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ABSTRACT 

Standard ray tracing algorithm slow down unacceptably when a large number 

of light sources are in the scene because the shadow determination process is O(n), 

where n is the number of Iight sources. This thesis puts forward a new Light Ektent 

Volumes approach to eficiently ray tracing scenes with many iight sources. By 

building a hierarc~cal tree of light extent volumes one can approach approximately 

logarithmic complexity for typical scenes in determinhg which light sources 

contribute significant ïrradiance to the intersection point. This d o w s  tens of 

thousands of light sources in a scene to be rendered in reasonable tirne. The relative 

performance of the algorithm improves as the number of light sources increases in the 

scene. It achieves significant speedup over other existing approaches, up to 150 times 

faster. Moreover, the algorithm requires minimal memory overhead for shadow 

testing acceleration. Anoher important feature is its simplicity of implementation. In 

addition, the approach is orthogonal to most other global illumination techniques and 

can be added to existing direct Light calculation and optimizations. The Light m e n t  

Volumes approach is a practical algorithm for efficiently ray tracing scenes with many 

light sources. 
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Chapter 1 

Introduction 

1.1 Introduction to Ray Tracing 

Ray tracing is a powerful 3D image-rendering technique that simulates the 

interaction of Light with 3D objects at each intersection point within the environment. 

It was f m t  developed by Appel [APPE681 for visible surface determination. Whitted 

-801 then extended ray tracing to handle specular reflection and refraction. 

For a typical ray tracer, given a viewpoint and a view plane which is divided 

into a grid and each element in the grid represents a pixel of the resulting image, a ray 

is shot from the viwepoint, through a pixel, and into the scene. as shown in Figure 1.1. 

The f i s t  object that the ray intersects is the object visible in that pixel of the 

view plane. When a ray intersects with an object. the intensity and color of the 

intersection point are assigned to the pixel. Refracton and reflection are modeled by 

recursively shooting refraction and reflection ray untii a bounce iimit is exceeded or 

no more objects are encountered, as shown in Figure 1.2. This scheme produces high 

quality images. 



Figure 1.1 example of simple ray tracing 

t reflection ray 

rehction ra action ray 

view plane G 
view point 

figure 1.2 ray tracing modeled by reflection and refraction 



1.2 Problem of Ray Tracing Scenes with Many Light Sources 

For most existing commercial rendering systems (for animations. film special 

effects. postproduction. advertking. etc.). ray tracing remaias the rendering aigorithm 

of choice. In such environments. scenes containhg a large number of geometric 

primitives as weii as a large number of iight sources are common. Unforhmately, 

standard ray tracing aigorithms slow d o m  unacceptably when large numbers of iight 

sources are in the scene because the shadow determination pmcess is O(n). where n is 

the number of light sources. We need to send a shadow ray fmm each intersection 

point towards every light source to determine whether the intersection point is visible 

to that light source. If there are more than a few light sources, shadow determination 

quickly becomes the dominant computation even though there is a high probability 

that most light sources have negligible infi uence to most of the scene. What is needed 

is an approach whose complexity is better so that we c m  render scenes with tens of 

thousands of light sources in reasonable time. 

Researchers have been lwking at ways of solving this problern and there are 

two distinct strategies to consider: (1)jèwer ray-object intersection approaches which 

reduce the number of objects that have to be intersected with a ray by oniy 

concentrating on objects close to the shadow ray, including Bounding Volume 

Hierarchies -80. RUBI80, WEGH84, KAY 86. STUE941 and S pace Subdivision 

IGLAS84, KAPUS, JANS86, FUJï86, AMAN87, EOKS89. W0090al; (2) shadow 

ray reduction methods which shoot shadow rays only to the most significant Iight 



sources and then estimate the visibility of the others WARD91, HOUL93, SILL94, 

SMIT94, STAM95, SHIR96, PAQU981. 

1 3  Goal 

The objective of this thesis is to develop a new approach to efficiently ray 

tracing scenes with many Light sources. It focuses on the target that given an 

intersection point during the ray tracing process, quickly determine al i  the Light 

sources which make great contribution to this intersection point. By building a 

hierarchical tree of iight extent volumes one can appmach approximately O(log n) 

complexity in determining which light sources contribute significant irradiance to the 

intersection point, where n is the number of light sources. This allows hundreds or 

even tens of thousands of light sources in a scene to be rendered in masonable tirne. 



Chapter 2 

Background 

2.1 Overview 

In this chapter. ray tracing topics related to this thesis are discussed. Topics 

include illumination model, recursive ray tracing, intersection culling techniques, and 

the techniques of ray tracing multiple Lights. 

2.2 ïïIumination Mode1 

The role of the illumination mode1 is to determine how much light is refiected 

to the viewer from a visible point on a surface as a function of Light source direction 

and strength, viewer position, surface orientation, and surface properties. In this 

section, Phong's [PHON751 Uumination model is introduced because it is the most 

popular illumination model in the computer graphics field. Phong's model includes 

three factors: diffuse reflection, specular reflection, and ambient light Based on 

Phong's model, an improved point-light-source model is further provided to simulate 

some of the directionality of the Lights, such as sharply delineated spotlights. 



2.2.1 Lambertian Difhise Reflection 

Lambeaian dinuse reflection is the simplest type of reflection where a ray of 

light, after an amount of absorption, is scattered back into the environment with equal 

intensity in equal directions (Figure 2.1 a). The amount of energy reflected per unit 

area is proportional to the cosine of the angle between the normal to the surface at that 

point, and the direction to the light source (Figure 2.1 b). 

Figure 2.1 Diffuse reflection - light is scattered in al1 directions from a 
point on the surface 

At this stage in the development of the model, we should consider the role of 

distance by adding an attenuation tenn that reduces light intensity as a function of the 

distance of the surface from the light source. This ensures that surfaces of the same 

color, but at different distances h m  the light sources. are not assigned the same 

intensity. The physical choice for this attenuation term is ~/d. 

Lambertian diffuse reflection can be written as: 



is the intensity of the light source; 

is the distance between the intersection point and the light 

source; 

is a constant of reflection dependent on the surface maienai; 

is the angle of refiection between the incident light direction 

and the surface normal. 

Lambertian diffuse surfaces appear dull and do not produce regular reflection. 

It is important to note that the intensity the viewer sees reflected off of a diffuse 

surface is independent of the viewer's position. 

2.2.2 Specular Reflection 

Specular reflection is due to the shininess of a surface. Unlike diffuse 

reflection, it is highly dependent upon the position of the viewer and the iight source 

at each point on the specular surface. In Phong's model, specular reflection is 

scattered about the mirror direction when a surface is not mirror We but stiii shiny 

(Figure 2.2 a). 

In this model the intensity of the reflection is proportional to the cosine 

(raised to some power) of the angle between the mirror direction and viewer direction 

(Figure 2.2 b). 

G = (&/& ) ~ ~ ( c o s a ) ~  (2) 



L: Iight ray N: normal R- mirroccd specular reflection V: viewer 

Figure 2.2 Specular reflection - light is concentrated around the mirror 
direction R 

Where 

ri is the intensity of the Iight source; 

Ks is the constant representing the fraction of energy reflected 

specularily, which is a function of the surface propeaies; 

a is the angle between the mirror direction and the viewer 

direction; 

n is the specuiar exponent, also a function of the surface 

properties. 

Values of n typically Vary fiom O to several hundred. depending on the surface 

matenal k ing  simulated Shinier surfaces have larger values of n. A value of n = O 

wiii result in a Larnbertian diffuse reflectance, and a value of n = infzrtity wiii resuit in 

a mirrored surface. 



2.23 Ambient Light 

Arnbient light is the result of multiple reflections from many surfaces in the 

environment, and is incident on a surface h m  ai i  directions. Without ambient light, 

objects in shadow would be completely black. Since it's generally very expensive to 

directly compute the ambient Iight, the ambient component is often modeled as a 

constant term for a particular object by using a constant ambient reflection coefficient 

as shown below: 

is the intensity of the ambient light; 

is the arnbient-rejlection coeficient w hich determines the 

amount of ambient Iight reflected h m  an object's surface. 

2.2.4 Phong Mode1 

Combining ambient light, diffuse reflection and specular reflection, intensity 

from Phong's model is given by 

I=I'& + ( I J B ) [ K ~ c o s ~ +  ~ ~ ( c o s a r ]  (4) 

In Phong's model, the global term (ambient) is modeled as a constant, and the 

diffuse and specular ternis are modeled as local components. The overall effect of the 

iack of interaction between objects in a scene is that they appear plastic like. Also, 

the Iack of shadows means not only that objects do not cast a shadow on other objects, 

but self-shadowing within an object is omitted. These can be solved by the technique 

of Recursive Ray Tracing. 



2.25 Impmved Point-Light-Source Mode1 

Real Light sources do not radiate equaily in ail directions. Wam WARN831 

has developed easily implemented iighting controls to model some of the 

directionality of the lights. A directed Light is modeled mathematically as the Light 

ernitted by a single point specular reflecting surface iiiuminated by a hypothetical 

point light source, as shown in Figure 2.3. Think of the point labeiied "UGIE1"' in 

Figure 2.3 as a surface which reflects light onto the object. The normal orientation of 

this single point surface is controlled by the light direction vector. A hypotheticd 

point light located dong this vector iiluminates the reflector surface which, in turn, 

reflects light ont0 the object. 

We can use the Phong illumination equation to compute the intensity of the 

reflected light at a point on the object. If we further assume that the reflector has a 

diffuse coefficient of O and a specular coefficient of 1. then the iight's intensity at a 

Reflector 

Normai 

Figure 2.3 Wam's lighting model. A Iight is modeled as the specular 
reflection frorn a single point illuminated by a point Iight source. 



point on the object is 

c o f y  (5) 

Where IL- is the intensity of the hypothetical point light source, yis the angle between 

-L and the hypothetical surface's normal, L', and P is the reflector's specular 

exponent. The exponent P provides control over the concentration of the light. By 

increasing the value of P, the light becomes more concentrated around the primary 

direction. This c m  be used to simulate the effect of a spotlight. The Iight c m  be 

aimed by adjusting the orientation of the light direction vector. 

Equation (5) can thus be substitued for the light-source intensity Ii in the 

formulation of Equation (4). Then the intensity of a directed light at a point on the 

object based on Phong's modei is given by 

I = I,K, + (IL* CO# y/& ) [ K~ coso + & ( =osa 1 (6) 

In Warn's method, a sharply delineated spotlight is modeled as a variable 

sized cone surrounding the light dwction. As shown in Figure 2.4. a cone with a 

generating angle of 6 may be used to resûict the Light source's effect by evaluating the 

illumination mode1 only when y < 6. 

Figure 2.4 The intensity distribution of a spotlight is restricted wial cone. 



23 Recursive Ray Tracing 

The illumination model described in the Section 2.2 is for simple ray traçing 

which only computes pixel values at the closest intersection of a ray from view point 

with objects. Recursive ray tmcing extends to handle shadows, reflection, and 

refraction (Figure 2.5). 

Normal * Reflection ray 
Viewer 

Shadawray \ f 

Figure 2.5 reflection, refraction and shadow are spawned from a point of intersection 

To calculate shadows, an additional ray from the point of intersection is shot 

to each of the light sources. If the shadow ray sirikes an object before reachuig the 

light source, the point of intersection is in shadow. 

The illumination model developed by Whitted -801 and Kay [KAY79] 

fundamentaiiy extends ray tracing to include specular reflection and refractive 

transparency. Each of these reflection and refiaction rays then in tum recursively 



spawn shadow, reflection and refiaction rays. The illumination mode1 by Equation 

(6) can be extended to: 

Where 

m is the number of light sources 

si is the visibfity factor of the Iight source 

Kr is the reflection coefficient 

Ir is the intensity of the reflected ray 

Kt is the transmission coefficient 

1' is the intensity of the refiacted transmitted ray 

Values for I, and It are detennined by recursively evduating Equation (7) at the 

closest surface that the reflected and transmitted rays intersect. A maximum depth 

can be used to limit the times of recursion in a very shiny environment, or the 

recunion is stopped when the ray doesn't intersect with any object in the scene. 

2.4 Intersection Cuiling Techniques 

In ray tracing, most of the computational tirne goes to cornputhg intersections 

between rays and objects. So right from the start, ray tracers -801 included 

schemes for reducing Iinear time complexity so that they could handle complex 

scenes in reasonable time. These schemes try to quickly determine candidate objects 

which have a high probability of intersecting the ray, and generally corne into two 

flavors: Hierarchical Bounding Volumes -80, RUBIBO, WEGHW, KAY86) and 



Spacial Subdivision LGLAS84, KAPLSS, JANS86, FUn86, AMAN87, EOKS89, 

WOOA9O], 

2.4.1 EIierarchieil Bounding Volumes 

The most fundamental and ubiquitous tool for ray tracing acceleration is the 

bounding volume. Bounding volumes pmvide a particularly attractive way to 

decrease the amount of the spent on intersection calcdations. Each volume contains 

a given object and permits a simpler ray intersection check than the object. Only if a 

ray intersects the bounding volume does the object itself need to be checked for 

intersection. If the ray misses most objects, intersection of the bounding volume 

reduces computation times significantly. Whitted -801 initiaiiy used spheres as 

bounding volumes since they are the simplest shapes to test for intersection. 

Though bounding volumes substitute simple intersection checks for more 

costly ones, they don't reduce the number of checks- Theoreticaily it may reduce the 

computation by a constant factor, but cannot improve upon the linear time 

complexity. To aileviate this problem, Rubin and Whitted -1801 frrstly used 

hierarchical b o d n g  volumes in ray tracing to attain a theoreticai time complexity 

which is logarithmic (expected case) in the number of objects instead of Linear. 

When constructing the hierarchy structure me, each object is bounded in a 

volume (e.g. cube, sphere) whose geometric ahbute is much sïmpler than the object 

itself. Furthemore, close objects are grouped together to fom another bounding 

volumes. By enclosing a number of bounding volumes within a larger bounding 

volume it was possible to elhinate many objects fkom fkther consideration with a 



single intersection check. A child volume is guaranteed not to do the intersection test 

if its parent does not. Thus, if intersection tests begin with the rwt, many branches of 

the hierarchy may be trivialiy rejected. For example. in Figure 2.6 (a). the ray first 

hits volume A and then one of its chiidren, volume B. Since the ray does not hit 

volume C, the further intersection test for volume C can be avoided immediately. 

Figure 2.6 fi) shows the corresponding bounding volume hierarchy tree. 

Box A 

Box C 

Box B Box D 

Box E 

(a) instance - 

(b) hierarchical tree 

Figure 2.6 example of hierarchical bounding volumes 



2.4.2 Spatial Subdivision 

Spatial subdivision scheme works by partitionhg a volume bounding the 

environment into voxels. A fundamental merence between bounding volume 

hierarchies and spatiai subdivisions is that the former selects volumes based on given 

sets of objects, whereas the latter selects sets of objects based on given volumes. 

The basic spatial subdivision technique [GLAS841 is built on the basis of the 

voxel traversai grid structure (Figure 2.7). Space encompassing al1 objects is placed 

in a grid of cubes calied voxels. Each voxel contains a list of al1 objects which reside 

in that voxel. Each ray traverses the grid in order and tests for intersection only with 

objects residing in the voxel traversed, until an intersection is found or the ray has 

completely traversed the grid. Performance is improved because less objects are 

handled in each ray intersection computation. 

Processed voxels 

T'ted objects 

Figure 2.7 A 20 analogy of unifom spacial subdivision 



2 5  Ray Tracing Multiple Ligbts 

When ray tracing compiex models such as large building, the resulting scene 

typically contains hundreds or even thousands of light sources. In rendering such 

scenes, shadow determination quickiy becomes the dominant computation even 

though there is a high possibility that most light sources have negligible influence to 

most of the scene, There is an extensive literahire on the research dedicated to 

speeding up shadow calculations using spatial coherence and subdivision p0090b] .  

Most of these approaches however are highly dependent on the number of light 

sources, and are thus unsuitable for scenes with many light sources lBERG86, 

WARD9 1, HOUL93, SU94, SMIT94, STAM95, SHIR96, PAQU981. 

In this section, three recently emerged approaches of rendering scenes with 

thousands or even more light sources are discussed, including Adaptive Shaduw 

Testing PARD911, Monte Carlo Direct Lighting [SHIR96]. and Lighr Hierarchy 

PAQU98J. These techniques based on the assumption that in such scenes at most a 

few hundred ligtit sources (and usuaily at most tens) wiii contribute significantly to 

the radiance at any particular point. So they employed different ways to identim 

important light sources from other negligible lights, shoot shadow rays only at the 

most important Iight sources and then estimate the visibility of the others. 

2.5.1 Adaptive Shadow Testing 

Ward presented Adaptive Shadow Testing method mARD9 11 which performs 

well for a moderate number of light sources, and is the most suitable algorithm to date 

for the treatment of scenes with many light sources. 



This approach first calculates the potential contribution of each light source at 

every point to shade (without cons ide~g visibility), and uses this estimation to 

generate a sorted list of iight sources. The ordered k t  is then traverseci and thus 

shadow testing on the sources with highest potential contributions is computed first. 

If the sum of the potential contributions of the remauiing light sources is below some 

threshold, the traversal stops. The algonthm can be written as the foilowing steps: 

1) Compute potential contributions from ai i  iight sources in front of the 
point 

2) Sort the contributions in descending order 

3) Compute Hi), the sum of the next fl contributions smaiier than source i. 
where N is the number of light sources and C is the certaùity 

4) Initialize the sum (S), hits(V), and tests(W) to O. 
For each contribution in the sorted lis? do 

Ifs t > r(i) then go to step (5); 
Increment the test counter, FY; 

Increment the test counter for Iight source 4 W(i); 
If source i is visible from this point then 

Increment the bit counter, V; 
Increment the hit counter for source i, VI);  
Add contribution for source i to S; 

End if 
End for 

5 )  For each untesred contn'bution do 
Multiply contribution by V/W and V(i)/W(i); 
Add weighted contribution to S; 

End for 

Figure 2.8 Pseudo code of Adaptive Shadow Testing 



2.5.2 Monte Carlo Direct Lighthg 

Shirley et al[SHIR96] introduced Monte Carlo techniques [HAMM64, 

SHRE66, HALTIO, YAK0771 for direct iighting calculations by using a probability 

intensity function over aU the light sources. Since the mixture probability intensity 

hinction is the sum of the products of mixing weights and individual probabiiity 

functions, in the linear method, the calculation of mixture probability density function 

requires querying every light in the scene. This might be too slow with thousands or 

millions lights. Based on the assumption that in such scenes at most a few hundred 

lights will contribute signifcantly to the radiance at any particular point, the lights are 

then divided into two subsets: one is the set of bright (important) lights, and the other 

is the set of dim (less important) iights. This selection is performed as a preprocess, 

and is based on an approach similar to the sphere of influence. A sampling 

probability is then assigned to each bright light source, and a unique probability is 

assigned to all the dim iight sources. If a large number of rays are shot per pixel, this 

method can be very effective. 

The difficult part of this rnethod is deciding which lights are important for a 

particular point. As pointed out by Kok and Jansen [KOK91], a light that is 

responsible for a large fraction of the radiance of a point is likely to be responsible for 

a large fraction of the radiance of its neighboring points. A spatial subdivision 

scheme is then used to precompute the List of important iights for each ceil in the 

spatial subdivision structure. For a particular cell. a light is put in the candidate list if 

it might contribute more than a threshold average spectral radiance to a diffuse 



surface within the ceiî. To characterize important versus unimportant lights, an axis- 

aligned infiuence box is associated with each Ligbt that includes al1 points that might 

include that light in its important Light list. When deciding whether a light is 

important to a cell. just check whether the celi and the influence box overlap, and if 

so, then the light is treated as an important light source. 

2.5.3 Light Hieranihy 

Paquette PAQU981 introduced a new data structure in the form of a light 

hierarçhy for efficiently ray-tracing scenes with many iight sources. An octree 

structure is constructed with the point light sources in a scene. Each node keeps an 

approximate representation of the light sources it contains by means of a virtunf fight 

source. Figure 2.9 shows an example of such a point light hierarchy. 

Hierarchy Scene 

Cluster [-] Emptyc lwr  Virtual light 

Figure 2.9 example of light hierarchy 



Once the iight hierarchy is built, error bounds committed with the vimial iight 

approximations are developed to shade a point, both for the cases of diffuse and 

specular reflections. These bounds are then used to guide a hierarchical shading 

algorithm. If the current level of the light hierarchy provides shading of sufficient 

quality when the associated error bound is below the desired threshoid, the 

approximation is used, thus avoiding the cost of shading for aü the light sources 

contained below this level. Otherwise the descent into the Light hierarchy continues. 

2.5.4 Cornparison of Ray Tracing Multiple Lights Approsches 

Three approaches of rendenng the scene with thousands or even more of light 

sources have k e n  described in this chapter. Ward's Adaptive Shadow Testing 

approach performs weli for a moderate number of light sounie, but since its 

complexity is O(n), as the number of Light sources increases, the cost of sorting the 

contributions of aii these light sources can make this method impracticai for the 

rendenng. Compared to Adaptive Shadow Testing, Paquette's Light Hierarchy 

approach is an important improvement for scenes with a high nurnber of light sources. 

However, this method is designed only for scenes without occlusion which are 

uncornmon in the daily Me. Monte Carlo Direct Lighting approach can be very 

effective if a large number of rays are shot per pixei. Uiifortunately, as with ai i  Monte 

Carlo approaches, noise due to insufficient sampling c m  appear in the rendered 

images. Moreover, since the unimportant light source to be sampled is chosen 

randomly, an unsuitable partitioning into unimportant and important light sources can 

gready increase the amount of noise. 



There are many ways to mode1 3D objects. In this section, we provide a 

summary of two of hem, Constructive Solid Geometry and Imtancing. 

2.6.1 Constructive Soiid Geometry 

Constructive Solid Gwmetry (CSG) is a method of creating complicated 

objects by performing Boolean set operations on more primitive objects, such as 

sphere, cube, and cylinder and so on. Typicaily an object is stored as a CSG tree with 

simple primitives at the leaves and operators at the htemal nodes. Some htenor 

nodes represent Boolean set operators, whereas others perfonn Hine transformation, 

such as translation, rotation and scaling. A complicated object can be defined by a 

CSG tree, as shown in Figure 2.10. 

Figure 2.1 0 an object defined by a CSG tree 



2.6.2 Instancing 

In some complicated models, the same objects may occur repeatedly only with 

a few different characteristics, such as tratlsforrnation amibutes. When building up a 

hierarchy of the model. we may only create one master copy of the object. Copies of 

other objects can be represented by simply using some instance nodes referring to the 

master object with their own transformation. Thus, once the master object is 

instanced in the model, the same object is automaticaiiy repiicated many times. So 

instancing saves a lot in both space and time for genemting the primitive hierarchy. 

Figure 2.1 1 shows a model hierarchy with instancing. 

Figure 2.1 1 a mode1 hierarchy with instancing 



Chapter 3 

Efficient Ray Tracing with Many Light Sources 

3.1 Overview 

Standard ray tracing algorithms sIow down unacceptably when large numbers 

of light sources are in the scene because the shadow determination process is O(n), 

where n is the number of iight sources. By building a hierarchical tree of Qh t  extent 

volumes one can approach O(log n) expected-case complexity in determining which 

light sources contribute significant irradiame to the intersection point. This aiiows 

tens of thousands of light sources in a scene to be rendered in reasonable time. 

3.2 Motivation 

In scenes with multiple light sources. typically only a few wiii create strong 

shadows in any part of the scene. These will generally be the sources with the high 

concentration of light in that section due to source bnghtness, direction and proximity. 

This observation Ieads to a simple optimization: we can perform shadow 

testing only on the light sources with high contributions, and quit testing for those 

unimportant iights wbose contributions are below some threshold. 



So al1 that we need is a way to quickly decide which light sources are 

important enough for a particular point on the object surface to shoot shadow rays to. 

3.3 Light Extent Volumes 

Given a light source. the fight extent volume is the volume in space where the 

irradiance fiom the Light source is above a given level tolerance. Here the tolerance is 

a specified Light intensity threshold that is the minimum innuence considered to the 

scene for rendering results. 

As shown in Figure 3.1, for a point light source that radiates uniformly in ai i  

directions, its light extent volume would be a sphere whose radius is detemiined by 

tolerance. For a spotlight, it would be a cone. A light only has eflect on objects that 

lie within its light extent volume. If the object is outside the volume, the intensity 

contribution is assumed to be zero, and no M e r  evaluation of the illumination 

mode1 is required for that light. Of course, this only makes sense when relatively few 

Iight 
direction 

(a) 
Iight extent volume of a point Iight source 

(b) 
light extent volume of a spotlight source 

Figure 3.1 light extent volume models 



lights illuminate any individual surface. If there are a large number ofrays h m  

Light sources in the vicinity of some surfaces, then the combined irradiance may be 

significant even though individuaiiy they a i l  may be below the tolerance. Fortunately, 

this situation is very rare and can easiiy be checked for. 

3.4 Hierarchy of Light Extent Volumes 

As mentioned in the overview, a hierarchicd data structure of light extent 

volumes representuig the light sources in the scene is requked to achieve the goal of 

efficient treatment of scenes with many Light sources. 

The leaves of the Light hierarchy are point light sources or spotlight sources. 

The inner nodes could be affine transformation nodes used to specifjr the pmperties of 

a light source and Light bounding volumes of sub-trees, coupled with Union set 

operators used to combine all the other nodes for descnbing the compiicated light 

situation. In Figure 3.2, we show an example of such a iight hierarchy . 

3.5 Shadow Testing with the Light EIierarchical Structure 

Visibility testing is the most tirne-consurning part of a global illumination 

calculation, and the visibiiity of light sources is particularly Unportant since they 

determine the initial lighting distribution. If we could assume that aU of the light 

sources were visible at every point, the calculation would reduce to a few simple 

operations. Unfortunately, it is ahnost always necessary to check for occlusions from 

light sources. And if there are multiple light sources in the scene, shadow 

determination quickly becomes the dominant computation of renderings. 



6 Spotlight Point light 

Figure 3.2 a light hierarchy exampie 

In this section we develop an aigorithm aiiowing us to use the hierarchy of 

light extent volumes to do quick shadow testing. The algorithm requires very iittle 

storage, and produces no visible artifacts. Furthemore, the users can control the 

accuracy and reliability of the technique, adapting it to suit their requirements. If the 

user specifies the tolerance of the iight extent volume of zero, the algorithm 

degenerates to the original case, providing straigheorward validation and cornparison 

of resul ts. 



3.5.1 Basic Procedure 

The basic procedure behind the idea of shadow testing with the light hierarchy 

consists of two steps. The fmt  step is to pick up the important Light sources h m  al l  

the light sources in the scene at each intersection point. And then. since the 

unimportant light sources have negligible influence to the scene, o d y  those important 

light sources are sent shadow rays to in the recursive ray tracing for calculating the 

light intensity of that point. 

The most difncult part of this approach is how to characterize important light 

sources versus unimportant Light sources. In the following sections. we wiii provide 

algorithms to efficiently identify important light sources from those whose iduence 

to the scene are negligible in light hierarchies. 

3.5.2 Algorithm of Idenüf'g  Important Light Sources 

Figure 3.3 is an outline of the algorithm designed to identify important iight 

sources from negligible sources in the scene. 

The recursive function CreatelrnportantLightList fmtly takes the position of 

intersection point, point, and the root node of the light hierarchy, node, as the input. 

Each leaf node of the Light hierarchy is a point Light source or a spotlight source. while 

interior nodes could be affine transformation nodes used to define the properties of 

light sources, Light extent volumes bounding subtrees or union set operators 

combining branches of the light hierarchy. The boolean function 

islnsideLightExtentVolume called from within CreateïmportantLightList is 

responsible for checkhg whether the aven intersection point is inside the light extent 



LightList *CmteImportantLightLiSt( point, node ) 
begin 

switch (n&.type) { 

case Point lighc 

case Spotlight: 

return current light sowce 

case Anne: 

newPoht = inverseAffine@oht. rrode.@ne) 
lightlist = CreateImportantLightList (newPoint, node.child) 
return applyAffine(lightLisr, node.@ne) 

case light extent volume: 

if isInsideLightExtentVolume @oint. node. volume) then 
return CreateImportantLightList (point, n&child) 

else return NULL 
case Union: 

lefiList = CreateImportantLightList ( point, node.l&Child ) 

rightList = CreateImportantLigh tList ( point. node. rightchild ) 
add lefList and rightList into ZmportanttightList 

return ZmporîantLightList 

1 
end 

Figure 3.2 algorithm designed to identify important Iight sources from unimportant 
Iight sources in Iight hierarchies without instancing 

volume. When the test fails, the branch bounded by this light extent volume is 

immediately discarded. Al1 the iight extent volumes in the iight hierarchy are 

evaluated in the local coordinate. whereas the intersection point is Iocated in the worid 

coordinate. In order to correctly check whether the intersection point is inside a light 



extent volume, every tirne when we meet an affine transformation node during the 

traversal, we need to transfomi the intersection point with its affine transformation 

information. The pmcedure inverseA,,ne is cailed to inverse the affine 

transformation on the intersection point if we meet the affine transformation node 

during the traversal. This pmcedure is designed to guarantee that the intersection 

point and the Light extent volume are in the same coordinate when checking whether 

the intersection point is inside that light extent volume. Besides, the procedure 

applyADne is designed to calculate a light's attributes according to the 

transformations stored in its parent nodes. 

To determine the important light sources, the function checks to see whether 

the intersection point is inside the light sources' extent volumes by traversing the 

hierarchy of light extent volumes from top to bottom. It examines the light extent 

volume bounding a certain branch of the light hierarchy tree. If the intersection point 

does not locate inside that light bounding volume. the rest of the iight hierarchy can 

be ignored. Otherwise, it will keep on examining the child branches until the 

intersection point is not inside the light extent volume or it reach the leaves of the 

light hierarchy which contains the light sources. The sources whose light extent 

volumes surround the intersection point are the important lights we are seeking. Al1 

the important light sources for that intersection point are stored in a linked List. The 

List of the important light sources is then used in a recursive ray tracing a lgor i th ,  and 

only those sources are important enough to send shadow rays to. 



By specimg the tolerance of light extent volumes. the users can control the 

accuracy of the technique to suit their requirements. By making toletance sufficiently 

smaii, light sources' extent volumes have reasonable regions of influence to the scene- 

So our ray tracing results wiil be very close to those of the full calculation without the 

associated cost. 

3.5.3 Optimization of the Light Hiemrchy Structuie by Instancing 

Scenes with a large number of iight sources are becoming increashgly 

important. such as outdwr scenes, urban settings, and opera and theater applications. 

In those compiicated scenes, the same submodel containing iight information may 

occur repeatedly with different transformation attributes. So we cm use the 

instancing property to create compact representation of the scene. By instanchg the 

light hierarchy oniy needs to create one master copy of each new light subtree 

that can subsequently be instanced instead of making multiple copies of the same 

subtree. Instancing cm quickly create a large complicated light hierarchy from the 

one simple light subtree without using the same amount of memory. 

A iight hierarchy with instancing has two kinàs of nodes referring to Light 

information: Light nodes and instance nodes. Light nodes indicate point iight sources 

or spotiight sources, while instance nodes represent iight combinations found in 

master object instances. And the master copy of an instanced object is syrnbolized by 

a master node that contains a iight extent volume bounding the whole subtree. By the 

technique of light subtree instancing. the iight hierarchy in Figure 3.2 can be modified 



to the tree shown in Figure 3.4. It's obvious that instancing saves a lot in both space 

and time for generating the light hierarchy me. 

Spot Iight Point Iight a Union node [=) lnstancc node 

Figure 3.4 iight hierarchy with instancing where only one master copy of light 
subtree is created 



3.5.4 Algorithm for Light Hierarcbies 4 t h  instancing 

In light hierarchies with instancing, it is possible that light sources c m  be in 

master objects. Once these master objects are instanced in the scene, the same light 

subtrees are potentially replicated many times. So we need to mod* our algorithm 

to handle this. The approach to efficiently pick up important Light sources h m  light 

hierarchies with instancing is shown in Figure 3.5. 
1 

LightList *CreateImportantLightList( point, node ) 

begin 

switch (node-type) ( 

case point light: 

case spotlighc 

return current light source 

case affine tralfonnation node: 

newPoint = inverseAffhe@oint, node.@ne) 

lightLirt = CreateImponan~ightList(newPoint, nodexhild) 

return applyAffine(lightLisr, node@ne) 

case instance node: 

return CreateImportantLightList (point, node-chi24 

case master node: 

case light extent volume: 

if isInsideLightExtentVolume (point, node.volume) then 
return CreateImportantLightList @oint, node.child) 

else return NULL 
case Union: 

[@List = CreateImportan tLightList ( point, node. lefichild ) 

rightList = CreateImportantLightList ( point, node. nght Child ) 

add lefiList and rightList into ImportantLightList 

retum lmportantLightList 

1 
end 

Figure 3.5 algorithm designed to identify important Iight sources frorn unimportant 
lia h t sources in liaht hierarchies with instancina 



Chapter 4 

Irnplementation 

4.1 Introduction 

A distribution ray tracer originally written by John Ammatides and Don 

Mitchell was extended to include our new approach caiied Light Extent Volumes 

(LEV) and tested on a SUN ULTRA10 workstation to compare its performance to 

other ray-tracing multiple iight approaches, including the traditional ray tracing and 

Ward's Adaptive Shadow Testing. This ray tracer takes a scene described in Scheme, 

a variation of Lisp, as input. Its implementation is basically divided into two parts as 

preprocessing and rendering. In order to understand the implementation weii we first 

discuss the structures for modeling. 

4.2 Structures for Modeling 

Structures for modeling are the foundation of the implementation. in this ray 

tracer, a scene is composed of three parts: a view carnera, light sources and solid 

objects. in each scene, there only exists a single view camera The information of 

light sources is stored in a iight hierarchy W. Objects are represented by an object 



CSG tree. A novelty of Our ray tracer is that instancing is used in both the light 

hierarchy and the object CSG tree by only creating one master copy of an instauced 

object instead of making multiple copies of previously defined objects. 

4.2.1 CSG Nodes in the Object Tc= 

In the irnplementation, the information of each scene is origindy specified 

and stored in a CSG tree- In the CSG tree different types of CSG nodes are designed 

to aid in describing any possible complicated scenes, such as object nodes, instance 

nodes, master nodes, affine transformation nodes, set operation nodes, shading nodes 

and rniscellaneous nodes- 

4.2.2 CSG Nodes in the Light Hierarchy 

There are seven types of CSG nodes used for the construction of the Light 

hierarchy, including Point light node, Spotlight node, Instance node, Master node, 

Light Extent Volume node, Affine node, and Union node. 

Point Light Node and Spotlight Node 

A point light source or a spotlight source is fmtly defined at the origin with an 

intensity value of 1. Light decay is modeled as 1/?. 1t can be transformed iike 

any other object in the scene. By using a scale transformation, a iight source can 

be defined with any light intensity value. 

A spotlight is by default modeled as a cone with a generating angle of ninety 

degrees surrounding a light direction up dong the z-axis. Each spotlight node can 

provide control over the concentration of the light by speciffing its dropofl 



exponent. Afier increasing the value of dropoff, the light becornes more 

concentrated around the iight direction. By using a scale transformation, the 

generating angle of the spotlight cone c m  be varieci, Moreover, afier a rotate 

transformation the spotlight can be oriented in any desked direction. 

Instance Node and Master Node 

In many complicated scenes, the same objects occur repeatedly with different 

affine attributes. So when generating the iight hierarchy or object CSG tree, the 

ray tracer only creates the master copy of a new object which can subsequently be 

instanced. By instancing one cm quickly mate a large complicated or repetitive 

scene from one simple object (eg. Instancing one seat to create a theatre 

auditorium). 

In the light hierarchy a master object is symbolized by a Master node as its 

subtree's root. Each Master node contains a light extent voIume bounding the 

current master object that can accelerate tight extent volume computation in the 

preprocessing stage and traversal in light hierarchy in the rendering step. Once 

the master object is created, aii instances are represented by instance nodes 

refemng to the master copy with their own transformations. 

Light Extent Volume Node 

It defmes a Light extent volume bounding the indicated sub-light-hierarchy. In 

order to achieve traversa1 acceleration, îight extent volumes inside the sub-light- 

hierarchies become necessary. Light extent volume nodes aiiow us to bound any 

su b-light-hierarchies as desired. 



M m e  Transformation Nodes 

Since a i i  light sources firstly rest at the origin, several basic affine 

transformations become necessary to represent the iight sources at different 

positions with different physical attributes, The affine transformations include 

translation, rotation, and scaling. A translation node is used to move the light 

instances along x, y, and z axes. A rotation node can rotate the Light direction of a 

spotlight object about a certain axis by the indicated angle, and make it orient to 

any desired direction. A scaling node is designed to scale a light object about the 

origin along x, y and z axes to change its light intensity or modify a spotlight's 

cone size. 

Moreover, in light hierarchies with instancing, affine transformation nodes 

working with instance nodes are essential to represent different instanced objects. 

Union Set Operation Node 

It performs the union operation on the indicated sub-light-hierarchy trees by 

setting two sub-light-hierarchies as the union node's left and right child 

respectively. The result is a new sub-light-hierarchy tree that c m  be further 

manipulated. 

With the aid of the above CSG nodes, we can create iight hierarchies that may 

describe any possible light situations in scenes. 

4.3 Preprocessing 

In the preprocessing stage, the distribution ray tracer reads the input data from 

Scheme script fdes. The data include the carnera's position and orientation, 



information of iight sources, soiid objects' locations, orientations and surface 

properties, resolution of image and output device. 

As the information is king read, an original CSG tree is generated, which is a 

composite tree, including the idormation of camera, Light sources and soiid objects in 

the scene. 

Key steps of preprocessing are as foiiowing: 

1) PuIl out the camera node h m  the original CSG tree 

2) Pull out light nodes from the original CSG tree and generate a ligtit hierarchy 

Light Node Extraction 

When generating the light hierarchy, point light nodes and spotlight nodes 

with their &ne transformation nodes are directly extracted from the CSG tree; 

however, instance nodes with their affine information are copied fkom the CSG 

tree. Each instance node created in the Iight hierarchy is set to link to its directly 

instanced subtree whose root is a master node. Besides, the light extent volume 

nodes are pulled out from the tree and added into the light hiemhy for traversal 

acceleration. In addition, union nodes are copied from the CSG tree into the light 

hierarchy to combine different branches. 

Light Extent Volume Computation 

Once a primitive iight hierarchy is constnicted, light extent volumes in the tree 

are then computed. If the iight hierarchy has instancing propeq, we fmtly 

compute light extent volumes in dl master sub-light-hierarchies and then those in 
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in the hierarchy so that we can quickly access each master subtree. 

For each master subtree, the cornputation of light extent volumes begins with a 

depth-first traversal of the sub-iight-hierarchy. We keep on travershg the children 

of the node until we mach a leaf that contains a point light source or a spotlight 

source. Then an initial Light extent volume of a sphere or cone resting at the 

origin is calculated based on the information about the iight's intensity and the 

tolerance of iight extent volume, When tracing back fiom the bottom to top, we 

need to modiQ that light extent volume based on the &ne transformation nodes 

and union set operation nodes we meet, In case of an affine traasformation d e ,  

we tfansfonii a haIf-coinputed extent volume by scaling, rotatin'g. or moving as 

indicated by the affine node, For a union operation node, a new iight extent 

volume is computed by merging two volumes bounding the child branches of the 

node. Light extent volume nodes and the light extent volume in the master node 

are set as volumes bounding their sub-light-hierarchies. 

During the traversal for iight extent volume computation, if we meet instance 

nodes, we only need to check the light extent volume stored in their child, a 

master node, and do not need to traverse the instanced subtree again and again. It 

will Save us a lot in time for the computation. 

3) Generate an object CSG tree 

After pulling out camera node and iight nodes. the ray tracer firstly repairs the 

CSG tree, then cornputes the object bounding boxes of the tree, and f indy 



optimizes the tree Links for shader. After ai i  these are done, an object CSG tree is 

generated. 

After preprocessing, the information in the original CSG tree goes into three parts: 

a view camera, a iight hierarchy and an object CSG tree. Figure 4.1 shows the 

graphitai representation of preprocessing stage. 

Light source information 

Objects information I 
Surface properties 

Image resolution 

Output device 

Original 
hierarchy 

Figure 4.1 preprocessing pattern 

In the following. we constxuct a simple model in two different ways: 

~ ~ -- 

one is 

without instancing, and the other is with instancing. Each example iiiustrates the 

original CSG trees of the scene model and the generation of the light hierarchy and 

the object CSG tree after preprocessing. as shown in Figure 4.2 and Figure 4.3 

respectively. 







(a) an original CSG tree of a simple scene rnodel constructed wiai instancing 



View camera [ CAMBRA 

Light 

Object CSG tree (-2 

(b) scene mode1 after preprocesslng 

Figure 4.3 preprocessing on a scene model constructed with instancing 



4.4 Rendering 

The ray tracer starts to trace individual pixels after the preprocessing computation 

is done. Rays are shot h m  view camera into the sçene and each ray passes through a 

pixel. With the hierarchical bounding volume technique, we first examine the bounding 

volume in the root node of the object CSG tree. If the ray does not intersect with that 

bounding volume, the rest of the CSG hierarchy tree can be ignored. Otherwk, we will 

keep on examining the children of the node until the ray misses or we reach the leaves of 

the hierarchy tree which contain the objects. Those objects stored in those leaves are then 

tested with the ray. 

Once the intersection point is detennined, this ray tracer uses the hierarchical tree 

of tight extent volumes generated in the preprocess step to quickly h d  out aii the Light 

sources that are important enough to do the shadow tests. Beginning with the rwt, we 

take the intersection point to check whether the intersection point is located in a Iight 

bounding volume. If it is, then go down the iight hierarchy me; otherwise the rest of the 

branches of the iight hierarchy may be triviaiiy rejected. When we reach the leaves of the 

light hierarchy, light sources stored in those leaves are selected as important light 

sources. 

After the list of important Light sources at an intersection point is generated, a 

recursive ray-tracing algorithm with the global illumination mode1 is appiied to calculate 



the Light intensity of this intersection point. If the surf&ce is reflective or refractive, a 

reflection or refraction ray is shot h m  the intersection point The shading of each pixel 

is based on the Phong illumination mode1 as well as refiaction or reflection. The fmd 

value of the pixel is output in PPM (Portable Pixmap) format. 

4.5 Simplicity and Compstibility O€ the LEV algorithm 

An important feature of the LEV method is its simplicity of implementation. The 

algorithm that provides a great reduction in shadow testing time can be written in less 

than a page of C code; the shading function itself is unchanged. Furthemore, the 

approach is compatible to most other global illumination techniques, and can be added to 

existing direct light caiculations and optimizations. When the algorithm is added to an 

existing ray tracer, the only modification made is to generate a Light hierarchy of all light 

sources in the scene in the step of preprocessing, and then in the rendering stage at each 

intersection point we only send shadow rays to important light sources that cm be 

identified by traversing the Iight hierarchy. 

4.6 Implementation of Ward's AST method 

In order to compare the performance of the LEV algorithm with other approaches, 

we also implemented Ward's AST method in Our distribution ray tracer. Its pseudo code 

is shown in Figure 2.8. First, by traversing the Light hierarchy constnicted in the 

preprocessing stage, a Iinked list is generated to store ali the light sources in the scene. 



And then, the light ïist is passed to the shade module. ui the shade module, h t  compute 

potential contributions from aU light sources at a certain intersection point, and then sort 

the contributions in descending order. Only significant light sources appeared in the f h t  

part of the sorted Light List are selected to do visibility test, whüe negligible Light sources 

in the rest of the List simply make esiimated contributions to the scene. The whole point 

of the algorithm is to rninimize the number of îight sources that must be tested for 

visibility. 



Chapter 5 

Testing and Results 

5.1 Overview 

This chapter lists a set of test cases which d o w s  us to evaluate our new 

approach of Light Extent Volumes in several different aspects. 

5.2 TestingAspects 

In this thesis difEerent types of testing were performed to examine the new 

approach of the hierarchical tree of light extent volumes and compare it with other 

ray-tracing multiple Light approaches. iacluding the traditional ray tracing and Ward's 

Adaptive Shadow Testing. 

Testing includes the foiiowing aspects: 

1. Compare Light Extent Volumes with the other two approaches which include the 

traditional ray tracing and Ward's Adaptive Shadow Testing. 

Compare the performance of the Light Extent Volumes method with the otbei 

two existing approaches. 



Compare extra memory usage of different approaches that require additional 

data structures for shadow testing acceleration. 

2. Examine some characteristics of the Light Extent Volumes method. 

Check the algorithm's running time behavior 

Check the fraction of light sources needed for shadow testing when the 

algorithm is applied with different values of tolerance. 

Check the changes of the fiaction of Light sources for shadow testing when the 

algorithm is tested with increasing number of light sources in the scene. 

Check the average and maximum pixel error corresponding to the different 

tolerance, as compared with a fully tested source calculation. 

A distribution ray tracer was implemented and tested on a SUN ULTRA10 

300MHz 256Mb workstation. When comparing the performance of different 

approaches, the timing is for the whoie process that includes the preprocessing and 

rendering stages of an approach, and it was evaluated by the system /bin/time. Each 

test was repeated three times and the average value was used as the final data. 

5.3 Test Scene Description 

Foiiowing are the test scene models used in the testing. 

Scene Mode1 1 

The test scene mode1 is a square building with recursively instanced rwms. In 

each room there is a light in the ceiling shining on two robots riding unicycles. 

A complete view of the buiIding with 64 light sources is shown as Figure 5.1. 



Scene models with more light sources are generated by increasing the model's 

recursive level. Note that scene models with 256, 1024, 4096, and 16,384 light 

sources are shown in Appendix A. 

Figure 5.1 Test Moâel1: a complete view of the building with 64 light sources 
(image resolution: 320 ' 240) 

Scene Mode1 2 

The scene model is a peano-curve maze with recursively instanced robots 

riding unicycles where each robot is shone by a streetlight. Figure 5.2 iilustrates 

the top view of the peanoîurve maze at recursive level 1 with 45 light sources. 

We increase light sources in the scene mode1 by enhancing the recursive level of 

the peano-curve maze. The scene models with more light sources are shown in 

Appendix A. 



Figure 5.2 Test Moâel2: a top view of the peano-curve maze with 45 light sources 
(image resolution: 320 * 240) 

Scene Mode13 

The scene model is a performance hall where there are multiple spotlights in 

the ceiling shining on three robots riding unicycles. For the purpose of 

comparison, each time we increase the number of spotlights in the scene by 

replacing a spotlight with four smaller ones. The scene model with 64 spotlight 

sources is shown as Figwe 5.3. 

Figure 5.3 Test Modal 3: the performance hall where there are multiple 
spotlight sources in the ceiling shining on three robots riding unicycles 
(image resolution: 320 * 240) 



It's worthy to mention that every object in Scene Model 1 and Scene Mode12 

is illuminated by relatively a few of the candidate light sources, while in Scene Model 

3 every object is shone by most of the light sources in the scene. Since the LEV 

algorithm assumes that in such scenes relatively few lights wili illuminate any 

individual surface, we expect that Our algorithm W U  work well for Scene Model 1 

and Scene Model 2 and fail in Scene Mode1 3- 

5.4 Test cases 

According to the test aspects discussed in Section 5.2, we designed two sets of 

test cases to evaluate our new approach of Light Extent Volumes (LEV). The set of 

the fmt  two tests compares Our new approach with the traditional ray tracing (RT) 

and Ward's Adaptive Shadow Testing (AST). The second set of test cases examines 

some characteristics of Our approach of the Light hierarchicai tree of light extent 

volumes. Note that al1 the output images in the foiiowing tests are rendered at the 

resolution of 320*240, and the data collected from the tests are Listed in Appendix B. 

5.4.1 Compare LEV with Traditional RT and AST 

In the following test cases we compare the LEV method with the traditional 

RT and Ward's AST in such aspects as the performance and the extra memory space 

required for quick shadow testing. 

5.4.1.1 Test 1.1 : Performance Cornparison 

We examine the performance of the LEV method by comparing it with the 

traditional RT and Ward's AST. We use variations of three scene models introduced 



in Section 5.3, where scene model 1 contaios a number of light sources ranging h m  

64 to 16,384, for scene model 2 the number of light sources is from 45 to 12,285, and 

scene mode1 3 contains Light sources h m  64 to 16,384. In each test, the tolerance we 

used is 0.01 light intensity. Since the actual error wili be smaiier than the required 

tolerance, the test mns result in images that are expected to visually indistinguishable 

from those computed with the traditional ray tracing. 

Tests were performed on three scene modeis. The result fkom scene model 1 

is presented in Figure 5.4 (a) and (b), and the result fiom scene model 2 is in (c) and 

(d). The result tables in Figure 5.4 (a) and (c) show the cost of traditionai ray tracing 

(RT), the cost of Ward's Adaptive Shadow Testing (AST), the cost of the Light 

Extent Volumes method (LEV). the cost percentage of Ward's method over the ray 

tracing method (ASTiRT), the cost percentage of our method over the ray tracing 

method (LEV/AST), and the speedup achieved by our method over the ray tracing 

method (LEVT) respectively. Figure 5.4 (b) and (d) are the graphic representations 

of the performance cornparison of three approaches based on scene model 1 and scene 

model 2 respectively. Besides, result images fiom scene model 1 and scene model 2 

are visually indistinguishable fiom the original images. 

The result we got from scene model 3 is far fiom those fiom scene model 1 

and scene model 2. At the tolerance of 0.01, we tested the models with different light 

sources. There are two situations: either the running time by Our LEV method is close 

to that by the traditionai RT, or the method has great speedup, but the result image is 



obviously different h m  the original one. We wiU examine more about scene modei3 

to explain this result in a later test- 

1 i ,024 lights 1 
1 4.096 lights 1 

(a) result table from scei 
Al1 timings are in seconc 

.e mode1 1 for performance comparison of  three approaches. 
,s on a SUN ULTRA 10 300MHz workstation. 

light number in the scene 

(b) graphic representation of performance comparison on Scene Mode1 1 



45 lights 99.58s 39.66s 59.65s 39.83% 59.90% 1.67 

1 189 lights 1 248.09s 1 13253s 1 62.76s 1 53.42% 1 253% 1 3.95 

(c) result table fkom scene model 2 for performance comparison of two approaches. 
Al1 timings are in seconds on a SUN ULTRA10 3ûûMHz workstation. 

O 2000 4000 6000 8000 lm 12000 14000 

light number in the scene 

(d) graphic representation of performance comparison on scene model 2 

Figure 5.4 performance comparison of traditional ray tracing (RT), adaptive 
shadow testing (AST) and light extent volumes (LEV). 



The performance comparison rrsuits based on r e n e  mode1 1 and scene mode1 

2 show that compared with the traditional RT, the LEV approach achieves significant 

speedups (up to 150 times), and for a high number of light sources, Our approach 

consistently faster than Ward's AST method. The reason is that different from the 

LEV method, both traditional RT and the AST method behave Iinearly in r e n d e ~ g  

tirne. So for a high number of light sources, thek rendering cos& become criticai. 

5.4.1.2 Test 1.2 : Memory Overhead Cornparison 

Among three approaches, both AST and LEV require extra data structures for 

shadow testing acceleration. This case is to examine the extra memory space usage of 

those two methods. The cornparison is based on the analysis of Scene Mode1 1. 

In Ward's AST approach the storage overhead is a few additional words per 

light source for keeping track of test and hit counts. b's about 24 bytes per light 

source ( 2 double, 2 int ). 

The extra memory space usage caused by the LEV method is a hierarchy of 

CSG nodes that excludes light nodes and their directly related affine nodes used to 

further define lights' attributes. If the light hierarchy of scene m d e i  1 is generated 

without instancing property, the memory overhead per light source is about 136 bytes, 

including a union node (16 bytes) and two light extent volume nodes(60 bytes each), 

where light extent volumes are fully used in the light hierarchy. However, Our light 

hierarchy is conswcted by instancing. So the hierarchy is quite compact, Since the 

tree keeps only one master copy of the instanced light subtree, cornpared with the 



increase of the number of Light sources in the scene model, the size of the light 

hierarchy grows very slowly. 

Figure 5.5 shows the comparison of extra memory space used by AST and 

LEV. The memory overhead of AST is f a  less than that of LEV by the Iight 

hierarchy without instancing. However, when we use the light hierarchy with 

instancing, at a smaii number of light sources the storage overhead of AST is less than 

that of LEV, while for a high number of light sources the LEV method consistently 

has less storage overhead. So by constmcting the light hierarchy properly, the space 

overhead of the algorithm can be minimal. 

O 5000 1OOOO lm 

light number in the scene 

+ IEV without ins tachg 

+ LEV with instimcing 

Figure 5.5 comparison of extra memory space used by Adaptive Shadow 
Testing (AST) and Light Extent Volumes (LN) for shadow testing 



5.4.2 Examine Cbaracteristics of Light Extent Volumes 

In this section, a set of test cases is designed to examine some characteristics 

of the LEV approach. Firstly, we checked the algonthms d g  tirne behavior- 

And then, we checked the fraction of light sources tested for visibility when the 

algorithm is appiied with different values of tolerance. In order to see what happens 

to the calcuiation as we increase the number of light sources in the scene. we then 

used variations of scene models containing more light sources and repeated the tests. 

At last we evaluate the quaiity of result images by means of average and maximum 

pixel errors. 

5.4.2.1 Test 2.1 : RunnSng Time Behavior 

The purpose of the LEV rnethod is to approach approximately O(log n) 

complexity for typical scenes in determining which light sources contribute 

significant irradiance to the intersection point. This computation complexity allows 

hundreds or even tens of thousands of light sources in a scene to be rendered in 

reasonable tirne. 

We checked the algorithm's mnning time behavior by testing it with different 

number of light sources at different d u e s  of tolerance on scene model 1 and scene 

model 2. In Figure 5.6 (a) and (b), the horizontal axes of the graphs show the 

logaithmic scaie of the number of light sources in the scene. Since the running thne 

has the iinear relation with the logarithmic scale of the light number in the scene, it 

demonstrates that when rendering scenes where every object is directly shone by a 



relatively few of the candidate light sources. our algorithm bas appmximately 

logarithmic behavior in execution time. 

1 1 0  1 0 0  1000 1OOOO 1OOOOO 

log SC& of tight number in the scene 

(a) result based on Scene Mode! 1 

1 1 0  1 0 0  lm 1OOOO 1OOOOO 

log scaie of light number in the scene 

(b) result based on Scene Mode1 2 

Figure 5.6 run time behavior of the Light Extent Volumes method 



5.4.2.2 Test 2.2 : Fraction of Light Sources for Shadow Testing 

The highiight of our LEV methoci is that only those light sources that have 

significant contribution to the scene are considered for shadow testing. So the 

fraction of light sources tested for visibility to each intersection point is an important 

value because it directly detennines the performance of the algorithm. 

Figure 5.7 shows the hc t ion  of light sources for shadow testing when the 

algorithm is appiied with different values of tolerance of light extent volume and 

tested on three scene models. The horizontal axis of the graph shows the different 

values of tolerance. The vertical axis shows the ratio of average light sources tested 

per intersection point compared to all the candidate light sources in the scene. Note 

that with a target accuracy of zero (tolerance), al1 of the candidate tight sources are 

tested. However, with a none-zero accuracy, the number of light sources tested for 

visibility varies with different intersection points. So we use the average light number 

tested per intersection point for that tolerance. The average value is computed by the 

following formulation as: 

x(the number of light sources tested at each intersection point) 

the number of intersection points 



O 0.002 0.w 0.006 0.00s 0.01 

tokrance of iight extent volume 

+sene Rpdel L wiih 1024 fights 

+sctne d e l  2 with M69 iighu 

Figure 5.7 fraction of light sources for shadow testing 

The fraction curves of scene model 1 and scene mode1 2 show that the average 

number of light sources tested per intersection point decreasw smoothly with higher 

tolerance of Light extent volume, while the curve of scene model 3 is quite different 

from those two. 

In order to further check scene model 3, we did some extra tests on it. In 

model 3 most of light sources are important sources to any object surface. As shown 

in Figure 5.8, some parts of the curves keep consistent, that is, once the iight extent 

volume is big enough, most iight sources are regarded as important sources. Since 

most light sources in the scene are tested for visibility. the rendering time is almost 

linear to the number of Light sources. And then the algorithm's performance 

degenerates to the traditionai ray tracing, but on the other side the output image 

quality is satisQing. However, when the fraction of Light sources is low ( most of 



O 0.002 0.004 0.006 0.m 0.01 

tolerance of iïght extent volume 

- 
e s c e n e  d e l  3 with 256 fighu 

1 +sane d e i  3 with (R6 Sghu 
/ +sccne d e 1  3 with 16384 Iighu 

Figure 5.8 test result of fraction of iight sources for shadow testing on 
Scene Mode13 

iight sources are not regarded as important sources ), though the algorithm can do 

quick shadow testing, there wïil be a great loss at the result image quaiity because 

many light sources that actuaiiy sum up to make signififant contribution to the scene 

are ignored in the rendering. This test case pmves that the LEV method does not 

work well for scenes like model 3 where every object is shone by most of the light 

sources in the scene. So the foliowing tests wiii be performed only on scene model 1 

and scene mode1 2. 



5.4.23 Test 23 : Fraction of Lights Tested When Increasing Light Sotuces 

In order to see what happens to the above caiculatioa as we increase the 

number of light sources, we used scene model 1 and scene mode1 2 with more Light 

sources and repeated the tests. The resulting fractions of shadow tests for the 

modified scene model 1 and scene mode1 2 are shown in Figure 5.9 (a) and (b) 

respectively. h both cases, the most noticeable ciifference is that the overall drop in 

the fractions of sources tested, which indicates that the algorithm's performance 

improves as light sources are added to the scenes. The running time still takes longer 

of course. 

O 0.m 0.m 0.006 0.m 0.01 

tolerance of Iight extent volume 

+scene mode1 1 with 64 iights 

+scene d e l  1 with 256 iights 

+sccne d e l  1 with IO24 lights 

+sccne d e l  1 with 40% Iights 

+secne d e l  1 wïth 16384 iights 

(a) result based on Scene Mode1 1 



O 0.002 0-al4 0.006 0.008 0.01 

tolerance of bat extent volume 

e s c e n e  d e l  2 witb 45 Iighu 

+scent d e 1  2 with 189 Gghts 
e s c e n e  d e l  2 with 765 iÏghts 

+scent mode1 2 with 3069 iigbts 

- - - - 

(b) resuit based on Scene Mode1 2 

Figure 5.9 fraction of important light sources when increasing light sources 

5.4.2.4 Test 2.4 : Average and Maximum Purel Emrs  of Rendering Images 

Since only important light sources are selected for shadow testing, what 

concerns us most is then whether the image quality is satisfjhg. In this test case, we 

use pixel error to evaiuate the quality of an Mage generated by the LEV method, as 

compared with a fully tested source calculation. The output image fiom the 

distribution ray tracer characterizes each pixel value into three channels as R, G, B. 

Thus, the pixel error can be defined as following: 

Assume that the vaiue of a pixel by a fully tested source calculation is (Rf, Gf, 

Bf) and the value of the same pixel calculated fiom paxtially tested light sources is 

(Rp Gp B$, the error of that pixel caused by partial shadow testing is the sum of the 



absolute value of the difference of each color channel. Its formulation cm be written 

as: 

pixelewor=abs(RP - RE) + abs(Gp - Gf) + abs(Bp - Bt) 

Figure 5.10 (a) and (b) show the average and maximum pixel errors of the output 

images with increasing light sources at different tolerance of the light extent volume. 

In t h i s  test, the actual average pixel error is always kept within the requested 

tolerance, but the maximum pixel error is a littie bit higher than the threshold. Since 

the overail pixel e m r  of an output image is far smaller than the tolerance, the quality 

of the image is guatanteed by Our LEV method. 

O 0.002 0.004 0.006 0.ûû8 0.01 

tokrance of  1igtit extent volume 

+scenc d e l  1 with 64 Gghts 

+scenc mode1 1 with 256 Gghrs 

+scene mode! 1  with 1024 Iighrs 

I 

(a) average pixel error based on Scene Mode1 1 



O 0.002 0 .m 0.m 0.008 0.01 

tolerance of tight extent volume 

(b) average pixel error based on Scene Model 2 

O 0.002 0.m 0.006 0.008 0.01 

toietance of light extent volume 

(C ) maximum pixel error based on Scene Model 1 



O 0.m 0-al4 0.006 0.008 0.01 

toierance of iigtrt extent volume 

(d) maximum pixel error based on Scene Mode1 2 

Figure 5.10 average and maximum pixel error when increasing light sources 



Chapter 6 

Analysis and Conclusion 

6.1 Overview 

In this chapter analysis is provided for the observations drawn from the test 

results. At the very end of this chapter the conclusion of this thesis is presented. 

6.2 Observations 

From the experimental results several observations can be made. In the next 

section analysis is provided to explain these observations. 

1. The LEV method works weil for scenes with many iight sources where every 

object is illuminated by relatively few of the candidate Light sources, whiie as 

expected, it does not work well for scenes with many light sources where every 

object is shone by most of them. 

2. Compared with the traditional RT and Ward' s AST method, ody the LEV method 

has approximately logarithmic performance for scenes where every object is 

shone by relatively few of the candidate light sources. This cornputaiion 



complexity allows hundreds or even thousands of light sources in a scene to be 

rendered in reasonable tirne, 

Compared with the traditional RT, the LEV method achieves significant speedups 

(up to 150 times faster in the case of 12K Light sources in the scene). And for a 

high number of light sources, our new approach consistently faster than Ward's 

AST approach. 

The performance of the LEV method improves as the number of Light sources 

increases in the scene. 

Compared with the AST appmach, by building the light hierarchy properly the 

LEV method requires mininai memory overhead for shadow testing acceleration. 

6.3 Analysis 

The LEV rnethod has great performance for scenes with many light sources 

where every object is directiy shone by a relatively few of the candidate light sources 

in the scene. This is typicai for vïrtualiy ai l  scenes in Computer Graphies. But to 

scenes where every intersection point on objects is shone by most of the light sources 

it's a different story because to each intersection point most of the candidate light 

sources are important and make great contribution to that point. 

In the following we examine two key parameters which directly provide the 

explanation to observations based on Scene Model 1 and Scene Model 2. The 

pararneters are gotten by applying the algonthm to scene models with increasing light 

sources at the same tolerance of light extent volume. 



Parameter 1: average nurnber of important light sources tested for visibiiity 

per intersection point 

As we mentioned before, a light source is important to an intersection point 

only if the intersection point is hside the light source's extent volume. Once the 

tolerance of iight extent volume is set, the radius of lights' extent volumes is 

fixed. So when sceae models have certain light sources, the average number of 

important light sources tested for visibility per intersection point soon becornes 

consistent, as the results h m  Scene Model 1 and Scene Model 2 shown in Figure 

6.1 (a) and Figure 6.2 (a) respectively. 

Parameter2: average number of light extent volumes checked per 

intersection point when travershg the Iight hierarchy tree to find out the important 

light sources 

Since at the same tolerance after scene models have certain light sources, the 

average number of important îight sources for shadow testing at each intersection 

point approaches to a constant value, the algorithm's performance complexity is 

then determined by the eff~ciency of traversing the light hierarchy to find out 

important light sources. The efficiency can be evaluated by the average number 

of Light extent volumes checked per intersection point during the traversai. 

M e r  considering two issues: 1) light hierarchy trees grow with the increase of 

light sources in scene models; 2) &et scene models have certain light sources, the 

average number of iight sources tested per intersection point approaches to the 

same, we can Say that in the search of important light sources the average number 



of light extent volumes checked per intersection point increase only a littie bit. 

and it is far smailer than the increase of the iight number in the scene. Actuaily 

the increase c w e  has approximately logarithmic behavior. as shown in Fgwe 6.1 

(b) and Figure 6.2 (b). So the computational complexity of the Light Extent 

Volumes method is appmxïmately logarithmic, as shown in Figure 6.l(c) and 

Figure 6.2(c). Thus the pefiormance of the tight Extent Volumes method 

improves as the number of iight sources increases in the scene. At high number of 

light sources. its performance advantage is even more obvious. 

O 1OOOO #1000 30000 40000 50000 60000 70000 

ligbt number in the scene 

(a) average number of light sources tested for visibility at each intersection 
point based on Scene Mode1 1 



1 10 100 I o 0 0  Loo00 l m  

bg scale of ligfit numbet in the scene 

(b) average number of Iight extent volumes checked at each intersection 
point based on Scene Model 1 

1 10 100 1OOO 1OOOO lOOm 

log scale of li@t number in the scene 

+ tokrance: O.a)l 
+ tokfance: 0.01 
+ tokrance: 0.1 

(c) performance of the LEV method under different tolerances based on 
Scene Model 1 

Figure 6.1 two key parameters of the Light Extent Volumes (LEV) 
method based on Scene Mode11 



O 2ûûû 4000 6000 8ar) 1aKNl lm 14Cm 

iight number in the scene 

(a) average number of light sources tested for visibility at each intersection 
point based on Scene Model 2 

V - 
1 10 100 Io00 10000 1OOOOO 

log scale of li@t number in the scene 

(b) average number of light extent volumes checked at each intersection 
point based on Scene Model 2 



1 10 100 Loo0 1OOOO 1ooax) 

bg scale of ligtit number in the scene 

(c) performance of the LEV method under different tolerances based on 
Scene Mode1 2 

Figure 6.2 key parameters of the Light M e n t  Volumes (LW) method 
based on Scene Mode12 

6.4 Conclusion 

This thesis put forward a new approach to eficiently ray tracing scenes with 

many light sources. By building a hierarchical tree of light extent volumes one can 

approach approximately O(1og n) complexity in detemzining wbich light sources 

contribute significant irradiance to the intersection point, where n is the number of 

light sources. This allows hundreds or even tens of thousands of Light sources in a 

scene to be rendered in reasonable time. 

The Light Extent Volumes method is specially designed for scenes with many 

light sources where every intersection point is iiiuminated by few of the candidate 



Iight sources. When rendering those scene models, the algorithm has approximately 

logarithmic complexity. And the performance of the LEV method impmves as the 

number of Light sources increases in the scene. It achieves significant speedup over 

other approaches (up to 150 times faster), such as the traditional ray trachg and 

Ward's Adaptive Shadow Testing. Meanwhile the tradeoff between image accuracy 

and rendering speed is negligible. Moreover, combined with instancing, the algorithm 

requires minimal memory overhead for shadow testhg acceleration. Another 

important feature of the LEV algorithm is its simplicity of implementation. In 

addition the approach is orthogonal to most other global illumination techniques, and 

can be added to existing direct light calculations and optimuatioas. In conclusion the 

LEV approach is a practical algorithm for efficiently ray tracing scenes with many 

light sources. 

6.5 Future Work 

The introduction of the LEV algorithm provides a promising direction for 

efficient ray tracing of many light sources. Currently the algorithm has great 

performance for typical scenes. In the near hiture, we can do M e r  development to 

complete this method to deal with several special situations- First, we will extend the 

implementation to linear and area light sources. A possible solution is to combine our 

m . .  LEV method with Ward's AST approach for rendering. The AST method mm.muzes 

the number of light sources that must be tested for visibility by sorting the 

contributions of al1 light sources. However, the cost of sorting c m  make the approach 

impractical for the rendering. So fmt we can use Our LEV algorithm to quicidy 



identify aii the signincant iight sources for shadow testing with appropriate iight 

extent volumes. And then, wve combine the AST method to do the direct contribution 

calculation on those significmt sources and estimate the contributions of the rest light 

sources. Second, we may explore the impact of specularity on the LEV method. For 

example, stars have negligible irradiance, but we can see them in the reflections- The 

current aigorithm would treat them as unimportant light sources and ignore them. 



Appendix A 

The building model with 256 light sources 

The building model with 1,024 light sources 



The building model with 4,096 light sources 

The building model with 16,384 light sources 



The peanocwe  maze with 189 light sources 

The peanocurve maze with 765 light sources 



The peano-curve maze with 3,069 light sources 

The peano-cwe maze with 12,285 light sources 



Appendix B 

Data collected fkom result tables in Chapter 5 and Chapter 6. 

1 64 lights 1 98.86s 1 42.12s 1 46.38s 1 42.61% 1 469 1% ( 2.13 

11 1,024 lights 1 1268.58s 1 812.23s 1 10 1-29s 1 64.03% 1 7.98% 1 12.52 

Table 1 -Test 1.1 result table based on Scene Mode1 1 for performance cornparison of 
the traditional ray tracing (RT), Adaptive Shadow Testing (AST) and Light Extent 
Volumes (LEV) 



11 189 lights 1 248.09s 1 132.53s 

11 3,069 lights 1 1 1989.90s 1 6 155.6 1 s 

Table 2 -Test 1.1 result table based on Scene Mode1 2 for performance cornparison of 
the traditional ray tracing (Rn, Adpative Shadow Testing (AST) and Light Extent 
Volumes (LEV) 



Table 3 - Test 1.2 cornparison of extra memory space used by Adaptive Sbadow Testing 
and Light Extent Volumes for shadow testing acceleration based on Scene Modell. Note 
that the data for the case of LEV without instancing is got by fuily using light extent 
voIumes in the light hierarchy 

64 lights 

256 Lights 

1,024 lights 

4,096 lights 

1 6,3 84 lights 

1,536 

6,144 

24,576 

98,304 

393,216 

8,704 

34,8 16 

139,264 

557,056 

2,228,224 

2,932 

3,812 

4,692 

5,572 

6,452 L 



Table 4 - Test 2.1 Iogarithrnic behavior of the Light Extent Volumes inethoci based on 
Scene Mode1 1 

64 lights 

256 lights 

1,024 lights 

4,096 lights 

16,3 84 lights 

65,536 lights 

97.97s 

32 1 -29s 

490.75s 

746.3 1 s 

1 08 1.29s 

1 1  17.16s 

46.38s 

78.96s 

10 1 -29s 

134.56s 

184.14s 

191.14s 

15.73s 

23.97s 

29.20s 

38.52s 

56.99s 

57.80s 



189 lights 

765 lights 

12,285 lights 1 

198.42s 

3,069 lights 

Table 5 - Test 2.1 logarithrnic behavior of the Light Extent Volumes method based on 
Scene Mode1 2 

908.95s 

62-76s 

1 347.80s 

13.23s 

218.19s 41.63s 

287.73s 52.76s 



Table 6 - Test2.2 fraction of Iight sources tested per intersection point 



Table 7 - Test2.2 fiaction of light sources tested per intersection point based on Scene 
Mode1 3 



Table 8 - Test 23 fiaction of Iight sources tested pet intersection point with more light 
sources on Scene Mode1 1 



Table 9 - Test 2.3 fiaction of light sources tested per intersection point with more Light 
sources on Scene Mode1 2 



Table 10 - TesU.4 average and maximum pixel errors by increasing Iight sources in 
Scene Mode1 1 



Table 11 - Test2.4 average and maximum pixel errors by increasing light sources in 
Scene Mode1 2 



Table 12 average number of light sources tested for visibility at each intersection point 
based on Scene Mode1 1 



64 lights 86 46 19 

256 iights 279 69 25 

1024 lights 443 88 31 

4096 lights 569 101 36 

16384 lights 65 1 110 42 

65536 l i g b  696 118 45 

Table 13 average number of light extent volumes checked at each intersection point 
based on Scene Mode1 1 



I 45 lights 1 45 17 1 2 
I 

189 lights 132 17 2 

765 lights 195 19 2 
t 

3069 lights 234 19 2 

Table 14 average number of light sources tested for visibility at each intersection point 
based on Scene Mode1 2 



Table 15 average number of Lght extent volumes checked at each intersection point 
based on Scene Mode1 2 

45 lights 

189 lights 

765 lights 

3069 lights 

122851ights 

66 

214 

344 

432 

487 

34 

43 

56 

65 

71 

12 

14 

16 

19 

21 
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