Efficient Ray Tracing of Many Light Sources

Xiaomei Wang

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements
for the degree of

Master of Science

Graduate Programme in Computer Science
York University
Toronto, Ontario

June 1999

l * . National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Waellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fiie Votre référence
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43409-5

Canada

Efficient Ray Tracing for Many
Light Sources

by
Xiaomei Wang

a thesis submitted to the Facuity of Graduate Studies of York
University in partial fulfillment of the requirements for the degree
of :

Master of Science

1999
©

Permission has been granted to the LIBRARY OF YORK
UNIVERSITY to lend or sell copies of this thesis, to the
NATIONAL LIBRARY OF CANADA to microfilm this thesis and to
lend or sell copies of the fiim, and to UNIVERSITY
MICROFILMS to publish an abstract of this thesis.
The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or otherwise
reproduced without the author’s written permission.

Efficient Ray Tracing of Many Light Sources

Xiaomei Wang

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Program of Computer Science
York University

ABSTRACT

Standard ray tracing algorithm slow down unacceptably when a large number
of light sources are in the scene because the shadow determination process is O(n),
where n is the number of light sources. This thesis puts forward a new Light Extent
Volumes approach to efficiently ray tracing scenes with many light sources. By
building a hierarchical tree of light extent volumes one can approach approximately
logarithmic complexity for typical scenes in determining which light sources
contribute significant irradiance to the intersection point. This allows tens of
thousands of light sources in a scene to be rendered in reasonable time. The relative
performance of the algorithm improves as the number of light sources increases in the
scene. It achieves significant speedup over other existing approaches, up to 150 times
faster. Moreover, the algorithm requires minimal memory overhead for shadow
testing acceleration. Another important feature is its simplicity of implementation. In
addition, the approach is orthogonal to most other global illumination techniques and
can be added to existing direct light calculation and optimizations. The Light Extent
Volumes approach is a practical algorithm for efficiently ray tracing scenes with many

light sources.

iv

Acknowledgements

Many thanks to my supervisor, Professor John Amanatides, for his help, patience,
knowledge advice, and his valuable time which lead to the completion of this thesis.

Thanks also to the committee members for their insightful suggestions and advice
regarding to this thesis.

I would also extend my thanks to my friends Claude, Oleg, Kenneth, Johnathon,
Zusheng, Chang, Biao, Linqi, Xiaoyan, Ying, Chris, lila, Laura, and Razvan for their
fun, help, and support during these two years.

Special thanks to my husband Shen Zhou for his love, understanding, support and
encouragement. Further thanks to my parents, sisters and two angelic nephews,
Kangning and Kaiwen. Without their encouragement and love, I would not be able to
achieve this goal.

Table of Contents

Chapter 1
INEroduCtion ... e 1
1.1 Introduction to Ray Tracing 1
1.2 Problem of Ray Tracing Scenes with Many Light Sources......................... 3
) IR T €'Y USSR PPP RN 4
Chapter 2
Background. ... 5
2.0 OVEIVIEWcceeeeeceeececeeerececsseessesensssensnssnssssssressassasessssvesesssssassssansserssess 5
2.2 Ilumination Model................ o etec s esae ot e ne e nae 5
2.2.1 Lambertian Diffuse Reflection............cocooorrmmmrrnniiiiieiiiieeenns 6
2.2.2 Specular Reflection...................onmnememmeeceeeceenceenccaaens 7
223 Ambient Light ...ttt 9
224 PhongModel.............. et 9
2.2.5 Improved Point-Light-Source Model...................ooeirnmnninnriincnaiens 10
2.3 Recursive Ray Tracing. ...ttt ceeneee 12
2.4 Intersection Culling Techniquesccccoormmrrrioommeiieeeeeecerennee. 13
2.4.1 Hierarchical Bounding Volumescoorrrrirrrnninenienernrnens 14
2.4.2 Spatial SubdiviSioncoommeiiiimiii e 16
2.5 Ray Tracing Multiple Lightso i rreettreeeene 17
2.5.1 Adaptive Shadow Testing.............cccoomiimimmieeeeeeeeeeeeeecreceees 17
2.5.2 Monte CarloDirect Lighting e 19

2.53 Light Hierarchy........ 20

2.5.4 Comparison of Ray Tracing Multiple Lights Approaches................. 21
2.6 Solid Modeling 22
2.6.1 Constructive Solid Geometry.......................c..cocuuu...... . 22
2.6.2 Instancing............ .- 23
Chapter 3
Ray Tracing Many Light Sources......... 24
3.1 Overview.......... creeentsetseesnnsesananaeens eecrerenenenmanes 24
3.2 MOGIVALIONcoaaeeccceceteececeeereecstseseeeesreseesssnseeessssessssessesssnsesssssnae 24
3.3 Light Extent Volumes.. ceeeeeessesereretsassteseasentassesaeassaseseeesessssnrrsaeananessanns 25
3.4 Hierarchy of Light Extent Volumes.......................ceeveeeeeermeeereeeeeeencann. 26
3.5 Shadow Testing with the Light Hierarchical Structure............................ 26
350 Basic Procedure............... e eeees st essste s sessaenas 28
3.5.2 Algorithm of Identifying Important Light Sources............................ 28
3.5.3 Optimization of the Light Hierarchy Structure by Instancing.......... 31
3.5.4 Algorithm for Light Hierarchies with Instancing............................... 33
Chapter 4
Implementation..................oooeeeeeeee, 34
4.1 INEFOdUCHONooooeineerceeeeteeeetee e sercess e sneeessssessessesenesssssssnennes 34
4.2 Structures for Modeling.................oocoenmemoeieeeeeeeeeeeeeeeeeeeeeseeeneen 34
4.2.1 CSG Nodes in the Object Tree..................eoeeeeeeeeeereeeceeeeereeceeerenenens 35
4.2.2 CSG Nodes in the Light Hierarchycccooovveinecn.. 35
4.3 Preprocessing............................. . eeeecteseressrassesnessnrmnmmnnnreeeasessenens 37

vii

44 Rendering........ . ceseesecsnrensssssesesssssssnsnnrtesnoraeasnne 45

4.5 Simplicity and Compatibility of the LEV Algorithm 46
4.6 Implementation of Ward’s AST Method..... . eeeeversssnnessnasaras 46

Chapter §

Testingand Results ... N 48
5.1 Overview............ - . rereesrrecssretasessessesssianes 48
5.2 TeStIRG ASPECESeoeeeeeeeceeececcecteeecssssasasesssssseessssasesssnnsesessesssnnen 48
5.3 TestScene DesSCriptioncooirieriecreecrcceeeeeecernrerarereresseensassaasasns 49
5.4 TeSECASESoceeeereeirnniecnieeeniesrecasecseeessssosasssassssmsessacrasssssssesasnssssnnnsesnsnnns 52
5.4.1 Compare LEV with Traditional RT and ASTocuuuvven..n 52
5.4.1.1 Test1.1: Performance Comparisoncccccovmnurvenrerrnecnennen. 52
5.4.1.2 Test 1.2 : Memory Overhead Comparison..................cccocceeeeeen... 56
S.4.2 Examine Characteristics of Light Extent Volumes............................. 58
5.4.2.1 Test2.1: Running Time Behavior.................occoeenuericeneen... 58
5.4.2.2 Test 2.2 : Fraction of Light Sources for Shadow Testing................ 60
5.4.2.3 Test 2.3 : Fraction of Lights Tested When
Increasing Light Sources...................cccoveeirnrrienrennen. 63
5.4.2.4 Test 2.4 : Average and Maximum Pixel Errors
of Rendering Images....................ccoooiiiiiimieeeenn. 64
Chpater 6
Analysis and Conclusion ... 68
6.1 OVEIVIEWconerreeenrereecreessrecsesstsesesnssessnesssssnsesasessassesseensessensessnnns 68
6.2 ODbSErvations.............uooei ettt snsaesre s aens 68
6.3 ADAlYSiS...... e rese e e s b e n s ae st esne s saeens 69

viii

6.4 Conclusion euseeessessonsesssrnotesnsssbesanshrnsstasaseatonsassesesnsanenen
6.5 Future Work

Appendix A....

AppendixB SO

BIbHOGraphyy ... e

ix

Chapter 1

Introduction

1.1 Introduction to Ray Tracing

Ray tracing is a powerful 3D image-rendering technique that simulates the
interaction of light with 3D objects at each intersection point within the environment.
It was first developed by Appel [APPEG68] for visible surface determination. Whitted
[WHITS80] then extended ray tracing to handle specular reflection and refraction.

For a typical ray tracer, given a viewpoint and a view plane which is divided
into a grid and each element in the grid represents a pixel of the resulting image, a ray
is shot from the viwepoint, through a pixel, and into the scene, as shown in Figure 1.1.
The first object that the ray intersects is the object visible in that pixel of the
view plane. When a ray intersects with an object, the intensity and color of the
intersection point are assigned to the pixel. Refraction and reflection are modeled by
recursively shooting refraction and reflection ray until a bounce limit is exceeded or
no more objects are encountered, as shown in Figure 1.2. This scheme produces high

quality images.

view point

Figure 1.1 example of simpie ray tracing

reflection ray

refraction ray refraction ray

\ view plane

view point

Figure 1.2 ray tracing modeled by reflection and refraction

1.2 Problem of Ray Tracing Scenes with Many Light Sources

For most existing commercial rendering systems (for animations, film special
effects, postproduction, advertising, etc.), ray tracing remains the rendering algorithm
of choice. In such environments, scenes containing a large number of geometric
primitives as well as a large number of light sources are common. Unfortunately,
standard ray tracing algorithms slow down unacceptably when large numbers of light
sources are in the scene because the shadow determination process is O(n}, where n is
the number of light sources. We need to send a shadow ray from each intersection
point towards every light source to determine whether the intersection point is visible
to that light source. If there are more than a few light sources, shadow determination
quickly becomes the dominant computation even though there is a high probability
that most light sources have negligible influence to most of the scene. What is needed
is an approach whose complexity is better so that we can render scenes with tens of
thousands of light sources in reasonable time.

Researchers have been looking at ways of solving this problem and there are
two distinct strategies to consider: (1) fewer ray-object intersection approaches which
reduce the number of objects that have to be intersected with a ray by only
concentrating on objects close to the shadow ray, including Bounding Volume
Hierarchies [WHIT80, RUBI8S80, WEGHS84, KAY86, STUE94] and Space Subdivision
[GLAS84, KAPLS8S, JANS86, FUJI86, AMAN87, EOKS89, WOO09%0a]; (2) shadow

ray reduction methods which shoot shadow rays only to the most significant light

sources and then estimate the visibility of the others [WARD91, HOUL93, SILL94,
SMIT94, STAM9S, SHIR96, PAQU98].
1.3 Goal

The objective of this thesis is to develop a new approach to efficiently ray
tracing scenes with many light sources. It focuses on the target that given an
intersection point during the ray tracing process, quickly determine all the light
sources which make great contribution to this intersection point. By building a
hierarchical tree of light extent volumes one can approach approximately O(log n)
complexity in determining which light sources contribute significant irradiance to the
intersection point, where n is the number of light sources. This allows hundreds or

even tens of thousands of light sources in a scene to be rendered in reasonable time.

Chapter 2

Background

21 Overview

In this chapter, ray tracing topics related to this thesis are discussed. Topics
include illumination model, recursive ray tracing, intersection culling techniques, and
the techniques of ray tracing multiple lights.
2.2 Illumination Model

The role of the illumination model is to determine how much light is reflected
to the viewer from a visible point on a surface as a function of light source direction
and strength, viewer position, surface orientation, and surface properties. In this
section, Phong’s [PHON7S] illumination model is introduced because it is the most
popular illumination model in the computer graphics field. Phong’s model includes
three factors: diffuse reflection, specular reflection, and ambient light. Based on
Phong’s model, an improved point-light-source model is further provided to simulate

some of the directionality of the lights, such as sharply delineated spotlights.

2.2.1 Lambertian Diffuse Reflection

Lambertian diffuse reflection is the simplest type of reflection where a ray of
light, after an amount of absorption, is scattered back into the environment with equal
intensity in equal directions (Figure 2.1 a). The amount of energy reflected per unit
area is proportional to the cosine of the angle between the normal to the surface at that

point, and the direction to the light source (Figure 2.1 b).

normal norma.N |
°3 AN 2o A
lighiray light ray
diffuse reflection L
¢]
b

a

Figure 2.1 Diffuse reflection — light is scattered in all directions from a
point on the surface

At this stage in the development of the model, we should consider the role of
distance by adding an attenuation term that reduces light intensity as a function of the
distance of the surface from the light source. This ensures that surfaces of the same
color, but at different distances from the light sources, are not assigned the same
intensity. The physical choice for this attenuation term is 1/4°.

Lambertian diffuse reflection can be written as:

Ii=(1;/d)K cos6 (1)
Where
I; is the intensity of the light source;
d is the distance between the intersection point and the light
source;
Ky is a constant of reflection dependent on the surface material;
o is the angle of reflection between the incident light direction
and the surface normal.
Lambertian diffuse surfaces appear dull and do not produce regular reflection.
It is important to note that the intensity the viewer sees reflected off of a diffuse
surface is independent of the viewer’s position.

2.2.2 Specular Reflection

Specular reflection is due to the shininess of a surface. Unlike diffuse
reflection, it is highly dependent upon the position of the viewer and the light source
at each point on the specular surface. In Phong’s model, specular reflection is
scattered about the mirror direction when a surface is not mirror like but still shiny
(Figure 2.2 a).

In this model the intensity of the reflection is proportional to the cosine
(raised to some power) of the angle between the mirror direction and viewer direction
(Figure 2.2 b).

I;=(I,/d)K:(cosa) Q)

L A R
LIS SIS TS IS TS S/ TS ST S TS S S STS
a b
L: light ray N: normal R: mirrored specular reflection V: viewer

Figure 2.2 Specular reflection - light is concentrated around the mirror
direction R

Where
I; is the intensity of the light source;
K; is the constant representing the fraction of energy reflected

specularily, which is a function of the surface properties;

o is the angle between the mirror direction and the viewer
direction;

n is the specular exponent, also a function of the surface
properties.

Values of n typically vary from O to several hundred, depending on the surface
material being simulated. Shinier surfaces have larger values of n. A value of n = 0
will result in a Lambertian diffuse reflectance, and a value of n = infinity will result in

a mirrored surface.

2.2.3 Ambient Light

Ambient light is the result of multiple reflections from many surfaces in the
environment, and is incident on a surface from all directions. Without ambient light,
objects in shadow would be completely black. Since it’s generally vefy expensive to
directly compute the ambient light, the ambient component is often modeled as a
constant term for a particular object by using a constant ambient reflection coefficient

as shown below:

I=1LK, (3
Where
I, is the intensity of the ambient light;
K, is the ambient-reflection coefficient which determines the

amount of ambient light reflected from an object’s surface.

2.2.4 Phong Model

Combining ambient light, diffuse reflection and specular reflection, intensity
from Phong’s model is given by

I=1LK,+(I:/&)[K;cos0 + K,(cosa)] 4)

In Phong’s model, the global term (ambient) is modeled as a constant, and the
diffuse and specular terms are modeled as local components. The overall effect of the
lack of interaction between objects in a scene is that they appear plastic like. Also,
the lack of shadows means not only that objects do not cast a shadow on other objects,
but self-shadowing within an object is omitted. These can be solved by the technique

of Recursive Ray Tracing.

10

2.2.5 Improved Point-Light-Source Model

Real light sources do not radiate equally in all directions. Warn [WARNS83]
has developed easily implemented lighting controls to model some of the
directionality of the lights. A directed light is modeled mathematically as the light
emitted by a single point specular reflecting surface illuminated by a hypothetical
point light source, as shown in Figure 2.3. Think of the point labelled “LIGHT” in
Figure 2.3 as a surface which reflects light onto the object. The normal orientation of
this single point surface is controlled by the light direction vector. A hypothetical
point light located along this vector illuminates the reflector surface which, in tumn,
reflects light onto the object.

We can use the Phong illumination equation to compute the intensity of the
reflected light at a point on the object. If we further assume that the reflector has a

diffuse coefficient of 0 and a specular coefficient of 1, then the light’s intensity at a

Reflector

Figure 2.3 Wam's lighting model. A light is modeled as the specular
reflection from a single point illuminated by a point light source.

11

point on the object is

I cos” Y (&)
Where I is the intensity of the hypothetical point light source, yis the angle between
—-L and the hypothetical surface’s normal, L’, and P is the reflector’s specular
exponent. The exponent P provides control over the concentration of the light. By
increasing the value of P, the light becomes more concentrated around the primary
direction. This can be used to simulate the effect of a spotlight. The light can be
aimed by adjusting the orientation of the light direction vector.

Equation (5) can thus be substitued for the light-source intensity /; in the
formulation of Equation (4). Then the intensity of a directed light at a point on the
object based on Phong’s model is given by

I=LK, + (I-cos’y/ &)[Kqcos0+ K.(cosa)] (6)

In Warn’s method, a sharply delineated spotlight is modeled as a variable
sized cone surrounding the light direction. As shown in Figure 2.4, a cone with a
generating angle of 8 may be used to restrict the light source’s effect by evaluating the

illumination model only when y < .
' light direction

Figure 2.4 The intensity distribution of a spotlight is restricted with cone.

12

2.3 Recursive Ray Tracing

The illumination model described in the Section 2.2 is for simple ray tracing
which only computes pixel values at the closest intersection of a ray from view point
with objects. Recursive ray tracing extends to handle shadows, reflection, and

refraction (Figure 2.5).

Normal

ﬁ, Reflection ray Viewer

Shadow ray

Surface

Figure 2.5 reflection, refraction and shadow are spawned from a point of intersection

To calculate shadows, an additional ray from the point of intersection is shot
to each of the light sources. If the shadow ray strikes an object before reaching the
light source, the point of intersection is in shadow.

The illumination model developed by Whitted [WHIT80] and Kay [KAY79]
fundamentally extends ray tracing to include specular reflection and refractive

transparency. Each of these reflection and refraction rays then in turn recursively

I3

spawn shadow, reflection and refraction rays. The illumination model by Equation

(6) can be extended to:

I = Ia Ka+g(SiIL'COSPY/di2)[KdCOSG +K:(cosa)n]+ Kr!r+KtI! (7)

Where
m is the number of light sources
S; is the visibility factor of the light source
K, is the reflection coefficient
I, is the intensity of the reflected ray
K, is the transmission coefficient
I, is the intensity of the refracted transmitted ray

Values for I, and I, are determined by recursively evaluating Equation (7) at the
closest surface that the reflected and transmitted rays intersect. A maximum depth
can be used to limit the times of recursion in a very shiny environment, or the
recursion is stopped when the ray doesn’t intersect with any object in the scene.
2.4 Intersection Culling Techniques

In ray tracing, most of the computational time goes to computing intersections
between rays and objects. So right from the start, ray tracers [WHIT80] included
schemes for reducing linear time complexity so that they could handle complex
scenes in reasonable time. These schemes try to quickly determine candidate objects
which have a high probability of intersecting the ray, and generally come into two

flavors: Hierarchical Bounding Volumes [WHIT80, RUBI8S80, WEGH84, KAY86] and

14

Spacial Subdivision [GLAS84, KAPL8S, JANS86, FUJI86, AMANS87, EOKS89,
WOOA90].
24.1 Hierarchical Bounding Volumes

The most fundamental and ubiquitous tool for ray tracing acceleration is the
bounding volume. Bounding volumes provide a particularly attractive way to
decrease the amount of time spent on intersection calculations. Each volume contains
a given object and permits a simpler ray intersection check than the object. Only if a
ray intersects the bounding volume does the object itself need to be checked for
intersection. If the ray misses most objects, intersection of the bounding volume
reduces computation times significantly. Whitted [WHIT8O0] initially used spheres as
bounding volumes since they are the simplest shapes to test for intersection.

Though bounding volumes substitute simple intersection checks for more
costly ones, they don’t reduce the number of checks. Theoretically it may reduce the
computation by a constant factor, but cannot improve upon the linear time
complexity. To alleviate this problem, Rubin and Whitted [RUBI80] firstly used
hierarchical bounding volumes in ray tracing to attain a theoretical time complexity
which is logarithmic (expected case) in the number of objects instead of linear.

When constructing the hierarchy structure tree, each object is bounded in a
volume (e.g. cube, sphere) whose geometric attribute is much simpler than the object
itself. Furthermore, close objects are grouped together to form another bounding
volumes. By enclosing a number of bounding volumes within a larger bounding

volume it was possible to eliminate many objects from further consideration with a

15

single intersection check. A child volume is guaranteed not to do the intersection test
if its parent does not. Thus, if intersection tests begin with the root, many branches of
the hierarchy may be trivially rejected. For example, in Figure 2.6 (a), the ray first
hits volume A and then one of its children, volume B. Since the ray does not hit
volume C, the further intersection test for volume C can be avoided immediately.

Figure 2.6 (b) shows the corresponding bounding volume hierarchy tree.

Box A

/

Box B
(a) instance
A
/\m
B C

q &
e &

(b) hierarchical tree

Figure 2.6 example of hierarchical bounding volumes

16

2.4.2 Spatial Subdivision

Spatial subdivision scheme works by partitioning a volume bounding the
environment into voxels. A fundamental difference between bounding volume
hierarchies and spatial subdivisions is that the former selects volumes based on given
sets of objects, whereas the latter selects sets of objects based on given volumes.

The basic spatial subdivision technique {GLAS84] is built on the basis of the
voxel traversal grid structure (Figure 2.7). Space encompassing all objects is placed
in a grid of cubes called voxels. Each voxel contains a list of all objects which reside
in that voxel. Each raf traverses the grid in order and tests for intersection only with
objects residing in the voxel traversed, until an intersection is found or the ray has
completely traversed the grid. Performance is improved because less objects are

handled in each ray intersection computation.

("3 m Processed voxels
N
C N - Tested objects

N

N
7 1\
7

D
N/
_z')

r

(
A
%
(D
N

D

V1 N

Figure 2.7 A 2D analogy of uniform spacial subdivision

17

2.5 Ray Tracing Multiple Lights

When ray tracing complex models such as large building, the resulting scene
typically contains hundreds or even thousands of light sources. In rendering such
scenes, shadow determination quickly becomes the dominant computation even
though there is a high possibility that most light sources have negligible influence to
most of the scene. There is an extensive literature on the research dedicated to
speeding up shadow calculations using spatial coherence and subdivision [WOO90b].
Most of these approaches however are highly dependent on the number of light
sources, and are thus unsuitable for scenes with many light sources [BERGS6,
WARD91, HOUL93, SILL94, SMIT94, STAM95, SHIR96, PAQU98].

In this section, three recently emerged approaches of rendering scenes with
thousands or even more light sources are discussed, including Adaptive Shadow
Testing [WARD91], Monte Carlo Direct Lighting [SHIR96], and Light Hierarchy
[PAQU98]. These techniques based on the assumption that in such scenes at most a
few hundred light sources (and usually at most tens) will contribute significantly to
the radiance at any particular point. So they employed different ways to identify
important light sources from other negligible lights, shoot shadow rays only at the
most important light sources and then estimate the visibility of the others.

2.5.1 Adaptive Shadow Testing
Ward presented Adaptive Shadow Testing method [WARD91] which performs

well for a moderate number of light sources, and is the most suitable algorithm to date

for the treatment of scenes with many light sources.

18

This approach first calculates the potential contribution of each light source at
every point to shade (without considering visibility), and uses this estimation to
generate a sorted list of light sources. The ordered list is then traversed and thus
shadow testing on the sources with highest potential contributions is computed first.
If the sum of the potential contributions of the remaining light sources is below some

threshold, the traversal stops. The algorithm can be written as the following steps:

" 1) Compute potential contributions from all light sources in front of the
point

2) Sort the contributions in descending order

3) Compute r(i), the sum of the next N€ contributions smaller than source i,
where N is the number of light sources and C is the certainty

4) Initialize the sum (S), hits(V), and tests(W) to 0.
For each contribution in the sorted list do
IfSt > r(i) then go to step (5);
Increment the test counter, W;
Increment the test counter for light source i, W(i);
If source i is visible from this point then
Increment the hit counter, V;
Increment the hit counter for source i, V(i);
Add contribution for source i to S;
End if
End for
S) For each untested contribution do
Multiply contribution by V/W and V(i)/W(i);
Add weighted contribution to §;
i End for

6) Return S

Figure 2.8 Pseudo code of Adaptive Shadow Testing

19

2.5.2 Monte Carlo Direct Lighting
Shirley et al [SHIR96] introduced Monte Carlo techniques [HAMMG64,

SHREG66, HALT70, YAKO77] for direct lighting calculations by using a probability
intensity function over all the light sources. Since the mixture probability intensity
function is the sum of the products of mixing weights and individual probability
functions, in the linear method, the calculation of mixture probability density function
requires querying every light in the scene. This might be too slow with thousands or
millions lights. Based on the assumption that in such scenes at most a few hundred
lights will contribute significantly to the radiance at any particular point, the lights are
then divided into two subsets: one is the set of bright (important) lights, and the other
is the set of dim (less important) lights. This selection is performed as a preprocess,
and is based on an approach similar to the sphere of influence. A sampling
probability is then assigned to each bright light source, and a unique probability is
assigned to all the dim light sources. If a large number of rays are shot per pixel, this
method can be very effective.

The difficult part of this method is deciding which lights are important for a
particular point. As pointed out by Kok and Jansen [KOK91], a light that is
responsible for a large fraction of the radiance of a point is likely to be responsible for
a large fraction of the radiance of its neighboring points. A spatial subdivision
scheme is then used to precompute the list of important lights for each cell in the
spatial subdivision structure. For a particular cell, a light is put in the candidate list if

it might contribute more than a threshold average spectral radiance to a diffuse

20

surface within the cell. To characterize important versus unimportant lights, an axis-
aligned influence box is associated with each light that includes all points that might
include that light in its important light list. When deciding whether a light is
important to a cell, just check whether the cell and the influence box overlap, and if
so, then the light is treated as an important light source.
2.5.3 Light Hierarchy

Paquette [PAQU98] introduced a new data structure in the form of a light
hierarchy for efficiently ray-tracing scenes with many light sources. An octree
structure is constructed with the point light sources in a scene. Each node keeps an
approximate representation of the light sources it contains by means of a virtual ligfzt

source. Figure 2.9 shows an example of such a point light hierarchy.

Scene

Hierarchy

Cluster S Empty cluster S Virtual light ﬁ

Figure 2.9 example of light hierarchy

21

Once the light hierarchy is built, error bounds committed with the virtual light
approximations are developed to shade a point, both for the cases of diffuse and
specular reflections. These bounds are then used to guide a hierarchical shading
algorithm. If the current level of the light hierarchy provides shading of sufficient
quality when the associated error bound is below the desired threshold, the
approximation is used, thus avoiding the cost of shading for all the light sources
contained below this level. Otherwise the descent into the light hierarchy continues.
2.5.4 Comparison of Ray Tracing Multiple Lights Approaches

Three approaches of rendering the scene with thousands or even more of light
sources have been described in this chapter. Ward’s Adaptive Shadow Testing
approach performs well for a moderate number of light source, but since its
complexity is O(n), as the number of light sources increases, the cost of sorting the
contributions of all these light sources can make this method impractical for the
rendering. Compared to Adaptive Shadow Testing, Paquette’s Light Hierarchy
approach is an important improvement for scenes with a high number of light sources.
However, this method is designed only for scenes without occlusion which are
uncommon in the daily life. Monte Carlo Direct Lighting approach can be very
effective if a large number of rays are shot per pixel. Unfortunately, as with all Monte
Carlo approaches, noise due to insufficient sampling can appear in the rendered
images. Moreover, since the unimportant light source to be sampled is chosen
randomly, an unsuitable partitioning into unimportant and important light sources can

greatly increase the amount of noise.

2.6 Solid Modeling

There are many ways to model 3D objects. In this section, we provide a
summary of two of them, Constructive Solid Geometry and Instancing.
2.6.1 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a method of creating complicated
objects by performing Boolean set operations on more primitive objects, such as
sphere, cube, and cylinder and so on. Typically an object is stored as a CSG tree with
simple primitives at the leaves and operators at the internal nodes. Some interior
nodes represent Boolean set operators, whereas others perform affine transformation,
such as translation, rotation and scaling. A complicated object can be defined by a

CSG tree, as shown in Figure 2.10.

—

Figure 2.10 an object defined by a CSG tree

2.6.2 Instancing

In some complicated models, the same objects may occur repeatedly only with
a few different characteristics, such as transformation attributes. When building up a
hierarchy of the model, we may only create one master copy of the object. Copies of
other objects can be represented by simply using some instance nodes referring to the
master object with their own transformation. Thus, once the master object is
instanced in the model, the same object is automatically replicated many times. So

instancing saves a lot in both space and time for generating the primitive hierarchy.

Figure 2.11 shows a model hierarchy with instancing.

Figure 2.11 a model! hierarchy with instancing

24

Chapter 3

Efficient Ray Tracing with Many Light Sources

3.1 Overview

Standard ray tracing algorithms slow down unacceptably when large numbers
of light sources are in the scene because the shadow determination process is O(n),
where n is the number of light sources. By building a hierarchical tree of light extent
volumes one can approach O(log n) expected-case complexity in determining which
light sources contribute significant irradiance to the intersection point. This allows
tens of thousands of light sources in a scene to be rendered in reasonable time.
3.2 Motivation

In scenes with multiple light sources, typically only a few will create strong
shadows in any part of the scene. These will generally be the sources with the high
concentration of light in that section due to source brightness, direction and proximity.

This observation leads to a simple optimization: we can perform shadow
testing only on the light sources with high contributions, and quit testing for those

unimportant lights whose contributions are below some threshold.

So all that we need is a way to quickly decide which light sources are
important enough for a particular point on the object surface to shoot shadow rays to.
3.3 Light Extent Volumes

Given a light source, the light extent volume is the volume in space where the
irradiance from the light source is above a given level tolerance. Here the tolerance is
a specified light intensity threshold that is the minimum influence considered to the
scene for rendering results.

As shown in Figure 3.1, for a point light source that radiates uniformly in all
directions, its light extent volume would be a sphere whose radius is determined by
tolerance. For a spotlight, it would be a cone. A light only has effect on objects that
lie within its light extent volume. If the object is outside the volume, the intensity
contribution is assumed to be zero, and no further evaluation of the illumination

model is required for that light. Of course, this only makes sense when relatively few

spotlight
point light
- 4
light
direction
(@) (b)
light extent volume of a point light source light extent volume of a spotlight source

Figure 3.1 light extent volume models

26

lights illuminate any individual surface. If there are a large number of rays from
light sources in the vicinity of some surfaces, then the combined irradiance may be
significant even though individually they all may be below the tolerance. Fortunately,
this situation is very rare and can easily be checked for.
34 Hierarchy of Light Extent Volumes

As mentioned in the overview, a hierarchical data structure of light extent
volumes representing the light sources in the scene is required to achieve the goal of
efficient treatment of scenes with many light sources.

The leaves of the light hierarchy are point light sources or spotlight sources.
The inner nodes could be affine transformation nodes used to specify the properties of
a light source and light bounding volumes of sub-trees, coupled with Union set
operators used to combine all the other nodes for describing the complicated light
situation. In Figure 3.2, we show an example of such a light hierarchy.
3.5 Shadow Testing with the Light Hierarchical Structure

Visibility testing is the most time-consuming part of a global illumination
calculation, and the visibility of light sources is particularly important since they
determine the initial lighting distribution. If we could assume that all of the light
sources were visible at every point, the calculation would reduce to a few simple
operations. Unfortunately, it is almost always necessary to check for occlusions from
light sources. And if there are multiple light sources in the scene, shadow

determination quickly becomes the dominant computation of renderings.

27

=) Ce) () Ca) E O)
i |] ! | 1
o) (o) G) (o) o) (o) o)
D N S
<= Spot light ¥ Point light affine node
Light extent volume @ Union node

Figure 3.2 a light hierarchy example

In this section we develop an algorithm allowing us to use the hierarchy of
light extent volumes to do quick shadow testing. The algorithm requires very little
storage, and produces no visible artifacts. Furthermore, the users can control the
accuracy and reliability of the technique, adapting it to suit their requirements. If the
user specifies the tolerance of the light extent volume of zero, the algorithm
degenerates to the original case, providing straightforward validation and comparison

of results.

28

3.5.1 Basic Procedure

The basic procedure behind the idea of shadow testing with the light hierarchy
consists of two steps. The first step is to pick up the important light sources from all
the light sources in the scene at each intersection point. And then, since the
unimportant light sources have negligible influence to the scene, only those important
light sources are sent shadow rays to in the recursive ray tracing for calculating the
light intensity of that point.

The most difficult part of this approach is how to characterize important light
sources versus unimportant light sources. In the following sections, we will provide
algorithms to efficiently identify important light sources from those whose influence
to the scene are negligible in light hierarchies.

3.5.2 Algorithm of Identifying Important Light Sources

Figure 3.3 is an outline of the algorithm designed to identify important light
sources from negligible sources in the scene.

The recursive function CreatelmportantLightList firstly takes the position of
intersection point, point, and the root node of the light hierarchy, node, as the input.
Each leaf node of the light hierarchy is a point light source or a spotlight source, while
interior nodes could be affine transformation nodes used to define the properties of
light sources, light extent volumes bounding subtrees or union set operators
combining branches of the light hierarchy. The boolean function
isinsideLightExtentVolume called from within CreatelmportantLightList is

responsible for checking whether the given intersection point is inside the light extent

29

LightList *CreateImportantLightList(point, node)

begin

end

switch (node.type) {
case Point light:
case Spotlight.
return current light source
case Affine:
newPoint = inverseAffine(point, node.affine)
lightlist = CreateImportantLightList (newPoint, node.child)
return applyAffine(lightList, node.affine)
case light extent volume:
if isInsideLightExtentVolume (point, node.volume) then
return CreatelmportantLightList (point, node.child)
else return NULL
case Union:
leftList = CreateImportantLightList (point, node.leftChild)
rightList = CreateImportantLightList (point, node.rightChild)
add leftList and rightList into ImportantLightList
return ImportantLightList

Figure 3.2 algorithm designed to identify important light sources from unimportant
light sources in light hierarchies without instancing

volume. When the test fails, the branch bounded by this light extent volume is

immediately discarded. All the light extent volumes in the light hierarchy are

evaluated in the local coordinate, whereas the intersection point is located in the world

coordinate. In order to correctly check whether the intersection point is inside a light

30

extent volume, every time when we meet an affine transformation node during the
traversal, we need to transform the intersection point with its affine transformation
information. = The procedure inverseAffine is called to inverse the affine
transformation on the intersection point if we meet the affine transformation node
during the traversal. This procedure is designed to guarantee that the intersection
point and the light extent volume are in the same coordinate when checking whether
the intersection point is inside that light extent volume. Besides, the procedure
applyAffine is designed to calculate a light's attributes according to the affine
transformations stored in its parent nodes.

To determine the important light sources, the function checks to see whether
the intersection point is inside the light sources’ extent volumes by traversing the
hierarchy of light extent volumes from top to bottom. It examines the light extent
volume bounding a certain branch of the light hierarchy tree. If the intersection point
does not locate inside that light bounding volume, the rest of the light hierarchy can
be ignored. Otherwise, it will keep on examining the child branches until the
intersection point is not inside the light extent volume or it reach the leaves of the
light hierarchy which contains the light sources. The sources whose light extent
volumes surround the intersection point are the important lights we are seeking. All
the important light sources for that intersection point are stored in a linked list. The
list of the important light sources is then used in a recursive ray tracing algorithm, and

only those sources are important enough to send shadow rays to.

31

By specifying the tolerance of light extent volumes, the users can control the
accuracy of the technique to suit their requirements. By making tolerance sufficiently
small, light sources’ extent volumes have reasonable regions of influence to the scene.
So our ray tracing results will be very close to those of the full calculation without the
associated cost.

3.5.3 Optimization of the Light Hierarchy Structure by Instancing

Scenes with a large number of light sources are becoming increasingly
important, such as outdoor scenes, urban settings, and opera and theater applications.
In those complicated scenes, the same submodel containing light information may
occur repeatedly with different transformation attributes. So we can use the
instancing property to create compact representation of the scene. By instancing the
light hierarchy only needs to create one master copy of each new light subtree
that can subsequently be instanced instead of making multiple copies of the same
subtree. Instancing can quickly create a large complicated light hierarchy from the
one simple light subtree without using the same amount of memory.

A light hierarchy with instancing has two kinds of nodes referring to light
information: light nodes and instance nodes. Light nodes indicate point light sources
or spotlight sources, while instance nodes represent light combinations found in
master object instances. And the master copy of an instanced object is symbolized by
a master node that contains a light extent volume bounding the whole subtree. By the

technique of light subtree instancing, the light hierarchy in Figure 3.2 can be modified

32

to the tree shown in Figure 3.4. It’s obvious that instancing saves a lot in both space

and time for generating the light hierarchy tree.

Leev J(v J(C v J{v]
1 | i l
[afﬁnc J[affine _][affine](afﬁncJ

+ HF om on

+ Spot light ﬁ’ Point light @ Union node Instance node
affine node Light extent volume l oyl Master node + LEV

Figure 3.4 light hierarchy with instancing where only one master copy of light
subtree is created

33

3.5.4 Algorithm for Light Hierarchies with instancing

In light hierarchies with instancing, it is possible that light sources can be in
master objects. Once these master objects are instanced in the scene, the same light
subtrees are potentially replicated many times. So we need to modify our algorithm
to handle this. The approach to efficiently pick up important light sources from light

hierarchies with instancing is shown in Figure 3.5.

LightList *CreateImportantLightList(point, node)

begin
switch (node.type) {
case point light:
case spotlight.
return current light source
case affine transformation node:
newPoint = inverse Affine(point, node.affine)
lightList = CreateImportantLightList(newPoint, node.child)
return applyAffine(lightList, node.affine)
case instance node:
return CreateImportantLightList (point, node.child)
case master node:
case light extent volume:
if isInsideLightExtentVolume (point, node.volume) then
return CreateImportantLightList (point, node.child)
else return NULL
case Union:
leftList = CreateImportantLightList (point, node.leftChild)
rightList = CreateImportantLightList (point, node.rightChild)
add leftList and rightList into ImportantLightList
return ImportantLightList
}
end

Figure 3.5 algorithm designed to identify important light sources from unimportant
liaht sources in light hierarchies with instancina

Chapter 4

Implementation

4.1 Introduction

A distribution ray tracer originally written by John Amanatides and Don
Mitchell was extended to include our new approach called Light Extent Volumes
(LEV) and tested on a SUN ULTRAI10 workstation to compare its performance to
other ray-tracing multiple light approaches, including the traditional ray tracing and
Ward’s Adaptive Shadow Testing. This ray tracer takes a scene described in Scheme,
a variation of Lisp, as input. Its implementation is basically divided into two parts as
preprocessing and rendering. In order to understand the implementation well we first
discuss the structures for modeling.
4.2 Structures for Modeling

Structures for modeling are the foundation of the implementation. In this ray
tracer, a scene is composed of three parts: a view camera, light sources and solid
objects. In each scene, there only exists a single view camera. The information of

light sources is stored in a light hierarchy tree. Objects are represented by an object

35

CSG tree. A novelty of our ray tracer is that instancing is used in both the light
hierarchy and the object CSG tree by only creating one master copy of an instanced
object instead of making multiple copies of previously defined objects.
4.2.1 CSG Nodes in the Object Tree

In the implementation, the information of each scene is originally specified
and stored in a CSG tree. In the CSG tree different types of CSG nodes are designed
to aid in describing any possible complicated scenes, such as object nodes, instance
nodes, master nodes, affine transformation nodes, set operation nodes, shading nodes

and miscellaneous nodes.

4.2.2 CSG Nodes in the Light Hierarchy
There are seven types of CSG nodes used for the construction of the light
hierarchy, including Point light node, Spotlight node, Instance node, Master node,
Light Extent Volume node, Affine node, and Union node.
e Point Light Node and Spotlight Node
A point light source or a spotlight source is firstly defined at the origin with an
intensity value of 1. Light decay is modeled as 1/r%>. It can be transformed like
any other object in the scene. By using a scale transformation, a light source can
be defined with any light intensity value.
A spotlight is by default modeled as a cone with a generating angle of ninety
degrees surrounding a light direction up along the z-axis. Each spotlight node can

provide control over the concentration of the light by specifying its dropoff

36

exponent. After increasing the value of dropoff, the light becomes more
concentrated around the light direction. By using a scale transformation, the
generating angle of the spotlight cone can be varied. Moreover, after a rotate
transformation the spotlight can be oriented in any desired direction.

Instance Node and Master Node

In many complicated scenes, the same objects occur repeatedly with different
affine attributes. So when generating the light hierarchy or object CSG tree, the
ray tracer only creates the master copy of a new object which can subsequently be
instanced. By instancing one can quickly create a large complicated or repetitive
scene from one simple object (eg. Instancing one seat to create a theatre
auditorium).

In the light hierarchy a master object is symbolized by a Master node as its
subtree’s root. Each Master node contains a light extent volume bounding the
current master object that can accelerate light extent volume computation in the
preprocessing stage and traversal in light hierarchy in the rendering step. Once
the master object is created, all instances are represented by instance nodes
referring to the master copy with their own transformations.

Light Extent Volume Node

It defines a light extent volume bounding the indicated sub-light-hierarchy. In
order to achieve traversal acceleration, light extent volumes inside the sub-light-
hierarchies become necessary. Light extent volume nodes allow us to bound any

sub-light-hierarchies as desired.

37

e Affine Transformation Nodes
Since all light sources firstly rest at the origin, several basic affine
transformations become necessary to represent the light sources at different
positions with different physical attributes. The affine transformations include
translation, rotation, and scaling. A translation node is used to move the light
instances along x, y, and z axes. A rotation node can rotate the light direction of a
spotlight object about a certain axis by the indicated angle, and make it orient to
any desired direction. A scaling node is designed to scale a light object about the
origin along x, y and z axes to change its light intensity or modify a spotlight’s
cone size.
Moreover, in light hierarchies with instancing, affine transformation nodes
working with instance nodes are essential to represent different instanced objects.
e Union Set Operation Node
It performs the union operation on the indicated sub-light-hierarchy trees by
setting two sub-light-hierarchies as the union node’s left and right child
respectively. The result is a new sub-light-hierarchy tree that can be further
manipulated.
With the aid of the above CSG nodes, we can create light hierarchies that may
describe any possible light situations in scenes.
4.3 Preprocessing
In the preprocessing stage, the distribution ray tracer reads the input data from

Scheme script files. The data include the camera’s position and orientation,

38

information of light sources, solid objects’ locations, orientations and surface

properties, resolution of image and output device.

As the information is being read, an original CSG tree is generated, which is a

composite tree, including the information of camera, light sources and solid objects in

the scene.

D

2)

Key steps of preprocessing are as following:
Pull out the camera node from the original CSG tree
Pull out light nodes from the original CSG tree and generate a light hierarchy
e Light Node Extraction

When generating the light hierarchy, point light nodes and spotlight nodes
with their affine transformation nodes are directly extracted from the CSG tree;
however, instance nodes with their affine information are copied from the CSG
tree. Each instance node created in the light hierarchy is set to link to its directly
instanced subtree whose root is a master node. Besides, the light extent volume
nodes are pulled out from the tree and added into the light hierarchy for traversal
acceleration. In addition, union nodes are copied from the CSG tree into the light
hierarchy to combine different branches.
e Light Extent Volume Computation

Once a primitive light hierarchy is constructed, light extent volumes in the tree
are then computed. If the light hierarchy has instancing property, we firstly

compute light extent volumes in all master sub-light-hierarchies and then those in

39

the-top-level.—There-is-a linked list designed to-keep track of all the masterobjects.— ..

3)

in the hierarchy so that we can quickly access each master subtree.

For each master subtree, the computation of light extent volumes begins with a
depth-first traversal of the sub-light-hierarchy. We keep on traversing the children
of the node until we reach a leaf that contains a point light source or a spotlight
source. Then an initial light extent volume of a sphere or cone resting at the
origin is calculated based on the information about the light’s intensity and the
tolerance of light extent volume. When tracing back from the bottom to top, we
need to modify that light extent volume based on the affine transformation nodes
and union set operation nodes we meet. In case of an affine transformation node,
we transform a half-compiited extent volume by scaling, rotating, or moving as
indicated by the affine node. For a union operation node, a new light extent
volume is computed by merging two volumes bounding the child branches of the
node. Light extent volume nodes and the light extent volume in the master node
are set as volumes bounding their sub-light-hierarchies.

During the traversal for light extent volume computation, if we meet instance
nodes, we only need to check the light extent volume stored in their child, a
master node, and do not need to traverse the instanced subtree again and again. It
will save us a lot in time for the computation.

Generate an object CSG tree
After pulling out camera node and light nodes, the ray tracer firstly repairs the

CSG tree, then computes the object bounding boxes of the tree, and finally

optimizes the tree links for shader. After all these are done, an object CSG tree is

generated.

After preprocessing, the information in the original CSG tree goes into three parts:
a view camera, a light hierarchy and an object CSG tree. Figure 4.1 shows the

graphical representation of preprocessing stage.

Camera information
()
View
Light source information camera
. J
Objects information e ™
Original Light
CSG tree hierarchy
Surface properties - J
4 ™\
Image resolution Object
CSG tree
_ J
Output device

Figure 4.1 preprocessing pattern

In the following, we construct a simple model in two different ways: one is
without instancing, and the other is with instancing. Each example illustrates the
original CSG trees of the scene model and the generation of the light hierarchy and
the object CSG tree after preprocessing, as shown in Figure 4.2 and Figure 4.3

respectively.

Buoue)su) yum pajonsisuod [apow auads ajdwiis e Jo 9a1) HSY) jeuibilio ue (e)

ot ¥t

auye auyje A _ aungje ouyyje
mem g e

AT ATl ATl ATl 4 %

: . @ oulype auyje

_ _ ATl ATl
SNIdAY NIV

¥oq punoq AT

AT

AN

%04 punoq

)

@

Gujouelsu) Inoyym pajonsisuod |epow auads e uo Buissecoideid Z'p oinbi4

-

ANLV

ANIAAY

X0q punoq

x0q punoq

Buissaooidaid soye jepow eueds (q)

x0q punoq

-
|

i

ouy)e

auge

|

AT

ATl

AT

@®

ANLY

ANV

X0q punoq

a1 9S8 193Iq0

il

auyje

auyje

_

AT

AT

ATl

a1

VHINVD

il

auyye

ouyye

_

AT

ATl

Ayasesapy Wb

BISWEI MIIA

) o)

(a) an original CSG tree of a simple scene model constructed with instancing

View camera

Light hierarchy

Object CSG tree

bound box

LEV

LEV

l

I

affine

afﬁne

+

"

(b) scene model after preprocessing

Figure 4.3 preprocessing on a scene model constructed with instancing

45

44 Rendering

The ray tracer starts to trace individual pixels after the preprocessing computation
is done. Rays are shot from view camera into the scene and each ray passes through a
pixel. With the hierarchical bounding volume technique, we first examine the bounding
volume in the root node of the object CSG tree. If the ray does not intersect with that
bounding volume, the rest of the CSG hierarchy tree can be ignored. Otherwise, we will
keep on examining the children of the node until the ray misses or we reach the leaves of
the hierarchy tree which contain the objects. Those objects stored in those leaves are then
tested with the ray.

Once the intersection point is determined, this ray tracer uses the hierarchical tree
of light extent volumes generated in the preprocess step to quickly find out all the light
sources that are important enough to do the shadow tests. Beginning with the root, we
take the intersection point to check whether the intersection point is located in a light
bounding volume. If it is, then go down the light hierarchy tree; otherwise the rest of the
branches of the light hierarchy may be trivially rejected. When we reach the leaves of the
light hierarchy, light sources stored in those leaves are selected as important light
sources.

After the list of important light sources at an intersection point is generated, a

recursive ray-tracing algorithm with the global illumination model is applied to calculate

the light intensity of this intersection point. If the surface is reflective or refractive, a
reflection or refraction ray is shot from the intersection point. The shading of each pixel
is based on the Phong illumination model as well as refraction or reflection. The final

value of the pixel is output in PPM (Portable Pixmap) format.

4.5 Simplicity and Compatibility of the LEV algorithm
An important feature of the LEV method is its simplicity of implementation. The

algorithm that provides a great reduction in shadow testing time can be written in less
than a page of C code; the shading function itself is unchanged. Furthermore, the
approach is compatible to most other global illumination techniques, and can be added to
existing direct light calculations and optimizations. When the algorithm is added to an
existing ray tracer, the only modification made is to generate a light hierarchy of all light
sources in the scene in the step of preprocessing, and then in the rendering stage at each
intersection point we only send shadow rays to important light sources that can be

identified by traversing the light hierarchy.

4.6 Implementation of Ward’s AST method
In order to compare the performance of the LEV algorithm with other approaches,

we also implemented Ward’s AST method in our distribution ray tracer. Its pseudo code
is shown in Figure 2.8. First, by traversing the light hierarchy constructed in the

preprocessing stage, a linked list is generated to store all the light sources in the scene.

47

And then, the light list is passed to the shade module. In the shade module, first compute
potential contributions from all light sources at a certain intersection point, and then sort
the contributions in descending order. Only significant light sources appeared in the first
part of the sorted light list are selected to do visibility test, while negligible light sources
in the rest of the list simply make estimated contributions to the scene. The whole point
of the algorithm is to minimize the number of light sources that must be tested for

visibility.

48

Chapter 5

Testing and Results

51 Overview
This chapter lists a set of test cases which allows us to evaluate our new
approach of Light Extent Volumes in several different aspects.
5.2 Testing Aspects
In this thesis different types of testing were performed to examine the new
approach of the hierarchical tree of light extent volumes and compare it with other
ray-tracing multiple light approaches, including the traditional ray tracing and Ward’s
Adaptive Shadow Testing.
Testing includes the following aspects:
1. Compare Light Extent Volumes with the other two approaches which include the
traditional ray tracing and Ward’s Adaptive Shadow Testing.
o Compare the performance of the Light Extent Volumes method with the other

two existing approaches.

49

e Compare extra memory usage of different approaches that require additional

data structures for shadow testing acceleration.
2. Examine some characteristics of the Light Extent Volumes method.

e Check the algorithm’s running time behavior

e Check the fraction of light sources needed for shadow testing when the
algorithm is applied with different values of tolerance.

e Check the changes of the fraction of light sources for shadow testing when the
algorithm is tested with increasing number of light sources in the scene.

e Check the average and maximum pixel error corresponding to the different
tolerance, as compared with a fully tested source calculation.

A distribution ray tracer was implemented and tested on a SUN ULTRAI10
300MHz 256Mb workstation. When comparing the performance of different
approaches, the timing is for the whole process that includes the preprocessing and
rendering stages of an approach, and it was evaluated by the system /bin/time. Each
test was repeated three times and the average value was used as the final data.

5.3 Test Scene Description

Following are the test scene models used in the testing.
e Scene Model 1

The test scene model is a square building with recursively instanced rooms. In

each room there is a light in the ceiling shining on two robots riding unicycles.

A complete view of the building with 64 light sources is shown as Figure S.1.

50

Scene models with more light sources are generated by increasing the model’s
recursive level. Note that scene models with 256, 1024, 4096, and 16,384 light

sources are shown in Appendix A.

Figure 5.1 Test Model 1: a complete view of the building with 64 light sources
(image resolution: 320 * 240)

e Scene Model 2
The scene model is a peano-curve maze with recursively instanced robots
riding unicycles where each robot is shone by a streetlight. Figure 5.2 illustrates
the top view of the peano-curve maze at recursive level 1 with 45 light sources.
We increase light sources in the scene model by enhancing the recursive level of
the peano-curve maze. The scene models with more light sources are shown in

Appendix A.

51

Figure 5.2 Test Model 2: a top view of the peano-curve maze with 45 light sources
(image resolution: 320 * 240)

® Scene Model 3
The scene model is a performance hall where there are multiple spotlights in
the ceiling shining on three robots riding unicycles. For the purpose of
comparison, each time we increase the number of spotlights in the scene by
replacing a spotlight with four smaller ones. The scene model with 64 spotlight

sources is shown as Figure 5.3.

Figure 5.3 Test Model 3: the performance hall where there are muitiple
spotlight sources in the ceiling shining on three robots riding unicycles
(image resolution: 320 * 240)

52

It’s worthy to mention that every object in Scene Model 1 and Scene Model 2
is illuminated by relatively a few of the candidate light sources, while in Scene Model
3 every object is shone by most of the light sources in the scene. Since the LEV
algorithm assumes that in such scenes relatively few lights will illuminate any
individual surface, we expect that our algorithm will work well for Scene Model 1
and Scene Model 2 and fail in Scene Model 3.

5.4 Test cases

According to the test aspects discussed in Section 5.2, we designed two sets of
test cases to evaluate our new approach of Light Extent Volumes (LEV). The set of
the first two tests compares our new approach with the traditional ray tracing (RT)
and Ward’s Adaptive Shadow Testing (AST). The second set of test cases examines
some characteristics of our approach of the light hierarchical tree of light extent
volumes. Note that all the output images in the following tests are rendered at the
resolution of 320%240, and the data collected from the tests are listed in Appendix B.
5.4.1 Compare LEV with Traditional RT and AST

In the following test cases we compare the LEV method with the traditional
RT and Ward’s AST in such aspects as the performance and the extra memory space

required for quick shadow testing.

5.4.1.1 Test 1.1 : Performance Comparison

We examine the performance of the LEV method by comparing it with the

traditional RT and Ward’s AST. We use variations of three scene models introduced

53

in Section 5.3, where scene model 1 contains a number of light sources ranging from
64 to 16,384, for scene model 2 the number of light sources is from 45 to 12,285, and
scene model 3 contains light sources from 64 to 16,384. In each test, the tolerance we
used is 0.01 light intensity. Since the actual error will be smaller than the required
tolerance, the test runs result in images that are expected to visually indistinguishable
from those computed with the traditional ray tracing.

Tests were performed on three scene models. The result from scene model 1
is presented in Figure 5.4 (a) and (b), and the result from scene model 2 is in (¢) and
(d). The result tables in Figure 5.4 (a) and (c) show the cost of traditional ray tracing
(RT), the cost of Ward’s Adaptive Shadow Testing (AST), the cost of the Light
Extent Volumes method (LEV), the cost percentage of Ward’s method over the ray
tracing method (AST/RT), the cost percentage of our method over the ray tracing
method (LEV/AST), and the speedup achieved by our method over the ray tracing
method (LEV/RT) respectively. Figure 5.4 (b) and (d) are the graphic representations
of the performance comparison of three approaches based on scene model 1 and scene
model 2 respectively. Besides, result images from scene model 1 and scene model 2
are visually indistinguishable from the original images.

The result we got from scene model 3 is far from those from scene model 1
and scene model 2. At the tolerance of 0.01, we tested the models with different light
sources. There are two situations: either the running time by our LEV method is close

to that by the traditional RT, or the method has great speedup, but the result image is

54

obviously different from the original one. We will examine more about scene model3

to explain this result in a later test.

64 lights 98.86s 42.12s 46.38s 42.61% | 46.91% 2.13

256 lights | 373.77s 224 .48s 78.96s 60.06% | 21.13% 4.73
1,024 lights | 1268.58s 812.23s 101.29s | 64.03% 7.98% 12.52
4,096 lights | 5807.60s | 3380.42s | 134.56s | 5821% 2.32% 43.16
16,384 lights | 24289.28s | 13665.89s | 184.14s | 56.26% 0.76% 13191

(a) result table from scene model 1 for performance comparison of three approaches.

All timings are in seconds on a SUN ULTRA 10 300MHz workstation.

running time (seconds)

1k

15000 B

. &

5000

10000

15000

light number in the scene

20000

—e—RT
—a—AST
—a—1EV

(b) graphic representation of performance comparison on Scene Model 1

45 lights 99.58s 39.66s 59.65s 39.83% | 59.90% 1.67
189 lights | 248.09s 132.53s 62.76s 5342% | 25.30% 395
765 lights | 2569.58s 1359.05s 218.19s | 52.89% 8.49% 11.78

3,069 lights | 11989.90s 6155.61s 287.73s | 51.34% 2.40% 4147
12,285lights | 46025.75s | 22953.04s 296.19s | 49.87% 0.64% 155.39

(c) result table from scene model 2 for performance comparison of two approaches.
All timings are in seconds on a SUN ULTRA 10 300MHz workstation.

:

running time (seconds)

AREE

light number in the scene

2000 4000 6000 8000

10000

12000

—— RT

14000

(d) graphic representation of performance comparison on scene model 2

Figure 5.4 performance comparison of traditional ray tracing (RT), adaptive
shadow testing (AST) and light extent volumes (LEV).

56

The performance comparison results based on scene model 1 and scene model
2 show that compared with the traditional RT, the LEV approach achieves significant
speedups (up to 150 times), and for a high number of light sources, our approach
consistently faster than Ward’s AST method. The reason is that different from the
LEV method, both traditional RT and the AST method behave linearly in rendering

time. So for a high number of light sources, their rendering costs become critical.

5.4.1.2 Test 1.2 : Memory Overhead Comparison

Among three approaches, both AST and LEV require extra data structures for
shadow testing acceleration. This case is to examine the extra memory space usage of
those two methods. The comparison is based on the analysis of Scene Model 1.

In Ward’s AST approach the storage overhead is a few additional words per
light source for keeping track of test and hit counts. It’s about 24 bytes per light
source (2 double, 2 int).

The extra memory space usage caused by the LEV method is a hierarchy of
CSG nodes that excludes light nodes and their directly related affine nodes used to
further define lights’ attributes. If the light hierarchy of scene model 1 is generated
without instancing property, the memory overhead per light source is about 136 bytes,
including a union node (16 bytes) and two light extent volume nodes(60 bytes each),
where light extent volumes are fully used in the light hierarchy. However, our light
hierarchy is constructed by instancing. So the hierarchy is quite compact. Since the

tree keeps only one master copy of the instanced light subtree, compared with the

57

increase of the number of light sources in the scene model, the size of the light
hierarchy grows very slowly.

Figure 5.5 shows the comparison of extra memory space used by AST and
LEV. The memory overhead of AST is far less than that of LEV by the light
hierarchy without instancing. However, when we use the light hierarchy with
instancing, at a small number of light sources the storage overhead of AST is less than
that of LEV, while for a high number of light sources the LEV method consistently
has less storage overhead. So by constructing the light hierarchy properly, the space

overhead of the algorithm can be minimal.

—o— AST
—&— LEV without instancing
—&— LEV with instancing

extra memory space usage (bytes)

0 5000 10000 15000 20000

light number in the scene

Figure 5.5 comparison of extra memory space used by Adaptive Shadow
Testing (AST) and Light Extent Volumes (LEV) for shadow testing

58

5.4.2 Examine Characteristics of Light Extent Volumes

In this section, a set of test cases is designed to examine some characteristics
of the LEV approach. Firstly, we checked the algorithm’s running time behavior.
And then, we checked the fraction of light sources tested for visibility when the
algorithm is applied with different values of tolerance. In order to see what happens
to the calculation as we increase the number of light sources in the scene, we then
used variations of scene models containing more light sources and repeated the tests.
At last we evaluate the quality of result images by means of average and maximum

pixel errors.

5.4.2.1 Test 2.1 : Running Time Behavior

The purpose of the LEV method is to approach approximately Oflog n)
complexity for typical scenes in determining which light sources contribute
significant irradiance to the intersection point. This computation complexity allows
hundreds or even tens of thousands of light sources in a scene to be rendered in
reasonable time.

We checked the algorithm’s running time behavior by testing it with different
number of light sources at different values of tolerance on scene model 1 and scene
model 2. In Figure 5.6 (a) and (b), the horizontal axes of the graphs show the
logarithmic scale of the number of light sources in the scene. Since the running time
has the linear relation with the logarithmic scale of the light number in the scene, it

demonstrates that when rendering scenes where every object is directly shone by a

59

relatively few of the candidate light sources, our algorithm has approximately

logarithmic behavior in execution time.

B

g

—e—tolerance: 0.001
—&—tolerance: 0.01
-4 tolerance: 0.1

running time (seconds)
8 & &8 B

(=]

1 10 100 1000 10000 100000
log scale of light number in the scene

(a) result based on Scene Model 1

—e— tolerance: 0.001
—&— tokerance: 0.01
—a— tolerance: 0.1

running time (seconds)

1 10 100 1000 10000 100000
log scale of light number in the scene

(b) result based on Scene Model 2

Figure 5.6 run time behavior of the Light Extent Volumes method

5.4.2.2 Test 2.2 : Fraction of Light Sources for Shadow Testing

The highlight of our LEV method is that only those light sources that have
significant contribution to the scene are considered for shadow testing. So the
fraction of light sources tested for visibility to each intersection point is an important
value because it directly determines the performance of the algorithm.

Figure 5.7 shows the fraction of light sources for shadow testing when the
algorithm is applied with different values of tolerance of light extent volume and
tested on three scene models. The horizontal axis of the graph shows the different
values of tolerance. The vertical axis shows the ratio of average light sources tested
per intersection point compared to all the candidate light sources in the scene. Note
that with a target accuracy of zero (tolerance), all of the candidate light sources are
tested. However, with a none-zero accuracy, the number of light sources tested for
visibility varies with different intersection points. So we use the average light number
tested per intersection point for that tolerance. The average value is computed by the

following formulation as:

2(the number of light sources tested at each intersection point)

the number of intersection points

61

—&—scene model | with 1024 lights
—&—scene model 2 with 3069 lights
—a—scene model 3 with 1024 lights

fraction of important light sources
(compared to all the candidate light sources

0 0002 0004 0006 0008 0.01
tolerance of light extent volume

Figure 5.7 fraction of light sources for shadow testing

The fraction curves of scene model | and scene model 2 show that the average
number of light sources tested per intersection point decreases smoothly with higher
tolerance of light extent volume, while the curve of scene model 3 is quite different
from those two.

In order to further check scene model 3, we did some extra tests on it. In
model 3 most of light sources are important sources to any object surface. As shown
in Figure 5.8, some parts of the curves keep consistent, that is, once the light extent
volume is big enough, most light sources are regarded as important sources. Since
most light sources in the scene are tested for visibility, the rendering time is almost
linear to the number of light sources. And then the algorithm’s performance
degenerates to the traditional ray tracing, but on the other side the output image

quality is satisfying. However, when the fraction of light sources is low (most of

62

—e&—scene model 3 with 256 hghts
—@—scene model 3 with 1024 fights
——ar—scene model 3 with 4096 Lghts
—}t—scene model 3 with 16384 hghts

fraction of important light sources
(compared to all the candidate light sources

0 0002 0004 0006 0.008 0.01
tolerance of light extent volume

Figure 5.8 test resuit of fraction of light sources for shadow testing on
Scene Model 3

light sources are not regarded as important sources), though the algorithm can do
quick shadow testing, there will be a great loss at the result image quality because
many light sources that actually sum up to make significant contribution to the scene
are ignored in the rendering. This test case proves that the LEV method does not
work well for scenes like model 3 where every object is shone by most of the light
sources in the scene. So the following tests will be performed only on scene model 1

and scene model 2.

63

5.4.2.3 Test 2.3 : Fraction of Lights Tested When Increasing Light Sources

In order to see what happens to the above calculation as we increase the
number of light sources, we used scene model 1 and scene model 2 with more light
sources and repeated the tests. The resulting fractions of shadow tests for the
modified scene model 1 and scene model 2 are shown in Figure 5.9 (a) and (b)
respectively. In both cases, the most noticeable difference is that the overall drop in
the fractions of sources tested, which indicates that the algorithm’s performance
improves as light sources are added to the scenes. The running time still takes longer

of course.

—e—scene model | with 64 lights
—&— scene model | with 256 lights
—a—scene model 1 with 1024 lights
——scene model 1 with 4096 lights
—¥—scene model ! with 16384 lights

fraction of important light sources
(compared to all the candidate light sources

0 0002 0004 0006 0.008 0.01
tolerance of light extent volume

(a) result based on Scene Model 1

—e—scene model 2 with 45 lights
—&@—scene model 2 with 189 fights
—dar—scene model 2 with 76S lights
—&—scenc model 2 with 3069 lights
—i—scene model 2 with 12285 lights

fraction of important light sources
(compared to all the candidate light sources

0 0002 0004 0006 0.008 0.01
tolerance of light extent volume

(b) result based on Scene Model 2

Figure 5.9 fraction of important light sources when increasing light sources

5.4.2.4 Test 2.4 : Average and Maximum Pixel Errors of Rendering Images

Since only important light sources are selected for shadow testing, what
concerns us most is then whether the image quality is satisfying. In this test case, we
use pixel error to evaluate the quality of an image generated by the LEV method, as
compared with a fully tested source calculation. The output image from the
distribution ray tracer characterizes each pixel value into three channels as R, G, B.
Thus, the pixel error can be defined as following:

Assume that the value of a pixel by a fully tested source calculation is (R, Gy,
B¢) and the value of the same pixel calculated from partially tested light sources is
(Rp, Gy, Bp), the error of that pixel caused by partial shadow testing is the sum of the

absolute value of the difference of each color channel. Its formulation can be written
as:
pixel error=abs (R, - R¢) + abs(Gp, - G¢) + abs(B, - Bg)

Figure 5.10 (a) and (b) show the average and maximum pixel errors of the output
images with increasing light sources at different tolerance of the light extent volume.
In this test, the actual average pixel error is always kept within the requested
tolerance, but the maximum pixel error is a little bit higher than the threshold. Since
the overall pixel error of an output image is far smaller than the tolerance, the quality

of the image is guaranteed by our LEV method.

—&—scene model | with 64 lights
—&—scene model 1 with 256 lights
—a&—scene model | with 1024 bights
—¥—scenc model | with 4096 Lights

average pixel error

0 0002 0004 0.006 0.008 0.01

tolerance of light extent volume

(a) average pixel error based on Scene Model 1

0.01

5 0.008

5

© 0.006 ~—&— scene model 2 with 45 lights
= —@— scene model 2 with 189 lights
3‘ ~—&— scene model 2 with 765 lights
%o 0.004 —3—scene model 2 with 3069 lights
2

= 0.002 §

0
o 0.002 0.004 0.006 0.008 0.01
tolerance of light extent volume
(b) average pixel error based on Scene Model 2
0.25

- T

S 02

=~

(]
_g 0.15 . —e—scene model | with 64 lights
=3 o —@&—scene model | with 256 lights
g , ~—a—scene model | with 1024 lights
E 0.1 - ——scene model 1 with 4096 lights
=

E 005

0 0.002 0.004 0.006 0.008 0.01

tolerance of light extent volume

(c) maximum pixel error based on Scene Model |

—o— scene model 2 with 45 lights
—&--scene model 2 with 189 lights
—a&—scene model 2 with 765 lights
—d—scene model 2 with 3069 ights

maximum pixel error

(¢} 0.002 0.004 0.006 0.008 0.01
tolerance of light extent volume

(d) maximum pixel error based on Scene Model 2

Figure 5.10 average and maximum pixel error when increasing light sources

67

68

Chapter 6

Analysis and Conclusion

6.1 Overview

In this chapter analysis is provided for the observations drawn from the test
results. At the very end of this chapter the conclusion of this thesis is presented.

6.2 Observations

From the experimental results several observations can be made. In the next
section analysis is provided to explain these observations.

1. The LEV method works well for scenes with many light sources where every
object is illuminated by relatively few of the candidate light sources, while as
expected, it does not work well for scenes with many light sources where every
object is shone by most of them.

2. Compared with the traditional RT and Ward’s AST method, only the LEV method
has approximately logarithmic performance for scenes where every object is

shone by relatively few of the candidate light sources. This computation

69

complexity allows hundreds or even thousands of light sources in a scene to be
rendered in reasonable time.

3. Compared with the traditional RT, the LEV method achieves significant speedups
(up to 150 times faster in the case of 12K light sources in the scene). And for a
high number of light sources, our new approach consistently faster than Ward’s
AST approach.

4. The performance of the LEV method improves as the number of light sources
increases in the scene.

S. Compared with the AST approach, by building the light hierarchy properly the
LEV method requires minimal memory overhead for shadow testing acceleration.

6.3 Analysis

The LEV method has great performance for scenes with many light sources
where every object is directly shone by a relatively few of the candidate light sources
in the scene. This is typical for virtually all scenes in Computer Graphics. But to
scenes where every intersection point on objects is shone by most of the light sources
it’s a different story because to each intersection point most of the candidate light
sources are important and make great contribution to that point.

In the following we examine two key parameters which directly provide the
explanation to observations based on Scene Model 1 and Scene Model 2. The
parameters are gotten by applying the algorithm to scene models with increasing light

sources at the same tolerance of light extent volume.

70

Parameter 1: average number of important light sources tested for visibility
per intersection point

As we mentioned before, a light source is important to an intersection point
only if the intersection point is inside the light source’s extent volume. Once the
tolerance of light extent volume is set, the radius of lights’ extent volumes is
fixed. So when scene models have certain light sources, the average number of
important light sources tested for visibility per intersection point soon becomes
consistent, as the results from Scene Model 1 and Scene Model 2 shown in Figure
6.1 (a) and Figure 6.2 (a) respectively.
Parameter 2: average number of light extent volumes checked per
intersection point when traversing the light hierarchy tree to find out the important
light sources

Since at the same tolerance after scene models have certain light sources, the
average number of important light sources for shadow testing at each intersection
point approaches to a constant value, the algorithm’s performance complexity is
then determined by the efficiency of traversing the light hierarchy to find out
important light sources. The efficiency can be evaluated by the average number
of light extent volumes checked per intersection point during the traversal.

After considering two issues: 1) light hierarchy trees grow with the increase of
light sources in scene models; 2) after scene models have certain light sources, the
average number of light sources tested per intersection point approaches to the

same, we can say that in the search of important light sources the average number

71

of light extent volumes checked per intersection point increase only a little bit,
and it is far smaller than the increase of the light number in the scene. Actually
the increase curve has approximately logarithmic behavior, as shown in Figure 6.1
(b) and Figure 6.2 (b). So the computational complexity of the Light Extent
Volumes method is approximately logarithmic, as shown in Figure 6.1(c) and
Figure 6.2(c). Thus the performance of the Light Extent Volumes method
improves as the number of light sources increases in the scene. At high number of

light sources, its performance advantage is even more obvious.

-—&— tolerance: 0.001
—&— tolerance: 0.0
~——&— tolerance: 0.1

average light sources for shadow
testing per intersection point
c8BBEEBEERS

0 10000 20000 30000 40000 S0000 60000 70000
light number in the scene

(a) average number of light sources tested for visibility at each intersection
point based on Scene Model 1

—o—tolerance: 0.001
—&— tolerance: 0.01
—a— tolerance: 0.1

average light extent volumes
checked per intersection point
- B8 888888

—

10 100 1000 10000 100000
log scale of light number in the scene

(b) average number of light extent volumes checked at each intersection
point based on Scene Model 1

- 1200
3
e 1000
]
8 s
e —e&— tolerance: 0.001
g 600 —&— okerance: 0.01
- —a—tolerance: 0.1
o 400
=
€ 20
=
1
0

—

10 100 1000 10000 100000
log scale of light number in the scene

(¢) performance of the LEV method under different tolerances based on
Scene Model 1

Figure 6.1 two key parameters of the Light Extent Volumes (LEV)
method based on Scene Model 1

72

B B 8

—=&— tolcrance: 0.001
—@— tolerance: 0.01
—@— tolerance: 0.1

8

average light sources for shadow
testing per intersection point
8 2

(=]

2000 4000 6000 8000 10000 12000 14000
light number in the scene

(=]

(a) average number of light sources tested for visibility at each intersection
point based on Scene Model 2

—o— tolerance: 0.001
—&— tolerance: 0.01
—a—tolerance: 0.1

58 8 8 8

checked per intersection point
g

average light extent volumes

(=]

10 100 1000 10000 100000
log scale of light number in the scene

1

(b) average number of light extent volumes checked at each intersection
point based on Scene Model 2

73

74

—o— tolerance: 0.001
-—&8— tolerance: 0.01
—a— tolerance: 0.1

running time (seconds)

1 10 100 1000 10000 100000
log scale of light number in the scene

(c) performance of the LEV method under different tolerances based on
Scene Model 2

Figure 6.2 key parameters of the Light Extent Volumes (LEV) method
based on Scene Model 2

6.4 Conclusion

This thesis put forward a new approach to efficiently ray tracing scenes with
many light sources. By building a hierarchical tree of light extent volumes one can
approach approximately O(log n) complexity in determining which light sources
contribute significant irradiance to the intersection point, where n is the number of
light sources. This allows hundreds or even tens of thousands of light sources in a
scene to be rendered in reasonable time.

The Light Extent Volumes method is specially designed for scenes with many

light sources where every intersection point is illuminated by few of the candidate

75

light sources. When rendering those scene models, the algorithm has approximately
logarithmic complexity. And the performance of the LEV method improves as the
number of light sources increases in the scene. It achieves significant speedup over
other approaches (up to 150 times faster), such as the traditional ray tracing and
Ward’s Adaptive Shadow Testing. Meanwhile the tradeoff between image accuracy
and rendering speed is negligible. Moreover, combined with instancing, the algorithm
requires minimal memory overhead for shadow testing acceleration. Another
important feature of the LEV algorithm is its simplicity of implementation. In
addition the approach is orthogonal to most other global illumination techniques, and
can be added to existing direct light calculations and optimizations. In conclusion the
LEV approach is a practical algorithm for efficiently ray tracing scenes with many
light sources.
6.5 Future Work

The introduction of the LEV algorithm provides a promising direction for
efficient ray tracing of many light sources. Currently the algorithm has great
performance for typical scenes. In the near future, we can do further development to
complete this method to deal with several special situations. First, we will extend the
implementation to linear and area light sources. A possible solution is to combine our
LEV method with Ward’s AST approach for rendering. The AST method minimizes
the number of light sources that must be tested for visibility by sorting the
contributions of all light sources. However, the cost of sorting can make the approach

impractical for the rendering. So first we can use our LEV algorithm to quickly

76

identify all the significant light sources for shadow testing with appropriate light
extent volumes. And then, we combine the AST method to do the direct contribution
calculation on those significant sources and estimate the contributions of the rest light
sources. Second, we may explore the impact of specularity on the LEV method. For
example, stars have negligible irradiance, but we can see them in the reflections. The

current algorithm would treat them as unimportant light sources and ignore them.

77

Appendix A

The building model with 256 light sources

The building model with 1,024 light sources

The building model with 4,096 light sources

The building model with 16,384 light sources

78

The peano-curve maze with 189 light sources

The peano-curve maze with 765 light sources

79

The peano-curve maze with 3,069 light sources

The peano-curve maze with 12,285 light sources

80

81

Appendix B

Data collected from result tables in Chapter 5 and Chapter 6.

64 lights 98.86s 42.12s 46.38s 42.61% 46.91% 2.13

256 lights 373.77s 224 .48s 78.96s 60.06% 21.13% 4.73
1,024 lights | 1268.58s 812.23s 101.29s 64.03% 7.98% 12.52
4,096 lights | 5807.60s 3380.42s 134.56s 58.21% 2.32% 43.16
16,384 lights | 24289.28s | 13665.89s 184.14s 56.26% 0.76% 13191

Table 1 -Test 1.1 result table based on Scene Model 1 for performance comparison of
the traditional ray tracing (RT), Adaptive Shadow Testing (AST) and Light Extent
Volumes (LEV)

45 lights 99.58s 39.66s 59.65s 39.83% | 59.90% 1.67
189 lights | 248.09s 132.53s 62.76s 53.42% | 25.30% 3.95
765 lights | 2569.58s 1359.05s 218.19s | 52.89% 8.49% 11.78

3,069 lights | 11989.90s 6155.61s 287.73s | 51.34% 2.40% 41.47
12,285lights | 46025.75s | 22953.04s 296.19s | 49.87% 0.64% 155.39

Table 2 -Test 1.1 result table based on Scene Model 2 for performance comparison of
the traditional ray tracing (RT), Adpative Shadow Testing (AST) and Light Extent

Volumes (LEV)

83

64 lights 1,536 8,704 2,932
256 lights 6,144 34,816 3,812
1,024 lights 24,576 139,264 4,692
4,096 lights 98,304 557,056 5,572
16,384 lights 393,216 2,228,224 6,452

Table 3 - Test 1.2 comparison of extra memory space used by Adaptive Shadow Testing
and Light Extent Volumes for shadow testing acceleration based on Scene Modell. Note
that the data for the case of LEV without instancing is got by fully using light extent
volumes in the light hierarchy

64 lights 97.97s 46.38s 15.73s
256 lights 321.29s 78.96s 23.97s
1,024 lights 490.75s 101.29s 29.20s
4,096 lights 746.31s 134.56s 38.52s
16,384 lights 1081.29s 184.14s 56.99s
65,536 lights 1117.16s 191.14s 57.80s

Table 4 - Test 2.1 logarithmic behavior of the Light Extent Volumes method based on

Scene Model 1

85

45 lights 99.12s 57.88s 12.27s
189 lights 198.42s 62.76s 13.23s
765 lights 908.95s 218.19s 41.63s

3,069 lights 1347.80s 287.73s 52.76s
12,285 lights 1529.20s 296.19s 58.11s

Table 5 - Test 2.1 logarithmic behavior of the Light Extent Volumes method based on

Scene Model 2

86

0 1024 3069 1024 100% 100% 100%
0.0001 1024 3069 753 100% 100% 73.50%
0.002 159 119 753 15.50% 3.86% 73.50%
0.004 88 56 630 8.62% 1.82% 61.53%
0.006 61 37 455 5.94% 1.20% 44.47%

0.008 47 25 45 4.56% 0.81% 4.44%
0.01 38 19 31 3.67% 0.63% 3.05%

Table 6 — Test2.2 fraction of light sources tested per intersection point

87

0.00001 188 753 3010 | 12042 | 73.50% | 73.50% | 73.50% | 73.50%
0.001 188 753 2532 229 | 7350% | 713.50% | 6183% | 1.40%
0.002 188 753 180 83 73.50% | 73.50% | 439% | 0.51%
0.004 188 630 57 30| 7350% | 61.53% | 140% | 0.18%
0.006 188 ass 32 16 | 73.50% | 4447% | o078% | o.10%
0.008 188 as 21 1 73.50% | 444% | 051% | 0.07%

0.01 188 31 15 8 73.50% | 3.05% | 036% | 0.05%

Table 7 — Test2.2 fraction of light sources tested per intersection point based on Scene
Model 3

88

0 64 256 1024 4096 16384 100% 100% 100% 100% 100%
0.002 62 117 159 186 201 96.56% | 45.81% | 15.50% | 4.55% | 1.23%
0.004 46 70 88 99 105 71.58% | 27.51% | 8.62% | 2.42% | 0.64%
0.006 35 50 61 67 70 54.68% | 19.67% | 5.94% 1.63% | 0.43%
0.008 29 40 47 51 53 44.74% | 15.54% | 4.56% | 1.24% | 0.33%

0.01 24 32 38 41 42 37.55% | 12.59% | 3.67% | 0.99% | 0.26%

Table 8 - Test 2.3 fraction of light sources tested per intersection point with more light

sources on Scene Model 1

89

€
0 45 189 765 3069 12285 100% 100% 100% 100% | 100%
0.002 42 81 106 119 124 93.87% | 43.03% | 13.87% | 3.86% | 1.01%
0.004 33 42 52 56 58 72.59% | 22.31% | 6.77% 1.82% | 0.47%
0.006 24 29 35 37 37 53.46% | 15.29% | 4.54% 1.20% | 0.30%
0.008 20 21 24 25 25 44.83% | 10.95% | 3.10% | 0.81% | 0.20%
0.01 17 17 19 19 19 3694% | 8.81% 246% | 0.63% | 0.16%

Table 9 - Test 2.3 fraction of light sources tested per intersection point with more light
sources on Scene Model 2

0.002 0% 0.0248% | 0.0883% | 0.1664% | 0.5229% | 8.1046% | 15.0327% | 20.92%
0.004 0% 0.0258% | 0.0923% | 0.1750% | 0.5229% | 8.4967% | 15.0327% | 20.92%
0.006 0% 0.0258% | 0.0923% | 0.1750% | 0.5229% | 8.4967% | 15.0327% | 20.92%
0.008 0% 0.0258% | 0.0923% | 0.1750% |} 0.5229% | 8.4967% | 15.0327% | 20.92%

0.01 0% 0.0258% | 0.0923% | 0.1750% | 0.5229% | 8.4967% | 15.0327% | 20.92%

Table 10 — Test2.4 average and maximum pixel errors by increasing light sources in
Scene Model 1

91

0.002 0.0005% | 0.0007% | 0.0035% | 0.0039% | 0.3922% | 0.5229% | 0.7843% | 0.6536%
0.004 0.0045% | 0.0102% | 0.0384% | 0.0394% | 1.5686% | 2.0915% | 2.3529% | 2.3529%
0.006 0.0272% | 0.0149% | 0.0565% | 0.0584% | 3.1373% | 3.3529% | 3.4295% | 4.0830%
0.008 0.0339% | 0.0243% | 0.0947% | 0.1046% | 3.9216% | 4.3137% | 4.7059% | 5.2131%

0.01 0.0427% | 0.0403% | 0.1544% | 0.1724% | 4.4575% | 5.0980% | 6.3660% | 6.2754%

Table 11 — Test2.4 average and maximum pixel errors by increasing light sources in
Scene Model 2

64 lights 64 25
256 lights 191 33
1024 lights 289 38
4096 lights 361 41
16384 lights 405 43
65536 lights 427 44

Table 12 average number of light sources tested for visibility at each intersection point

based on Scene Model 1

93

64 lights 86 46 19
256 lights 279 69 25
1024 lights 443 88 31
4096 lights 569 101 36
16384 lights 651 110 42
65536 lights 696 118 45

Table 13 average number of light extent volumes checked at each intersection point

based on Scene Model 1

45 lights 45 17
189 lights 132 17
765 lights 195 19

3069 lights 234 19
12285lights 254 19

Table 14 average number of light sources tested for visibility at each intersection point

based on Scene Model 2

95

45 lights 66 34 12
189 lights 214 43 14
765 lights 344 56 16

3069 lights 432 65 19
12285lights 487 71 21

Table 15 average number of light extent volumes checked at each intersection point

based on Scene Model 2

Bibliography

AMANS7

APPEG6S

BERGS86

EOKS89

FUJI86

GLASS84

HALT70

HAMMG64

HOUL93

JANSS86

Amanatides, J., Woo, A., “A Fast Voxel Traversal Algorithm for Ray
Tracing”, Eurographics'87, Proceedings of the European Computer
Graphics Conference and Exhibition, Amsterdam, 1987, pp. 3 - 10.

Appel, A., “Some Techniques for Shading Machine Renderings of
Solids”, Proceedings of the Spring Joint Computer Conference, 1968, pp.
374sS.

Bergeron, P., “A General Version of Crow’s Shadow Volumes”, [EEE
Computer Graphics and Applications, Vol. 6, No. 9, 1986, pp. 17 —28.

Eo, K.S., Kyung, C.M., “Hybrid shadow testing scheme for ray tracing”,
Computer Aided Design, Vol. 21, No. 1, Jan/Feb 1989, pp. 38-48.

Fujimoto, A., Tanaka, T., and Iwata, K., “ARTS: Accelerated Ray Tracing
System ”, IEEE Computer Graphics and Applications, Vol. 6, No. 4, April
1986, pp. 16 —26.

Glassner, A. S., “Space Subdivision for Fast Ray Tracing”, /EEE
Computer Graphics and Applications, Vol. 4, No. 10, October 1984, pp.
15-22.

Halton, J. H., “A Retrospective and Prospective of the Monte Carlo
Method”, SIAM Rev. 12, January, 1970, pp. 1 —63.

Hammersley, J. M., Handscomb, D. C., “Monte Carlo Methods”, Wiley,
New York, 1964

Houle, C., Fiume, E., “Light-source modeling using pyramidal light
maps”, Graphical Models and Image Processing, Vol. 55, No. 5, 1993, pp.
346 —358.

Jansen, F. W, “Data Structures for Ray Tracing”, Data Structures for
Raster Graphics, Proceedings Workshop, Eurographics Seminars,
Springer Verlag, 1986, pp. 57— 73.

KAPLS8S5
KAY86

KAY79

KOK91

PAQU9S

PHON?75

RUBI80

SHIR96

SHREG66

SILL94

SMIT94

97

Kaplan, M. R., “Space Tracing a Constant Time Ray Tracer”, State of the
Art in Image Synthesis (Siggraph’85 Course Notes), Vol. 11, July 1985.

Kay, T.L., Kajiya, J.T., “Ray Tracing Complex Scenes”, Computer
Graphics, Vol. 20, No. 4, August 1986, pp. 269 — 278

Kay, D.S., “Transparency, Refraction and Ray Tracing for Computer
Synthesized Images”, M. S. Thesis, Program of Computer Graphics,
Comell University, Ithaca, NY, January 1979.

Kok, A. J. F., Jansen, F. W., “Adaptive Sampling of Area Light Sources in
Ray Tracing including diffuse Interreflection”, Eurographics’92, Forum
11, 3, pp. 289 — 298

Paquette, Eric, et al., “A Light Hierarchy for Fast Rendering of Scenes
with Many Lights”, Proceedings of Eurographics’98, Vol. 17, No. 3,
1998.

Phong, B.T., “Illumination for Computer Generated Pictures”,
Communications of the ACM, Vol. 18, No. 6, June 1975, pp. 311 —317.

Rubin, S. M., Whitted, T., “A 3-Dimensional Representation for Fast
Rendering of Complex Scenes”, Computer Graphics, Vol. 14, No. 3, July
1980, pp. 110-116.

Shirley Peter, Changyaw Wang and Kurt Zimmerman, “Monte Carlo
Techniques for Direct Lighting Calculations”, ACM Transactions on
Graphics, Vol. 135, No. 1, January 1996, pp. 1-36.

Shreider, Y. A., “The Monte Carlo Method”, Pergamon Press, New York,
1966

Sillion, F., “Clustering and Volume Scattering for Hierarchical Radiosity
Calculations”, Fifth Eurographics Workshop on Rendering, Darmstadt,
Germany, June 1994, pp. 105 - 117.

Smits, B., Arvo, J.,, and Greenberg, D., “A Clustering Algorithm for
Radiosity in Complex Environments”, Proceedings of SIGGRAPH'94,
Computer Graphics, July 1994, pp. 435 —442.

STAM9S

STUE%4

WARD91

WARNS3

WEGHS84

WHITS80

W0090a

WOO90b

YAKO77

98

Stam, J., Fiume, E., “Depicting Fire and Other Gaseous Phenomena Using
Diffusion Process”, proceedings of SIGGRAPH’9S5, August, 1995, pp.
129 — 136.

Stuerzlinger, W., Tobler, R., © Two Optimization Methods for Ray
Tracing”, Proceedings Summer School of Computer Graphics’94, June,
1994, pp. 104-107.

Ward, G. J., “Adaptive Shadow Testing for Ray Tracing”, Eurographics
Rendering Workshop, Barcelona, Spain, May 1991.

Warn, D. R., “Lighting Controls for Synthetic Images”,
Computer Graphics, Vol. 17, No. 3, July 1983, pp. 49-54.

Weghorst, H., Hooper, G., and Greenberg, D. P., “Improved
Computational Methods for Ray Tracing ", ACM Trans. on Graphics, Vol.
3, No. 1, January 1984, pp. 52 - 69.

Whitted, T., “An Improved Illumination Model for Shaded Display”,
Communications of the ACM, Vol. 23, No. 6, June 1980, pp. 343-349.

Woo, A., Amanatides, J., “Voxel Occlusion Testing: A Shadow
Determination Accelerator for Ray Tracing”, Graphics Interface '90, May
1990, pp. 213-220.

Woo, A., Poulin P., and Fournier, A., “A Survey of Shadow Algorithms”,
IEEE Computer Graphics and Applications, Vo.10, No. 6, 1990, pp. 13 —
32

Yakowitz, S. J., “Computational Probability and Simulation”, Addison-
Wesley, New York, 1977

