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Âbstract 

Cooklev in his Ph.D thesis has presented a new method for half-band filter design 

(which structurally incorporates the regularity constraint into the design procedure) 

for constructing orthonormal wavelets. His design method however, sufFered from 

certain limitations such as : splitting of the multiple zeros at z = -1 into simple 

zeros and the non-convergence of the magnitude response of the product filter. 

This thesis deals with the elimination of both these limitations in Cooklev's de- 

sign method. We deal with the zer+splitting problem in a very simple marner, by 

factoring out the zeros at z = -1. The problem of non-convergence of the magni- 

tude response of the product filter is dealt with by using the Goldfarb-Idnani (GI) 
dual algorithm to achieve the nonnegative frequency response as is necessary for the 

construction of orthonormal wavelets. 

We observe that not only does the GI-algorithm guarantee convergence of the 

magnitude response of the product fiiter, but it also helps to construct orthonormal 

wavelets even when the optimization takes place with respect to an odd number of 

coefficients, sornething that was thought of as  being not possible before. The use 

of the GI-algorithm not only ensures that the new s c d n g  and wavelet functions 

are more regular than those obtained using Cooklev's method, but it also in some 

cases is instrumental in achieving scaling and wavelet functions more regular than 

the celebrated Doubechies scaling and wavelet functions. 
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Introduction 

1.1 Introduction 

Wavelets are functions that satisfy certain mathematical requirements and are used in 

representing data or other functions. This concept is not new. Approximation using 

the superposition of functions has existed since the early 1800's, when Joseph Fourier 

discovered that he could superpose sines and cosines to represent other (periodic) 

functions. However, in wavelet analysis, the scale that one uses in looking at data 

plays a special role. Wavelet algorithms process data at different scales or resolutions. 

If we look at a signal with a large "window," we would notice gross features. Similady, 

if we look at  a signal with a smdi "window," we would notice srndl discontinuities. 

The result in wavelet analysis is to " s e  the forest and the treesn [l]. 

For many decades, scientists have wanted more appropriate functions than the 

sines and cosines which comprise the bases of Fourier analysis, to approximate choppy 

signals. By t heir definition, these functions are non-local (stretch out to infinity), and 

t herefore do a very poor job in approximating sharp spikes. But with wavelet analysis, 

we can use approximating functions that are compactly supported, or at least are 

1 



concentrated about some mean in t ime. Wavelets are well-sui ted for approximating 

data with sharp discontinuities. 

Since the original signal or function can be represented in terms of a wavelet 

expansion (using coefficients in a lînear combination of the wavelet functions), data 

operations can be performed using just the corresponding wavelet coefficients. And if 

you further choose the best wavelets adapted to your data, or truncate the coefficients 

below a threshold, your data is s~arsely represented. This "sparse coding" makes 

wavelets an excellent tool in the field of data compression. Wavelets in generd c m  

be said to have three basic properties : 

Wavelets are building blocks for general functions. 

0 Wavelets have Time-Frequency localization (Le., most of the energy of the signal 

is conceotrated about a certain mean time and mean frequency which in tuni 

implies that the rms duration and rms bandwidth of the signal are narrow). 

Wavelets have fast t ransform algori t hms. 

It must be pointed out that these three properties are not unrelated. For example, 

if the wavelet basis is orthogonal, then the coefficients âre simply given as the inner 

product of the function wit h the basis functions, which greatly simplifies the t ransform 

algorit hm. 



1.2 Why Are Wavelets Useful ? 

The properties mentioned in the previous section are important. Most of the data 

which we encounter in real life is not t o t d y  random but has a certain correlation 

structure. Think for example of audio signals, images, solutions of different i d  equa- 

tions, etc. The correlation structure of many of these signals axe similar. They have 

some correlation in space (or time), but the correlation is local. For exarnple, neigh- 

bouring pixels in an image axe highly correlated but ones that are far from each other 

are uncorrelated. Similarly, there is some correlation in frequency, but again it's local 

Le., around a particular interval. 

This motintes approximating these data sets with building blocks that have space 

aad frequency localization as weli. Such building blocks will be able to reveal the 

interna1 correlation stmcture of the data sets. This should result in powerful ap- 

proximation qualities: ody a small number of building blocks should already provide 

an accurate approximation of the data. And hence, these properties of wavelets are 

ext remely useful. 

1.3 Applications of Wavelets 

A major application of wavelets to technology has been in the area of data compres- 

sion. The following list indicates the breadth of this application area (21: 

Audio compression 8 : 1. 

Still-image compression 20 : 1 (BW), 100 : 1 (Color). 



Seismic compression 20 : 1. 

0 Radiology images 20 : 1. 

Video compression (color) 140 : 1. 

The basic idea in a compression algorithm in a.ll of the above examples is to represent 

the digitized signal in t ems  of a wavelet expansion. Using a statistical analysis of 

the data type involved one carries out a systematic dropping of bits of these wavelet 

expansion coefficients at specific scales to represent the same signal effectively with 

fewer bits. 

Wavelets have recently become popular in many different scientific fields, including 

signal processing. Because of the appealing properties mentioned earlier, wavelets 

appear to be prornising signaling waveforms in communications [3]. Motivation for the 

use of wavelets for waveform coding stems from the fact that the two ideal waveforms 

often used to benchmark analog puise shaping performance, namely, the time-limited 

rectangular pulse and the band-limited sinc pulse, are examples of secalled scalzng 

fvnctions and have corresponding wavelets. Thus, wavelet theory appears to have the 

potential for analog pulse shaping applications. 

Other applied fields that are making use of wavelets are: astronomy, acoustics, 

nuclear engineering, sub-band coding, neurophysiology, music, magnetic resonance 

imaging, speech discrimination, optics, fractals, turbulence, eart hquake-predict ion, 



radar, human vision, and pure mathematics applications such as solving partial dif- 

ferent ial equations. 

1.4 Motivation and Objective of the Thesis 

Around 1985 Ingrid Daubechies started work on wavelet bases and some two years 

later she made an important mathematical discovery. She put the wavelet theory 

in proper perspective by showing the intimate relationship between filter banks and 

wavelets and constructing orthonormal basis functions with finite support that are 

smooth [4]. 

Dilations and translations of the mother wavelet, elegantly give rise to multireso- 

lution anaiysis, which was advanced mainly by Mallat [5] and Meyer [6]. The merging 

of filter banks, wavelets and multiresolution analysis stirnulated an enormous amount 

of research activity in many areas. 

Not al1 filter banks give rise to wavelet bases. Only regular filters do. Cooklev 

in his Ph.D. thesis [7] investigated and designed a regular tilter bank that leads 

to orthonormal waveiet bases. However, it has been shown in Zarowski [SI, that 

Cooklev's approach has certain limitations which would give rise to irregular (non- 

smoot h) wavelet bases. The main aim of this thesis is to formulate an alternate design 

algorithm which is more efficient and faster than the ones suggested in [9] and that 

completely eliminates the problems that appear in Cooklev's theory. 



1.5 Outlineof the Thesis 

This thesis is organized as follows: 

Chapter 2, entitled Orthononnal Wavelet Filters presents an introduction and 

some mathematical preliminaries of the concepts of wauelets and multiresolution anal- 

ysis and construction of wavelets. It explains the relationship between wavelets and 

tilter banks. Finaiiy, the chapter presents a comprehensive account of Cooklev's the- 

ory of hdf-band filter and wavelet design and it's limitations. 

Chapter 3, entitled New Algoràthm for the Design of Half-Band Filters discusses 

the approach taken to elirninate the Limitations in Cooklev's theory. The highlight of 

this chapter is the use of the Goldfarb-Idnani d u d  algorit hm to solve the optimization 

problem and the simulation results that vdidate it's use, and also demonstrates that 

the new design dgorithm is more efficient and it 's implementation time faster than 

the methods suggested in Zarowski [91. 

Chapter 4, entit led Spectral Factorization and Orthonormal Wauelets explains the 

need and presents the theory of spectral factorization of the product filter. The suit- 

ability of Bauer's method is explained and it also presents the Interpolatory Graphical 

Display Algorithm (IGDA), which is an iterative procedure used to construct scal- 

ing and wavelet functions. The simulation results demonstrate the validity of the 

new design algorit hm and the choice of Bauer's met hod for spectral factorization. 

It also authenticates our claim that the new design algorithm is much superior to 

Cooklev's method. This chapter also consolidates our claim by comparing the reg- 



ularity property and the frequency characterist ics of the scaling function created by 

the new design algorithm, with that of Daubechies and Cookiev's scaling function, 

respectively. 

Chapter 5, entitled Conclusions and Suggestions for Future Research summarizes 

the major contributions made in this thesis and suggests some modifications, new 

techniques and a few extensions that could be done for future research. 



Orthonormal Wavelet Filters 

Introduction 

"If you steal from one author, it's plagiarism; 

if you sted from many, it's researchn 

- Wilson Mimer, The Legendary Mimers (1953) 

These lines happen to be the spirit of this chapter, as  this chapter c m  be considered 

to be as a literature review introducing the concept of wavelets and multiresolution 

analysis (MRA).  It looks into various methods of constructing wavelets and also 

elucidates the relation between wavelets and filter banks. In particular this chapter 

explains in detail Cooklev7s [7] theory of half-band filter and wavelet design and its 

limitations. 

2.2 What are Wavelets ? 

Wavelets axe functions that are generated from one single function often called the 

"mother waveletn7 by translations and dilations, and provide a series expansion of 

functions belonging to L2(R), where R is the set of red numbers. We may regard 

8 



L2(R) as the space of finite energy analog (i.e., continuous time) signals. We shall 

let Z denote integers, and C denote the complex numbers. If x ( t )  E L2(R) and 

z ( t )  E C then 1 1 ~ 1 1 ~  = JrmIx(t)i2 dt < W. The narne wauelet cornes from 

the requirement that the function shouid have a mean of zero, i.e., j v( i )di = 0 Y 

thus, wavzng above and below the time axis. The diminutive connotation of wavelet 

suggests the function has to be well localized. Wavelet basis functions are localized in 

time and frequency and hence wavelet analysis is an ideal tool for representing signals 

that contain discontinuities (in the signal or its derivatives) or for signals that are not 

stationary. Wavelet analysis is an alternative to Fourier analysis. As wi t h  the  Fourier 

transforrn, the point 

an end. The goal is 

that can be manipul 

original signal. 

of wavelets is not the wavelets themselves; they are a means to 

to turn the information in a signal into nurnbers [coefficients), 

ated, stored, transmitted, analyzed, or used to reconstruct the 

2.2.1 Continuous Wavelet Tkansform 

The continuous wavelet trânsform (CWT) of g ( t )  with respect to wavelet Il@) is 

defined by 

where, a # O and b are called the scale and translation parameters, respectively. The 

asterix superscript denotes cornplex conjugate as +(t  ) may be complex valued, i.e., 

E C. Furthermore, the Fourier transform of the wavelet $(t), denoted 6 ( w ) ,  is 



and must satisfy the following admissibility condition: 

which shows that ~ ( t !  has to  osciliate and decay. This condition guarantees the 

existence of an inverse transform. These facts are considered in det ail in [4]. 

2.2.2 Multiresolution Analysis 

There are two ways to introduce wavelets: one is through the continuous wavelet 

t rônsform as described earlier, and another is through multiresolution analysis. Here 

we begin by defining multiresolution analysis, and t hen point out some connections 

wit h the cont inuous wavelet t ransform. 

The idea of multiresolution analysis is to write L2-functions f ( x )  as a limit of 

successive approximations, each of which is a coasser version of f ( x ) ,  with more 

and more details added to it. The successive approximations thus use a different 

resolution, whence the name multiresolution analysis. To achieve this we seek to 

expand the given function f  (x) in terms of ba is  functions + ( x )  which can be scaled 

to give multiple resolutions of the original signal. In order to  develop a multilevel 

representation of a function in L2(R) we seek a sequence of ernbedded subspaces V, 

such that 

with the following properties : 

1. V, C V,+I (containment) 



2. V ( X )  E U v ( 2 ~ )  E v+I (scaling property) 

3. v ( x )  E h w v(x + 1) E KJ (translation) 

OQ 00 

4. iJ I/:. is dense inL2(R)  (completeness) and n V, = O (uniqueness) 
]=-a j=-00 

5. A scaling fvnction 4 E hl with a non-vanishing integral, exists so that the 

collection {#(x - 1 )  1 L E 2) is a Riesz basis of I/o ( A  set I f k )  c V is 

c d e d  a Riesz basis if every element s E V of the space can be written as 

s = Ck ck fk for some choice of s c d e a  {ck) and if positive constants X and Y 

exist such that Xlls(12 5 C lck12 5 Yllsl12 where I I  (1 stands for 2-nom, i.e., 
k 

1 1 ~ 1 1 ~  = J"- Ix(t)12 dt, cleariy, by the definition, the set ifk) is a basis if {ck)  

are unique for any s E V ) .  

We will use the following terrninology: a leuel of a multiresolution analysis is one of 

the 6 subspaces and one level is coarser (respectively, finer) with respect to another 

whenever the index of the corresponding subspace is smaller (respectively, bigger). 

An introduction to the concept of multiresolution analysis and its usefulness can be 

found in [5], [4]. 

From the above mentioned properties we deduce that if we seek a scaling function 

&(x) E I/o such that its integer translates {+(x - k), 1 k E 2) form a Riesz basis 

for the space b, then {214(2'x - k) 1 k E 2) form a Riesz basis for the space K. 

The detailed argument is lengthy, but may be found in [5] .  Since, in particular, the 

space Vo lies within the space h, we can express ôny function in in terms of the 



basis of VI. Consequently, for appropriate hi, 

in which hk, k E Z is a square summabie sequence. The construction of dyadic 

orthonormal wavelets is based on Equation (2.4a) as will be shown in the succeeding 

sections. For scaling functions supported on interval [O, N ]  

where N is odd (41. It has been shown in (41 that the sequence hk must be of even 

length. The sequence hk must also satisfy the following conditions [4], [IO] : 

where L 1 and where d(m) denotes a discrete Kronecker delta function. The 

parameter L is very important. As shown in [4], the larger L is, the smoother the 

solution 4(x) to Equation (2.4a) will be. Furthermore, L is equal to the number of 

vanishing moments of the wavelet corresponding to + ( x )  [4, 101 ( L  vanishing moments 

of the wavelet function @(x) corresponds to J x k $ ( x )  dx = O, k = O, 1, - , L - 

1). The functional Equations (2.4a,b) go by several different names: the refinement 

equations, the dilution equations or the two-scale difference equations. 



We can now also define 

2.2.3 The Wavelet Function 

We now investigate the difference between subspaces and K. W e  define a new 

subspace Wj-l such that it is the orthogonal complement of 6 - 1  in V, i-e., 

where $ represents a direct sum. If f (x) E V,-1, g ( x )  E Wj-1 then inner 

product is 

It follows then that the spaces Wj are orthogonal and that 

j € Z 

Now let us introduce a wavelet function $(x) such that {+ (x  - k)  1 k E 2) forms a 

Riesz b a i s  for the subspace Wo. Then, it turns out that, 

is a Riesz basis for Wj [5] .  If in addition, the set {+(z - k), k E Z) forms an 

orthonormal set, then it follows that {t,bjVk, j, k E 2) forms an orthonormal bais  

for L2 (R). 



Now, since the space Wo is contained in the space VL, we can express the wavelet 

function in terms of the scaling function at the next higher scale (101, Le.. 

and for $(x) on interval [O, N ]  

where for (2.12a) 

and for (2.12b) 

gk = ( - ~ ) ~ h ; - ~  . (2.13b) 

Between Wavelets and Filter Banks 

The connection between continuous-t ime wavelets and the discrete filter banks, was 

originally investigated by Daubechies [4]. According to Daubechies a 2-band parauni- 

tary FIR filter bank as shown in Figure 2.1 can be used to  generate a multiresolution 

analysis with compactly supported orthonormal wavelets. Let us define H ( z )  and 

G(z) to be the z-transforms of the sequences hk and gk, Le., 



The filters H ( z )  and G ( z )  are called scaling and wavelet filters, respectively. Equation 

(2.13b) implies that H ( z )  and G(z) are quadrature mirror filters (Q1\iIF7s) (seen in 

Figure 2 4 ,  i-e., assuming hr E R 

where Ai + 1 is the filter length ( N  is the degree of the filter). Therefore, only one 

filter, e.g., low-pass filter H ( z )  has to be designed. The paraunitary condition [Il], 

[12], [13], is given as 

P ( z )  + P ( - 2 )  = 2 , 

where the "produet filter" is 

P ( Z )  = H ( z ) H ( z - ~ )  . (2.18) 

Equation (2.17) indicates that P ( z )  is a halfband fiiter and Equation (2.18) shows 

that P(eJW) must be nonnegative. 

The connection between the paraunitary solutions ( H ( s )  and G(z)) and wavelets 

can be described as follows. Suppose that the analysis stage of the filter bank of 

Figure 2.1 is iterated on the low pass branch at each step of the decomposition [12], 

then this generates equivalent band-pas filters of the form [14] 

G(r) = H ( z ) H ( r 2 )  - - H ( Z ~ ' - ' ) G ( Z ~ ' - ' )  . 

Letting i -+ oo gives the "mother wavelet" $ ( t )  [4]. That is, 



where gi is the impulse response of Ga(z). In the next section we describe two 

exarnples of orthonormal wavelets. This is one possible way to obtain plots of wavelets. 

Another is via the interpolatory graphical display algorithm (IGDA) considered again 

in Section 4.4, though only briefly. 

ANALYSIS STAGE 7 SYNTHESIS STAGE '1 

Figure 2.1: Paraunitary two-band FIR filter bank. H ( z )  and G(z) are half-band 
low-pass and high-pass filters, respectively. 



2.4 Orthonormal Wavelets 

Recall t hat a function tl>(t ) E L2( R) is called an orthonormal waveiet if the collection 

ûf fÿnctbs  $j,k( t 1, j, k 5 Z, is ac crthonormd b a i s  of La (R!. WC now siimmarize 

vàrious rnethods of constructing such $ ( t ) .  

2.4.1 Meyer Wavelets 

The Meyer wavelets are orthonormal wavelets defined over the entire set R, Le., they 

are not supported on a finite interval. The Fourier transform of the Meyer's scaling 

function is given by 

In this case, 

where the real-valued function v(z ) sat isfies 

v ( 4  

and the symmet ry condition 

2Ir 
1 1 4  2 3 

4% , $  I I w l  5 3 
, otherwise , 

on the interval [O, 11. A procedure for finding 4(w)  from Q(w) is in Vetterli and 

Kovacevic [l5]. 



Because of the definition in Equation (2.21) we can readily show that the Meyer 

scaling function satisfies 

Consequently, the set {4(t  - k) 1 k E 2) is orthonormal and hence this establishes 

the orthonormality of the Meyer wavelets. As noted earlier, the Meyer wavelets are 

not supported on a finite intenml, hence they are not compactly supported. Another 

scaling function that is very much Iike the Meyer scaling function has been recently 

proposed by Xia [16]. A recent contribution by Sheikholeslami and Kabai [17], pro- 

poses a general family of Nyquist functions of which the raised cosine function is 

a special case. It must be noted that the Meyer scding functions are actually a 

generdization of the square root râised cosine functions [18]. 

2.4.2 Daubechies Wavelets 

Various procedures exist for const ructing wavelets wi th different properties aside from 

orthogonality alone. The approach used by Daubechies is to introduce a new MRA 

of L2(R) that is generated by compactly supported scaling functions. In [19] a con- 

structive procedure for obtaining the sequence {hk}r='=,, with hk € R has been 

provided. We give a statement of the main result, which is drawn from the summary 

of Daubechies's work in [4]. 

Define pk = &hk (and sirnilarly define qk = figk), and let 



Frorn Daubechies [4] 

Theorem 2.1 (Daubechies) Let S(z)  be a Laurent polynomial (2-e., S(z-') is the 

- =f--sf&m Q! cn ~ i ~ t o c o r n f a  tinn ~rquence]  satisfying C * .W. 

and 

for some odd polynomial 

The wavelet and scaling 

and orthonormai. 

function obtained from this ~ ( z )  are compactly supported 

Daubechies considered the special case where To = O. Condition (2.25) is 

satisfied for al1 M 2 1 in this instance. It turns out that N E {1 ,3 ,5 ,7 , - )  as 

N = 2M - 1. That is, the sequences hk,  and gk are of even length. Theorem 2.1 

characterizes al1 orthonormal wavelets supported on an interval. 

2.4.3 Cooklev's Theory of Wavelet Design 

Cooklev [7] has presented a theory of wavelet design based on the eigenfilter approach 

to the design of half-band filtea. This theory also involved Bernstein polynomial 

expansions since these made it easy to incorporate regularity into the design of the 

hdf-band filter. The incorporation of regularity is vital in wavelet construction since 
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wavelets are essentially constructed from lowpass filters. and it is desirable to have at  

least one zero at z = - 1 in the filter's transfer function. The presence of such zeros 

is to be seen in the expression &) of Theorern 2.1. A filter having at least one çuch 

zero is said to be regular. A zero at this location is sufficient to ensure convergence of 

the iterative procedures (e-g., the IGDA [20]) used to construct the wavelet function 

from the lowpass füter coefficients. The approach to half-band filter design in (11 is 

dso very useful in the design of orthogonal and regular QMF filter b d s .  

Cooklev's method was motivated by another method by Rioul and Duhamel [14]. 

The method in [14] modifies the Remez exchange and results in equiripple and regular 

filters. On the other hand, Cooklev's method as mentioned earlier is based on the 

eigenfilter approach (211. The advantages of the eigenfilter approach as compared to 

the Remez exchange are: 

The eigenfilter formulation is nurnerically efficient and can be used in the or- 

t hogonal and biort hogonal cases (see [IO]). 

It is more generai, since i t  allows time-domain constraints which cannot be 

taken care of in the Remez exchange approach. 

0 Eigenfilter met hod allows nearly-equiripple designs, if t hey are necessary. 

The eigenfilter formulation can be extended to the 2-D case [22], while the 

Remez exchange does not generalize to multiple dimensions. 

It must be noted that Cooklev's method can be considered as a technique to evahate 

To of Theorem 2.1. 



2.5 Cooklev's Theory of Half-Band Filter Design 

2.5.1 Introduction 

Zarowski [8] has presented a very detailed derivation of the half-band filter design 

method found in Chapter 3 of [7], and we repeat [8] dmost verbatim in this section. 

A useful modification has been included in [8] to the original procedure in [7] that 

avoids the computation of eigenvalues and eigenvectors and this appears in Section 

2.5.5. 

In [7] a l e s t  squares approach, similar to eigenfüter design, is employed. It is also 

seen that Bernstein polynomials ' are central to the theory. They are important in 

that they make it relatively easy to incorporate regularity constraints into the filter 

design. The method makes it possible to develop new types of wavelet functions as 

well. We see that the presentation in Zarowski [8] is more detailed in some respects 

than that in [?], and also, amongst other things, it points out the fact that the method 

in [7] does not generdy give a unique solution. 

What follows now is in essence, the sequence of transformations that we carry out 

on the product filter P ( z )  to ensure that it is amilable to us in a form that makes 

it easy to use it for our optimization problem. We show how we transform P ( z )  

having real valued coefficients pc, into P(eJW) which is a function of the coefficients 

bk and also ck (with the help of a lemma that we use), which are also real valued. 

We then show that the type of filter that we consider can be a half-band filter, whose 

'~ernstein polynomials for half-band filterç were first considered by others. See Section 4.3 in 
~ 3 1 .  



spectrum is a function of the real-valued coefficients dk which in turn are related to 

the coefficients ph.  CVe show how the coefficients ci, are related to  another set of real- 

valued coefficients ek, which finally leads us to a form of the product filter (by now 

transformed into P ( x ) )  which has been transformed to an equation (in terms of the 

parameters a k  and the Bernstein polynomials), which we can use for our optirnization 

problem such t hat the energy of the product filter P ( x )  in the stopband is minirnized, 

and the frequency response is nonnegative, Le., P ( x )  2 0. 

2.5.2 Some Preliminaries 

It is usefui to begin with the following 

Lemma 2.1 0 We may m i t e  

cos (ne) = A ,  c o 8  8 , 

where 

The initial conditions for this recursion are Pi,a = O , Pi,l = 1, and = 

-1 , P z . 1  = O ,  P2.2 = 2. 

Proof 0 The proof is by induction and can be found in Zarowski [8]. 

An immediate consequence of the lemma is ho = 1 and Pnnk = O V k < O and 

k > n. This result is employed in the theory to follow. 



We now consider a Type I FIR filter (i.e., a filter whose impulse response is finite 

in length [24]) with system function 

Being a Type I FIR filter (according to the definitions in Oppenheim and Schafer 

[24]) N is odd and 

fork = 0,1, ... , N - 1 .  

We observe that we may write 

N-L N-1 
-k = pNz-N + p k Z  + p2N - j Z  

-(2N - j) 
9 

and so 

We may write 

where 



From (2.32) we must have, with the aid of Lemma 2.1, 

N k 

bk COS ( h l  = 5 bk [jx p k , j  ~ 0 s ' ~  
k = O  k = O  = O  1 

which reveals the following upper triangular linear system of equations that relates 

Let us denote the matrix in (2.39) by B. Since pkVk # O for all  k this linear system 

always has a unique solution. In fact, from (2.27) 



2.5.3 H a b a n d  Filters 

If we now assume mk + = O, but t hat p~ # O, t hen the odd indexed elements of 

{ p k )  are forced to zero, except for element p~ which is in the middle of the sequence. 

For these assumptions we see that from (2.31) 

and so 

for which we conclude imrnediately that 

This is called the half-band condition, and a filter that satisfies it is called a hulf-band 

filter. We have therefore shown that Type 1 FIR fiiters can be half-band. 

From the preceding we also see that 

so t hat 

P(eJW) = ,-jwN 



where(2n = N - 1 - 2k) and for which we have 

where we have 

The half-band condition may be described in a different but equivalent manner. 

Suppose that the FIR filter is noncausal with system function 

where N is again assumed to be odd, and pk = p - t .  Thus, except for noncausality, 

this filter is Type 1 as before. As weil, we impose condition f i k  = 0, but po # O. It 

is then easy to show that 

which is an equivalent definition of the half-band condition, i.e., is equivalent to (2.44). 

Since -ejw = d(w "1 we also see from (2.49) that 

1 P ( C ~ ~ )  + ~ ( e > ( "  + "1) 1 = constant . (2.50) 

(The filter coefficients in (2.48) are the same as those of (2.28) except for indexing.) 

26 



2.5.4 Bernstein Polynomials and Half-band Filter Design 

The kth Bernstein polynomial of degree N is defined to be 

It will be useful to recall that from the Binomial theorern 

and this gives 

Let x = (1 - cos w)/2 so that cos w = 1 - 2s = (1 - x )  - x. Now, 

recalling (2.34), we can write 

where the second equality has employed (2.52) (with a = 1 - x ) .  For some suitable 

t e k )  we may also write 

N N 
k 

C i  COS LI = 5 e k  ( k ) zk(i - 21N - * = e k b F ( r )  . (2.56) 
k=O k = O k = O 

Here e = [eo el - eN jT, and we define 



and 

and 

it can be shown that 

ACc = EDe . (2.57) 

At this point we have well-defined matrix or linear transformations between all of 

the different expressions for P ( z )  and/or P(e'w ). 

From (2.48) with the given constraints 



and so 

P ( e " )  = w + 2 p cos wk . 

Thas, for suitable {c;) 

From (2.56) we may therefore define 

As a result of this we rnay write 

Now via (2.55), and cos w = 1 - 2 1  we have 

N N 
k P ( x )  = C c,[(l - x) - xlk = = Cfk COS W , 

k = O  k = O  

and 

so that (2.62) becomes 

1 P(eJW) + P(&(' + "1) 1 = 1 P ( t )  + P(l - x )  ( = constant . (2.65) 
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Thus, 

satisfies (2.50), aod so is ul equivalent half-band condition. 

We shall now show that if 

then the condition in (2.66) is met. Clearly, for this to be well-defmed, we must have 

L 5 (N - 1)/2. We s h d  also see that for (2.67) P ( z )  has a zero of order L at 

x = 1. This may be used to impose a certain regularity on the half-band filter (i.e., 

zeros at z = -1 in the lowpass filter leading to wavelets). 

We have 

Using (2.67) it cm be shown that 

and so 



(Proof of which is provided in Zarowski [8] where the last equality c m  be argued 

from probability theory (bf(x) is a binomial pdf (Papoulis [25]); use the binomial 

theorem)). Thus, we have shown that if (2.67) holds then (2.66) holds. 

In the previous paragraph we have shown that 

By inspection of this expression we see that P ( x )  under the condition of (2.67) has a 

zero of order L at x = 1. 

2.5.5 A Least Squares Approach 

The half-band filter P ( z )  has frequency response denoted by P(eJW), for which we 

normaiiy consider w E [O, n]. Recalling that x = (1 - cos w ) / 2 ,  this i n t e d  maps 

to x E [O, 11. Thus, we consider P ( x )  for x E [O, 11. As a half-band filter is lowpass, 

it has a passband [O, w,], and a stopband [w,, n], where w, < W.. Thus, for P ( z )  the 

passband is [O, x,] , ând the stopband is [x., 11. 

Refer to Equation (2.70). Define the polynomials 

and 



One way to design P ( z )  is to select vector a such that the energy of the filter in 

the stopband is minimized. This energy may be defined to be 

One approach, considered in [7], minirnizes (2.75) subject to the constraint that 

aTa = 1. We thus select the eigenvector of R corresponding to the smallest eigen- 

value of R ( R  > O, Le., R is positive definite), and norrnalize it so the first element 

is unity (to satisfy a0 = 1). This is the desired value for a. 

However, there is another possibility, apparently not considered in [il. Since 

T 
C Y ~  = 1 we rnay partition a as a = [l crTIT, where a = [al O -  - a(N+i)/z-L] . 

Similarly 



where r = [ria r2.0 - - - i(N+l)IZ-L,O]T. Thus, the stopband energy expression can be 

rewritten as 

Since R is positive definite, R will be as well. Thus, (2.78) can be rewritten as (üpon 

complet ing the square) 

The optimum choice of a, which we shall denote by &, therefore satisfies 

Clearly, this choice minimizes the stopband energy. This approach to designing the fil- 

ter is easier (or computat ionaily more efficient) t han the eigenproblem approach since 

solving a linear system of equations is typicdy simpler than solving an eigenproblem. 

2.5.6 Half-band Filt ers Wit h Nonnegative Frequency Response 

If half-band filters are to be employed in the construction of ort honormal wavelets it 

is necessary to create half-band fiters with a nonnegative frequency response. Recall 

that P ( x )  is red-valued, so we therefore wânt P ( z )  2 O for al1 x E [O, 11. To obtain 

half-band filters with this property consider the folIowing approach which is based on 

that as suggested in [7]. 

Suppose we solve (2.80). In this case the optimum choice for a is â = [1 iiT]*. 

a .  

Find the x = x,, such that P ( x )  is minimized for a = al 1-e., 



Let = ûTv(x,i,).  NOW define a new stopband energy functioo 

- - 
T 

= Q  

It is clear that matrix Q replaces R in (2.75). At this point a to minirnize E:(a) in 

(2.83) rnay be found using the procedure in Subsection 2.5.5 earlier. 

From (2.83) 

Clearly, the Iast term corresponds to matrix R in (2.75). Similarly to (2.77) we may 

partition Q according to 

Thus, the optimum new choice for a is â satisfying 

This is similar to (2.50). Note that in [7] ( s e  p. 46) it is remarked that the number 

of elements in â of (2.86) must be an even number. This assertion will be chailenged 

later on. 



From (2.84) we see that 

and 

It is important to note that the above procedure may need to be iterated, and 

that there is no known proof it will converge [8]. This fact is not at  al1 clear from 

reading 171. In fact, it will be shown later that this procedure is not very satisfactory. 

2.6 A DFT/FFT Approach 

The direct approach to finding pk given ek was defined in Subsection 2.5. However, 

this procedure involves inverting the matrices B and C. For N > 15 (approximately) 

the condition numbers of these matrices rises rapidly. Hence this procedure is not 

recommended except for small N. 

Zarowski [8] shows the implementation using an alternative DFT/ FFT-based ap- 

proach (i.e., solving a Discrete Fourier Transform using Fast Fourier Transform al- 

gorit hms [24]). The idea is sirnilar to the use of the DFT in obtaining the impulse 

response of an equiripple FIR filter obtained from the Parks-McCIeUan algorithm 



using the polynomial representation of the filter's frequency response. This idea was 

noted in the last paragraph of Section 7.6.3 (p. 478) of Oppenheim and Schafer [24]. 

From the expression for P ( x )  in Equation (3.56) 

where cos w = 1 - 2x. Now we define Pr = P(ejw)  for w = & r, where 

r = O 1, . . . 2 Taking the inverse DFT of the sequence {Pr) (via an FFT 

algorithm) will give { p k } .  This t u s  out to be a more numericdy reliable method 

of getting pk than the direct method for both large N, and large L. 

2.7 Limitations of Cooklev's Design Method 

Cooklev's approach to the design of half-band filters with a nomegative frequency 

response in Section 2.5 was shown to have two significant difficulties in Zarowski (81 

as explained below. 

2.7.1 Zero Splitting 

As shown in Zarowski [8], Cooklev7s theory of design for half-band füters via Bernstein 

polynomial expansions suffers from the problem of the split ting of the desired multiple 

zero at z = -1 into simple zeros if care is not exercised in its irnplementation. This 

will likely cause problems in the spectral factorization stage which is necessary in the 

construction of wavelets based on this approach. A similas problem of zero splitting 

has also been observed in the case of Daubechies polynomials [26]. Actually, if some 



or al1 the coefficients of a polynornid are known only to a specified accuracy - as 

is ordinarily the case in scientific computing - the concept of multiple zeros become 

meaningless : An arbitrary srnall change of the coefficients leads to the disintegration 

of an m-fold zero into a dense cluster of rn distinct zerus f27]. 

Figure 2.2 shows a typical plot of füter zeros for P ( r )  obtained via the direct 

method and via the DFT/FFT method. We see that both of the filter designs do not 

posses the multiple zero at z = -1. This multiple zero splits into several simple 

zeros in the vicinity of z = - 1. However the splitting is less severe in the DFT/FFT 

method. 



Figure 2.2: Plot of the zeros of a half-band filter for x, = 0.6, N = 19, and 
L = 7. The circles are the zeros for the filter using the matrix inverse or direct 
approach (Section 2.5) while the plus signs are the zeros for the filter using the 
DFT/FFT method (Section 2.6). 



2.7.2 Non-Convergence of Ekequency Response 

It was noted in (81 that the procedure for half-band filters with a nonnegative fre- 

quency response considered in Cooklev [7] may need to be iterated, and that conver- 

gence is not guaranteed. By this we mean that the stopband energy is not minirnized, 

as evidenced by the local minima in the stopband not touching the frequency axis. 

Clearly, not being able to be sure of convergence is a major problem since this leads 

to sub-optimal results which leads to irreguiar wavelets as will be shown in the next 

chapter. 

The plot in Figure 2.3 shows a typical magnitude response of the haf-band filter 

with x,  = 0.6, N = 17, and L = 5 designed using Cooklev's method of Section 

2.5. We notice that the frequency response fails to converge. This is evident from the 

failure of the two local minima in the stopband to touch the frequency axis. 
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Figure 2.3: The magnitude response of the half-band filter for x, = 0.6, N = 19, 
and L = 7 designed using the matrix inverse method (Section 2.5). 
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Chapter 3 

New Algorithm for the Design of 
Half-Band Filters 

3.1 Introduction 

In this chapter we discuss the approach we take to eliminate the limitations in Cook- 

lev's theory of half-band filter and wavelet design as was alluded to in Chapter 2. 

We first discuss the elimination of the zero-splitting problem ônd then introduce a 

new design algorithm that completely elirninates the non-convergence problem of the 

magnitude response of Cooklev's half-band filter. We then present some important 

simulation results that show the validity of the new design algorit hm and it 's superi- 

ority over the other rnethods including Cooklev's [7] and Zarowski's [8]. 

3.2 Elimination of Zero-split t ing 

As shown in Zârowski [SI, Cooklev's theory of design for half-band filters via Bernstein 

polynomial expansions suffers from the problem of the split t ing of the desired mult ipie 

zero at z = -1 into simple zeros if care is not exercised in its implementation. This 

is likely to cause problems in the spectral factorization stage, which is necessary in 



the construction of wavelet functions based on this approach. MATLAB's mroots(-) 

function (version 5.x of MATLAB) can prevent the splitting, but only "up to a point," 

and is not capable of preventing the splitting from arising in the fint place. It therefore 

only maskç but  cioes not soive the underiying probiem. and su is uot sati~faciûry in 

t his respect. 

Zarowski [SI observed t hat the transformation mat rices denoted by Equation (2.39) 

and Equation (2.57) are in fact i1I-conditioned for large N. This could be a probable 

cause for the splitting of the multiple zero at z = -1. A similar iIl-conditioning 

problem has been successfulIy overcome in [28], by using the Chebyshev polynornials 

which are orthogonal. Motivated by this we derived Chebyshev polynornial expres- 

sions (see Appendix A) to orthogonalize the Bernstein polynomials which have b e n  

used in [?] in the design of the ha-band filter. However, this did not yield the 

expected result. - 

It is observed that, for low-order polynomials, commonly available subroutine 

packages for root-finding work quite well. For higher order filters, the burden on the 

root-finding program can be considerably reduced by taking advantage of the fact 

that the locations of al1 the unit circle double zeros of the product filter are known a 

priori, i.e., they correspond to the stopband zeros of the frequency response. Hence, 

we present here a very simple solution to the zero-splitting problem that involves 

factoring out the offending factor of (1 - x)= from the expression for P ( x )  in 

Equation (2.71) (a similar technique has been used in [14]). We then compute the 

tiansfer function corresponding to the factor that rernains. This is a numerically 



well-behaved process because this factor usually only consists of a z-polynomial with 

simpie zeros (or low multiplicity multiple zeros). The process is equivalent to factoring 

(1 + z - I ) * ~  out from P ( z ) ,  which is the desired half-band filter system functioo. 

The multiple zero at z = -1 of order 2 L can be "put back later on" if desired. 

3.2.1 Factoring out (1 + z - ' ) * ~  

We may restate Equation (2.71 ) for convenience here as 

We observe that in term no. 1 factor (1 - x ) ~  h a  k in the range of ( N  + 1)/2 to 

N, while term no. 2 has it in the range L to (N  - 1)/2, and term no. 3 has it in the 

range of ( N  + 1)/2 to N - L. We recall that L 5 (N - 1)/2. Suppose that 

then from (3.1) 

Now we recall that x = (1 - cos w)/2, and if we use analytic continuation (Le., 

replace ejw with z) then since cos w = (e jw + e-Jw ) /2  

z + Z-' &W + e-iw 
replaces 

2 2 ? 



and so from (3.2) 

where the factor t-. is included to make the impulse response sequence that gives 

P ( z )  into a causal sequence. This factor corresponds to e-jwN in (9.1) of [Il. CVe may 

rewrite (3.4) as 

From this we see that it is possible to h d  the zeros of G ( z )  independently from those 

of P(z )  and put the multiple zero at z = -1 back afterwards. Note that the degree 

of P ( z )  is 2N while the degree of G(z) is 2 ( N  - L). 

This solves our problem. 

Routine makeh3.m implements the above procedure. Routine check.m compôres 

the output of this routine with that provided by makeh1.m; these routines can be 

found in Appendix B . It does this by producing a plot of the zeros of both filter 

designs. Typicd output appears in Fig. 3.1, and we see that our problem is truly 

solved. 



FIR Fiiier Zeros 

Real Part 

Figure 3.1: Typical output from checkm in Appendix C. The parameters are x, = 
0.6, N = 17, and L = 8. The plusses are the zeros of the half-band filter using the 
DFTJFFT method given in Chapter 2, while the circles are the zeros of the half-band 
filter given by the procedure in this Section. 



3.3 New Design Algorithm 

To eliminate the problem of non-convergence of the magnitude response of Cooklev's 

Ddf-baod filter ..ve cephrue the or ig i~d  optimization proh!ern and iiss the  Goldfarb- 

Idnani (GI) Dual Algorithm [29] to solve it. The Gf-algori thm is particularly useful 

since it has an excellent reputation for efficiency [30] and also it has ben successfully 

used in the design of FIR filters before [31]. 

3.3.1 The Optimization Problem 

We restate the optimization problem as given in Equation (2.77) of Chapter 2. Recall 

t hat 

for which we only let x E [O, 11, Le., x is codned to the unit interval. Equation 

(3.6) is the frequency response of the half-band füter, and for us we want P (x) 2 O 

for dl x E [O, 11. This necessitates finding the proper vector a. However, we dso 

want to minimize energy in the stopband [x,, 11 (see Equation (2.75)). From (2.78) 

in Chapter 2, this energy is given by 

f (a) = aT7Za + 2aTr + r0.0 ? (3-7) 

where a = 11 aTIT, and the remaining quantities in (3.7) are defined in Section V 

of [2]. We have what is comrnonly called a Quadratic Programming (QP) problem 

with a linear inequality constraint P(z )  2 O. 



The optimization occurs over the elements of the vector cr = [al a2 - a K I T ,  

(and we define a. = 1) which has I< = ( N  + 1)/2 - L elements. The Goldfarb- 

Idnani (GI) algorithm expects the problem to be phrased as 

min /(a)  = pT(27Z)a 1 + 2rTa + r0.o 
Oc " 

subjett to the inequality constraint 

Equat ion (3.9) is explâined below : The value of z is evaluated in a manner similar 

to the one given in [32]. We let 

where k = O, 1, - O ,  M - 

Now Let us express for 

in matrix-vector form as 

1, 0.5 5 y < 1 and M = the number of sample points. 

a.il k the scalar S(a) = P(xk,a)  = aTv(xi) = v(zk)=a 

where P(x, a) = P ( x )  is a change in notation to reflect the dependency of P on 

bath scalar x, and vector a. The R.H.S of Equation (3.11) can further be written as 

(using the partition property) 

which 

= -6 = CT 

is the same form as Equation (3.9). 



3.3.2 Justification Of The Use Of The GI-Algorithm 

Adams and Sullivan [31] state that both the minimax (MM) and the least-squares 

(LS) optirnality criteria used in the design of digital filters can be viewed as special 

cases in the class of peak-const rained least-squares ( P C LS) optimization problems. 

In PCLS optimization problems, the peak error is constrained while the total squared 

error is minirnized. Figure 3.2 shows the trade-off between the total squared error 

and the peak error. The best solutions for most ~ractical applications are in the 

knee of the trade-off cuve. The LS and MM are at the end-points (as shown in Fig- 

ure U), where the dopes are the most extreme. Therefore the LS and MM solutions 

are the two special cases of PCLS solutions that have the worst performance trade-off. 



LEAST-SQUARES 
SOLUTION 

IDEAL 

J ZERO SLOPE - 
Figure 3.2. Tradeoff between total squared error and peak error. 



Starting from the LS solution, a very large reduction in the peak error can be 

obtained at the expense of a very small increase in the total squared error. Start- 

ing from the MM solution, a very Large reduction in the total squared error can be 

obtained at the expense of a very small increase in the peak error. Therefore as men- 

tioned in [32]-[33], LS and MM are inherently inefficient. The primary advantage of 

the PCLS optirnization is the ability to control the trade-off between peak error and 

total squared error. Second, in most practical applications, it is important for the 

designer to have the ability to specify inequality constraints on the gains at the band 

edge frequencies. 

Noting these advantages, we believe that in the design of the required half-band 

filter, instead of using the minimax criterion as was done by Ftioul and Duhamel [14], 

or using the least-squares method used by Cooklev [7], we could use the PCLS opti- 

mization to achieve a more efficient design. Ln [32]-[33], a strategy for PCLS based 

on the theory of the "multiple exchange algorithm" , has b e n  suggested. Most con- 

strained algorithms use a single exchange of active constraints from one iteration to 

the next. Single exchange dgorithms are appropriate for solving general constrained 

least-squares (CLS) problems, where the const raints are arbitraxy. Unfortunately, 

single exchange dgorithms converge very slowly. If a CLS problern inchdes peak- 

error constraints on a smooth function, then multiple exchanges improve the rate of 

convergence. In (34, 351 it has been proven that the generalized multiple exchonge 

algorithm is guaranteed to converge to a unique optimal solution of any feasible pos- 

itive d e h i t e  quadratic programming problem. In [32] it was proposed to combine 



the multiple exchange and the GI-algorithm to exploit the convergence property of 

the latter. Also, the GI-algorithm does not require prima1 feasibility until the last 

iteration is completed, which makes it more efficient to be combined with the multi- 

ple exchange algorithm since most quadratic programming algorithms require prima1 

feasibility at the beginning and end of each iteration. 

Since the GI-algorithm forms the core of the method suggested by Adams and 

Sullivan in [31], we dernonstrate the use of the GI-algorithm in conjunction with 

the matnx inverse problem as suggested by Zarowski [8], in the design of the half- 

band filter with non-negative frequency response. We observe that this method is far 

better than those suggested in [9], since this algorithm converges both quickly and 

accurately. 

3.3.3 The Goldfarb-Idnani ( GI) Algorit hm 

We now outline the GI-algorithm. There are certain errors (typographical and omis- 

sions) in the algorithm as presented in [5], which have been corrected in this outline. 

This dual algorithm is of the active set type and is both efficient and numerically 

stable. 

The GI-algorithm is concerned wit h the strictly convex (positive definite) quadratic 

programming problem, 

subject to the inequality constraint 



where x and a are n-vectoa, G is a n x n symmetric positive definite matrix, C is a 

n x rn matrix, b is a m-vector, and the superscript T denotes transpose. 

As already rnentioned, the dual algorithm is of the active set type. By active 

set we mean a subset of the rn constraints in Equation (3.13b) that are satisfied 

as equalities by the current estimate of x of the solution to Equation (3.13a). We 

shall use W to denote the set {1,2, , m }  of indices of the constraints (3.13b) and 

A E W to denote the indices of the active set. 

We define a subproblem P ( J )  to be the Quadratic Programming Problem (QPP) 

with the objective function 3.13a subject only to the subset of constraints (3.13b) 

indexed by J C W. For example P(0) ,  where 0 denotes the empty set, is the 

problern of finding the unconstrained minimum of (3.13a). 

If the solution x of the subproblem P ( J )  lies on some linearly independent active 

set constraints indexed by A C J we cal1 (x, A) a solution-(S) pair. Clearly, if (2, A) 

is an S-pair for subproblem P(J) it is also an S-pair for the sub-problem P ( A ) .  

In order to describe the algorithm, it is necessâry to introduce some notation. 

The rnatrix of normal vectors of the constraints in the active set indexed by A will 

be denoted by fi (Le. N is a subset of the coefficients of x in the rows of S(x)  in 

Equation (3.13b), and the cardinality of A will be denoted by q. When the columns 

of N are linearly independent one can define the operators 



and 

H = G - ~ ( I  - RN*). 

3.3.3.1 Dual Algorithm 

The algorithm given below conforms to the dual approach and it's details are as 

follows: 

S t e p  O : Find the unconsttained minimum : 

0 Step 1 : G o o s e  a violated constmint, if any : 

Compute Sj(x)  (the row j of Equation (3.13b)), for al1 j E W \ A. If V = 

{ j  E W \ A ( Sj (x) < 0) = 0, STOP, the current solution x is both feasible 

and optimal; 

otherwise, choose p E V and set n+ t n and u+ t 

Step 2 : Check for feasibility and detemine a new S-pair : 

(al Determine step direction 

Compute z = Hn+ (the step direction in the prima1 space) and if q > 

r = N'n+ (the negative of the step direction in the dual space). 

( b )  Compute step Iength 



( i )  Partial s t e p  length t l  (maximum step in dual space without violating 

dual feasibility). If r 5 O (i.e.,aIl elements in vector r are non- 

positive) or q = 0, set t + oo, otherwise set 

where uf is the j th element of the vector of Lagrange multipliers. 

Ln Step 2(c )  below, element k E W corresponds to the l th  element 

(ii) Fvll step length t2 (minimum step in the primal space such that the 

pth constra.int becomes feasible). 

If jrl = 0, set t2 t co otherwise, set t2 t ,S. 
(iii) Step length t 

Set t t min(tl, tz ) .  

( c )  Detemine new S-pair and take a step 

(i) No step in primal or dual space If t = cû, STOP, subproblem and 

hence Quadratic Programming Problem (QPP) are infeasible. 

L 

constraint k, i.e. set A t A \ {k), q = q - 1, drop the lth element 

of ut, drop lth column of fi, update H and N' using Equation (3.14), 

and goto Step 2(a). 

(iii) Stev in prima1 and dual space 



Set r + s + t z .  ut t u+ + i [ ;' 1. !! If' 1 = t2 (full set) set 

u t u+, add constraint p; i.e., set A t A U  { p ) ,  q = q + 1, add 

new constraint to N .  Goto Step 1. 

If t = t (partial step) drop constraint k, Le., set -4 t A \ {k): q = 

q - 1: drop the Ith elernent of u+, &op 6th column of LV, update H 

and N' using Equation (3.14), and goto Step 2(a). 

Some slight modifications have been made to the above algorithm to make it more 

efficient and to account for round-off erron. They are : 

0 Instead of choosing any violated constra.int as given in Step 1, we choose the 

rnost violated constraint, by selecting the most negative value of S from Equa- 

tion (3.13 b). This not only reduces the number of iterations required for con- 

vergence, but it is also a good strategy to help prevent numerical instabilities 

as stated by Goldfarb in (361. 

0 We have introduced a small perturbation parameter E in the evaluation of S ( X )  

as given in Equation (3.13b), which now becomes : 

This has been done to shift the frequency response by an extremely small value 

E above zero to ensure convergence in certain cases which will be dealt with in 

the next section. 



Convergence is achieved when dl the elements in the set S as given by Equation 

(3.13b) are greater than or equal to zero while minimizing f(x) in Equation 

(3.13a). However there may be certain round-off errors which we occount for 

by adding an extreniely small toierance parameter. 

3.4 Simulation Results 

We now give various examples showing certain successful implementations of our 

design algorithm and showing that this method is more efficient and faster than the 

other existing methods [7], 191. 

We f is t  show an example that was quoted in [9] for the specifications z, = 0.5, N = 

7, L = 1, M = 9, y = 0.64 and E = O.OOL, where M and x are as defined 

by Equation (3.10), and E is the perturbation parameter. For this example it is 

clear that K = 3 so the optimization is with respect to three parameters. This 

converges in 8 iterations only, which is a big improvement over the methods given 

in (91, since for these specifications the MATLAB optimization toolbox simulation 

resulted in failure to converge. Figure 3.3 shows the result produced by the GI- 

algorithm. The parameters a and b seen on top of the figure define the stopband 

region [a, 6 )  = [O.5,1), and so a = x,. 

In Appendix C is the MATLAB code that implements the GI-algorithm using the 

routine GI-A1go.m and plots the figures in this section using the routine H-to-p1ot.m 



and Hxp1ot.m. The supporting routines are in Appendix B, these consist of fact.m, 

bincom, mm, maker-m, makeR.m vO.m, v k m  (which have been taken from [Y]) and 

H.m. 
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Amplitude Response of a Cooklev Half-Band Filter ( iter = 8 ; a = 0.5; b = 1 ; N = 7 ; L = 1 ; M = 9; y = 0.64 ) 

Digital Frequency 

Figure 3.3: Magnitude response plot for a half-band filter produced for the specifica- 
tions, x, = 0.5, N = 7, and L = 1. 



3.4.2 Example No.2 

Figure 3.4 shows an example again that was quoted in [9], for the specifications, 

z, = 0.6, N = 7, L = 2, M = 11, y = 0.5 and E = O. The new aigorithm 

results in convergence in 2 iterations, as compared to the POCs algorithm [9] that 

resulted in convergence in 75 iterations. 

The impulse response sequence of both the filters, one designed using the POCs 

algorithm (taken from [9]) and the other designed by the new method proposed is 

tabdated as follows : 
-- - 

P k  
POCs solution d e r  75 iterations 

-0.0164 
O 

0.0499 
O 

-0.0828 
O 

0-2993 
0.5000 
0.2993 

O 
-0.0828 

O 
O -0499 

O 
-0.0164 

GI-Algorithm solution after 2 iterations 

The impulse response sequence of the filter designed using the POCs solution 

was found using MATLAB routines that have been described in Appendix D of the 

report [4], whereas the impulse response sequence of the filter designed using the 

Goldfarb-ldnani (GI) algorithm was found using the MATLAB routine GI- A1go.m. 



This exarnple shows that the POCs method is too slow to converge, hence not very 

efficient. It must be noted that the above tabulated cornparison is risky in the sense 

that the POCs was not implemented very efficiently in [4] and hence the cornparison 

will not be considered fair. 
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Amplitude Response of a Cooklev Haif-Band Filter ( iter = 2 ; a = 0.6; b = 1 ; N = 7 ; L = 2; M = 11 ; y = 0.5 ) 
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Figure 3.4: Magnitude response plot for a half-band filter produced for the specifica- 
tions, x, = 0.5, N = 7, and L = 2. 



3.4.3 Example No.3 

The plot in Figure 3.5 below illustrates a typical magnitude response for the specifi- 

cationsz, = 0 . 5 , N  = 35, L = 16,M = 10,y = O.5andE = O. Again, 

for this example it is clear that K = 2 so the optirnization is with respect to two 

paxameters. This converges in only 3 iterations, which is a big improvement in terms 

of speed of convergence, compared to the methods given in [9]. 



Coefficient Index 

Am~litude Reswnse of a Cooklev Half-Band Filter ( iter = 3 ; a = 0.5; b = 1 ; N = 35 ; L = 16; M = 10; y = 0.5 ) 
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Figure 3.5: Magnitude response plot for a half-band filter produced for the specifica- 
tions, x, = 0.5, N = 35, and L = 16. 



Figure 3.6 is a plot of the zeros of the half-band filter of Example No.3. The figure 

shows suitable double transmission zeros as would be appropriate for spectral factor- 

ization which will be discussed in the next section. The zero-plots in this section have 

b e n  plotted using the MATLAB routines zeropi0t.m and H - to- p1ot.m (Appendix 

Cl* 



FIR Filter Zeros a = 0.5; b = 1 ; N = 35; L = 16; M = 10; y = 0.5; E = O 
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Figure 3.6: Zero plot for the half-band filter (Example No.3) produced by the proposed 
new algorithm for the specifications x,  = 0.5, N = 35, L = 16, A4 = 10, y = 
0.5, and E = 0,where M and y are as defined by Equation (2.4): and E is the 
t oierance paramet er. 



3.4.4 Example No.4 

Figure 3.7 shows anot her example wit h the specifications x, = 0.5, N = 23, L = 2, 

M = IO, y = 0.5 and E = O. For this example it is clear that A' = 10 so 

the optimization is with respect to ten parameters. This converges in 11 iterations. 

Examples 3 and 4 both show that our design method c m  be used for high-order 

filters. A comprehensive list of the specifications for which half-band filten with non- 

negative frequency response were successfully created for al1 cases up to N = 25 can 

be found in Appendix D. 
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Figure 3.7: Magnitude response plot for a half-band filter produced for the specifica- 
tions x, = 0.5, N = 23, and L = 2. 
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Figure 3.8 is a plot of the zeros of the half-band filter of Example No.4. This 

figure too shows suitable double transmission zeros on the unit circle as would be 

appropriate for spectrd factorization. 

Figure 3.8: Zero plot for the half-band filter (Example No.4) produced by the proposed 
new algorithm for the specifications x ,  = 0.5, N = 23, L = 2, M = 10, y = 0.5 
and E = 0. 



3.4.5 Example No.5 

We now show an exarnple where it is observed t hat in the case when the optimization 

takes place with respect to an odd number of parameters, if the input specifications 

are correctly chosen then we c m  succeed in getting two additional zeros at z = -1. 

Figure 3.9 shows the magnitude response of a half-band filter having the following 

specifications x, = 0.5, N = 3, L = 1. M = I l ,  y = 0.5 and E = 0.00068175. 
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Figure 3.9: Magnitude response plot for a half-band filter produced for the specifica- 
tionsx. = 0.5, N = 3,and L = 1. 



Figure 3-10 is a plot of the zeros of the half-band filter of Example No.5. CVe 

observe the presence of two additional zeros at r = - 1 in t his case. The presence of 

this additional pair of zeros is of importance and will be discussed in the succeeding 

sections. 
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Figure 3.10: Zero plot for the half-band filter (Example No.5) produced by the p r e  
posed new algorithm for the specifications x, = 0.5, N = 3, L = 1, hi1 = 1 1 4  = 
0.5 and E = 0.00068175. 



3.4.6 Some observations 

In al1 of the examples in this section' we notice that the GI-algorithm seems to work 

extremely well for our purposes. It is more efficient in the sense that it is more 

accurate and it converges very quickly and hence it's computation time is much less 

t han the methods proposed in [9]. We also observe the foilowing : 

As noted in [?],the optirnization process occurs with respect to the elements of 

the vector cr = [al a2 - aKIT, where K = ( N  + 1)/2 - L. We recdl that 

the half-band filter that results will have 2N + 1 (N is odd) impulse response 

coefficients, and it 's system function P ( z )  will have 2 L zeros at z = - 1. A large 

L implies a high regularity. For a solution to the spectral factorization problem 

to exist, it is stated in [7] (p. 46) that K must be an even number. Using the 

new design algorithm we notice a phenomenon that is inconsistent with what 

is stated in [7]. We notice that a solution to the spectral factorization problem 

exists for al1 K. In fact in some cases we even manage to get an additional 

pair of zeros at z = -1. And hence the daim made in [7] and a similar claim 

made in [14] are both inaccurate since they maintain that the technique used 

in designing the half-band filter works only when the number of coefficients of 

K are even. 

When K is even, i.e., when the number of elements in the vector a are even, 

then the number of alternations in the frequency response in the stop band (Le., 

the number of times the frequency response in the stop band changes from zero 



to a positive value and vice-versa) is exactly equal to K. When K is odd, the 

number of altemations in the frequency response in the stop band is exactly 

equal to K - 1. 



Chapter 4 

Spectral Factorization and 
Orthonormal Wavelets 

4.1 Introduction 

In Chapter 3 we have discussed a new design algorithm for a half-band filter. To 

obtain the low pass filter that parametrizes a wavelet, essentially one must spectrdy 

factorize an appropriately designed haE-band filter. The basic theory is summarized 

as follows in Cooklev [Il: 

Theorem 4.1 (Cooklev) [7] a To design a two-channel perfect reconstruction (PR) 

filter bank it ts necessary and suficient (i) to find a P ( z )  satisfyzng Equation (2.17), 

and (ii) factor it as P ( r )  = Ho(z)Go(r). 

Proofa The proof of this theorern has been discussed in Herley and Vetterli [37].. 

In this theorern filter &(r)  is low p a s .  For orthonormal wavelets, P(r )  must 

have a nonnegative frequency response '. This is also needed for orthonormal filter 

banks. More specifically, we wish to find H ( z )  such that P ( z )  = H ( z )  H(z - l ) .  The 

lThe necessity of this should be apparent frorn considering the function R ( x )  in Chui [19], pp. 
229-230. 



Féjer-Riesz theorem (see [IO], p. 157) guarantees the existence of the low pass factor 

H ( z ) .  The theory in Chapter 3 shows how to find P ( i ) ,  and we see that H ( z )  is a 

spectral factor of P ( z ) .  

In this chapter we sumrnarize different methods of spectral factorization and de- 

termine the rnost suitable one. Having found the spectral factor we then discuss an 

iterative procedure to construct orthonormal wavelets and present some simulation 

results, which again aut henticates our daim t hat the new design dgori t h  is superior 

and more efficient than the methods that were used before in [7], [9]. We substanti- 

ate our daims by comparing the regularity and the frequency response of the scaling 

function constructed using the new design algorithm with that of the widely used 

Daubechies scaling functions. We also compare the frequency response of the scaling 

functions obtained by the new design algorithm with the ones designed by Cooklev's 

original design met hod. 

4.2 Spectral factorization for the Design of Two- 
channel Orthonormal Filter Banks 

Theorem 4.1 illust rates that the design of a twcxhannel orthonormal filter-bank con- 

sists of essentially two steps : obtaining P ( z )  = H ( z ) H ( z - ' )  (which we c d  the 

product filter) which is the andytic continuation of a nonnegative magnitude re- 

sponse function of a half-band filter on the unit circh, and then finding H ( z )  by 

spectral factorization. In general, no solution exists in closed form. The spectral fac- 

tor is not unique, and we c m  fmd al1 possible solutions by finding the zeros of P ( z )  



and grouping them appropriately. We are interested in the minimum phase spectral 

factor, since it is unique. We now describe some commonly used spectral factorization 

methods. It must be noted that we are dealing with half-band filters having only real 

coefficients. 

4.2.1 Spectral Factorization by Completely Factoring a Poly- 
nomial 

The most straightforwaxd method of spectral factorization is to perform a cornplete 

factorization of the polynornial. The advantages are : 

O Complete factorization of a poIynomial works very well for polynomials of low 

order. 

0 Any spectral factor (not only the minimum phase one, i.e., having no zeros 

outside the unit circle) can be found. 

The disadvantage of this method, however, is that for higher order polynomials, this is 

slow andior numerically unreliable. While the zeros of the polynomial can be found, 

the numerical error can be quite significant, especially when the impuIse response 

coefficients are computed from these zeros. 

4.2.2 Spectral Factorization Using the Cepstrum 

This is a method for finding the unique minimum-phase spectral factor without finding 

the zeros of the polynomial. The technique uses some fundamental properties of the 

complex cepstrum of a sequence, which is the inverse z-transform of the natural loga- 

rithm of the r-transform. The idea is to convert multiplication P ( z )  = H(z)H(z-' ) 
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into addition. Formally, log (1 p(n)z -" )  (where p(n) is the impulse response of the 

product filter P ( z ) )  is easily separated into positive and negative powers of r. The 

easy separation into log H ( z - ~ )  + log H ( z )  is the key advantage of this method. Let 

the sequence I(n) be the complex cepstrum of p(n) [IO]. The series for L ( z )  converges 

in an annulus of the complex plane. However, if a root of P ( z )  is present on the unit 

circle, then L ( z )  = log P ( z )  will be infinite at that root and the series would not 

converge. Hence, this method fails in the case when zeros are present on the unit 

circle. 

4.3 Bauer's Spectral Factorization and it's Suit- 
ability 

There are significant practicd difficulties in computing the spectral factorization of 

P ( z ) ,  especially when P ( z )  has zeros on the unit circle, which is a frequent occurrence. 

Half-band fiitea with a non-negative frequency response generally have multiple zeros 

on the unit circle, other than those imposed at z = - 1. 

An efficient matrix spectrd factorizat ion algorithm is necessary t hat can handle 

zeros on the unit circle and also one that is suaiciently reliable for polynomials hav- 

ing a high degree (i.e., filter's having l age  support). We observe from the various 

examples provided in the previous chapter that we do have zeros on the unit circle. 

Some of the widely used spectral factorization algorithrns mentioned in the previous 

section cannot handle such zeros. Cookiev [7] suggested the use of the Bauer-type 

factorization of Youla and Kazanjian [38], because it can handle zeros on the unit 



circle. We therefore use the same algorithm. .4n outline of the Bauer factorization 

has been given in Cooklev (391 and is briefly described here. It must be noted here 

that the Bauer method is slower (though perhaps it can be sped up using fast Toeplitz 

factorizers) and Iess accurate as compared to the other popularly used algorithms. 

The Bauer method is based on Cholesky factorization of a banded Toeplitz corre 

lation matrix. The nonzero elements in the rows of the Cholesky factor converge to 

the minimum phase solution. We restate the problem once again: 

Given P(eJw) O for d real w;  find a polynomiai H ( z )  that satisfies P(z) = 

H ( z ) H ( z - l ) .  This is a problem of spectral factorization of scalar polynomials that 

are n o ~ e g a t  ive on the unit circle. 

It is clear that if the polynomial P ( z )  is Hermitian (i.e.,P(z) = P K ( z )  where 

P H ( z )  is the transpose conjugate of P ( r )  obtained by conjugating every element of 

PT(,), the transpose of P ( z )  ), then the Toeplitz matrices 

ofrespectivesizes (m+l) x (m+l), wherem > N, areHermitianandp(k) = p.(-k) .  

The choice of rn influences the numerical precision and should be as large as possible. 

For polynomials with real coefficients (as in our case) Tm is a real symmetric matrix. 

The matrices Tm are also nonnegative definite. 

The coefficients of the minimum phase factor can be determined by means of the 

following two-st ep procedure: 



Step 1 : For every m > N calculate the unique Cholesky factorization 

Tm = L E L ,  (4.2) 

where 

is lower triangular with positive diagonal entries. 

Step 2 : For every fixed r and k, r 2 k 2 0, 

These two steps have been presented in [39], and represent the algorithm of Bauer. 

4.4 The Interpolatory Graphical Display Algorit hm 
(IGDA) 

We have enurnerated the basic steps leading to the design of a tw*channel orthonor- 

mal filter-bank in the previous section. The main objective of this is to design or- 

thonormal wavelets. There are two main approaches to computing the wavelet and 

scaling functions. One is a.n iterative procedure sometimes c d e d  the cascade algo- 

rithm [40], and the other is the Interpolatory Graphical Display Algorithm (IGDA) as 

given in [19] and [20], which is also called dyadic expansion [40]. An advantage [41] of 

the IGDA over the cascade algorithm is that, in principle, it gives the exact answer in 

a finite number of steps, though only on dyadic points, Le., 2-JZ = { k / 2 j  1 k E Z), 
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where Z is the set of integers, and j 2 O. Noting this advantage we use the IGDA to 

construct the wavelet function from the  low pass filter coefficients h ( n )  of H ( r )  that 

are obtained after spectral factorizing the product filter. 

4.5 Simulation Result s 

Now using Bauer's method for spectrally factorizing the product filter P ( z )  and using 

the IGDA, we present some simulation results which will confim our clairn that the 

new design algorithm produces better resdts than Cookiev's approach and we will 

also compare the regularity and the frequency response characteristics of the new 

scaling functions with the well known Daubechies scaling functions [4]. The first 

example illustrates a cornparison of the scaling and wavelet function constructed 

using Cooklev's original met hod [7] with their counterparts constructed using the 

new design method. 

4.5.1 Example No.1 

Figures 4.1 and 4.2 are the plots of the  scaling and wavelet functions constructed 

from the low-pass filter derived by spec t rdy  factorizing the product filter having 

the specifications xs = 0.5, N = 17 and L = '7 using Cooklev's design and 

the new design algorithm, respectively. We observe that the scaling and wavelet 

function obtained using the new design algorithm is " visually smoothe? than the one 

obtained using Cooklev's method, this demonstrates that unlike Cooklev's method 

the new design algorithm leads to the  convergence of the magnitude response of 



the product filter (as seen in the previous chapter), which in turn is responsible for 

the construction of smoother scaling and wavelet functions. Hence, the new design 

algorithm is superior to Cooklev7s approach. 
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Figure 4.1: Scaling and wavelet functions constructed from the low-pass filter de- 
rived by spectrally factorizing the product filter using Cooklev's method, having the 
specifications zS = 0.5, N = 17, and L = 7. 



Scaling Function 
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Figure 4.2: Scaling and wavelet functions constructed from the low-pass filter derived 
by spectrally factorizing the product filter using the new design algorithm, having 
the specifications x, = 0.5, N = 17, L = 7, M = 11, y = .5 and E = 0. 



4.5.2 Example No.2 

This example shows that the new design algorithm is also suitable for filters having 

large support since it leads to srnooth scaling and wavelet functions. Figure 4.3 is the 

plot of the scaling and wavelet functions constructed from the low-pass filter derived 

by spectrally factorizing the product filter having the specifications x, = 0.5, N = 

35 and L = 16 (Example No. 3 of Chapter 3). This example authenticates the 

clairn in (41 that the larger the support length the smoother the wavelet. 



Wavelet function 
1 1  

Figure 4.3: Scaling and wavelet functions constructed from the low-pass filter derived 
by spectrally factorizing the product filter using the new design algorithm, having 
the specifications x, = 0.5, N = 35, L = 16, M = 10, y = .5 and E = 0. 



Figure 4.4 is a plot of the scaling and wavelet functions derived by spectrally factor- 

izing the product filter of Exarnple No.5 of Chapter 3. This example is particularly 

interesting since it looks exactly the same as the 4 t a p  Daubechies scding and wavelet 

functions. It is aiso observed that as the size m of the Toeplitz matrix representation 

of the product filter P ( z )  given by Equation (4.1) (used in the spectral factorizer) 

increases, the new scaling and wavelet function tends to the Daubechies scoling and 

wavelet functions. In this case the size of the matrix Tm is 300. It must be noted 

here that this is an example in which there is an extra pair of zeros at z = -1 and 

hence it has similarity to it's Daubechies couterpart (since not only is the support 

length the same, but the nurnber of zeros at r = - 1 is also the same). 



Figure 4.4: Scaling and wavelet functions constructed from the low-pass filter derived 
by spectrally factorizing the product filter using the new design algorithm, having the 
specifications x,  = 0.5, N = 3, L = 1, M = 11, y = .5 and E = 0.00068175. 



4.6 Regularity 

In this section we introduce an important property relating to the wavelet function. 

The continuous time measure of wavelet smoothness is regularity. Since the wavelet 

is determined from the scaling function by means of high p a s  filter taps [4], it is the 

smoot hness of the scaling funct ion ( infinitely iterated low pass filter) which determines 

the smoothness of the overdl wavelet system. Smooth wavelet bases are deemed to be 

important for several applications, and particularly for image compression where the 

goal is to limit spurious artifacts due to non-smooth ba i s  functions in the presence 

of quantization of the individual subbands. 

In Chapter 2, Section 2.7.2, we claimed that the non-convergence problem of the 

magnitude response of the half-band filter would lead to irregular wavelets, which 

has b e n  shown in Section 4.5.1. In this section we compare the regularity of the 

wavelets constructed using the Daubechies method [4], to the new method that we 

have designed. 

Daubechies [4] showed that the L-vanishing moment construction led t O scaling 

functions of arbitrary differentiabilit~, if L is taken large enough (L  is the number of 

zeros at r = -1). Another refined tool for measuring the regularity (differentability) 

of the scaiing function is the Sobolev notion of differentiability [42], [43]. 

Given a real number s, the Sobolev space 'H' is defined by 

where &(w) is the Fourier transform of the scaling function. (Note that &w) = 
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@(w).) It has been shown (421, [43] and [41] that the Sobolev smoothness of the 

scaling funct ion is determined by the maximum eigenvalue of a fini te dimensional 

linear operator T associated with the coefficient sequence h(n)  of the low pass filter 

(Le., H ( z )  factor of the product filter P(z j j .  

As described in (421, (431 and [IO], the explici t formula of the Sobolev smoothness 

s(4) of the scaling function # is given by 

where T = (J. 2)2 HP and X,,(T) is the maximum eigenvalue of T excluding 

Now using Equation (4.6) we compare the regularity of the wavelet system based 

on both the design methods mentioned above. The results are tabulated for a few 

examples with specifications as follaws: 

Filter length 11 Daubechies design 1 New design 1 

The following points are worth observing: 

6 tap 
8 tap 
10 tap 
12 tap 
14 tap 

Equation (4.5) is of importance since it signifies that the factor (1 + (w12)" 

grows when w goeç to f oo, so for the integral to be finite, 1&(w)l2 must be 

1.415 
1.775 
2.096 
2.388 
2 -658 

decreasing sufficiently rapidly with IwI. This also telis us about the smoothness 

1.42 
1.7809 
2.0535 
2.3613 
2.4780 

of #( t )  : If the integral in Equation (4.5) is finite then by Parseval's relation 



the s t h  derivative of +( t )  is an L2-function. Relating this back to ordinary 

derivatives, there is a theorem called the Sobolev embedding theorem that says 

if the sth derivative of d ( t )  is in L2(R), then # ( t )  is L(s - f ) J times differentiable 

(differentiability implying smoot hness). 

The Sobolev regularity of the scaling functions constructed using the new design 

in the Ctap, the 6-tap and the &Cap (where tap refers to the filter coefficients) 

cases is equal to or greater than those obtained using the Daubechies construc- 

tion method. The presence of an additiond pair of zeros at z = -1, as noted 

in Section V, is the main cause of this. 

0 Even though the hôlf-band filter is designed in such a way that it will always have 

one zero Less at z = -1 as compared to the Daubechies filters (except in certain 

cases where additiond zeros can be obtained when optimization takes place 

with respect to an odd number of parameters as seen earlier), we notice that 

the scaling function obtained using the new design algorithm is quite regular. 

The size of the Toeplitz matrix Tm given in Equation (4.1), representing the 

product filters used in the above cases for the spectral factorization (using the 

Bauer method) was rn = 300. 

4.7 Addit ional Observations 

In this section we make some observations regarding the frequency spectrum of the 

scaling functions obtained by using the GI-algorit hm and compare it with the well- 



known Daubechies scaling functions [4] and to the scaling functions obtained using 

Cooklev's algorithm. In communications, especially in waveform design, it is impor- 

tant to have functions that have spectra with steep roii-off (narrow transition band), 

and have low side lobes, to avoid adjacent channei interference. 

It is interesting to compare the frequency response of the Daubechies Ctap  scaling 

function with that of the Ctap scaling function obtained using the new aigorithm, 

because both the scaling functions not only appear to be very aiike, they also have 

the same Sobolev regularity. Figure 4.5 shows this cornparison. In this case, we 

observe that the two frequency responses overlap perfectly. The Fourier transform of 

the scaling function + ( t )  was computed using 

where 
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Figure 4.5: Cornparison between the spectrum of the scaling function of the 
Daubechies P t a p  scaling funct ion and the Ctap scaling funct ion obtained using the 
new design algorithm. 



Figure 4.6 shows the cornparison between the spectra of the 8-tap scaling function 

obtained using Cooklev's design (71 and the scaling function obtained using the GI- 

algorithm. Here we notice that the spectrum obtained using the GI-algorithm is 

superior to that obtâined using Cooklev's method in terms of having much lower 

side lobes. This figure is evidence of the efficiency of the new design algorithm over 

Cooklev's met hod. 



Scaling Function Magnitude Spectrum 

Frequency Reqxme of the 8-tap Cooklev !jcaling Funcüon - - - Ffequency Responsa of ttre New &tap Smling Fun* 

Frequency (RaddSec) 

Figure 4.6: Cornparison between the spectrum of the û-tap scaling function obtained 
using Cooklev's design and that obtained using the new design algorithm. 



4.8 Conclusions 

In this section we observed that the scaling and wavelet functions constructed using 

the new design algorithm are smoother than those constructed by Cooklev's method 

for the same specifications. An important point to be noted here is that using the new 

algorithm it is possible in certain cases, when optimization takes place with respect 

to an odd number of parameters, to achieve an additional pair of zeros at z = -1. 

As a result of this phenornenon we actually obtain scaling functions that not only are 

more regular than those of it's Daubechies counterparts, but they also have sirnilar 

frequency responses. 



Chapter 5 

Conclusions and Suggestions for 
Future Research 

5.1 Introduction 

In reasearch, the horizon recedes as we advance, and is no 

nearer at 60 than it was at 20. As the power of endurance 

weakens with age, the urgency of pursuit grows more in- 

tense ... and research is always incomplete » 

- Mark Pattison (1875) 

This thesis presented an a lgor i th  for the design of half-band filters which was 

t hen used to coost ruct ort honormal wavelets and it completely eliminated the limi- 

tations in Cooklev's met hod. 

In this chapter we first summarize the t hesis, and t hen along with our conclusions 

we provide some suggestions for future research. 



5.2 Summary and Conclusions 

We fint introduced a generai overview of the concepts of wauelets and multiresolution 

analysis in Chapter 2. We presented a detailed outline of Cooklev's half-band filter 

design met hod via Bernstein polynomial expansions. We also stated the limitations 

of Cooklev's rnethod, namely zero splitting and non-convergence of the magnitude 

response of the product /ilter. 

The most important contribution of our theory is presented in Chapter 3. As 

mentioned earlier, the main aim of this thesis was to eliminate the limitations that 

existed in Cooklev's method. We completely elirninate the zero splitting problem 

by factoring out the zeros at r = -1, and the problem of non-convergence of 

the magnitude response of the product filter was eliminated by using the Goldfarb- 

Idnani (GI) Dual Algorithm for the optimization problem. We observed from the 

various simulation results provided t hat not ody does the GI-algorithm guarantee 

convergenceof the magnitude response of the product filter, but it also leads to aaother 

contribution of this thesis: the rebuttal of the claims made in [7] and [14], that the 

technique used in designing half- band filters to cons t nict ort honormal wavelet s works 

only when the optimization process occurs with respect to even number of coefficients 

(Le., even K) .  We observed that the half-band filters designed using the GI-algorithm 

also worked for an odd number of coefficients of (Le., odd K ) .  

Having eliminated the limitations we proceeded to construct the scaling and 

wavelet functions as described in Chapter 4 using Bauer's spectral factorizer, and 



the IGDA was used to plot solutions to the tw+scale equations that yielded the scal- 

ing and wavelet functions. From the simulation results provided in this chapter it 

seems clear as stated in [45], that many smooth wavelets are similar in shape. It 

is observed that the scaling and wavelets functions ~ O O K  simiiar to  their Daubechies 

counterparts both in the time and frequency domains. W e  also observed that not 

only are the new scaling and wavelets functions more regular than t hose obtained by 

Cooklev's method, but also in some cases they are more regular than their Daubechies 

counterparts. 

5.3 Suggestions for Future Work 

" Every solution breeds new problems " 

- -4rthur Bloch 

Even though we have been successfd in obtaining a more efficient design method 

than Cooklev's [7], or Zarowski's (91, there still remain some loop holes to be closed. 

We suggest the following steps that codd be taken in the hope of achieving a better 

design method : 

The Multiple Exchange (ME) approach [31] should be adopted. Apparently, 

since it also uses the K-T conditions to check for optirnality, this should be a 

useful strategy. This would also convert the problem into a PCLS optimization 

problem, and therefore the advontages of the PCLS design as described in [31] 

could be used. 



a The numerically stable method of QR decomposition for the GI-algorithm [29] 

could be implemented in the hope of making the algorithm even more numeri- 

cally robust. 

Not only could the algorithm be modified as explained above, but we could also 

explore other rnethods of comparing the performance of the new design a lgor i th ,  

with that of Daubechies. Cooklev in his Ph.D thesis [7] mentions that his filter bank 

outperfonned the flters of Daubechies (in a number of cornputer simulations in image 

coding), in t e m s  of the S/N ratio, assuming the same compression ratio. The same 

tests could be conducted to compare the new design algorithm with Cooklev's and 

Daubechies method. 

To construct symmetric wavelet functions, a future research direction may be to 

extend the usage of the new algorithm to design bzorthogonal filter b d s .  Biorthog- 

onal filters d o w  linear phase and lead to symmetric scaling and wavelet functions. 

In this thesis we have considered filter banks having real-valued coefficients only. It 

would be interesting to extend the new design to the cornplex coefficient case, which 

c m  also lead to symmetric wavelet functions (see Lawton [46]). 

Another interesting avenue of research could be to extend this theory to M-band 

and also mult idimensional fil ter banks. Linear- phase M- band wavelets are useful in 

image coding [47], whereas multidimensional filter banks and wavelets are extrernely 

useful when 2-D and 3-D still images and video signals are coded. 

Lastly, furt her work needs to  be done in developing a better spectral factorizer for 

the case where there are zeros on the unit circle. It must be noted here that the Bauer 
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method is slower (though perhaps it could be sped up using fast Toeplitz factorizers) 

and less accurote as compared to other popularly used algorithms, except for the fact 

that most other rnethods do not cope well with zeros on the unit circle. 



Appendix A 

Chebyshev Polynomial Expressions 
to Orthogonalize the Bernstein 
Polynomials 

According to the orthogonality relation of Chebyshev polynomials of the f k t  kind 

where ho = rr and h, = (n # O) .  Now let the Bernstein polynomial given in 

Equation (2.51) in Chapter 2 be expressed as a series expansion in terms of Chebyshev 

polynomials according to 
N 

b f ( + )  = C GT,(COS W )  
n=O 

where also for x E [O, 11 we define 

COSW = 1 - 2 2  . 

T herefore, 



Using y = 1 - 2t, multiplying by Chebyshev polynomials, and using their orthogcj 

nality property relations gives 

so that 

and t herefore 

Now using Gauss' hypergeometric series we have 

where 

Therefore (A.6) becomes 

Now using the beta integral in Equation (3.196.3) of [48] 

Now, we may define y according to 



and similarly, we may let 

T herefore, 

According to Equation (6.12.1) of [49] 

so t hat 

Also from Equation (A.8), 

Using ( A N )  and (A.12) in Equation (A.9) 

( - R ) P ( ~ ) P  (k + i)p r ( k  + f )r (N - k + :) 
= 2NC 

P=O P! (f) ( N  + UP N !  
P 

Therefore, from Equation (2.1.1.2) of [50] 

(A.  12) 

(A. 14) 

1 1  r ( k  + f)T(N - k +  f )  
= ,F2(-n,n, k + 7;  -, N + 1) 2" ( A .  15) 

2 2 N !  



Using (A.15) in (A.9) we get 

T herefore, 

Fiorn Equation (2.25) of [51] 

Using t his in (A. 18) we get 

ç , = -  
1 1  

3 F 2  ( - n 7 * , k +  -?,N + l ) ,  h, k!  ( N  - k ) !  2 2 

1 1  
= - 3F2 

h, 22N (k!). [ ( N  - k)!I2 

Hence, (A.3) becomes 



Mat lab Routines Implementing 
Supporting Functions 

The following routines are the functions that are called by the main programs. The 
equation numbers cited in the in-line cornments of the routines contained in this 

appendix refer to equations in Chapter 2 and 3 of this thesis. 

fact .m 

% This function computes n ! (i.e., n-factorial) .  

func t ion  m = f act (n) 

i f n > O  

j = 1; 

for  i = 1:n 
j = j*i; 

end 

end 

binco .m 



% 
% This function returns binomial coefficient 

% "n choose mu. 

function b = binco(n,m) 

if (m >= 0 )  & ( (n-m) >= O ) 

b = f act (n) / ( f act (m) *f act  (n - m) ) ; 

end 

X This routine computes certa in  integrals  needed by 

% CooklevJs theorp of  half-band f i l t e r  design. 

% The integrals are used t o  cornpute the elements of a 

% certa in  matrix and a certa in  vector that  ult imately 

'/. give t h e  f i l t e r  c o e f f i c i e n t s .  

X 
% The int  egral comput ed is : 

x y = i n t  x (1 - X) dx 

% We have a <= b, and m,n >= 0. 

function y = u ( a , b , m . d  



end ; 

% This routine makes the font )  i n  (2 .81)  

% of  the document "CooklevJ s Theory of  Half -Band F i l t e r  Design. " 

% Note that  O < a < b = 1 ,  and that O <= L <= (N-1)/2. 

function R = makeR(a,b,N,L) 

f o r  k = l :(N+1)/2 - L 
for j = k:(N+1)/2 - L 

R(k, j )  = terml - tem2 - term3 + term4; 

R(k, j )  = binco(N, j+L-l)*binco(N,k+L-l)*R(k, j) ; 

R(j,k)  = R ( k , j ) ;  

end ; 

end ; 

% This rout ine  makes the vector r i n  (2.81) 

% of the document 'Tooklav s Theory of  Half -Band F i l t er  Design. " 

% Note that O < a < b = 1 ,  and that  O <= L <= (N-1)/2. 



function r = maker(a,b,N,L) 

for k = 1 : (N+l) /2-L 

r(k) = 0; 

for i = 0:(N-1)/2 

termi = u(a,  b ,N+i+l-L-k,N+L+k-i-1) ; 

r(k) = r(k) + binco(~, i)*binco (N, k+l-1) *(terml - term2) ; 
end ; 

end ; 

% This routine makes the matrix element r O O  in (2.78) 

% of the document 'ïCooklev~ s Theory of Half-Band Filter Design. " 

% This involves the use of Equation (2.73). 

% Note that O < a < b = 1. 

function r O O  = makerOO(a, b ,N) 

rOO = 0; 

for k = 0: (N-1)/2 

for j = O:(N-1)/2 

end ; 

end ; 

% This routine implements the f unct ion in Equat ion (2.72) 



% of  "Cook lev )~  Theory of H a l f  -Band Filter Design. " 

% 
% NOTE: N is odd. 

funct ion y = vO(x,l) 

y = O; 

f o r  k = 0:(N-1)/2 

y = binco(N,k)*(xLk)*((l - x)̂ (N-k)) + y; 
end ; 

% This  routine implements the function i n  Equation (2.73) 

% of "Cooklev)~  Theory of Half-Band F i l t e r  Design." 

% NOTE: N is odd, and O <= L <= (N-1) /2. As w e l l  , w e  have 

funct ion y = vk(x,k,~,L) 

t a m i  = (x-(~+i-L-k))*((i-x)^(~+k-l)); 

term2 = (xn (k+L- 1) ) * ( (1-r) ' (N+I-L-~) ) ; 
y = binco (N, k+L-1) * ( t e m l  - term2) ; 

% This routine evaluates  the matrix V in Equat i on  (2.5) 

% of  t h i s  report. 

% 
% NOTE: N is odd, and O <= L <= (N-1)/2. 



funct ion  Vx = H(x,N,L) 

for  k = 0:(N+1)/2 - L 

if k == O 

v02 = V O ~ ( X , N ) ;  

end ; 

i f k > O  

vk2 = Cvk2 vkl(x,k,~,~)I; 

end ; 

end ; 

Vx = [v02 vk23 ; 



Appendix C 

Mat lab Routines Implementing 
Main Programs 

% Implementat ion of the Goldf arb-Idnani Algorithm 

% based on the  paper 

X " A Numerically Stable Dual Method f o r  Solving 

% S t r i c t l y  Convex Quadratic Programs " 
% Mathematical Programming 27 (1983) pp. 1-33 

% G = n X n pos i t ive  d e f i n i t e  matrix 

% a = n vector 

% C = n x m matrix 

% b = m vector 

% E = perturbation parameter (only used sometimes t o  

% assist i n  convergence t o  the Magnitude response 

% i n  most cases  i t ' s  value is zero) .  



function [x,iter] = GI-~lgo(~,a,~,b,E) 

Step O : Find t h e  unconstrained minimum 

% i n i t  ialize var iables  for i t e r a t i v e  loop 

iter = 1; 

add = 0 ;  

del = 0; 

% Evaluat e constraint  f unct ion 

% # of constraints  i n  t h e  constraint set 

% Step 1 : Choose a vio lated  constraint if any 



while min(S) < -1Oe-10 

if add == 1 1 i t e r  == 1 

% R e i n i t i a l i z e  the add variable  

add = 0 ; 

% To evaluate the MOST v io lated  constraint 
% ---------------------------------------- 

% ( i )  First evaluate the  set V such that  it 

% covers al1 constraints t h a t  do not 

% belong t o  the ac t ive  set A 

f o r  vcon = l : K  

if A -= vcon 

w = [w vconl ; 

end ; 

else 

w = [w vconl ; 

end ; 

end ; 

% ( i i )  Now f i n d  the MOST v io lated  constraint 

x i e :  f ind the most negative value of S 

wsize = s ize(w,S) ;  

S2 = a ;  



for  vconi = 1:us ize  

S2 = CS2 S(: ,w(vconl))];  

end ; 

% ( i i i )  Once the most violated constraint has 

% been se lec ted ,  assign t h i s  constraint 

% number t o  "p". 

f o r  vcon2 = l:K 

if S(vcon2) == constraint & A -= vcon2 

p = vcon2; 

end ; 

end ; 

% Select  the  pth column of the matrix C 

nplus = C(:,p); 

if q == O 

u = O ;  

uplus = O ;  

e l s e  

uplus = Cu; O] ; 

end ; 

end; % End of the  condition (if add == 1 1 i t e r  == 1) 

% Step  2 : Check for f e a s i b i l i t y  and determine a new S-pair 



if del == 1 I iter >= 1 

% r e i n i t i a l i z e  the del variable 

d e l  = O ;  

if isempty(A) == 1 

H = G l ;  

z = H*nplus; 

r = 0; 

else 

Ns = NJ*Gi*N; 

Nstar = inv(Ns)*N'*Gl; 

N2 = N*Nstar; 

c i  = s ize(N2,S) ;  

H = Gl*(eye(cl)  - N2); 
z = H*nplus; 

r = Nst ar*nplus ; 

end ; 

% (i) P a r t i a l  ~ t e p  length tl 

% realmax is equivalent to inf i n i t y  

if r <= O 1 q = =  O 

t 1 = realmax; 

else 



ur = C l ;  
for j = 1:q 

if r(j) > O 
ur = [ur uphs(j)./r(j)l; 

end ; 

end ; 

t 1 = min (ur) ; 

CU = size(ur,2); 

for cdrop = 1:cu 

i f  ur(cdrop) == t 1 

k = cdrop; 

break ; 

end ; 

end ; 

end ; 

% (ii) Full step t2 

if abs (2) == O 

t2 = realmax; 

else 

t2 = -s(p)/(zJ*nplus); 

end ; 

% (iii) Step length t 

t = min(tl,t2); 



% (i) No ~ t e p  i n  prima1 or  dual space 
%------------------------------------- 

if t == realmax 

OOPs = i 

break ; 

end ; 

if t 2  == realmax 

if r == O 

uplus = uplus + t ;  

else 

uplus = uplus + t*[-r;ll; 
end ; 

%------------------- 

% DROP CUNSTRAINT k 

%------------------------------------------- 

% Update A : Drop the kth constraint from A 



f o r  àropA = 1:q 

if  (dropA) -= k 

Al = [AI ~ ( d r o p ~ )  1 ; 
end ; 

end ; 

A = A 1  

%------------------- 

% Decrease q by one 

% Drop the kth element of uplus 

u i  = O ;  
cul  = size (uplus , 1) ; 
f o r  dropu = 1:cui 

if dropu '= k 

u l  = Cu1;uplus (dr0pu)l ; 

end ; 

end ; 

uplus = u1; 

% Update matrix N i e  : drop the kth constraint 
%--------------------------------------------- 

Ndrop = 0 ; 
%A2 = sort (A) ; 

for Nd = l:q 

N ~ ~ O P  = [ ~ d r o p  c ( : ,A  (NI) 11 ; 





%------------------------------------"---------------- 

Y, If  ALL the elements i n  S are  greater than ZERO then 

% EUREKA ! ! ! !  : CONVERGENCE has been achieved. STOP. 
%---------------------------------"'-------------- 

if min@) > -10e-9 

EUREKA= 1 

break; 

end ; 

% Update i t era t ion  counter 

iter = iter + 1; 

if i t e r  == 100 

disp(I1terat ion L i m i t  Exceeded .... User should t r y  using d i f f e r e n t  ... 
INPUT parameters') ; 

break; 

end ; 

% Update uplus 

if r == O 

uplus = uplus + t ;  

e l s e  

U ~ ~ U S  = U#US + t* C-r ; 11 ; 
end ; 



% Full Step t2 

if t == t2 

u = uplus; 

%---------- 

% Update A 

% Update q 

Nadd = 0 ; .  

for Na = l:q 

Nadd = [Nadd C(:,A(Na))l; 

end ; 

N = Nadd; 



add = i ; 

end; % end of (if t == t2) 

X P a r t i a l  Step tl 

%--------------------------O---------------- 

% Update A : Drop the kth constraint from A 

A l =  a ;  
for  dropA = 1:q 

if (dropA) '= k 

ni = [AI ~ ( d r o p ~ ) ] ;  

end ; 

end ; 

A = A l ;  

% Decrease q by one 





X This routine creates the half-band f i l t e r  impulse 

% response sequence h .  

x 
% Note that O < a < b = 1, and that O <= L <= (N-1)/2. 
x************************************************************ 

function h = H-ta-plot(a,b,N,L,M.x,E) 

1! Create the alpha parameter vector (Equation (2 3 1 )  ) 

XI = x ;  

M l  = M; 

El = E; 

b1 = b; 

R = 0; 

r = 0; 

x = O; 

Nla = 0 ; 
Tha = ; 

% t o  evaluate Equation (3.12).  



for k = O:(M-1) 

x = xi + (1 - xl)/(M)*k; 
vx = H ( x , N , L ) ;  

C2 = Cc2; vxl ; 
end ; 

sizeC = size (C2,2) ; 

b2 = -~2(:,1); 

CI = ~2(:,[2:sizeCl); 

C2 = Cl' 

[alpha,iter] = GI-Algo(R,r.' ,CZ,b2,El) 

no-of-iterations = iter; 

% Create the e parameter vector (Equation (2.67) ) 

i f L > O  

for k = 0:L-1 

e(k+i) = 1; 
end ; 

for k = L:(N-1)/2 

e(k+l) = 1 - alpha(k-L+l) ; 
end ; 

for k = (N+1)/2:N-L 

e(k+i) = olpha(N+l-L-k) ; 

end ; 

for k = N+l-L:N 

e(k+i) = 0; 

end ; 

else 

for k = L:(N-1)/2 

e(k+l) = 1 - alpha&-L+l) ; 

end ; 

for k = (N+1)/2:N-L 



e(k+l) = alpha(N+l-L-k) ; 

end ; 

end 

% Compte the frequency response of the Half-Band filter 

deltaomega = (2*pi)/(2*N+1); 

for r = 0:(2*N) 

omega = r*deltaomega; 

H(r+l) = exp(-j*omega*N)*e(1)*binco(N,0)*((l+cos(omega))/(2))-N; 

for k = l:N 

H(r+l) = H ( r + l )  + exp(-j*omega*N) *e(k+l)*binco(W, k)* . . . 
( (1-cos (omega) ) / (2) ) ̂ k* ( (l+cos (omega) ) / (2) ) a (N-k) ; 

end ; 

end ; 

Use the inverse FFT to compute to compute the half-band filter 

% impulse response sequence 

% when using this program to plot the magnitude response 
% uncomment the next tvo lines, otherwise when using it for 
% plotting the zero-plot or using it with the IGDA comment 
% the next two lines. 



% This routine p l o t s  the half-band filter frequency response 

X for the filter parameters obtained with the a id  of the 

% CI-Algorithm (ie: CI-A1go.m) 

% The filter impulse response sequence is also plot ted  

f unct ion k p l o t  (h) 

hl = size(h,l) 

h3 = 0 ;  
h4 = a ;  
for h2 = 1 : (hi) 

if h2 < (hi-6) 
h3 = Eh3 ; h(h2) 1 ; 

else 

h4 = fh4;h(h2)1 ; 

end ; 

end ; 

subplot(211) ,bar(O:length(h)-1,h) ,grid 

xlabel( ' Coeff ic ient  Index1 ) 



ylabel(JAmplitudeJ) 

title(JCooklev Half-Band Filter Impulse Response SequenceJ) 

L = 100; 

a = Ci1 ; 
f H , d  = freqz(h,a,L) ; 

N = (length(h) - 1112; 
domega = pi/L; 

for k = 0:L-1 

Hx (k+ l) = exp (j *domega*k*N) *H(k+l) ; 

end ; 

subplot (212) , plot (w ,real(Hx) ) , grid 
xlabel( 'Digital Frequency ' ) 

ylabel(  ' Amplitude ' ) 
title(['~mplitude Response of a Cooklev Half-Band Filter ' , ' . . . 
( iter = l,iter2,' ; a = ',aS,'; b = ',b2,'; N = ',N2,' ; L = ' . . .  
,L2, ; M = ),M2,'; x = ' , x 2 , '  ) ' I l  

x This routine produces t h e  zero-plots s h o ~  in Chapters 2 and 3 

% of this thesis. 

% zeropl 

% This routine plots the zeros of the f ilters with 
% impulse response sequences h, and g. 
% These sequences are generated by makeh1.m and 

X H0ptfft.m. respectiveiy. 

function zeroplot(a,b,N,L,M,x,E) 



rg = roots  (g) ; 

Add the  multiple zeros of order 2L at z = -1 to 

% the  zeros of the  FIR filter g .  

clf 

theta = O :  .OOS:2*pi; 

plot  (cos (theta),  sin(theta) , ' . ' ) 
hold 

for k = l:length(rg) 

p l o t  (mal (rg(k)) , imag(rg(k)), ' 0' )'/.,real(rg(k)), imag(rg(k)) , '+') 

end ; 

gr id 

xlabel(' Real Part ' ) 
ylabelo Imaginary Part ' ) 

t i t l e ( C J  FIR Filter Zeros ','a = ' ,a2, ' ;  b = ' ,b2, '; N = ',N2,'; . . . 
L = ',L2,'; M = ',M2,'; x = ' , x 2 , ' ;  E = ',E2]) 

axis ( ' square' ) 



% This routine creates the half -band f ilter impulse 
% response sequence h with the multiple zeros at z = -1 

% factorized out (i.e., vith the multiple zeros) to avoid 
X zero splitting. 

% In what follows the equation numbers cited refer to 
X equat ions in the document "Cooklev ' s Theory of Half -Band 

% Filter design." 

% 
% Note that O < a < b = 1, and that O c= L <= (N-1)/2. 

function h = H-to,fact(a,b,N,L,M,x,E) 

% Create the alpha parameter vector (Equat ion (2.81) ) 

xl = x; 

Ml = M; 

El = E; 
bl = b; 

R = 0; 

r = O; 

x = O; 

Nla = ; 

Tha = ; 

R = 2*makeR(a,b,N,~) ; 

r = 2*maker(a,b,~,~); 

rOO = maker00-(a, b , N) ; 
C2 = O ;  
M = Ml*N; 

for k = O:(M-1) 

x = xi + 1/(2*M)*k; 



Vx = H ( x , N , L ) ;  

C2 = CC2; vx3 ; 

end ; 

sizeC = size(C2,2); 

b2 = -C2(: ,1); 

CI = ~2(:, C2:sizeCI ); 

C2 = Cl' 

[alpha,iter] = GI-A~~O(R,~.',C~,~~,E~)%,~OO); 

no-of ,iterations = iter ; 

% Create the e parameter vector (Equation (2.67)  ) 

i f L > O  

for k = 0:L-1 

e(k+l) = 1; 

end ; 

for k = L:(N-1)/2 

e(k+l) = 1 - alpha(k-L+l); 
end ; 

for k = (N+l) /2:N-L 

e(k+l) = alpha(N+l-L-k) ; 

end ; 

for k = N+I-L:N 

e(k+l) = 0; 

end ; 

else 

for k = L:(N-1)/2 

e(k+l) = 1 - alpha(k-L+l); 
end ; 

for k = (N+1)/2:N-L 

e(k+l) = alpha(N+l-L-k) ; 

end ; 



end 

% Compute the  frequency response of t h e  Half-Band f i l ter with mult iple  

X zeros factored out t o  avoid zero s p l i t t i n g .  

deltaomega = (2*pi) /(2*(~-~)+1) ; 

f o r  r = 0 :2*(N-L) 

omega = r*deltaomega; 

H(r+l) = 0 ;  

f o r  k = O:(N-1)/2 

H(r+l) = H ( r + l )  + exp(-j*omega*(l-~))*binco(~,k)* . . . 
( (1-cos (omega) ) / ( 2 )  ) ̂ k* ((i+cos (omega) / 2 )  a (N-L-k) ; 

end ; 

f o r  k = i:((N+i)/2-L) 
H(r+i) = H(r+l) + exp(-j *omega*(N-L) ) *alpha(k)* . . . 

binco (N, k+~-1) * ( ( (1-cos (omega) ) / (2 )  ) (N+l-L-k) . . . 
*((i+co~(omega))/(2))~(k-l)-((1-~0s(omega))/(2)~~(k+~-~)* . . . 
( ( l+cos  (omega) ) / (2) ) ̂  (N+I-2*L-k) ) ; 

end ; 

end ; 

% Use the inverse FFT t o  compute t o  compute the  half  -band f i l t e r  

% impulse response sequence 

h= real (if f t (H) ) . ' ; 



% specf act .m 

% This  program implements t h e  s p e c t r a l  f a c t o r i z a t  i on  

% of a polynomial using t h e  Bauer method which 

% is based on t h e  Cholesky f a c t o r i z a t i o n  of a banded 

% T o e p l i t z  c o r r e l a t  ion ma t r ix  . 

X This  program has been t aken  from t h e  repor t  "On t h e  

% des ign  and implernentation of f i l t e r  bank t r e e s  f o r  

% mul t ip l e  access communications", by D r  .Todor Cooklev . 

% nd i  is the dimension of each mat r ix  p i  

s p e c i f y  a l so  t h e  s i z e  of  t h e  matrix (about 10 t i m e s  

% t h e  size of t h e  f i l t e r  

f u n c t  i o n  y = specf act (p ,m) 

l e n  = length(p) ; 

lenh = (len-1)/2; 

p must be a half-band f i l t e r  with pos i t i ve  frequency 

% response 

ndi = 1; 

d i m t  = ndi*(m+l); 



% t is of dimension ndi(m+l) X ndi(m+l) 

t = sparse(1: ndi :dimt ,l :ndi :dimt ,p(lenh+l) ,dimt ,dimt) ; 

for n = 1:lenh 
t = t + sparse (1 : ndi : dimt -n , n+l : ndi : dimt , (lenh+n+l) , dimt , dimt ) ; 

end ; 

for j = dimt-2:-1:i 

for k = dimt-1:-i:j+l 

abra = 0; 

for m = k+l:dimt 

abra = abra+u ( j , m) *u (k , m) ; 
end ; 

end ; 

abra = 0; 



f o r  m = j+l:dimt 

abra = abra+u( j  ,m)*u(j ,m) ; 

end ; 

end ; 

% üL factorizat i o n  of a p o s i t i v e  def i n i t e  mat r ix  

% t h e  matrix u i supper - t r iangular ;  t = u .  u a t  ; t h e  first column 

% of u a t  con ta ins  t h e  matrix c o e f f i c i e n t s  of t h e  s p e c t r a l  f a c t o r .  

auu = u(l,i:(len+l)/2); 

y = f u l l ( a u u ) ;  

su = 0.0;  

f o r  n = 1 : length(y) 

su  = s u  + y(n) ;  

end ; 

~**********************4********************************** 

%% Implementation of IGDA Algorithm based on o u t l i n e  i n  

%% "Notes on Orthogonal Wavelets and Wavelet Packets I f ,  

%% by D r .  C .  J. Zarowski. 

%********************************************************* 

% p=coe f f i c i en t s  of low pass  f i l e r  of QMF bank 



% since for Orthonormal uavelets one of the requirements is 
% that al1 the f i l t e r  coefficients of the product filter 

X should add up to be equal to 2, hence we multiply the coefficients 
% by 2 to nomalize it. 

N = size(p.2)-1; 

J=8; X J = resolution 

Y. compute q vector 

for k=O:N 

@ i l )  = (-1) - (N+ 1) *P(N-k+i) ; 

end 

for j = l:(N-1) 

for m = l:(N-1) 

index = 2*j - m + 1; 
if (index > p-length 1 index < 1) 

M ( j  ,m) = O; 

else 

M ( j  ,m) = p(index); 

end 

end 

end 

% solve for eigen 



Cb.d] = eig(M) ; 

[lambda, K] = sort (real (diag (d) ) ) ; 

num = size(1ambda) ; 

pos = 1; 

flag = 1; 

while ((lambda(pos) > 1 .O01 1 lambda(pos) < 0 -999) & flag 

pos = pos+1; 

if (pos > num(1)) 
flag = 0; 

pos = pos -1; 

end 

end 

b = b(: ,K); 

m = b(: ,pos); 

% enf orce partition of u n i t y  property 

alpha = sum(m) ; 

phi = (m ./ alpha) ' ; 

phi = [O phi O] ; 

a=[i] ; 

for j=O:J-i 

aa=zeros(i ,2*size(a, 2) ) ; 

for i=l:size(a,2) 

aa((i-i)*2+i)=a(i) ; 

end ; 

aa=aa(i:size(aa,2>-1) ; 

a=conv (p , aa) ; 

end ; 



'/. convolve a and phi on the integers t o  get 

% the scaling f unct ion 

phi-out=conv(a, phi) ; 

subplot (2,1,1) ; axis1=0 : size(phi-out, 2) -1 ;p lot  (axisl/(ln J) ,phi-out) ; 

t it le  ( Scaling Funct ion' ) ; 

% nov ups-pie q by 2-5 (q has same length N+1 as p) 

f o r  i = 0 : N  

qq(2-J*i+l) = q(i+l) ; 

end 

% convolve q with scaling function t o  ge t  wavelet 

wavelet = conv( phi-out , qq ) ; 

subplot (2,1,2) ; axis2=0 : size(wave1et , 2 )  -1 ;p lot  (axis2/2^ (~+1) ,uavelet) ; 

grid ; 

t i t l e  ( ' Wavelet f unct ion '  ) ; 
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