
Point-Based POMDP Solvers:

Survey and Comparative Analysis

Robert Kaplow

Master of Science

School of Computer Science

McGill University

Montreal, Quebec

2010-04-17

A thesis submitted to McGill University
in partial fulfillment of the requirements

of the degree of Master of Science

c©Robert Kaplow, 2010

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-68425-2
Our file Notre référence
ISBN: 978-0-494-68425-2

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

DEDICATION

To my family and friends.

ii

ACKNOWLEDGEMENTS

There are many people I need to thank for all the support and guidance I have

been given for this thesis, and throughout my time at McGill, both undergraduate

and postgraduate. First and foremost, I need to thank my advisor Joelle Pineau,

who I’ve had the pleasure of working with for several years now. Whether provid-

ing me with new research ideas, helping me analyze new results, and being able to

make the most complicated problems simple, her contribution was invaluable, and

without which none of this would have been possible. I need to thank Guy Shani

for providing me with a wonderful internship opportunity and providing much of

the research basis for this thesis, as well as being always there for questions. Many

thanks to Amin Atrash for acting as my mentor throughout these past few years,

and thanks to Cosmin Paduraru for advice on my thesis as well as fun research di-

versions in Reinforcement Learning. I need to thank Doina Precup for her advice

on earlier research projects. Thanks to Julien Villemure for his help with my thesis

and many good times. Many thanks to Peter Sloan for his edits and comments, as

well as for understanding more about this work than he should with no background.

And thanks to my sister Lauren Kaplow for keeping my thesis legible, and enjoying

stochasticity.

I have had a wonderful time working in the Reasoning and Learning Lab these

past years, and I want to thank the people that made the lab what it was, Robert

West, Arthur Guez, Marc Bellemare, Stephane Ross, Caitlin Phillips, Robert Vin-

cent, Jordan Frank, Keith Bush, Hiba Yamani, Pablo Castro, Gheorge Comanici,

iii

Monica Dinculescu and many others. I want to thank all my friends from CTF for

a wonderful undergraduate experience, and especially David Meunier for working

with me so much during that time. Thanks so much to some of my oldest and

dearest friends, without which these past few years would have been all the poorer:

Zachary Lisak, Joshua Berger, Pamela Bernstein, Hayley Vininsky, Amanda Saxe,

David Brenner, Jon Rubin, David Gomel, Richard Roskies and many others. Thank

you.

Finally, thanks so much to my girlfriend Stephanie and my family: Howard,

Marilyn and Lauren. I couldn’t have done this without you.

iv

ABSTRACT

Planning under uncertainty is an increasingly important research field, and it is

clear that the design of robust and scalable algorithms which consider uncertainty

is key to the development of effective autonomous and semi-autonomous systems.

Partially Observable Markov Decision Processes (POMDPs) offer a powerful math-

ematical framework for making optimal action choices in noisy and/or uncertain

environments. However, integration of the POMDP model with real world applica-

tions has been slow due to the high computation cost of exact approaches to POMDP

planning.

In recent years, point-based POMDP solvers have emerged as efficient methods

for providing approximate solutions by planning over a small subset of the belief

space. This thesis first provides a survey on many of the proposed point-based

POMDP solvers. We then conduct an empirical analysis on the key components of

point-based methods, the belief collection and belief updating processes. This is an

important contribution, as previous publications on point-based methods have only

compared full algorithms, without comparing the underlying processes. As well, we

verify the effect of a variety of parameters and optimizations that could be used

within a point-based solver. Experiments are conducted on a variety of POMDP

environments.

v

ABRÉGÉ

L’importance grandissante de la recherche dans le domaine de la planification

sous incertitude est signe que l’élaboration d’algorithmes robustes et extensibles qui

gèrent l’incertitude est un élément clé dans le développement de systèmes autonomes

et semi-autonomes efficaces. Les processus de décision markoviens partiellement ob-

servables (POMDP) constituent une puissante fondation mathématique pour le choix

d’actions optimales dans un environnement incertain. Il a cependant été difficile

d’incorporer les POMDPs à des applications réelles, à cause de leur coût de calcul

élevé lorsqu’une solution exacte est requise.

Récemment, les approches de résolution de POMDPs dites par points, qui plan-

ifient sur un petit sous-ensemble de l’état des croyance, se sont révélées être efficaces

pour obtenir des solutions approximatives. Le présent mémoire propose tout d’abord

une revue de plusieurs approches par points. Par la suite, une analyse empirique des

composantes primordiales des approches par points, de la collecte d’observations,

ainsi que du processus de mise à jour de l’état des croyance, est proposée. De plus,

les effets de différents paramètres et optimisations liés aux approches par points sont

vérifiés. Des expériences sont conduites avec une variété d’environnements de type

POMDP.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ABRÉGÉ . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Planning . 4
1.2 Contribution . 6
1.3 Outline . 7

2 Probabilistic Decision Making in Markovian Environments 8

2.1 Markov Decision Processes . 9
2.1.1 Description . 9
2.1.2 Planning . 12

2.2 Partially Observable Markov Decision Processes 15
2.2.1 Description . 15
2.2.2 History and Belief States 16
2.2.3 Policies and Value Functions 18
2.2.4 Planning . 19

3 Point-Based POMDP Solvers . 30

3.1 Introduction to Point-Based POMDP Solvers 31
3.2 Point-Based Value Iteration (PBVI) 35
3.3 Perseus . 37

vii

3.4 Heuristic Search Value Iteration (HSVI) 39
3.5 Point-Based Error Minimization Algorithm (PEMA) 43
3.6 Forward Search Value Iteration (FSVI) 46
3.7 Successive Approximation of the Reachable Space under Optimal

Policies (SARSOP) . 48
3.8 Discussion . 49

4 Collection and Backup Methods for Point-Based POMDP Solvers 51

4.1 Belief Collection . 52
4.1.1 Random Collection . 52
4.1.2 MDP Heuristic Collection 54
4.1.3 L1 Norm Collection . 55
4.1.4 L1 Leaf Biased Collection 57
4.1.5 Bound Uncertainty Collection 58
4.1.6 Error Minimization Collection 61

4.2 Belief Updates . 62
4.2.1 Full Backup . 62
4.2.2 Newest Points Backup . 63
4.2.3 Perseus-style Backup . 63
4.2.4 Pruning . 65

4.3 Summary . 66

5 Experimental Results . 68

5.1 Domains . 68
5.2 Experimental Method . 72
5.3 Belief Collection and Belief Update Ordering 73
5.4 Size of Belief Space . 83
5.5 Iterations of Belief Point Updates 87
5.6 Confidence Intervals . 92
5.7 Verification of PBVI Leaf Biased 93
5.8 Blind Policy Lower Bound . 96
5.9 Discussion . 100
5.10 Future Work . 104

6 Conclusion . 107

Appendix A . 110

viii

References . 117

KEY TO ABBREVIATIONS . 123

ix

LIST OF TABLES

Table page

4–1 An outline of a variety of point-based solvers, where we identify the
associated collection and updating methods. 51

5–1 A chart of the domains used and the size of their state, action and
observation spaces, respectively. 69

x

LIST OF FIGURES

Figure page

2–1 Example Value Function . 22

5–1 Update Methods: Hallway . 74

5–2 Update Methods: Tag . 76

5–3 Update Methods: RockSample[5,5] 77

5–4 Update Methods: RockSample[7,8] 79

5–5 Update Methods: FieldVisionRockSample[5,5] 80

5–6 Update Methods: Underwater Navigation 81

5–7 Update Methods: Dialogue . 82

5–8 Number of Belief Points: Hallway . 85

5–9 Number of Belief Points: RockSample[5,5] 86

5–10 Number of Belief Points: Underwater Navigation 87

5–11 Number of Belief Points: Dialogue . 88

5–12 Number of Belief Point Updates: Tag 89

5–13 Number of Belief Point Updates: RockSample[5,5] 90

5–14 Number of Belief Point Updates: Dialogue 91

5–15 Confidence Intervals: RockSample[5,5] 93

5–16 Confidence Intervals: Dialogue . 94

5–17 L1 Norm Collection Optimizations: RockSample[5,5] 95

5–18 L1 Norm Collection Optimizations: Underwater Navigation 96

xi

5–19 L1 Norm Collection Optimizations: Dialogue 97

5–20 Blind Policy: Tag . 98

5–21 Blind Policy: RockSample[5,5] . 99

5–22 Blind Policy: Dialogue . 100

6–1 Number of Belief Points: Tag . 110

6–2 Number of Belief Points: RockSample[7,8] 111

6–3 Number of Belief Points: FieldVisionRockSample[5,5] 112

6–4 Number of Belief Point Updates: Hallway 113

6–5 Number of Belief Point Updates: RockSample[7,8] 114

6–6 Number of Belief Point Updates: FieldVisionRockSample[5,5] 115

6–7 Number of Belief Point Updates: Underwater Navigation 116

xii

CHAPTER 1

Introduction

Artificial Intelligence (AI) has been defined as “the study and design of rational

agents” [40]. AI research has begun to permeate modern society, with sophisticated

AI techniques commonly in use in health care, finance, internet search and robotics.

As the use of AI technologies grows, it becomes increasingly important for these

techniques to be robust and scalable.

For decades, planning has been a key component in AI research. We can define

planning as “devising a plan of action to achieve one’s goals” [45]. We will use

the generic term agent to denote what or who carries out the plan of action. In

practice, this could be a software system, a robot, or even instructions to a human

operator. It is clear that planning is required for any complex autonomous system.

Even partially-autonomous or expert systems still require robust planning.

In this work, we focus on the subdomain of planning known as sequential decision

making. In this task, the agent must perform a sequence of decisions while trying to

accomplish some planning goal, or reach some measure of performance. In a general

sequential decision making task, the agent must learn to balance between greedily

accomplishing short term goals, with planning for longer term goals. This mindset

separates the planning field from problem solving where only a single decision must

be made, such as in utility theory, decision networks or simple expert systems.

1

AI techniques are increasingly used in real world conditions, especially in robotics

and medical domains. These types of environments are much more difficult to plan

for, since the real world is inherently noisy. There are many reasons why: robotic

sensors such as laser rangefinders can give poor estimates due to a dynamic environ-

ment or inherent hardware limitations, a speech recognizer can give an incorrect text

output due to slurred speech or substantial background noise, or a medical measure-

ment can give confusing readings due to normal human variance in the measurement.

Uncertainty can manifest itself in a variety of ways: in the state of the environment

(for example, in a medical domain, the problem with the patient may be unclear),

in what a specific action may do (for example, a robot attempting to turn in a tight

arc may slip), or in the information the agent receives (the speech recognizer is not

sure what word the user has uttered).

We now describe the different types of uncertainty. An environment is proba-

bilistic or stochastic if there is uncertainty in what a specific decision will do to the

environment (as in the example above of a robot slipping when it turns). A stochastic

environment is generally more difficult to plan in than a deterministic environment,

since your decisions must be taken knowing that their results are not predictable.

We refer to an environment as partially observable if the current state of the

environment (including the state of the agent) is unknown in some way. This is the

case when the information from our sensors does not fully describe the situation,

and the agent cannot therefore pinpoint its abstracted spacial representation in the

environment. This is, unfortunately, all too common in real world domains, such as

in robotics navigation and dialogue management.

2

Partial observability is generally a more challenging form of uncertainty than

the uncertainty provided by a stochastic domain. A major challenge posed by partial

observability is that the uncertainty builds throughout the planning. If the algorithm

ignores the fact that the environment is highly uncertain, the agent can quickly lose

track of the situation and make poor decisions. This means that an agent acting in

a partially observable environment must be able to incorporate information from the

history of the task, which can include previous sensor values and its past decisions.

All of these possible uncertainties seem to pose a daunting challenge to the

algorithm designer, and it may seem impossible to design a robust solution when

there are a multitude of uncertainties in the task environment. The key to designing

a solution to this problem is for the agent to not only be aware of its own uncertainty,

but to use the knowledge of its own uncertainty as part of the solution. This is a

critical step for planning in partially observable environments. An agent which makes

decisions knowing that it has a poor knowledge of the current situation, and acting

accordingly, will do much better than an agent which simply tries to make the best

decision while ignoring its own uncertainty. By this, we mean an agent should be able

to make decisions which obtain information about itself and the environment. An

agent should choose to gather information about the environment if doing so will lead

a better long term goal. However, there is often a cost to gathering information, so

the agent must balance gathering information and attempting to solve the problem.

In this work, we focus on examining a variety of techniques to intelligently solve

partially observable problems, which provide the agent with information on how to

act optimally or near-optimally under uncertainty.

3

1.1 Planning

AI planning originated from control theory and more classic search methods as

well as a more formal basis in theorem proving. The field was created as a response

to the increasing need for intelligent techniques for scheduling tasks, robotics, and

other domains [45]. Early classical planning focused on extremely high level abstrac-

tions of real environments. The speed of the computers at the time forced a simpler

representation. The domains tended to be small and finite, as well as being deter-

ministic and fully observable. The STRIPS [17] planner was an early example of

these kinds of solvers, used for robot control. This type of planning encoded the task

in terms of logical statements such a pre- and post- conditions, and formulated the

plan via a state-space search system. The next phase in planning research focused on

partial-order planning, which specifies a plan based on which actions must go before

which other actions (a partial ordering over the possible actions of the agent). These

can be created through a search though plan-space. Examples of these planners in-

clude SNLP [50] and UCPOP [37]. Other methods such as planning graphs [10] and

decision diagrams [15] have been used for planning (see [2, 56] for surveys on classic

planning). While these planning methods have become increasingly sophisticated,

they can encounter difficulties when applied to real-world planning domains, since

they do not model the stochastic and uncertain nature of realistic environments.

Another major influence in the development of modern decision making is the

field of dynamic programming. Dynamic programming encompasses many tech-

niques to solve problems by breaking them down into subproblems, and exploiting

overlapping structures of these subproblems. Richard Bellman’s book “Dynamic

4

Programming” [9] described many of the original algorithms, and provided a base

for the development of the field. Howard expanded on many of these ideas [22]. The

Markov Decision Process (MDP) framework, which was used in the original dynamic

programming work has become a very popular model for probabilistic decision mak-

ing, due to its generality and ability to describe stochastic domains. The expressible

stochasticity of the MDP framework allows it to capture the uncertainty in future ac-

tions. The related field of reinforcement learning [53] focuses on developing methods

to learn unknown, possibly stochastic, environments via exploration.

The MDP framework is able to model stochastic environments, but it assumes

that the agent is totally aware of the status of the environment itself (i.e. that the

environment is fully observable). For example, it could not model a situation with

hidden information, such as an opponent’s cards in poker or the current severity

of a disease with a patient. The Partially Observable Markov Decision Process

(POMDP) [3], the natural partially observable extension to MDPs, has emerged as

a flexible model for decision making under uncertainty. Sondik [51] first proposed an

exact method for solving a POMDP. More efficient exact solving methods have been

proposed [14,16,27,58,59]. In recent years, there has been much work in developing

approximate solutions. In this thesis, we will focus on a class of approximate POMDP

solvers known as point-based methods.

Point-based POMDP planning algorithms create approximate POMDP solu-

tions by only considering a finite subset of points in belief space. There have been

many [26, 38, 39, 46, 48, 52] such algorithms proposed in the past few years. While

each algorithm has been compared with predecessors, there are a few problems with

5

these comparisons. A primary issue is that these algorithms tend to introduce sev-

eral new ideas at once. While effective at pushing the state of the art in POMDP

solving, this makes it more difficult to compare the approaches. This approach to

algorithm design makes it especially difficult to isolate the element that produced the

performance increase. To date, there has not been a comprehensive study examining

the methods introduced in these algorithms.

1.2 Contribution

The primary contribution of this thesis is to offer a comprehensive empirical

analysis of point-based POMDP solvers. While previous comparisons have focused

on contrasting the speed of convergence of different algorithms, in this work we focus

on comparing the specific mechanics used in these algorithms. The advantage of

framing the examination in terms of the methods used within the algorithms is that

we can keep all algorithm parameters fixed, and gain a deeper understanding about

which parts of the algorithms are useful, and in which context.

Point-based POMDP solvers also have several important parameters that need

to be set, such as the size of the belief space and the number of updates per iteration.

To our knowledge, there has not been a formal study showing the effect of these

parameters on the quality of the POMDP solution. A primary contribution of this

thesis is to examine the importance of these algorithm components. We also examine

how other mechanics, such as better initial bounds, affect the quality of the solution.

6

The empirical performance of a given approximate POMDP solver depends

highly on the domain, and can vary depending on the methods and the parame-

ters of the algorithm. To this end, we applied our empirical examination on a wide

set of target domains.

It is often the case that a careful study of current methods can give rise to new

ideas. In the course of our study, we developed two modifications to a classic point-

based technique. We combine these ideas to create the algorithm PBVI Leaf Biased

Collection. In our investigations, we test the quality of this new approach.

1.3 Outline

We now present the overall organization structure of the thesis. In Chapter 2, we

provide formal descriptions of the MDP and POMDP decision making frameworks,

as well as introduce key concepts such as value functions and belief states. We

then provide an overview of exact and approximate methods for solving POMDPs.

We present a survey on the current point-based POMDP planning algorithms in

Chapter 3, with a strong focus on what differs in these methods. In Chapter 4,

we describe a variety of methods used by the point-based algorithms. We do an

empirical evaluation of these methods and present our results and observations in

Chapter 5. Finally, we conclude in Chapter 6.

7

CHAPTER 2

Probabilistic Decision Making in Markovian Environments

The concept of planning and decision making is central to many problems in

AI. In a decision making process, an agent makes a set of choices by selecting from

some set of possible actions, to achieve goals specified by the problem domain. In

this work, we only consider discrete time control processes, i.e. an action must be

selected at fixed time steps. The agent exists in a state of the environment, which

is some encoding of the current properties of the environment. When formulating

a problem domain, the problem designer should try to keep the state as simple as

possible, as a very complicated state description would make solving the decision

making process much more difficult. To achieve this, a common assumption to make

is the Markov property. A process has the Markov property when the distribution

over the future states of the process depends only on the current state and not past

states. Finally, we consider stochastic decision making processes, where the next

state is determined by some probability distribution rather than the special case of

a deterministic process (with a fixed next state).

In this chapter, we describe a classic model for probabilistic decision making,

the Markov Decision Process (MDP), as well as detail some methods for planning in

an MDP. We then detail the partially observable extension to the MDP, the Partially

8

Observable Markov Decision Process (POMDP). Subsequently we describe existing

POMDP planning methods, both exact and approximate.

2.1 Markov Decision Processes

2.1.1 Description

The Markov Decision Process (MDP) is a powerful model for solving stochastic

decision making problems [9]. We can define a MDP as a tuple (S,A, T,R, γ), where

we define:

States S = {s0, s1, . . . , sN} is a finite set of all possible states of the agent/environment.

We denote st as the state at timestep t. As we have discussed, the state is a

sufficient statistic to fully describe everything the agent might need to form its

decision. MDPs can also be defined with a continuous state space, but in this

thesis we only consider the finite case. An example of a state is the location of

the robot in a navigation task.

Actions A = {a0, a1, . . . aM} is the finite set of all possible actions the agent can

take (one at each time step). A continuous set of actions is also possible, but

in this work we consider only a finite action space. In general, it is possible

for the set of actions to depend on the state, but in this work we keep a fixed

set of actions available in all states. An example of an action could be a move

command in a navigation task.

Transition Function We define the transition function T as

T (s, a, s′) = P (st+1 = s′|st = s, at = a)∀t, (2.1)

9

where s is the state at time t, a is the action taken at time t, and s′ is the state

at time t + 1. The transition function defines the next state probability dis-

tribution under a specific state-action pair. This property of the MDP models

the stochastic nature of the decision making. The transition function satisfies

the Markov property, i.e. P (st+1 = s′|st, at, st−1, at−1, ..., s0, a0) = P (st+1 =

s′|st, at). Since it is a full conditional probability distribution, we also have the

property that
∑

s′∈S T (s, a, s′) = 1.

Reward The function R(s, a) ∈ R is the numerical reward for taking action a

in state s. The model includes both positive rewards (payoffs) and negative

rewards (costs). The goal of any agent is to maximize the total return from

the process, which we define as

E

[

T
∑

t=t0

γt−t0rt

]

, (2.2)

where E is expectation, rt is the reward earned at timestep t, γ is defined

subsequently and t0 and T are the start and end times of the process, respec-

tively. The expectation E is simply the average return over an infinite number

of trials.

Discount We define γ ∈ [0, 1) as the discount factor. As we saw in Equation 2.2, the

reward at timestep t is discounted by the factor γ(t−t0). The intuition behind

the discount factor is to value short term gains more strongly than longer term

gains of equal size. If γ is close to 1, then the agent will value future rewards

strongly. As γ approaches 0, the agent becomes much more myopic, maximizing

more immediate rewards. The discount factor can be seen as an analogue to

10

the interest rate in finance. As well, γ ensures that the total return is a finite

sum.

For a specific task in a MDP, we also require a start state s0, or some initial

start state distribution µ0(s) = P (s0 = s), where
∑

s∈S µ0(s) = 1.

We define a policy π ∈ Π as

π(s, a) = P (at = a|st = s). (2.3)

The policy defines a probability distribution over which action to take based on the

current state, i.e.
∑

a∈A π(s, a) = 1 ∀s. The policy is used by the agent to carry out

the decision making task.

Bellman [9] showed that for a given MDP, there always exists a deterministic

optimal policy π∗, which gives a long term return at least as good as any other policy

π ∈ Π starting in any state s. A deterministic policy is one where π(s, ai) = 1

for a given action ai, and π(s, a) = 0 ∀a 6= ai. Since there is no advantage in

using stochastic policies, we will refer only to deterministic policies for simplicity.

Therefore, we will only use policies of the form π(s) → a, which will always pick

action a in state s.

With the MDP and policy defined, we can trace the execution of an agent

within an environment. The agent starts in the start state s0. At each time step t,

the agent selects an action at = π(st). The agent executes at, moving into state st+1

and receiving reward rt. This process can either proceed indefinitely (continuous

task), or finish under some termination condition (episodic task).

11

2.1.2 Planning

Value Functions and Bellman Equations

An important tool for finding a policy for an MDP is the notion of a value

function V π(s). Formally, we define a value function V π as

V π(s) = Eπ[Rt|st = s] = Eπ

[

∞
∑

k=0

γkrt+k|st = s

]

. (2.4)

The intuition behind the value function of a state s is that it represents the total

amount of reward the agent will receive if it started in state s and followed the

associated policy π afterwards.

Similarly, we can define a state-action value function Qπ(s, a) as

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[

∞
∑

k=0

γkrt+k|st = s, at = a

]

. (2.5)

Qπ(s, a) is the expected return from starting in state s, taking action a and afterwards

following the policy π.

An important property of the state value function V π is that it satisfies the

following recursive relationship:

V π(s) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′), (2.6)

where a = π(s). This follows the intuition that the value for a state s is the immediate

reward added to the (weighted) discounted value of the next state.

We can now more formally define optimality for policies and value functions.

We define an optimal policy π∗,

12

π∗ = argmax
π∈Π

V π(s0), (2.7)

and the optimal value function,

V ∗(s) = max
π∈Π

V π(s). (2.8)

Bellman showed [9] that the optimal value function satisfies the following recur-

sive equations:

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

]

, (2.9)

and similarly for Q∗(s, a),

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′). (2.10)

These are known as the Bellman equations [9] for the value function. The

intuition is that the optimal value for a state s is the value received by taking the

action which leads to a maximum combination of immediate reward and total future

discounted return. It is clear we can extract an optimal policy π∗ from the optimal

value function V ∗:

π∗(s) = argmax
a

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

]

. (2.11)

Value Iteration

There are several classic dynamic programming methods that have been devel-

oped for solving for the optimal value function in MDP problem, including policy

13

evaluation, policy iteration and value iteration [9, 22]. Value iteration [9] can be

written as a simple backup operation:

Vk+1(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)Vk(s
′)

]

. (2.12)

The full algorithm initializes the value function, then for each state, updates the

value based on the backup equation above. At each step, the value function gives

a closer approximation to the optimal value function. This is repeated until some

stopping condition, such as:

max
s∈S
|Vk(s)− Vk−1(s)| ≤ δ, (2.13)

for some small δ ≥ 0.

At any step, a policy πk+1 can be computed directly from the value function Vk:

πk+1(s) = argmax
a

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)Vk(s
′)

]

. (2.14)

If value iteration is run until the above stopping condition is achieved, then

maxs∈S |V
∗(s)−V πk+1(s)| < 2γδ

1−γ
. A policy π is defined to be ǫ-optimal if maxs∈S |V

∗(s)−

V π(s)| < ǫ. Therefore, a policy resulting from value iteration is guaranteed to be

ǫ-optimal if we execute value iteration until

max
s∈S
|Vk(s)− Vk−1(s)| <

(1− γ)ǫ

2γ
. (2.15)

This is an example of an anytime algorithm, where at any timestep, an approx-

imate solution can be extracted.

14

Theoretically, it would be nice to be able to always solve for the optimal policy.

In practice, this rarely occurs, since for most realistic domains, solving for the optimal

policy is not tractable. Thus, much of the research in the planning field has focused

on finding approximate solutions. In the MDP framework, a popular method for

approximating the value function with large or continuous state or action spaces is

through the use of function approximations [53,54].

2.2 Partially Observable Markov Decision Processes

2.2.1 Description

Partially Observable Markov Decision Processes (POMDPs) provide a flexible

decision making framework for partially observable domains [3, 12, 25, 30, 33, 51].

An environment which is partially observable means that the agent does not have

direct access to its own state, but must infer the situation based on the (possibly

noisy) observations it receives. POMDPs are well suited for probabilistic domains

where decision making is required in the presence of sensor uncertainty, such as

dialogue management or robot control. The POMDP model is the natural partially

observable extension to the MDP model. We can formally define a POMDP as a

tuple (S,A, Z, T,O,R, γ). The characteristics S, A, T , R, and γ are inherited from

the MDP model, where S is the set of states, A a set of actions, T is the transition

function, R is the reward function, and γ is the discount factor. We refer to the MDP

(S,A, T,R) as the underlying MDP of the POMDP. We now define the remaining

terms Z and O:

15

Observations Z = {zo, z1, . . . , zL} is the finite set of all possible observations the

agent could receive from the environment. An observation is a piece of (possibly

noisy) information about the environment. Only one observation zt is seen

at each timestep t, but multiple observation streams can be composed (via

a crossproduct) into a single set of observations Z. It is possible to define

POMDPs with continuous observations but for this work we examine the finite

observation space case.

Observation Function We define the observation function O as

O(s, a, z) = P (zt+1 = z|st = s, at = a)∀t. (2.16)

This function defines the probability of observing z when executing action a in

state s. We restrict
∑

z∈Z O(s, a, z) = 1 ∀s, a to ensure that it is a probability

distribution.

2.2.2 History and Belief States

In a partially observable environment, the agent cannot access the current state

st directly. However, the agent receives observations at each step, which provides

indirect access to the state. In general, these observations are insufficient to guarantee

state knowledge.

The most obvious way to keep track of what state the agent is in is by keeping

a history of the agent’s actions and observations. We define a history ht as

ht = {a0, z1, a1, z2, ..., at−1, zt}. (2.17)

16

However, storing the history is too unwieldy to be practical for many tasks.

Instead of maintaining the history, we can represent it by a belief state bt, which

is the probability distribution over states, given a history [3]. The belief state is a

sufficient statistic for the history [47]. We can define bt as

bt(s) = P (st = s|ht, b0), (2.18)

where b0 is the initial belief state.

The advantage of using the belief state is that it offers a compact way of en-

capsulating the agent’s history. Using the belief, we do not need to keep track of

histories. We refer to the set of possible beliefs as ∆S. Note that ∆S is simply

the simplex for the state space. Therefore, ∆S has dimension (|S| − 1), and is a

continuous space, even when the underlying MDP state space is finite.

Belief points also have the advantage of being easy to compute if the previous

belief point is known, assuming we have the previous action and observation. We

denote τ as the function which transitions from a previous belief state bt−1 to a new

belief state bt:

bt(s
′) = τ(bt−1, at−1, zt), (2.19)

=
1

P (zt|bt−1, at−1)
O(s′, at−1, zt)

∑

s∈S

T (s, at−1, s
′)bt−1(s). (2.20)

The next belief state at s′ is simply the probability of transitioning to s′ based on

the previous belief, multiplied by the probability of the observation zt occurring for

that belief s′, and normalized by the probability of receiving the observation zt,

17

P (zt|bt−1, at−1). This factor can be computed as

P (zt|bt−1, at−1) =
∑

s′∈S

O(s′, at−1, zt)
∑

s∈S

T (s, at−1, s
′)bt−1(s). (2.21)

This belief update process is the same as the standard Bayes filter [23].

2.2.3 Policies and Value Functions

Much like in the MDP case, we can define a policy which specifies how an agent

will act when operating within a POMDP environment. We define a policy π for a

POMDP as

π(b)→ a. (2.22)

Note that this is the same as the policy for the MDP, but we choose the action based

on the belief state b, instead of based on the state s.

For the POMDP policy, the belief acts as the state in the MDP case. In fact, the

POMDP itself can be represented by a MDP we call the Belief MDP (MDPBelief)

[25]. Since the belief transition function τ is a sufficient statistic, we can formulate

MDPBelief = {∆S,A, τ, Rbelief}, where the state space is the belief space ∆S of the

POMDP, the action space A remains the same as the action space for the POMDP,

the transition function is the belief transition function τ and the reward function

Rbelief is the reward for the beliefs:

Rbelief (b, a) =
∑

s∈S

b(s)R(s, a). (2.23)

Since there always exists an optimal deterministic policy π∗(b) for MDPBelief ,

and since the belief MDP is functionally equivalent to the POMDP, therefore there

18

always exists an optimal deterministic policy for a finite POMDP under a finite-

horizon.

Using the notion of the Belief MDP and the standard value function update

equation from Equation 2.12, we can create the value function update equation for

the POMDP:

Vk+1(b) = max
a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

P (z|b, a)Vk(τ(b, a, z))

]

, (2.24)

and similarly, our POMDP policy is defined:

πk+1(b) = argmax
a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

P (z|b, a)Vk(τ(b, a, z))

]

. (2.25)

Although a POMDP can be easily reduced to a MDP, planning for a POMDP

is still a more difficult problem than MDP planning. The most obvious reason is

that the size of the policy space is generally much larger. In a problem with |S|

states, ∆S is a |S| − 1 dimensional continuous space. This is referred to as the

curse of dimensionality. Another issue is related to the size of the space of reachable

belief points, where a reachable belief point is one which can be arrived at by the

agent starting in the initial belief state b0 and following some policy. This space is

affected by the size of the action and observation spaces, as well as the length of the

exploration horizon. This is referred to as the curse of history.

2.2.4 Planning

POMDP solving, or POMDP planning, is the task of computing a policy (opti-

mal or approximate), given a full POMDP model. This is orthogonal to the problem

19

of finding a POMDP model of an environment, which is a problem often addressed

using reinforcement learning [7, 43].

As we have seen, there are large computational challenges for POMDP solving.

In this section, we will briefly review the literature on POMDP planning techniques,

looking at both exact and approximate planning techniques.

Exact Planning

There have been many different algorithms for exact POMDP solving [14, 16,

27, 51, 58, 59]. Sondik’s Enumeration [51] algorithm was not the first proposed al-

gorithm, but is one of the most straightforward to describe. This algorithm is the

POMDP analogue of the standard MDP value iteration algorithm seen in Section

2.1.2. Much like regular value iteration, the Enumeration algorithm performs iter-

ations of dynamic programming to give successively better approximations to the

value function.

Representing the value function for a POMDP is more complex than for an

MDP, since the belief space is continuous, as well as being of much higher dimension

as compared to the state space. Therefore, we cannot simply keep a tabular array to

keep track of the value of each belief. Sondik showed that for a finite planning horizon,

the optimal value function is a piecewise linear, convex function of the continuous

belief space [47] [51]. Therefore, we can represent the value function for any finite

planning horizon t as a set of vectors Γt = {α0, α1, . . . α|Γt|}. These α-vectors are

hyperplanes existing in belief space. α-vectors are associated with a specific action,

and they represent an estimated value over the belief space, where the value for an

20

α-vector is associated with the total return the agent would receive when executing

the associated action at that belief.

We can compute the value an α-vector associated with a belief via an inner

product:

V α(b) =
∑

s∈S

α(s)b(s). (2.26)

The α-vectors taken as a set, provide a full value function:

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s), (2.27)

where Γt is the set of α-vectors at timestep t. An example value function is shown

in Figure 2–1.

We say an α-vector α is dominated if:

∀b ∈ ∆S ∃α′ ∈ Γ s.t.
∑

s∈S

α′(s)b(s) ≥
∑

s∈S

α(s)b(s). (2.28)

A dominated α-vector is never the best α-vector at any point in the belief space.

Since V (s) represents a lower bound to the true value, a dominated α-vector can be

safely removed (pruned) without changing the value function. We also say that an

α-vector α1 dominates α2 iff α1(s) ≥ α2(s) ∀s.

The Enumeration algorithm dynamically builds a set of α-vectors, where our

set of α-vectors for each planning horizon t is denoted Γt. We build an intermediate

set of alpha vectors which are used in the following computation. This initial set of

α-vectors corresponds to the immediately received rewards, since we only consider a

21

Figure 2–1: A sample value function, shown here with six α-vectors. This POMDP
has two states, so the belief is a continuous value between 0 and 1. We note that only
three α-vectors are being used (denoted by the thicker lines). All other α-vectors are
dominated by some other vector at some belief point.

single step. These are separated per action:

Γa
1 = {αa|αa(s) = R(s, a)∀s}. (2.29)

We use these to create our initial set of α-vectors, which we denote as Γ1:

Γ1 =
⋃

a∈A

Γa
1. (2.30)

22

Now we build Γt based on Γt−1. We combine the immediate reward step with

the plans of length (t− 1). First, we build the sets {Γa,z
t }∀a, z. Each Γa,z

t is a set of

α-vectors associated with taking action a and receiving observation z, and afterwards

following the plans of length (t− 1).

For a single action a and observation z, we build

Γa,z
t =

{

αa,z
i |α

a,z
i (s) = γ

∑

s′∈S

T (s, a, s′)O(s′, a, z)α′
i(s

′), α′
i ∈ Γt−1

}

. (2.31)

We combine these with the one-step reward vectors using the cross-sum1 :

Γa
t = Γa

1 ⊕ Γa,z1

1 ⊕ Γa,z2

1 ⊕ . . .⊕ Γ
a,z|Z|

1 , (2.32)

and finally combine all Γa
t sets:

Γt =
⋃

a∈A

Γa
t . (2.33)

This algorithm can solve POMDPs with finite state and action space given the choice

of planning horizon. The actual value function Vt can be extracted from the set of

α-vectors as described in Equation 2.27.

There have been many other exact planning algorithms [14, 16, 27, 51, 58, 59].

The Witness [27] algorithm uses a different criterion for when to create α-vectors.

It considers regions where current α-vectors are not optimal, and then adds in the

1 The cross-sum (⊕) operator is defined: for sets A = {a1, a2, . . . , a|A|}, B =
{b1, b2, . . . , b|B|}, A⊕B = {a1 + b1, a1 + b2, . . . , a1 + b|B|, a2 + b1, . . . , a|A| + b|B|}

23

optimal vector. More recent algorithms have focused on removing dominated α-

vectors, since in the exact methods, large numbers of α-vectors must be created.

Using heuristics to select belief points for the updates has also been explored [59].

The exact methods have become increasingly sophisticated. Unfortunately, ex-

act planning methods still carry a very high computational cost. For a single planning

iteration at a horizon of t, the computation cost is O(|A||Z||S|2|Γt−1|
|Z|). Even with

clever pruning of α-vectors, the size of Γ remains exponential in Z. For practical

domains, it is essential that we consider approximate techniques.

Approximate Planning

There are a wide variety of existing approaches for approximating a value func-

tion for a POMDP. In this section, we describe some of the most common methods.

Heuristic Approaches. Several methods have been proposed that use heuris-

tics based on the underlying MDP, including Most Likely State (MLS) [35], QMDP

[28] and Fast Informed Bound (FIB) [21]. As we have discussed, MDP planning is

much simpler than solving the full POMDP. While following the optimal MDP policy

will be suboptimal in a partially observable domain, it can, nevertheless, be a useful

heuristic in many cases. We solve for QMDP as described in Equation 2.10, where

our MDP is the underlying MDP of the POMDP, specifically MDP = (S,A, T,R).

The MLS heuristic creates a policy simply by choosing the action for the state that

is most likely in the belief:

πMLS(b) = argmax
a∈A

QMDP (argmax
s∈S

b(s), a). (2.34)

24

This technique can perform well when there is generally a strong peak in the belief

state, which is common in robotic applications with powerful sensors. However, MLS

will perform poorly in any situation where there is a large amount of uncertainty,

and it would never select information gathering actions. We note that this is an

upper bound for the true value function as it is optimistic in assuming we have full

observability. A slightly more complex heuristic is QMDP . We define the heuristic

as :

πQMDP (b) = argmax
a∈A

∑

s∈S

b(s)QMDP (s, a). (2.35)

This creates a single α-vector for each action, i.e. αa(s) = QMDP (s, a)∀a. This

is still an upper bound, but tighter than the one proposed by VMLS. The advantage

of QMDP over MLS is that it takes into account the uncertainty at the current

step. However, it still has no ability to do long term information gathering, since all

future steps assume full observability.

Both of these methods rely on the fully observable underlying MDP policy,

without taking into account any uncertainty. Hauskrecht’s FIB heuristic integrates

the observation weights into the update step (here we represent the Q function as a

set of α-vectors).

αa
t+1 = R(s, a) + γ

∑

z∈Z

max
αt∈Γt

∑

s′∈S

O(s′, a, z)T (s, a, s′)αt(s
′), (2.36)

and we define the value function as in Equation 2.27.

The intuition behind the FIB heuristic is that it selects the optimal action

weighted by the expected observation. The value function remains an upper bound as

25

before, but is guaranteed to be below the QMDP value function (i.e. V ∗
POMDP (b) ≤

VFIB(b) ≤ VQMDP (b) ∀b).

Policy Search. Most of the techniques we have discussed so far create a policy

by iteratively building a value function. Another approach is to directly optimize the

policy. We call these approaches policy search algorithms. A policy search algorithm

for POMDPs depends on a) how to represent the policy and b) how to learn the

policy.

Hansen [19] proposed using a finite state machine (FSM) to represent the pol-

icy. In this formulation, each node in the policy graph is associated with the action

that the agent should take when in that node. Transitions between the policy nodes

are associated with observations, so when the agent receives an observation, it moves

to the next node in the FSM . Note that as described, this results in a deterministic

policy although a stochastic policy could be formed as well. It is straightforward to

extract a value function from this policy representation. Policy iteration is done by

directly modifying the FSM , i.e. by adding, modifying and removing nodes. Other

techniques are possible, including branch-and-bound methods [32] and gradient as-

cent [6,8,32,34,57]. Bounded Policy Iteration [41] uses gradient ascent to search for

policies while restricting the FSM to a fixed size. Once encountering a local optima,

the size of the controller is increased by one (or a few) nodes to escape the optima.

Policy search techniques apply more easily to POMDPs with continuous param-

eters (such as continuous state or action spaces) than do value function approaches.

However, selecting the class of policies to be explored can be difficult. As well, local

26

optima are more of an issue with policy search. However, policy search techniques

have been applied to real-world domains [5].

Grid-based. Grid-based value function algorithms [11,20,29,60] approximate

the value function over a subset of the true belief space. These belief points are se-

lected in a grid pattern, which we denote G = {bG
1 , bG

2 . . . bG
|G|}. The goal of arranging

the belief points in a grid is to give a wide coverage over the belief space. For belief

points not covered by the grid itself, an interpolation of the values of the nearby

beliefs on the grid is used:

V (b) =

|G|
∑

i=0

λ(i)V (bG
i). (2.37)

where λ(i) ≥ 0 ∀i, and
∑|G|

i=0 λ(i) = 1. To compute the values V (bG
i), we use standard

value iteration for POMDPs, as in Equation 2.24.

The convex combination function λ(i) can be found by solving a linear pro-

gram [60]. However, solving the system exactly can be very computationally expen-

sive. Since any convex combination will give an upper bound to the value function,

approximate solutions to compute λ(i) have been proposed.

The grid-based approaches vary in how they pick their grid points G, and how

the interpolation function λ(i) is computed. The different approaches therefore will

provide different optimality guarantees. One major drawback to the grid-based ap-

proaches is the difficulty in forming effective policies when important beliefs are dense

in specific areas of the belief space. As well, since the grid-based approaches tend

to not consider reachability of the belief points, the representation does not focus

computation on the parts of the belief space which are most useful (i.e. the reachable

subspace).

27

Online Approaches. All algorithms already discussed are types of offline

methods. This means there is a clear separation between the POMDP solving and

the execution of the resulting policy. In offline solvers, the POMDP is solved ahead

of time, producing a fixed policy. This fixed policy is subsequently used in execution.

Online methods remove the separation between solving and execution, by interleaving

POMDP updates while the agent moves through the environment. An advantage in

using online approaches is that the solver only needs to plan based on the current

belief state of the agent, instead of solving for the entire belief space. Furthermore,

since the online planning occurs at every timestep, generalization to other belief

states is not nearly as important, since subsequent belief states undergo replanning

regardless.

Online approaches accomplish this by building a tree of belief nodes with the

current belief of the agent as the root, and using the normal belief transition τ(b, a, z)

(Equation 2.19) to generate subsequent nodes. The tree is built with action decision

nodes between layers of belief nodes. The size of the tree (i.e. the planning horizon)

is generally selected based on the real-time constraints of the agent. If the agent

has more time for real-time planning, then the size of the planning horizon can be

extended. Once the tree is built, the fringe belief nodes values are seeded with the

results from an offline solver, or some other heuristic. The belief point values are

propagated upwards through the tree using the standard Bellman Equations (see

Equation 2.24).

We have described the general guideline for an online solver. There are a variety

of published techniques, which vary in how the belief points are selected, or, viewed

28

another way, how they are pruned from exploration. These methods include using

heuristics [42, 55], Branch-And-Bound pruning [36] and Monte-Carlo sampling [31].

See [44] for a recent survey on online planning techniques.

Using an online solver has been shown to be very efficient for POMDPs with large

state or action spaces. Online solvers do have the restriction that all computation

must be done while the agent is executing within the environment, which may be a

minimal amount of time, depending on hardware and real-time constraints.

We note that the use of an online planner is completely orthogonal to the use

of an offline planner. While executing actions selected by online planning technique,

the leaf belief nodes in the planning tree must be initialized with the result of an

offline solver. It is clear that the quality of the offline value function approximation

will affect the final performance of the online planner, especially in the case of tasks

with limited real-time computation. The focus of the latter chapters of this thesis is

on offline solvers. However, if the real-time constraints of the environment allow an

online solver to be used, then applying online backups to the offline value function

is recommended.

Point-Based. A final category of offline POMDP approximation techniques

is point-based methods, which have become very popular due to their ability to solve

large problems much more efficiently than exact methods. The collecting and up-

dating algorithms explored in this paper are associated with the collection/updating

methods of the point-based algorithms in the literature. Therefore we need to de-

scribe the current point-based methods in detail. We describe these point-based

algorithms in the next chapter.

29

CHAPTER 3

Point-Based POMDP Solvers

As we have seen, there are a wide variety of POMDP planning techniques, both

exact and approximate. Research in POMDP planning is ongoing, however, due

to the steep computation complexity of the framework. We have discussed two of

the key challenges of POMDP planning: the curse of dimensionality, referring to

the exponentially increasing belief space, and the curse of history, referring to the

exponentially increasing size of the required planning space as the planning horizon

grows. Point-based methods tackle these challenges by careful selection of belief

points, by choosing points that will support a more accurate value function for the

POMDP. These methods also attempt to generalize from these individual points, by

using the methods developed for exact POMDP planning to give good value function

approximations for points in the belief space that were not chosen.

Point-based planners draw from the grid-based methods in how they approxi-

mate via choosing only a subset of belief nodes over which to iterate. These planners

are also influenced by the heuristic-based methods we have discussed.

There have been a variety of point-based POMDP planners proposed in the

literature. These planners differ in several places, including the methods for collecting

points, updating points, and other optimizations. The focus in this thesis is to

examine what are the best methods to use for point-based solvers.

30

In the next section, we will review the core algorithmic component found in

point-based POMDP solvers. The rest of the chapter will describe several of the

well-known point-based solvers from the literature. The goal is to describe the his-

tory of the algorithms, and to give a high level description of the details of their

subcomponents. Note that we do not compare these algorithms directly in the latter

part of this thesis; rather, our empirical work compares the core components of these

algorithms, in an attempt to better understand their effectiveness.

3.1 Introduction to Point-Based POMDP Solvers

In the exact planning methods we have discussed, the goal is to create a new set

of α-vectors such that the α-vector for each belief point in the simplex is updated.

Instead of looking at the whole space as before, let us focus on a single belief point

b. We define the backup operation on a belief point b as:

backup(b) = αb
t (3.1)

= argmax
α∈Γt

∑

s∈S

b(s)α(s). (3.2)

Therefore the α-vector created by the backup(b) operation is the α-vector in the

(unknown) value function Vt which gives the maximum value for the belief. We

think of this as “updating” or “backing up” the belief point since the operation

computes the new α-vector by back-propagating all current α-vectors one step and

combining it with the one-step reward. This is an instance of dynamic programming,

similar in principle to the original Bellman updates. We stress that backup(b) is an

operation, since it computes a new α-vector, rather than a simple assignment.

31

Point-based solvers, instead of ensuring that the value function is updated over

the entire belief simplex ∆S, only apply the backup operation over some specified

finite subset of belief points B such that B ⊂ ∆S. Here we describe how a point-

based solver would create the α-vectors for the next value function.

First, we need to build our intermediate sets Γa
1 (the immediate reward vectors)

and Γa,z
t , our plans of length (t− 1) based on our previous set of α-vectors Γt−1:

Γa
1 = {αa|αa(s) = R(s, a)∀s}, (3.3)

Γa,z
t =

{

αa,z
i |α

a,z
i (s) = γ

∑

s′∈S

T (s, a, s′)O(s′, a, z)α′
i(s

′), α′
i ∈ Γt−1

}

. (3.4)

The operations to compute these sets are the same as in the exact methods. We

now define the set of vectors Γa
b :

Γa
t,b = Γa

1 +
∑

z∈Z

argmax
α∈Γa,z

t

[

∑

s∈S

α(s)b(s)

]

. (3.5)

Whereas in the exact value update, we combined all possible combinations of

observations and previous plans, here we are simply summing over observations on

the best previous vector for the specific belief state.

Finally, our backup operation becomes:

backup(b) = argmax
α∈Γa

t,b

∑

s∈S

b(s)α(s). (3.6)

The backup operation creates the set Γa
t,b for the specified belief point. It then

picks the α-vector in that set that maximizes the value at the belief point b. Note

32

that in the point-based case, we only build Γa
t,b when required, instead of computing

it for all possible belief points under a fixed horizon t, as in the exact planning

methods. As well, since the Γa,z
t sets are used in multiple Γa

t,b computations, these

sets can be stored to save computation time. The full backup operation runs in

O(|S|2|A||Z||Γt−1|) time.

The key assumption of point-based planners is that the finite set of belief points

that are updated will generalize well enough to cover the reachable subspace of the

belief space. The intuition behind this assumption is that the set of important, reach-

able beliefs are not uniformly distributed in ∆S, but form some sort of correlated

subspace. If this is the case, then the set of points selected should generalize well,

as long as the set B is collected carefully.

All point-based methods share this backup(b) operation. The algorithms differ

mainly in three respects. First, these algorithms differ in the method used to select

the new belief points. Second, they differ in which belief points are updated in each

backup iteration, as well as the ordering of the updates. Third, the various point-

based algorithms have different minor optimizations, such as pruning techniques

or better initial value functions. In general, these algorithms interleave steps of

belief point collection and belief point updates. An outline of a generic point-based

algorithm is shown in Algorithm 1. The COLLECT method selects the new belief

points, while the UPDATE method determines which belief points will be updated,

and in which order.

The algorithm alternates between belief point collection and iterations of belief

point updates, and terminates at some stopping condition. The stopping condition

33

Algorithm 1 Point-based POMDP Solver
t← 0
Initialize V0

Initialize B
while stopping condition not met do

Bnew ← COLLECT (Vt, B,N)
for U iterations do

Vt+1 ← UPDATE(Vt, B,Bnew)
t← t + 1

end for
B ← B ∪Bnew

end while

could be time (especially for a time-constrained planner) or a fixed number of itera-

tions. Some point-based methods provide a guarantee on the quality of the resulting

policy, where the stopping condition is specified in relation to the desired quality of

the policy. Since at any step the current value function Vt could be used to generate

a policy, point-based algorithms have the advantage of being anytime algorithms.

Each iteration of belief point collection selects N belief points. We also see that the

algorithm runs U iterations of belief point updates.

There have been a few proposed ways to initialize the value function V0. In

general, point-based methods use a lower bound initialization for V0 over the entire

belief simplex ∆S. An advantage of this approach is that with V initialized as a

lower bound, it will remain a lower bound for the entire computation, which makes

it easier to detect convergence.

A common method to initialize V0 is to add a single α-vector such that:

α(s) =
maxa∈A

[

mins∈S R(s, a)
]

1− γ
∀s ∈ S. (3.7)

34

This gives us an α-vector associated with the action which gives us the best worst-

case immediate reward. This provides a simple guaranteed lower bound.

We will now present some of the well-known point-based solvers in reference to

this framework.

3.2 Point-Based Value Iteration (PBVI)

Point-based Value Iteration, published in 2003 [39], was an early point-based

approximate solver. Pineau et al. introduced the notion of only applying the backup

operation on a finite subset B ⊂ ∆S where all b ∈ B are reachable from the initial

belief b0.

Collection

In PBVI, the belief set B is initialized with a single belief point, the initial belief

point in the POMDP problem b0. At each step, the set B is expanded by greedily

choosing new reachable points that improve the worst-case density of the current

belief set.

The collection algorithm iterates through belief points b currently in the set B.

A set {ba0
, ba1

, . . .} is generated for each b ∈ B, where each bai
is created by executing

action ai in b, and sampling a random observation z from O(s′, ai, z), where s′ is a

sampled next-state. bai
is then generated from τ(b, a, z) (Equation 2.19). Next, PBVI

35

calculates the L1 norm 1 between each belief in {bai
}i and every b ∈ B. Finally, it

adds the successor belief point bmax which is the farthest (L1 norm) from any point

already in B:

bmax = argmax
b∈{bai

}i

||bai
−B||1 , (3.8)

where we define ||bai
−B||1, the L1 norm between a point and a set as:

||bai
−B||1 = max

b∈B
||bai
− b||1 . (3.9)

The belief point bmax is computed for each b in the initial set B, so the belief

space doubles at each iteration. The goal of using the L1 norm metric to choose

successor nodes is to expand the belief set towards new beliefs which are far away in

belief space. Note that since all beliefs added are successor beliefs, all points in B

are guaranteed to be reachable.

Backup

PBVI starts each iteration with a value function empty of α-vectors. PBVI then

simply iterates through all belief points b ∈ B, and adds α = backup(b) to the value

function, as long as that α-vector doesn’t already exist in the value function. This

results in a value function with at most |B| α-vectors.

1 The L1 norm is a distance metric between two points where the distance is the
sum of the absolute differences of their coordinates, i.e. ||b− b′||1 =

∑

s∈S |b(s) −
b′(s)|. This is also known as the Manhattan distance.

36

Parameters and Other Modifications

The stock PBVI algorithm alternates between belief collection and a parameter

T iterations of backups. PBVI does not require pruning, since at each step the set

of α-vectors Γt is initialized with no α-vectors. The built-in pruning step makes the

algorithm more efficient since a reduced size of the set of α-vectors Γ leads to a faster

backup(b) operation.

PBVI also provides convergence results, which bound the error in the value

function based on the density of B within ∆S [39].

3.3 Perseus

Spaan and Vlassis presented the Perseus algorithm in 2004 [52]. Perseus intro-

duces a method to reduce the number of belief updates required at each iteration,

while still improving the value function for a large number of beliefs. With less be-

lief point updates per step, there is room for many more iterations of belief point

updates, for a given time constraint.

Collection

Perseus builds its set of belief points through a random exploration of the envi-

ronment. Unlike many of the other algorithms, which iterate between steps of belief

point collection and backups, Perseus builds a fixed set of belief points B at the

start. B is collected by sampling random trajectories starting at the initial belief

b0, and selecting a random action a uniformly at each step. This algorithm still fits

37

the framework described in Algorithm 1, as we initialize B0 to this set of random

trajectory belief points, and each expansion stage adds zero new beliefs.

Backup

The primary goal in Perseus’ backup stage is to improve the value function

approximation with the least belief point backups required. The backup stage guar-

antees that the approximation is improved for all belief points in B, while only

running backups on a randomized subset of B.

At each step in the iteration, the next value function Vn+1 is initialized without

any α-vectors (i.e. Γn+1 = ∅), and we initialize a list of unimproved belief points B̃

to the full set B. As long as B̃ is not empty, we randomly sample a belief point b

from B̃ and α = backup(b) is computed. If this α-vector provides a better value than

the value from the previous iteration (i.e.
∑

s∈S b(s)α(s) ≥ Vn(b)), then this new α-

vector is added to Vn+1, otherwise the previous best vector argmaxα∈Γn

∑

s∈S b(s)α(s)

is added to Vn+1 to ensure termination of the iteration. Then all belief points which

have been improved or maintained by this new vector (Vn+1(b) ≥ Vn(b)) are removed

from B̃. The process repeats until B̃ is empty and therefore all belief points have

been either improved or at least maintained. When the set of unimproved belief B̃

is empty, then B̃ is reinitialized to B and the process repeats until some termination

criterion is reached.

The advantage of this method for choosing points to update is that it is guar-

anteed to improve or at least maintain all beliefs at each iteration, just as a full

backup episode would. In general, it will require many fewer point-based backups,

38

since a single backup can improve the value for many belief points in B, however, in

the worst case, it will still require |B| backups. A full backup might give a better

resulting value function overall, since the resulting value for a backup at a specific

belief b will in general be higher than the value for b under an α-vector created by

some other belief b′.

Parameters and Other Modifications

The Perseus update procedure has a built-in pruning mechanism, as the only

α-vectors that are added to the next step’s value function are the newly backed up

α-vectors, or α-vectors that were found to support a belief point in the previous

value function. This means that each new value function will only have α-vectors

which support at least a single belief point b ∈ B.

A parameter, |B|, must be specified for Perseus, giving the size of the set of

beliefs collected. In the paper, they vary the size of |B| depending on domain char-

acteristics, mainly the size of the state space.

3.4 Heuristic Search Value Iteration (HSVI)

Heuristic Search Value Iteration was published in 2004 [48] and was updated

in 2005 [49]. HSVI uses heuristics based on upper and lower bounds of the value

function to collect beliefs. The algorithm was introduced as an improvement over

the state of the art in POMDP solving, as using the heuristics to guide the search

in belief space would lead to critical beliefs faster than PBVI. In this section we will

cover the updated version of HSVI [49].

39

Collection

As in general point-based methods, HSVI iteratively builds a value function V ,

represented as a set of α-vectors Γ. Recall that V represents a lower bound to the

optimal value function V ∗. HSVI additionally constructs an upper bound V . We

refer to the pair of bounds as V̂ (b) = [V (b), V (b)].

HSVI defines the width function:

width(ˆV (b)) = V (b)− V (b), (3.10)

which is the gap between the bounds at the belief point b.

HSVI uses a point set ΥV to represent the bound V . The point set is a set of

belief-value pairs (bi, vi), and updates to V are done by adding the belief point b

and upper bound value at b to ΥV . The value at any given belief b is calculated by

projecting it on the convex hull of the set. This is calculated in the earlier version

of HSVI by solving the linear equations, but the newer version calculates the upper

bound of the value function via an approximation introduced by Hauskrecht [21].

For the belief collection process, HSVI starts at the initial belief point b0. At

each step in the exploration, the algorithm picks an action a∗ and an observation z∗

based on heuristics. The action is picked such that a∗ = argmaxa∈A QV (b, a), where

QV (b, a) =
∑

s∈S

[

R(s, a)b(s)
]

+ γ
∑

z∈Z

[

P (z|b, a)V (τ(b, a, z))
]

. (3.11)

This action selection is known as the IE − MAX heuristic [24]. The action

a∗ is chosen based on the upper bound, since the upper bound value for an action

can only decrease on an update. An action based on the maximum upper bound

40

value can be either truly the optimal action, or will have its upper bound estimate

decreased on an update. If the action was shown to be suboptimal, the upper bound

for that action will decrease, and then a new action will be the optimal upper bound

action. Therefore, picking the maximum upper bound action will result in the most

accurate upper bound estimate. HSVI defines the excess function:

excess(b, t) = width(V̂ (b))− ǫγ−t, (3.12)

where ǫ is an input parameter to the algorithm bounding the quality of the solution.

The excess is the uncertainty about the belief (expressed as the width between the

bounds), subtracted by a parameter which grows as the depth of the search grows.

HSVI’s collection method picks the next observation z∗ based on which observation

z contributes the most uncertainty to the current belief state:

z∗ = argmax
z∈Z

[

P (z|b, a∗)excess(τ(b, a∗, z), t + 1)
]

. (3.13)

The goal for these heuristics is to guide the search towards beliefs which contribute

the most to the difference between the upper and lower bounds. The search termi-

nates once we arrive at a belief b such that excess(b, t) < 0. The intuition behind

this bound is that the search should continue if there is still a large width in the

successor beliefs, but to terminate if the search is so deep that the beliefs are not as

relevant.

The belief terminates at some stopping condition, either reaching a goal state,

some fixed number of iterations, or some other condition.

41

Backup

After HSVI has collected a trace of belief points, it proceeds to update the

bounds for each belief, one at a time. The belief points are processed in reverse

order, which should give a better resulting value function due to how the backup

operation uses the α-vectors of next-state beliefs. At each new belief in the search,

both the upper and lower bounds are updated. The lower bound V (b) is updated

by adding α = backup(b) to Γ. The upper bound V (b) is updated by adding the

belief-value pair (b, maxa∈A QV (b, a)) to the point set ΥV .

In HSVI, only the newest beliefs are updated at each step, instead of the entire

set as in PBVI. The advantage is that less time is spent updating beliefs which,

since they have been previously updated, are in theory less likely to produce better

bounds. The tradeoff is that more time (proportionally) must be spent collecting

new points instead of updating the bounds.

Parameters and Other Modifications

Whereas many POMDP solvers use a simple worst-case α-vector as a lower

bound as seen in Equation 3.7, HSVI uses a blind policy to initialize the lower bound,

first proposed by Hauskrecht [20]. An α-vector αa is maintained for each action,

associated with the policy of “always take action a”. αa
0 is initialized to the worst

case α-vector as described in Equation 3.7. The vector is updated with the Bellman

update:

αa
t+1(s) = R(s, a) + γ

∑

s′∈S

P (s′|s, a)αa
t (s

′). (3.14)

42

Once the iteration is finished, the value function is initialized with the set αa
t . The

resulting bound is guaranteed to be at least as tight as the single α-vector bound from

Equation 3.7, since the value function never decreases. The tradeoff is minor since

the computation only must be done once and is quite fast relative to the POMDP

planning.

HSVI uses the Fast Informed Bound (FIB) (Section 2.2.4) to initialize the upper

bound V . The initial α-vectors for the FIB update (αa
0) are initialized with the

solution to the underlying MDP.

3.5 Point-Based Error Minimization Algorithm (PEMA)

The Point-Based Error Minimization Algorithm (PEMA), introduced in 2005,

proposed a theoretically-motivated approach to selecting belief points, via selecting

points based on which point minimizes the bound on the error of the value function

[38].

Collection

The goal of the collection method in PEMA is to select reachable belief points

which have the greatest difference between their current value and the maximum

value that it could reach given an optimal policy for the completed POMDP. The

idea is that these points with large errors have the most room for improvement in the

lower bound approximation for the value function, and updating these belief points

first will lead to a faster solution.

43

Pineau et al. [39] showed that for a given planning horizon t and a fixed set of

belief points B, the error over the value iteration is bounded by

∣

∣

∣

∣V ∗
t − V B

t

∣

∣

∣

∣

∞
≤

(Rmax −Rmin) maxb′∈∆S minb∈B ||b− b′||1
(1− γ)2

, (3.15)

where V B
t is the PBVI estimate value for a planning horizon t and belief set B, b′

is the point in belief space where the approximated value function makes the worst

error, and b ∈ B is the closest (L1 norm) point to b′. This is the overall error bound

for the entire value function.

Pineau et al. [38] then use a similar argument to define the error bound for any

belief point b′ 6∈ B:

ǫ(b′) ≤
∑

s∈S











[

Rmax

1−γ
− α(s)

]

[b′(s)− b(s)] if b′(s) ≥ b(s)
[

Rmin

1−γ
− α(s)

]

[b′(s)− b(s)] if b′(s) < b(s).
(3.16)

In this bound, b′ is the target belief, b ∈ B is the belief with the closest L1

norm belief, and α is the α-vector in the current value function that is maximal for

b. This bound provides a mechanism for finding (for some unexplored belief) the

error between its current value and its value on an unknown α-vector.

PEMA also takes into account reachability concerns, by weighting the belief

point by how likely the agent is to reach that belief. The algorithm defines a “po-

tential error” heuristic ǫ(b) for b ∈ B:

ǫ(b) = max
a∈A

∑

z∈Z

O(b, a, z)ǫ(τ(b, a, z)). (3.17)

44

This heuristic takes into account the reachability of a belief as well as the error

bound ǫ(b). Starting at an explored belief b, this checks every action a, and returns

the highest next-belief error, which is weighted by the observation probability and

calculated via the error of the corresponding next belief τ(b, a, z).

We now describe the belief collection process. A tree of belief points b is formed,

with the initial belief b0 as the root. Only children beliefs of nodes in the tree are

considered for addition, which guarantees the reachability of all belief points. At

each collection step, ǫ(b) is calculated for all b ∈ B. The node with the highest ǫ(b)

is chosen, and the node b′ is chosen such that:

b′ = τ(b,

[

argmax
a∈A

∑

z∈Z

O(b, a, z)ǫ(τ(b, a, z))

]

,

[

argmax
z∈Z

O(b, a, z)ǫ(τ(b, a, z))

]

).

(3.18)

This new belief b′ is the one which contributed most (in expectation) to the error at

ǫ(b). The belief b′ is then added as a child node to the belief b.

Backup

The belief point update step in PEMA is modelled after the update step in

PBVI. After the new belief points have been collected, a full backup is executed on

all b ∈ B, incorporating at most |B| α-vectors to the new value function.

45

3.6 Forward Search Value Iteration (FSVI)

Forward Search Value Iteration (FSVI) was introduced in 2007 [46]. This point-

based algorithm uses an exploration heuristic based on using the underlying MDP

to guide the search for new belief points.

Collection

Using the underlying MDP (i.e. MDP = (S,A, T,R)) as a heuristic to solve the

overall POMDP has been explored in the literature and discussed in Section 2.2.4.

The FSVI collection algorithm uses an MDP value function to guide the search

through policy space.

The first step in the initialization of the overall algorithm is to build the state-

action value function Q(s, a) of the underlying MDP through standard value iteration

(Equation 2.10). While a full solution needs to be computed, this step must only be

done once. Each full step of state-action value iteration takes O(|S|2|A|2) time, so

the running time for a full solution with N iterations has running time O(|S|2|A|2N).

In practice, this step is small compared to the running time of the actual POMDP

planning.

The collection algorithm takes the form of a joint search through belief and state

space. FSVI starts every collection iteration at the initial belief b0, and samples from

the initial belief to start in an underlying state s0.

46

At each step in the process, the FSVI collection algorithm maintains the pair

(s, b). It picks the action a∗ based on s and the action heuristic:

a∗ = argmax
a∈A

Q(s, a). (3.19)

The action selected at each step is the optimal action for the state s in the underlying

MDP. The intuition behind this approach is that it will guide the search for new

beliefs towards more critical rewarding beliefs. The next state s′ is sampled from

T (s, a, s′). The observation z is sampled from O(s, a, z). The stochastic observation

selection guarantees that there will be variance in the trace through belief space, as

well as keeping the beliefs weighted towards the likelihood of them being encountered.

The next belief state b′ is computed via the normal belief transition function τ(b, a, z).

The process then continues with (s′, b′) becoming the new state-belief pair.

We continue in this fashion, growing a trace of points in belief space. This

continues until we reach some stopping condition, such as if our current s is a terminal

state in the POMDP, or some fixed number of collection steps.

The intuition behind this collection approach is to use the perfect-information

MDP to guide the search through belief space towards beliefs which provide reward.

An advantage of this method is that it is very efficient, since computing a∗ only takes

O(a) time.

One issue with this heuristic is it may perform poorly in domains where it takes

several steps to execute an information gathering action, such as in the Heaven-Hell

problem [18]. The MDP-based heuristic will never purposefully lead it towards states

47

which provide informative observations. This is because the MDP solution places no

value on information gathering actions.

Backup

The backup operation in FSVI is similar to the operation in HSVI. Once the

collection trace is complete, the belief points in the trace are backed up in reverse

order (i.e. the final belief in the trace is backed up first). The resulting α-vectors

are added to the current value function.

3.7 Successive Approximation of the Reachable Space under Optimal
Policies (SARSOP)

SARSOP [26] was introduced in 2008 as an improvement over HSVI, by modify-

ing the sampling approach to sample near R∗(b0), the subset of belief points reachable

by b0 which are explored under optimal action selection. Of course, knowing R∗(b0)

exactly is impossible, since it requires the exact POMDP solution. The algorithm it-

eratively approximates R∗(b0) by first using the current estimate to update the value

function bounds, V (b) and V (b), and then using the updated bounds to recompute

R∗(b0). The SARSOP sampling method is similar to the one proposed in HSVI, but

adds the notion of selective deep sampling.

SARSOP’s selective deep sampling continues down sampling paths deeper than

the HSVI collection method when doing so would likely lead to improvements in the

lower bound value at belief nodes earlier in the search. The standard HSVI explo-

ration algorithm terminates the search through belief space once the gap between

48

the bounds is less than γ−tǫ, where t is the current depth of the search and ǫ is an

input parameter. SARSOP sampling ignores this termination when it predicts that

a potential node would improve the bound, by predicting the optimal value V ∗(b).

This prediction is done by clustering beliefs by features, such as the initial upper

bound and the entropy at the belief node. The average value of belief nodes sharing

the features of b is used to compute the prediction V ∗(b). SARSOP also implements

a gap termination criterion, where sampling terminates early if the upper bound

value at b, V (b) is smaller than target upper bound value for b, which is computed

by the parent belief node.

3.8 Discussion

In this chapter, we have examined some of the recent point-based POMDP

solvers in the literature. These methods all propose novel collection or update tech-

niques, motivated by theoretical error bounds or simply by heuristics which intu-

itively should lead to useful beliefs.

When an algorithms is developed, it is generally tested against the previous

algorithms in the literature. Unfortunately, these empirical comparisons tend to have

a variety of issues. Most critically, when an algorithm comparison is made, it is often

done between two entirely different software packages. While the computer running

the packages is the same, the implementation details of the programs (optimizations

in the code, language used, and many others) may differ. Secondly, the algorithms

themselves often differ in multiple approaches, such as proposing a new collection

scheme, a separate update method, optimized pruning techniques, improved bounds

49

and other optimizations. Because of this, the actual reason for the planning speed

improvements are obscured, since multiple parameters of the algorithms are changed

all at once. Furthermore, the set of environments often differ from paper to paper,

making it more difficult to come up with a full comparison, since the quality of

the algorithms differ wildly when we change the domain. Finally, none of these

experiments fully test all other algorithms.

Because of the shortcomings of the current empirical results, in this work we aim

to provide a fuller comparison of the underlying techniques used in these algorithms.

The following chapter will describe what components will be tested.

50

CHAPTER 4

Collection and Backup Methods for Point-Based POMDP Solvers

In this chapter, we tackle the complexity of empirically examining algorithms

by breaking the algorithms up into their component parts. The goal here is to be

able to compare collection methods and updating methods, while keeping all other

algorithm parameters the same. This systematic approach to measuring the quality

of a POMDP solver is critical for understanding which methods are applicable for

what classes of domains.

As we have discussed, the key components to point-based POMDP solvers are

the belief collection and belief update methods. This chapter describes in detail these

methods. We show an outline linking the algorithms with their respective collection

and update methods in Table 4–1. The collection and update methods are the key

components of a point-based POMDP solver, as shown in the generic solver described

in Algorithm 1.

Algorithm COLLECT UPDATE

PBVI L1 Norm Full Backup
Perseus Random Perseus Backup
HSVI Bound Uncertainty Newest Points Backup
PEMA Error Minimization Full Backup
FSVI MDP Heuristic Newest Points Backup

Table 4–1: An outline of a variety of point-based solvers, where we identify the
associated collection and updating methods.

51

We will first describe the belief collection methods that will be compared in this

work. These methods are taken from the current point-based solvers in the literature.

Next, we describe the methods for selecting and ordering the updates for the set of

belief points. These methods are also drawn from the current research in point-based

solvers.

4.1 Belief Collection

A point-based POMDP solver must specify a method for collecting belief points.

Recall Algorithm 1, where we define each iteration of the belief collection step as:

Bnew ← COLLECT (Vt, B,N). (4.1)

The new set of beliefs is expanded by N points at each iteration of collection. We

note that the current value function Vt and the previous set of beliefs B can all

be accessed by the collection algorithm. As well, if the specific collection method

requires the use of bounds, then the bounds are accessible for the collection method.

While the following algorithms do not explicitly note this, we assume that our

set of belief points contains only unique points. Therefore the algorithms check that

any belief does not already exist in the set B before adding it.

4.1.1 Random Collection

Using random exploration to collect belief points is probably the simplest method

to collect a large set of reachable belief points and was first proposed in Perseus [52].

Here we present a random belief collection method (Algorithm 2) which collects new

52

points at each new collection iteration in the point-based algorithm. This is slightly

different from the collection method proposed in Perseus, which collects one initial

batch of beliefs at the start of the algorithm. In this work, we collect new belief

points at each collection step, to keep this method similar to all other collection

methods.

Algorithm 2 Random Collection Algorithm(V , B, N)

Bnew ← ∅
while |Bnew| < N do

b← b0

s ∼ b
random-explore(s, b)

end while
return Bnew

Algorithm 3 random-explore(s, b)

if current exploration is not terminated and |Bnew| < N then
a← random(A)
s′ ∼ T (s, a, s′)
z ∼ O(s, a, z)
b′ ← τ(b, a, z)
random-explore(s′, b′)
Bnew ← Bnew ∪ b′

end if

This collection algorithm produces random traces through belief space by select-

ing uniformly random actions at each step, while maintaining the underlying state.

It iterates through traces until the required number of belief points have been found.

We also start a new trace when the current exploration is terminated. The criterion

for termination could be, for example, if the state has not changed for some fixed

number of steps, or simply some large fixed number of steps.

53

An advantage of random collection is that it is quite efficient, taking only

O(|S|2 + |A| + |Z|) time at each step, O
(

|N |(|S|2 + |A| + |Z|)
)

for a full collec-

tion.

Note that the belief point is added after the random − explore recursion call,

which means the belief points will be added in reverse order (i.e. the last belief point

in the exploration will be first. This is done deliberately, and will be discussed in

the belief point update section.

4.1.2 MDP Heuristic Collection

We use the collection method from FSVI as our MDP Heuristic collection

method. The intuition for this collection method is to use the optimal MDP ac-

tion selection as a heuristic to guide the search through belief space.

Algorithm 4 MDP Heuristic Collection Algorithm(V , V , B, N)

Bnew ← ∅
while |Bnew| < N do

b← b0

s ∼ b
mdp-explore(s, b)

end while
return Bnew

As in the other exploration-style collection algorithms, we iterate over belief

traces until we collect N belief points.

This collection method requires solving the underlying MDP, which is O(|S|2|A||N |)

for N iterations of value iterations. However, this process only needs to be done once,

and is computationally fast compared to the rest of the algorithm.

54

Algorithm 5 mdp-explore(s,b)

if current exploration is not terminated and |Bnew| < N then
a← argmaxa Q(s, a)
s′ ∼ T (s, a, s′)
z ∼ O(s, a, z)
b′ ← τ(b, a, z)
mdp-explore(s′, b′)
Bnew ← Bnew ∪ b′

end if

An advantage to using a simple heuristic to guide the search is that the resulting

collection algorithm is computationally efficient. The algorithm takes O(|S|2 + |A|+

|Z|) time at each step, the same as the random exploration heuristic. A full collection

therefore takes O
(

|N |(|S|2 + |A|+ |Z|)
)

operations.

4.1.3 L1 Norm Collection

The L1 norm collection algorithm is based on the PBVI collection implementa-

tion. The goal in this collection method is to discover the most distant belief points

at each step, in a L1 distance sense. The algorithm is described in Algorithm 6.

We define ||b′ −B||1 (the norm between a belief point b′ and a set of beliefs B)

as the distance ||b′ − bclosest||1 where bclosest ∈ B is the closest (L1 norm) belief point

in B to b′. The result represents the distance from the belief b′ to the entire set B.

We also define Obelief (b, a, z) as the probability of observing z when executing

action a while in belief b:

Obelief (b, a, z) =
∑

s∈S

b(s)O(s, a, z). (4.2)

55

Algorithm 6 L1 Norm Collection Algorithm(V , B, N)

Bnew ← ∅
while |Bnew| < N do

b← random(B)
max← 0
for a ∈ A do

z ∼ Obelief (b, a, z)
b′ ← τ(b, a, z)
if ||b′ −B||1 > max then

bmax ← b′

max← ||b′ −B||1
end if

end for
Bnew ← Bnew ∪ bmax

end while
return Bnew

This collection method is the collection method used in PBVI, although we

modify the method to allow a fixed number of new beliefs. While PBVI creates a

successor belief for each b ∈ B, doubling the size of the set at each step, here we

only increase the set by N , by randomly picking N parent beliefs. This lets us limit

the expansion of the belief set, to avoid problems in domains with a long required

planning horizon.

The running time of the collection algorithm presented here is O
(

|A|(|S||B| +

|Z|)
)

for a single collected belief point, giving the running time for an entire iteration

as O
(

|N ||A|(|S||B|+ |Z|)
)

.

One disadvantage of the L1 norm approach is that it does not use the rewards

of the environment to guide the belief expansion. Since belief points are picked

56

uniformly as parent beliefs, it is likely that the belief point successors will be con-

centrated in densely explored areas of the belief space. This can be problematic in

domains where a long planning horizon is required. We attempt to remedy this issue

in a modification of this collection algorithm L1 Leaf Biased Collection.

4.1.4 L1 Leaf Biased Collection

In this work, we present a new algorithm, the L1 Leaf Biased collection method,

an extension to the L1 Norm collection method. This algorithm was created as a

response to limitations of the L1 Norm collection method in domains which require

long planning horizons.

In the L1 Norm collection, N points are randomly sampled from the set to be

the parent belief of a new belief point. Since we draw the points uniformly, the

chosen beliefs are likely to be in areas of the belief space that are the most dense. If

this is the case, then the new belief point will also be near this dense space, which

compounds the problem. If we have a domain where the shortest distance between

the start state and the closest reward is some relativity large number of steps, then

it can be very difficult for L1 Norm collection to collect a belief near the reward.

While the area near the start state might be quite dense with sampled beliefs, areas

distant from the start may have very few. We note that this problem does not exist

as strongly in the original PBVI collection method (which collects a successor belief

for each current belief). However, in our long-horizon domain, the PBVI collection

will have B = O(2t) when it has reached a planning horizon of t.

57

To remedy this problem, we developed L1 Leaf Biased collection, which bi-

ases the random selection of belief points towards beliefs which have not yet had

a successor. With chance l, the parent belief is sampled only from Bl, where

Bl = {b | b has no successor ,∀b ∈ B}. Otherwise, with chance (1− l), b is sampled

from B as usual. This modification is in the spirit of the L1 collection method, and

should help guide the search towards areas which are less densely explored.

We also add a second modification to L1 Leaf Biased collection which expands

the set of possible new belief points. For each action, instead of sampling the ob-

servation from the observation model, we iterate though all observations and return

the best belief overall. The advantage is that this gives us a wider set of possible

new beliefs, which could give the algorithm a farther (L1 norm) new belief points.

The tradeoff is that we must compute the distance for all observations. The full

algorithm is detailed in Algorithm 7.

The running time for this algorithm is O(|S||A||Z||B|) for a single collected

belief point, giving the running time for an entire iteration as O(|N ||S||A||Z||B|).

4.1.5 Bound Uncertainty Collection

The Bound Uncertainty Collection algorithm chooses beliefs where the difference

between the upper and lower bounds of the value function are highest, thereby adding

beliefs which will reduce the error between the bounds the most. This is the collection

algorithm used in HSVI. We outline the method in Algorithm 8. Note that since this

algorithm requires an upper bound V , it takes in V as a parameter.

58

Algorithm 7 L1 Norm Leaf Biased Collection Algorithm(V , B, N)

Bnew ← ∅
while |Bnew| < N do

r ← rand(0, 1)
if r < l then

b← random(Bl)
else

b← random(B)
end if
max← 0
for a ∈ A do

for z ∈ Z do
b′ ← τ(b, a, z)
if ||b′ −B||1 > max then

bmax ← b′

max← ||b′ −B||1
end if

end for
end for
Bnew ← Bnew ∪ bmax

end while
return Bnew

Algorithm 8 Bound Uncertainty Collection Algorithm(V , B, N)

Bnew ← ∅
while |Bnew| < N do

bound-explore(b0, 1)
end while
return Bnew

59

Algorithm 9 bound-explore(b,t)

if |Bnew| < N and excess(b, t) > 0 then

a← argmaxa∈A QV (b, a)

z ← argmaxz∈Z

[

P (z|b, a)excess
(

τ(b, a, z), t + 1
)]

b′ ← τ(b, a, z)
explore(b′,t + 1)
Bnew ← Bnew ∪ b
ΥV ← ΥV ∪ (b, maxa∈A QV (b, a))
t← t + 1

end if

The function excess(b, t) is defined in Equation 3.12, and see Equation 3.11 for

a definition of QV (b, a). The upper bound is represented as a point-set ΥV which

maintains the belief points and their associated upper bound values. Computing the

upper bound V (s) is done the same as in HSVI, via an approximate projection onto

the convex hull of our point-set ΥV . Points are added to ΥV in reverse order, much

as in the belief point collection.

This algorithm iterates over explorations through the belief space, with tran-

sitions following the specified action and observation heuristics. We terminate the

collection when N belief points have been collected.

The excess(b, t) formula requires the computation of the upper and lower bound

at the point b. The resulting running time of excess(b, t) is O
(

|S|(|ΥV | + |ΓV |)
)

,

which gives a running time of O
(

|A|+|Z||S|(|S|+|ΥV |+|ΓV |)
)

for a single new belief

points. Therefore, the full collection step takes O
(

|N |
(

|A|+|Z||S|(|S|+|ΥV |+|ΓV |)
)

)

time.

60

4.1.6 Error Minimization Collection

The Error Minimization Collection is adapted from the Point Based Error Min-

imization (PEMA) algorithm. We describe the collection algorithm in Algorithm

10. We have modified the PEMA collection algorithm by having it collect N belief

points per iteration instead of one new belief per step. Each new collected belief is

considered for being the parent belief point for the next belief.

Algorithm 10 Error Minimization Collection Algorithm(V , V , B, N)

Bnew ← ∅
while |Bnew| < N do

max← −∞
for b ∈ B ∪Bnew do

if b has unexplored children then
if ǫ(b) > max then

max← ǫ(b)
bmax ← b

end if
end if

end for
b′ is calculated as in Equation 3.18
Bnew ← Bnew ∪ b′

end while
return Bnew

This collection algorithm is quite computationally intense, since the potential

error heuristic ǫ(b) must be calculated for most beliefs. The running time for ǫ(b) is

O(|S|3|A||Z||B|), so a single new belief point takes O(|S|3|A||Z||B|2) time. A full

iteration, collecting N new points will take O(|S|3|A||Z||B|2|N |) time.

61

4.2 Belief Updates

Once the beliefs have been collected, the point-based solvers need to specify

which set of belief points will be updated, and in what order. This is shown in the

generic point-based structure, Algorithm 1 (Section 3.1), where we allow U iterations

of backups:

Vt+1 ← UPDATE(Vt, B,Bnew). (4.3)

Note that we allow the update algorithm to use two separate sets of beliefs, the entire

collected belief set and the belief set that was just collected.

In the exploration-based collection algorithms (Random, MDP Heuristic, Bound

Uncertainty) we always add the belief point to the set after the recursive call, which

means the belief points are added starting from the end of the trace, with the belief

point at the start of the exploration added last. We note that the backup(b) operation

uses the value estimates of the successor beliefs b′ to compute the current value

estimate (Equation 3.4). Thus we will get better estimates for a given b if the values

for the successor beliefs b′ are already updated. Therefore we backup the belief points

in the trace in reverse order to maximize the speed of the value updates.

4.2.1 Full Backup

In a Full Backup, we execute backup(b) on each belief in the full set of belief

points, including the ones just collected, i.e. B ∪ Bnew. The advantage of this ap-

proach is that it will not waste collected belief points by only updating them once.

62

Backing up a belief point multiple times is advantageous since the values of the suc-

cessor beliefs will likely be updated in between. This will give a resulting higher V (b)

at the original belief, even if it has already computed α-vectors. The disadvantage

is that it is computation expensive, since the backup operation is O(|S|2|A||Z||Γ|).

This is the backup method used in PBVI and PEMA.

4.2.2 Newest Points Backup

In Newest Points Backup, we execute backup(b) only on b ∈ Bnew. By only

backing up the newest points, we save a lot of time in the backup phase, since the

number of new belief points is fixed at each iteration. As well, the points backed up

are guaranteed to not have constructed α-vectors before, making it more likely for

the point to support a useful α-vector.

However, this approach ignores all the belief points that have been collected

previously, which could support new useful α-vectors. The argument for this method

is that the extra time not spent backing up older beliefs could be better used to collect

and update new belief points. This method is the version used in HSV I and FSV I.

4.2.3 Perseus-style Backup

The Perseus-style backup operation guarantees that the value for all belief points

is improved or at least maintained, while only backing up a subset of the full belief

set B. This method was introduced in the Perseus algorithm.

This method randomly picks a point b from our entire belief set and then adds

the associated α-vector backup(b) to our set if the new α-vector improves the value

63

Algorithm 11 Perseus-style Backup Algorithm(Vt, B, Bnew)

k ← t
Bfull ← B ∪Bnew

B̃ ← Bfull

while |B̃| > 0 do
b← random(B̃)
α← backup(b)
if

∑

s∈S b(s)α(s) > Vt(b) then
Γk+1 ← Γk ∪ α

end if
B̃ ← B̃ − {b}
for b′ ∈ B̃ do

if
∑

s∈S b′(s)α(s) > Vt(b) then

B̃ ← B̃ − {b′}
end if

end for
k ← k + 1

end while
return Vk

64

at b. It then checks if this new α-vector has improved the value of any other belief

b′, and if it has, removes the belief b′ from the beliefs to be considered for updates.

Therefore, this method attempts to improve every belief point b in the full set, while

requiring fewer backups than the full backup method.

4.2.4 Pruning

As we have discussed in Section 2.2.4, one major limitation of exact POMDP

solvers is the large number of α-vectors that must be maintained. Here we describe

optimizations used to reduce the number of α-vectors that must be maintained.

For each belief point b, we compute the α-vector α = backup(b). However,

instead of directly adding α to Γ, we check that the vector has improved or maintained

the value at the current point b, i.e.:

[

∑

s∈S

b(s)α(s)

]

≥

[

∑

s∈S

b(s)V (s)

]

. (4.4)

We use this method to immediately prune α-vectors that are most likely dominated

by some other α-vector. It is possible that we will prune α-vectors which would be

optimal for some b′ 6= b. However, this optimization provides a large speedup by

immediately pruning many dominated vectors.

Once the α-vector has passed this check, we check if it dominates any other

single α-vector already in Γ. If a α-vector α′ is dominated by the new α-vector,

then it is removed from the set Γ. This pruning will not remove an α-vector which

is dominated by a set of other α-vectors, because checking whether an α-vector is

65

dominated by multiple α-vectors is expensive whereas doing a single-vector check is

fast (O(|S|) for a single domination check).

The algorithms which update the value at every belief point (PBVI, Perseus,

PEMA) do not require α-vector pruning, since at every iteration they start with a

fresh value function (Γt = ∅). This is possible since the value at each belief point

b ∈ B is guaranteed to be at least maintained. However, there are issues with that

approach, for the following reasons. First, α-vectors from the previous iteration may

give a higher value for some b /∈ B, but will not be present in the newest iteration of

Γ. Since the α-vectors from the previous set are not carried over, these values will

be lost. Second, this setup performs the backup operation using only the α-vectors

from the previous iteration, so as the algorithm iterates through B, the backups only

use the previous set of α-vectors Γt−1, and not the α-vectors collected in the current

iteration. As many belief point updates are usually done in each iteration, using

the recently (current iteration) created α-vectors in the backup operation leads to

substantial speedups.

Because of these reasons, in the empirical analysis in this work we build one

set of α-vectors (Γ), and each backup operation is able to draw from all α ∈ Γ. We

keep the overall size of Γ low via the domination-based pruning technique described

above.

4.3 Summary

In this chapter, we have separated the key components of point-based POMDP

solvers, the belief collection process and the belief updating process, from the original

66

algorithms in the literature. Our focus now is to compare these methods, as opposed

to comparing the original algorithms, which may vary in multiple respects. This

approach is crucial for understanding the advantages and disadvantages of these

component methods.

67

CHAPTER 5

Experimental Results

The primary goal of this thesis is to gain a better understanding of the strengths

and weaknesses of the methods used in point-based POMDP solvers. In this chapter,

we present experimental results which will demonstrate the viability of different

approaches in a variety of domains. We test the belief collection and belief update

methods we have previously discussed, as well as examine the influence of other

parameters.

5.1 Domains

We conduct our experiments on a variety of domains, mainly drawn from the

standard benchmark problems in the POMDP literature. Here we describe the do-

mains and their parameters. We show the size of the domains in Table 5–1.

Hallway

Hallway [28] is a classic small robot navigation domain, where the robot starts

in a random location in the environment, and must navigate to a goal state. It

should be noted that we modified the POMDP specification file to have the agent

transition to an end state after reaching the goal, instead of transitioning to a uniform

distribution (and thereby restarting the episode). If a terminal state is hardcoded

68

Domain #States #Actions #Observations

Hallway 61 5 21
Tag 870 5 30
RockSample[5,5] 801 10 2
RockSample[7,8] 12545 13 2
FieldVisionRockSample[5,5] 801 5 32
Underwater Navigation 2653 6 102
Dialogue 29 31 28

Table 5–1: A chart of the domains used and the size of their state, action and
observation spaces, respectively.

with the original definition, the value function (based on the model) will be higher

than the actual achievable averaged discounted reward (ADR), which can lead to

suboptimal policies. This is because the model itself has no knowledge of a hardcoded

terminal state, so the planner is solving a slightly different task.

There are several other benchmark problems from the literature [28] that were

proposed around the same time as Hallway. However, many of these domains have

ceased to be useful as benchmarks due to their small size and the increasing efficiency

of the point-based solvers.We include the Hallway domain as a representative of this

class of early POMDP domains.

Tag

Tag [39] is a robot navigation domain where the agent must maneuver in an

environment while attempting to catch an opponent which follows a stochastic fixed

policy. The agent receives a reward if it is able to “Catch” the opponent when it

is in the same location. While the actual state space is not small (|S| = 870), part

of the state space is the robot’s position which is fully observable. The belief state

69

is effectively only over the position of the opponent, which is much smaller (< 30

states). Tag has been widely used as a test-bed for point-based POMDP solvers.

RockSample

RockSample is a scalable navigation problem that models rover exploration [48].

The agent receives rewards by travelling to rocks in the environment, and sampling

them if they are “good”, which is detected by a “Check” action. The probability of an

observation being correct increases as the agent gets closer to the rock. An instance

of RockSample with a map size n × n and k rocks is denoted as RockSample[n, k].

We have modified the original specification by not giving a reward when moving into

the exit area for convenience. RockSample is an interesting domain to include since

it is not goal oriented. In this kind of domain, there is room for the agent to build

an iteratively better policy.

FieldVisionRockSample

We use the FieldVisionRockSample (FVRS) domain from Ross and Chaib-draa

[42]. This domain is a modification of the RockSample domain, where the noisy

sensor is able to detect all rocks at each step. This increases the observation space but

reduces the number of available actions in comparison to the original RockSample.

The decrease in the number of actions is caused by the removal of the “Check”

actions.

70

Underwater Navigation

The Underwater Navigation domain [26] is an instance of a coastal navigation

problem. The agent must traverse the environment while avoiding dangerous rocks.

However, the robot has a poor idea of its own location. It must move to the sides

of the environment to localize itself. This domain has a large state and observation

space. However the domain is simple in some ways, in that the transitions and

observations are deterministic. A primary difficulty in the Underwater Navigation

domain is that there is substantial aliasing since the state space is much larger than

the observation space. As well, the required planning horizon is rather large.

Dialogue

The Dialogue domain is a POMDP model used for dialogue management be-

tween a user and an intelligent wheelchair. It is a modification of the POMDP model

described in [4]. In this domain, the user has an (unknown) intent for what action

the robot should execute. The agent can execute a “command” action, receiving a

positive reward if correct and zero reward otherwise. The agent can also execute one

of three “query” actions, which are strictly information gathering. These queries re-

turn observations related to the user’s intent. We include this domain as an example

of a task with predominantly information gathering actions. The POMDP model is

available online [1].

71

5.2 Experimental Method

Our goal in the following experiments with the POMDP solvers is to measure the

quality of the policy returned by a given POMDP planner. This is done by measuring

averaged discounted return (ADR), which we defined in Equation 2.2. This can be

estimated by simulating trials within the environment, where the agent starts in

a state drawn from the start state distribution and follows the policy returned by

the POMDP planner for some fixed number of steps. We compute the discounted

return from this trial, and average over a number of simulated trials. We are also

interested in seeing how much computation time the POMDP planner requires to

produce a policy that is optimal for the domain, and, otherwise, at what ADR does

the POMDP planner converge.

In our results, we present the quality of the resulting policies given a range of

different planning times. This approach not only lets us see when a given algorithm

has converged, but will also let us evaluate the speed of the algorithms, to see which

ones are able to quickly approach a good solution. In this setup, the quality of a

policy for a given available planning time t is the best policy produced before t.

We make this stipulation since we only compute policies after a full iteration has

completed, so the policy for a given time t is the policy computed by the value

function created immediately before time t.

All experiments were run on a 2.2Ghz Opteron with 8GB of system memory.

The averaged discounted return (ADR) is computed by simulating the policy on the

environment for 500 trials. The following results were computed by averaging over

several POMDP solutions, where the number of solutions depended on the domain.

72

This is done because several of the solvers have stochastic components (for example,

in the belief sampling). The Hallway domain used 30 trials, all RockSample domains

and the Tag domain used 20 trials, and the Underwater Navigation and Dialogue

domains used 10 trials.

The ǫ parameter for Bound-Uncertainty collection is set to ǫ = .001. The l

parameter for L1 Leaf Biased collection is set to l = .75. Empirically, the results are

not very sensitive to this parameter, and .75 was chosen for performance. For clarity,

we omit the confidence intervals in most of our results, however, they are displayed

in the results in Section 5.6.

5.3 Belief Collection and Belief Update Ordering

In our first set of experiments, we compare the belief collection methods while

also varying the belief update ordering method. Our primary goal is to see if we can

draw any overall conclusions on how the different collection and updating methods

affect the speed of convergence, as well as seeing whether this is domain-dependent.

Since in this phase of the experiments we are comparing the collection and

update methods simultaneously, we try to keep the rest of the parameters as similar as

possible. However, since the Error Minimization collection algorithm (from PEMA)

is, relative to the other methods, much slower to collect beliefs, it does poorly with

the large number of belief points usable in the other collection methods. Therefore

the number of belief points (N) collected at each step in Error Minimization is less

than in all other collection methods. Unless otherwise stated, all belief collection

73

method use N = 100, except for Error Minimization which always uses N = 10. In

all cases, we do a single round of belief point updates per iteration (U = 1).

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

time (s)

A
D

R

hallway : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–1: The Hallway domain. In this experiment, we compare different belief
collection methods and different belief update methods.

We present the Hallway domain in Figure 5–1. At each interval, 10 belief points

were collected (N = 10).

The first thing to note is how quickly these solvers find the optimal solution in

this small domain, with most finding the optimal solution in less than one second.

We therefore use Hallway as an example of early benchmarks, but we concentrate

our experiments on more recent domains.

74

The Error Minimization belief selection, coupled with Perseus-style backups is

much slower to converge than all other methods. This is caused by a combination

of factors. First, the Error Minimization collection method is slower than the other

belief collection methods (O(|S|3|A||Z||B|2) per belief point). Secondly, the Perseus-

style backup method attempts to speed up the planning by cutting the number of

updates done per step. However, the resulting policy at each step will in general

not be as good as in a full backup over all belief points. While this is an acceptable

tradeoff if the algorithm is mainly time-constrained by the belief updates, this setup

can do poorly when the collection method is computationally intensive. In the Error

Minimization-FullPerseusBackup case, too much time is spent doing belief collections

compared to belief updates, which causes the algorithm to take a longer time to come

to a solution.

We present the results for the Tag domain in Figure 5–2. We see that the choice

of collection method is not critical in the Tag domain. Even the simplest collection

method, Random exploration, is able to find an optimal solution as fast as any other

collection method. We can attribute that to the domain specifics. In the Tag domain,

the physical environment containing the robot is not large, so the required horizon

to find the opponent is relatively short. Also, the area where the agent receives a

reward (when it is able to catch the opponent) is relatively large in belief space, so it

is not difficult for even simple collection methods to find this area of the belief space.

Error Minimization belief selection coupled with the Newest Points update method

is slowest to converge. The Newest Points method only updates a small subset of

75

0 50 100 150
−13

−12

−11

−10

−9

−8

−7

−6

time (s)

A
D

R
tagAvoid : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–2: The Tag domain. In this experiment, we compare different belief collec-
tion methods and different belief update methods.

the current belief points, so, much like the Perseus backup method, it does better

when the collection is quite fast.

With the exception of the Error Minimization collection method, there is little

difference as we vary the update method. In addition, the advantage of one update

method over another is not consistent across the collection methods, so little can be

concluded.

Figure 5–3 shows our results for the RockSample[5,5] domain. In general, for

this domain, the choice of update method-whether a Full Backup, the Newest Points

Backup, or Perseus-style Backup makes little difference. However we see a small

76

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

time (s)

A
D

R
RockSample5 : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–3: The RockSample[5,5] domain. In this experiment, we compare different
belief collection methods and different belief update methods.

separation in the speed of convergence when we vary the collection method. The

MDP Heuristic and Bound Uncertainty collection methods seem to be slightly more

efficient. Both of these methods have an optimistic bias for their exploration. In

the RockSample domain, the target rocks are fully observable, and the quality of the

observation improves as the robot approaches the rock. Therefore it is understand-

able that these optimistic approaches do well. The Random Collection does not do

as well in this domain, presumably because it is less likely to find the useful belief

in this domain through random action selection. The domain has a relatively higher

number of actions (compared to most domains examined in this thesis), and to do

77

well, the robot needs to select the correct “Check” action when it is near the asso-

ciated rock. Selecting the correct action may be difficult to find through a random

exploration. The L1 Norm Leaf-Biased modification shows a slight improvement over

the standard L1 Norm exploration. This should be attributed to the modification

in L1 Leaf-Biased which biases the collection towards more distant beliefs, which

should help it find the small areas in belief space which are useful for a good policy.

Finally, we see that the Error Minimization collection method, while slower than the

other methods, is able to get a near-optimal policy faster than many of the other

collections methods, when not using the Newest Points Backup.

We also notice that the methods have not converged to the same value after 60s

of planning time. This is largely due to the time period tested, since in the long

term, most collection method are guaranteed to converge to optimal, as discussed in

Section 5.10. We see that most methods are able to find quite a good solution very

quickly, but some take a longer time to refine it to the optimal.

As would be expected, the results for RockSample[7,8] (shown in Figure 5–4)

are similar to the results from RockSample[5,5]. The fact that the domain is sub-

stantially larger causes the difference in effectiveness in the collection methods to be

exaggerated. Even after substantial planning time, the final policy produced by the

optimistic heuristics (MDP Heuristic and especially Bound Uncertainty) are better

than the other collection methods. In this domain, the Leaf Biased modifications do

not give an advantage to the L1 Norm collection method, which we discuss further

in Section 5.7.

78

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

time (s)

A
D

R
RockSample7 : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–4: The RockSample[7,8] domain. In this experiment, we compare different
belief collection methods and different belief update methods.

Figure 5–5 shows the results for the FieldVisionRockSample[5,5] domain. The

domain has a much larger observation space than standard RockSample, but this

does not seem to negatively impact the efficiency of the algorithms. Again, the

algorithms tend to be able to find a reasonable policy quite quickly, and very slowly

are able to refine it. The order of convergence is essentially the same as for standard

RockSample.

We show the results from the Underwater Navigation domain in Figure 5–6.

While still a robot navigation task, this differs from the previous domains in several

important ways. It is primarily “goal-based” in that once the agent has found a good

79

0 10 20 30 40 50 60
4

6

8

10

12

14

16

18

time (s)

A
D

R
FieldVisionRockSample5 : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–5: The FieldVisionRockSample[5,5] domain. In this experiment, we com-
pare different belief collection methods and different belief update methods.

policy, there is very little to refine. Additionally, it has a long planning horizon,

taking many (> 40) steps to find the first rewards.

The optimistic collection methods (Bound Uncertainty and MDP Heuristic) are

generally able to converge extremely quickly. This can be attributed to the fact that

using the MDP solution makes it very easy to find the (distant) goal states. We also

note that the Random Collection is still able to do relatively well. We see that the L1

Norm Leaf Biased is starting to converge, whereas standard L1 Norm is never able

to find a solution. We attribute this to the substantial planning horizon required in

Underwater Navigation. We explore this more fully in Section 5.7.

80

0 50 100 150 200 250 300 350 400 450 500
−100

0

100

200

300

400

500

600

700

800

time (s)

A
D

R
underwaterNav : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–6: The Underwater Navigation domain. In this experiment, we compare
different belief collection methods and different belief update methods.

In this domain, the choice of update method used has a large effect on the result-

ing policy. When using the optimistic collection methods, the algorithms converge

much faster with a full backup or a newest points backup, in comparison to when

using a Perseus backup. These collections methods are able to find the critical belief

points quickly. When this occurs, it seems it is better to guarantee that they are

updated (as in the Full Backup and Newest Points Backup). In the Perseus case,

it is not guaranteed that these points will be updated, only that the value at these

points are at least maintained. It is possible that these important beliefs have their

81

values improved by new α-vectors, but the values are not improved nearly as much

as they could if an α-vector were to be created at that belief.

This advantage does not seem to generalize over all collection methods, however.

In the Random collection case, it does not seem to matter which update method is

used. When using the Error Minimization collection, it seems that Perseus starts

converging slightly quicker. Since it takes a long time for Error Minimization to reach

the critical beliefs, we might attribute this to the savings on the time to update the

beliefs. However, when Error Minimization is coupled with Full Backup, it converges

to the optimum around the same time as when using the Perseus Backup.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

A
D

R

dialogue : Update Method

MDPHeuristic−FullBackup
MDPHeuristic−FullPerseusBackup
MDPHeuristic−NewestPointsBackup
BoundUncertainty−FullBackup
BoundUncertainty−FullPerseusBackup
BoundUncertainty−NewestPointsBackup
L1 Norm−FullBackup
L1 Norm−FullPerseusBackup
L1 Norm−NewestPointsBackup
L1 Norm Leaf−Biased−FullBackup
L1 Norm Leaf−Biased−FullPerseusBackup
L1 Norm Leaf−Biased−NewestPointsBackup
Error−Minimization−FullBackup
Error−Minimization−FullPerseusBackup
Error−Minimization−NewestPointsBackup
Random−FullBackup
Random−FullPerseusBackup
Random−NewestPointsBackup

Figure 5–7: The Dialogue domain. In this experiment, we compare different belief
collection methods and different belief update methods.

82

Finally, we examine the Dialogue domain in Figure 5–7. Interestingly, the simple

Random Collection is able to find the optimal solution fastest. We attribute this to

the short planning horizon required for this task, only a few (less than five) queries

are required to have a peaked belief in the user’s intent. The methods which focus on

reducing error (Bound Uncertainty and Error Minimization) also perform well. We

see that the L1 Norm Collection outperforms the L1 Leaf Biased Collection. This

will be examined more fully in Section 5.7. These results indicate that the MDP

Heuristic Collection method does very poorly in the Dialogue domain. This is not

surprising, since the optimal MDP will never guide the search in belief space towards

action which are strictly information gathering, which is critical in this domain.

5.4 Size of Belief Space

In the next two sections, we investigate the effects of both varying the number

of belief points collected at each iteration (N), and varying the number of iterations

of belief updates (U). These parameters are used in the generic point-based method

outlined in Algorithm 1 (Section 3.1). Both of these parameters can be seen as ways

to alter the proportion of time spent collecting vs the time spent updating beliefs.

When N is high, this shifts the balance of computation time towards belief point

collection, especially when the time complexity of the update method does not scale

linearly with N (as in the Perseus update method). Modifying U has the opposite

effect: when we increase U , we linearly increase the time spent computing belief point

updates while the collection time remains fixed. This should theoretically be useful

83

for collection/update combinations that spend a large proportion of time collecting,

compared to updating.

The size of the collected belief point set N should also be dependent on the do-

main characteristics, especially for the exploration-based methods such as Random,

MDP Heuristic and Bound Uncertainty. It is clear that N needs to be at least as large

as the number of execution steps required to reach most beliefs encountered under an

optimal policy. Otherwise, the search might always terminate before encountering

many useful beliefs.

In all of the following experiments, we use the Full Backup method for updates,

and we vary the collection method. We chose the Full Backup method due to its

overall strong performance and simplicity. In our legend, we denote the collection

method used as well as the number of belief points collected at each step.

There is little surprise in the Hallway domain (Figure 5–8). The domain is

simple enough that it does not matter how many belief points are collected at each

step.

We present the results for the RockSample[5,5] domain in Figure 5–9. In general,

there is not a drastic change in the quality of the resulting policy as we vary the

number of belief points collected. The number of belief points does have a strong

effect on Error Minimization, which does best with a small number of points. This

is because the Error Minimization collection method is relatively slow, so it does

poorly when collecting large numbers of points with few updates. We also see that

some of the methods (Random, L1 Norm) do worse with the smallest number of new

84

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

time (s)

A
D

R
hallway : # Belief Points

MDPHeuristic−10
MDPHeuristic−20
MDPHeuristic−80
BoundUncertainty−10
BoundUncertainty−20
BoundUncertainty−80
L1 Norm−10
L1 Norm−20
L1 Norm−80
L1 Norm Leaf−Biased−10
L1 Norm Leaf−Biased−20
L1 Norm Leaf−Biased−80
Error−Minimization−10
Error−Minimization−20
Error−Minimization−80
Random−10
Random−20
Random−80

Figure 5–8: The Hallway domain. We compare the belief collection methods with
the number of belief points collected per iteration.

beliefs. Since the collection is quite fast, especially for Random, they perform better

when there are a larger number of points.

The results for the Underwater Navigation domain are shown in Figure 5–10.

These results stress how critical it is to add more belief points at each step than

the maximum possible planning horizon. Where many of the algorithms (Bound

Uncertainty with all sizes of N , Random and MDP Heuristic with large sizes of N)

have no problem immediately finding an optimal solution when a large number of

beliefs are collected, the same methods are not able to ever find a solution when an

inadequate number of points are added. Interestingly, MDP Heuristic with a small

85

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

time (s)

A
D

R
RockSample5 : # Belief Points

MDPHeuristic−25
MDPHeuristic−100
MDPHeuristic−400
BoundUncertainty−25
BoundUncertainty−100
BoundUncertainty−400
L1 Norm−25
L1 Norm−100
L1 Norm−400
L1 Norm Leaf−Biased−25
L1 Norm Leaf−Biased−100
L1 Norm Leaf−Biased−400
Error−Minimization−25
Error−Minimization−100
Error−Minimization−400
Random−25
Random−100
Random−400

Figure 5–9: The RockSample[5,5] domain. We compare the belief collection methods
with the number of belief points collected per iteration.

number of belief points is only sometimes able to find a solution. With a limited

number of belief points added, only some policies are able to find the critical beliefs

for an optimal policy.

In Figure 5–11, we show the results for the Dialogue domain. We see that for

some of the collection methods, the choice of how many belief points to collect per

iteration does have an effect. Error Minimization and L1 Norm show much better

performance with a larger number of beliefs. We could attribute this to the fact

that this domain is easily solvable if the important beliefs are found (i.e. the ones

reached after choosing the queries). Good performance is achieved only after these

86

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

time (s)

A
D

R
underwaterNav : # Belief Points

MDPHeuristic−50
MDPHeuristic−200
MDPHeuristic−500
BoundUncertainty−50
BoundUncertainty−200
BoundUncertainty−500
L1 Norm−50
L1 Norm−200
L1 Norm−500
L1 Norm Leaf−Biased−50
L1 Norm Leaf−Biased−200
L1 Norm Leaf−Biased−500
Error−Minimization−50
Error−Minimization−200
Error−Minimization−500
Random−50
Random−200
Random−500

Figure 5–10: The Underwater Navigation domain. We compare the belief collection
methods with the number of belief points collected per iteration.

beliefs are found. The MDP Heuristic Collection shows an opposite effect, however

the resulting policies are still extremely poor, so we do not believe it to be significant.

The results for the Tag, RockSample[7,7] and FieldVisionRockSample[5,5] do-

mains are included in Appendix A.

5.5 Iterations of Belief Point Updates

In this section, we vary the parameter U , which controls the number of iterations

of belief point updates at each step in the POMDP planning, as seen in Algorithm

1. We can use this parameter to control the time spent updating beliefs versus

87

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

A
D

R
dialogue : # Belief Points

MDPHeuristic−5
MDPHeuristic−25
MDPHeuristic−100
BoundUncertainty−5
BoundUncertainty−25
BoundUncertainty−100
L1 Norm−5
L1 Norm−25
L1 Norm−100
L1 Norm Leaf−Biased−5
L1 Norm Leaf−Biased−25
L1 Norm Leaf−Biased−100
Error−Minimization−5
Error−Minimization−25
Error−Minimization−100
Random−5
Random−25
Random−100

Figure 5–11: The Dialogue domain. We compare the belief collection methods with
the number of belief points collected per iteration.

collecting new ones. Applying more updates should result in a better policy than

a single update, however the extra time spent updating is not used for collecting

new points (and updating these points instead). In theory, we should expect more

updates to do relatively better when used with slower collection algorithms, since

these methods should attempt to extract as good a policy as possible with the belief

points they have collected.

In all cases, we use the full backup method for updates. Unless otherwise speci-

fied, the number of points collected at each step is N = 100 for all collection methods

except Error Minimization which uses N = 10.

88

0 50 100 150
−13

−12

−11

−10

−9

−8

−7

−6

time (s)

A
D

R
tagAvoid : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 5–12: The Tag domain. We compare the belief collection methods with the
number of iterations of belief point updates.

We first provide the results for the Tag domain in Figure 5–12. With many

collection methods, such as Random or L1 Norm, the number of updates executed

per iteration makes little difference. However, some methods (MDP Heuristic, L1

Leaf Biased) do slightly better with fewer updates. Since there is a set “goal” to

this task, this effect may be because the algorithms spend too much time updating

useless belief points.

We show the results for the RockSample[5,5] domain in Figure 5–13. For many

of the collection methods (Bound Uncertainty, the L1 Norm methods and MDP

Heuristic), the number of iterations make little to no difference. In these cases, the

89

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

time (s)

A
D

R
RockSample5 : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 5–13: The RockSample[5,5] domain. We compare the belief collection meth-
ods with the number of iterations of belief point updates.

extra time spent updating is equally traded off by the performance increase incurred

by these extra updates. However, running extra updates while using the Error Min-

imization collection method increases the performance in a dramatic way, with 10

updates outperforming 3 updates, which dramatically outperforms a single update.

Since the Bound Uncertainty collection uses a theoretically-motivated but very ex-

pensive technique to collect beliefs, it performs much better when extra time is spent

exploiting these beliefs. On the contrary, we see that Random collection performs

better with a single update rather than 3 updates, which subsequently outperforms

10 updates. Since Random exploration will lead to mostly unhelpful beliefs, as well

90

as being extremely time-efficient, it is better to only consider the belief points once

and continue finding new ones. Similar results are found for RockSample[7,8] and

FieldVisionRockSample[5,5], as shown in Appendix A.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

A
D

R

dialogue : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 5–14: The Dialogue domain. We compare the belief collection methods with
the number of iterations of belief point updates.

Figure 5–14 shows the results of varying the number of updates per iteration

for the Dialogue domain. In this case, other than Error Minimization, we see a clear

advantage to running fewer update iterations, especially for the Bound Uncertainty,

L1 Norm and MDP Heuristic collection methods. In this domain, once the agent has

discovered the critical beliefs (by taking sequences of information gathering actions),

it can quite quickly come to a solution. The difficulty in finding a good policy is in

91

finding these critical beliefs. When the algorithms execute fewer belief point updates

per iteration, it allows them more time to explore.

The results for the Hallway, RockSample[7,8], FieldVisionRockSample[5,5] and

Underwater Navigation are included in Appendix A.

5.6 Confidence Intervals

In all previous graphs, we omitted confidence intervals for clarity. However, it

is useful to be able to see results with the confidence intervals displayed, to give an

idea of how consistent the policy is across multiple experiments. We show the results

for the RockSample[5,5] and Dialogue domains in Figures 5–15 and 5–16. We show

all collection methods with a single full backup update. The error bars are a single

standard deviation. The RockSample[5,5] results use N = 100 (N = 10 for Error

Minimization), and the results are averaged over 20 trials. The Dialogue results use

N = 10 and are averaged over 10 trials.

The confidence intervals are in general as we would expect; the higher performing

algorithms tend to have tighter error intervals, while the algorithms which are still

improving have much wider errors. In the Dialogue experiment, we see that the L1

Norm collection methods, while they perform quite poorly, have high variance. We

can attribute this to the random nature of the process to select belief points as parent

nodes. The MDP Heuristic collection method has a much tighter error, even with

poorer performance. This can be attributed to the deterministic nature of the MDP

Heuristic collection method.

92

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

12

14

16

time (s)

A
D

R

RockSample5 : Error

MDPHeuristic−FullBackup
BoundUncertainty−FullBackup
L1 Norm−FullBackup
L1 Norm Leaf−Biased−FullBackup
Error−Minimization−FullBackup
Random−FullBackup

Figure 5–15: The RockSample[5,5] domain. We show the confidence intervals of the
collection methods with a full belief update.

5.7 Verification of PBVI Leaf Biased

In section 4.1.4, we introduced the collection method L1 Norm Leaf Biased,

which featured two modifications intended to improve the exploration of the belief

space. These modifications were a) a method of biasing the belief point selection

process towards leaf nodes (beliefs with no successors), and b) a full search through

all observations to pick the target farthest belief point successor.

In this section, we investigate directly the effects of these two proposed optimiza-

tions. In Figures 5–17, 5–18 and 5–19, L1 Norm is the standard L1 Norm collection

method, L1 Norm Full adds the full observation search when looking for succes-

sor beliefs, L1 Norm Leaf Biased adds the random bias towards leaf belief nodes,

93

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

A
D

R

dialogue : Error

MDPHeuristic−FullBackup
BoundUncertainty−FullBackup
L1 Norm−FullBackup
L1 Norm Leaf−Biased−FullBackup
Error−Minimization−FullBackup
Random−FullBackup

Figure 5–16: The Dialogue domain. We show the confidence intervals of the collection
methods with a full belief update.

and finally L1 Norm Full Leaf Biased adds both optimizations (as in the previous

experiments).

In the RockSample[5,5] domain, shown in Figure 5–17, we see that the Leaf

Biased modification gives a slight boost to the quality of the policy, while the full

observation search has no effect.

The Underwater Navigation domain (shown in Figure 5–18) is much more strongly

affected by the modifications than the RockSample domain. In this case, only L1

Norm Full Leaf Biased is able to find a solution. Underwater Navigation requires

a relativity long (∼ 50 step) planning horizon to encounter the nearest rewards. In

this type of domain, standard L1 Norm collects many beliefs points near the initial

belief, but does not build enough belief points far enough away to reach the reward.

94

0 10 20 30 40 50 60
10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

time (s)

A
D

R

RockSample5 : PBVI Comparison

L1 Norm
L1 Norm Full
L1 Norm FullLeaf−Biased
L1 Norm Leaf−Biased

Figure 5–17: The RockSample[5,5] domain. We compare four versions of L1 Norm
Collection, with all combinations of the proposed optimizations.

We see a very different result in the Dialogue domain (Figure 5–19). In this

case, L1 Norm does best when it is not Leaf Biased. Again, this can be attributed to

domain characteristics. The planning horizon for the Dialogue domain is in general

very short, much shorter than most of the other domains tested. When the search for

new beliefs is biased strongly towards nodes deeper in belief space, it has a negative

effect on the optimal policy in the Dialogue task. This is because this bias will lead

to finding beliefs through a very long planning horizon, created by executing many

query actions.

95

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

time (s)

A
D

R

underwaterNav : PBVI Comparison

L1 Norm
L1 Norm Full
L1 Norm FullLeaf−Biased
L1 Norm Leaf−Biased

Figure 5–18: The Underwater Navigation domain. We compare four versions of
PBVI, with all combinations of the proposed optimizations.

5.8 Blind Policy Lower Bound

In the updated version of HSVI [49], Smith and Simmons use an initial lower

bound based on a blind policy, which was initially proposed by Hauskrecht [20], as

discussed in Section 3.4. This value function approximation is created with an α-

vector for each action, each associated with a policy that always takes the associated

action. If initialized with the single vector lower bound in Equation 3.7, this bound

is guaranteed to be tighter than the single vector lower bound.

In the following experiments, we investigate the utility of using a blind policy

initialization for V (b). The advantage of the blind policy is that it can give a higher

96

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

time (s)

A
D

R

dialogue : PBVI Comparison

L1 Norm
L1 Norm Full
L1 Norm FullLeaf−Biased
L1 Norm Leaf−Biased

Figure 5–19: The Dialogue domain. We compare four versions of PBVI, with all
combinations of the proposed optimizations.

initial value function than a single α-vector. The disadvantage is that extra com-

putation must be done, however, it is generally minimal. We compare a selection

of collection methods (L1 Norm, Random, Bound-Uncertainty), testing each with a

single-vector initialization and a blind policy initialization. The update method is

always Full Backup, and the number of belief points and update iterations are the

same as in the original experiments (N = 100 and U = 1).

In Figure 5–20, we see that the blind policy brings modest improvement for one

collection method (Bound Uncertainty), and no difference elsewhere.

We show the results for RockSample[5,5] in Figure 5–21. In this case, we observe

no advantage to using a Blind Policy for any of the collection methods.

97

0 5 10 15 20 25 30 35 40 45 50
−13

−12

−11

−10

−9

−8

−7

−6

time (s)

A
D

R

tagAvoid : Blind Policy Comparison

BoundUncertainty−Single Vector
BoundUncertainty−blind
L1 Norm−Single Vector
L1 Norm−blind
Random−Single Vector
Random−blind

Figure 5–20: The Tag domain. We compare a selection of collection methods with
either using a Single Vector value function initialization or a Blind Policy initializa-
tion.

The results shown in Figure 5–22 are much more interesting. We display the

outcome of using a blind policy in the Dialogue domain. In all cases, a blind policy

initialization immediately leads to a near-optimal policy, even when the method is

not able to find a near-optimal strategy in the time allotted (L1 Norm and MDP

Heuristic). Recall that the Dialogue domain has three special query actions, which

act only as information gathering actions. Simply applying the same query multiple

times can give a very good idea of the user’s intent, which results in a high per-

formance policy. That is why an algorithm using a blind policy initialization can

98

0 5 10 15 20 25 30
8

9

10

11

12

13

14

15

16

time (s)

A
D

R

RockSample5 : Blind Policy Comparison

BoundUncertainty−Single Vector
BoundUncertainty−blind
L1 Norm−Single Vector
L1 Norm−blind
Random−Single Vector
Random−blind

Figure 5–21: The RockSample[5,5] domain. We compare a selection of collection
methods with either using a Single Vector value function initialization or a Blind
Policy initialization.

succeed, whereas algorithms which use a collection method such as MDP Heuris-

tic will perform poorly, since they do not value sequences of information gathering

actions.

It is interesting to note that the blind policy initialization can lead to significant

speedups, especially in a model which has been used in a real-world setting. How-

ever, we must note that this performance is solely based on the fact that repeated

executions of a specific action is useful in this case. In a domain that requires a set

of actions in sequence, {a1, a2, a3}, to gain the same information, the blind policy

initialization would provide no benefit.

99

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

A
D

R

dialogue : Blind Policy Comparison

MDPHeuristic−Single Vector
MDPHeuristic−blind
BoundUncertainty−Single Vector
BoundUncertainty−blind
L1 Norm−Single Vector
L1 Norm−blind
Random−Single Vector
Random−blind

Figure 5–22: The Dialogue domain. We compare a selection of collection meth-
ods with either using a Single Vector value function initialization or a Blind Policy
initialization.

5.9 Discussion

In this section, we summarize our observations of the results presented in the

previous experiments. We include general conclusions about all methods tested.

Belief Point Collection Methods

One of our primary focuses in this investigation was the effect of varying the

collection method used. We found that the importance of the collection method used

was very domain-dependent. For example, in the Tag domain, it made little difference

overall which collection method was used, while in the Underwater Navigation and

Dialogue domains, the choice of collection method was critical. Overall, the Bound

100

Uncertainty collection method from HSVI [48, 49] did very well, in large

part due to its use of both upper and lower bounds in its search heuristics, which

can exploit information gathering actions. We also saw that the theoretically-

motivated Error Minimization method (from PEMA [38]) performs much

slower than most other collection methods, although it is able to do well

when the domain has a short planning horizon and requires information

gathering actions as in the Dialogue domain. When coupled with multiple rounds of

belief point updates, we found that Error Minimization was able to perform well on

a variety of domains. The MDP Heuristic [46] collection method also does

very well overall. However, it performs poorly when there are specific

information gathering actions (as in Dialogue) since the MDP solution places

no value on information. The L1 Norm collection method from PBVI [39]

does not do as well as the more optimistic approaches, and had difficulty

solving methods with a very long planning horizon, which we intended to

amend with the modifications used in L1 Norm Leaf Biased. Interestingly, Random

collection (used in Perseus [52]) is able to do quite well in many of the domains, due to

the speed of the collection and the fact that many of the domains have critical beliefs

that may be far, but are easy to find. The Random Collection method performed

poorly in the RockSample domains, where the critical beliefs were more difficult

to find, requiring executing the right “Check” actions near the associated rock. As

well, Random was in fact the fastest algorithm for the Dialogue domain, which might

imply that there is still room to improve the recent belief point collection methods,

101

especially when information gathering actions are concerned. However, this must be

investigated since the required planning horizon is very short.

Analysis of L1 Norm Leaf Biased Collection

In this work, we proposed two modifications for the L1 Norm collection method

introduced in PBVI. The first is related to collecting a wider sample of belief points

by iterating over observations, and the second deals with biasing the belief point se-

lection to belief nodes that are leaves in the exploration tree. In these experiments,

we saw that the effect of these modifications on the overall policy is dependent on the

domain characteristics. The optimizations of the L1 Norm Leaf Biased Col-

lection method seem to provide a boost when the required policy horizon

is long, such as in a long navigation task (Underwater Navigation). However, the

modifications can hurt performance when the planning horizon is short as

in the Dialogue domain.

Belief Point Update Methods

A second major focus in this work was the effect of varying which belief points

were updated at each iteration. Other than for Error Minimization (which favored a

full backup due to speed concerns), the effect of the belief update method was

usually small, and did not favour a specific method. We did not find much

of an advantage to using the Perseus-style backups, especially when used with the

heuristic methods like Bound Uncertainty and MDP Heuristic.

102

Number of Collected Belief Points

We investigated the effect of varying the N parameter, the number of belief

points added at each iteration. Overall, there was not much of an effect when

varying the number of belief points collected. It is clear that it is critical to

consider N to be at least as long as the longest planning horizon required, especially

for the methods which collect beliefs through traces (Random, Bound Uncertainty,

MDP Heuristic). In the original algorithms which use these methods, they collect

belief points until the trial ends, which ends the collection iteration. Our results

show that this method is a reasonable approach.

Number of Belief Update Iterations

We also investigated the effect of varying the U parameter, which is the number

of iterations of belief updates executed per step in the POMDP solving. In general,

we saw that a single round of updates is generally sufficient, and a single

round generally performed at least as well as 3 or 10 rounds of updates. The only

notable exception is Error Minimization, which performed much better with multiple

updates.

Blind Policy Initialization

Finally, we investigated the utility of initializing the value function with the

result of a blind policy iteration. We found that, in most domains, there was no

effect. However, in Dialogue, it was able to give a huge performance boost, since a

blind policy in Dialogue is able to explore the key beliefs found when executing the

103

information gathering “Query” actions. We would therefore recommend initial-

izing with a blind policy, since it is very cheap to compute, but the utility of a

blind policy is dependent on domain characteristics.

5.10 Future Work

In this chapter, we detailed a series of experiments in which we investigated the

effect of varying the collection and updating methods of POMDP solvers, as well as

measuring the effect of different algorithmic parameters. However, many elements

of point-based solvers remain to be investigated. In this section we propose further

experiments that would have supplemented our results to date.

Throughout our experiments, we kept the α-vector pruning fixed, as described

in Section 4.2.4. This includes the immediate pruning step used in Equation 4.4,

as well as single-vector domination checks. Informally, we have seen that the choice

of pruning techniques used can have a strong effect on the speed of the POMDP

solvers. The choice of pruning techniques should be more deeply investigated.

In several of the domains used in this work, especially the RockSample and

Tag domains, even at the maximum alloted planning time, the ADR is not uniform

across the different algorithms. This suggests that not all algorithms have converged.

Many of the collection algorithms have theoretical results bounding the error on the

value function compared to the optimal value function, and can converge to the

optimal policy in the long term. Algorithms with such optimality guarantees include

Bound Uncertainty [48,49], L1 Norm [39] and Error Minimization [38]. Even Random

collection will eventually cover the entire belief space, although of course there are no

104

worst-case bounds on how long that would take. Since the MDP Heuristic collection

method has no way to deal with strictly information gathering actions, it is not

guaranteed to converge for all domains. A further investigation of the relationship

between these convergence guarantees and practical results would be useful.

Our investigations covered a wide range of domains. We saw that the specific

domain properties played a large role in how effective the planning algorithms would

be, such as the long planning horizon of Underwater Navigation, the scalable size and

non-goal nature of the RockSample domains and the information gathering actions

of Dialogue. However, most of the domains examined are modifications of the classic

tabular navigation domains. As well, even the domain with information gathering

actions, Dialogue, has an extremely simple model for gathering information, which

as we saw was solvable by a blind policy. We require more complicated problems

for decision making, which satisfy some of the following properties. First, we require

testing on domains with a higher value of information, in the sense of requiring

more difficult strategies to gather information, i.e. the agent is required to plan

to successfully retrieve information. Second, we require domains with much more

challenging partial observability. Many of the domains used have quite simple models

of partial observability, which makes the job of the planner much easier. A domain

with substantial, long-term partial observability would be a useful benchmark for

new POMDP algorithms.

We discussed the SARSOP algorithm proposed by Kurniawati et al. [26] in

Section 3.7. This algorithm has shown promising empirical results compared to

other point-based POMDP solvers. The collection method used in SARSOP was

105

unfortunately omitted from these results due to our goal of testing on a single software

platform, which did not include the SARSOP methods. A future empirical analysis

of point-based methods should include the SARSOP collection method.

In this work, we focused on the computation time requirements for POMDP

solvers, but the memory requirements for POMDP planning can be quite steep. Ad-

ditional optimizations can be made by using more memory, such as caching all belief

points explored. Memory requirements can become an issue especially for deploy-

ment of POMDP solvers onboard autonomous agents which use embedded systems

with smaller amounts of memory. Results illustrating the memory requirements of

point-based POMDP solvers, especially in terms of optimizations used, would be

useful for determining the best POMDP planning algorithms for embedded systems.

106

CHAPTER 6

Conclusion

Planning under uncertainty is still an unsolved problem in modern AI research.

Planning has a range of applications: in medical systems, scheduling systems, robotics

and very likely many new fields in the future. In all domains, it is critical that the

planning algorithms are robust, scalable, and able to make useful decisions in the

face of deep uncertainties.

In this work, we have discussed the Partially Observable Markov Decision Pro-

cess (POMDP) framework, which offers a rich and flexible model for decision making

under uncertainty. Our focus is on the class of approximate POMDP solvers known

as point-based POMDP solvers, which plan using a subset of belief points in the

POMDP belief space. We provided a survey on modern point-based approaches, and

focused on comparing their associated belief point collection and belief point update

methods, as well as investigating the effect of key parameters on the quality of the

resulting policies. Our goal is to provide a comprehensive view of the state of the

art in the point-based POMDP planning field, as well as provide new insights into

how to structure point-based algorithms. We provided our overall conclusions in

regards to strengths and weaknesses of these methods in Section 5.9. Conducting

such empirical studies has side benefits, as they can often lead to novel approaches.

For example, we developed the L1 Norm Leaf Biased collection method as part of

107

our investigation into why the standard L1 Norm collection method was unable to

find a solution to the Underwater Navigation domain in the time periods tested.

We have also highlighted future directions for expanding this analysis of point-

based POMDP solvers, including testing pruning approaches, examining memory

constraints, extending the set of algorithms tested and expanding to more bench-

mark domains. We stressed the importance of using a standardized code-base for

comparing algorithms, since differences in the implementation of the algorithms (pro-

gramming language, optimizations used) can lead to biases in the results. We hope

that future belief collection methods and other modifications to the standard point-

based POMDP planner can be integrated into our test system and be compared

fairly with other algorithms.

The development of point-based POMDP solving algorithms has drastically in-

creased the efficiency of the state of the art in POMDP planners. The earlier solvers

were generally tested on problems with at most dozens of states, but the advances

made in the point-based methods have allowed POMDPs with tens of thousands of

states to be solvable. However, the current generation of point-based solvers are still

not able to scale up to large real world domains. There have been several proposed

methods to help scale POMDPs to larger domains. Factored representations [13]

are able to more compactly represent the state space of the model. Many POMDPs

have several independent components to their state space, for example, the location

of the robot and status of the rocks in the RockSample domain. Factored approaches

exploit the independence of these structures of POMDPs to greatly speed up com-

putation. Online approaches [44], which provide addition planning during real-time

108

execution, are also able to greatly improve policies in partially observable environ-

ments. These techniques, as well as using improved point-based approaches, will

help us apply POMDPs to a greater range of real world applications.

109

Appendix A

Here we present the results of experiments that were omitted from Chapter 5.

0 50 100 150
−14

−13

−12

−11

−10

−9

−8

−7

−6

time (s)

A
D

R

tagAvoid : # Belief Points

MDPHeuristic−25
MDPHeuristic−100
MDPHeuristic−400
BoundUncertainty−25
BoundUncertainty−100
BoundUncertainty−400
L1 Norm−25
L1 Norm−100
L1 Norm−400
L1 Norm Leaf−Biased−25
L1 Norm Leaf−Biased−100
L1 Norm Leaf−Biased−400
Error−Minimization−25
Error−Minimization−100
Error−Minimization−400
Random−25
Random−100
Random−400

Figure 6–1: The Tag domain. We compare the belief collection methods with the
number of belief points collected per iteration.

110

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

time (s)

A
D

R

RockSample7 : # Belief Points

MDPHeuristic−25
MDPHeuristic−100
MDPHeuristic−400
BoundUncertainty−25
BoundUncertainty−100
BoundUncertainty−400
L1 Norm−25
L1 Norm−100
L1 Norm−400
L1 Norm Leaf−Biased−25
L1 Norm Leaf−Biased−100
L1 Norm Leaf−Biased−400
Error−Minimization−25
Error−Minimization−100
Error−Minimization−400
Random−25
Random−100
Random−400

Figure 6–2: The RockSample[7,8] domain. We compare the belief collection methods
with the number of belief points collected per iteration.

111

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

time (s)

A
D

R

FieldVisionRockSample5 : # Belief Points

MDPHeuristic−25
MDPHeuristic−100
MDPHeuristic−400
BoundUncertainty−25
BoundUncertainty−100
BoundUncertainty−400
L1 Norm−25
L1 Norm−100
L1 Norm−400
L1 Norm Leaf−Biased−25
L1 Norm Leaf−Biased−100
L1 Norm Leaf−Biased−400
Error−Minimization−25
Error−Minimization−100
Error−Minimization−400
Random−25
Random−100
Random−400

Figure 6–3: The FieldVisionRockSample[5,5] domain. We compare the belief collec-
tion methods with the number of belief points collected per iteration.

112

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

time (s)

A
D

R

hallway : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 6–4: The Hallway domain. We compare the belief collection methods with
the number of iterations of belief point updates.

113

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

time (s)

A
D

R

RockSample7 : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 6–5: The RockSample[7,8] domain. We compare the belief collection methods
with the number of iterations of belief point updates.

114

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

time (s)

A
D

R

FieldVisionRockSample5 : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 6–6: The FieldVisionRockSample[5,5] domain. We compare the belief collec-
tion methods with the number of iterations of belief point updates.

115

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

time (s)

A
D

R

underwaterNav : # Update Iterations

MDPHeuristic−1
MDPHeuristic−3
MDPHeuristic−10
BoundUncertainty−1
BoundUncertainty−3
BoundUncertainty−10
L1 Norm−1
L1 Norm−3
L1 Norm−10
L1 Norm Leaf−Biased−1
L1 Norm Leaf−Biased−3
L1 Norm Leaf−Biased−10
Error−Minimization−1
Error−Minimization−3
Error−Minimization−10
Random−1
Random−3
Random−10

Figure 6–7: The Underwater Navigation domain. We compare the belief collection
methods with the number of iterations of belief point updates.

116

References

[1] http://www.cs.mcgill.ca/~smartwheeler/dialogue-feb10.POMDP.

[2] J. Allen, J. Hendler, and A. Tate. Readings in Planning. Morgan Kaufmann,
1990.

[3] K. J. Astrom. Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications, 10:174–
205, 1965.

[4] A. Atrash, R. Kaplow, J. Villemure, R. West, H. Yamani, and J. Pineau. Devel-
opment and validation of a robust speech interface for improved human-robot
interaction. International Journal of Social Robotics, 1:345–356, 2009.

[5] J. A. Bagnell, S. Kakade, A. Ng, and J. Schneider. Policy search by dynamic
programming. In Neural Information Processing Systems (NIPS), volume 16,
December 2003.

[6] L. C. Baird and A. W. Moore. Gradient descent for general reinforcement
learning. In Neural Information Processing Systems (NIPS), pages 968–974,
1998.

[7] J. Baxter and P. L. Bartlett. Reinforcement learning in POMDP’s via direct
gradient ascent. In International Conference on Machine Learning (ICML),
pages 41–48, 2000.

[8] J. Baxter, P. L. Bartlett, and L. Weaver. Experiments with infinite-horizon,
policy-gradient estimation. Journal of Artificial Intelligence Research, 15:351–
381, 2001.

[9] R. Bellman. Dynamic programming. In Princeton University Press, 1957.

[10] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Technical Report CMU-CS-95-221, Carnegie Mellon University, Dec. 1995.

117

118

[11] B. Bonet. An epsilon-optimal grid-based algorithm for partially observable
Markov decision processes. In International Conference on Machine Learning
(ICML), pages 51–58, 2002.

[12] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Re-
search, 11:1–94, 1999.

[13] C. Boutilier and D. Poole. Computing optimal policies for partially observable
decision processes using compact representations. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, pages 1168–1175, 1996.

[14] A. Cassandra, M. L. Littman, and N. L. Zhang. Incremental Pruning: A sim-
ple, fast, exact method for partially observable Markov decision processes. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 54–61, San
Francisco, CA, 1997. Morgan Kaufmann Publishers.

[15] E. M. Clarke and O. Grumberg. Research on automatic verification of finite-
state concurrent systems. Technical Report CMU-CS-87-105, CMU, 1987.

[16] Z. Feng and S. Zilberstein. Efficient maximization in solving POMDPs. In Pro-
ceedings of the Twentieth National Conference on Artificial Intelligence, pages
975–980, 2005.

[17] R. Fikes, P. E. Hart, and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving. Artificial Intelligence, 2:189–208, 1971.

[18] H. Geffner and B. Bonet. Solving large POMDPs using real time dynamic
programming. In Proceedings AAAI Fall Symp. on POMDPs, 1998.

[19] E. Hansen. Solving POMDPs by searching in policy space. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 211–219, 1998.

[20] M. Hauskrecht. Incremental methods for computing bounds in partially observ-
able Markov decision processes. In AAAI/IAAI, pages 734–739, 1997.

[21] M. Hauskrecht. Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research (JAIR), 13:33–94,
2000.

[22] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, Massachusetts, 1960.

119

[23] A. Jazwinsky. Stochastic Processes and Filtering Theory. Academic Press, New
York, 1970.

[24] L. Kaelbling. Learning in Embedded Systems. The MIT Press: Cambridge, MA,
1993.

[25] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially
observable stochastic domains. In Artificial Intelligence, pages 99–134, 1998.

[26] H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In Proc. Robotics:
Science and Systems, 2008.

[27] M. L. Littman. Algorithms for Sequential Decision Making. PhD thesis, De-
partment of Computer Science, Brown University, Providence, RI, Feb. 1996.
Also Technical Report CS-96-09.

[28] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for
partially observable environments: Scaling up. In International Conference on
Machine Learning (ICML), pages 362–370, 1995.

[29] W. S. Lovejoy. Computationally feasible bounds for partially observed Markov
decision processes. Operations Research, 39(1):162–175, Jan.–Feb. 1991.

[30] W. S. Lovejoy. A survey of algorithmic methods for partially observable Markov
decision processes. Annals of Operations Research, 28(1):47–65, 1991.

[31] D. A. McAllester and S. Singh. Approximate planning for factored POMDPs
using belief state simplification. In Conference on Uncertainty in Artificial In-
telligence (UAI), pages 409–416, 1999.

[32] N. Meuleau, K.-E. Kim, L. Kaelbling, and A. R. Cassandra. Solving POMDPs by
searching the space of finite policies. In Conference on Uncertainty in Artificial
Intelligence (UAI), pages 417–426, 1999.

[33] G. E. Monahan. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science, 28(1):1–16, Jan. 1982.

[34] A. Y. Ng, R. Parr, and D. Koller. Policy search via density estimation. In
Neural Information Processing Systems (NIPS), pages 1022–1028, 1999.

120

[35] I. R. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH - an office-navigating
robot. AI Magazine, 16(2):53–60, 1995.

[36] S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP algorithm for
complex multiagent environments. In 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), pages 970–977,
2005.

[37] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order
planner for ADL. In Knowledge Representation and Reasoning, pages 103–114,
1992.

[38] J. Pineau and G. Gordon. POMDP planning for robust robot control. In
International Symposium on Robotics Research (ISRR), volume 28, pages 69–
82. Springer, 2005.

[39] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An any-
time algorithm for POMDPs. In International Joint Conference on Artificial
Intelligence, pages 1025–1032, 2003.

[40] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical
Approach. Oxford University Press, Oxford, 1998.

[41] P. Poupart and C. Boutilier. Bounded finite state controllers. In Neural Infor-
mation Processing Systems (NIPS), 2003.

[42] S. Ross and B. Chaib-draa. AEMS: An anytime online search algorithm for
approximate policy refinement in large POMDPs. In International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 2592–2598, 2007.

[43] S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in
continuous POMDPs with application to robot navigation. In Proceedings of
the 2001 IEEE International Conference on Robotics & Automation (ICRA),
pages 2845–2851, 2008.

[44] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms
for POMDPs. Journal of Artificial Intelligence Research (JAIR), 32:663–704,
2008.

[45] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Third
Edition. Prentice Hall, 1995.

121

[46] G. Shani, R. Brafman, and S. Shimony. Forward search value iteration for
POMDPs. In International Joint Conference on Artificial Intelligence (IJCAI),
2007.

[47] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21:1071–1088,
1973.

[48] T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[49] T. Smith and R. G. Simmons. Point-based POMDP algorithms: Improved anal-
ysis and implementation. In Conference on Uncertainty in Artificial Intelligence
(UAI), pages 542–547, 2005.

[50] Soderland and Weld. Evaluating nonlinear planning. Technical Report 91-02-03,
University of Washington, 1991.

[51] E. Sondik. The Optimal Control of Partially Observable Markov Decision Pro-
cesses. PhD thesis, Stanford University, 1971.

[52] M. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for
POMDPs. In Journal of Artificial Intelligence Research, pages 195–220, 2005.

[53] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[54] C. Szepesvari. Reinforcement learning algorithms for MDPs - a survey. Technical
Report TR09-13, University Of Alberta, 2009.

[55] R. Washington. BI-POMDP: Bounded, incremental, partially-observable
Markov-model planning. Lecture Notes in Computer Science, 1348:440–451,
1997.

[56] D. S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123, 1999.

[57] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

[58] N. L. Zhang and W. Liu. Planning in stochastic domains: Problem character-
istics and approximation. Technical Report HKUST-CS96-31, Department of
Computer Science, Hong Kong University of Science and Technology, 1996.

122

[59] N. L. Zhang and W. Zhang. Speeding up the convergence of value iteration in
partially observable Markov decision processes. Journal of Artificial Intelligence
Research (JAIR), 14:29–51, 2001.

[60] R. Zhou and A. Hansen. An improved grid-based approximation algorithm for
POMDPs. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 707–716, 2001.

KEY TO ABBREVIATIONS

FIB: Fast Informed Bound

FSM: Finite State Machine

FSVI: Forward Search Value Iteration

HSVI: Heuristic Search Value Iteration

MDP: Markov Decision Process

MLS: Most Likely State

PBVI: Point-Based Value Iteration

PEMA: Point-based Error Minimization Algorithm

POMDP: Partially Observable Markov Decision Process

SARSOP: Successive Approximations of the Reachable Space under Optimal

Policies

123

