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Abstract

Goldbach’s conjecture, an unproven mathematical claim, states that every even
integer greater than 2 can be written as a sum of two prime integers. In this
thesis, a more general definition of the conjecture, called the Abstract Goldbach
conjecture is proposed, and it is used to extend the study of Goldbach’s conjec-
ture outside of the integers proper. The algebra of several non-integer contexts
are studied, and Goldbach’s conjecture is defined and studied in each of these.
In arguing that the conjecture transcends the integers, this work argues that

attempts at proving the conjecture should transcend the integers as well.
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1 Imtroduction

Among the open problems of mathematics, few can be stated as simply as
Goldbach’s Conjecture. Two hundred and fifty years after its inception, in a
letter by Christian Goldbach to Leonard Euler, it remains unsolved despite a
considerable amount of mathematical scrutiny. Goldbach’s conjecture states
that every even integer greater than 2 can be written as a sum of two prime

integers in at least one way. Based on empirical evidence, it is almost certainly

true.

The following pages do not contain a proof of the conjecture. However, a
new perspective is offered, one which might affect the methods by which a proof
is sought in the future. This idea is very simple: that Goldbach’s conjecture,
as it is stated among the integers, is simply a manifestation of a more general
truth about numbers. In other words, if Goldbach’s conjecture holds among the
integers, it is not due to properties particular to the integers, but more general

ones, properties which may be shared by many other algebraic contexts.

If Goldbach’s Conjecture, or some abstraction thereof transcends the inte-
gers, then the current body of knowledge regarding the conjecture is artificially
limited by the assumption.otherwise. Just as escaping a maze is easier from

above than within, a grander purview of the problem may be key to a solution.

The challenges posed in adapting the conjecture to non-integer contexts
are numerous. The solution requires preserving the essence of the conjecture
as it was originally stated, while being abstract enough to become adaptable
to number systems which differ greatly from the integers. They differ in’a
significant way: from the number line to plane to hyper-plane, among sets with

differing notions of what an even number is, to sets with no even numbers at



all, contexts where laws of commutativity do not hold, and where unique prime
factorization fails. Through the study of Goldbach’s conjecture in these varied

contexts, it is hoped that credence will be lent to this new idea.

Although the following work does not constitute the first attempt at adapting
Goldbach’s conjecture outside of the integers, it is, to the knowledge of the
author, the first attempt to define Goldbach’s conjecture in an abstract way for
the purpose of applying it to multiple algebraic contexts. This definition, called
the Abstract Goldbach conjecture, will be used to study the conjecture among
the integers, the Gaussian integers (integral complex numbers), the Hurwitz
integers (integral quaternions), and subsets of the integers, the 1-monoids. To
the best knowledge of the author, only one other work has discussed Goldbach’s
conjecture outside of the integers. Published in 1968, ” The twin prime problem
and Goldbach’s conjecture in the Gaussian Integers” by Holben and Jordan
attempts to adapt both of these problems to the Gaussian integers. This paper

is discussed later.

Tools to study Goldbach’s conjecture in these varied numbers contexts have
been developed in the Maple programming language. All graphs and computa-
tions were done using Maple software. Routines to study Goldbach’s conjecture
are not built into Maple, and were built as extensions to current Maple routines,
when possible. For example, since Maple contains a Gaussian integer package,
it was possible to use that package when developing tools to study Goldbach’s
conjecture in that context. In some cases, no tools existed to study a particular
algebra. For example, the integer subset monoids, described in Section 5, re-
quired the development of more sophisticated tools. These tools masf be useful

for further study of these monoids in the future.

Following a brief overview of the conjecture’s history, a few elementary math-



ematical notions will be introduced. Afterwards, the algebra of the integers will
be introduced, followed by a study of Goldbach’s conjecture in that context.
From there, the Abstract Goldbach conjecture will be defined, and the conjec-

ture will then be studied in three non-integer contexts.

1.1 A Brief History of Goldbach’s Conjecture

Goldbach and Euler shared a lengthy correspondence, consisting of 196 letters
over 35 years[19]. In a 1742 letter, Goldbach proposed the conjecture, saying
that ”...it seems that every number that is greater than 2 is the sum of three
primes” [15]. However, Goldbach considered 1 to be prime, a convention no

longer followed.

The problem has been attacked using many advanced tools of mathematics,
including analysis and sieve theory. In 1923, Hardy and Littlewood showed
that nearly all even integers are composable as a sum of two prime integers,
assuming the Grand Riemann Hypothesis (a problem which remains unsolved
today)[18]. In 1937, LM. Vinogradov removed the need for the assumption of
the Grand Riemann Hypothesis in the result of Hardy and Littlewood[18]. From
sieve theory comes one of the most important results achieved thus far: Chen’s
theorem. Chen’s theorem states that every sufficiently large even integer can be
written as either a sum of two primes or as the sum of a prime and a semiprime,
a semiprime being a product of two primes[4]. The notion of a ”sufficiently
large” integer is that, even if there are counterexamples, there is eventually a

final one.

There is a close relationship between the Riemann Hypothesis and Gold-
bach’s conjecture, and since the Riemann Hypothesis is intimately related to

the distribution of primes, so is Goldbach’s conjecture. When Hilbert pre-



sented some of his 23 problems for mathematicians of the 20" century in 1900,
problem 8 was indeed two problems: The Riemann Hypothesis and Goldbach’s
Conjecture[18]. However, it has not been shown that the truth of one would
directly imply the truth of the other. Twelve years after Hilbert presented
these problems to 20* century mathematicians, Edmund Landau stated what
he felt were four unattackable problems of mathematics, the first of which was
Goldbach’s Conjecture[17]. Although Landau’s claim predated the significant
progress towards a solution discussed above, nearly 100 years after his claim, and
over 250 years after the conjecture was originally made, Goldbach’s conjecture

remains unsolved.



2 The Integers

Following a brief study of the elementary algebra of the integers, pursued up
to the fundamental theorem of arithmetic, Goldbach’s conjecture among the

integers is studied.

2.1 The Algebra of the Integers

The set of integers, denoted Z, along with two binary operators -, form a
ring. A ring is a set and two binary operations satisfying the following axioms,
where a, b, ¢ are elements of the set that can, but need not be distinct from one

another. [1, p84]

Axiom 2.1 (Additive Commutativity).
a+b=b+a (1)
Axiom 2.2 (Additive Associativity).
a+(b+c)y=(a+b)+c (2)
Axiom 2.3 (Multiplicative Associativity).

a-(b-c)y={(a-b)-c (3)

Axiom 2.4 (Existence of Additive Unit). There exists an integer 0 such that

a+0=0+a=0 (4)

Axiom 2.5 (Existence of Additive Inverse). There exists a number —a such



that

a+(—a)=0 (5)

Axiom 2.6 (Distributivity).
a-(b+c)=a-b+a-c (6)
(a+b)-c=a-c+a-b )

Specifically, it is said that Z is a commutative ring with an identity element,
since in addition to the axioms above, the integers satisfy the following two

properties:

Axiom 2.7 (Multiplicative Commutativity).

a-b=b-a (8)

Axiom 2.8 (Existence of Multiplicative Unit). There exists an integer 1 € Z

such that
a-1=1-a=a 9)

The positive integers, those greater than zero, are denoted Z*. The negative

integers, those less than zero, are denoted Z~.

7t =1{1,2,3,4,5...} (10)

Z~ ={-1,-2,-3,-4,-5...} (11)

Theorem 2.1 (Mathematical Induction). If P(n) is some property of a positive
integer n, and this property holds for P(1), and P(n + 1) holds whenever P(n)



holds, P(n) must hold for all integers n.

Theorem 2.2 (The well-ordering principle). If S is a non-empty subset of Z,

then S contains a least member. [2, pl17]

Theorem 2.3 (The Division Algorithm). Given two integers a, b # 0, there

ezist unique integers m,r, 0 < r < |b| such that a =mb+r. [1, 28]

Definition 2.1. An integer a is said to divide the integer b if there exists an

integer k such that a -k =b. If a divides b it is denoted alb, otherwise a { b.

Example 2.1. (a) 7|21 since 21 =3-7. (b} 4+ 31 since there exists no integer
k such that 4 -k = 31.

Definition 2.2. If an integer d divides both a and b, it is said to be a common
divisor of a,b. If d is the largest integer dividing both a and b, it is called the

greatest common divisor (gcd) of a,b and it is denoted as (a,b) = d.

Example 2.2. (a) (12,9) = 3 since 3|12 and 3|9 and there exists no larger
integer dividing them both. (b) (17,4) = 1 since there are no common divisors

between 17 and 4 other than 1, which divides all integers.
Theorem 2.4. If a is an integer then (a,a — 1) = 1.

Proof. Assume the opposite is true, and that (a,a — 1) = d,d > 1. So d divides

both a,a — 1, which means there exist integers ki, ko such that

d-k1=a (12)

dke=a-1 (13)
subtracting one from the other yields

d-ki—d ke=a~(a—1) (14)

Ak — ks) = 1 (15)



Clearly, the left hand side of this equation cannot be equal to 1 unless d = 1,
which contradicts the statement that d > 1.

O
Theorem 2.5. if m,z,y are integers and m|(x — y) it is said that that z is
congruent to y modulo m and this is written

T =y modm (16)

Otherwise, it is said that x and y are non-congruent modulo m and this is

written

a#bmodm (17)
Example 2.3. (a)25=10mod 5 (b) 10 =1 mod 3

Definition 2.3. If (a,b) = 1 it is said that a and b are relatively prime or

coprime.

Definition 2.4. An integer p is prime if no integers other than 1 and p divide
p. If a number is not prime it is composite. If an integer is a product of exzactly

two prime elements, it is a semiprime.
From here on the letters p and ¢ are reserved to denote prime integers.

Theorem 2.6. If a,b,c are integers and alb and alc then a|(bz + cy) for any

integers x,y.

Proof. (Adapted from [1, p20])

Since a|b and alc, there exist integers ki, k2 such that

aky = b . (18)

akg = (19)



Multiplying both sides of the first equation by x, and the second by y,

zak; = zb (20)
yaky = yc (21)
Summing both equations yields
zaky + yake = xb+ yc (22)
a(zky + ykg) = xb +yc (23)
So a|{xb + yc) for any integers z, y. O

Theorem 2.7. if one or both of a,b is non-zero and d = (a,b) then d is the
least element among the set of all positive integers of the form ax + by, where

a,z,b,y € Z.

Proof. (Adapted from [5, p23])

Let S be the set of all positive integers of the form az + by. It must be shown
that S is a non-empty set. The theorem assumes that one of a,b is non-zero.
Assume a # 0. So if a is positive, it is a member of S, sincea=1-a+0-b. Ifa
is a negative number, then —a is a member of S by the same argument. So S

is a non-empty set.

S has some least element e

e = axo + byo (24)

From the Division Algorithm (Theorem 2.3) it is known that there exist unique

integers m,r such that

a=em+r 0<r<e (25)



and by algebraic manipulation this yields

r=a-—me
=a — m(aze + byo)
= a — amxy — bmyg

= a(l - mzg) + b{—myo)

Which is of the form az + by. Suppose r # 0. Then r is of the form az + by
which is positive and less than e (By the inequality in Equ. 25), and hence
would be the least member of S , which contradicts the prior statement that e

is the least member of S. Therefore, it must be that » = 0. Since r =0,

0=a~me

em =aq

s0 €la.

By the same argument as for a above, there exist m,r such that

b=em+r 0<r<e (26)
=... ' (27
r = b(1 — myp) + a(—mxo) (28)

by the same argument as above, r = 0. Therefore,

0=b—me (29)

me=1b (30)

10



so e|b.

Since e|a and e|b, it must be that e|d, d being the common divisor of a,b. Since

eld, it must be that e < d.

Since d = (a,b), d|a and djb. From Theorem 2.6 it is known that this*means
that d|(az + by) for all integers x,y. Therefore, from Equ. 24 it must be that
dle, so d < e. But earlier it was shown that e < d, so it must be that d = e.

Therefore, the least member of S is d, which completes the proof.

(]
Theorem 2.8. if a,b, ¢ are integers where albc and (a,b) =1 then alc.
Proof. (Adapted from [5, p26])
Since (a,b) = 1 by Theorem 2.7 there exist integers z, y such that
1=az+by (31)
Multiplying both sides by ¢
¢ = cax + cby (32)
Since a|bc, there must exist some k such that
ak = be (33)
Substituting for bc from the previous equation yields
¢ =cax + aky (34)
=a(cz + ky) (35)
So alc. O

11



Theorem 2.9 (Euclid’s Theorem). if p is a prime integer and b,c are integers

where plbc then p|b or p|c (or both).

Proof. If p|b then the theorem is satisfied. Otherwise, (p, b) = 1, so by Theorem
2.8 ple. O

Corollary 2.1. If p is prime and a1,az - . . ay, are integers where plaiaz . . . Gy,

then pla; for some i,1 <i<m.

Proof. (Adapted from [5, p26])
(By Induction) As a base case, let m = 2. It must be shown that if pla;as, p

divides one of a;,as. But this has already been shown in Theorem 2.9.

If the theorem is true for n, then plajas . . . a, and pla; for some i, 1 < i < n. Un-
der this assumption, it must be shown that it is also true that if plaias ... an+1,
then pla; for some j , 1 < j < n+1. But clearly this is so, since ¢ lies within the
valid range for j, and pla;. So when j = i, the theorem is satisfied for m = n+1,

which proves the theorem. O

Corollary 2.2. Ifp,pip2 ... DDm are prime integers and p|pipz . . . pm thenp = p;

for some i,1 <i<m.

Proof. (Adapted from [5, p26])
From Corollary 2.1 it is known that p|p; for some i, 1 < ¢ < m. Therefore, there
exists an integer & such that

pk = p; (36)

However, p; is prime by definition. If £ has a value other than 1, p; is composite,

which is a contradiction. Therefore, k = 1, and p = p;. O

Theorem 2.10. Fuvery integer greater than one can be represented as a product

of prime integers.

12



Proof. (Adaptation of [5, p10])
(By Induction) As a base case, let n = 2. Since 2 is prime, it is the product of

exactly one prime, which satisfies the theorem.

Assume that the theorem holds for all integers between 2 and k inclusively.

From this assumption, it must be shown that the theorem also holds for k + 1.

k+1 is either prime or composite. If it is prime, then it is the product of exactly
one prime and therefore satisfies the theorem. Otherwise, k + 1 is composite,
which means that it is a product of at least two integers, say r and s, which

must each satisfy the following inequalities:

2<r<k

2<s<k

However, this means that both r, s fall within the range in which the theorem
is assumed to be true. Therefore, each can be written as a product of primes,

and hence their product, £+ 1 =r - s is also a product of primes.

Theorem 2.11. There exist an infinity of prime integers.

Proof. (Adapted from [7, pl12])

Suppose p is the last prime integer. Let x be the product £ =2-3-5...p of
all the prime integers up to and including p. So 2|z,3|z...p|z. Now consider
z + 1. By Theorem 2.4, (z + 1,z) = 1, which means that z + 1 shares no
common divisor with z. However, from Theorem 2.10 it is known that every

integer is composable as a product of primes. Since =+ 1 is not divisible by any

13



of the primes numbers up to and including p, it must either be prime itself or
composed of primes greater than p. Either way, p is not the last prime integer.
Since no prime integer p is the last prime integer, there must exist an infinite
number of prime integers.

O

Theorem 2.12 (The Fundamental Theorem of Arithmetic). Fuvery integer

greater than one can be written as a product of prime integers in a unigue way.

Proof. (Adapted from [1, p33})

From Theorem 2.10 it is known that every integer greater than 1 can be written
as a product of primes. Here, it must be shown that this representation as a
product of primes is unique, in the sense that the order of the prime factors is

irrelevant.

Suppose some integer z can be written as a product of prime integers in two

different ways:

T=pP1 P2...Pm =01 G2---Gn (37)

Assume that m < n, and that the primes are ordered in a way such that

P1<P2< . Pmy @<@<. . qn (38)

since p1 -p2...Ppm = p1-ki1, where k1 = pa ... pm, it must be that p1|g1-g2 - .. gn-
By Corollary 2.2, p; must divide exactly one of g1 ...qn, 80 p1 2 ¢1. Similarly,
since ¢1-q2...qn = g1 - ko, where ko = go...gn, SO q1|p1 P2 ... pm. By Corollary
2.2, g1 must divide exactly one of py ... py, 80 ¢1 > p;. But earlier it was shown

that p; > ¢;, and now ¢; > p1, so it must be true that ¢; = p;, and these equal

14



factors cancel out, leaving

P2 Pm=q2...qn (39)

This method can be applied repeatedly, canceling p; with ¢; for all ¢ up to

min{m,n). However, suppose m < n, then terms will be canceled until

1=¢ms1 Gme2.--tn (40)

This cannot be, since gmy2 - . - ¢n are primes, and the smallest prime number is
2. Therefore, m and n must be equal, and p; = ¢; for all 4, which completes the

theorem. O

2.2 Goldbach’s Conjecture among the Integers

Conjecture 2.1. Goldbach’s conjecture states that every positive even integer

€ > 4 can be composed as a sum of two prime integers in at least one way.

Ve>4 3p,qprime e=p+q p<yq, (41)

Example 2.4. (a) Consider € = 10, which can be written as 3+ 7 or as 5+5.
(b) If € = 22 then it can be written as a sum of primes in three ways: 3 + 19,

5+ 17 and 11 4 11.
The following restatement is equivalent to Conjecture 2.1:

Restatement 2.1. For every integer a > 1, there exists at least one integer k

no greater than a, such that both (a + k), (a — k) are prime integers.

Va>1 3k (a+k)=pla—Kk)=q 0<k<a (42)

15



Restatement 2.1 is equivalent to Conjecture 2.1. To see this, consider any pos-
itive integer a > 1. Suppose there exists an integer k, 0 < K < a such that
(a+ &), (@ — k) are both prime integers. Then the sum (a + k) + (@ — k) = 2a
is an even number representable as a sum of two prime integers. If there exists
such a k for every integer a, then every integer of the form 2a is expressible as a
sum of two prime integers. Since all even numbers greater than 4 are expressible
as 2a, where a is an integer greater than 2, Restatement 2.1 is equivalent to the

original conjecture.

Example 2.5. (a) Consider a = 10. If k = 3, then (a+«) = (10+3) = 13 and
(a — k) = (10 — 3) =7, where 7,13 are prime integers. (b) Consider a = 1000.
If k=9, (a+ k) =1009, (a — &) = 991, both of which are prime.

When Restatement 2.1 is satisfied for an integer a, a is said to be equidistant
to two prime integers. This is equivalent to saying that even integer ¢ = 2a
can be written as a sum of two prime integers. From here on, if an integer a
is equidistant to two primes, it is said to satisfy Goldbach’s conjecture. Re-
statement 2.1 is rarely mentioned in the literature, either because it has been
overlooked or authors find it too trivial to mention. However, there are advan-
tages to this alternative description, namely that it makes no mention of the
addition operator, and that it is not a statement relegated to the even integers.
A 1993 paper titled “A Reformulation of the Goldbach Conjecture® by Gerstein
describes the restatement, and uses it to study the relationship between Gold-
bach’s Conjecture and the Twin Prime conjecture. As will be discussed later,
this restatement will serve an important role in defining the Abstract Goldbach’s
conjecture. For this reason, the remainder of this section will study Goldbach’s
conjecture using the notation and form of Restatement 2.1 rather than the more

traditional form.

16



Theorem 2.13. If an integer a is prime, it satisfies Goldbach’s Conjecture.

Proof. If a is prime, then it is trivially equidistant to two primes, since, when

& =0, (a +0),(a — 0) are both equal to a, which is prime. 0

Theorem 2.14. If an integer a is equidistant to two prime integers, one of

those primes is less than or equal to a and the other is greater or equal to a.

3<p<a<g<2a-—3 (43)

Proof. If Kk =0, p=q = a. Otherwise, k > 150 (a — k) < (a+ k). Soif p #gq,

one must be less, the other greater than a. O

Definition 2.5. The Goldbach number for a given integer a, denoted as G(a),

represents the number of integers 0 < k < a such that (a + k) are both prime.

[6]

Example 2.6. (a) G(5) = 2 because, as seen in Ezample 2.4(a), 10 can be
written as a sum of primes in two distinct ways. (b) Similarly, G(500) = 28

because 1000 can be written as a sum of two prime numbers in 28 distinct ways.

Goldbach’s Conjecture can be restated in terms of the Goldbach number in the

following way:

Restatement 2.2. For any integer a > 3, it must be true that G(a) > 1.

17
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Figure 1(a) and (b) graph integer a (x-axis) with respect to G(a) (y-axis) for all
integers a up to 5000 and 25000 respectively. That is, it graphs every integer a
relative to the number of integers &, 0 < k < a which exist such that (a =+ &)
are both prime. Restated once more, it graphs the number of ways that 2a can

be composed as a sum of two prime integers.

The graph of integer a relative to G(a) was christened Goldbach’s Comet by
Fliegel and Robertson in a 1989 paper. In it they discuss the banded nature
of the graph and study its increasing nature. In their paper, they define the
Goldbach number in a slightly different way. They define G(g), € even, to be the
number of ways that € can be written as a sum of two primes. In this work, G
is defined for all integers, so that it is more easily generalizable to other number
systems. In their paper, they bound the lower band of the comet of ¢ relative

to G(g) by the equation G(g) > 0.02745 - 29-86,

Examining the graph, it is evident that as the integer a increases, there tend to
be more solutions to Goldbach’s conjecture. Statistically, this is not surprising,

since the number of potential solutions increases with respect to a. In fact,

Gla)<a (44)

since k can take on any of « distinct values . (G(a) will be bound more strictly
soon). Although the number of potential solutions increases as the integer a
increases, this is partially offset by the diminishing prime density as magnitude

increases.

The truth of Goldbach’s Conjecture is inextricably linked to the distribution of
prime numbers. In fact, Goldbach’s Conjecture can be thought of as a statement

of fact about that distribution. More specifically, whether or not an integer a
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satisfies Goldbach’s conjecture depends upon the symmetry of the prime distri~

bution up to 2a. This statement will benefit from an illustration.

For any integer a, let (3, represent the string of bits of length 2a — 1, where the
it® Dbit is set to 1 if ¢ is prime, and to 0 otherwise. Let 3., be the reverse of
bitstring 3,. That is, 8, is of the same length as §,, and bit ¢ in 3, has the
same value as bit 2a — ¢ in 8,. So the first bit of 3/ has the same value as the
last bit of 3., the second bit of 5, has the same value as the previous to last
bit in B,, and so forth. Table 1 depicts 8, and 3, for a = 5. Table 2 depicts G,
and 8], for a = 9.

If there is a bit position % that is set to 1 in both 3., G, then a is equidistant to
two prime integers, namely ¢ and 2a — ¢. For if bit ¢ is set to 1 in §,, then ¢ is
prime in B,. If bit ¢ is set in 3, then 2a — 4 is set in 3,. Since ¢, 2a — ¢ are both
prime, i + (2a — i) = 2a is composable as a sum of primes, which is identical to
the statement that a is equidistant to two primes. If there is bit ¢ that is set for

both 3,, 8. for all @ > 3, then Goldbach’s Conjecture is true in Z.

i [1[2]3[4]5]6[7]8]9
Bo|O[1[7]0]1]0]1]0]0O
Bololofzrlolz]ofz]1]o0

Table 1: Bitstrings for a =5

s
[y
(V]
w
IS
ot

6| 7(819}110]11 |12 |13 |14 |15}16| 17

&
o
-t
o
——
[,

0 0j(o|jo0o|1|0]1]0

o
—

By|1]O0|O|JO|I1|O|I1)0|JO}J O[O0 21 ]0[1][O

Table 2: Bitstrings for a =9

In Table 1,.bit 3 is set in both 3., /8., so a = 5 is equidistant to two primes,

namely i =3 and 2a—i=10-3=171.
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These tables and the visualization of Goldbach’s conjecture as the symmetry of
a bit string is useful in understanding the fundamental trade off that occurs as
the integer a gets larger. For any a, there will be a — 1 possible bit positions.
As a increases then, there are more potential solutions. However, the prime
distribution wanes as magnitude increases. Therefore, as a increases, there tend

to be more chances but those chances are less likely to succeed.
Theorem 2.15. If (a + &) are both prime and x > 0, then (a,k) = 1.

Proof. Suppose it were otherwise, then a, x share some factor, say m. But if
that were so, then clearly both (a + &), (¢ — k) would be multiples of m. So
(a+k)=p=2x -mand (a — k) = ¢ = y-m for some integers x,y. But since

P, q are distinct primes, they cannot share a common factor. O

G(a) can be bound using number theoretic functions, as discussed in the two

theorems that follow.

Definition 2.6. The Euler totient function for an integer n, denoted ¢(n),
represents the numbers of integers no greater than n that are relatively prime to

n [7, p233].

Example 2.7. (a) $(10) = 4, since 1,3,7,9 are relatively prime to 10. (b)
$(1000) = 400.

Theorem 2.16. G(¢) is bounded by the Euler totient function in the following
way:

G(a) < ¢a)+1 (45)

Proof. From Theorem 2.15 it is known that a and s must be relatively prime
in order for both (a + x),x > 1 to be prime. Therefore, there can be no
more solutions to Goldbach’s Conjecture than there are numbers less than and

relatively prime to a. 0O

21



Definition 2.7. The prime counting function for an integer n, denoted m(n),

represents the number of prime integers no greater than n [7, p6].

Example 2.8. (a) 7(10) = 4 since 2,3,5,7 are the primes no greater than 10.
(b) ©(1000) = 168.

Theorem 2.17. G(a) is bounded by the prime counting function in the following
way:

G(a) € min(nw(a), 7(2a) — n(a)) (46)

Proof. From Theorem 2.14 it is known that if an integer a is equidistant to two
primes, the smallest of those is no greater than a. Therefore, G(a) can be no
greater than the number of primes up to a. Similarly, since the larger prime
must be no less than a but no greater than 2a, G(a) can be no greater than the

number of primes in that range. O

Theorem 2.18. If Goldbach’s Conjecture is true, then every square integer can

be written as the sum of a semiprime and a square.

Yo 3p,qk a’=p qg+K> (47)

Proof. As previously discussed, if Goldbach’s Conjecture is true, then so is
Restatement 2.1. Therefore, for every integer a there exists a x such that both
(atk) are prime. Since (a+ k) are both prime, their product is a semiprime, so
(a+k)-(a—k)=a®—k? = p-q, which through simple algebraic manipulation

leads to the theorem. O

2.2.1 Is Goldbach’s Conjecture True in Z?

.Goldbach’s Conjecture remains unproven. It is possible that among the infinite
expanse of the integers, there exists some finite or infinite number of integers

which do not satisfy the conjecture.
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Goldbach’s conjecture is closely related to the distribution of prime integers.
While that distribution does exhibit structure on a grand scale, it possesses no
evident structure when closely examined. For example, it is possible to estimate
the number of primes within a given range, but there exists no simple formula

to compute the #** prime number.

Since the conjecture remains unproven, one is relegated to studying it empiri-
cally. By hand, this is a very monotonous task. Desboves confirmed the truth
of the conjecture by hand for all even numbers up to 10000 in 1885[15]. With
the advent of computers, which excel at monotony, it has become possible to
confirm the truth of the conjecture for much higher values. As of December
2005, Oliveira e Silva, using a computer, has found the conjecture to hold up to

3-1017[15).

2.3 Weaker Statements than Goldbach’s Conjecture

Having studied Goldbach’s conjecture among the integers, a study of two weaker,
related statements is now offered. These weaker statements may be stepping

stones towards a proof of Goldbach’s conjecture in Z.

Definition 2.8. An integer n is said to be squarefree if its unique prime
factorization n = pf‘pg -pX...p%, has no exponent a, ... etc greater than one.

If a number is not squarefree, it is said to be squarefull(12, 52].

Example 2.9. (a) 20 = 22 - 5 is squarefull, since 2 has an exponent greater
than one. (b) 30 = 2-3-5 is squarefree because its unique prime factorization

contains no exponents greater than one.

Definition 2.9. The Mobius Function for an integer n, denoted pu(n), eval-
uates to 1 if n=1, 0 if n is squarefull, and to (—1)* if n is a squarefree product

of k primes [12, 32)].
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1, ifn=1
pn) = (=1)%, if n is a squarefree product of k primes (48)
0, otherwise

Example 2.10. (a) Consider n = 20 as in Ezample 2.9(a). Then u(20) = 0,
since 20 is squarefull. (b) Consider n = 30 as in Example 2.9(b). Then u(30) =
—1 since 30 is a squarefree product of 3 primes, so p(30) = (-1)3 = —1. (¢)
Consider n = 17, which is prime. Then u(17) = (=1)! = ~1, since 17 is prime
and hence is a product of ezactly one factor. Clearly, u(p) = —1 for any prime

integer p.
The author proposes the following conjecture:

Conjecture 2.2. Fuvery integer greater than 1 is equidistant to two integers

that evaluate to —1 in the mobius function.
Va>1 3k pla+r)=pla—r)=-1 0<K<a (49)
Definition 2.10. Let G*(a) denote the number of integers 0 < k < a such that

plat k)= —1.

Example 2.11. (a) G*(5) =2, since (5+0)=5, u(5) = ~1 and (5+£2) = 3,7,
w(3) = —1,u(5) = —1. (b) G*(500) = 66.

Theorem 2.19. FEvery integer greater than 1 is equidistant to two squarefree

numbers.

Va>1 Ik pla+k)#0, ula—k)#0 0<k<a (50)

Proof. The Riemann Zeta function and Dirichlet Lambda functions are involved

in this proof, but their properties, and justification of the identities relating to
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them are omitted, as discussing them is beyond the bounds of this thesis.

If the integer a is itself squarefree, then the theorem is satisfied when k = 0.

The remainder of this proof assumes that a is squarefull.

Let Q(z) denote the number of integers between 1 and n inclusively which are

squarefree.

The first step in this proof will be to show that
z
Ve Qz)> 5 (51)

Any integer n where 22|n or 3%|n... or p?|n is squarefull. If all those integers
which are divisible by squares of primes are removed, what is left are those

integers which are squarefree. [14]

Qo) 2a(l - 35— g7 = 550~ ) (52)
zx<1—zpl—2> (53)
nz=1 "

where p, is meant to denote the n** prime integer. The inequality present
in Equ. 52 stems from the redundancy which occurs when subtracting all of
those integers which are divided by a square prime. For example, consider
36 = 22.32, Since it contains two squares, 36 would be removed by both the ~2—1§
and glg terms in Equ.52. Therefore, the right-hand side of the inequality actually
overestimates the density of squarefull numbers in the equation, justifying the

inequality. Restating the equation so that the summation term is limited to the
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odd prime integers yields

mszG—§~§:i> (54
3 w1

It is possible to weaken the statement while retaining the inequality. This is
done by changing the summation to include all odd integers, instead of all odd
primes. Clearly the odd primes are contained among the odd integers, so the

inequality still holds.[14]

3 w— 1
N . —_—
qw”@t;wwm) (56)
The summation term is of the same form as the Dirichlet Lambda function[16]:
— 1
As) = Z Gni e (57)
n=0
=(1-27%)-¢(s) (58)

where ((s) is the Riemann Zeta function[7, 245] evaluated at s

=3 = (59)
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In this case, A(2) is required, so

o0

= 1
M= 2, e

= (1-27%)-¢@)
=(1-7) @)
3 7
=35

’,1.2
-3

The Lambda Function begins its evaluation at 0, whereas the summation term

in Equ.56 begins at 1, so 1 is subtracted from A(2) and substituted into Equ.

56 yielding

Q) 2 23— (M) - 1)

> ¢(0.516299450 . . .

s0 Q(x) > &

(60)
(61)

(62)

Using this fact, it must be shown that for any integer a, there exists some

integer 1 < k < a such that (a & &) are both squarefree. (Recall the very first

assumption in this proof, that a itself is squarefull, which implies that x =0 is

not a valid solution). Since x can be no greater than ¢ — 1, a + x can be no

greater than 2a — 1. Therefore, for any integer a, those numbers up to 2a — 1 °

are relevant. From Equ. 51 it is known that

20— 1
2

QRa—-1) >

27

(63)



will not be an integer. However, Q(z) must

However, since 2a — 1 is odd, 2‘12_ 1

return some integer value, so
Q@a-1)2a (64)

For each 1 < k < a, there is a pair of integers (a + &), (@ — k) and the following

three possibilities:
e Both are squarefree
e Neither are squarefree

o One is squarefree, the other is not

It must be shown that for at least one of the a — 1 possible values of x, both
(a + k), (a — k) are squarefree. Assume otherwise. In the least optimistic case,
for each of the a— 1 potential values for &, one of (a+x), (a— &) is squarefree and
the other is not. In total, this would add up to a — 1 squarefull numbers in the
range up to 2a — 1. However, Equ. 64 states that there are at least a squarefree
numbers in this range. In other words, there are more squarefree integers than

there are pairs, and therefore, one pair must consist of two squarefree numbers.

Therefore, every integer is equidistant to two squarefree numbers. O

Definition 2.11. Let G*(a) denote the number of integers 0 < k < a such that
ula+ k) # 0 pla — k) # 0.

Example 2.12. (a) G*(10) = 2 since (5+£0) =5, u(5) # 0 and (6£2) = 3,7,
where p(3) # 0, u(7) # 0. (b) G*(1000) = 253.

From Theorem 2.19 it is evident that G*(a) > 1 for all a > 1.
Theorem 2.20.

Ya>1 G(a) <G*(a) < G*(a) (65)
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Proof. If G(a) = z, then a is equidistant to x pairs of primes. Clearly, any
prime p has p(p) = —1, so each of these prime pairs also satisfies the conditions
of Conjecture 2.2. Therefore G(a) < G*(a). Similarly, if G*(a) = y, then a is
equidistant to y pairs of numbers who evaluate to —1 in the mobius function.
However, if a number evaluates to —1 in the mobius function, then it does not
evaluate to 0 in that function. Therefore, any pair satisfying Conjecture 2.2 also

satisfy the conditions of Theorem 2.19. Therefore, G*(a) < G*(a). O

Figure 3(a) and (b) graph the integer a with respect to G(a) in red, a with
respect to G*(a) in blue, and a with respect to G*(a) in green, for all a up to

1000 and 10000 respectively.

Definition 2.12. Let Gpin(a) represent the smallest integer 0 < k < a such
that (a £ k) are both prime integers. Let Gh. (a) represent the smallest integer

0 < k < 0 such that pla £ k) = —1. Let G, (a) represent the smallest integer
0<k<a such thatu(a+m)7&0, ula — k) # 0.

Example 2.13. (0)Gmin(6) =1 since (6+1) =7, (6—1) =5, 5 and 7 being
prime, and K = 1 being the smallest value for which (a = k) are both prime.

(b)Gmin(5) = 0, since 5 is prime so (5+ 0),(5 — 0) are both prime.
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Theorem 2.21.

Ya>1 Gj.(a) < G“mzn(a) < Gmin(a) (66)
Proof. If Gpin(a) = z, then (a % ) are both prime. Therefore, pu(a £ z) = —1,
so Gb..(a) < Gpinla). Similarly, if G4, (a) = y, then p(a £ y) = —1, so

pa£y) #0, 50 Goyin(a) < Gl (a). O

Figure 2(a) and (b) graph the integer a with respect to Gpin(a) in red, a with

[od .
min

respect to G4 ;. (a) in blue, and a with respect to G%,, (@) in green, for all a up

to 1000 and 10000 respectively.

2.3.1 A Discussion Regarding the Weaker Statements

Conjecture 2.2 and Theorem 2.19 are each weaker statements than Goldbach’s
Conjecture. If Goldbach’s Conjecture is true, they must be as well. Showing
either weaker statement to be false would imply that Goldbach’s Conjecture is
false. However, the truth of these weaker statements does not imply the truth

of Goldbach’s Conjecture.

Figure 3 emphasizes the relative strength of each of the three conjectures. In
green, Theorem 2.19, which has been shown to have at least one solution for
any integer a, in actuality tends to have many more solutions than the other
two conjectures. In blue, Conjecture 2.2, which has not been shown to be true,
tends to have more solutions than Goldbach’s conjecture, in red, but they have

a very similar shape and seem to increase at a comparable rate.

Figure 2 again emphasizes the relative strength of each conjecture. The smallest
integer k satisfying Theorem 2.19 for a given integer a, in green, tends to be

smaller than the smallest » satisfying Conjecture 2.2 for an integer a, in blue,
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which in turn tends to be smaller than the smallest x satisfying Goldbach’s
conjecture, in red. Table 3 lists the average Gy, values up to 50000 and

100000 respectively.

AVG for a up to | 50000 | 100000
Grinla) 20.90 | 48.81
Gh inla@) 3.22 6.45
G i la) 0.34 0.69

Table 3: Average Gpmin values in Z[i]

Proving Conjecture 2.2 would be a significant step towards proving Goldbach’s
conjecture. It is not immediately clear if such a proof is within reach using
current mathematics. However, any techniques used in such a proof could be

useful in proving Goldbach’s conjecture itself.
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3 The Abstract Goldbach Conjecture

Now that Goldbach’s conjecture has been studied in its original context, it is
desirable to define it in non-integer contexts. For each of these, the conjecture
will need to be defined. One possible method of defining the conjecture among
multiple contexts would be to simply treat each definition independently, at-
tempting to adapt the original conjecture as uniformly as possible for any given
algebra. Instead, Goldbach’s conjecture will be defined as abstractly as possible,
and that abstraction will act as the archetype for our definition of the conjecture

in all the number systems we study.

This archetype, called The Abstract Goldbach Conjecture, is analogous to

Goldbach’s Conjecture in Z while being as general as possible.

Conjecture 2.1, Goldbach’s Conjecture as it is generally stated, is that every
even integer can be written as a sum of two prime integers in at least one way.
This is a very simple statement, but it is not ideal for abstraction for two reasons.
First, it is a statement restricted to the even integers. Ideally, the conjecture
would be applicable to all members of a set, since the notion of an even number
may change in different contexts, and some sets may not contain even numbers
at all. Second, the conjecture makes explicit mention of the addition operator.
The integers themselves form a ring, for which both addition and multiplication
are defined as binary operators. However, not all algebraic structures define
addition as a binary operation. In Section 5, an algebraic structure for which

addition is not a binary operator will be studied.

The Abstract Goldbach conjecture is adapted from Restatement 2.1, which
is mathematically equivalent to Goldbach’s Conjecture as it is originally stated

(Conjecture 2.1). Restatement 2.1 states that every for every integer integer
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a > 1 there exists an integer & such that (a + k) are both prime integers. More

generally, every integer a is equidistant to two prime integers.

Definition 3.1 (The Abstract Goldbach Conjecture). If S is an infinite set for
which % is a binary operation, and S contains infinitely many prime elements,
where any element of S has some finite number of elements of smaller magnitude
than itself in S, then the Abstract Goldbach conjecture states that every element
e € S greater than some initial element i is equidistant to two prime elements
of S, where the smallest of those two prime elements is no greater than e, and

the larger no smaller than e.

Since is is not possible to dissasociate the notion of primality from multipli-

cation, * must be defined as a binary operator on the set S.

The magnitude function is labeled M(x). Among the iﬁtegers, our magni-
tude function for an integer a is M(x) = |z|, and an integer a is equidistant
to two primes z,y, © < vy if there exists an integer k, 0 < k < a such that
(a — k) = z,(a + k) = y. The integers satisfy all requirements for the Abstract
Goldbach conjecture, and if the Abstract Goldbach conjecture holds for the

integers, then Goldbach’s conjecture is true in Z.

It would not be apt to say that this abstraction removes all subjectivity

)
when applying Goldbach’s conjecture outside of the integers proper. After all,
the notions of magnitude and equidistance need to be defined for each number

system studied.

From here on, the term Goldbach’s conjecture is not intended to mean
the conjecture among the integers, but the statement of Goldbach’s conjec-
ture within whatever context is being discussed. For example, in the section on

quaternions, the term Goldbach’s conjecture is intended to mean the restate-
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ment of Goldbach’s conjecture among the quaternions.

The study of Goldbach’s conjecture can now be extended outside of the
integers, beginning with the Gaussian integers, those integral members of the

Complex plane.
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4 The Gaussian Integers

Having defined the Abstract Goldbach conjecture, it is now possible to study
Goldbach’s conjecture outside of the integers. Preceding such a discussion, an

overview of the algebra of the Gaussian integers is offered.

4.1 Arithmetic of the Gaussian Integers

The set of Gaussian integers, denoted Z[i] consists of those numbers of the form
a + bi where a,b € Z and i = y/—1. Like the integers, the Gaussian integers
form a commutative ring with an identity element(2, 58]. Therefore the Gaussian

integers satisfy Axioms 2.1-2.8 described in Section 2.1.

Definition 4.1. If z = a + bi is a Gaussian integer, a is called the real part of

z, denoted R(z). b is called the imaginary part of z, denoted I(z).
Example 4.1. (o) If z = 3+ 7i, then R(2) = 3 and X=2) = 7. (b) If z =

- —13 +i,then R(z) = —13 and I(z) = 1.

The Gaussian integers are a subset of the set C of Complex numbers, which are
numbers of the form a + bi where a,b € R. In turn, the integers are a subset of

the Gaussian integers.

ZCZE)CC (67)

Specifically, the integers are those Gaussian integers z where $(z) = 0. Some-
times when referring to an integer in Z[i], the imaginary part shall be omitted.

For example, 3 + 0¢ abbreviated to 3.

The sum, difference and product of two Gaussian Integers are themselves Gaus-
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sian integers

(a+bi)+ (c+di)=(a+c)+(b+d) i

21+ 22 = (R(z1) + R(z2)) + (S(21) + I(22)) - 4
(a+bi)—(c+di)=(a—c)+(b—d)-i

71— 23 = (R(21) — R(z2)) + (S(z1) — S(22)) - 4

(a+bi)- (c-+di) = (ac - bd) + (ad + bc) - ¢

Definition 4.2. A Gaussian integer z, divides zp # 0 if there exists a Gaussian
integer 2z such that z - 2z = zp. When z, divides 2y it is denoted as zg|zp,

otherwise, zq 1 zp.
Example 4.2. (1+)|(3+ 7i) since if z, = (54 2¢), (1 +14) - 2, = 3+ Ti.
Definition 4.3. The magnitude of a Gaussian integer z = a + bi, denoted |z|
18
2l = Va? + 5 (68)
= V(R(2))2 + (3(2))? (69)

Example 4.3. (a) If 2 = 3+7i, then |z| = V32 + 72 = v/58. (b) If 2 = —13+1,

then |z| = 1/(—13)2 + 1 = /170.

Definition 4.4. The norm of a Complez number z = a + bi, denoted N(z) is

N(z) = a® + b? (70)
= (R(2))* + (3(2))? (71)
= |2 (72)

Example 4.4. (o) If 2 =3+7i, then N(z) = 8>+ 72 =58. (b) If 2= —13+1,
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then N(z) = (—13)2 + 1 = 170.

Definition 4.5. The complex conjugate of a Gaussian integer z = a + bi,
denoted z, is

Z=a-—bi (73)

Example 4.5. (a) Consider z = 3+ 7i. Thenz = 3 —Ti. (b) Consider
z=-13+1. Thenz=—-13—1.

Corollary 4.1. The product of a Gaussian integer z and its conjugate is its
norm.

z-Z=(a+bi) (a—bi)=a?+b*=N(z) = |z (74)

Definition 4.6. Those Gaussian Integers z with N(z) = 1 are the units of
Z[i]. The units of Z[i] are 0+, 0 — 14, 1+ 04, and —1 + 04.[7, 183/

Definition 4.7. The associates of a Gaussian integer z are those numbers
of the form z - z,, where 2, is any of the units of Z[i] listed in Definition 4.6.
Namely, the associates of any Gaussian integer z are z,—z, zi and —zi.[7, 183]

Example 4.6. Consider z = 3 + Ti. Its associates are itself, —3 — 7i, —7+ 34,
and 7 — 3i.

Theorem 4.1. The product of the norms of two Gaussian Integers is equal to

the norm of their product.

N(z1) - N(z2) = N(z1 - z2) (75)

Proof. Consider two Gaussian Integers z; = a + bi and 22 = ¢+ di. Then
N(z1) - N(z2) = (a®+b%) - (2 +d?) = a*c* + a®d? + b2c? + b?d®. Now consider
N(z1 - 22). The product z; - 22 = (ac — bd) + (ad + be) - 1, s0 N (21 - 22) = (ac —
bd)? + (ad+bc)? = a®c? +a?d? + b?c? + b2d? which is equal to N(21)-N(z2). O
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Theorem 4.1 can be applied indefinitely [7, 183] so that
N(z1) N(23)...N(z) = N(21...2x) (76)

Definition 4.8. A Gaussian integer z is prime if its only divisors are ivtself
and its associates. If z is not prime, it is composite. Should there be any
ambiguity, those primes of Z will be referred to as the rational primes to

distinguish them from the primes of Z[i].

In the discussion that follows, 2, and z, are reserved to denote Gaussian primes.

Theorem 4.2. If the norm of a Gaussian Integer z = a+bi is a rational prime

p, then z is a Gaussian prime.

Proof. (Adapted from [7, p183])
N(z) = p where p is a rational prime. Assume z is a composite Gaussian integer,

the product of two non-unit Gaussian integers, say 21, 22, S0

Z = 2129 N(Zl) >1 N(ZQ) >1 (77)

From Theorem 4.1,
N(z) = N(21)N(z2) (78)
p= N(21)N(22) (79)

However, p is a rational prime, so it consists of a single non-unit factor. There-
fore, one of N(z;1), N(22) must be 1, and therefore, one of 21, z2 is a unit of Z][i].
However, this contradicts Equ. 77. Therefore, z cannot be composite, so it is

prime. O

The proof of the following theorem is omitted. This theorem will be required to
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understand the relationship between the rational primes and the primes of Z][].

Theorem 4.3 (Fermat’s two squares theorem). A rational prime p can be rep-

resented as a sum of two squares if and only if p = 1 mod 4.[7, 219]

Vpe{dk+1,keZ™} Fa,bcZ p=a®+b (80)

Theorem 4.4. If p is an odd rational prime and p = 3 mod 4, it is prime in

Z[i]. Otherwise, it is composite in Z[3].

Proof. All odd rational primes p are congruent to 1 or 3 mod 4. If p=1 mod

4,then by Theorem 4.3 there exist integers a, b such that

p = a® + b (81)

Therefore, p can be factored as (a — bi) - (a 4 bi) = a® + b2, so p is composite in

Z[i).

Suppose that p = 3mod 4 Assume that p is composite in Z[¢]. Then it is
composed of two non-unit factors, say zi, ze, where z; = a + bi and 29 = ¢+ di.
Then the norm N(p) = p? = N(z;)-N(z2) by Theorem 4.1, 50 N(21) = N(z2) =
p (since z1, z2 are not units). Therefore, p must be composable as a sum of two
squares, since N(z;) = a® + b* and N(z2) = ¢ + d?. However, by Theorem 4.3,
p cannot be composed as a sum of squares, since p Z 3 mod 4. Therefore, p

cannot be composite, so it is prime in Z[i]. O
Theorem 4.5. If 2 is a Gaussian prime, then so are the associates of z.

Proof. If R(z) > 0,3(z) > 0, then z is prime if N(z) is a rational prime. The
associates of z are the composition z - z,, where 2, is any of the units of Z[3].
Since N(z,) =1,

N(2) = N(z) - N(zu) (82)
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and therefore, if N(z) = p, p prime in Z, the N(z - z,) = p as well, and hence

2z - 2y is prime in Z[i].

If one of Re(z),3(z) = 0, then z is prime if the non-zero part of z is a rational
prime leaving a remainder of 3 upon division by 4. If p is such a prime, then
D Py, any of —p, pi, —pi, will have a zero part and a rational prime part as well,

so it remains irreducible into smaller factors, and is therefore prime. O
By the same argument, the conjugate of a Gaussian prime is prime as well, since
N(z) = N(2).
To recap, the primes of Z[i] are [7, p183-184]

e All z = a + bi where a,b > 0 and N(a + bi) is a rational prime.

o All z = a + bi where one of a,b = 0 and the other is a rational prime

congruent to 3 mod 4.
e The associates (and conjugates) of the above
Theorem 4.6. There exist an infinity of Gaussian primes.

Proof. From Theorem 4.3 it is known that any rational prime p = 1 mod 4 can
be written as a sum of two squares. From Theorem 5.4 (Dirichlet’s Theorem)
it is known that there exist an infinity of primes p = 1 mod 4. Therefore,
any of the infinity of primes p = 1 mod 4, there exist integers a,b such that
p = a® + b%. Since a? + b? is the norm of a Gaussian integer z = a + bi, and
since any Gaussian integer with a prime norm is a Gaussian prime, there exist

an infinity of Gaussian primes. a

Definition 4.9. A Gaussian integer z is said to be even if its norm N(z) is

an even integer. If a Gaussian integer is not even, it is odd.
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If the norm N(z) is even then it can be rewritten as N(2)-N(2') by Theorem 4.1.
Those Gaussian integers with a norm of 2 are only 1+ ¢ and its associates. So
those numbers with an even norm will have an associate of 1+ ¢ in their unique

prime factorizations.
Theorem 4.7. A Gaussian integer z = a + bi is even if a + b is even/8, 81].

Proof. If a + b is even, then either both a and b are even, or they are both
odd. Either way, the norm N(z) = a2 + b will have to be even, since squaring
a number does not change its parity. If the norm is even, then z is even by

Definition 4.9. O

Theorem 4.8. The Gaussian prime 1 + i and associates are the only even

Gaussian primes.

Proof. Assume there is an even Gaussian prime 2’ = a + bi, where one or both
of a,b > 1. If ' is even then its norm is even, so one of the prime factors of 2’
is 1+ i or one of its associates. But if 2’ # 1+ has 1+ ¢ in its unique prime

factorization, then clearly 2’ is a composite number, which is a contradiction. O
From Theorem 4.8 it is evident that any Gaussian prime z, # 1 + ¢ is odd.

Theorem 4.9. The sum of any two Gaussian primes zp,z, # 1 +1 is an even

Gaussian integer.

Proof. Suppose z, = a + bi and z, = ¢+ di. It must shown that their sum
ze = (a+¢)+ (b+d) - is an even Gaussian integer. Since z,, 2, are both prime,
by Theorem 4.8 the sum a + b is odd and so is the sum ¢ + d. However if a + b
and ¢+ d are odd, then the sum (a + b+ ¢ + d) is even. Therefore, the sum of
the real and imaginary parts of z. is even, and hence z. itself must be an even

Gaussian integer by Theorem 4.7. (|
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The following proof is analogous to the division algorithm of the integers (The-

orem 2.3).

Theorem 4.10. For every pair of Gaussian integers z, 2y, with 2y # 0 there

exist Gaussian integers zm, zr such that
Z2=2Zm-21+ 2 N(zp) < N(21) (83)

Proof. (Adapted from (7, p85])
Since z; is assumed to be non-zero, there is no doubt that EZI is a Complex

number!, say

Z =R+Si (84)
21

Where R, S are real. Clearly there exist two integers x,y such that

IR—z| < (85)

[T I R

IS ~yl < (86)

since in the least optimistic case, a real value would be % away from the closest

integer. Consider the difference

2= ;z; — (z + y7) (87)
= [(R—2)+(S—y)-i (88)
= (R—-)*+ (S -y} < % (89)

The inequality stemming from the fact that both (R — z), (S —y) < 3.

LHere it is assumed that the reader has elementary knowledge of the Complex numbers
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Let k =z + yi and 2, = 2 — K - z1. Therefore,

z 1
Zokl<— 90
Z-ns— (90)
Squaring both sides yields
N(=—r)< 3 (o1)
21
Multiplying both sides by N(z1) yields
Niar) N( =) < 5 Niaa) (92)
Which by Theorem 4.1 yields
. ,
N(z—zl«n)§—2-~N(zl) (93)
N(zr) < N(z1) (94)
a

Definition 4.10. If z, z,, 2p are Gaussian integers and z|zq, z| 2, then z is said
to be a common divisor of z,,z. If z is the Gaussian integer of largest norm
which divides both z,, zy, then z is said to be the greatest common divisor of
Za, 2b, denoted (zq,2p) = 2. If 24, 2p share no common factor other than units

then (zq,2zp) = 1 and it is said that z,, zp are relatively prime.
Theorem 4.11. If (z1,22) = 1 and z1|2a23, then 21]z.

Proof. Since z1, z2 share no common divisor other than 1, multiplying them

both by 23 leads z3 to be their greatest common divisor. (7, p186]

(2123, 2223) = 23 (95)
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The theorem assumes that z1|z023, and trivially, z1|z123. Since 21 divides them

both, it must divide their greatest common divisor, which is z3. So z1|23. O

Theorem 4.12. If z, is a Gaussian prime and 21,23 are Gaussian integers

where zp|z120 then either zp|z1 or zp|z2 (or both).

Proof. Let (zp,21) = 24. Then 24|z, and zg|21. Since z4]2,, where 2, is prime,
24 is either a unit or an associate of z,. If it is a unit, then (zp,2,) = 1, and by

Theorem 4.11 zp|23. Otherwise, (2p, 21) = zp, and therefore, 2p|21. O

Corollary 4.2. If z, is a Gaussian prime and 2125 . . . 2, are Gaussian integers
y 4 m

where zp|z122 ... 2m, then zp|z; for some i, 1 <i<m.

Proof. (By Induction)

As a base case, let m = 2. Then it must be shown that if zp|2122, 2plz1 or
2Zp|z2 (or both). But this is already known from Theorem 4.12. Next, from the
assumption that the theorem holds up to m = n, it must be shown that the

theorem also holds for m =n + 1.

If the theorem is true for n, then z,]z122 ... 2, and plz; for some ¢, 1 <i<n. It
must be shown that under this assumption, it is also true that if zp|z122 . . . 2n41,
then zp|z; for some j, 1 < j < n+ 1. However, it is already known that z,|z;,
and 4 lies within the bounds for j, so when j = 1, 2p|z;, so the theorem is

satisfied. (]

Corollary 4.3. If z,,m1,72, ... Ty are Gaussian primes where zy|mima ... Ty,

then zp, = m; for some i, 1 <i < m.

Proof. From Theorem 4.2 it is known that z,|m; for some ¢, 1 < i < m. So there

must exist some Gaussian integer z; such that

Zp 2 = T (96)
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However, m; is prime, and hence its only divisors are the units of Z[i] and its
own associates. Therefore, if zx is not a unit of Z[i], m; is composite, which is a

contradiction. So z; must be a unit, and z, = ;. (m]

Theorem 4.18. Every Gaussion integer z with N(z) > 1 is divisible by some

Gaussian prime.

Proof. (Adapted from [7, p184})
If z is prime, then clearly it is divisible by a prime (namely itself), which sat-
isfies the theorem. Otherwise, it must be the product of at least two Gaussian

integers, say 21, 24, neither of which are units.

2=12124 N(z1)>1 N(z,)>1 (97)

where N(z) = N(z1) - N(z,) By Theorem 4.1 so
1< N{z1) < N(z) (98)

z1 is not a unit so it is either prime or composite. If it is prime then z is divisible
by z1, which satisfies the theorem. Otherwise it is composite and consists of

two Gaussian integers, say 23, zp. S0
z1=222 N(z2)>1 N(z)>1 (99)

where

1< N(ZQ) < N(Zl) (100)

At any given iteration, z; will either be prime, in which case the theorem is
satisfied, or composite, in which case the same method is applied once more.

In the least optimistic case, the method is applied until N(z;) = 2, which will
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eventually occur, since applying this method perpetually decreases the norm,
but that norm will never be less than 2, since z; is never a unit. Since those
Gaussian integers with a norm of 2 are 1+ ¢ and its associates, which are prime,
the theorem will be satisfied if N(z;) reaches 2.

0

Theorem 4.14. Every Gaussian integer z with N(z) > 1 can be represented as

a product of Gaussian primes.

Proof. (Adapted from [7, p184]) From Theorem 4.13 it is known that z is divis-
ible by some Gaussian prime, say m;. So
z=m -z N(m)>1 (101)

where 27 is some Gaussian integer where N(z1) < N(z) (since 7 is not a unit).
If z; is a unit or a prime, z has been written as a product of primes and the
theorem is satisfied. Otherwise, z; is composite, and by Theorem 4.13 it must

be divisible by a prime, say w3, so

z1=m2- 22 N(mg)>1 (102)

where 23 is a Gaussian integer where N(z2) < N(2;) so if z is neither a unit
nor a Gaussian prime

2= M T2y (103)

and this process is also applied to z3. The process is applied repeatedly until z;

is a prime or a unit, at which point

Z =T 0o Mje 1Ry (104)

is a product of primes. O
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Theorem 4.15 (The Fundamental Theorem of Arithmetic For Gaussian Inte-
gers). Fvery Gaussian integer whose norm is greater than one can be written

as a product of primes in a unique way.

Proof. Tt has already been shown that every Gaussian integer can be written
as a product of prime Gaussian integers. Next, it must be shown that this

representation is unique, apart from order and units.

This.proof is analogous to Theorem 2.12 of the integers. To simplify notation

in this proof, p,q are used to denote Gaussian primes.

Suppose some Gaussian integer z can be written as a product of Gaussian primes

in two different ways

Z=D1-Pa-Pm =qL G2 Gn (105)
Assume that m < n, and that the primes are ordered in such a way so that

N(p1) < N(p2) <...N(Pm), N(q1) < N(g)<...N(gn) (106)

since p1 P2 ...Pm = p1- k1, where ki = pa...pm, it must be that pylgi-g2...¢n
(Sée Definition 4.2). By Corollary 4.2, p; then must divide exactly one of
gi---qn, 0 N(p1) > N(q1). Similarly, since g1 - g2...9n = @1 - k2, where
ka=gqo...qn, SO q1|p1 D2 ...Pm. By Corollary 4.2, ¢; must divide exactly one
of p1...pn, 50 N{q1) > N(p1). But earlier it was stated that N(p1) > N(q1),
and now that N{q;) > N(p1), so it must be true that N(q;) = N(p;). Therefore,

¢1 = p1, and these equal factors cancel out, leaving

P2 Pm=02...Gn (107)
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This method can be applied repeatedly, canceling p; with ¢; for each ¢ up to
min(m,n). If m = n, all factors cancel out, so clearly p; = ¢; for all i up to m.
Otherwise, suppose m < n, the first m elements on each side are canceled out

and

1=qgmi1 gmiz---Gn (108)

This equation is impossible, since gp+2 ... gy are all Gaussian primes, and the
smallest Gaussian prime is 1+4. Therefore, m and n must be equal, and p; = ¢;

for all 7 up to m, and the theorem is complete. O

4.2 Goldbach’s Conjecture in Z[i]

Goldbach’s Conjecture among the Gaussian Integers was studied by Holben and
Jordan in a 1968 paper called The twin prime problem and Goldbach’s conjecture
in the Gaussian Integers. In it, they suggest a restatement for the conjecture
in Z[i] and test it empirically for a small set of values. Theirs may be the sole
paper among mathematical literature to study Goldbach’s conjecture outside of

the integers proper.

A reasonable first attempt at restating Goldbach’s Conjecture among the Gaus-
sian integers would be to directly adapt the original conjecture of the integers

(Conjecture 2.1) to the Gaussian integers as follows:

Restatement 4.1. Fvery even Gaussian integer z. can be composed as the sum

of two Gaussian primes in at least one way.

Vze Fzp,2q 2e=2p+2 (109)

However, as Holben and Jordan mention, this is not an appropriate restatement
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of the conjecture. For consider two Gaussian primes z, = a +bi and 2, =
—c—di. Then z. = 2z, + 2z = (a — ¢) + (b — d)i. This could be rewritten as
2e = 2p — (—24), where —2z, is prime by Theorem 4.5. However, this means
that Restatement 4.1 will be satisfied as long as z. can be written as a sum
or difference of primes. Clearly, this is a not an appropriate restatement of

Goldbach’s conjecture in Z[z].

Holben and Jordan then set out to define the conjecture among the Gaussian
integers in such a way that would not allow both sum or differences of primes

as valid solutions.

Restatement 4.2. Every even Gaussian integer z. can be composed as a sum
of two Gaussian primes zp, zq, where the angles £z,0z:, £2.024 < 45°, where 0

18 the point of origin.

Holben and Jordan choose Restatement 4.2 as their definition of Goldbach’s
conjecture in Z[i], and confirm its truth for a small set of values. Although
the path taken by Holben and Jordan to adapt Goldbach’s conjecture to the
Gaussian integers is acceptable, it is not equivalent to the definition chosen in

this work, which is presently proposed.

Rather than study Goldbach’s conjecture for all Gaussian integers, the study
can be limited to those Gaussian integers of the form z = a+bi, where 0 < a < b.
Every Gaussian integer is an associate or conjugate of a Gaussian integer of such
a form, and from here on, when z is of this form, it is said to be of proper form.

For example, z = 2 + 3i is of proper form, but z = 3 + 2¢ is not.

Theorem 4.16. Any Gaussian integer z is an associate, conjugate or conjugate

associate of a Gaussian integer of proper form.

Proof. For any z = a + bi, the eight associates and their conjugates are as
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follows:

(a+bi) 1=a-+bi

(a+bi)=a—bi
(a+bi)-i=-b+ai
(—=b+ai) = —b—ai
(a+b) - —1=—-a—bi
(—a—bi)=—a+bi

(a+bi)- —i=b—ai

(b—ai) =b+ai

If z = a + bi where a,b are both positive, then if z is not of the proper form,

z-—t=>b+aiis. If z=a+bi and a,b are both negative, then one of z- -1 =

—a—"bi,z -1 = —b—ai will be of the proper form. If z = a+bi is such that one of
a, b is negative, and the other positive, then one of z- 1 = a —bi, z-i = —b+ai,
z-—1=b—ai, z- —1 = —a + bi will be of the proper form. O

Theorem 4.17, to follow, states that if Goldbach’s conjecture is true for a Gaus-
sian integer z, it is also true for the associates and conjugates of z. Therefore,
if Goldbach’s conjecture holds for all Gaussian integers z = a + bi,0 < a < b,
it holds for all Gaussian integers. In effect, the Gaussian plane can be cut into

eight symmetrical slices, and the study here is limited to a single slice.
The magnitude function for a Gaussian integer z = a + bi is M(2) = N(2) =
a? + b%, and equidistance for z = a + bi, 0 < a < b is defined as follows:

Definition 4.11. A Gaussian integer z = a + bi, 0 < a < b is said to be
equidistant to two Gaussian integers z1,z2, N(z1) < N(z2) if there exists a

Gaussian integer z, = ¢+ di,0 < ¢ < d, N(zx) < N(z) such that (z — z,) =
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z1,(z + 2x) = 2.

For the remainder of this section, and the section regarding the weaker state-
ments, any Gaussian integer z or z, can be assumed to be of the proper form,

and 0 < N(zx) < N(z2).

Conjecture 4.1 (Goldbach’s conjecture among the Gaussian integers). Fvery

Gaussian integer z, N(z) > 1 is equidistant to two Gaussian primes, 2p, zq.
Vz,N(z)>1 Fz, z2+4ze=2p,2— 2 =24 (110)

If Conjecture 4.1 is satisfied for a Gaussian integer z, z is said to satisfy Gold-

bach’s conjecture.

Example 4.7. z = 2 + 3¢ satisfies Goldbach’s congecture, since if hy = 0+ 21,

(z+2x), (2 — 2) are prime Gaussian integers, with norms 5 and 29 respectively.

Theorem 4.17. If a Gaussian integer z satisfies Goldbach’s conjecture, then

so do its associates.

Proof. If z satisfies Goldbach’s conjecture, it is equidistant to two primes, 2z +
25 = zp and z— 2, = zg. Let z, be any of the unities of Z[i]. Then z- 2, + 2,2, =
zy(z+2¢) which has norm N(1)-N(2+2z,) = N(2+2,), which is prime. Similarly,
Zu% — ZyZy = 2y (2 — 2 ) has norm N(1)- N(z— z) = N(z — z,) which is prime.

So any associate of z -z, of z is equidistant to two primes, 2, - 2y, and zg-z,. O

Oune difference between this definition and that of Holben and Jordan is that
it is not a statement about the even Gaussian integers, but about all Gaussian
integers, regardless of parity. Suppose Conjecture 4.1 were true for all Gaussian
integers. Then for any Gaussian integer z, there exists a Gaussian integer 2

such that (2 + 24), (z — 2,) are prime. Therefore, (z + 24) + (2 — 24) = 2z is
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composable as a sum of two prime numbers. However, those Gaussian integers
of the form 2z do not constitute the set of all even Gaussian integers, since
by Theorem 4.7, a Gaussian integer z is even if 2|(R(2) + 3(z)). For example
z1 = 2+ 44 is even and can be rewritten as z; = 2(1 + 2¢), but 25 = 3 + 5¢
is also even, even though 2 cannot be factored out as for z;. Therefore, the
definition of Goldbach’s conjecture proposed by Holben and Jordan is in effect
a stronger statement than the definition extending from the Abstract Goldbach

conjecture.

Definition 4.12. The Goldbach number for a Gaussian integer z, denoted G(z),
represents the number of Gaussian integers z. that exist such that (z £ z,) are

both Gaussian primes.

Example 4.8. (a) G(1+5%) = 3, since for zp, = 1+2i,1 —2¢ and i respectively,
(2% 24) are both prime. See Figure 4 for a visual representation of this example.

(b) Similarly, G(23 + 30i) = 23.

Figure 4 (a) and (b) visually depict Goldbach’s Conjecture in Z[4] on a plane,
where, as by convention, the real part of a Gaussian integer is represented on
the x-axis and the imaginary part on the y-axis. Figure 4 (a) depicts the various
solutions to Goldbach’s Conjecture for z = 1 + 54, while (b} does the same for

z=3+Ti.
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Goldbach’s conjecture in Z[i] can be restated as follows:
Restatement 4.3. For any Gaussian integer z with N(z) > 1, G(z) > 1

Figure 5 (a) and (b) graph N(z) (x-axis) with respect to G(z) (y-axis) for all
Gaussian integers z = a + bi,0 < ¢ < b with norms no greater than 10000 and

50000 respectively.

Theorem 4.18. If z is a prime Gaussian integer, it satisfies Goldbach’s Con-

Jjecture in Z[i.

Proof. If z is prime, then it is trivially equidistant to two primes, since when

2k =0+ 014, (2 £ 2,) = z, which is prime by the definition of the theorem. [J
Theorem 4.19. if (z £ 2x), are both prime, then (z,zy) = 1.

Proof. Suppose it were otherwise so that z, zx share some common factor, say
m. S0 2+ zx = zp =z -m and z — 2 = zg = y - m. However, (2 + 2), (2 — zx)
are two primes, distinct from one another, so it impossible for them to share a

common factor. a

Theorem 4.20. If Goldbach’s Conjecture is true in Z[i], then the square of any
Gaussian integer can be composed as the sum of o Gaussian semiprime and a

Gaussian integer square.

Yz Fzpzgen 22 =2pc2gt+ 20 (111)

Proof. If Goldbach’s Conjecture is true in Z[¢], then there exists a Gaussian
integer zj such that (z £ 2¢) are both prime. Consider the product (z + zg) -
(z — 2) = 2% — 23, where (z =+ 2;) are both primes. By algebraic manipulation

the theorem holds, assuming the truth of Goldbach’s conjecture. O
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4.2.1 Is Goldbach’s Conjecture True in Z[i]?

The challenges present in proving Goldbach’s conjecture in Z[i] are similar to
those of solving it in Z. At the core, the conjecture is heavily related to the distri-
bution of prime numbers among the Gaussian integers, a distribution that pos-
sesses an overarching structure, but is chaotic upon close examination. Again,

the study of Goldbach’s conjecture here is relegated to empirical observation.

Using the software tools developed for this work, Goldbach’s conjecture in Z[i],
Conjecture 4.1, was tested empirically for all Gaussian integers z = a + bi, 0 <
a < b with 1 < N(z) < 1000000. There are no counterexamples to Goldbach’s

conjecture within this range.

4.3 Weaker Statements of Goldbach’s Conjecture in Z[i]

As among the integers, it is possible to compute the mobius function among
the Gaussian integers. Here, two weaker statements of Goldbach’s conjecture

similar to those proposed for the integers are studied.

Definition 4.18. A Gaussian integer z is squarefree if its unique prime fac-

torization z = 7r§"7r§ X ... 78, has no exponent a, 3, ... etc greater than one.

Example 4.9. (a) z =5 + 5i is squarefree since its unique factorization, (1 +
2i) - (1 — 28) - (1 + ©) contains no exponent greater than one. z = —4 + 2% is
squarefull, since its unique prime factorization, (1+4)? - (1 + 2i) has a square

factor.

Definition 4.14. The Mobius Function for a Gaussian integer z, denoted
u(z), evaluates to 1 if z is a unit, 0 if z is squarefull, and to (=1)* if z is a

squarefree product of k Gaussian primes.
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1, if N(z) = 1
ulz) = (=1)%, if z is a squarefree product of k Gaussian primes (112)

0, otherwise

Example 4.10. Consider z = 5 + 5i as in Ezample 4.9(a) above. pu(z) = —1
since z is a squarefree product of three primes. (b) Consider z = —4 + 2i as in

Ezxample 4.9(b) above. u(z) =0, since z is squarefull.

Conjecture 4.2. Every Gaussian integer is equidistant to two Gaussian inte-

gers which evaluate to —1 in the mobius function.
Vz 3z plz+az)=-1, plz —z)=-1 (113)
Definition 4.15. Let G*(z) denote the number of Gaussian integer pairs z1, 22

equidistant to z such that p(z1) = —1, p(ze) = —1.

Conjecture 4.3. Every Gaussian integer is equz’dz’stant to two squarefree Gaus-
stan integers.

Vz 3z plz+2)#0, plz—2e) #0 (114)

Definition 4.16. Let G*(z) denote the number of integer pairs z1, z2 equidistant

to z such that p(z1) # 0, u(z2) # 0.

Theorem 4.21.
V2 G(z) < G*(z) < G°(z) (115)

Proof. If G(2) = =z, then G*(z) > z, since any z, such that (z + z.) is prime
also satisfies pu(z + z,) = —1. Similarly, if G¥*(z) = y, G*(z) > y, since any z.

satisfying p(z & z,) = —1 satistles p(z & z,) # 0. O
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Figure 6(a) and (b) graph N(z) with respect to G(z) in red, N(z) with
respect to G#(z) in blue, and N(z) with respect to G*(z) in green, for all z with

norms less than 1000 and 10000 respectively.

Definition 4.17. Let Gmin(z) = N(zy) , where zy is the Gaussian integer with
the smallest norm such that (z+z,) are both prime. Let G, ... (z) = N(z,) where

2 s the Gaussian integer with the smallest norm such that p(z £ z,) = —1.

Let G% ;. (2) = N(z.) where z, is the Gaussian integer with the smallest norm

such that p(z + z,) # 0.

Example 4.11. (a) If 2 = 1 +5¢ (as in Figure {(a)), Gmin(2) = 1, since when
zr = 0+14, (z £ 2;) are both prime, and N(0 + i) = 1, and there is no integer
2, with norm less than 1 which salisfies this property. (b) If z =3+ T7i (as in
Figure 4(b)), Gmin(z) =5, since when z;, = 2+1, (z £ z;) are both prime, and
N(2+1) =5, and there is no integer z, with norm less than 5 which satisfies

this property.

Figure 7(a) and (b) graph the Gaussian integr z with respect to Gpin(2) in red,

z with respect to G%.,,.(z) in blue, and z with respect to G,;,(2) in green, for

all z up to 1000 and 10000 respectively.

Theorem 4.22.
Vz min(2) < G“min(z) < Grin(2) (116)

Proof. If Gpin(2) = z, then there exists a Gaussian integer z., N(zs) = = such

that (2 & z,) are both Gaussian primes. Then pu(z & 2z,) = —1, since (z £ z)

are prime and for any prime zp, p(zp) = —1. Therefore, Gmin(2) < Ghyin(2).
If G5 ,,.(2) = y, then there exists a Gaussian integer 2z, N(2s) = y such that
p(z £ 2) = —1. Clearly then, pu(z £ z¢) # 0, so Gh,. (2) € GE,in(2). O
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4.3.1 A Discussion Regarding the Weaker Statements

Perhaps the most striking result here is the similarity between Figure 6, Gold-
bach’s Comet and the weaker statements in Z[¢] and its analogue among the
integers, Figure 3. Their similarity lends credence to the abstract Goldbach
conjecture, their coinciding structures suggesting that the essence of Goldbach’s
conjecture has not been lost in translation. All three conjectures appear to hold

true, tending to have an increasing number of solutions as magnitude increases.

Although Conjecture 4.3 is not proven here, it is almost certainly possible to
prove using the current body of mathematics. However, Conjecture 4.2 is prob-
ably not solvable at present. As in Z, each are a step towards a proof of Gold-

bach’s conjecture.

Figure 7 emphasizes the relative strength of each conjecture. The smallest z
satisfying Theorem 4.3 for a Gaussian z, in green, tends to be smaller than the
smallest z, satisfying Conjecture 4.2 for an integer @, in blue, which in turn
tends to be smaller than the smallest z, satisfying Goldbach’s conjecture in
Z[i], in red. Table 4 lists the average Gy values for all Gaussian integers with

norms no greater than 1000 and 5000 respectively.

AVG for z up to | 1000 | 5000
Gmin(2) 5.76 | 9.28
GE . (2) 3427|317
G in(2) 0.40 | 0.39

Table 4: Average Gmn values in Z[3]

Since Goldbach’s conjecture is satisfied for all z = a + bi with 2 < N(z) <
1000000, Conjectures 4.2 and 4.3 are also satisfied in this range (By Theorem
4.21).
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5 Integer Subsets

Adapting Goldbach’s conjecture to the Gaussian integers involved the transition
from the number line to the number plane. Returning to the number line,
particular subsets of the integers are studied here. The algebraic properties of

these sets differ significantly from those studied thus far.

This section begins with a discussion about the Hilbert set, an instance of a

more general algebraic structure which shall be studied here.

5.1 The Hilbert Set

Let H denote the set of all non-negative integers n = 1 mod 4.

H={4k+ 1,k € ZT U{0}}

H=1{1,5,9,13,17,21,25...}
H is a subset of the positive integers

HCzZ* (117)

and by addition and multiplication in H, it is meant the binary operations +, *
as defined on the integers. Since H is a subset of the ring of integers, one can
ask whether or not H is closed with respect to each binary operation. (See
Definition ??). Since the product of any two elements of H is itself a member
of H, H is closed with respect to multiplication. Since the sum of two elements

of H is not a member of H, H is not closed with respect to addition. For any
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two elements 464+ 1,45+ 1€ H,

(di+1)-(4j+1)=16ij +4i+4j+1=4(4ij+i+j)+1 €H

W+ )+ @i+ ) =4+4j+2=4G+/j)+2 ¢H

Since H is not closed with respect to integer addition, it cannot be classified as
a ring. However, since x is closed with respect to integer multiplication in H, it

can be algebraically classified as a monoid under multiplication.

Definition 5.1. A monoid is a pair < M,o > consisting of a non-empty set

M along with a binary operation o satisfying the following properties: [2, 227]

Associativity:
Va,boce M ao(boc)=(aob)oc
Identity:
VaeM Te aoce=c¢coa
"Closure:

Ya,be M aobeM

The closure property need not be explicitly stated, since it is implied in the
definition of a binary operator. It is included here for emphasis. Since H is
not closed with respect to integer addition, < H,+ > cannot be classified as a

monoid.

The pair < H, * > satisfies the properties of a monoid. More specifically, since
a-b=>b-a Vabe& H, < H* > is called a commutative monoid. This
special monoid was studied by David Hilbert, and is sometimes referred to in

the literature as the Hilbert Monoid[11, 26]. The Hilbert Monoid is a special
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case of a more general construct which will be presently described.

5.2 The MJa] Monoids

Let M |a] represent the set of all non-negative integers n = 1 mod a.

Mla] = {ak+1,a > 2,k € ZT U{0}}

Ma]={l,a+1,2a+1,3a+1...}
M]a] is a subset of the positive integers
Mla} C ZT (118)
M[1] = {1,2,3,4...} corresponds to the set of positive integers
M =Z7 (119)

M][2] = {1,3,5,7...} corresponds to the set of odd positive integers.

Since Goldbach’s conjecture in Z was studied earlier, M[1], M[2] are ignored,
since each possess the same prime distribution as the integers. From here on,
when M|a] is written, it is meant to be a general truth for any M]a] monoid
where a > 2. Therefore, M[3] is the first set satisfying the properties that are to
follow. M[4] corresponds to the set H, the Hilbert Monoid introduced earlier.

The collection of all M|a] sets,where a is an integer greater than 2 is referred
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to as the 1-monoids.

M[3] = {1,4,7,10,13,16, 19,22, 25, 28,31, 34, 37,40 . . .}
M[4] = {1,5,9,13,17,21,25,29, 33, 37,41,45,49,53....}

M10] = {1,11,21,31,41,51,61,71,81,91,101,111 ...}

As with the Hilbert monoid, addition and multiplication on M]|a] are integer
addition and integer multiplication, and since M|a] is a subset of Z, each binary
operation of Z is either closed or not on Mla]. M]a] is closed with respect to
integer multiplication, but not with respect to integer addition. Consider any

two elements of Mla], ai + 1 and aj + 1.

(@i+1)-(aj+1)=a*j+ai+aj+1=alaij+i+5)+1 € M]a

(@i+1)+(aj+1)=ai+aj+2=ali+j)+2 ¢ M]a]

Any set Ma] paired with integer multiplication forms a commutative Monoid
< Mla],* >. The elements of M|a] are associative with respect to *, since
the elements of M|a| are just a subset of the integers, which themselves satisfy
associativity with respect to *. M|a] satisfies the monoid requirement for an

identity element, since 1 € M|a] for any a.

The unit 1 € Ma] is denoted as Ma]o, and M]a); denotes i non-unit element
of Mla]. Therefore, M[a]; = ai + 1. For example, M[3]s =3-2+1 =7, and
M[4]1o =410+ 1 = 41. Using this notation, the product of two elements of
Mia), Mials, Ml i

Mlali - Mla]; = Mlalaij+its- (120)
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Definition 5.2. M]a], is said to divide Ma|, and this is denoted M[a], |
M(aly if there exists a Mla]x where Mla)y - Ma]x = M]aly.

Example 5.1. In M|[3], 4/28 since if k=7 € M[3], 4-7 = 28.

Definition 5.3. An integer M[a], is prime in M{a] if the only elements of
the set Mla] which divide it are 1 and itself. Otherwise Mla], is composite.

The primes of Z are referred to as rational primes.

Example 5.2. (a)The set of primes in M[3] are {1,4,7,10,13,19,22,25,31 ... }.
(b) In MI4] the primes are {1,5,9,15,17,21,29 ...}.

As is evident in Example 5.2, many numbers which are composite in Z are
prime in Ma]. For example, 25 is prime in M][4] but composite in Z. Also,
it is possible for a number to be prime in MJa] but composite in M]as]. For
example, consider 25, a member of both M(3], M[4], which is prime in M(3],

but composite in M][4].

Theorem 5.1. Ifp is a rational prime, and p € Mla], then p is prime in M(al.
Proof. The set M|a] is a subset of Z. If p cannot be decomposed into elements
of Z, then clearly it cannot be decomposed as elements of a subset of Z. O
Theorem 5.2. The first a + 1 non-unit elements of Mla] are prime in Mla].

Proof. The smallest composite element of M[a] will be the square of the first
prime element, and the first prime element will be the first non-unit element,
so the first composite element will be (Ma]1)2. Clearly, any other composite
element would have a larger magnitude. Since Mla]; = a + 1, (M[a];)? =

a’+2a+1 = a-(a+2)-+1, so the smallest composite element will be M[a]q2. O

Example 5.3. In M[4], M4]; = 1-4+ 1 =5, and the smallest composite
element is M[4]a42 =6-4+1=25. (b) In M{[10], M{10]; =1-10+1 =11,

and the smallest composite element is M[10]19+2 = 121.
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Theorem 5.3. For all positive integers a, b, either Mla)s is prime in Mla], or

M{bl, is prime in Mb], or both.

Proof. Mla], = M[b], = ab+ 1. It must shown that at least one of the two
is prime, either Ma]s is prime in Ma], or M]b], is prime in M[b]. Suppose
ab+1 is a rational prime, then clearly it is prime in both contexts by Theorem
5.1. Otherwise, one of a, b is greater or equal to the other. Suppose a > b. Then

by Theorem 5.2, M|alp is prime. a

The proof of the following theorem regarding the integers is omitted. This

theorem will be required for infinity of primes proof that is to follow.

Theorem 5.4 (Dirichlet’s Theorem). If a,b, a > b are integers and (a,b) = 1,

there exist an infinity of rational primes p = b mod a [7, p18].

Example 5.4. (a) (5,3) = 1 so there are an infinity of rational primes p =

3mod 5. (b)(3,1) =1 so there exist an infinity of rational primes p = 1 mod 3.
Theorem 5.5. There exist an infinity of primes in Mla).

Proof. Since (a,1) = 1 for any integer a, by Theorem 5.4 there exist an infinity
of rational primes p = 1 mod a. Therefore, there exist an infinity of rational
primes in any set MJa]. Since Theorem 5.1 states that every rational prime is

prime in M[a], M|a] contains an infinity of primes. O
Definition 5.4. For any integer n, the number of divisors of n is denoted 6(n).

Example 5.5. (a) §(20) = 6, since 1,2,4,5,10,20 all divide 20. (b) 6(7) = 2,

since only 1,7 divide 7.

Theorem 5.6. Ifn is a positive integer, there are 6(n — 1) monoids containing
n as a member, and if the divisors of n — 1 are 61,02...05(n—1) , then those

1-monoids containing n are M[61], M[2],... M[8sn-1)]-
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Proof. If § is a divisor of » — 1, then there exists some integer k such that
8-k =n—1. Therefore, § - k+1 = n, so n € M[§]. If an integer d does not
divide n — 1, then there is no k such that d-k=n—1, and henced-k+1 # n,
son ¢ M[d]. 0O

Example 5.6. n = 21 will belong to §(20) = 6 sets, namely M[1], M][2], M[4],
MI5], M[10], M][20].

Those integers of the form p + 1, where p is a rational prime, will be least
prominent among MJa] sets, since p has only 1,p as divisors. 1 divides all
integers, but M([1] is trivial, so any integer p + 1 belongs to a single M|a] set,
namely M|[p]. Those integers where n — 1 contains many divisors will be most

prominent among M a] sets.

5.2.1 On Prime Factorization in M|a]

Theorem 5.7. Fuvery non-unit element of any set M[a] is a product of prime

elements of M|a].

Proof. (by Induction) Ma}; is the first non-unit element of M|a], and it must
be prime by Theorem 5.2, so it is composed of a single prime element. It must
be shown that assuming the truth of the theorem for all elements up to Ma]n,

it also holds for Ma]p+1.

If Ma]n+1 is prime, the theorem is satisfied. Otherwise, it is composite, so it

is a product of two elements

Mia] - Mlaly = Mla]ni1 (121)

70



Neither factor is unity, so both must lie within these boundaries:

Mla]; < Mla}, < Mla], (122)

Mia]i < Midly < Mlaln (123)

So Mla),,M|a], both lie within the range in which the theorem is assumed to
be true. Therefore, they are both composable as a product of primes. Therefore,

their product, M[a},+1, is itself a product of primes, so the theorem is proven.

O

In the algebraic treatment of the integers and the Gaussian integers, algebra
leading up to the fundamental theorem of arithmetic was studied. Every non-
unit element of Z and Z[i] is composable as a product of prime elements of their

respective sets in a unique way. This is not so in M|a].

As an example of a number which yields two prime factorizations, consider
M(3]33 = 100. 100 = (M[3]3)? = 102, where 10 is a prime element in M]3].
Also, 100 = M[3]; - M|[3]s = 4 - 25, where 4 and 25 are both prime in M|[3].

Why is it possible for an element of M|[3], a subset of the integers, to yield two
distinct prime factorizations in that set when that same element has a single
prime factorization among the integers? Consider the unique prime factorization
of 100 among the integers.

100=2-2-5-5 (124)

100 cannot be factored as such in M](3], since neither of 2,5 € M]3]. However,

10, 4, and 25 are prime elements of M[3] and their unique factorizations in Z
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are as follows:

10=2-5
4=92
25 = 5°

where both 10-10 and 4-25 yield 100 = 22-52. Since 100 has many representations
as a product of composite integers, and some of those composite integers are
prime integers in M|3], 100 has more than one prime factorization in M[3]. As
described in the two theorems that follow, this same notion applies to all Ma],
and there are infinitely many elements within any M{a] set which have multiple

prime factorizations.

Theorem 5.8. Any set M[a], a > 2 has at least one element which has multiple

prime factorizations.

Proof. The set Mla], a subset of the integers, contains an infinity of, but not
all of the primes of Z. That it contains an infinite number of rational primes
is clear by Dirichlet’s Theorem (Theorem 5.4), since M|a] consists of all those
integers of the form ak + 1, where (a,k) = 1. Dirichlet’s Theorem can also be
used to argue that M]a] cannot contain all the primes of Z, for consider those

integers of the form

{ak + (a—1),k € ZT U {0}} (125)

Clearly, a — 1 # 1 when a > 2, so elements in this progression will not be of the
form ak+ 1, and hence, will not belong to M|a]. Clearly, a,a—1 cannot share a
common divisor other than 1, for any divisor d of a — 1 will divide @ — 1 +d next,
which is greater than a if d > 1. So (a,a — 1) = 1, and by Dirichlet’s theorem,

there exist an infinity of rational primes of the form ak + (a — 1). Since these
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primes do not belong to M|a], M[a] does not include all of the primes in Z.

The set of integers leaving a remainder of (a—1) upon division by a (Equ.125) is
of further use in this proof, so it is labeled A[a]. Since ak+(a—1) = a(k+1)—1

it is restated as follows:

Nl = {a(k +1) - 1),k € Z*+ U {0} (126)

An interesting property of Aa] is that the product of any two elements of the

set is a member of Mia].

Nlal; - Nal; = (a(i +1) = 1) - (a(j + 1) — 1)
=a?(i+1)(G+1) —ali+1)—a(j+1)+1

=q(a(z‘+1)(j +10)—(+1)-(G+1)+1eMd

Earlier it was stated that A[a] contains infinitely many rational primes. Con-
sider the first two such primes, denoted P and Q. Since the product of any two

elements of A[a] belongs in M|a], so it must be true that

P? € Mld]
Q? € Mla

PQ e Mia

and since P?, Q% are both in M|a], which exhibits multiplicative closure, it
must be true that

P?Q? € Mld| (127)

Next, it must be shown that P2, Q2 and PQ are prime in M[a]. Clearly, P?

must be prime in M|a], for it is the square of a rational prime, and that rational
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prime is not itself a member of M(a]. For the same reason, Q2 must be prime
in M[a]. PQ must also be prime in M|a], because its only prime divisors are

P, Q, and neither belong to M[a].

Having shown that P2, Q2 and PQ are prime in M]a], it is now time for the

final result. P?Q? yields two prime factorizations in Ma):

rPZQZ — P2 s Q2

= (PQ)?

O

Corollary 5.1. Any set M[a], a > 2 contains an infinity of elements which

have multiple prime factorizations.

Proof. In proving Theorem 5.8, the first two rational primes of Ma] were la-
beled P, Q and it was shown that P2Q? has two prime factorizations in M|a].
However, the same argument could have been made for any two rational primes
belonging to Ma]. Since A{a] contains an infinity of rational primes by Dirich-
let’s theorem, there are infinitely many elements of M[a] with multiple prime

factorizations. (]

Although the preceding theorem and corollary are sufficient to show that the
1-monoids each contains an infinity of elements which have multiple prime fac-
torizations, one should not infer that all those numbers yielding multiple prime
factorizations are of the form P2Q% P,Q € Na). In theory, any composite
integer, other than a semiprime (see the following theorem), can potentially
vield multiple prime factorizations. Although the theorem above specifically
described elements with two prime factorizations, some elements have many

more.
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Theorem 5.9. If n is an integer semiprime and n € M[a], n has a unique

prime factorization in M]a).

Proof. Recall that a semiprime is an integer that is the product of exactly two
primes integers. n is either prime or composite in M]a]. If it is prime then it
has a single representation. Otherwise, n is composite in M|a], and hence is
a product of two elements € M(a]. Since n is a semiprime, it is a product of
two prime integers, say p,q. So if n is composite in MJa}, both p,q € Ma],
and n yields the factorization p- ¢ € Ma]. In order for it to yield another
prime factorization, there would need to be other prime elements of M]a] whose
composition yielded n. But n is a semiprime, so only 1, p, g, n are divisors of n.
And hence no other composition of elements of M|a] yields n, and hence n has

a single representation as a product of prime elements of M|a]. 0O

5.3 Goldbach’s Conjecture in M]a]

Now that the algebraic properties of the M]a] set have been introduced, Gold-
bach’s conjecture can be studied in this context. The first order of business
then, will be to define Goldbach’s conjecture for MJa]. Again, Goldbach’s Con-
jecture is defined in terms of the abstract Goldbach conjecture. Before doing
so, the issues which arise when attempting to adapt the original statement of
Goldbach’s Conjecture to M]a] will be discussed. This will emphasize the need

for the abstract Goldbach conjecture in the first place.

Once again consider Conjecture 2.1, Goldbach’s conjecture as it is generally
stated among the literature. It states that every even integer can be composed as
a sum of two prime integers in at least one way. There are two factors which limit
adapting this statement to M[a]. First, the requirement that those numbers
composable as a sum of two primes be even. Consider M[4]={1,5,9,13 ...}, a

set which consists entirely of odd numbers. Since there are no even elements
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in M[4], it would not be possible to adapt the conjecture to this monoid, or
more generally, any monoid where 2|a, without redefining the notion of an even
number. The second issue lies in the explicit mention of the addition operator.
As described earlier, any M|a] set lacks additive closure. Since the sum of two
elements of M|a] is not itself a member of M|a], it is impossible for an element

of M[a] to be composed as a sum of two prime elements of that set.

Upon initial inspection then, it might seem strange to study Goldbach’s
conjecture within any MJa] set. However, the abstract Goldbach conjecture
makes no mention of even numbers, nor of the addition operator. The Abstract
Goldbach conjecture is used as an archetype for defining Goldbach’s Conjecture
in M[a]. In essence, the following question is asked: is every element of M|a]

equidistant to two prime elements in that set? Formally,

Definition 5.5 (Goldbach’s conjecture among the 1-monoids). For every ele-
ment Mlal; of Mla], i > 1, there exists an integer 0 < k < 1 such that both

Mla)i—x,Mlalits are prime in Mla).

Here, the magnitude function M(Mla};) = ai + 1, and M|a); is said to be
equidistant to Mlal,, Mlaly, Mla]; < Mlaly, if there exists an integer &, 0 <
K < i such that Mla)i_. = Mla)e, Ma)itx = M]aly.

Example 5.7. (a) Consider M[3]s = 16. It is equidistant to two primes, since
if K = 1, M[3]|5—x = 13, which is prime in M[3] and M[3]51. = 19, which is
prime in M[3]. (b) Consider M[4]21 = 85. It is equidistant to two primes, since
if k=2, M[dla1_x = 77, M[4]21.x = 93, both of which are prime in M[4].

Definition 5.6. The Goldbach number for Mlal;, denoted G(M|a);), represents
the number of integers k, 0 < K < i such that M[a);—x, M[a)i+x are both prime

in Mlal.
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Example 5.8. (a) G(M|3]5) = 3, since when k& = 1,2 or 3, M[3]54, are both
prime in M[3]. (b) G(M[4]500) = 138.

Goldbach’s Conjecture in M[a] can therefore be restated as follows:

Restatement 5.1.
Vi>1 G(Mia);)>1 - (128)

Figure 8 (a) and (b) graph M[4]; (x-axis) with respect to G(M[4];) (y-axis)
for the first 10000 and 25000 elements of M|4] respectively. Figure 9 examines
M|4] a little more closely, graphing M{4]; with respect to G(M[4];) for 20000 <
i < 25000. Figure 10 Graphs the first 5000 elements of M[a] for a = 3,4,5,6

respectively.

If M{a); is equidistant to two primes, then one is no greater, the other no smaller
than Ma];. Therefore, there can be no more solutions for a given element than

there are elements of lesser magnitude in the set, so

G(Mla];) < i (129)

More specifically, there can be no more solutions than there are prime elements
no greater than M|al;, or between Ma}; and Mla]o;—1, so if m#(M]a);) repre-

sents the number of prime elements no greater than M|a); in Mia],

G(Ma):) < min(r(Mlal:), 7(Mla]zi-1) — w(Mlal:)) (130)
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During the earlier discussion regarding the integers, Tables 1 and 2 provided
insight into the relationship between Goldbach’s conjecture and the symmetry
of the distribution of prime integers relative to itself. Here a similar table is

provided for M|a].

For the element M |a];, let 5[a]; be the bit string of length 2i — 1 where the j**
bit is set to 1 if M[a]; is prime in Mla], and has a value of 0 otherwise. The bit
string B[a}} is the reverse bit string of B[a];. If these bit strings have a position
where they are both set, then M|a]; is equidistant to two prime elements of
M]a]. Table 5 displays 3[3]s and §'[3]s. In this example, bits 1,3,5 are set in

both (bits 7 and 9 too, but they are mirror images of 1, 3).

i [ M3 | M[3]s | M[3]3 | M[3ls | M[3]5 | M[3]s | M[3]7 | M|3]s 3Jo
B35 1 1 1 0 1 1 1 0 ]
BI3]5 1 0 1 1 1 0 1 1 1

Table 5: Monoid bitstrings for M35

Definition 5.7. Let Grin(M]a);) represent the smallest integer k, 0 < K < %

such that Mla)i—x, Mals+x are both prime in Ma).

Example 5.9. (a) Gpin(M[3]5) = 1, since when £ = 1, M[3]s+, are prime
in M[3], and no smaller & satisfies this property. (b) Gumin(M[4]s00) = 5, so

M4]s00+x are both prime when k =5, and no smaller k satisfies this property.

5.3.1 On Weaker Statements in M|q]

The sections studying the integers and Gaussian integers each included a dis-
cussion on weaker statements related to the mobius function. However, in any
set Mla], @ > 2, unique prime factorization does not hold for all elements
(Theorem 5.8). Therefore, it is not possible to evaluate a distinct value for the
mobius function. Consider M|[3]33 + 1 = 100, which yields two prime factoriza-

tions: 10 - 10 and 25 - 4. The former factorization can be considered squarefull,
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while the latter would be considered squarefree. Therefore, there is no distinct
value for the mobius function in this case, or for any other element which yields
more than one prime factorization. For this reason, the study of the weaker

statements is omitted for M|a].

5.3.2 Is Goldbach’s Conjecture True in M]a|?

It is possible that Goldbach’s Conjecture holds for all Mla] sets, a > 2. Alter-
natively, it is possible that the conjecture fails in all of them, or is satisfied in

some sets and fails in others. For example, it might hold in M]3] and fail in

M4].

There is reason to believe that the conjecture is more likely to be satisfied as
the integer a increases is size. After all, by Theorem 5.2, the first a + 1 ele-
ments in M(a] are prime. Consider M[100], which will have 101 consecutive
prime elements. In order for an element M [100}; to fail satisfying the conjecture,
there would need to be 101 consecutive composite numbers, namely M[100]2;_1,
M(100]2;_32,. . . M[100]2;—1—101. In general, in order for Mla); to fail in satis-
fying Goldbach’s Conjecture, Mla]zi—1, Mal2i—2 ... M[a]2;—q—2 must all be
composite in M|a]. And even still, this a necessary condition for failure, not a

sufficient one.

However, there is an offsetting effect to consider. As the integer a increases,
M|a] will tend to have less rational primes. This is so because the distribution
of primes in Z tapers off as magnitude increases. Given two sets M[a1], M]az],
where a; < ag, Mla;] will tend to have more rational primes, since it will have
more small numbers than M|a,], and small numbers are more likely to be prime
than large ones. Table 6 lists the number of rational primes among the first 1000

elements for many M|a] sets.

82



Although all rational primes are prime in M(a], it is the distribution of primes,
not rational primes that is crucial to the truth of Goldbach’s conjecture in M|a).
Table 7 lists the number of primes among the first 1000 and 5000 elements of

various M[a] monoids.

# of rational primes among first 1000 elements
208
163
147
185
134
13 125

O =] Oy o

[y
[y

IRk

Table 6: The number of rational primes among the first 1000 elements of M|a]

# of primes among first 1000 | # of primes among first 5000
M3 465 2002
M5 631 2864
M7 720 3324
M][9 772 3609
M]11 816 3866
M][13 844 4011

Table 7: The number of primes among the first 1000 elements of M|a]

Since there are infinitely many M|a] sets, they cannot all be tested empirically.
The first 25000 elements of M{3] through M{7] were tested and were all found
to be equidistant to two primes. The average Gy values for these are listed
in Table 8. Based on the Gy, values, the conjecture seems easily satisfied in
all M{a] monoids, and seems to become more quickly satisfiable as integer a

increases.
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AVG(Gmin(Mlal), I < i < 25000
M[3 1.6532
M4 1.4704
M5 0.61826
M6 0.77326
M7 0.36732

Table 8: Average Gy, values for various 1-monoids

6 The Quaternion Integers

The Quaternion integers, specifically the set of Hurwitz integers, constitutes the
final number context for which Goldbach’s conjecture is studied in this work.
The algebra of the Hurwitz integers is most comparable to that of the Gaussian
integers, with some differences. Most significantly, quaternions do not satisfy

the property of multiplicative commutativity.

The algebra of the quaternions is relatively challenging, and few sources dis-
cuss the material in detail. Most of the algebra in this section follows very
closely from Hardy and Wright’s treatment of the subject. Even still, some of
those proofs are omitted, and the subject is not treated up to the fundamental
theorem, even though unique prime factorization does hold here. For the pur-
poses of this work, The most noteworthy result among the algebra is Theorem
6.6, which emphasizes the close relationship between primality in Z and the

quaternion integers.

6.1 Algebra of the Quaternion Integers

Definition 6.1. The set H of Quaternions consists of those numbers of the
form a+bi+cj+dk, where a,b,c,d € R and i, j, k are imaginary units satisfying
the following properties:

P=52=k=-1 (131)



The Quaternions form a non-commutative ring with identity element [2, 35],

and hence satisfy Axioms 2.1-2.6 and 2.8 described in Section 2.1.

The imaginary units 4, j, k do not exhibit multiplicative commutativity. Specif-
ically, they are said to be anticommutative, since the product of two such units

differs in parity depending on the order in which the units are multiplied.

k=i k-j=—i
ij=k joi=—k (132)

kei=j ik=—j

Definition 6.2. The set of Lipschitz integers consists of those Quaternions

a + bi + ¢j + dk where all of a,b,c,d € Z.
The set of Lipschitz integers are the most obvious adaptation of quaternions

into an integral form. However, there is another set which extends the Lipshitz

integers which has more desirable properties. These are the Hurwitz integers.
Definition 6.3. The set Z[i, j, k] of Hurwitz integers consists of those Quater-
nions a + bi + ¢j + dk where either all a,b,c,d € Z or all of a,b,c,d € Z+ % /3,
p55].

Example 6.1. h = 142i+3j+4k is a Lipschitz integer and a Hurwitz integer,
h =1L+ 130 + 315 + 101k is a Hurwitz integer, and h = 14 23i + 3j + 4k is
neither.

The Hurwitz integers, like the quaternions, form a non-commutative ring with

identity element. It turns out that the Hurwitz integers are somewhat simpler

to study, while posessing properties that the Lipschitz integers do not [7, 316].

The algebra that follows regards the Hurwitz integers. The terms quaternion,

quaternion integer and Hurwitz integer are used interchangeably. if h = a+bi+
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cj + dk, a,b,c,d are called the coordinates of h. The sum or difference of two

quaternions is also a quaternion

(a0+a1i+a2j—l—a3k)+ (bo+b1i+b2j+b3k) = (133)
(ag +bo) + (a1 +b1) i+ (ag +b2) - j + (a3 +b3) - k
(a0 + a1i + azj + ask) — (bg + byt + baj + b3k) = (134)

(ao —bo) + (a1 ~ b1) ~i+ (a2 — ba) - j + (a5 — b3) - k
The product of two quaternions is also itself a quaternion,

(ag + a1t + agj + agk) - (bo + b1 + baj + bzk) = (135)
(apbg — a1b1 — agbs — agbs) +
(aoby + a1by + agbs — agba) - i+
(agbs — a1bs + asbg + agby) - 5+

(aobg + a1bs — asby + agb(]) - k+

If a quaternion contains no imaginary components, it is called a rational quater-

nion. If hy = ag + a1t + azj + ask and he = by (a rational quaternion), then
h1hg = agby + a1bg + asbg + azbg (136)

and hihy = hgh;. In general, if Ay, hy are quaternions, hy; # hg. However, if
hr is a rational quaternion among other quaternions, it can be moved about
at will. For example, suppose h, is a rational quaternion among quaternion

integers hi ... hg:
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hehihohs ... by = (137)
= hihyhohs . .. hy

= hihahyhs ... hg

= hiha... hihy

Definition 6.4. The conjugate of a quaternion h = a + bi + ¢j + dk, denoted
k, is

h=a-—bi—cj—dk (138)

Definition 6.5. The norm of a quaternion h = a+bi+cj + dk, denoted N(h)

s

N(h) = a® +b* + * + & (139)

Corollary 6.1. The product of a quaternion integer h and tts conjugate is its

norm.

h-h=(a+bi+ci+dk) (a—bi—cj—dk)=a>+b*+c*+d* = N(h) (140)

Definition 6.6. Those quaternion integers with norm 1 are said to be the units
of Zi, j,k]. In order for a Lipschitz integer to have a norm of 1, ezactly one
of a,b, ¢, d would have to be 1. Therefore, there are eight Lipshitz units, namely
+1, %1, &35, k. Now let’s consider the Hurwitz integers. Clearly, the units
among the Lipshitz integers are also units among the Hurwitz integers. In ad-

dition, those units consisting of half-integers must be considered. Suppose q =
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a+bi+cj+dk anda,b,c,d are all £3. Then the norm N(q) = j+3+3+5=1.
Any quaternion with a,b,c,d all %, independent of parity, will be a unit among
the Hurwitz integers. So along with the Lipshitz units, every combination of the‘
form %— (1L i++j+tk) is a Hurwitz unit. These 16 possibilities, along with

the 8 from the Lipschitz integers, means that there are in total 24 units among

the Hurwitz integers [3, p56].

Definition 6.7. The associates of a quaternion integer h are those numbers

b hy, hy - h, where hy, is any of the units of Z[i, j, k] listed in Definition 6.6.

Theorem 6.1. For any two quaternions hy, ho,
hihy = ho - hy (141)

Proof. Let hy = ag + ayi + agj + agk, hy = bo + byi + byj + bsk. Then hihy =
(agbo — a1by — agbs — azbs) + (—agby — a1bg — azbs + agby) - i + (—agbs + a1bs —
asbo — agby) - j + (—aobs — a1ba + asby —asby) - k. ha hy = (bg — by —boj — bsk) -
(ap—a1i—agj —azk) = (agbo —a1by —agbs — azbs) + (—agby — a1bg — azbs +agbs) -

1+ (—a0b2 +a1bs — agsby — a3b1) 4+ (—a0b3 —a1bs +aghy — a3b0) ‘k=nh1hy. O

Theorem 6.2. The product of the norms of two quaternion integers is equal to

the norm of their product.
N(h1) - N(hg) = N(hihs) (142)

Proof. Consider h = hyjhy. N(hih2) = hihg - hihg by Corollary 6.1. By The-
orem 6.1, it can be rewritten as N(hiha) = hyhy - hy - hy. By Corollary 6.1,
ha-hg = N(ha), so N(hihe) = hiN(ha)h;. Since N(h2) € Z (a rational quater-
nion), it can be shifted among the divisors regardless of non-commutativity. So

N(hyhg) = hihiN(h2). Again by Corollary 6.1, hihy = N(h1), so N(hihg) =
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N(h1)N(hs). O

Theorem 6.2 can be applied indefinitely so that
N(hl) -N(hg)...N(hk) ZN(}Ll...hk) (143)

Definition 6.8. If h = hihs, hy is said to be a left-hand divisor of h and hs

is said to be a right-hand divisor of h.

The distinction between left and right divisors is necessary because of the non-

commutative nature of quaternions. For example, Consider hy = 1+ + j + 4k,

hy = 2j + 3k.
h1h2 # hghl (144)
(14454 4k)(35 + 2k) # (35 + 2k)(1 +i + j + 4k) (145)
(=11 — 10 + j 4 5k) # (=114 10i 4+ 55 — k) (146)

Definition 6.9. The greatest common right-hand divisor of hy, he is denoted

(hl,hg)r.lSz’milarly, the greatest left-hand divisor is denoted (hy, h2);.

Definition 6.10. A non-unit quaternion h is prime if its only divisors are
itself and its associates. If h is not prime, it is composite. Should there be any
ambiguity, the primes of Z are referred to as rational primes to distinguish

them from the primes of Z[i, j, k]

From here on h, and h, are reserved to denote prime quaternion integers.
The following two theorems are left unproven, but are required to prove Theorem

6.5.

Theorem 6.3. If hy is a quaternion and k some integer where ho = k is a

rational quaternion, in order for (h1,ha)r = 1, it must be that (N(h1),k) = 1.

89



Theorem 6.4. If p is an odd rational prime, there exist two integers x,y such
that

1+224+y°=mp O<m<p (147)

Theorem 6.5. If p is a rational prime, then the rational quaternion h = p +

0i + 07 + 0k (or an associate thereof) cannot be a quaternion prime.

Proof. (Adapted from [7, p309])
Since 2 can be factored as (1 + ¢)(1 ~ ), and 2 is the only even prime, the

following assumes that p is odd.

From Theorem 6.4 it is known that for any odd prime p, there exist integers r, s

such that

1472 4+s%=mp 0<r<p 0<s<p 0<m<p (148)

SO

1+ +s?=0modp O0<r<p 0<s<p (149)

Consider the quaternion integer h = 1 + sj — rk, which has norm N(h) =

1+ 5%+ 1% =0 mod p, and so (N(h),p) # 1.

From Theorem 6.3, h and p share some non-unit right hand divisor, say ¢.

h=6&6 (150)

p =020 (151)

but d> cannot be a unit either. For suppose it were. Then § would be an
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associate of p, and hence

poyt =4 (153)
h=8165"p (154)

Since p is a rational integer, each of the coordinates of h will need to divide p.
(see Equ.136). But h was defined to be 1 + sj — rk, and clearly p{ 1, so this is
not possible. Therefore, §; is not a unit, and so the rational quaternion p+ 0i -+
0j + Ok, or any associate thereof, is the product of two non-unit quaternions,

and hence is composite in Z[¢, 7, k]. 0O

Theorem 6.6. A Hurwitz integer h is prime if and only if its norm is a rational

prime.

Proof. (Adapted from {7, p309])

Suppose h is a prime quaternion. It’s norm N(h) is an integer, and hence
a product of primes. Let p be one of the primes that divide N(h). Since
(N(h),p) # 1, h,p share a common non-unit right-hand divisor (Theorem 6.3),

say 4, so

h= 66 (155)

p =200 (156)
since h is a prime quaternion, it has at most one non-unit factor, and ¢ is not

a unit, so d; is a unit, and N(h) = N(9).

From Theorem 6.5, p cannot be a prime quaternion. Therefore, since § is a
prime quaternion, d, cannot be a unit. N(p) = p?, so N(82) - N(8) = p?, and

neither are unities, so N(d3) = p, N(§) = p.
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So N(h) = N(8) = p. Therefore, the rational prime p is the only divisor of
N(h), the norm of a prime quaternion integer.

O

Theorem 6.7. Any rational prime integer p can be written as the sum of four

squares.

Proof. By Theorem 6.5, p cannot be a quaternion prime. Therefore, the quater-

nion factorization of p consists of two non-unit elements, so
p =016 (157)

where N(p) = p?, so N(§;) = N(d2) = p. &, is a quaternion integer, say §; =
a+bi+cj+dk, whose norm is p. Therefore, it must be that a?+b?+c?+d? = p,
which means that p is composable as a sum of four squares.

O

Theorem 6.8 (Lagrange’s Theorem). Fwvery positive integer can be written as

a sum of four squares in at least one way.

Proof. If two integers x,y are both composable as a sum of four squares, then

their product zy is also composable as a product of four squares.
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(Euler’s Identity) [12, 142]:

T = (22 + 23 + 23 + z3) (158)

y= (v +v3+v5+v3) (159)

ay=(zf +oi+oi+2D) i+ +ui+vd) = (160)
= (@191 + T2y2 + Tays + Taya)® (161)

+(@1Y2 — Toy1 + T3Ys — Tay3)?
2
+(21y3 — T3y + Talyp — Tays)

+(@1ya + Tay1 + z2ys — 1733/2)2-

Since every integer can be written as a product of primes (Theorem 2.12), and
every prime integer can be written as a sum of four squares (Theorem 6.7),
where the product of any sum of four squares is itself a sum of four squares, it

must be that every integer can be written as a sum of four squares.

Theorem 6.9. There exist an infinity of Quaternion primes.

Proof. By Theorem 6.8, every rational prime integer can be written as a sum of
four squares. If p = a2 +b? +¢? + d?, then p is the norm of the prime quaternion
h = a+bi +cj + dk. By Theorem 6.6, h is a prime quaternion. Since there are
infinitely many prime integers (Theorem 2.11), there are infinitely many prime

quaternions. 0

6.2 Goldbach’s Conjecture among Quaternion Integers

To the knowledge of the author, there exists no previous attempt at defining
Goldbach’s conjecture among the quaternion integers. The following, again

based on the abstract Goldbach conjecture, is similar to its counterpart among
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the Gaussian integers. A discussion of weaker statements is omitted for the

quaternions.

As with the Gaussian integers, only a portion of the integral quaternions are
studied, specifically those of the form h = a+bi+dj+dk where 0 < a < b<c <
d. When a Gaussian integer is of this form, it is said to be of the proper form.
For example, h = 1 + 2i + 35 + 4k is of the proper form, but h =4+3i+25+ k%
is not, and nor is h = —4 — 3i — 25 — k. It will be argued that if all quaternion
integers of the proper form satisfy Goldbach’s conjecture in Z[z, j, k], so do all

quaternion integers.

Here, the magnitude function is M (h) = N(h) = a% +b? + ¢? + d?, and equidis-

tance is defined as follows.

Definition 6.11. A gquaternion integer z =a+bi+cj+dk, 0<a<b<c<d
is said to be equidistant to two quaternion integers hy, hg, N(hy) < N(hg) if
there exists a quaternion integer z, = w+zi+yj+zk, 0<w <z <y<z2

such that (h + he) = ha, (h — he) = ho.

For the remainder of this section, both quaternion integers h = a + bi + cj + dk
and hy = w + zi + yj + zk are assumed to be of the proper form, and it is

assumed that 0 > N(h,) > N(h).

Conjecture 6.1 {Goldbach’s Conjecture among the quaternion integers). Fuv-
ery quaternion integer h, N(h) > 1 is equidistant to two quaternion primes,

hp, hg.

If Conjecture 6.1 is satisfied for a quaternion integer h, h is said to satisfy

Goldbach’s conjecture.

Example 6.2. h = 0+ 1i + 25 + 2k satisfies Goldbach’s conjecture, since if

he=1+4+i+7+k, (h+h), (h— hy) are prime quaternions, with norms 3 and
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23 respectively.

Theorem 6.10. If h is a prime quaternion integer, il satisfies Goldbach’s Con-

jecture in HJi, j, k].

Proof. If h is prime, then it is trivially equidistant to two primes, since when

hg, =0+ 0¢ +0j + 0k, (h & hy) = h, which is prime by definition. 0O

It was stated earlier that if Goldbach’s conjecture holds for all quaternion in-
tegers of proper form, it holds for all quaternion integers. To see this, suppose
h = a+bi+cj +dk is of the proper form and let N(h) = m, and suppose k' has
the same coordinates a, b, ¢, d, but in any order and of any parity. For example,
h = c¢— ai — dj + bk has coordinates a, b, ¢, d, but in differing order and parity
than h. However, N(h') = N(h) = m, since changing order and parity of the
coordinates in any way will not affect the norm. Suppose h satisfies Goldbach’s
conjecture. If h is itself a quaternion prime, then it trivially satisfies Goldbach’s
conjecture (Theorem 6.10), and so does A/, since h is prime if and only if N(h)
is prime, and N(h') = N(h). Otherwise, h is not prime, and there must exist
some h, = w+ xi + yj + zk, of the proper form, where (h =+ h,) are both prime.
Now let b, be a modified version of h,, differing in order and parity in the same
way that A’ is a modification of h. So in this case, hy = y — wi — zj + zk.
Then h+ hy = (a+w)+ b+2)i+(c+y)j+(d+ 2k and h — hy =
(a—w)+(b—z)i+(c—y)j+(d~2)k, and N(h+h,) = p1, N(h—hy) = pa, where
p1, p2 are rational prime integers. A’ +hl = (c+y)—(a+w)i— (d+2)j+ (b+z)k
and ' — hl, = (c—y) — (a —w)i — (d — 2)j + (b — z)k, and it is evident that
N(W + 1)) = N(h+ hy) = p1 and N(h' — hl,) = N(h — hy) = p2. Clearly, if
there exists an h, such that (h % h,) are rational primes, then for any h' with
the same coordinates as h, varying in order and parity , there will exist an hl,

which differs in order and parity from h, in the same way h’ differs from h, such
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that (k' & hl,) are rational primes with the same norms as (h + hy).

And this also applies to the conjugates of h.

Definition 6.12. The Goldbach number for a quaternion integer h, denoted

G(h), represents the number of quaternion prime pairs which are equidistant to

h.

Example 6.3. (a) If h =1+ i+ j + 2k, then G(h) = 3. The three solutions
are as follows: (1) he = 3+ %i+1j+ 3k, N(h+h,) = 13 and N(h— hy) = 3.
(2) hyy = 0+ 0i + 0f + Ok, where N(h + k) = N(h— k) = N(h) = 7, which is
prime. (3) hi = 0+ 0i + 05 + 2k, so that N(h+ hy) = 19, N(h — hy) = 3. (b)
Similarly, if h = 24 5i + 8j + 10k, G(h) = 134.

Goldbach’s conjecture in Z[i, j, k] can therefore be restated as follows:
Restatement 6.1. For any quaternion integer h with N(h) > 1, G(h) > 1

Figure 11 (a) and (b) graph N(h) (x-axis) with respect to G(h) (y-axis) for all
h=a+bi+cj+dk,0<a<b<c<dwith norms no greater than 100 and
500 respectively. Due to the added computational complexity in working with
quaternions, and given that there are many integers in a small norm range, it

is not currently possible to graph them for very high values.

Since quaternions have four coordinates, they are very difficult to visualize. One
approach is to use two planes. Figure 12 graphs the quaternion h = 1+i+j+2k
and its two equidistant primes (As in Example 6.3(a)) in this way. The real and

i portions lie in the left plane and the j and k portions on the right plane.
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Theorem 6.11. if (h % hy) are both prime quaternions, then (h, hg) = 1.

Proof. Suppose it were otherwise so that h, h, share some common factor, say
hm. So h+ he = hy = hy - hy, and b — by = hy = hy - hy,. However, (h +
hy), (h — hy) are distinct prime quaternions, so it impossible for them to share

a common factor. (]

Definition 6.13. Let Gpin(h) = N(h) where h, is the quaternion integer

with the smallest norm such that (h £ hy) are both prime quaternions.

Example 6.4. (o) if h = 1+2i+3j+4k, Gpin(h) = 5, since the quaternion hy
of smallest magnitude such that (hthy) are both prime is h, = §+3i+13j+13k
and N(hy) = 5.

6.2.1 Is Goldbach’s Conjecture True in Z[i, j, k]7

Conjecture 6.1, Goldbach’s conjecture among the quaternion integers, was tested
empirically for all quaternions ¢ = a + bi + ¢j + dk where 0 < a <b<c¢<d,
2 < N(h) < 10000. This constitutes well over two million quaternions, each of

which satisfies the conjecture.

Based on Figure 11, it seems that G(h) > N(h) for some quaternions, a property
which does not appear to manifest itself in any of the other algebras studied
in this work. It is certainly impossible among the integers, but not strictly so

among the Gaussian integers.
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7 Final Remarks

7.1 Implementation Details

For each of the four algebraic contexts studied in this work, tools to study
Goldbach’s conjecture were developed in the Maple programming language. All

of the empirical results and graphs presented in this work stem from these tools.

These include functions to compute G, G for all contexts, and G*, G*,

GI-"

thin> Ginin Where relevant. Since Maple does not include tools to study the

min
quaternions, an elementary library of tools to study these was also developed.
The tools to study the integer subset monoids were developed in a general way,
applicable to M(a] for any integer a > 2. Maple does not include tools to study
such integer subsets, and so tools to study primality in such a context, analogous
to those of the integers were developed, including a function analogous to m(n)
in the integers, to compute the number of primes no greater than some element

of Mla}, a function to determine whether an element M]a]; is prime, and a

function to compute the i** prime element of M|a].

In total, the implementation consists of approximately two thousand lines

of Maple code.

7.2 Conclusion

After defining and studying Goldbach’s conjecture among the integers, the Ab-
stract Goldbach conjecture was defined. This abstraction, based on a redefini-
tion of the conjecture in Z, allowed the study of Goldbach’s conjecture to extend
outside of the integers. The Abstract Goldbach conjecture was applied to the

Gaussian integers, the 1-monoids and the Hurwitz integers.

In each context, Goldbach’s conjecture was empirically tested, and no coun-
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terexample was found. Two benchmarks were used in each context: G(z) and
Gmin(x), the former representing the number of solution for a given element,
the latter representing the solution of minimal magnitude for that element. The
graph of G(z), Goldbach’s Comet, is surprisingly similar among Z, Z[i], and the
variety of M|a] monoids. The comet does differ visually among the Hurwitz
integers, having a shape more representative of the number of solutions increas-
ing exponentially relative to magnitude. (See Figure 11). Figure 14 graphs the
comet for various values in Z, Z[z] and M]4] to emphasize their similarity, and
Table 9 lists average G values in these three contexts for all those elements

of magnitude no greater than 2000 and 5000 respectively.

2000 17.22 | 6.07 | 0.97
5000 22.64 | 8.28 | 1.38

Table 9: Average Gpin values

Countless number systems remain to be studied using the Abstract Goldbach
conjecture. Among these, the variety of sets Z[\/E] containing algebraic integers
of the form a + bv/d, the integral octonions, and the integral sedenions. The
abstraction may also apply to less obvious contexts, such as polynomials (eg
Zlx]), or even to ideals. Any contexts possessing notions of composability and

primality (or irreducibility) are potential candidates.

Locating an algebra in which the conjecture fails would be of tremendous
value, since, upon comparing it with those algebras that do appear to satisfy
the conjecture, it might become more evident which algebraic properties lead to

the conjecture’s truth. For example, suppose failure occurs among the integral
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octonions, an algebraic context which lacks multiplicative associativity. This

would imply that assbciativity is crucial to the truth of Goldbach’s conjecture.

From the body of evidence presented in this work, certain properties can be
dismissed as being likely algebraic properties crucial to the truth of the conjec-
ture. For example, unique prime factorization is not likely to be crucial, given
that the 1-monoids appear to satisfy Goldbach’s conjecture. Similarly, multi-
plicative commutativity is not likely crucial, given that the integral quaternions
appear to satisfy Goldbach’s conjecture. As a greater variety of number con-
texts with differing algebraic properties are studied, various suspects can be
exonerated, as in a murder mystery. In the end, it may be Associativity, in the

conservatory, with a candlestick.

If there is a very simple algebraic property which draws the line between
those algebras which satisfy Goldbach’s conjecture and those that do not, then
a proof of Goldbach’s conjecture would almost certainly involve that property. If
that property holds in many algebras, then such a proof would be very general in
nature, since the scope of the mathematics shared by all algebras satisfying such
a property would likely be very small. For example, consider the mathematical
properties shared by Z,Z[i},M|a] and Z[i, j, k]. They do not all satisfy unique
prime factorization, nor multiplicative commutativity, and addition is not a bi-
nary operator on them all. However, they do share some properties related to
multiplication, such as associativity. And they share other very high-level alge-
braic properties, such as the property that every element can be factored into
a product of primes. As more algebras are shown to satisfy Goldbach’s conjec-
ture, the mathematical properties shared collectively by all those which satisfy
it diminishes in scope and complexity,implying that a proof of the conjecture

may be very simple, rather than grandly complex, as is currently assumed.
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There is another, less seductive possibility: that Goldbach’s conjecture is
simply true, and no argument can be formulated to prove it. That Goldbach’s
conjecture is just some stochastic phenomenon is not entirely out of the question.
Although it seems very likely that all integers, and the other algebras studied
in this work satisfy Goldbach’s conjecture, there is no guarantee that this can

be argued conclusively through some entailment of logic.

In any of the algebras studied in this work, the truth of Goldbach’s conjecture
is intimately related to the distribution of prime elements there. In turn, the
distribution of prime elements in the non-integer contexts discussed in this work
are very closely related to the distribution of the prime integers themselves.
Therefore, there is a relationship between the truth of Goldbach’s conjecture
in the integers and the non-integer contexts. The author has been unable to
construct a chain of logic whereby the assumption of Goldbach’s conjecture in
one algebra implies its truth in another. However, such arguments do not seem

entirely implausible.

This work began with a very simple idea, that Goldbach’s conjecture among
the integers is just a manifestation of a more general truth, one that the integers
share with other number systems. Given that empirical observations found no
counterexample in any of the non-integer contexts, it seems likely that the notion
of equidistance to a pair of primes is a property common to these, and other
number systems. It seems likely then, that the original statement of Goldbach’s
conjecture, the claim that every even integer can be written as a sum of two
prime integers, is itself a manifestation of this more general phenomon, and that
a better understanding of this equidistance principle could yield new methods
of proof towards what is perhaps the most deceptively simple and longstanding

problem remaining in number theory today.
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