+1);
end;
for k = (N+1)/2:N-L
e(k+1) = alpha(N+1-L-k);
end;
for k = N+1-L:N
e(k+1) = 0;
end;
else
for k = L:(N-1)/2
e(k+1) = 1 - alpha(k-L+1);
end;
for k = (N+1)/2:N-L
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e(k+1) = alpha(N+1-L-k);
end;
end
% Compute the frequency response of the Half-Band filter
deltaomega = (2%pi)/(2#N+1);
for r = 0:(2*N)
omega = r¥deltaomega;
H(r+1) = exp(-j*omega*N)*e(1)*binco(N,0)*((1+cos(omega))/(2))"N;
for k = 1:N
H(r+1) = H(r+1) + exp(-j*omega*N)*e(k+1)*binco(N,k)* ...
((1-cos(omega))/(2)) k*((1+cos(omega))/(2)) " (N-k);
end;

end;

% Use the inverse FFT to compute to compute the half-band filter

% impulse response sequence

h= real (ifft(H)).’;

% when using this program to plot the magnitude response

% uncomment the next two lines, otherwise when using it for
% plotting the zero-plot or using it with the IGDA comment
% the next two lines.

h2 = [h; N; L; iter;a;b1;M1;x1]

h = h2;
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%*****************************************************#****#**#*****
% Hxplot.m

A

% This routine plots the half-band filter frequency response

% for the filter parameters obtained with the aid of the

% GI-Algorithm (ie: GI_Algo.m)

A

% The filter impulse response sequence is also plotted

%*********************#*********************************************

function Hxplot(h)
h1l = size(h,1)
h3 = [J;
h4 = [J;
for h2 = 1:(hi)
if h2 < (h1-6)
h3 = [h3;h(h2)];
else
h4 = [h4;h(h2)];
end;

end;

h = h3;

N2 = num2str(h4(1));
L2 = num2str(h4(2));
iter2 = num2str(h4(3));
a2 = num2str(h4(4));

b2 = num2str(h4(5));
M2 = num2str(h4(6));
x2 = num2str(h4(7));

subplot(211) ,bar(0:1ength(h)-1,h),grid
xlabel(’Coefficient Index’)
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ylabel(’Amplitude’)
title(’Cooklev Half-Band Filter Impulse Response Sequence’)

L = 100;
a = [11;
(H,w] = freqz(h,a,L);
N = (length(h) - 1)/2;
domega = pi/L;
for k = 0:L-1
Hx(k+1) = exp(j*domega*k#N)*H(k+1);

end;

subplot(212), plot(w,real(Hx)),grid

xlabel(’Digital Frequency’)

ylabel(’Amplitude’)

title([’Amplitude Response of a Cooklev Half-Band Filter ’, ’...

( iter = ’,iter2,’ ; a = ',a2,’; b
9L2) ,; M= ,,sz,; X = ,:x2:, ),])

YA R sk ok ok A ok A ok ARk ok ok kR Ak Rk kR ok
% This routine produces the zero-plots shown in Chapters 2 and 3
% of this thesis.

%

% zeroplot.m

4

% This routine plots the zeros of the filters with

% impulse response sequences h, and g.

% These sequences are generated by makehi.m and

% Hoptfft.m, respectively.
R L L L

function zeroplot(a,b,N,L,M,x,E)
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g = H_to_fact(a,b,N,L,M,x,E);
rg = roots(g);

% Add the multiple zeros of order 2L at z = -1 to
% the zeros of the FIR filter g.

rg = [rg ; -1*ones(2+*L,1)];
clf

theta = 0:.005:2#%p1;

plot(cos(theta),sin(theta),’.’)

hold

for k = 1:length(rg)
plot(real(rg(k)),imag(rg(k)),’o’)%,real(rg(k)), imag(rg(k)),’'+’)

end;

grid

xlabel(’ Real Part ')

ylabel(’ Imaginary Part ’)

N2 = num2str(N);
L2 = num2str(L);
a2 = num2str(a);
b2 = num2str(b);
M2 = num2str(M);
x2 = num2str(x);

E2 = num2str(E);

title([’ FIR Filter Zeros ’,'a = ',a2,’; b= "',b2,’; N="',N2,’;
L="',L2,"; M="',M2,"; x="',x2,’; E=’,E2])

axis(’square’)

./.***********************************************************
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%
%
4
%
A
4
4
h
A
A
4
A

H-to-fact.m

This routine creates the half-band filter impulse
response sequence h with the multiple zeros at z = -1
factorized out (i.e., with the multiple zeros) to avoid

2zero splitting.

In what follows the equation numbers cited refer to
equations in the document "Cooklev’s Theory of Half-Band
Filter design."

Note that 0 < a < b = 1, and that 0 <= L <= (N-1)/2.

'/.**************************#******************** 222222 2 2 2 2 2 2

function h = H_to_fact(a,b,N,L,M,x,E)

% Create the alpha parameter vector (Equation (2.81))
xl = x;
M1 = NM;
El = E;
bl = b;
= 0;
=0;
x =0;
Nia = [J;
Tha = [;
= 2*makeR(2,b,N,L);
r = 2*maker(a,b,N,L);

r00 = maker00(a,b,N);
cz2 =0;

M

= M1x=N;

for k = 0: (M-1)

x = x1 + 1/(2xM)*k;
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vx = H(x,N,L);
c2 = [c2;vx];
end;

sizeC = size(C2,2);
b2 = -C2(:,1);

C1 = C2(:,[2:s1zeC]);
Cc2 c1’

[alpha,iter] = GI_Algo(R,r.’,C2,b2,E1)%,r00);

no_of_iterations = iter;

% Create the e parameter vector (Equation (2.67))

ifL>0
for k = 0:L-1
e(k+1) = 1;
end;
for k = L:(N-1)/2
e(k+1) = 1 - alpha(k-L+1);
end;
for k = (N+1)/2:N-L
e(k+1) = alpha(N+1-L-k);
end;
for k = N+1-L:N
e(k+1) = 0;
end;
else
for k = L:(N-1)/2
e(k+1) = 1 - alpha(k-L+1);
end;
for k = (N+1)/2:N-L
e(k+1) = alpha(N+1-L-k);

end;
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end

% Compute the frequency response of the Half-Band filter with multiple

% zeros factored out to avoid zero splitting.
deltaomega = (2*pi)/(2+(N-L)+1);
for r = 0:2*%(N-L)

omega = r*deltaomega;

H(r+1) =

for k = 0:(N-1)/2
H(r+1) = H(r+1) + exp(-j*omega*(N-L))*binco(N,k)* ...
((1-cos(omega))/(2)) "k*((1+cos(omega))/2) " (N-L-k);

end;

for k = 1:((N+1)/2-L)
H(r+1) = H(r+1) + exp(-j*omega*(N-L))#*alpha(k)* .

binco(N,k+L-1)*(((1-cos(omega))/(2)) ~(N+1-L-k) .

*((1+cos(omega))/(2))~ (k-1)-((1- cos(omega))/(2)) (k+L—1)* ...

((1+cos(omega))/(2)) " (N+1-2¥L-Kk));
end;

end;

% Use the inverse FFT to compute to compute the half-band filter

% impulse response sequence

h= real(ifft(H)).’
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A T R S e L
%

% specfact.m

A

Y e ok R Rk A Rk Rk kR ko Rk ok
%

% This program implements the spectral factorization

% of a polynomial using the Bauer method which

% is based on the Cholesky factorization of a banded

% Toeplitz correlation matrix.

/A

% This program has been taken from the report "On the

% design and implementation of filter bank trees for

% multiple access communications", by Dr.Tedor Cooklev.
A

&1 3 e ok e e e e ek e o e e ok 3K o e 3k 3 2 ek s e ok ke o e ok o sk A ok o ok kR kol ek koK ok ko
.

% ndi is the dimension of each matrix pi
% specify also the size of the matrix (about 10 times
% the size of the filter

function y = specfact(p,m)

len = length(p);
lenh = (len-1)/2;

h
% p must be a half-band filter with positive frequency
% response

h

ndi = 1;

dimt = ndi*(m+1);
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% t is of dimension ndi(m+1) X ndi(m+1)
t = sparse(l:ndi:dimt,1:ndi:dimt,p(lenh+1) ,dimt,dimt);
for n = 1:1lenh
t = t + sparse(l:ndi:dimt-n,n+1:ndi:dimt,p(lenh+n+1),dimt,dimt);

end;

t1 = triu(t,1);
t=t+tl;

u(dimt,dimt) = sqrt(t(dimt,dimt));
u(dimt-1,dimt) = t(dimt-1,dimt)/u(dimt,dimt);
u(dimt-1,dimt-1) = sqrt(t(dimt-1,dimt-1)-(u(dimt-1,dimt))"2);
for j = dimt-2:-1:1

u(j,dimt) = t(j,dimt)/u(dimt,dimt);

for k = dimt-1:-1:j+1

abra = 0;

for m = k+1:dimt

abra = abra+u(j,m)*u(k,m);
end;
u(j,k) = (1/ulk,k))*(t(j,k)-abra);
end;
abra = 0;

132



for m = j+1:dimt
abra = abra+u(j,m)*u(j,m);

end;
u(j,j) = sqrt(t(j,j)-abra);
end;
% UL factorization of a positive definite matrix

% the matrix u i supper-triangular; t = u. u"t; the first column

% of u"t contains the matrix coefficients of the spectral factor.
size(u)

auu = u(1,1:(len+1)/2);

y = full(auu);

su = 0.0;

for n = 1:length(y)

su = su + y(n);

end ;
y = y/su;
Y%end;

Yo sk s ok kR Rk R AR AR R R KRR R
%% Implementation of IGDA Algorithm based on outline in
%% "Notes on Orthogonal Wavelets and Wavelet Packets ",

% by Dr. C. J. Zarowski.

9/, 3 e e ke ke e e sk ok 3k e e ke e 3 e 3K s o e ok ke e e o ke o o ke e e ok ko ok e o ok o e o ok o e ke ok ke sk ok o ok
.

% p=coefficients of low pass filer of QMF bank
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(specfact(Hoptfft4(.5,1,17,1,10,.5,0.001),40));

sum(qw) ;

qw
as

% since for Orthonormal wavelets one of the requirements is
% that all the filter coefficients of the product filter
% should add up to be equal to 2, hence we multiply the coefficients

% by 2 to normalize it.

p=2%qw;

N = size(p,2)-1;
J=8; % J = resolution

size_p = size(p);
p_length = size_p(2);

%y compute q vector

for k=0:N
q(k+1) = (1)~ (N-k-1)*p(N-k+1);
end

for j = 1:(N-1)
for m = 1:(N-1)
index = 2*j - m + 1;
if (index > p_length | index < 1)

M(j,m) = 0;
else
M(j,m) = p(index);
end
end
end

% solve for eigen
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[b,d] = eig(M);
[lambda,K] = sort(real(diag(d)));
num = size(lambda);
pos = i;
flag = 1;
while ((lambda(pos) > 1.001 | lambda(pos) < 0.999) & flag ==1)
pos = pos+l;
if (pos > num(1))
flag = 0;
pos = pos -1;
end
end
b

m

"

b(:,K);
b(:,pos);

% enforce partition of unity property

alpha = sum(m);
(m ./ alpha)’;

phi

phi = [0 phi 0];

a=[1];

for j=0:J-1
aa=zeros(1,2*size(a,2));
for i=1:sizef(a,?2)

aa((i-1)*2+1)=a(i);

end;
aa=aa(l:size(aa,2)-1);

a=conv(p,aa);

end;
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% convolve a and phi on the integers to get

% the scaling function

phi_out=conv(a,phi);
subplot(2,1,1);axis1=0:size(phi_out,2)-1;plot(axis1/(27J),phi_out);

grid;
title(’Scaling Function’);

% now upsample q by 2°J (q has same length N+1 as p)

for i = O:N
qq(2-J*i+1) = q(i+l);
end

% convolve q with scaling function to get wavelet

wavelet = conv( phi_out,qq );

subplot(2,1,2);axis2=0:size(vavelet,2)-1;plot(axis2/2“(1+1),wavelet);
grid;
title(’Wavelet function’);
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Appendix D

A Comprehensive List for
Half-band Filter Specifications for
N up to 25.

N M M] y | Tterations|| E Convergence
31l 5 | 4 0.00068175 X
5110 5 3 0 X
5 2] 107 .5196 7 0 X
7019 .64 8 0.001 X
7 2J} 11| 5 3 o [ X
739 6 5 0 X
ftofirfitff 5 7 0 X
loff2l1t{ .65 17 0.00005 X
F Isffrof] 5 5 0 X
9 a9 .53 12 0 X
1111 .53 18 0.00153 X
120 5 6 0 l% X
1fsfofl 5 23 0.0001 X
1faf[10] 5 4 0 X
11510 .61 21 9.44e-09 X
1B1f0] .5 15 0 X
1320 5 22 5.65e-05 X
B3l 5 6 0 X
wBlalfof 55 34 5e-07 X
Blsfwo]f 5 3 0 X
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N L]M]| y || terations | E Convergence
13 6 [[10] .52 19 9.905e-09 X
5 1 |11 .52 24 0.00204 X
15 2 |10 .5 18 0 X
15 3 || 11 [f.52 33 6.297e-07 X
5 4 |10 5 8 0 X
15 5 || L1 || .65 30 9.487e-09 X
15| 6 [|10] 5 7 0 X
150 7 || 11 |[.55 12 0 X
7 L[t 5 20 X
72 11| 5 28 7.8e-05 X
17 3|11 5 17 0 X
17411 5 39 8.86e-09 X
175 [[11 | 5 10 0 X
1716 || 11 || .63 34 3.89e-09 X
775 4 0 X
178 [[11l.75 18 9.157e-09 X
19 1 |11 .51 32 0.00275 X
19 2 |11 .55 16 0 X
19| 3 || 11| .51 39 1.8e-06 X
9411 5 15 0 X
19 5 || 11 | .51 56 5e-08 X
1906 |10 5 10 0 X
197 [|[12].63 30 9.985e-09 X
198 [0 5 5 0 X
199 || 11|69 5 0 X
21 [ 1 [[10 || .51 13 0 X
21 || 2 || 10 [ .56 31 0.000108 X
21 || 3 || 10 || .55 31 0 X
21 | 4 [[10 [ .57 43 1.515e-08 X
21| 5 | 10 || .55 18 0 X
21 || 6 || 10 || .57 48 9.22¢-09 X
21 | 7 || 10 ]| .55 9 0 X
21 || 8 [[10 || .54 13 0 X
211 9 [[ 10 || .55 4 0 X
21 |[ 10 [ 10 |[ .73 6 0 X
23 1 10 [[ .57 36 0 X
23210 .5 11 0 X
23 [ 3 | 10 || .57 33 1.75e-06 X
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INJ L]M]| y | Iterations | £ Convergence ||
B[40 5 30 [ O X
231 5 10 || .57 55 9.7e-09 X
234 6 || 10 || .95 23 0 X
23 )| 7 || 10 |} .58 64 le-08 X
23| 8 {10 .39 10 0 X
ERIE " 56 44 |968e09] X
23 || 10 || 10 || .55 ) 0 X
23 || 11 || 11 .5 14 0 ﬂ X

125y 1 {10 .0 14 X
25 || 2
25 3 | 10 || .509 9 0 X
25 4 || 10 .9 59 9e-08 X
251 5 10} .5 13 0 X
25 6 10 .5 66 8.7e-09 X
25| 7 || 10 %) 12 X
254 8 || 10 .9 61 le-08 X
25 9 | 10 .5 12 0 X
25| 10 || 10 || .61 36 9.35¢-09 X
25 § 11 || 10 .5 6 0 X
25 || 12 || 10 |j .56 10 0 X
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