
Efficient Ray Tracing of Many Light Sources

Xiaomei Wang

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Programme in Cornputer Science
York University
Toronto, Ontario

June 1999

National tibrary Bibibthèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services senrices biM'iographiques
395 Wellington Streett 395, W-
OnawaON K 1 A W OttawaON K l A W
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Libmy of Canada to
reproduce, loan, distriiute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownersbip of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or othemise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire* prêter, distniuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits saas son
autorisation.

E f f i c i e n t Ray Tracing f o r Many
L i g h t Sources

by
Xiaomei Wang

a thesis submitted to the Faculty of Graduate Studies of York
University in partial fulfillment of the requirements for the degree
of

Master of Science

Permission has k e n granted to the UBRARY OF YORK
UNIVERSITY to lend or seil copies of this thesis, to the
NATIONAL LIBRARY OF CANADA to microfilm this thesis and to
lend or seIl copies of the film, and to UNIVERSTY
MICRORUS to puôlish an abstrac! of this thesis.
The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or otherwise
reproduced without the author's written permission.

Efncient Ray Trachg of Many Light Sources

Xiaomei Wang

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Program of Cornputer Science
York University

ABSTRACT

Standard ray tracing algorithm slow down unacceptably when a large number

of light sources are in the scene because the shadow determination process is O(n),

where n is the number of Iight sources. This thesis puts forward a new Light Ektent

Volumes approach to eficiently ray tracing scenes with many iight sources. By

building a hierarc~cal tree of light extent volumes one can approach approximately

logarithmic complexity for typical scenes in determinhg which light sources

contribute significant ïrradiance to the intersection point. This d o w s tens of

thousands of light sources in a scene to be rendered in reasonable tirne. The relative

performance of the algorithm improves as the number of light sources increases in the

scene. It achieves significant speedup over other existing approaches, up to 150 times

faster. Moreover, the algorithm requires minimal memory overhead for shadow

testing acceleration. Anoher important feature is its simplicity of implementation. In

addition, the approach is orthogonal to most other global illumination techniques and

can be added to existing direct Light calculation and optimizations. The Light m e n t

Volumes approach is a practical algorithm for efficiently ray tracing scenes with many

light sources.

Acknowledgements

Many thanks to my supervisor, Professor John Amanatides, for his help, patience,
knowledge advice, and his valuable time which lead to the completion of this thesis.

Thanks also to the c o d t t e e members for their insightfbi suggestions and advice
regarding to this thesis.

1 would also extend my thanks to my fiends Claude, Oleg, Kenneth, Johnaîhon,
Zusheng, Chang, Biao, Linqi, Xiaoyan, Yig, Chris, Ma, Laura, and Razvan for theü
fbn, help, and support during these two years.

Special thaaks to my husband Shen Zhou for his love, understanding, support and
encouragement. Further thanks to my parents, sisters and two angelic nephews,
Kangning and Kaiwen. Without their encouragement and love, 1 would not be able to
achieve this goal.

Table of Contents

Chapter 1
.. In traduction i

1.1 Introduction to Ray Tracing .. 1

........................ 1.2 Problem of Ray Tracing Scenes with Many Light Sourca 3

1.3 Goal .. 4

Chapter 2
Background ... 5

... 2.1 Overview 5

... 2.2 Illumination Mode1 5

2.2.1 Lam bertian Diff'use Reflection .. 6

2.2.2 Specular Reflection ... 7

2.23 Ambient LightA ... 9

.. 2.2.4 Phong Mode1 9

.. 2.2.5 Improved Point-Light-Source Mode1 10

.....................*......................... 2.3 Recursive Ray Tracing ... 1 2

...................................... 2.4 Intersection Culiïng Techniques ... 13

2.4.1 Hierarehical Boundiig Volumes 1 4

2.4.2 Spatial Subdivision .. 16

... 2.5 Ray Tracing Multiple Lights 1 7

2.5.1 Adaptive Shadow Testing 17

2.5.2 Monte Carlo Direct Lighting 19

.. 4.4 Rendering 45

4.5 Simplicity and Compatibility of the LEV Algonthm 46

4.6 Implementation of Ward's MT Method ,., ..,,,,....................... 46

Chapter 5
Tes ting and Results .. 48

5.1 Overview .. 48

5.2 Testing Aspects ... 48

.............................. 5.3 Test Scene Description .. ,...... 49

... 5.4 Test cases,,...... 52

5.4.1 Compare LEV with Traditional RT and AST 52

5.4.1.1 Test 1.1 : Performance Cornparison 52

5.4.1.2 Test I . 2 : Memory Overhead Cornparison 56

5.4.2 Examine Characteristics of Light Extent Volumes 58

5.4.2.1 Test 2.1 : Running Time Bebavior ... 58

5.4.2.2 Test 2 3 : Fraction of Light Sources for Shadow Testing -60

5.4.2.3 Test 2.3 : Fraction of Lights Tested When
Increasing Light Sources ... 63

5.4.2.4 Test 2.4 : Average and Maximum Pixel Errors
of Rendering Images .. -64

Chpater 6
Analysis and Conchsion .. 68

6.1 Overview .. 68

6.2 Observations .. 68

6 3 Analysis .. 69

6.4 Conclusion ... 74

6.5 Future Work 75

Appendix A .. 77

Appendix B ... 81

Bibliograp hy ... 96

Chapter 1

Introduction

1.1 Introduction to Ray Tracing

Ray tracing is a powerful 3D image-rendering technique that simulates the

interaction of Light with 3D objects at each intersection point within the environment.

It was f m t developed by Appel [APPE681 for visible surface determination. Whitted

-801 then extended ray tracing to handle specular reflection and refraction.

For a typical ray tracer, given a viewpoint and a view plane which is divided

into a grid and each element in the grid represents a pixel of the resulting image, a ray

is shot from the viwepoint, through a pixel, and into the scene. as shown in Figure 1.1.

The f i s t object that the ray intersects is the object visible in that pixel of the

view plane. When a ray intersects with an object. the intensity and color of the

intersection point are assigned to the pixel. Refracton and reflection are modeled by

recursively shooting refraction and reflection ray untii a bounce iimit is exceeded or

no more objects are encountered, as shown in Figure 1.2. This scheme produces high

quality images.

Figure 1.1 example of simple ray tracing

t reflection ray

rehction ra action ray

view plane G
view point

figure 1.2 ray tracing modeled by reflection and refraction

1.2 Problem of Ray Tracing Scenes with Many Light Sources

For most existing commercial rendering systems (for animations. film special

effects. postproduction. advertking. etc.). ray tracing remaias the rendering aigorithm

of choice. In such environments. scenes containhg a large number of geometric

primitives as weii as a large number of iight sources are common. Unforhmately,

standard ray tracing aigorithms slow d o m unacceptably when large numbers of iight

sources are in the scene because the shadow determination pmcess is O(n). where n is

the number of light sources. We need to send a shadow ray fmm each intersection

point towards every light source to determine whether the intersection point is visible

to that light source. If there are more than a few light sources, shadow determination

quickly becomes the dominant computation even though there is a high probability

that most light sources have negligible infi uence to most of the scene. What is needed

is an approach whose complexity is better so that we c m render scenes with tens of

thousands of light sources in reasonable time.

Researchers have been lwking at ways of solving this problern and there are

two distinct strategies to consider: (1)jèwer ray-object intersection approaches which

reduce the number of objects that have to be intersected with a ray by oniy

concentrating on objects close to the shadow ray, including Bounding Volume

Hierarchies -80. RUBI80, WEGH84, KAY 86. STUE941 and S pace Subdivision

IGLAS84, KAPUS, JANS86, FUJï86, AMAN87, EOKS89. W0090al; (2) shadow

ray reduction methods which shoot shadow rays only to the most significant Iight

sources and then estimate the visibility of the others WARD91, HOUL93, SILL94,

SMIT94, STAM95, SHIR96, PAQU981.

1 3 Goal

The objective of this thesis is to develop a new approach to efficiently ray

tracing scenes with many Light sources. It focuses on the target that given an

intersection point during the ray tracing process, quickly determine al i the Light

sources which make great contribution to this intersection point. By building a

hierarchical tree of iight extent volumes one can appmach approximately O(log n)

complexity in determining which light sources contribute significant irradiance to the

intersection point, where n is the number of light sources. This allows hundreds or

even tens of thousands of light sources in a scene to be rendered in masonable tirne.

Chapter 2

Background

2.1 Overview

In this chapter. ray tracing topics related to this thesis are discussed. Topics

include illumination model, recursive ray tracing, intersection culling techniques, and

the techniques of ray tracing multiple Lights.

2.2 ïïIumination Mode1

The role of the illumination mode1 is to determine how much light is refiected

to the viewer from a visible point on a surface as a function of Light source direction

and strength, viewer position, surface orientation, and surface properties. In this

section, Phong's [PHON751 Uumination model is introduced because it is the most

popular illumination model in the computer graphics field. Phong's model includes

three factors: diffuse reflection, specular reflection, and ambient light Based on

Phong's model, an improved point-light-source model is further provided to simulate

some of the directionality of the Lights, such as sharply delineated spotlights.

2.2.1 Lambertian Difhise Reflection

Lambeaian dinuse reflection is the simplest type of reflection where a ray of

light, after an amount of absorption, is scattered back into the environment with equal

intensity in equal directions (Figure 2.1 a). The amount of energy reflected per unit

area is proportional to the cosine of the angle between the normal to the surface at that

point, and the direction to the light source (Figure 2.1 b).

Figure 2.1 Diffuse reflection - light is scattered in al1 directions from a
point on the surface

At this stage in the development of the model, we should consider the role of

distance by adding an attenuation tenn that reduces light intensity as a function of the

distance of the surface from the light source. This ensures that surfaces of the same

color, but at different distances h m the light sources. are not assigned the same

intensity. The physical choice for this attenuation term is ~/d.

Lambertian diffuse reflection can be written as:

is the intensity of the light source;

is the distance between the intersection point and the light

source;

is a constant of reflection dependent on the surface maienai;

is the angle of refiection between the incident light direction

and the surface normal.

Lambertian diffuse surfaces appear dull and do not produce regular reflection.

It is important to note that the intensity the viewer sees reflected off of a diffuse

surface is independent of the viewer's position.

2.2.2 Specular Reflection

Specular reflection is due to the shininess of a surface. Unlike diffuse

reflection, it is highly dependent upon the position of the viewer and the iight source

at each point on the specular surface. In Phong's model, specular reflection is

scattered about the mirror direction when a surface is not mirror We but stiii shiny

(Figure 2.2 a).

In this model the intensity of the reflection is proportional to the cosine

(raised to some power) of the angle between the mirror direction and viewer direction

(Figure 2.2 b).

G = (&/&) ~ ~ (c o s a) ~ (2)

L: Iight ray N: normal R- mirroccd specular reflection V: viewer

Figure 2.2 Specular reflection - light is concentrated around the mirror
direction R

Where

ri is the intensity of the Iight source;

Ks is the constant representing the fraction of energy reflected

specularily, which is a function of the surface propeaies;

a is the angle between the mirror direction and the viewer

direction;

n is the specuiar exponent, also a function of the surface

properties.

Values of n typically Vary fiom O to several hundred. depending on the surface

matenal k ing simulated Shinier surfaces have larger values of n. A value of n = O

wiii result in a Larnbertian diffuse reflectance, and a value of n = infzrtity wiii resuit in

a mirrored surface.

2.23 Ambient Light

Arnbient light is the result of multiple reflections from many surfaces in the

environment, and is incident on a surface h m ai i directions. Without ambient light,

objects in shadow would be completely black. Since it's generally very expensive to

directly compute the ambient Iight, the ambient component is often modeled as a

constant term for a particular object by using a constant ambient reflection coefficient

as shown below:

is the intensity of the ambient light;

is the arnbient-rejlection coeficient w hich determines the

amount of ambient Iight reflected h m an object's surface.

2.2.4 Phong Mode1

Combining ambient light, diffuse reflection and specular reflection, intensity

from Phong's model is given by

I=I'& + (I J B) [K ~ c o s ~ + ~ ~ (c o s a r] (4)

In Phong's model, the global term (ambient) is modeled as a constant, and the

diffuse and specular ternis are modeled as local components. The overall effect of the

iack of interaction between objects in a scene is that they appear plastic like. Also,

the Iack of shadows means not only that objects do not cast a shadow on other objects,

but self-shadowing within an object is omitted. These can be solved by the technique

of Recursive Ray Tracing.

2.25 Impmved Point-Light-Source Mode1

Real Light sources do not radiate equaily in ail directions. Wam WARN831

has developed easily implemented iighting controls to model some of the

directionality of the lights. A directed Light is modeled mathematically as the Light

ernitted by a single point specular reflecting surface iiiuminated by a hypothetical

point light source, as shown in Figure 2.3. Think of the point labeiied "UGIE1"' in

Figure 2.3 as a surface which reflects light onto the object. The normal orientation of

this single point surface is controlled by the light direction vector. A hypotheticd

point light located dong this vector iiluminates the reflector surface which, in turn,

reflects light ont0 the object.

We can use the Phong illumination equation to compute the intensity of the

reflected light at a point on the object. If we further assume that the reflector has a

diffuse coefficient of O and a specular coefficient of 1. then the iight's intensity at a

Reflector

Normai

Figure 2.3 Wam's lighting model. A Iight is modeled as the specular
reflection frorn a single point illuminated by a point Iight source.

point on the object is

c o f y (5)

Where IL- is the intensity of the hypothetical point light source, yis the angle between

-L and the hypothetical surface's normal, L', and P is the reflector's specular

exponent. The exponent P provides control over the concentration of the light. By

increasing the value of P, the light becomes more concentrated around the primary

direction. This c m be used to simulate the effect of a spotlight. The Iight c m be

aimed by adjusting the orientation of the light direction vector.

Equation (5) can thus be substitued for the light-source intensity Ii in the

formulation of Equation (4). Then the intensity of a directed light at a point on the

object based on Phong's modei is given by

I = I,K, + (IL* CO# y/&) [K~ coso + & (=osa 1 (6)

In Warn's method, a sharply delineated spotlight is modeled as a variable

sized cone surrounding the light dwction. As shown in Figure 2.4. a cone with a

generating angle of 6 may be used to resûict the Light source's effect by evaluating the

illumination mode1 only when y < 6.

Figure 2.4 The intensity distribution of a spotlight is restricted wial cone.

23 Recursive Ray Tracing

The illumination model described in the Section 2.2 is for simple ray traçing

which only computes pixel values at the closest intersection of a ray from view point

with objects. Recursive ray tmcing extends to handle shadows, reflection, and

refraction (Figure 2.5).

Normal * Reflection ray
Viewer

Shadawray \ f

Figure 2.5 reflection, refraction and shadow are spawned from a point of intersection

To calculate shadows, an additional ray from the point of intersection is shot

to each of the light sources. If the shadow ray sirikes an object before reachuig the

light source, the point of intersection is in shadow.

The illumination model developed by Whitted -801 and Kay [KAY79]

fundamentaiiy extends ray tracing to include specular reflection and refractive

transparency. Each of these reflection and refiaction rays then in tum recursively

spawn shadow, reflection and refiaction rays. The illumination mode1 by Equation

(6) can be extended to:

Where

m is the number of light sources

si is the visibfity factor of the Iight source

Kr is the reflection coefficient

Ir is the intensity of the reflected ray

Kt is the transmission coefficient

1' is the intensity of the refiacted transmitted ray

Values for I, and It are detennined by recursively evduating Equation (7) at the

closest surface that the reflected and transmitted rays intersect. A maximum depth

can be used to limit the times of recursion in a very shiny environment, or the

recunion is stopped when the ray doesn't intersect with any object in the scene.

2.4 Intersection Cuiling Techniques

In ray tracing, most of the computational tirne goes to cornputhg intersections

between rays and objects. So right from the start, ray tracers -801 included

schemes for reducing Iinear time complexity so that they could handle complex

scenes in reasonable time. These schemes try to quickly determine candidate objects

which have a high probability of intersecting the ray, and generally corne into two

flavors: Hierarchical Bounding Volumes -80, RUBIBO, WEGHW, KAY86) and

Spacial Subdivision LGLAS84, KAPLSS, JANS86, FUn86, AMAN87, EOKS89,

WOOA9O],

2.4.1 EIierarchieil Bounding Volumes

The most fundamental and ubiquitous tool for ray tracing acceleration is the

bounding volume. Bounding volumes pmvide a particularly attractive way to

decrease the amount of the spent on intersection calcdations. Each volume contains

a given object and permits a simpler ray intersection check than the object. Only if a

ray intersects the bounding volume does the object itself need to be checked for

intersection. If the ray misses most objects, intersection of the bounding volume

reduces computation times significantly. Whitted -801 initiaiiy used spheres as

bounding volumes since they are the simplest shapes to test for intersection.

Though bounding volumes substitute simple intersection checks for more

costly ones, they don't reduce the number of checks- Theoreticaily it may reduce the

computation by a constant factor, but cannot improve upon the linear time

complexity. To aileviate this problem, Rubin and Whitted -1801 frrstly used

hierarchical b o d n g volumes in ray tracing to attain a theoreticai time complexity

which is logarithmic (expected case) in the number of objects instead of Linear.

When constructing the hierarchy structure me, each object is bounded in a

volume (e.g. cube, sphere) whose geometric ahbute is much sïmpler than the object

itself. Furthemore, close objects are grouped together to fom another bounding

volumes. By enclosing a number of bounding volumes within a larger bounding

volume it was possible to elhinate many objects fkom fkther consideration with a

single intersection check. A child volume is guaranteed not to do the intersection test

if its parent does not. Thus, if intersection tests begin with the rwt, many branches of

the hierarchy may be trivialiy rejected. For example. in Figure 2.6 (a). the ray first

hits volume A and then one of its chiidren, volume B. Since the ray does not hit

volume C, the further intersection test for volume C can be avoided immediately.

Figure 2.6 fi) shows the corresponding bounding volume hierarchy tree.

Box A

Box C

Box B Box D

Box E

(a) instance -

(b) hierarchical tree

Figure 2.6 example of hierarchical bounding volumes

2.4.2 Spatial Subdivision

Spatial subdivision scheme works by partitionhg a volume bounding the

environment into voxels. A fundamental merence between bounding volume

hierarchies and spatiai subdivisions is that the former selects volumes based on given

sets of objects, whereas the latter selects sets of objects based on given volumes.

The basic spatial subdivision technique [GLAS841 is built on the basis of the

voxel traversai grid structure (Figure 2.7). Space encompassing al1 objects is placed

in a grid of cubes calied voxels. Each voxel contains a list of al1 objects which reside

in that voxel. Each ray traverses the grid in order and tests for intersection only with

objects residing in the voxel traversed, until an intersection is found or the ray has

completely traversed the grid. Performance is improved because less objects are

handled in each ray intersection computation.

Processed voxels

T'ted objects

Figure 2.7 A 20 analogy of unifom spacial subdivision

2 5 Ray Tracing Multiple Ligbts

When ray tracing compiex models such as large building, the resulting scene

typically contains hundreds or even thousands of light sources. In rendering such

scenes, shadow determination quickiy becomes the dominant computation even

though there is a high possibility that most light sources have negligible influence to

most of the scene, There is an extensive literahire on the research dedicated to

speeding up shadow calculations using spatial coherence and subdivision p0090b] .

Most of these approaches however are highly dependent on the number of light

sources, and are thus unsuitable for scenes with many light sources lBERG86,

WARD9 1, HOUL93, SU94, SMIT94, STAM95, SHIR96, PAQU981.

In this section, three recently emerged approaches of rendering scenes with

thousands or even more light sources are discussed, including Adaptive Shaduw

Testing PARD911, Monte Carlo Direct Lighting [SHIR96]. and Lighr Hierarchy

PAQU98J. These techniques based on the assumption that in such scenes at most a

few hundred ligtit sources (and usuaily at most tens) wiii contribute significantly to

the radiance at any particular point. So they employed different ways to identim

important light sources from other negligible lights, shoot shadow rays only at the

most important Iight sources and then estimate the visibility of the others.

2.5.1 Adaptive Shadow Testing

Ward presented Adaptive Shadow Testing method mARD9 11 which performs

well for a moderate number of light sources, and is the most suitable algorithm to date

for the treatment of scenes with many light sources.

This approach first calculates the potential contribution of each light source at

every point to shade (without cons ide~g visibility), and uses this estimation to

generate a sorted list of iight sources. The ordered k t is then traverseci and thus

shadow testing on the sources with highest potential contributions is computed first.

If the sum of the potential contributions of the remauiing light sources is below some

threshold, the traversal stops. The algonthm can be written as the foilowing steps:

1) Compute potential contributions from ai i iight sources in front of the
point

2) Sort the contributions in descending order

3) Compute Hi), the sum of the next fl contributions smaiier than source i.
where N is the number of light sources and C is the certaùity

4) Initialize the sum (S), hits(V), and tests(W) to O.
For each contribution in the sorted lis? do

Ifs t > r(i) then go to step (5);
Increment the test counter, FY;

Increment the test counter for Iight source 4 W(i);
If source i is visible from this point then

Increment the bit counter, V;
Increment the hit counter for source i, VI);
Add contribution for source i to S;

End if
End for

5) For each untesred contn'bution do
Multiply contribution by V/W and V(i)/W(i);
Add weighted contribution to S;

End for

Figure 2.8 Pseudo code of Adaptive Shadow Testing

2.5.2 Monte Carlo Direct Lighthg

Shirley et al[SHIR96] introduced Monte Carlo techniques [HAMM64,

SHRE66, HALTIO, YAK0771 for direct iighting calculations by using a probability

intensity function over aU the light sources. Since the mixture probability intensity

hinction is the sum of the products of mixing weights and individual probabiiity

functions, in the linear method, the calculation of mixture probability density function

requires querying every light in the scene. This might be too slow with thousands or

millions lights. Based on the assumption that in such scenes at most a few hundred

lights will contribute signifcantly to the radiance at any particular point, the lights are

then divided into two subsets: one is the set of bright (important) lights, and the other

is the set of dim (less important) iights. This selection is performed as a preprocess,

and is based on an approach similar to the sphere of influence. A sampling

probability is then assigned to each bright light source, and a unique probability is

assigned to all the dim iight sources. If a large number of rays are shot per pixel, this

method can be very effective.

The difficult part of this rnethod is deciding which lights are important for a

particular point. As pointed out by Kok and Jansen [KOK91], a light that is

responsible for a large fraction of the radiance of a point is likely to be responsible for

a large fraction of the radiance of its neighboring points. A spatial subdivision

scheme is then used to precompute the List of important iights for each ceil in the

spatial subdivision structure. For a particular cell. a light is put in the candidate list if

it might contribute more than a threshold average spectral radiance to a diffuse

surface within the ceiî. To characterize important versus unimportant lights, an axis-

aligned infiuence box is associated with each Ligbt that includes al1 points that might

include that light in its important Light list. When deciding whether a light is

important to a cell. just check whether the celi and the influence box overlap, and if

so, then the light is treated as an important light source.

2.5.3 Light Hieranihy

Paquette PAQU981 introduced a new data structure in the form of a light

hierarçhy for efficiently ray-tracing scenes with many iight sources. An octree

structure is constructed with the point light sources in a scene. Each node keeps an

approximate representation of the light sources it contains by means of a virtunf fight

source. Figure 2.9 shows an example of such a point light hierarchy.

Hierarchy Scene

Cluster [-] Emptyc lwr Virtual light

Figure 2.9 example of light hierarchy

Once the iight hierarchy is built, error bounds committed with the vimial iight

approximations are developed to shade a point, both for the cases of diffuse and

specular reflections. These bounds are then used to guide a hierarchical shading

algorithm. If the current level of the light hierarchy provides shading of sufficient

quality when the associated error bound is below the desired threshoid, the

approximation is used, thus avoiding the cost of shading for aü the light sources

contained below this level. Otherwise the descent into the Light hierarchy continues.

2.5.4 Cornparison of Ray Tracing Multiple Lights Approsches

Three approaches of rendenng the scene with thousands or even more of light

sources have k e n described in this chapter. Ward's Adaptive Shadow Testing

approach performs weli for a moderate number of light sounie, but since its

complexity is O(n), as the number of Light sources increases, the cost of sorting the

contributions of aii these light sources can make this method impracticai for the

rendenng. Compared to Adaptive Shadow Testing, Paquette's Light Hierarchy

approach is an important improvement for scenes with a high nurnber of light sources.

However, this method is designed only for scenes without occlusion which are

uncornmon in the daily Me. Monte Carlo Direct Lighting approach can be very

effective if a large number of rays are shot per pixei. Uiifortunately, as with ai i Monte

Carlo approaches, noise due to insufficient sampling c m appear in the rendered

images. Moreover, since the unimportant light source to be sampled is chosen

randomly, an unsuitable partitioning into unimportant and important light sources can

gready increase the amount of noise.

There are many ways to mode1 3D objects. In this section, we provide a

summary of two of hem, Constructive Solid Geometry and Imtancing.

2.6.1 Constructive Soiid Geometry

Constructive Solid Gwmetry (CSG) is a method of creating complicated

objects by performing Boolean set operations on more primitive objects, such as

sphere, cube, and cylinder and so on. Typicaily an object is stored as a CSG tree with

simple primitives at the leaves and operators at the htemal nodes. Some htenor

nodes represent Boolean set operators, whereas others perfonn Hine transformation,

such as translation, rotation and scaling. A complicated object can be defined by a

CSG tree, as shown in Figure 2.10.

Figure 2.1 0 an object defined by a CSG tree

2.6.2 Instancing

In some complicated models, the same objects may occur repeatedly only with

a few different characteristics, such as tratlsforrnation amibutes. When building up a

hierarchy of the model. we may only create one master copy of the object. Copies of

other objects can be represented by simply using some instance nodes referring to the

master object with their own transformation. Thus, once the master object is

instanced in the model, the same object is automaticaiiy repiicated many times. So

instancing saves a lot in both space and time for genemting the primitive hierarchy.

Figure 2.1 1 shows a model hierarchy with instancing.

Figure 2.1 1 a mode1 hierarchy with instancing

Chapter 3

Efficient Ray Tracing with Many Light Sources

3.1 Overview

Standard ray tracing algorithms sIow down unacceptably when large numbers

of light sources are in the scene because the shadow determination process is O(n),

where n is the number of iight sources. By building a hierarchical tree of Qh t extent

volumes one can approach O(log n) expected-case complexity in determining which

light sources contribute significant irradiame to the intersection point. This aiiows

tens of thousands of light sources in a scene to be rendered in reasonable time.

3.2 Motivation

In scenes with multiple light sources. typically only a few wiii create strong

shadows in any part of the scene. These will generally be the sources with the high

concentration of light in that section due to source bnghtness, direction and proximity.

This observation Ieads to a simple optimization: we can perform shadow

testing only on the light sources with high contributions, and quit testing for those

unimportant iights wbose contributions are below some threshold.

So al1 that we need is a way to quickly decide which light sources are

important enough for a particular point on the object surface to shoot shadow rays to.

3.3 Light Extent Volumes

Given a light source. the fight extent volume is the volume in space where the

irradiance fiom the Light source is above a given level tolerance. Here the tolerance is

a specified Light intensity threshold that is the minimum innuence considered to the

scene for rendering results.

As shown in Figure 3.1, for a point light source that radiates uniformly in ai i

directions, its light extent volume would be a sphere whose radius is detemiined by

tolerance. For a spotlight, it would be a cone. A light only has eflect on objects that

lie within its light extent volume. If the object is outside the volume, the intensity

contribution is assumed to be zero, and no M e r evaluation of the illumination

mode1 is required for that light. Of course, this only makes sense when relatively few

Iight
direction

(a)
Iight extent volume of a point Iight source

(b)
light extent volume of a spotlight source

Figure 3.1 light extent volume models

lights illuminate any individual surface. If there are a large number ofrays h m

Light sources in the vicinity of some surfaces, then the combined irradiance may be

significant even though individuaiiy they a i l may be below the tolerance. Fortunately,

this situation is very rare and can easiiy be checked for.

3.4 Hierarchy of Light Extent Volumes

As mentioned in the overview, a hierarchicd data structure of light extent

volumes representuig the light sources in the scene is requked to achieve the goal of

efficient treatment of scenes with many Light sources.

The leaves of the Light hierarchy are point light sources or spotlight sources.

The inner nodes could be affine transformation nodes used to specifjr the pmperties of

a light source and Light bounding volumes of sub-trees, coupled with Union set

operators used to combine all the other nodes for descnbing the compiicated light

situation. In Figure 3.2, we show an example of such a iight hierarchy .

3.5 Shadow Testing with the Light EIierarchical Structure

Visibility testing is the most tirne-consurning part of a global illumination

calculation, and the visibiiity of light sources is particularly Unportant since they

determine the initial lighting distribution. If we could assume that aU of the light

sources were visible at every point, the calculation would reduce to a few simple

operations. Unfortunately, it is ahnost always necessary to check for occlusions from

light sources. And if there are multiple light sources in the scene, shadow

determination quickly becomes the dominant computation of renderings.

6 Spotlight Point light

Figure 3.2 a light hierarchy exampie

In this section we develop an aigorithm aiiowing us to use the hierarchy of

light extent volumes to do quick shadow testing. The algorithm requires very iittle

storage, and produces no visible artifacts. Furthemore, the users can control the

accuracy and reliability of the technique, adapting it to suit their requirements. If the

user specifies the tolerance of the iight extent volume of zero, the algorithm

degenerates to the original case, providing straigheorward validation and cornparison

of resul ts.

3.5.1 Basic Procedure

The basic procedure behind the idea of shadow testing with the light hierarchy

consists of two steps. The fmt step is to pick up the important Light sources h m al l

the light sources in the scene at each intersection point. And then. since the

unimportant light sources have negligible influence to the scene, o d y those important

light sources are sent shadow rays to in the recursive ray tracing for calculating the

light intensity of that point.

The most difncult part of this approach is how to characterize important light

sources versus unimportant Light sources. In the following sections. we wiii provide

algorithms to efficiently identify important light sources from those whose iduence

to the scene are negligible in light hierarchies.

3.5.2 Algorithm of Idenüf'g Important Light Sources

Figure 3.3 is an outline of the algorithm designed to identify important iight

sources from negligible sources in the scene.

The recursive function CreatelrnportantLightList fmtly takes the position of

intersection point, point, and the root node of the light hierarchy, node, as the input.

Each leaf node of the Light hierarchy is a point Light source or a spotlight source. while

interior nodes could be affine transformation nodes used to define the properties of

light sources, Light extent volumes bounding subtrees or union set operators

combining branches of the light hierarchy. The boolean function

islnsideLightExtentVolume called from within CreateïmportantLightList is

responsible for checkhg whether the aven intersection point is inside the light extent

LightList *CmteImportantLightLiSt(point, node)
begin

switch (n&.type) {

case Point lighc

case Spotlight:

return current light sowce

case Anne:

newPoht = inverseAffine@oht. rrode.@ne)
lightlist = CreateImportantLightList (newPoint, node.child)
return applyAffine(lightLisr, node.@ne)

case light extent volume:

if isInsideLightExtentVolume @oint. node. volume) then
return CreateImportantLightList (point, n&child)

else return NULL
case Union:

lefiList = CreateImportantLightList (point, node.l&Child)

rightList = CreateImportantLigh tList (point. node. rightchild)
add lefList and rightList into ZmportanttightList

return ZmporîantLightList

1
end

Figure 3.2 algorithm designed to identify important Iight sources from unimportant
Iight sources in Iight hierarchies without instancing

volume. When the test fails, the branch bounded by this light extent volume is

immediately discarded. Al1 the iight extent volumes in the iight hierarchy are

evaluated in the local coordinate. whereas the intersection point is Iocated in the worid

coordinate. In order to correctly check whether the intersection point is inside a light

extent volume, every tirne when we meet an affine transformation node during the

traversal, we need to transfomi the intersection point with its affine transformation

information. The pmcedure inverseA,,ne is cailed to inverse the affine

transformation on the intersection point if we meet the affine transformation node

during the traversal. This pmcedure is designed to guarantee that the intersection

point and the Light extent volume are in the same coordinate when checking whether

the intersection point is inside that light extent volume. Besides, the procedure

applyADne is designed to calculate a light's attributes according to the

transformations stored in its parent nodes.

To determine the important light sources, the function checks to see whether

the intersection point is inside the light sources' extent volumes by traversing the

hierarchy of light extent volumes from top to bottom. It examines the light extent

volume bounding a certain branch of the light hierarchy tree. If the intersection point

does not locate inside that light bounding volume. the rest of the iight hierarchy can

be ignored. Otherwise, it will keep on examining the child branches until the

intersection point is not inside the light extent volume or it reach the leaves of the

light hierarchy which contains the light sources. The sources whose light extent

volumes surround the intersection point are the important lights we are seeking. Al1

the important light sources for that intersection point are stored in a linked List. The

List of the important light sources is then used in a recursive ray tracing a lgor i th , and

only those sources are important enough to send shadow rays to.

By specimg the tolerance of light extent volumes. the users can control the

accuracy of the technique to suit their requirements. By making toletance sufficiently

smaii, light sources' extent volumes have reasonable regions of influence to the scene-

So our ray tracing results wiil be very close to those of the full calculation without the

associated cost.

3.5.3 Optimization of the Light Hiemrchy Structuie by Instancing

Scenes with a large number of iight sources are becoming increashgly

important. such as outdwr scenes, urban settings, and opera and theater applications.

In those compiicated scenes, the same submodel containing iight information may

occur repeatedly with different transformation attributes. So we cm use the

instancing property to create compact representation of the scene. By instanchg the

light hierarchy oniy needs to create one master copy of each new light subtree

that can subsequently be instanced instead of making multiple copies of the same

subtree. Instancing cm quickly create a large complicated light hierarchy from the

one simple light subtree without using the same amount of memory.

A iight hierarchy with instancing has two kinàs of nodes referring to Light

information: Light nodes and instance nodes. Light nodes indicate point iight sources

or spotiight sources, while instance nodes represent iight combinations found in

master object instances. And the master copy of an instanced object is syrnbolized by

a master node that contains a iight extent volume bounding the whole subtree. By the

technique of light subtree instancing. the iight hierarchy in Figure 3.2 can be modified

to the tree shown in Figure 3.4. It's obvious that instancing saves a lot in both space

and time for generating the light hierarchy me.

Spot Iight Point Iight a Union node [=) lnstancc node

Figure 3.4 iight hierarchy with instancing where only one master copy of light
subtree is created

3.5.4 Algorithm for Light Hierarcbies 4 t h instancing

In light hierarchies with instancing, it is possible that light sources c m be in

master objects. Once these master objects are instanced in the scene, the same light

subtrees are potentially replicated many times. So we need to mod* our algorithm

to handle this. The approach to efficiently pick up important Light sources h m light

hierarchies with instancing is shown in Figure 3.5.
1

LightList *CreateImportantLightList(point, node)

begin

switch (node-type) (

case point light:

case spotlighc

return current light source

case affine tralfonnation node:

newPoint = inverseAffhe@oint, node.@ne)

lightLirt = CreateImponan~ightList(newPoint, nodexhild)

return applyAffine(lightLisr, node@ne)

case instance node:

return CreateImportantLightList (point, node-chi24

case master node:

case light extent volume:

if isInsideLightExtentVolume (point, node.volume) then
return CreateImportantLightList @oint, node.child)

else return NULL
case Union:

[@List = CreateImportan tLightList (point, node. lefichild)

rightList = CreateImportantLightList (point, node. nght Child)

add lefiList and rightList into ImportantLightList

retum lmportantLightList

1
end

Figure 3.5 algorithm designed to identify important Iight sources frorn unimportant
lia h t sources in liaht hierarchies with instancina

Chapter 4

Irnplementation

4.1 Introduction

A distribution ray tracer originally written by John Ammatides and Don

Mitchell was extended to include our new approach caiied Light Extent Volumes

(LEV) and tested on a SUN ULTRA10 workstation to compare its performance to

other ray-tracing multiple iight approaches, including the traditional ray tracing and

Ward's Adaptive Shadow Testing. This ray tracer takes a scene described in Scheme,

a variation of Lisp, as input. Its implementation is basically divided into two parts as

preprocessing and rendering. In order to understand the implementation weii we first

discuss the structures for modeling.

4.2 Structures for Modeling

Structures for modeling are the foundation of the implementation. in this ray

tracer, a scene is composed of three parts: a view carnera, light sources and solid

objects. in each scene, there only exists a single view camera The information of

light sources is stored in a iight hierarchy W. Objects are represented by an object

CSG tree. A novelty of Our ray tracer is that instancing is used in both the light

hierarchy and the object CSG tree by only creating one master copy of an instauced

object instead of making multiple copies of previously defined objects.

4.2.1 CSG Nodes in the Object Tc=

In the irnplementation, the information of each scene is origindy specified

and stored in a CSG tree- In the CSG tree different types of CSG nodes are designed

to aid in describing any possible complicated scenes, such as object nodes, instance

nodes, master nodes, affine transformation nodes, set operation nodes, shading nodes

and rniscellaneous nodes-

4.2.2 CSG Nodes in the Light Hierarchy

There are seven types of CSG nodes used for the construction of the Light

hierarchy, including Point light node, Spotlight node, Instance node, Master node,

Light Extent Volume node, Affine node, and Union node.

Point Light Node and Spotlight Node

A point light source or a spotlight source is fmtly defined at the origin with an

intensity value of 1. Light decay is modeled as 1/?. 1t can be transformed iike

any other object in the scene. By using a scale transformation, a iight source can

be defined with any light intensity value.

A spotlight is by default modeled as a cone with a generating angle of ninety

degrees surrounding a light direction up dong the z-axis. Each spotlight node can

provide control over the concentration of the light by speciffing its dropofl

exponent. Afier increasing the value of dropoff, the light becornes more

concentrated around the iight direction. By using a scale transformation, the

generating angle of the spotlight cone c m be varieci, Moreover, afier a rotate

transformation the spotlight can be oriented in any desked direction.

Instance Node and Master Node

In many complicated scenes, the same objects occur repeatedly with different

affine attributes. So when generating the iight hierarchy or object CSG tree, the

ray tracer only creates the master copy of a new object which can subsequently be

instanced. By instancing one cm quickly mate a large complicated or repetitive

scene from one simple object (eg. Instancing one seat to create a theatre

auditorium).

In the light hierarchy a master object is symbolized by a Master node as its

subtree's root. Each Master node contains a light extent voIume bounding the

current master object that can accelerate tight extent volume computation in the

preprocessing stage and traversal in light hierarchy in the rendering step. Once

the master object is created, aii instances are represented by instance nodes

refemng to the master copy with their own transformations.

Light Extent Volume Node

It defmes a Light extent volume bounding the indicated sub-light-hierarchy. In

order to achieve traversa1 acceleration, îight extent volumes inside the sub-light-

hierarchies become necessary. Light extent volume nodes aiiow us to bound any

su b-light-hierarchies as desired.

M m e Transformation Nodes

Since a i i light sources firstly rest at the origin, several basic affine

transformations become necessary to represent the iight sources at different

positions with different physical attributes, The affine transformations include

translation, rotation, and scaling. A translation node is used to move the light

instances along x, y, and z axes. A rotation node can rotate the Light direction of a

spotlight object about a certain axis by the indicated angle, and make it orient to

any desired direction. A scaling node is designed to scale a light object about the

origin along x, y and z axes to change its light intensity or modify a spotlight's

cone size.

Moreover, in light hierarchies with instancing, affine transformation nodes

working with instance nodes are essential to represent different instanced objects.

Union Set Operation Node

It performs the union operation on the indicated sub-light-hierarchy trees by

setting two sub-light-hierarchies as the union node's left and right child

respectively. The result is a new sub-light-hierarchy tree that c m be further

manipulated.

With the aid of the above CSG nodes, we can create iight hierarchies that may

describe any possible light situations in scenes.

4.3 Preprocessing

In the preprocessing stage, the distribution ray tracer reads the input data from

Scheme script fdes. The data include the carnera's position and orientation,

information of iight sources, soiid objects' locations, orientations and surface

properties, resolution of image and output device.

As the information is king read, an original CSG tree is generated, which is a

composite tree, including the idormation of camera, Light sources and soiid objects in

the scene.

Key steps of preprocessing are as foiiowing:

1) PuIl out the camera node h m the original CSG tree

2) Pull out light nodes from the original CSG tree and generate a ligtit hierarchy

Light Node Extraction

When generating the light hierarchy, point light nodes and spotlight nodes

with their &ne transformation nodes are directly extracted from the CSG tree;

however, instance nodes with their affine information are copied fkom the CSG

tree. Each instance node created in the Iight hierarchy is set to link to its directly

instanced subtree whose root is a master node. Besides, the light extent volume

nodes are pulled out from the tree and added into the light hiemhy for traversal

acceleration. In addition, union nodes are copied from the CSG tree into the light

hierarchy to combine different branches.

Light Extent Volume Computation

Once a primitive iight hierarchy is constnicted, light extent volumes in the tree

are then computed. If the iight hierarchy has instancing propeq, we fmtly

compute light extent volumes in dl master sub-light-hierarchies and then those in

- - - - d e t o p 4 e . ~ J i f t d e s i g n e d to-keep track of allthemastecobjects-- - ---

in the hierarchy so that we can quickly access each master subtree.

For each master subtree, the cornputation of light extent volumes begins with a

depth-first traversal of the sub-iight-hierarchy. We keep on travershg the children

of the node until we mach a leaf that contains a point light source or a spotlight

source. Then an initial Light extent volume of a sphere or cone resting at the

origin is calculated based on the information about the iight's intensity and the

tolerance of iight extent volume, When tracing back fiom the bottom to top, we

need to modiQ that light extent volume based on the &ne transformation nodes

and union set operation nodes we meet, In case of an affine traasformation d e ,

we tfansfonii a haIf-coinputed extent volume by scaling, rotatin'g. or moving as

indicated by the affine node, For a union operation node, a new iight extent

volume is computed by merging two volumes bounding the child branches of the

node. Light extent volume nodes and the light extent volume in the master node

are set as volumes bounding their sub-light-hierarchies.

During the traversal for iight extent volume computation, if we meet instance

nodes, we only need to check the light extent volume stored in their child, a

master node, and do not need to traverse the instanced subtree again and again. It

will Save us a lot in time for the computation.

3) Generate an object CSG tree

After pulling out camera node and iight nodes. the ray tracer firstly repairs the

CSG tree, then cornputes the object bounding boxes of the tree, and f indy

optimizes the tree Links for shader. After ai i these are done, an object CSG tree is

generated.

After preprocessing, the information in the original CSG tree goes into three parts:

a view camera, a iight hierarchy and an object CSG tree. Figure 4.1 shows the

graphitai representation of preprocessing stage.

Light source information

Objects information I
Surface properties

Image resolution

Output device

Original
hierarchy

Figure 4.1 preprocessing pattern

In the following. we constxuct a simple model in two different ways:

~ ~ --

one is

without instancing, and the other is with instancing. Each example iiiustrates the

original CSG trees of the scene model and the generation of the light hierarchy and

the object CSG tree after preprocessing. as shown in Figure 4.2 and Figure 4.3

respectively.

(a) an original CSG tree of a simple scene rnodel constructed wiai instancing

View camera [CAMBRA

Light

Object CSG tree (-2

(b) scene mode1 after preprocesslng

Figure 4.3 preprocessing on a scene model constructed with instancing

4.4 Rendering

The ray tracer starts to trace individual pixels after the preprocessing computation

is done. Rays are shot h m view camera into the sçene and each ray passes through a

pixel. With the hierarchical bounding volume technique, we first examine the bounding

volume in the root node of the object CSG tree. If the ray does not intersect with that

bounding volume, the rest of the CSG hierarchy tree can be ignored. Otherwk, we will

keep on examining the children of the node until the ray misses or we reach the leaves of

the hierarchy tree which contain the objects. Those objects stored in those leaves are then

tested with the ray.

Once the intersection point is detennined, this ray tracer uses the hierarchical tree

of tight extent volumes generated in the preprocess step to quickly h d out aii the Light

sources that are important enough to do the shadow tests. Beginning with the rwt, we

take the intersection point to check whether the intersection point is located in a Iight

bounding volume. If it is, then go down the iight hierarchy me; otherwise the rest of the

branches of the iight hierarchy may be triviaiiy rejected. When we reach the leaves of the

light hierarchy, light sources stored in those leaves are selected as important light

sources.

After the list of important Light sources at an intersection point is generated, a

recursive ray-tracing algorithm with the global illumination mode1 is appiied to calculate

the Light intensity of this intersection point. If the surf&ce is reflective or refractive, a

reflection or refraction ray is shot h m the intersection point The shading of each pixel

is based on the Phong illumination mode1 as well as refiaction or reflection. The fmd

value of the pixel is output in PPM (Portable Pixmap) format.

4.5 Simplicity and Compstibility O€ the LEV algorithm

An important feature of the LEV method is its simplicity of implementation. The

algorithm that provides a great reduction in shadow testing time can be written in less

than a page of C code; the shading function itself is unchanged. Furthemore, the

approach is compatible to most other global illumination techniques, and can be added to

existing direct light caiculations and optimizations. When the algorithm is added to an

existing ray tracer, the only modification made is to generate a Light hierarchy of all light

sources in the scene in the step of preprocessing, and then in the rendering stage at each

intersection point we only send shadow rays to important light sources that cm be

identified by traversing the Iight hierarchy.

4.6 Implementation of Ward's AST method

In order to compare the performance of the LEV algorithm with other approaches,

we also implemented Ward's AST method in Our distribution ray tracer. Its pseudo code

is shown in Figure 2.8. First, by traversing the Light hierarchy constnicted in the

preprocessing stage, a Iinked list is generated to store ali the light sources in the scene.

And then, the light ïist is passed to the shade module. ui the shade module, h t compute

potential contributions from aU light sources at a certain intersection point, and then sort

the contributions in descending order. Only significant light sources appeared in the f h t

part of the sorted Light List are selected to do visibility test, whüe negligible Light sources

in the rest of the List simply make esiimated contributions to the scene. The whole point

of the algorithm is to rninimize the number of îight sources that must be tested for

visibility.

Chapter 5

Testing and Results

5.1 Overview

This chapter lists a set of test cases which d o w s us to evaluate our new

approach of Light Extent Volumes in several different aspects.

5.2 TestingAspects

In this thesis difEerent types of testing were performed to examine the new

approach of the hierarchical tree of light extent volumes and compare it with other

ray-tracing multiple Light approaches. iacluding the traditional ray tracing and Ward's

Adaptive Shadow Testing.

Testing includes the foiiowing aspects:

1. Compare Light Extent Volumes with the other two approaches which include the

traditional ray tracing and Ward's Adaptive Shadow Testing.

Compare the performance of the Light Extent Volumes method with the otbei

two existing approaches.

Compare extra memory usage of different approaches that require additional

data structures for shadow testing acceleration.

2. Examine some characteristics of the Light Extent Volumes method.

Check the algorithm's running time behavior

Check the fraction of light sources needed for shadow testing when the

algorithm is applied with different values of tolerance.

Check the changes of the fiaction of Light sources for shadow testing when the

algorithm is tested with increasing number of light sources in the scene.

Check the average and maximum pixel error corresponding to the different

tolerance, as compared with a fully tested source calculation.

A distribution ray tracer was implemented and tested on a SUN ULTRA10

300MHz 256Mb workstation. When comparing the performance of different

approaches, the timing is for the whoie process that includes the preprocessing and

rendering stages of an approach, and it was evaluated by the system /bin/time. Each

test was repeated three times and the average value was used as the final data.

5.3 Test Scene Description

Foiiowing are the test scene models used in the testing.

Scene Mode1 1

The test scene mode1 is a square building with recursively instanced rwms. In

each room there is a light in the ceiling shining on two robots riding unicycles.

A complete view of the buiIding with 64 light sources is shown as Figure 5.1.

Scene models with more light sources are generated by increasing the model's

recursive level. Note that scene models with 256, 1024, 4096, and 16,384 light

sources are shown in Appendix A.

Figure 5.1 Test Moâel1: a complete view of the building with 64 light sources
(image resolution: 320 ' 240)

Scene Mode1 2

The scene model is a peano-curve maze with recursively instanced robots

riding unicycles where each robot is shone by a streetlight. Figure 5.2 iilustrates

the top view of the peanoîurve maze at recursive level 1 with 45 light sources.

We increase light sources in the scene mode1 by enhancing the recursive level of

the peano-curve maze. The scene models with more light sources are shown in

Appendix A.

Figure 5.2 Test Moâel2: a top view of the peano-curve maze with 45 light sources
(image resolution: 320 * 240)

Scene Mode13

The scene model is a performance hall where there are multiple spotlights in

the ceiling shining on three robots riding unicycles. For the purpose of

comparison, each time we increase the number of spotlights in the scene by

replacing a spotlight with four smaller ones. The scene model with 64 spotlight

sources is shown as Figwe 5.3.

Figure 5.3 Test Modal 3: the performance hall where there are multiple
spotlight sources in the ceiling shining on three robots riding unicycles
(image resolution: 320 * 240)

It's worthy to mention that every object in Scene Model 1 and Scene Mode12

is illuminated by relatively a few of the candidate light sources, while in Scene Model

3 every object is shone by most of the light sources in the scene. Since the LEV

algorithm assumes that in such scenes relatively few lights wili illuminate any

individual surface, we expect that Our algorithm W U work well for Scene Model 1

and Scene Model 2 and fail in Scene Mode1 3-

5.4 Test cases

According to the test aspects discussed in Section 5.2, we designed two sets of

test cases to evaluate our new approach of Light Extent Volumes (LEV). The set of

the fmt two tests compares Our new approach with the traditional ray tracing (RT)

and Ward's Adaptive Shadow Testing (AST). The second set of test cases examines

some characteristics of Our approach of the Light hierarchicai tree of light extent

volumes. Note that al1 the output images in the foiiowing tests are rendered at the

resolution of 320*240, and the data collected from the tests are Listed in Appendix B.

5.4.1 Compare LEV with Traditional RT and AST

In the following test cases we compare the LEV method with the traditional

RT and Ward's AST in such aspects as the performance and the extra memory space

required for quick shadow testing.

5.4.1.1 Test 1.1 : Performance Cornparison

We examine the performance of the LEV method by comparing it with the

traditional RT and Ward's AST. We use variations of three scene models introduced

in Section 5.3, where scene model 1 contaios a number of light sources ranging h m

64 to 16,384, for scene model 2 the number of light sources is from 45 to 12,285, and

scene mode1 3 contains Light sources h m 64 to 16,384. In each test, the tolerance we

used is 0.01 light intensity. Since the actual error wili be smaiier than the required

tolerance, the test mns result in images that are expected to visually indistinguishable

from those computed with the traditional ray tracing.

Tests were performed on three scene modeis. The result fkom scene model 1

is presented in Figure 5.4 (a) and (b), and the result fiom scene model 2 is in (c) and

(d). The result tables in Figure 5.4 (a) and (c) show the cost of traditionai ray tracing

(RT), the cost of Ward's Adaptive Shadow Testing (AST), the cost of the Light

Extent Volumes method (LEV). the cost percentage of Ward's method over the ray

tracing method (ASTiRT), the cost percentage of our method over the ray tracing

method (LEV/AST), and the speedup achieved by our method over the ray tracing

method (LEVT) respectively. Figure 5.4 (b) and (d) are the graphic representations

of the performance cornparison of three approaches based on scene model 1 and scene

model 2 respectively. Besides, result images fiom scene model 1 and scene model 2

are visually indistinguishable fiom the original images.

The result we got from scene model 3 is far fiom those fiom scene model 1

and scene model 2. At the tolerance of 0.01, we tested the models with different light

sources. There are two situations: either the running time by Our LEV method is close

to that by the traditionai RT, or the method has great speedup, but the result image is

obviously different h m the original one. We wiU examine more about scene modei3

to explain this result in a later test-

1 i ,024 lights 1
1 4.096 lights 1

(a) result table from scei
Al1 timings are in seconc

.e mode1 1 for performance comparison of three approaches.
,s on a SUN ULTRA 10 300MHz workstation.

light number in the scene

(b) graphic representation of performance comparison on Scene Mode1 1

45 lights 99.58s 39.66s 59.65s 39.83% 59.90% 1.67

1 189 lights 1 248.09s 1 13253s 1 62.76s 1 53.42% 1 253% 1 3.95

(c) result table fkom scene model 2 for performance comparison of two approaches.
Al1 timings are in seconds on a SUN ULTRA10 3ûûMHz workstation.

O 2000 4000 6000 8000 lm 12000 14000

light number in the scene

(d) graphic representation of performance comparison on scene model 2

Figure 5.4 performance comparison of traditional ray tracing (RT), adaptive
shadow testing (AST) and light extent volumes (LEV).

The performance comparison rrsuits based on r e n e mode1 1 and scene mode1

2 show that compared with the traditional RT, the LEV approach achieves significant

speedups (up to 150 times), and for a high number of light sources, Our approach

consistently faster than Ward's AST method. The reason is that different from the

LEV method, both traditional RT and the AST method behave Iinearly in r e n d e ~ g

tirne. So for a high number of light sources, thek rendering cos& become criticai.

5.4.1.2 Test 1.2 : Memory Overhead Cornparison

Among three approaches, both AST and LEV require extra data structures for

shadow testing acceleration. This case is to examine the extra memory space usage of

those two methods. The cornparison is based on the analysis of Scene Mode1 1.

In Ward's AST approach the storage overhead is a few additional words per

light source for keeping track of test and hit counts. b's about 24 bytes per light

source (2 double, 2 int).

The extra memory space usage caused by the LEV method is a hierarchy of

CSG nodes that excludes light nodes and their directly related affine nodes used to

further define lights' attributes. If the light hierarchy of scene m d e i 1 is generated

without instancing property, the memory overhead per light source is about 136 bytes,

including a union node (16 bytes) and two light extent volume nodes(60 bytes each),

where light extent volumes are fully used in the light hierarchy. However, Our light

hierarchy is conswcted by instancing. So the hierarchy is quite compact, Since the

tree keeps only one master copy of the instanced light subtree, cornpared with the

increase of the number of Light sources in the scene model, the size of the light

hierarchy grows very slowly.

Figure 5.5 shows the comparison of extra memory space used by AST and

LEV. The memory overhead of AST is f a less than that of LEV by the Iight

hierarchy without instancing. However, when we use the light hierarchy with

instancing, at a smaii number of light sources the storage overhead of AST is less than

that of LEV, while for a high number of light sources the LEV method consistently

has less storage overhead. So by constmcting the light hierarchy properly, the space

overhead of the algorithm can be minimal.

O 5000 1OOOO lm

light number in the scene

+ IEV without ins tachg

+ LEV with instimcing

Figure 5.5 comparison of extra memory space used by Adaptive Shadow
Testing (AST) and Light Extent Volumes (LN) for shadow testing

5.4.2 Examine Cbaracteristics of Light Extent Volumes

In this section, a set of test cases is designed to examine some characteristics

of the LEV approach. Firstly, we checked the algonthms d g tirne behavior-

And then, we checked the fraction of light sources tested for visibility when the

algorithm is appiied with different values of tolerance. In order to see what happens

to the calcuiation as we increase the number of light sources in the scene. we then

used variations of scene models containing more light sources and repeated the tests.

At last we evaluate the quaiity of result images by means of average and maximum

pixel errors.

5.4.2.1 Test 2.1 : RunnSng Time Behavior

The purpose of the LEV rnethod is to approach approximately O(log n)

complexity for typical scenes in determining which light sources contribute

significant irradiance to the intersection point. This computation complexity allows

hundreds or even tens of thousands of light sources in a scene to be rendered in

reasonable tirne.

We checked the algorithm's mnning time behavior by testing it with different

number of light sources at different d u e s of tolerance on scene model 1 and scene

model 2. In Figure 5.6 (a) and (b), the horizontal axes of the graphs show the

logaithmic scaie of the number of light sources in the scene. Since the running thne

has the iinear relation with the logarithmic scale of the light number in the scene, it

demonstrates that when rendering scenes where every object is directly shone by a

relatively few of the candidate light sources. our algorithm bas appmximately

logarithmic behavior in execution time.

1 1 0 1 0 0 1000 1OOOO 1OOOOO

log SC& of tight number in the scene

(a) result based on Scene Mode! 1

1 1 0 1 0 0 lm 1OOOO 1OOOOO

log scaie of light number in the scene

(b) result based on Scene Mode1 2

Figure 5.6 run time behavior of the Light Extent Volumes method

5.4.2.2 Test 2.2 : Fraction of Light Sources for Shadow Testing

The highiight of our LEV methoci is that only those light sources that have

significant contribution to the scene are considered for shadow testing. So the

fraction of light sources tested for visibility to each intersection point is an important

value because it directly detennines the performance of the algorithm.

Figure 5.7 shows the hc t ion of light sources for shadow testing when the

algorithm is appiied with different values of tolerance of light extent volume and

tested on three scene models. The horizontal axis of the graph shows the different

values of tolerance. The vertical axis shows the ratio of average light sources tested

per intersection point compared to all the candidate light sources in the scene. Note

that with a target accuracy of zero (tolerance), al1 of the candidate tight sources are

tested. However, with a none-zero accuracy, the number of light sources tested for

visibility varies with different intersection points. So we use the average light number

tested per intersection point for that tolerance. The average value is computed by the

following formulation as:

x(the number of light sources tested at each intersection point)

the number of intersection points

O 0.002 0.w 0.006 0.00s 0.01

tokrance of iight extent volume

+sene Rpdel L wiih 1024 fights

+sctne d e l 2 with M69 iighu

Figure 5.7 fraction of light sources for shadow testing

The fraction curves of scene model 1 and scene mode1 2 show that the average

number of light sources tested per intersection point decreasw smoothly with higher

tolerance of Light extent volume, while the curve of scene model 3 is quite different

from those two.

In order to further check scene model 3, we did some extra tests on it. In

model 3 most of light sources are important sources to any object surface. As shown

in Figure 5.8, some parts of the curves keep consistent, that is, once the iight extent

volume is big enough, most iight sources are regarded as important sources. Since

most light sources in the scene are tested for visibility. the rendering time is almost

linear to the number of Light sources. And then the algorithm's performance

degenerates to the traditionai ray tracing, but on the other side the output image

quality is satisQing. However, when the fraction of Light sources is low (most of

O 0.002 0.004 0.006 0.m 0.01

tolerance of iïght extent volume

-
e s c e n e d e l 3 with 256 fighu

1 +sane d e i 3 with (R6 Sghu
/ +sccne d e 1 3 with 16384 Iighu

Figure 5.8 test result of fraction of iight sources for shadow testing on
Scene Mode13

iight sources are not regarded as important sources), though the algorithm can do

quick shadow testing, there wïil be a great loss at the result image quaiity because

many light sources that actuaiiy sum up to make signififant contribution to the scene

are ignored in the rendering. This test case pmves that the LEV method does not

work well for scenes like model 3 where every object is shone by most of the light

sources in the scene. So the foliowing tests wiii be performed only on scene model 1

and scene mode1 2.

5.4.23 Test 23 : Fraction of Lights Tested When Increasing Light Sotuces

In order to see what happens to the above caiculatioa as we increase the

number of light sources, we used scene model 1 and scene mode1 2 with more Light

sources and repeated the tests. The resulting fractions of shadow tests for the

modified scene model 1 and scene mode1 2 are shown in Figure 5.9 (a) and (b)

respectively. h both cases, the most noticeable ciifference is that the overall drop in

the fractions of sources tested, which indicates that the algorithm's performance

improves as light sources are added to the scenes. The running time still takes longer

of course.

O 0.m 0.m 0.006 0.m 0.01

tolerance of Iight extent volume

+scene mode1 1 with 64 iights

+scene d e l 1 with 256 iights

+sccne d e l 1 with IO24 lights

+sccne d e l 1 with 40% Iights

+secne d e l 1 wïth 16384 iights

(a) result based on Scene Mode1 1

O 0.002 0-al4 0.006 0.008 0.01

tolerance of bat extent volume

e s c e n e d e l 2 witb 45 Iighu

+scent d e 1 2 with 189 Gghts
e s c e n e d e l 2 with 765 iÏghts

+scent mode1 2 with 3069 iigbts

- - - -

(b) resuit based on Scene Mode1 2

Figure 5.9 fraction of important light sources when increasing light sources

5.4.2.4 Test 2.4 : Average and Maximum Purel Emrs of Rendering Images

Since only important light sources are selected for shadow testing, what

concerns us most is then whether the image quality is satisfjhg. In this test case, we

use pixel error to evaiuate the quality of an Mage generated by the LEV method, as

compared with a fully tested source calculation. The output image fiom the

distribution ray tracer characterizes each pixel value into three channels as R, G, B.

Thus, the pixel error can be defined as following:

Assume that the vaiue of a pixel by a fully tested source calculation is (Rf, Gf,

Bf) and the value of the same pixel calculated fiom paxtially tested light sources is

(Rp Gp B$, the error of that pixel caused by partial shadow testing is the sum of the

absolute value of the difference of each color channel. Its formulation cm be written

as:

pixelewor=abs(RP - RE) + abs(Gp - Gf) + abs(Bp - Bt)

Figure 5.10 (a) and (b) show the average and maximum pixel errors of the output

images with increasing light sources at different tolerance of the light extent volume.

In t h i s test, the actual average pixel error is always kept within the requested

tolerance, but the maximum pixel error is a littie bit higher than the threshold. Since

the overail pixel e m r of an output image is far smaller than the tolerance, the quality

of the image is guatanteed by Our LEV method.

O 0.002 0.004 0.006 0.ûû8 0.01

tokrance of 1igtit extent volume

+scenc d e l 1 with 64 Gghts

+scenc mode1 1 with 256 Gghrs

+scene mode! 1 with 1024 Iighrs

I

(a) average pixel error based on Scene Mode1 1

O 0.002 0 .m 0.m 0.008 0.01

tolerance of tight extent volume

(b) average pixel error based on Scene Model 2

O 0.002 0.m 0.006 0.008 0.01

toietance of light extent volume

(C) maximum pixel error based on Scene Model 1

O 0.m 0-al4 0.006 0.008 0.01

toierance of iigtrt extent volume

(d) maximum pixel error based on Scene Mode1 2

Figure 5.10 average and maximum pixel error when increasing light sources

Chapter 6

Analysis and Conclusion

6.1 Overview

In this chapter analysis is provided for the observations drawn from the test

results. At the very end of this chapter the conclusion of this thesis is presented.

6.2 Observations

From the experimental results several observations can be made. In the next

section analysis is provided to explain these observations.

1. The LEV method works weil for scenes with many iight sources where every

object is illuminated by relatively few of the candidate Light sources, whiie as

expected, it does not work well for scenes with many light sources where every

object is shone by most of them.

2. Compared with the traditional RT and Ward' s AST method, ody the LEV method

has approximately logarithmic performance for scenes where every object is

shone by relatively few of the candidate light sources. This cornputaiion

complexity allows hundreds or even thousands of light sources in a scene to be

rendered in reasonable tirne,

Compared with the traditional RT, the LEV method achieves significant speedups

(up to 150 times faster in the case of 12K Light sources in the scene). And for a

high number of light sources, our new approach consistently faster than Ward's

AST approach.

The performance of the LEV method improves as the number of Light sources

increases in the scene.

Compared with the AST appmach, by building the light hierarchy properly the

LEV method requires mininai memory overhead for shadow testing acceleration.

6.3 Analysis

The LEV rnethod has great performance for scenes with many light sources

where every object is directiy shone by a relatively few of the candidate light sources

in the scene. This is typicai for vïrtualiy ai l scenes in Computer Graphies. But to

scenes where every intersection point on objects is shone by most of the light sources

it's a different story because to each intersection point most of the candidate light

sources are important and make great contribution to that point.

In the following we examine two key parameters which directly provide the

explanation to observations based on Scene Model 1 and Scene Model 2. The

pararneters are gotten by applying the algonthm to scene models with increasing light

sources at the same tolerance of light extent volume.

Parameter 1: average nurnber of important light sources tested for visibiiity

per intersection point

As we mentioned before, a light source is important to an intersection point

only if the intersection point is hside the light source's extent volume. Once the

tolerance of iight extent volume is set, the radius of lights' extent volumes is

fixed. So when sceae models have certain light sources, the average number of

important light sources tested for visibility per intersection point soon becornes

consistent, as the results h m Scene Model 1 and Scene Model 2 shown in Figure

6.1 (a) and Figure 6.2 (a) respectively.

Parameter2: average number of light extent volumes checked per

intersection point when travershg the Iight hierarchy tree to find out the important

light sources

Since at the same tolerance after scene models have certain light sources, the

average number of important îight sources for shadow testing at each intersection

point approaches to a constant value, the algorithm's performance complexity is

then determined by the eff~ciency of traversing the light hierarchy to find out

important light sources. The efficiency can be evaluated by the average number

of Light extent volumes checked per intersection point during the traversai.

M e r considering two issues: 1) light hierarchy trees grow with the increase of

light sources in scene models; 2) &et scene models have certain light sources, the

average number of iight sources tested per intersection point approaches to the

same, we can Say that in the search of important light sources the average number

of light extent volumes checked per intersection point increase only a littie bit.

and it is far smailer than the increase of the iight number in the scene. Actuaily

the increase c w e has approximately logarithmic behavior. as shown in Fgwe 6.1

(b) and Figure 6.2 (b). So the computational complexity of the Light Extent

Volumes method is appmxïmately logarithmic, as shown in Figure 6.l(c) and

Figure 6.2(c). Thus the pefiormance of the tight Extent Volumes method

improves as the number of iight sources increases in the scene. At high number of

light sources. its performance advantage is even more obvious.

O 1OOOO #1000 30000 40000 50000 60000 70000

ligbt number in the scene

(a) average number of light sources tested for visibility at each intersection
point based on Scene Mode1 1

1 10 100 I o 0 0 Loo00 l m

bg scale of ligfit numbet in the scene

(b) average number of Iight extent volumes checked at each intersection
point based on Scene Model 1

1 10 100 1OOO 1OOOO lOOm

log scale of li@t number in the scene

+ tokrance: O.a)l
+ tokfance: 0.01
+ tokrance: 0.1

(c) performance of the LEV method under different tolerances based on
Scene Model 1

Figure 6.1 two key parameters of the Light Extent Volumes (LEV)
method based on Scene Mode11

O 2ûûû 4000 6000 8ar) 1aKNl lm 14Cm

iight number in the scene

(a) average number of light sources tested for visibility at each intersection
point based on Scene Model 2

V -
1 10 100 Io00 10000 1OOOOO

log scale of li@t number in the scene

(b) average number of light extent volumes checked at each intersection
point based on Scene Model 2

1 10 100 Loo0 1OOOO 1ooax)

bg scale of ligtit number in the scene

(c) performance of the LEV method under different tolerances based on
Scene Mode1 2

Figure 6.2 key parameters of the Light M e n t Volumes (LW) method
based on Scene Mode12

6.4 Conclusion

This thesis put forward a new approach to eficiently ray tracing scenes with

many light sources. By building a hierarchical tree of light extent volumes one can

approach approximately O(1og n) complexity in detemzining wbich light sources

contribute significant irradiance to the intersection point, where n is the number of

light sources. This allows hundreds or even tens of thousands of Light sources in a

scene to be rendered in reasonable time.

The Light Extent Volumes method is specially designed for scenes with many

light sources where every intersection point is iiiuminated by few of the candidate

Iight sources. When rendering those scene models, the algorithm has approximately

logarithmic complexity. And the performance of the LEV method impmves as the

number of Light sources increases in the scene. It achieves significant speedup over

other approaches (up to 150 times faster), such as the traditional ray trachg and

Ward's Adaptive Shadow Testing. Meanwhile the tradeoff between image accuracy

and rendering speed is negligible. Moreover, combined with instancing, the algorithm

requires minimal memory overhead for shadow testhg acceleration. Another

important feature of the LEV algorithm is its simplicity of implementation. In

addition the approach is orthogonal to most other global illumination techniques, and

can be added to existing direct light calculations and optimuatioas. In conclusion the

LEV approach is a practical algorithm for efficiently ray tracing scenes with many

light sources.

6.5 Future Work

The introduction of the LEV algorithm provides a promising direction for

efficient ray tracing of many light sources. Currently the algorithm has great

performance for typical scenes. In the near hiture, we can do M e r development to

complete this method to deal with several special situations- First, we will extend the

implementation to linear and area light sources. A possible solution is to combine our

m . . LEV method with Ward's AST approach for rendering. The AST method mm.muzes

the number of light sources that must be tested for visibility by sorting the

contributions of al1 light sources. However, the cost of sorting c m make the approach

impractical for the rendering. So fmt we can use Our LEV algorithm to quicidy

identify aii the signincant iight sources for shadow testing with appropriate iight

extent volumes. And then, wve combine the AST method to do the direct contribution

calculation on those significmt sources and estimate the contributions of the rest light

sources. Second, we may explore the impact of specularity on the LEV method. For

example, stars have negligible irradiance, but we can see them in the reflections- The

current aigorithm would treat them as unimportant light sources and ignore them.

Appendix A

The building model with 256 light sources

The building model with 1,024 light sources

The building model with 4,096 light sources

The building model with 16,384 light sources

The peanocwe maze with 189 light sources

The peanocurve maze with 765 light sources

The peano-curve maze with 3,069 light sources

The peano-cwe maze with 12,285 light sources

Appendix B

Data collected fkom result tables in Chapter 5 and Chapter 6.

1 64 lights 1 98.86s 1 42.12s 1 46.38s 1 42.61% 1 469 1% (2.13

11 1,024 lights 1 1268.58s 1 812.23s 1 10 1-29s 1 64.03% 1 7.98% 1 12.52

Table 1 -Test 1.1 result table based on Scene Mode1 1 for performance cornparison of
the traditional ray tracing (RT), Adaptive Shadow Testing (AST) and Light Extent
Volumes (LEV)

11 189 lights 1 248.09s 1 132.53s

11 3,069 lights 1 1 1989.90s 1 6 155.6 1 s

Table 2 -Test 1.1 result table based on Scene Mode1 2 for performance cornparison of
the traditional ray tracing (Rn, Adpative Shadow Testing (AST) and Light Extent
Volumes (LEV)

Table 3 - Test 1.2 cornparison of extra memory space used by Adaptive Sbadow Testing
and Light Extent Volumes for shadow testing acceleration based on Scene Modell. Note
that the data for the case of LEV without instancing is got by fuily using light extent
voIumes in the light hierarchy

64 lights

256 Lights

1,024 lights

4,096 lights

1 6,3 84 lights

1,536

6,144

24,576

98,304

393,216

8,704

34,8 16

139,264

557,056

2,228,224

2,932

3,812

4,692

5,572

6,452 L

Table 4 - Test 2.1 Iogarithrnic behavior of the Light Extent Volumes inethoci based on
Scene Mode1 1

64 lights

256 lights

1,024 lights

4,096 lights

16,3 84 lights

65,536 lights

97.97s

32 1 -29s

490.75s

746.3 1 s

1 08 1.29s

1 1 17.16s

46.38s

78.96s

10 1 -29s

134.56s

184.14s

191.14s

15.73s

23.97s

29.20s

38.52s

56.99s

57.80s

189 lights

765 lights

12,285 lights 1

198.42s

3,069 lights

Table 5 - Test 2.1 logarithrnic behavior of the Light Extent Volumes method based on
Scene Mode1 2

908.95s

62-76s

1 347.80s

13.23s

218.19s 41.63s

287.73s 52.76s

Table 6 - Test2.2 fraction of Iight sources tested per intersection point

Table 7 - Test2.2 fiaction of light sources tested per intersection point based on Scene
Mode1 3

Table 8 - Test 23 fiaction of Iight sources tested pet intersection point with more light
sources on Scene Mode1 1

Table 9 - Test 2.3 fiaction of light sources tested per intersection point with more Light
sources on Scene Mode1 2

Table 10 - TesU.4 average and maximum pixel errors by increasing Iight sources in
Scene Mode1 1

Table 11 - Test2.4 average and maximum pixel errors by increasing light sources in
Scene Mode1 2

Table 12 average number of light sources tested for visibility at each intersection point
based on Scene Mode1 1

64 lights 86 46 19

256 iights 279 69 25

1024 lights 443 88 31

4096 lights 569 101 36

16384 lights 65 1 110 42

65536 l i g b 696 118 45

Table 13 average number of light extent volumes checked at each intersection point
based on Scene Mode1 1

I 45 lights 1 45 17 1 2
I

189 lights 132 17 2

765 lights 195 19 2
t

3069 lights 234 19 2

Table 14 average number of light sources tested for visibility at each intersection point
based on Scene Mode1 2

Table 15 average number of Lght extent volumes checked at each intersection point
based on Scene Mode1 2

45 lights

189 lights

765 lights

3069 lights

122851ights

66

214

344

432

487

34

43

56

65

71

12

14

16

19

21

Bibliography

Arnanatides, J., Woo, A., "A Fast Voxel Traversal Algorithm for Ray
Tracuig", Eurographics '8 7, Proceedings of the European Compter
Graphics Conference and Exhibition, Amsterdam, 1987, pp. 3 - 10.

Appel, A-, "Some Techniques for Shading Machine Renderings of
SoliW. Proceedings of the Spring Joint Computer Co~erence, 1968, pp.
37-45.

Bergeron, P., "A General Version of Crow's Shadow Volumes", IEEE
Computer Graphics and Applications, Vol. 6, No. 9,1986, pp. 17 - 28.

Eo, K.S., Kyung, CM., "Hybrid shadow testing scheme for ray tracing",
Cornputer Aided Design, Vol- 21. No. I , JadFeb 1989, pp. 38-48.

Fujhoto, A., Tanaka, T., and Iwata, K., "ARTS: Accelerated Ray Tracing
System ", IEEE Compurer Graphics and Applications, V d 6, No. 4, April
1986, pp. 16 - 26.

Glassner, A. S., "Space Subdivision for Fast Ray Tracing", IEEE
Cornputer Graphics and Applications, Vol. 4, No. 10. October 1984, pp.
15-22.

Halton, I. H., "A Retrospective and Prospective of the Monte Carlo
Method", SLQM Rev. 12, January, 1970, pp. 1 - 63.

Hammersley, J. M., Handscomb, D. C., "Monte Carlo Methods", Wiley,
New York, 1964

Houle, C., Fiume, E., 'bLight-source modeling using pyramidal light
maps", Graphieal Models and Image Processing Vol. 55. No. 5, 1993, pp.
346 - 358.

Jansen, F. W., ''Data Structures for Ray Tracing ", Data S~ructures for
Raster Graphics. Proceedings Worhhop, Eurographics Serninurs,
Springer Verlag, 1986, pp. 57 - 73.

Kaplan, M. R, "Space Tracing a Constant Time Ray Tracer*', Sfate of the
Art in Image Synthesis (Siggraph '85 Course Notes)* Vol- 1 1, July 1985.

Kay, T.L., Kajiya, J.T., "Ray Tracing Complex Scenes", Computer
Graphics. Vol- 20, No. 4, August 1986, pp. 269 - 278

Kay, D.S., "Transparency, Refiaction and Ray Tracing for Computer
Synthesized Images", M. S. Thesis, Program of Computer Graphics,
Comell University, Ithaca, NY, January 1979.

Kok, A. J. F., Jaosen, F. W., '"Adaptive Samphg of Area Light Sources in
Ray Tracing including ditfuse Interreflection", Eurographics '92, Fonun
I I , 3, pp. 289 - 298

Paquette, Eric, et al., "A Light Hierarchy for Fast Rendering of Scenes
with Many Lighîs", Proceedings of Eurographics '98, Vol. 2 7, No. 3,
1998.

Phong, B.T., "Illumination for Computer Generated Pictures",
Communications of the ACM, Vol. 18, No. 6, June 1975, pp. 3 1 1 - 3 17.

Rubin, S. M., Whitted, T., "A 3-Dimensional Representation for Fast
Rendering of Complex Scenes", Compter Graphics. Vol. 14, No. 3, July
1980, pp. 110-116.

Shirley Peter, Changyaw Wang and Kurt Zimmerman, "Monte Carlo
Techniques for Direct Lighting Calculations", ACM Trumaciio11~ on
Graphies, Vol. 15, No. 1, January 1996, pp. 1-36.

Shreider, Y. A., T h e Monte Carlo Method", Pergarnon Press, New York,
1966

Sillion, F., "Clustering and Volume Scattering for Hierarcbical Radiosity
Calculations", Fijth Eurographics Workshop on Rendering, Darmstadt,
Germany, June 1994, pp. 105 - 1 17.

Smits, B., Arvo, J., and Greenberg, D., "A Clustering Algorithm for
Radiosity in Complex Environments", Proceedings of SIGGRAPH'94,
Compuîer Grophics, July 1994, pp. 435 - 442.

Stam, I., Fiume, E., "Depicting Fire and Other Gaseous Phenomena Using
Diffusion Processy7, proceedings of S I G G W H '95, August, 1995, pp.
129 - 136.

Stuerzlinger, W., Tobler, R, " Two Optimization Methods for Ray
Tracing", Proceedings Summer School of Computer GraphicsY94, June,
1994, pp. 104- 107.

Ward, G. J., "Adaptive Shadow Testing for Ray Tracing", Eurogtuphics
Rendering Workshop, Barcelona, Spin, May 199 1.

Wam, D. R., "Lighting Controls for Synthetic Images",
Computer Graphics. Vol. 1 7, No. 3, Juiy 1983, pp. 49-54.

Weghorst, H., Hooper, G., and Cireenberg, D. P., "Improved
Computationd Methods for Ray Tracing ", ACM Tram. on G~raphics, Vol.
3, No. 1, January 1984, pp. 52 - 69.

Whitted, T., "An hproved Illumination Mode1 for Shaded Display",
Communications of the AC34 Vol. 23, No. 6, June 1980, pp. 343-349.

Woo, A., Amanatides, J., "Voxel Occlusion Testing: A Shadow
Determination Accelerator for Ray Tracing", Graphics Interface '90, May
1990, pp. 213-220.

Woo, A., Poulin P., and Fournier, A., "A S w e y of Shadow Algorithms",
IEEE Cornputer Graphics and Applications. Vo. l O, No. 6, 1 990, pp. 13 -
32

Yakowitz, S. Je, '6Computational Probability and Simulation", Addison-
Wesley, New York, 1977

