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ABSTRACT 

Trauma-induced spinal cord injury (SCI) is the most prevalent form of spinal cord injury 

affecting over 80% of the 36,000 Canadians living with this condition. The pathophysiological 

profile of traumatic SCI consists of an initial stage of direct damage followed by a series of 

secondary events, including reduced blood flow and increased generation of free radicals that 

leads to excitotoxicity, oxidative stress, hemorrhagic necrosis, inflammation, and apoptosis. We 

examined the hypotheses that delayed administration of the flavonoid quercetin inhibits the 

propagation of secondary events and promotes functional recovery after traumatic SCI by 

inhibiting inflammatory processes and signaling pathways that promote apoptosis and thereby 

promoting axon survival. To determine whether delayed quercetin treatment promoted functional 

recovery following SCI, male Wistar rats were subjected to a spinal cord compression injury by 

application of a 50 g modified aneurysm clip at the mid thoracic cord level. A treatment regimen 

of 75 µmol quercetin per kg rat or saline only (controls) was administered for a period of 3 days, 

1 week or 2 weeks beginning at 2 weeks post surgery. Delayed quercetin treatment improved 

locomotion in injured animals although with severe deficit. To determine whether improved 

functional outcome correlated with improved tissue preservation and reduced scarring, we 

performed histological examinations at the injury site.  In saline treated animals, at 8 weeks post 

injury we found over 80% of tissue loss with the majority of the remaining cells undergoing 

apoptosis. However, with 2 weeks delayed quercetin treatment, at least 50% of the tissue was 

still present at 8 weeks post surgery with a significant reduction of apoptosis. Quercetin treated 

animals also showed a reduction of reactive gliosis.  To determine which intracellular signaling 

pathways may mediate the protective effects of quercetin, we carried out Western blots and 

immunocytochemical analyses of a number of potential pro-apoptotic pathways.  We found that 

quercetin reduced the levels of the phosphorylated (activated) forms of the MAPK p38, ERK 1/2 

(p42/44) and SAPK/JNK seen after SCI. We conclude that delayed quercetin treatment likely 

rescues neurons that would otherwise have died between the third and sixth weeks following 

injury by inhibiting apoptosis of glia cells. Quercetin may be acting via selective inhibition of 

kinase pathways that have been shown to be involved in apoptosis and cell growth. These 

findings not only reveal the protective effects of quercetin in reducing secondary damage after 

chronic SCI but also shed some light on some of the mechanisms underlying its actions. 
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CHAPTER 1.0    GENERAL INTRODUCTION 

 

1.1 Epidemiology of spinal cord injury 

Spinal cord injury (SCI) is a major problem in Canada and throughout the rest of the 

world. A recent survey of over 33,000 households initiated by the Christopher and Dana Reeves 

foundation (CDR Foundation, April 2009) shows that 1.275 million Americans have had spinal 

cord injury and over 5.6 million live with some form of paralysis. These estimates are at least 

five times more for people living with spinal cord injury and 40% more for people living with 

paralysis than the previous estimates of roughly 250,000 and 4 million respectively (Sekhon and 

Fehlings, 2001; Kirshblum et al., 2002).  

According to the Canadian Paraplegic Association (CPA) there are approximately 36,000 

Canadians with SCI with an incidence rate estimated at 42.4 per year per million for adults aged 

15-64 and 51.4 per million population for those 65 years or older (Pickett et al., 2006). SCI is 

predominately experienced by young adults in the second and third decade of life. Statistics from 

around the globe shows that of the newly injured each year, the majority (80%) are male 

(Jongbloed et al 2007; Go et al., 1995). In addition, of the new injuries reported in Canada, 

approximately 53% are paraplegic and 47% are quadriplegic (Picket et al 2006; Ackery et al., 

2004; Dryden et al., 2003; Tator et al., 1993).  

The leading cause of SCI, in Canada is vehicular accidents (car and motorcycle) (41.2%), 

followed by falls, including industrial accidents (21.8%) while other conditions including 

medical causes, sports injuries and diving account for the remainder (37%) (CPA, Pickett et al., 

2006; Ackery et al., 2004; Tator et al., 1993; Tator, 1983). Traumatic insult is usually caused by 

sudden impact, which crushes the spinal cord giving rise to a change in its normal motor, 

sensory, or autonomic function. Injuries to the cervical spinal cords are more common than those 
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of thoracic and lumbar cord, but thoracic cord injuries have been associated with a higher 

percentage of complete spinal cord lesions (Picket et al 2006; Tator et al., 1993; Tator, 1983). 

The most common mechanism of injury to the spinal cord is fracture dislocation (Tator, 1983; 

Sekhon and Fehlings, 2001; Pickett et al., 2006). A fracture dislocation occurs when a portion of 

the vertebra is fractured and moves into the spinal canal causing damage to the cord. According 

the direction of the dislocation the facture can be classified as anterior, posterior or lateral. Most 

SCI are attributable to anterior fracture dislocation while posterior and lateral fractures are less 

common.  

The total health care cost of SCI in Canada is estimated at about $750,000,000/annum 

(Riis et al., 2007; Dryden et al., 2005). However, far greater than the financial burden on the 

health care system is the burden placed upon the individual afflicted as well as family and friends 

(Jongbloed et al 2007; Riis, 2007; Dryden et al., 2005). SCI causes major functional, medical, 

and financial effects on the injured person as well as an important effect on the individual's 

psychosocial well-being (Dryden et al., 2005; Tator et al., 1993; Fiedler et al., 1999; Krause et 

al., 1997; Kirshblum, 2002). In addition, the society as a whole incurs tremendous economic 

losses due to the lack of contributions from these young individuals that could have been 

potential sources of economic power (Strauss et al., 2008; Jongbloed et al 2007; Riis et al., 2007; 

Budh and Osteraker 2007). It has been reported that the employment rate for young adults who 

suffered from acute traumatic SCI drops to approximately half the employment rate of the same 

age group in the general population (Vogel et al., 1998; Anderson et al., 2000; Pflaum et al., 

2006). 
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1.2 Research and medical advances in spinal cord injury 

The past two decades have seen important advances in research as well as in emergency 

medical treatments and specialized care of the patient with SCI. This has led to a significant 

decrease in medical complications and improvement in the quality of life of patients suffering 

from this condition. The routine practice of urinary drainage by catheterization and proper skin 

care that was introduced since the early 1940s (Guttmann et al., 1949) has led to significant 

decrease in mortality due to sepsis and urological complication which used to be the leading 

cause of death in SCI patients. According to the National Spinal Cord Injury Statistical Center 

(NSCISC), respiratory complications are currently the most common causes of death in SCI 

patients followed by heart disease, subsequent trauma, and septicaemia (Shavelle et al., 2006; 

Furlan et al., 2008). Suicide and alcohol-related deaths are also major causes of death in patients 

with SCI (Turner et al., 2003; Frisbie, 1984). 

An interesting trend seen in SCI is the decreasing number of complete cord lesions in 

both paraplegic and quadriplegic (tetraplegia) patients arriving in hospitals (Sekhon and 

Fehlings, 2001; Tator et al., 1993). This is in large part due to advances in emergency medical 

treatments of SCI which aim at prompt interventions to stop the spread of the initial lesion. Other 

contributing factors to this trend are an increased public awareness with widespread first aid 

knowledge and implementations of mandatory safety practices such as safety belts, air bags, etc. 

Although there have been great improvements in quality of life of patients affected by 

SCI, it is worth mentioning that recent studies show less improvement in average life expectancy 

than had been postulated in the past (Strauss et al 2006, Shavelle et al., 2006, Pickett et al., 

2006). A study looking at patients with SCI over the last 31 year period (Strauss et al 2006) 

reported that between 1973 and 2004, there was a 40% decline in mortality during the critical 
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first 2 years after injury. This study also found that during that same 31 year period, the reduction 

in mortality in the post 2 year period was not as statistically significant as would have been 

predicted.  

 

1.3 Prognosis, classification and clinical assessment 

The most important predictive factors for survival after traumatic SCI are patient age, the 

level of injury and neurologic grade (Claxton et al., 1998; Ditunno 1999). Greater mortality is 

reported in older patients with SCI. The degree of paralysis caused by injury to the spinal cord 

depends upon the level of injury to the spinal cord. The rule of thumb is that the higher the level 

of the lesion, the more severe the consequences. In the case of high cervical injury, patients 

usually require artificial respiration to stay alive. The following terminology has developed 

around the classification of SCI base on the extent of the injury: 

• Tetraplegia (replaces the term quadriplegia) - Injury to the spinal cord in the cervical 

region, with associated loss of muscle strength in all 4 extremities. 

• Paraplegia - Injury in the spinal cord in the thoracic, lumbar, or sacral segments, 

including the cauda equina and conus medullaris. Depending on the level affected, it may 

lead to paralysis of the lower extremities and part or all of the trunk muscles. Usually 

there is a loss of sensation in paralyzed limbs and other effects such as muscle spasms, 

pain and loss of bowel and bladder control. 

The American Spinal Cord Injury Association (ASIA) developed international standards for 

examining and reporting the severity of SCI (Kirshblum et al., 2002; Ditunno et al., 1994; 

Maynard 1997). This system describes the level and extent of injury based on a systematic motor 

and sensory examination of neurologic function. The ASIA classification (ASIA, 2006) assesses 

motor function in ten muscle groups (arms, C5–T1; legs, L2–S1) and sensation (light touch and 
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pinprick) in 28 dermatomes (C2–S4/5) on both sides of the body. Table 1 represents ASIA’s five 

grades of spinal cord function, A to E, where E is normal. ASIA grade A describes individuals 

with the least remaining function. Such patients usually have little hope for recovery.  

 
GRADE  DESCRIPTION 

A Complete: no sensory or motor function is preserved in sacral 

segments S4–S5 

B Incomplete: sensory but no motor function is preserved below the 

neurological level and extends through the sacral segments S4–S5 

C Incomplete: motor function is preserved below the neurological 

level and more than half of the key muscles below the neurological 

level have a muscle grade less than 3. 

D  Incomplete: motor function is preserved below the neurological 

level and more than half of the key muscles below the neurological 

level have a muscle grade more than 3 

E Normal: motor and sensory function are normal 

 

Table1.1: American spinal cord injury association (ASIA) impairment scale 
 

The spinal cord conveys both afferent sensory and efferent motor information, so 

disruption of spinal cord function results not only in motor paralysis but also sensory and 

autonomic impairment distal to the injury (Schwab and Bartholdi, 1996; Hulsebosch, 2002). 

Sensory dysfunction contributes to the generation of pressure sores that, like bladder impairment, 

are a major source of morbidity and even mortality in those with spinal cord injury (Warren, 

2010; Jackson et al., 2010; Silva et al., 2010; Evaraert et al., 2009; Nath et al., 1993). Nearly all 

spinal cord injuries damage both upper and lower motor neurons. To measure the contributions 

of each neuron to loss of function is important, since the prognosis for regeneration is very 

different for each. Segmental lower motor neurons are damaged or lost in the central grey matter 
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at the injury site and in several segments above and below the lesion, resulting in flaccid 

paralysis at the injury level. Variable injury to the surrounding white matter affects the long 

tracts, producing signs of upper motor-neuron damage below the level of the injury. In all lesions 

(apart from complete transections) a small doughnut-like rim of white matter remains at the 

injury site. This outer white matter allows some axons to remain intact, but many others cease to 

function because of segmental demyelination (Bunge et al., 1993). For a lesion to be confined to 

the grey matter (which contains neuronal cell bodies) and to spare the surrounding white matter 

is not unusual. Such a central cord lesion confines motor and sensory disturbances to areas 

innervated at that level (e.g. a C6 lesion affects the hands) without affecting functions by much 

below that level, such as gait and bowel or bladder function. By contrast, white-matter 

destruction at the same segment, even if grey matter is spared, renders a person tetraplegic and 

incontinent.  

An important predictor of improved outcome is retention of sacral sensation (S4–S5), 

especially pinprick, 72 h to 1 week after injury (Oleson et al., 2005; Ditunno et al., 1999; Waters 

et al., 1995; Marino et al., 1999). In general, most individuals regain one level of motor function, 

and most recovery of function takes place in the first 6 months after injury, but can still arise 

several years later (Herbison et al., 1992; Waters et al., 1994; Stauffer, 1984).  

 

1.4. Pathophysiology of SCI 

The functional decline following SCI is attributed to both direct mechanical injury and 

secondary pathophysiological mechanisms that are induced by the initial trauma. These 

mechanisms initially involve widespread haemorrhage at the site of injury and necrosis of central 

nervous system (CNS) cellular components followed by a cascade of secondary events that lead 
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to further destruction including structures beyond the epicenter of the injury. In a nutshell, the 

pathological profile of traumatic spinal cord injury (SCI) comprises a series of changes that can 

be categorized into primary and secondary events.  

1.4.1 Primary events 

The primary events comprise the focal destruction of neural tissue and are a consequence 

of direct mechanical trauma to the spinal cord which includes traction and compression forces. 

This stage is characterized by direct compression of neural elements, damage to blood vessels, 

axons, neuronal cell membranes (by fractured and displaced bone fragments, disc material and 

ligaments) with consequential swelling of the spinal cord. Swelling of the spinal cord compresses 

blood vessels which gives rise to secondary ischemia eventually leading to spinal neurogenic 

shock which in turn leads to systemic hypotension and exacerbation of the ischemia. These 

initial events then instigate a progressive wave of secondary events, which via the activation of a 

stream of noxious mechanisms exacerbates the injury to the spinal cord leading to destruction of 

axonal tracts that were left intact by the initial trauma and hence causing a major impediment to 

functional recovery after SCI.  

1.4.2 Secondary events:    

In the past two decades, several important concepts have emerged to improve the 

understanding of secondary injury. Much of our understanding of these secondary events 

initiated by primary injury comes from knowledge contributed by studies of cerebral trauma and 

ischemia (Gentleman et al., 1995; Maxwell et al., 1997; McIntosh et al., 1998; Lee et al., 1999; 

Yanagawa et al., 2001; Hall et al., 2004). Prominent in the development of these delayed 

secondary mechanisms of damage is the interactive cascade that involves disturbances in energy 

balance, glutamate excitotoxicity, uncontrolled rises in intracellular Ca2+ and oxidative stress 
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(Juurlink and Paterson, 1998). These events are associated with neuronal somal and axonal loss 

that results in much of the disability following spinal cord injury. Many of these problems occur 

hours to days after the primary insult (Graham et al., 1995). Damaged cells, axons, and blood 

vessels release toxic chemicals that attack intact neighbouring cells. This highly disruptive 

process is known as excitotoxicity. A key contributor to this excitotoxicity process is glutamate. 

In the healthy spinal cord, the peripheral terminals of many axons release glutamate as a 

neurotransmitter which binds to receptors on target neurons, exciting these neurons. In injured 

spinal cords on the other hand, glutamate floods out of injured spinal neurons, axons, and 

astrocytes, overexciting neighbouring neurons which in turn release more glutamate (Liberto et 

al., 2004). The overexcited cells have an uncontrolled influx of calcium ions that trigger a series 

of destructive events, including production of free radicals and lipid peroxidation (Kaynar, M.Y., 

et al., 1998; Nishio et al., 1997). These highly reactive molecules can attack membranes and 

other cell components, killing healthy neurons (Kaynar, M.Y., et al., 1998; Nishio et al., 1997; 

Pedersen et al., 1999; Rauchova et al., 1995 McConnell et al., 1999; Springer et al., 1997; Picklo 

et al., 1999; Kristal et al., 1996). Excitotoxicity was thought to affect only neurons, but results 

from emerging studies suggest it also kills oligodendrocytes, the CNS's myelin-producing cells 

(Beattie et al., 2000; Liu et al., 1997; McDonald et al., 1998). Glutamate receptors known as 

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors play a crucial role in 

oligodendrocyte injury (McDonald et al., 1998). This could explain why unsevered axons 

become demyelinated and therefore unable to conduct impulses after spinal-cord trauma.  

It is clear that all these events interfere with axonal regeneration, resulting in axon 

disconnection, demyelination and cell death. In addition, there are longer term reactions such as 

reactive gliosis that also interfere with axon regeneration (von Euler et al., 1997; Frisen et al., 
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1995; Ridet et al., 2000; Beattie et al.,2000; Profyris et al, 2004). The actions of astrocytes as 

well as numerous other cells in this response create an environment that is highly non-permissive 

to axonal regrowth (Hayashi et al., 2004; Fawcett and Asher, 1999; Profyris et al, 2004). 

Moreover, a more active form of cell death, somewhat akin to suicide, in the cord has also been 

documented in the past decade (Li et al., 1999; Shuman et al., 1997; Frei et al., 2000; Casha et 

al., 2001; Beattie et al., 2000). It has been observed that days or weeks after initial trauma, a 

wave of cell suicide, or apoptosis, might sweep through oligodendrocytes, affecting sites that are 

distant to the vicinity of primary injury (as many as four segments from the trauma site).  

 

1.5. Molecular mechanisms in spinal cord injury 

As can be implied from the previous paragraphs, several metabolic signalling pathways 

are implicated in the generation of post-traumatic cellular turbulence. The complex 

pathophysiology of SCI gives rise to activation as well as inhibition of numerous molecular 

mechanisms involved in secondary injury. The following paragraphs deal with mechanisms that 

are specifically tailored to address the objectives of this thesis and provide the precedence for 

administering quercetin as a possible therapeutic measure.  

1.5.1 Oxidative Stress and inflammation 

 Oxidative stress can be defined as a condition in which the production of strong oxidants 

overrides the organism’s scavenging capacity. Strong oxidants produced during oxidative stress 

include the superoxide anion, hydrogen peroxide, hydroxyl radicals, peroxiradicals, and 

dicarbonyls (Juurlink, 2001). One major source of strong oxidants during oxidative stress is the 

superoxide anion, which can be produced during mitochondrial respiration. This substance can be 

dismutated to hydrogen peroxide by the enzyme superoxide dismutase (SOD). Hydrogen 
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peroxide, in the presence of transition metals such as Fe2+ or Cu+ in turn can be converted to the 

hydroxyl radical (which is the most potent oxidant in biological systems), or lipid peroxyl radicals 

(Gutteridge et al., 1992; Halliwell and Gutteridge, 1992; Juurlink and Paterson, 1998). Hydrogen 

peroxide can also give rise to pro-inflammatory isoprostanoids (Liu et al., 1998) and strong 

oxidants such as hydroxynonenal (Springer et al., 1997). Superoxide anions can react with thiols 

and de-esterify membrane lipids causing the release of arachidonic acid and initiating a self-

perpetuating cascade creating a reservoir for the production of strong oxidants. They can also 

interact with other substances such as NO to produce a variety of strong oxidants including the 

hydroxyl radical, nitrogen dioxide and singlet oxygen (Juurlink, 2001). Other strong oxidants 

produced during oxidative stress are dicarbonyls (or α-oxo-aldehydes) that can give rise to 

advance glycation end products (Thornalley et al., 1993; Wells-Knecht et al., 1995) that are 

detrimental for tissues (Thornalley PJ, 1995). 

The accumulation of strong oxidants and reactive oxygen species (ROS) during oxidative 

stress promotes excitotoxicity that leads to calcium overload and ATP depletion, which will 

eventually lead to cell death (Juurlink, 2001; Annunziato et al., 2003). It has been established 

that increases in intracellular calcium concentration lead to activation of proteases, 

phospholipases, endonucleases which degrade various cellular components including DNA and 

ultimately contribute to cell death (Cantoni et al., 1989).  

Oxidative stress can also promote the activation of transcriptional factor complexes such 

as nuclear factor kappa B (NFκB) and AP-1 through activation of c-jun N-terminal kinase (JNK) 

(Ip and Davis 1998).  Activation of NFκB results in pro-inflammatory gene expression 

(Christman et al., 2000; Baeuerle and Henkel, 1994). A major consequence of pro-inflammatory 

gene expression is the increased infiltration of activated leukocytes, particularly neutrophil and 
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macrophages.  These activated leukocytes in turn contribute to maintaining the vicious 

interactive excitotoxic cascade.   

 1.5.1.1 Oxidative Stress and inflammation following traumatic SCI 

 Much of the secondary damage in post-traumatic SCI injury is driven by oxidative stress 

and the accompanying inflammation (Juurlink and Paterson, 1998, Halliwell et al., 1992; 

Anderson et al., 1993; Amar and levy, 1999; Tator and Fehlings, 1991; Tator et al., 1997, Panter 

et al., 1992; Christmas et al., 2000; Kirshblum et al., 2002; Joshi and Fehlings, 2002; Hall et al., 

2004). Trauma to the spinal cord causes free radical formation and lipid peroxidation hence 

leading to oxidative stress and inflammation (Juurlink and Paterson, 1998; Kaynar et al., 1998; 

Nishio et al., 1997). It has been demonstrated that ROS overproduction can directly cause death of 

immature cultured cortical neurons (Ratan et al., 1994) and induce DNA damage as well as an 

inflammatory state (Juurlink and Paterson, 1998).  

Just like any part of the CNS, the spinal cord is particularly vulnerable to oxidative stress 

because of its high oxygen consumption coupled with a low oxidant scavenging capacity as well 

as a high percentage of polyunsaturated fatty acids that can be subjected to lipid peroxidation by 

free radicals. Peroxidation of membrane polyunsaturated lipids interferes with membrane 

function resulting in a number of disturbances in cellular function such as the regulation of iron 

homeostasis. This would inevitably lead to increased consumption of ATP that would further 

enhance the formation of free radicals, (Christman et al., 2000). Breakdown products of lipid 

peroxidation include 4-hydroxyalkenals that inhibit glucose transport, ion pump activities 

(Rauchova et al., 1995; McConnell et al., 1999), glutamate uptake (Springer et al., 1997), 

mitochondrial respiratory chain (Picklo et al., 1999) and activation of the mitochondrial 

permeability transition pore (Kristal et al., 1996), all events that would exacerbate the energy 
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crisis and excitotoxicity. Lipid peroxidation of the endothelial membrane also appears to play a 

role in edema formation (Nishio et al., 1997). Lipid peroxides also give rise to pro-inflammatory 

isoleukotrienes (Harrison and Murphy, 1995) and pro-inflammatory isoprostanoids (Liu T et al., 

1998), many of which promote the inflammatory response.  Evidence for pro-inflammatory gene 

expression following neurotrauma includes upregulation of enzymes such as inducible nitric 

oxide synthase (iNOS)  (Wada et al., 1998), neuronal NOS (nNOS) (Rao et al., 1999), 

cycloxygenase-2 (COX2) (Dash et al., 2000) and endothelium cell adhesion molecules, 

necessary for leukocyte infiltration (Carlos et al., 1997; McKeating et al., 1998). Preventing lipid 

peroxidation decreases these inflammatory lipid byproducts (Pratico et al., 1998).   

1.5.2 Axonal Damage 

Neurotrauma is known to cause diffuse axonal damage (Blight, 1988; Gentleman et al., 

1995; Maxwell et al., 1997).  The evidence suggests that axonal damage due to posttraumatic 

inflammation stems from impairment in axoplasmic transport (Povlishock et., al 1999). Factors 

that result in axoplasmic transport impairment include elevated intracellular Ca2+ (Juurlink and 

Paterson 1998; Dawson et al., 1993; Tanaka et al., 1994; Povlishock et., al 1999). Indeed, there is 

evidence for calpain-mediated proteolysis following CNS trauma (Kampfl et al., 1997).  

As early as 15 min after injury there exists periaxonal swelling with the myelin 

laminations peeling away from each other (Profyris et al., 2004). Occurring at the same time is 

myelin rupture, and by 24 h, axonal contents can be observed in the extracellular space. The 

release of toxic chemicals from these cells, including glutamate, promotes excitotoxicity 

associated with calcium overload and production of ROS (Graham et al., 1995; Kaynar, M.Y., et 

al., 1998; Nishio, S., et al., 1997) and destruction of intact neighbouring cells. Neuronal 

axoplasms undergo transition as well; they display a granular appearance with disarray of their 
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neurofilaments and in many axons there is an unusual abundance of intracellular organelles 

(Anthes et al., 1995). As time progresses, other pathologic features of injured axons, such as 

those of widespread demyelination and abortive growth cones, are increasingly observed 

(Profyris et al., 2004). In fact, by 24 h, a common phenomenon is the appearance of giant axons 

(greater than 40 μm), which exhibit a combination of all the above-mentioned pathological 

features (Anthes et al., 1995). 

It is clear that the consequence of these disturbances results in axoplasmic transport 

impairment. One prominent feature of axoplasmic transport impairment is diffuse accumulation 

of β-APP (Gentleman et al., 1995). Beta-APP accumulation is seen within 2 hr of injury in 

human patients (McKenzie et al., 1996) and there is a correlation between extent of axonal 

swelling and survival time in human patients (Wilkinson et al., 1999). 

These axonal changes are ultimately accompanied by Wallerian degeneration, which in 

rodents lasts for several months and in humans for years (David, 2002). Wallerian degeneration 

describes the withering of axonal segments separated from their neuronal soma. The process 

commences with the degeneration of separated fibers, which is accompanied by fragmentation of 

their associated myelin. It continues with the accumulation of resultant debris and culminates 

with the phagocytosis of this debris by macrophages and microglia. As the primary injury severs 

both ascending and descending axonal tracts, Wallerian degeneration is seen both rostral and 

caudal to the initial lesion (Quencer, 2002). Furthermore, the sites of degeneration have a strong 

correlation with areas of delayed apoptosis which includes glia cells and oligodendrocytes that 

have lost trophic support from severed axons (Warden et al., 2001).  
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1.5.3 Reactive gliosis 

Similar to any other CNS injury, SCI initiates reactive gliosis.  Reactive gliosis is 

characterized by an increase in immunocytochemically-detectable glial fibrillary acidic protein 

(GFAP) and a marked increase in GFAP can be seen following spinal cord compression injury 

(von Euler et al., 1997). One function of reactive gliosis is to clear up debris and create a barrier 

to prevent secondary injury mechanisms from spreading. Unfortunately, with this comes the 

burden of massive deposition of molecules that inhibit axonal regrowth (Fawcett and Asher, 

1999); this includes debris from myelin and dead oligodendrocytes, as well as oligodendrocytes 

that survive the primary injury. The initial component is subsequently followed by the activation 

and migration of microglia, which is also accompanied by invasion of blood borne macrophages. 

Reactive gliosis involves a complex interplay of glial (microglia and macroglia) and non-

CNS cells. The initial stage of reactive gliosis involves the invasion of phagocytes (glial and 

non-CNS cells) at the site of primary injury. Glial involvement begins with “reactive” microglial 

cells, followed by a series of events that in turn leads to the activation of astrocytes (macroglia).  

Microglia are CNS glial cells that differ phenotypically and functionally from macroglia 

(i.e. astrocytes and oligodendrocytes) and are closely similar to tissue-resident macrophages 

(Kim and Vellis, 2005; Rezaie and Male, 2002). These cells, first described by del Rio-Hortega, 

are estimated to comprise about 10% of all cells in the brain parenchyma (Yokoyama et al., 

2004). Microglial cells are present in all regions of the mature CNS, but are found at different 

concentrations in various areas (Schwartz et al., 2006). Their main function likely is to act as 

first line of defence against pathological insults in the CNS (Kreutzberg, 1996). They are 

considered to be the most potent antigen presenting cell type in the CNS. Reactive microglia 

express major histocompatibility complex (MHC) class I and II on their surface, which are 
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specific antigen presenting molecules. They also express the co-stimulatory proteins CD40 and 

B7 as well as intercellular adhesion molecule-1 (ICAM-1) (Benveniste et al., 2001; Finsen et al., 

1993). Like macrophages, microglia also sense many extracellular chemical messengers such as 

adenosine triphosphate (ATP), acetycholine and noradrenaline that are produced in response to 

changes in the extracellular ionic milieu (Guillemin and Brew, 2004). Moreover, reactive 

microglia release a large variety of pro- and anti-inflammatory molecules including various 

interleukins, monocyte chemotactic protein-1 (MCP-1) (Kim et al., 2005), tumor necrosis factor 

alpha (TNF-α) (Taylor et al., 2005), reactive oxygen species (ROS), nitric oxide (NO), 

prostanoids, and complement factors (Nakajima et al., 2001). Reactive microglia can be 

identified based on their immunostaining with Mac-1, ED1, OX18, OX42, OX6 and OX1 

antibodies (Ling et al., 1991). Following SCI injury, quiescent ramified microglia transform into 

reactive microglia (Kreutzberg, 1996; Stence et al., 2001) and migrate toward the injury site 

(Dihne et al., 2001; Giordana et al., 1994). Response to injury by microglial/macrophage may 

include: (1) proliferation of ramified resident microglia, (2) migration from adjacent intact brain 

areas, (3) recruitment of monocytes from the blood, (4) or a combination of all these processes 

(Ladeby et al., 2005). The peak of microglial activation is usually attained by 48-72 hrs 

following acute insult (Banati, 2003).  

The invasion of phagocytes into the glial scar is then followed by intrusion of 

oligodendrocyte precursors (Fawcett and Asher, 1999). Despite the inclination by CNS myelin to 

inhibit their differentiation, these oligodendrocyte precursors may potentially differentiate into 

mature oligodendrocytes at 2 weeks after injury, in areas where axons are void of myelin 

(McTigue et al., 2001; Miller, 1999). Concomitantly, meningeal cells from the CNS surface also 

migrate into the glial scar. These cells go on to re-form the disrupted glia limitans (normally 
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composed of astrocytes) that surrounds the CNS by making contact with astrocytes and walling 

off the primary lesion (Fawcett and Asher, 1999). Shortly thereafter, multipotential progenitor 

cells from the sub-ependyma of the central canal also invade the site of primary injury and 

spread throughout the cord (Takahashi et al., 2003).  

The end point in the evolution of the glial scar is migration and proliferation of astrocytes 

(Fawcett and Asher, 1999; Hatten et al., 1991). Astrocytes are the most numerous non-neuronal 

cell types in the CNS and make up around 50% of all glial cell types. These cells embrace all 

cellular components throughout the CNS using their fine branching processes (Bignami et al., 

1972). The main function of astrocytes is to provide essential support required for normal 

neuronal functioning, including homeostatic maintenance of extracellular ionic concentrations, 

as well as the clearance and release of extracellular glutamate (Mazzanti et al., 2001). In 

addition, the formation and maintenance of the blood-brain barrier (BBB) is dependent on 

astrocytes (Fawcett and Asher, 1999; Hatten et al., 1991).  Astrocytes also play an important role 

in regulating neuronal function through the release of neurotrophic factors, which direct neuronal 

development, and contribute to the metabolism of neurotransmitters, as well as the regulation of 

extracellular pH and K+
 levels (Haydon, 2000). Moreover, astrocytes may play an active role in 

synaptic plasticity (Ullian et al. 2001). Based on their morphology, they can be classified into 

two main groups; namely, the fibrous astrocytes, (containing more glial fibrillary acidic protein 

(GFAP) intermediate filaments in their cytoplasm) which are located in white matter and have 

long slender cytoplasmic processes, and the protoplasmic astrocytes, (relatively poor in 

intermediate filaments) which reside in gray matter and have numerous short, highly branched 

cytoplasmic processes (Tsacopoulos and Magistretti, 1996). The fibrous astrocytes thus stain 

more intensely with antibodies to GFAP than do protoplasmic astrocytes (Wagner et al., 1993).  
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In response to SCI, astrocytes up-regulate their production of glial fibrillary acidic 

protein (GFAP), become hypertrophic and appose many of their processes via gap junctions to 

the processes of neighboring cells. Collectively, these changes are termed astrogliosis, and this 

response is a common hallmark of neural injury and diseases in which inflammation is a 

prominent component (Hatten et al., 1991). Depending on the injury condition, astrogliosis may 

have beneficial effects for promotion of neuronal survival by the production of growth factors 

such as neurotrophins that support neuronal growth, or detrimental for neuronal functional 

recovery by the formation of a glial scar. After injury, astrocytes are involved in the uptake of 

potentially harmful substances, such as excitatory amino acids and K+, and also release cytokines 

(Norenberg, 1994, 1996). Upon their infiltration, astrocytes isolate the site of primary injury by 

delineating the necrotic area and enveloping it with a dense glial lining and basal lamina. As 

astrocytes also fill the empty space produced by the primary lesion, they eventually form the 

bulk of the glial scar (Fawcett and Asher, 1999). The glial scar is not conducive for axon 

regeneration (Nieto-Sampedro, 1999; McGraw et al., 2001), not only because of the invading 

astrocytes, but also due to the tendency of the surrounding environment to promote production of 

extracellular inhibitory molecules that inhibit axonal regrowth (Fawcett and Asher, 1999). These 

molecules together with the rigid structure of the glial scar therefore impose both a molecular 

and mechanical barrier to axonal regrowth. One such molecule that is known to interfere with 

axon regeneration is chondroitin sulfate proteoglycan (CSPG) (Nieto-Sampedro, 1999; Lemons 

et al., 1999). In addition, disruption of the blood-spinal cord barrier (BSCB) caused by secondary 

injury may allow fibroblasts to migrate into the glial scar (Grimpe and Silver, 2002). At more 

chronic stages (about 3 weeks), another non-CNS cell, the Schwann cell which normally provide 

myelination to axons in the peripheral nervous system (PNS), may migrate into the lesion as 
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well. Interestingly, Schwann cells have the ability to remyelinate denuded CNS axons (Li et al., 

1999).  

1.5.4 Apoptosis and Necrosis  

During the past decade, considerable progress has been made in understanding the 

process of cell death. Cell death occurs by at least two mechanisms: necrosis or apoptosis, which 

have distinct histological and biochemical features (Kerr et al., 1972; Wyllie et al., 1980). 

Necrosis is always a pathological process and the trigger for death (e.g. acute trauma and 

ischemia) is often the direct cause of the termination of the cell. Apoptosis by contrast, is 

induced by the activation of a cascade of events that causes the destruction of the cell. It is a 

tightly controlled process that is part of the normal physiological mechanism of cell elimination. 

However, it is well-known that many diseases are also characterized by dysregulation of 

apoptotic processes. In addition, the same type of insult such as acute trauma, ischemia, heat, and 

irradiation, can induce either necrosis or apoptosis or both at different times following injury. 

Typically, the preference of one mode of cell death over the other usually depends on the 

severity and duration of the insult as well as the idiosyncrasy of the target cell (Barros et al., 

2001; Buja et al., 1993; Lieberthal et al., 1998; Beattie and Bresnahan, 2000; Martin LJ, 2001). 

Necrotic cell death usually occurs as a result of an abrupt severe injury whereas apoptosis is a 

slower process caused by less severe afflictions. For example, after an acute ischemic insult, 

necrosis will occur predominantly in the acute phase of the injury, in the most severely affected 

areas (i.e. the core of the lesion) whereas apoptosis will be mostly appreciated in the later stages, 

in areas that are not severely affected by the injury (i.e. at the penumbra where collateral blood 

flow reduces the degrees of injury). The consequences of apoptotic and necrotic cell death for the 

whole organism are fairly different. During necrosis, cytosolic constituents spill through the 
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damaged plasma membrane into the extracellular space and will provoke inflammation whereas 

in apoptosis, these products are safely isolated by membranes and then consumed by phagocytes 

(Kerr et al., 1972; Wyllie et al., 1980; Padanilam, 2003).  

A great deal of the biological events that lead to both necrosis and apoptosis take place in 

secondary injury after acute SCI (Beattie et al., 2002). Initial events usually lead to necrosis of 

cellular components. In the presence of certain conditions, such as ischemia and excitotoxicity, 

apoptosis may become the emerging cell death pathway at the time when necrosis is currently 

the most predominant degenerative event (Zipfel et al., 2000). Since signalling pathways such as 

those involving death receptors, kinase cascades and mitochondria, participate in both processes 

it is possible that the organism can be able to switch between necrosis and apoptosis 

concurrently, by modulating these pathways (Pietenpol and Stewart, 2002). In addition, anti-

apoptotic mechanisms (such as Bcl-2/Bcl-x proteins and heat shock proteins) are equally 

effective in protecting against apoptosis and necrosis (Pietenpol and Stewart, 2002). 

1.5.4.1 Necrosis  

Necrosis is typically defined as passive cell death where by tissues and cells die through 

unregulated processes of destruction of membranes and cytosolic organelles (Pradelli et al., 

2010; Kerr et al., 1972; Padanilam, 2003). The histological hallmarks of necrosis are 

mitochondrial and nuclear swelling, dissolution and dispersion of organelles throughout the 

cytoplasm. This leads to rapid destruction of the plasma membrane, cytoplasmic structures and 

the nucleus with leakage of intracellular contents into the extracellular milieu, resulting in 

inflammatory reaction. As earlier mentioned, necrotic cell death usually follows an acute event 

and occurs in areas that are most severely affected by the abrupt biochemical collapse 

(Friedlander RM, 2003). The rapidity with which these events occur makes this type of cell death 
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very difficult to treat or prevent. This type of cell death is thought to be a consequence of 

adenosine triphosphate (ATP) depletion. Several ATP-dependent ion channels become 

ineffective, leading to loss of ion homeostasis, disruption of actin cytoskeleton, cell swelling, 

membrane blebbing and eventual collapse of the cell (Baros et al., 1999; Maeno et al., 2000; 

Padanilam, 2002).  

Studies also suggest that in addition to the passive mechanisms, active mechanisms may 

also participate in the necrotic process (Proskuryakov et al 2003; Padanilam, 2003). Necrosis is a 

prominent mode of death in various neurodegenerative conditions and also occurs as 

consequence to ischemic injury in organs including brain and heart (Padanilam, 2003). In 

ischemia or hypoxic injury, energy depletion occurs by defective ATP production combined with 

rapid consumption of ATP by ion pumps as well as through hydrolysis and leakage. The initial 

event consists of an increased Na+ influx and release of ATP due to membrane leakage. The 

increase in intracellular Na+ level leads to the activation of Na+/K+ ATPase resulting in energy 

dissipation. As a consequence of ATP depletion, many organelles such as lysozomes, Golgi 

apparatus, endoplasmic reticulum and mitochondria undergo significant biochemical alterations 

leading to severe damage to these organelles. ATP depletion can activate non-selective calcium 

channels promoting calcium release from intracellular stores and hence an increase in 

intracellular calcium. Another consequence of cell injury is increased ROS production 

accompanied by inefficient scavenging which contributes in establishing the condition of 

oxidative stress (Juurlink and Paterson, 1998). The accumulation of ROS is very damaging to 

cell structures including membrane phospholipids, proteins and DNA. Moreover, increases in 

cytosolic calcium levels in turn causes the activation of calcium dependent enzymes such as 

proteases, lipases and nucleases leading to further ATP depletion and disruption of intracellular 



 

                                                                                                                          Hortense E. Nsoh Tabien 21

organelles. The mitochondrial permeability transition pore (MPTP) becomes more permeable 

allowing the production of more ROS and respiratory chain component such as cytochrome C, a 

pro-apoptotic protein (Crompton M, 1999; Kroemer et al., 1998). Therefore opening of the 

MPTP may lead to either necrosis or apoptosis or both. The level of ATP is one of the major 

factors that determine whether a cell undergoes necrosis or apoptosis. 

1.5.4.1.1 Necrosis in SCI: Following traumatic SCI, as secondary injury events 

disseminate, a necrotic wave originates at the site of the injury and begins to propagate in a 

centripetal and rostro-caudal manner. This process, which is further propagated by the 

accompanying infarction, becomes irreversible by 8 hour and may spread up to two vertebral 

levels above and below the lesion.  Blood flow to spinal cord is limited as a result of both 

primary events such as vascular damage to arterioles, capillaries and venules (Young, 2002) and 

secondary events such as vasospasm (Koyanagi et al., 1993), thrombosis and neurogenic shock. 

All these mechanisms then lead to bradycardia, hypotension, decreased peripheral resistance and 

decreased cardiac output (Guha and Tator, 1988). At the cellular level, this manifests as a loss of 

both oxidative phosphorylation and the glycolytic pathway. This ultimately cripples cellular 

energy production causing necrosis through ATP depletion. ATP depletion triggers a barrage of 

necrotic mechanisms, which include loss of cell membrane potential loss, increases in membrane 

permeability, release of lysosomal contents and activation of calcium-dependent auto-destructive 

enzymes. These enzymes include proteases, phospholipases, ATPases and endonucleases which 

degrade plasma membranes, the nucleus and cytoskeletal components (Kumar et al., 2004; Tator, 

1995).  
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1.5.4.2 Apoptosis 

Apoptosis, also known as programmed cell death, is a strictly regulated process 

responsible for the ordered removal of superfluous, aged, or damaged cells (Elmore 2007; Zhang 

et al., 2005; Kerr et al., 1972; Wyllie et al., 1980). Unlike necrosis, apoptosis is a much slower 

process involving the activation of a refined cascade of events. Histological characteristics of this 

process are cytoplasmic and nuclear shrinkage, chromatin margination and fragmentation, with 

breakdown of cell into multiple spherical bodies (apoptotic bodies) that retain membrane 

integrity (Elmore 2007; Zhang et al., 2005; Kerr et al., 1972; Wyllie et al., 1980). In contrast to 

necrosis, this typical confinement of cellular debris avoids inflammatory reactions (Kerr et al., 

1972; Wyllie et al., 1980). Other features of apoptosis are a reduction in mitochondrial 

membrane potential, intracellular acidification, free radical generation and externalization of 

phosphatidylserine residues (Elmore 2007; Zhang et al., 2005). Apoptosis can be implicated in 

both normal (physiological apoptosis) and disease states (inappropriate apoptosis) (Elmore, 

2007; Bellamy et al., 1995; Chalmers-redman et al., 1997; Freidlander, 2003). It is likely that all 

cells of the human body possess the intrinsic capacity of undergoing apoptosis (Kroemer et al., 

1998). Apoptosis is involved in many important cellular processes, including normal cell 

turnover, the immune system, embryonic development and metamorphosis. Contrary to necrosis, 

which is led by severe damage to these organelles, only subtle perturbations are required to 

trigger the refined mechanisms of apoptosis. Apoptosis is implicated in cells exposed to stressful 

stimuli or damage allowing a multicellular organism to efficiently remove old, superfluous or 

damaged cells. It occurs continuously in proliferating tissues and counterbalances excessive cell 

proliferation during mitosis (Elmore, 2007; Bellamy et al., 1995; Chalmers-redman et al., 1997; 

Freidlander, 2003).  
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Disturbances in apoptosis regulation illustrate the importance of apoptosis for normal 

homeostasis. Inappropriate apoptosis may lead to either increased or decreased cell death. An 

abnormal resistance to apoptosis induction correlates with malformations, autoimmune diseases 

(due to the persistence of superfluous, self-specific immunocytes) or cancer (due to mutated 

cells). In contrast, enhanced apoptosis participates in acute pathologies (such as acute trauma, 

ischemic damage or infection by toxin-producing microorganisms) as well as in chronic diseases 

(neurodegenerative and neuromuscular diseases, AIDS). Apoptotic death is also an element of 

the lesion that appears after brain or spinal cord injury (Freidlander, 2003; Beattie et al., 2002). 

The execution of apoptosis involves the activation of a number of latent cyteine-

dependent aspartate specific proteases known as caspases (Elmore, 2007; Zhang et al., 2005). 

The activated enzymes cleave proteins within the cell leading to its destruction. The apoptotic 

cells are then rapidly cleared by phagocytic cells. Caspases can be categorized into upstream 

initiators (caspase 1, 2, 4, 5, 8, 9, 10, 11, 12, 13) and downstream executioners (caspase 3, 6, 7 

and 14). The critical aspect of caspase-mediated cell death lies in the events regulating the 

activation of the initiator caspases. 

Initiator caspases are activated by cell death signals (e.g. TNFα, TLR, and IL-1) 

(Pradelli et al., 2010; Donovan et al., 2004; MacFarlane M, 2003; Gallaher et., 2001; Ashkenazi 

and Dixit, 1999). They possess autocatalytic activity and are characterized by a long N-terminal 

prodomain that regulates their activation. These initiator caspases may be subclassified into those 

possessing the N-terminal caspase recruiting domain (CARD) and those with the N-terminal 

death effector domain (DED). Activation of these caspases requires specific binding of a 

regulator molecule to the CARD/DED domain. Caspase 2, 8, 9, and 10 are the primary initiators 

of apoptotic cascade while caspases 1, 4, 11, 12, and 13 are involved in cytokine production to 
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maintain the process (Pradelli et al., 2010; Donovan et al., 2004; MacFarlane M, 2003; Gallaher 

et., 2001; Ashkenazi and Dixit, 1999).  

Executioner (downstream) caspases are characterized by a short N-terminal prodomain 

and are activated by the upstream caspases. They degrade a variety of cellular components 

leading to the events that bring about cell death. Caspase 3, 6, and 7 are effectors of apoptosis 

and caspase 14 is involved in cytokine production. Caspases use two main mechanisms to 

mediate cell death and these include the systematic destruction of critical cellular substrates 

(which are crucial and begins with DNA degradation) coupled with transcriptional up-regulation 

of the caspases (Pradelli et al., 2010; Donovan et al., 2004; MacFarlane M, 2003; Gallaher et., 

2001; Ashkenazi and Dixit, 1999). Anti-apoptotic signalling pathways negatively regulate 

caspase activation through phosphorylation and down-regulation of their expression.  

In addition to caspases, mitochondrial events also exert a major control over apoptotic 

cell death. Numerous physiological and some pathological stimuli trigger an increase in 

mitochondrial membrane permeability (Kroemer et al., 1998). The mitochondrial permeability 

transition pore (MPTP) complex can function as a sensor for stress and damage, as well as for 

certain signals connected to receptors. Under stressful conditions, the mitochondria can release 

apoptogenic factors (such as hydrogen peroxide, cytochrome C) through the outer membrane and 

dissipate the electrochemical gradient of the inner membrane (Crompton M, 1999). Taking on 

the duty as cytochrome C gatekeeper is the Bcl-2 family of proteins. These proteins are known to 

control the mitochondrial outer membrane permeability (Pradelli et al., 2010; Donovan et al., 

2004; Martinou and Green, 2001) as well as regulate the sequestration of apoptotic scaffold 

proteins (Pradelli et al., 2010; Donovan et al., 2004; Adams and Cory, 2001). This family 

comprises both pro-apoptotic and anti-apoptotic members. A distinctive characteristic of 
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members of this family is their ability to bind to the outer mitochondrial membrane and to form 

dimers. Dimers formed with members that belong to the pro-apoptotic group (including Bax, Bid 

and Bad, Bak, Bcl-1S, Bim, Bik) will facilitate the release of cytochrome C, whereas those 

formed with the anti-apoptotic group (including, A1, Bcl-2, Bcl-w, Mcl-1 and BclxL) will block 

its release. Interestingly, the two groups spend the majority of their time forming heterodimers 

with one another to counteract each other’s function (Hengartner, 2000). As a result, the relative 

abundance of pro- or anti-apoptotic Bcl-2 family members is decisive upon the cells fate 

(Donovan et al., 2004; Casaccia-Bonnefil, 2000). Moreover both members can be regulated 

through gene expression and phosphorylation 

It is generally accepted that there are two principal ways of inducing apoptosis (Pradelli 

et al., 2010; Donovan et al., 2004; Kerr et al., 1972; Wyllie et al., 1980; Padanilam, 2003). The 

first involves the activation of death receptors in the plasma membrane (extrinsic induction) 

while the second occurs via the disruption of intracellular homeostasis (intrinsic induction). It 

was originally thought that cytoplasmic organelles were not involved in apoptosis (Nicholson 

DW, 1999). It is now clear that many organelles such as lysozomes, Golgi apparatus, 

endoplasmic reticulum and mitochondria also undergo significant biochemical alterations during 

apoptosis. 

1.5.4.2.1 Intrinsic pathway: The mitochondrion is the most crucial component of the 

intrinsic pathway of apoptosis as it stores cytochrome C to prevent it from escaping into the 

cytosol (Donovan et al., 2004; Padanilam, 2003; Hengartner, 2000; Casaccia- Bonnefil, 2000; 

Kroemer et al., 1998). When apoptosis is induced however, cytochrome C is released into the 

cytosol and complexes with Apaf-1 and pro-caspase-9, forming the apoptosome. This structure 

activates pro-caspase-9 to caspase-9 by proteolytic cleavage, which in turn activates the 
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executioner caspases, caspase-3, -6 and -7. The activated caspase-3 plays a crucial role amongst 

all these caspases as it spurs the cleavage of DNA, nuclear lamins, cytoskeletal components and 

proteins that inhibit apoptosis. In addition to cytochrome C, sequestered within the 

mitochondrion in an apoptosis-regulated manner is Smac/Diablo (Padanilam, 2003; Hengartner, 

2000; Kroemer et al., 1998). Upon its release to the cytosol, Smac/Diablo enhances the progress 

of apoptosis by antagonizing the activities of cellular inhibitor of apoptosis proteins (cIAP), a 

protein group that blocks caspase activity (Hengartner, 2000). The apoptotic domino effect set 

off by cytochrome C is the reason why its release from the mitochondrion is tightly regulated by 

the Bcl-2 family of proteins. The relative predominance of pro-apoptotic Bcl-2 over the anti-

apoptotic counterpart is the cause of apoptotic destruction of the cell (Casaccia- Bonnefil, 2000). 

1.5.4.2.2 Extrinsic pathway: The extrinsic pathway of apoptosis is characterized by the 

binding of ligand to death receptors. The death receptor family, which includes TNFR, Fas, 

Décor Receptors (Pradelli et al., 2010; Donovan et al., 2004; MacFarlane M, 2003; Gallaher et., 

2001; Ashkenazi and Dixit, 1999), are characterized by cysteine rich extracellular binding 

domains and a cytoplasmic death domain. Stimulation of these receptors causes receptor 

aggregation and conformational change in their death domains that triggers the recruitment of 

various adaptor proteins such as SODD, FADD, TRADD, RIP and DAXX (MacFarlane M, 

2003; Gallaher et., 2001; Ashkenazi and Dixit, 1999). As a result of this interaction, there is the 

recruitment as well as activation of many pro-caspase-8 units (Hengartner, 2000)). The primary 

activity of caspase-8 is to cleave caspase-3 and thereby set off apoptosis. Caspase-8 however, 

can also initiate the intrinsic pathway of apoptosis by cleaving cytosolic Bid and causing it to 

translocate to the mitochondrial membrane (Hengartner, 2000). 
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1.5.4.2.3 Apoptosis in SCI: Apoptosis is an important mediator of secondary damage 

after SCI (Freidlander, 2003; Beattie et al., 2002). It occurs through at least two phases. In an 

initial phase, apoptosis accompanies necrosis in the degeneration of multiple cell types while at a 

later stage it is predominantly confined to white matter and involves oligodendrocytes and 

microglia (Beattie et al., 2000). The initial stage which occurs at the lesion center begins 

approximately 6 hours post injury and for several days thereafter the number of apoptotic cells in 

this region rises steadily. However, by 1 week the apoptotic count decreases and there is now an 

increase in apoptotic death away from the site of primary injury. This new apoptotic wave is 

predominantly localized in the white matter and can arise at large distances from the lesion 

centre (Crowe et al., 1997). Under certain conditions, such as ischemia and excitotoxicity, 

apoptosis may arise as the emerging cell death pathway at the time where necrosis is currently 

the most predominant degenerative event following SCI (Zipfel et al., 2000). Oligodendrocyte 

apoptosis is a widely dispersed phenomenon during SCI that leads to long-term and persistent 

demyelination (Crowe et al., 1997). Since each oligodendrocyte myelinates multiple axons, their 

death leads to denudement of many fibres that are left intact by the initial trauma. Consequently, 

this compromises the conductive ability of axons hence hampering the functional recovery of 

patients. Numerous intact demyelinated axons are observed after SCI (Bunge et al., 1993) and 

salvation of oligodendrocytes has the potential to be of great therapeutic value. Apoptosis of 

oligodendrocytes as a result of SCI arises due to their increased susceptibility to insult as a result 

of trophic support loss (Barres et al., 1992; Raff et al., 1993). Additionally, oligodendrocytes 

may also undergo apoptosis as a result of apoptotic cascades set off by activation of their surface 

death receptors (Casaccia-Bonnefil, 2000). In response to these insults, oligodendrocytes and 

microglia employ components of both the intrinsic and extrinsic pathways of apoptosis.  
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1.5.4.3 Role of oxidative stress in necrosis and apoptosis 

 Oxidative stress is known to cause both necrosis and apoptosis (Kajiwara et al., 2001; 

Annunziato et al., 2003; Juurlink and Paterson, 1998; Beattie and Bresnahan, 2000; Denecker et 

al., 2001; Proskuryakov et al., 2003). The release of various mediators during oxidative stress may 

lead to the activation of signalling cascades involving death receptors. Death receptors are 

implicated in the regulation of necrosis and apoptosis (Davis RJ, 2000; Mochizuki et al., 2002; 

Gabai et al., 2000). In addition, the level of ROS may also influence the decision point between 

apoptosis and necrosis. The accumulation of high levels of ROS in the cell causes direct and 

irreversible damage of cellular components (such as proteins, lipids and DNA) leading to necrosis. 

Modest levels of ROS act as secondary messengers and regulatory molecules hence promoting 

apoptotis. In the mitochondria, ROS can cause direct damage to mitochondrial DNA, and enzymes 

complexes as well as the mitochondrial membrane. Increases in ROS and cytosolic calcium 

imposed by oxidative stress, cause inappropriate opening of the mitochondrial permeability 

transition pore (MPTP) which leads to deterioration of mitochondrial functioning (Paschen and 

Doutheil, 1999). This induces further ROS production by the mitochondria causing further 

damage. When the opening of the MPTP is rapid and profound, high amounts of ROS are 

produced resulting in necrosis whereas with slower opening of the MPTP the cell is able to 

conserve its redox state. However it has also been shown that low levels of ROS can induce 

necrosis (such as in caspase-independent TNF-induced necrosis where there are low levels of 

ROS) (De vos et al., 1998; Vercammen et al., 1998; Fiers et al 1999; Goossens et al., 1999). Other 

molecules that may be involved in deciding whether the cell to undergoes necrosis or apoptosis 

include hydrogen peroxide and cytochrome C release from mitochondria (which binds to Apaf-1 

to activate caspase 9 leading to apoptosis) (Denecker et al., 2001; Kajiwara et al., 2001), BIM 
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(associate with the microtubule-associated dynein motor complex and released in response to 

microtubule damage) and Noxa (may be turned on by p53 in response to DNA damage) (Vaux, 

2002). Therefore a balance between negative and positive regulation of these signalling cascades 

is believed to be a fundamental factor in determining the fate of the cell.  

1.5.5 MAPK kinase signalling pathways 

Protein kinases are known to play a major role in modulating cellular responses.  While 

some kinase pathways may lead to responses that promote cell survival, other responses may 

promote cell death. These responses mostly depend on the integrated sum of metabolic changes 

that result in integrated biological outputs. A major family of protein kinase pathways systems 

are the mitogen-activated kinase (MAPK) cascades (Fig. 2).  

Mitogen-activated protein kinases are a family of Ser/Thr protein kinases widely 

conserved among eukaryotes and involved in many cellular programs such as cell proliferation, 

cell differentiation, cell movement and cell death. MAPK signaling cascades are organized 

hierarchically into three-tiered modules that sequentially activate each other by phosphorylation 

within a structurally conserved activation loop (for reviews see Kim and Choi 2010; Kaminska et 

al., 2009; Johnson and Lapadat, 2002; Wada and Penninger, 2004; Widmann et al., 1999; 

Kyriakis and Avruch, 2001; Wolf and Seger, 2002). MAP kinases (MAPKs) are regulated quite 

specifically by MAP kinase kinases (MAPKKs) whereas the MAP kinase kinases are regulated 

more or less specifically by MAP kinase kinase kinases (MAPKKKs). Pathway organization is 

mediated by scaffolding proteins (Engstrm et al., 2010; Kyriakis and Avruch, 2001) which also 

generate the specificity in signal transduction pathway (Engstrm et al., 2010; van Drogen, 2002). 

All these kinases are also regulated by phosphatases (Flach et al., 2010; shi et al., 2010; 

Haagenson and Wu, 2010; Saxena and Mustelin, 2000; Zhou et al., 2002). 
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FIGURE 1.1: Activation of different MAPK signaling cascades by various extracellular stimuli. The ERK 
(Ras Raf MEK1/2 ERK 1/2), JNK (MEKK SEK/MKK SAPK/JNK) and p38 (NIK1 MKK3/6 

p38) cascades all contain the same series of three kinases. From these MAPK pathways, various 
transcription factors such as Elk1, ATF-2 (CREB), AP-1, NF- B, Sp1 are activated and start the 
transcription of target genes.  

 

Phosphorylated bottom tier MAPKs then translocate to the nucleus and phosphorylate their 

specific substrates (Kim and Choi 2010; Kaminska et al., 2009; Johnson and Lapadat, 2002; 

Wada and Penninger, 2004; Widmann et al., 1999; Kyriakis and Avruch, 2001; Wolf and Seger, 

2002; Saxena and Mustelin, 2000).  

The MAPKs include the extracellular signal regulated kinase 1 and 2 (ERK 1/2 or 

p42/44), p38 MAPK, and stress activated protein kinase (SAPK)/ c-jun N-terminal kinase (JNK) 

(Adler et al., 2000). MAPKs can be activated by a wide variety of different stimuli, but in 
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general, amongst these three MAP kinase cascades the ERK 1/2 are preferentially activated in 

response to growth factors while the SAPK/JNK and p38 MAP kinases are preferentially 

activated by cytotoxic stresses, ranging from X-ray/UV irradiation, heat/osmotic shock, and 

oxidative/nitrosative stress as well as by proinflammatory cytokines such as tumor necrosis 

factor α (TNFα) and interleukin-1 (IL-1). While the total level of these MAPKs remains 

constant, the level of the activated (phosphorylated) forms increases with the corresponding 

increases in stress signal.  Therefore western blots analyses that are used to analyze activation 

levels of these kinases will show variations in the phosphorylated forms while the total MAPKs 

levels remain constant (Wu et al., 2009; Lal et al., 2008).  

There are three SAPK/JNK genes each of which undergoes alternative splicing resulting in 

numerous isoforms (Kyriakis and Avuch 1999). SAPK/JNK, when active as a dimer, can 

translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2 and other 

transcription factors (Kyriakis and Avuch 2001). Four isoforms of p38 MAP kinase, p38α, β, γ 

(also known as ERK6 or SAPK3) and δ (also known as SAPK4) have been identified. Multiple 

ERK 1/ 2 (p44/42) MAPKs have been identified, including members of the Raf family, Mos and 

Tpl2/Cot (Meloche and Pouysségur, 2007; Roberts and Der, 2007). MEK1 and MEK2 are the 

primary MAPKKs in this pathway (Rubinfeld and Seger, 2005; Murphy et al., 2006). MEK1 and 

MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 

and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, 

including p90RSK and the transcription factor Elk-1. ERK 1/2 are negatively regulated by a 

family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (Owens 

and keyse, 2007), along with MEK inhibitors such as U0126 and PD98059. Although the ERK 

1/2 pathway is commonly associated with cell survival, in some systems including the CNS, it 
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can also signal ischemic and stress-mediated cell death (Zhuang et al 2007; Kyriakis and Avruch, 

2001). One of the crucial biological responses mediated by stress activated MAP kinase 

pathways appears to be the decision of cell fate by regulating apoptosis (Kim and Choi 2010; 

Kaminska et al., 2009; Sumbayev et al., 2005). 

With reference to the role played by kinases, it is important to keep in mind that literature 

on the role of various protein kinases as playing protective or detrimental roles can be somewhat 

confusing. Much of this arises from lack of awareness of the contextual factor. It is becoming 

clear that local scaffolding proteins appear to generate much of the specificity in signal 

transduction pathways (Engstrm et al., 2010; Kyriakis and Avruch, 2001; van Drogen, 2002). 

Much of this confusion undoubtedly arises because we are not aware of all the contextual factors.    

Furthermore, this contexuality also allows cross-talk amongst pathways.  For example, the MAP 

kinase kinase kinases, NIK and the MEKKs, can both activate I kappa B kinases, thereby 

activating the NFκB path (Baumann, 2000; O’Mahony, 2000; Zhao, 1999).  

1.5.5.1 MAPK Cascades and Neurotoxicity 

Increasing evidence suggest that the c-Jun N-terminal kinase (SAPK/JNK), the ERK 1/2 

and p38 MAP kinase (p38) cascades are amongst the kinases that play an important role in 

promoting neurotoxicity (Zhuang et al 2007; Shen and Liu 2006; Schieven, G. L, 2005; Zarubin 

and Han, 2005; Widmann et al., 1999; Kyriakis and Avruch, 2001; Ip and Davis 1998; 

Christman et al., 2000; Baeuerle and Henkel, 1994; Wolf and Seger, 2002). JNK, p38 kinase and 

ERK5 are known to be involved in promoting inflammation (Kyriakis and Avruch, 2001). 

Activation of p38 MAP kinase and ERK 1/2 gives rise to much of the neurotoxic actions of 

microglia (Koistinaho and Koistinaho, 2002; Zhang et al., 1998; Bhat et al., 1998). Activation of 

JNK promotes the activation of transcriptional factor complexes such as nuclear factor kappa B 
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(NFkB) and activator protein 1 (AP-1) (Ip and Davis 1998) that results in pro-inflammatory gene 

expression (Christman et al., 2000; Baeuerle and Henkel, 1994). Activation of the JNK pathway 

is required for the pro-inflammatory signaling of IL1 (Krause, 1998) and TNFα (De Cesaris, 

1999; Verrecchia, 2003).   Activation of JNK and p38 MAP kinase also promotes apoptosis in 

the CNS (Mielke and Herdegen, 2000; Nakahara et al., 1999). Stimulation of ASK1 (a MAP 

kinase kinase kinase) promotes prolonged activation of JNK and p38 kinase that results in 

apoptosis (Sumbayev et al., 2005; Tobiume K et al., 2001; Nakahara et al., 1999).  Inhibition of 

MEK1/2 has been demonstrated to be neuroprotective (Wang X et al., 2003).  ASK1 is activated 

following spinal cord injury as well as p38 and JNK (Nakahara et al., 1999). 

ROS and other free radicals produced during oxidative can activate various MAPK 

pathways (McCubrey et al., 2006; Sumbayev et al 2005). Oxidative stress resulting from 

secondary injury can also trigger JNK (and NFkB) pathways by inactivating protein 

phosphatases and thereby promoting kinase activities through disturbance of counterbalancing 

phosphatase activities (Morita K et al., 2001; Xu D et al., 2002). For example oxidants can 

inhibit protein phosphatase 5 (PP5) that in turns promotes apoptosis signalling kinase-1 (ASK1) 

activity (Tobiume K., et al 2001). 
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CHAPTER 2.0 THERAPEUTIC APPROACHES IN SPINAL CORD INJURY 

 

2.1 Current clinical management of SCI 

Despite enormous research on the quest for treatment of SCI, there is yet no universally 

accepted clinical management for the condition. Spinal cord injury predisposes patients to 

numerous complications. Therefore the care of such patients requires attention to multiple body 

systems, sensitivity to the effects of interventions on function and lifestyle, and a special 

vigilance because of the tendency of spinal cord injuries to mask problems.  

The standard emergency management in North America involves stabilization of the 

vertebral column, maintenance of airways and arterial blood pressure and administration of high 

doses of the steroid methylprednisolone (MPO). The clinical care uses a combination of medical, 

surgical and rehabilitative approaches that may vary according to different states or centers.  The 

medical and surgical approaches are aimed at limiting secondary injury while rehabilitation and 

long term follow-up have the key aim to prevent medical complications, which are the cause of 

re-admission in up to 30% of spinal cord injured patients (McDonald and Sadowsky, 2002; 

Warren, 2010: Jackson et al., 2010; Silva et al., 2010: Evaraert et al., 2009; Burns, 2007; Guihan 

et al., 2007; Deitrick et al., 2007; Ditunno and Formal 1994; Galloway 1997; Giannantoni et al., 

2001; Esclarín de ruz et al., 2000). Measures to prevent complications must be implemented 

from the first day of the injury. Some of these measures include urinary drainage with a Foley 

catheter to prevent urinary retention (a major source of infection) as well as pressure relief for 

the skin to prevent pressure sores (another potential source of infection). These patients also 

require thromboembolism prophylaxis, measures to prevent gastric ulcers and bowel care to 

prevent colonic impaction (Kirshblum et al, 2002). 
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One of the few surgical options available comprises the early removal of damaging bone, 

disc and ligament fragments to decompress the spinal cord. However, the benefit of these 

surgical procedures still remains controversial (Heiden et al., 1975; Marshall et al., 1987; 

Vaccaro et al., 1997; Chen et al., 1998; Mirza et al., 1999) and clinical trials are needed to assess 

their effectiveness.  

MPO was the first proven pharmacological treatment for SCI that was introduced in the 

1990s and was the subject of a multicentre clinical study (Bracken et al., 1990, 1997, 1998). 

High dose MPO is still utilized in current management even though its use still remains a 

controversial treatment in many countries (Hulbert et al., 2000; Qian et al., 2000). Treatment 

with MPO has been associated with substantial risk of adverse side effects including increased 

gastric bleeding and wound infections (Galandiuk et al., 1993; Ducker et al., 1994; Short et al., 

2000). Other experimental drugs such as naloxone, trilazad and monosialoganglioside sodium 

(GM-1 ganglioside) have been tested in multicenter clinical trials but have not attained primary 

endpoints (Bracken et al., 1997; Geisler et al., 1998).  

 

2.2 Research Strategies for restoration of function in SCI: 

During the course of the past two decades vast amounts of research have been conducted 

and are still being conducted to understand the injury mechanism in SCI. However, much still 

needs to be done to bring all the pieces together. Given the complexity of the injury mechanisms 

and knowing that the quest for a cure needs to take its course, it is important to adopt a very 

pragmatic approach to restorative treatment of traumatic SCI keeping in mind that improvement 

of the quality of life is an important factor (Anderson et al., 2008). A realistic treatment should 

aim at promoting meaningful recovery in a stepwise manner since it is clear that a cure will not 



 

                                                                                                                          Hortense E. Nsoh Tabien 36

happen overnight. In this light it is therefore important to understand the hierarchy of needs of 

individuals. The hierarchy for quality-of-life improvements varies depending on level and 

severity of spinal cord injury, but in general, affected individuals prioritise bowel and bladder 

function, sexual function, hand function, and breathing. 

Fortunately, the damaged spinal cord will not have to be completely rebuilt to improve 

quality of life. Small anatomical gains can produce disproportionate functional benefits. For 

example, fewer than 10% of functional long-tract connections are needed to enable some 

locomotory function (Blight, 1983). This level of connectivity often remains in the preserved 

doughnut-like outer rim of white matter after trauma, but axons in this rim might be non-

functional because of faulty myelination (Bunge et al., 1993) or are impeded by the process of 

reactive gliosis. Therefore, limiting reactive gliosis and promoting remyelination of intact 

connections is one reasonable approach to improvement of function. Such limited restoration 

might not enable people with severe spinal cord injury to walk but it might improve bowel and 

bladder control, hand grasp, limb mobility, or breathing.  

The management of spinal-cord injury will probably mean an orderly sequence of 

different interventions, each providing an incremental benefit (McDonald et al., 2002). This 

could be achieved by including different stages of treatment that would focus on separate targets. 

Moreover, some treatments could be implemented together while others could be done at 

different intervals. Some of the key targets to be attained during treatment include (1) limitation 

of cell death immediately after injury, (2) promotion of cell regeneration, and (3) replacement of 

lost cells. 
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2.2.1 Limitation of cell death 

Limiting cell death immediately after injury may involve the use of drugs aimed at the 

prevention of progression of secondary injury mechanism. This therapeutic compound should 

have the ability to counteract the events that lead to the excitoxicity process hence preventing 

oxidative stress and inflammation as well as necrotic and apoptotic cell death. Injured 

demyelinated axons could also recover in this situation since this will allow surviving 

oligodendrocytes to remyelinate axons. An environment that is conducive will also allow for lost 

oligodendrocytes to be replenished.  

2.2.2 Promotion of cell regeneration 

The strategy to promote cell regeneration would involve the use of substances that 

promote regeneration such as growth factors (e.g. NT-3, BDNF), as well as the use of substances 

that would guide axons to the proper targets or increase the expression of the host cell guidance 

molecules. In addition, this may include the implantation into the syrinx of substances that may 

create bridges hence providing directional scaffolding that encourage axon growth (such as 

transplants of peripheral nerves or ensheathing glia that support axonal growth). Another, 

property of this compound could be the ability to block the release of substances that inhibit 

regeneration or the action of natural inhibitors of regeneration or downregulate the expression of 

inhibitory proteins. 

2.2.3 Replacement of lost cells 

The strategy to replace lost cells could involve the implantation of cells capable of 

generation of all cell types (e.g. embryonic stem cells and stem cells) or substances that induce 

undifferentiated cells to replace dead cells. 
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It is valuable to consider which repair strategies are most feasible. For example, 

limitation of secondary injury will be easier than restoration of damaged spinal tissue. A 

hierarchy of goals for the near, intermediate, and distant future can be established from results of 

studies in animals. The strategies should be achieved in animals before being attempted in man. 

For this reason the choice of the animal model should also be given great consideration. Crucial 

effort must be made not only in choosing the right species but also in understanding its pathology 

and demonstrating its close resemblance with that of the human pathology. This will avoid a 

situation of putting much effort into research that is ruined by the wrong model. 

 

2.3. Choice of treatment compound 

A number of factors must be given careful consideration before choosing a potential 

therapeutic compound for testing in vivo. Some of the most pertinent factors to take into 

consideration include the possibility of adverse effects, the knowledge of the pharmacokinetics 

and pathways influenced by the compound, as well as the cost and availability of the drug. 

 Adverse effects could result from the compound itself or its metabolites, or could be 

related to the route of administration of the drug. In this regards information from previous 

studies can be useful if available. Knowledge of adverse reactions may prompt us to take 

cautionary measures and gear us to make a decision based on whether the benefits of the drug 

outweigh its potential risks. On the other hand, the absence of previous side effects should not 

prompt us to rule out this possibility as differences in experimental setting may also have 

different biological impact on the organism.   

 Knowledge of the pharmacokinetics of a compound is essential in order to make a good 

estimate of the effective dose. Basically this involves acquisition of data on the compound’s 
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absorption and elimination as well as time of maximal concentration and half-life. The 

absorption of a compound is influenced by its route of administration. In experimental settings, 

routes that guarantee standardised dosing (such as intravenous, intraperitonial and subcutaneous) 

are usually preferred. However, an important aspect to consider for later transfer into clinical 

trials is the option of oral administration as this may also influence the patient’s compliance. The 

interval of maximum plasma concentration and half-life of a compound are useful in determining 

the interval schedule for substance administration. Ideally, a compound should not take too long 

to reach its peak plasma concentration and should have a long half-life (12 h or above) to 

improve patient compliance. The knowledge of the route of elimination of a substance is also of 

crucial importance. If the eliminating organ is compromised this may lead to unexpected 

accumulation of the substance or its metabolites and this may have grave consequences to the 

organism as a whole.  

 The hypothesis of a study is usually inspired for the most part by information acquired 

from previous studies regarding some known pathways influenced by a compound. This may be 

helpful in planning the experimental model and may also give us some idea on what therapeutic 

effects to expect based on previous observations. However, it is important to keep in mind that a 

different experimental setting may influence pathways differently. Ideally, if the pathological 

pathway can be singled out precisely, the ideal compound would be one that can positively alter 

this pathway. However, in conditions that are known to involve numerous physiopathological 

pathways, the ideal compound could be one which has the ability to influence numerous 

pathways. Since none of the numerous physiopathological mechanisms that cause secondary 

damage in SCI (such as ischemia, hemorrhagic necrosis, excitotoxicity, oxidative stress, 

inflammation, reactive gliosis and apoptosis) have been singled out as the pertinent contributing 
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factor, it is meaningful to use a compound such as quercetin that has the ability to affect 

numerous of these pathways. 

 My research exploits the strategy of minimizing the evolution of secondary damage at a 

chronic phase following SCI. The choice of the flavonoid quercetin as a treatment compound is 

guided not only by its ability to interfere with numerous of the processes that are known to be 

involved in secondary injury, but also by its availability and wide therapeutic window.  

2.3.1 Rationale for delayed administration of quercetin  

Research in our lab has directed great effort to explore the therapeutic potentials of 

quercetin, following SCI injury in male Wistar rats. Studies in the lab have shown that the 

prompt administration of quercetin starting 1 hr post-injury at a dose of 25 µmol/kg weight every 

12 hr for 4 days gives rise to a significantly better locomotor functional recovery in the quercetin 

treated animals than the saline controls (Schültke et al 2003; Schültke et al., 2010).  

This project examines the effects of quercetin after chronic SCI in male Wistar rats. Pilot 

studies that prompted the initiation of this thesis work had shown improvement of locomotor 

function in spinal cord injured rats when quercetin was administered at 14 days after traumatic 

SCI at a dose of 75 µmol/kg weight every 12 hr for 3 weeks.  Histological examination of spinal 

cord tissues from untreated animals at 2 weeks post injury showed that a significant proportion 

of axons were still intact although there appeared to be a paucity of support cells.   

  These observations suggested that, what quercetin treatment at 2 weeks appears to do is 

to allow survival of neurons and supporting cells that normally would die somewhere between 2 

and 6 weeks after injury. The decision to delay treatment could have implications in the 

treatment of chronic SCI, which is an accepted reality in those suffering from this condition. 
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2.3.3 Flavonoids 

Flavonoids, or bioflavonoids, are a ubiquitous group of substances belonging to the large 

family of polyphenols that are present in most plants, concentrating in seeds, fruit skin or peel, 

bark, and flowers (Middleton and Kandaswami, 1993; Noroozi et al., 2000; Lamson et al., 2000; 

Rahman et al., 2006; Desch et al 2010). A great number of plant medicines contain flavonoids, 

which have been reported by many authors as having antibacterial, anti oxidant, anti-

inflammatory, antiallergic, antimutagenic, antiviral, antineoplastic, anti-thrombotic, and 

vasodilatory actions (Cook 1996; Avila et al., 1994; Ferrandina et al., 1998; Kang et al., 1999; 

Caltagirone et al., 2000; Mahmoud et al., 2000; Yang et al., 2001; Beecher, 2003; Rahman et al., 

2006; Desch et al 2010). However, much of the molecular mechanisms behind the biological 

effects of these compounds still remain to be clearly understood.  

Polyphenolic compounds in general, are characterized as containing two or more 

aromatic rings, each bearing at least one aromatic hydroxyl and connected with a carbon bridge 

(Beecher, 2003). For flavonoids the carbon bridge consists of three carbons that combine with an 

oxygen and two carbons of one of the aromatic rings (A) to form a third 6-member ring (C) 

(Figure 2.1). The connection of the B ring to the C ring as well as the oxidation state and 

functional groups of the C ring may differ among subclasses.  Briefly, the structural components 

common to all flavonoids is the possession of 15 carbon atoms; two benzene rings (A and B) on 

either side of a 3-carbon ring (Figure 2.1). Multiple combinations of hydroxyl groups, sugars, 

oxygen, and methyl groups attached to these structures create the various subclasses of 

flavonoids. Over 4,000 different flavonoids have been identified within the major flavonoid 



 

                                                                                                                          Hortense E. Nsoh Tabien 42

classes, which include flavonols, flavones, flavanones, catechins, anthocyanidins, isoflavones, 

dihydroflavonols, and chalcones (Cook, 1996; Lamson et al., 2000; Rahman et al 2006).  

 

 
FIGURE 2.1: Basic chemical structure of flavonoids (adapted from Beecher, 2003). Common to these 
compounds include two benzene rings (A and B) on either side of a 3-carbon ring (C). Multiple combinations 
of hydroxyl groups, sugars, oxygen and methyl groups attached to these structures create the various classes 
of flavonoids. 
 

Flavonoids have been shown in a number of studies to be potent antioxidants, capable of 

scavenging hydroxyl radicals, superoxide anions, and lipid peroxy radicals (Dugas, 2000; 

Duthie, 1997; Saija, 1995). Epidemiological evidence has shown that dietary intake of flavonols 

and flavones are inversely associated with coronary heart disease. It has been hypothesized that 

the ability of flavonoids to inhibit lipid peroxidation, demonstrated both in vitro and in various 

animal models, might, at least partially, account for this association (Hertog et al. 1993; Cook 

1996; Schültke at al. 2003; Schültke at al 2010).  
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Flavonoids are absorbed from the gastrointestinal tracts of humans and animals and are 

excreted either unchanged or as flavonoid metabolites in the urine and feces.  

2.3.3 Reasons for choice of quercetin as a therapeutic Agent 

The flavonoid quercetin (3, 3', 4', 5, 7,-pentahydroxyflavone) has been widely studied for 

its important anti-inflammatory and anti-oxidant and anti-apoptotic properties (Huk, 1992; 

Cotelle, 1996; Siaji, 1995; Ferrandiz, 1991; Middleton and Kandaswami, 1992; Middleton et al., 

2000; 1992; Pelzer, 1998; Lamson et al., 2000; Rahman et al., 2006; Mullen et al., 2006; Graf et 

al., 2006; Moon et al 2008). Quercetin is the major flavonoid in the human diet particularly 

abundant in fruits and vegetables, with the richest sources of quercetin being onions, apples, tea 

and red wine. It constitutes an important ingredient in Ginkgo biloba (Kleijnen and knipschild, 

1992) and some foods, such as wine and tea, may contain a concentration of quercetin of up to 

150 μM (Goldberg et al., 1996). Estimated dietary intakes of quercetin range between 23-30 

mg/day in European countries and the USA (Noroozi et al., 2000; Lamson et al 2000, Moon et 

al., 2008).  

A lot of the biological effects of quercetin are attributed to its molecular structure, 

particularly the presence of an oxy-group at position 4 in the B ring and a double bond between 

carbon atoms 2 and 3 of the C ring and a hydroxyl group at position 3 of the C ring (Fig 2.2). 

This structural feature is known to be suitable for free radical scavenging (Theoharides et al, 

2001) and is therefore believed to be a contributing factor for quercetin’s potent antioxidant 

activity.  

The toxicity of quercetin has been studied both in vitro and in vivo (Hollman, 1995; Ferry 

et al., 1996; Hollman, 1997; Hollman, 1999; Sestili et al 1998; Lamson et al., 2000; Khaled et., 

al 2003; Rahman et al., 2006; Mullen et al., 2006; Graf et al., 2006; Moon et al., 2008).   
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FIGURE 2.2: Structure of the flavonoid quercetin (3, 3', 4', 5, 7,-pentahydroxyflavone). 

In rat studies, intravenous or oral administration of up to 56 mg/kg weight of quercetin did not 

produce any adverse effects (Khaled et al., 2003). In human studies, patients were safely 

administered a single i.v. bolus does of up to 100 mg of quercetin (Ferry et al., 1996; Lamson et 

al., 2000; Moon et al 2008). The peak plasma concentrations for quercetin have been reported 

between 0.7-7 hrs (Ferry et al., 1996; Lamson et al., 2000; Khaled et al., 2003; Mullen et al., 

2006; Moon et al., 2008). Peak plasma levels of 225 ng/ml of quercetin were reached in patients 

after a 64 mg quercetin aglycone rich onion meal (Lamson et al., 2000). A single i.v bolus dose 

in humans of 100 mg quercetin led to a serum peak concentration of up to 4.1 mcg/ml of 

quercetin (Ferry et al., 1996; Lamson et al., 2000; Moon et al., 2008).  

When recovered from dietary sources the disposition of quercetin in humans primarily 

depends on the sugar moiety (Moon et al., 2008; Mullen et al., 2006; Graefe et al., 2001; 

Quercetin 
(3, 5, 7, 3’, 4’-pentahydroxyflavone) 
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Hollman 2001). About 25% of an ingested dose of quercetin is absorbed from the small intestine 

and is transported to the liver via the portal circulation, where it undergoes significant first pass 

metabolism (Olthof et al 2000; Williams et al, 2004; Rahman et al., 2006; Moon et al., 2008). 

Quercetin is extensively metabolized in the human liver and by the colonic microflora (Olthof et 

al 2000; Lamson et al 2000, Mullen et al., 2006; Rahman et al., 2006; Moon et al., 2008). 

Quercetin is strongly bound to albumin in the plasma. Quercetin and its metabolites are 

distributed from the liver to various tissues in the body. One of the most common metabolites of 

quercetin is isorhamnetin (3'-methoxyquercetin) (Manach et al. 1998; Morand et al. 1998). Since 

quercetin is quickly metabolized in the liver, it is possible that routes that avoid the first-past 

effect (such as the i.p and i.v routes) would be the desirable route to adopt. However, in a clinical 

setting, this route choice may affect patient compliance making the oral route more appropriate.  

Pharmacokinetic studies on quercetin have not been very consistent regarding the 

elimination half life of quercetin. The half-life of various forms of quercetin have been reported 

to range between 5-25 hrs (Lamson et al 2000; Williams et al., 2004, Rahman et al 2006; Mullen 

et al., 2006; Moon et al 2008). However, in envisaging a possible clinical extrapolation of this 

study, it was a reasonable to choose the 12 h interval for quercetin administration for this study. 

This interval has also been adopted previously in our lab with positive findings (Schültke et al., 

2003; Schültke et al., 2010) 

To summarize, some of the pertinent reasons for choice of quercetin as therapeutic 

compound include the following:  

1) Quercetin is an efficient chelator of Fe2+(Morel, 1993) and possesses a more efficient 

iron (Fe2+) chelating property compared to other chelating substances such as 2.2’-dipyridyl 

(Fe3+) (Horky et al., 1998).   Quercetin has been shown to prevent Fe2+-mediated conversion of 
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hydrogen peroxide to the hydroxyl radical (Cheng and Breen 2000).  This is likely the 

mechanism whereby quercetin has been shown to prevent hydrogen peroxide-mediated DNA 

strand breaks (Duthie, 1997).  

2) It is present in many components of our diet and plasma levels may approach 1 µM 

following a quercetin rich diet (Hollman, 1995; Hollman, 1997; Hollman, 1999; Lamson et al., 

2000).  Humans have evolved with quercetin as part of their diet; therefore, quercetin is well 

tolerated.  Therapeutic effects of quercetin have been shown when administered at a dose of 5 

µmoles/kg body weights in acute traumatic SCI in rats (Schültke et al 2003; Schültke et al., 

2010). Quercetin supplementation of up to 3 mmoles/day (i.e., ~50 µmoles/kg body weight) in 

humans is well tolerated (Conquer, 1998; Lamson et al., 2000; Moon et al., 2008). 

3) It is readily absorbed across the gut and can attain micromolar levels in the plasma 

with the appropriate diet (Hollman, 1996; Moon, 2000; Lamson et al., 2000; Moon et al 2008).   

4) Quercetin can minimize oxidative stress and accompanying inflammation as well as 

necrosis and apoptosis through a variety of other mechanisms (Theoharides et al., 2001; Moon et 

al., 2008).  Quercetin is 7 times better as a scavenger of peroxyl radicals than the vitamin E 

analogue trolox (Dugas, 2000; Lamson et al 2000).  In addition to scavenging the lipid peroxyl 

radical, quercetin has been shown to directly scavenge superoxide anion, the hydroxyl radical 

(Saija, 1995), singlet oxygen (Tournaire, 1993) and peroxynitrite (Haenen, 1997).   

5) Quercetin is an inducer of phase 2 protein genes (Valerio, 2001).  Phase 2 proteins are 

involved in many of central anti-oxidant systems, (Juurlink, 2001).  Quercetin is known to inhibit 

pro-inflammatory gene expression in several model systems: in a rat model of ureteral 

obstruction (Jones, 2000) and following TNFα administration to endothelial cells (Gerritsen, 

1995).  Furthermore, quercetin has been demonstrated to inhibit the activity of myeloperoxidase 
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(Schültke et al 2010; Schültke et al., 2003; Middleton, 1992) (a major means by which 

neutrophils exert their inflammatory function), xanthine oxidase (Sanhueza, 1992), 5-

lipoxygenase and cycloxygenase (Laughton, 1991). 

6) Quercetin has also been shown to inhibit a variety of protein kinases (Davies et al., 

2000; Rahman et al 2006). It is known to inhibit the activation of JNK by the lipid breakdown 

product 4-hydroxynonenal (Uchida, K., et al 1999). Quercetin inhibits the activity of I kappa 

kinase α and β (Peet and Li., 1999); these kinases are involved in phosphorylating IκB, thereby 

activating the NFκB pathway. Hence, this may be another pathway whereby quercetin inhibits 

inflammation.  In addition, quercetin has been shown to inhibit hydrogen peroxide (H202)-

induced apoptosis in glomerular mesangial cells via the inhibition of JNK/activator protein (AP-

1) pathway (Ishikawa et al., 2000). Hence, some of the neuroprotective effects of quercetin may 

be mediated by inhibiting kinases that promote cell death.  It may also be possible that quercetin 

alters the balance of kinase activities that promote cell death for kinase activities that are 

associated with cell survival.  

 

2.4 Choice of Model 

A careful choice of the appropriate model is crucial for the validation of any experimental 

study that needs to be extrapolated to human pathology. Cautious consideration should be given 

to known variations in the model and the actual human pathology. Issues such as differences in 

pathways and species should be taken into account as well as limitations regarding testing of 

functional outcomes in the animal model. We should have encouraging data to suggest that 

functional improvement in the animal model would translate into functional valuable 
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improvement in human patients. Moreover, the model should be reproducible between different 

researchers. 

While important details about specific pathways can be studied in vitro where the 

researcher has total control over the experimental environment we should keep in mind that this 

needs to be extrapolated to higher organisms. However, certain components such as severity of 

the injury need to be controlled to a certain extent to avoid uncontrollable diversity within the 

species. In addition, the genetic make-up of the species should vary as little as possible to 

humans; therefore a mammalian model would be more realistic. Even though big apes would be 

the ideal candidates, the high number of subjects needed and the financial restraints that would 

be incurred greatly limit this possibility. Rats are on the other hand are readily available and easy 

to handle even in large numbers. Moreover, there exist striking pathophysiological similarities 

between clinical SCI and rat experimental models of SCI (Tator, 1995). However, it is worth 

mentioning that there are also striking differences between the regulation of the secondary events 

after SCI between animal strains and species (Hausmann, 2003). Therefore, extrapolation from 

animal experimental data to human pathophysiology requires caution. 

2.4.1 Transection versus non-transection models of SCI 

To mimic the majority of mechanical events that lead to various forms of human SCI, 

several experimental models have been developed (Beattie et al., 2002). A major distinction 

between SCI models is based on the initial presence or absence of continuity of spinal cord 

elements following the insult. In contusion and compression models of SCI the initial continuity 

of the spinal cord elements is largely conserved whereas in partial and complete transection 

models this continuity is lost.  
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Transection models: Transection models can be further subgrouped into complete and 

partial transections. Contrary to spinal cord injury caused by contusion or compression, only 

limited spread of rostro-caudal secondary injury has been observed in transection models 

(Dushart and Schwab, 1994). This limited spread of injury after transection likely occurs by 

Wallerian degeneration (Beattie et al, 2002; Hausmann, 2003). Models of complete transection 

have the advantage of a greater level of uniformity, as compared to models of contusion and 

compression, where minor variations in the localization of the injury can cause significant 

variation in the degree of recovery. Effectiveness of interventions regarding to both axonal 

regeneration and functional recovery are to some extent easier to evaluate with transection 

models (Kwon and Tetzlaff, 2001). However a major difference with the human model of 

transection is that in animals the dura needs to be open to create the injury. Hence intradural 

pressure that develops from edema does not reach the high levels attained in humans with intact 

dura. Partial transactions have the advantage of allowing the researcher to selectively injure 

specific tracts and use the uninjured side as control. However they have the disadvantage of not 

being able to ensure the exactness of the transection. Moreover functional compensation of the 

uninjured side may mistakenly enhance the perceived recovery of the injured side. 

Non-transection models: In the clinical setting of acute traumatic spinal cord injury, a 

high percentage of patients do not present with complete transection of the spinal cord, but rather 

with a blunt injury containing elements of contusion, compression and possibly partial 

transection (Kakulas, 1984). Complete functional loss may only develop later as a result of 

secondary injury mechanisms (Fehlings and Tator, 1988; Tator and Rowed, 1979). Therefore, 

compression or contusion models of spinal cord injury more closely simulate the clinical 

situation seen in the majority of cases. A major difference with transection injury is that even 
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with severe injuries, a small peripheral rim of spared axons usually remains (Bresnahan et al., 

1987; Basso et al., 1996; Kamencic et al., 2001). This observation made in animal models of 

spinal cord injury is paralleled by autopsy findings in human patients with neurologically 

complete spinal cord injury (Hayes and Kakulas, 1997). Those spared axons might be a good 

target for therapeutic intervention after SCI (Beattie and Bresnahan, 2000; Kamencic et al., 

2001).  

The most commonly used SCI model is the contusion model (Tator, 1995 and Young, 

2002). This model induces instantaneous mechanical deformation of the spinal cord by dropping 

either a weight (Noble and Wrathall, 1985), an impactor rod (Gruner, 1992) or an impounder 

with computer-guided assistance (Bresnahan et al., 1987). In contusion injuries the site of injury 

is characterized by the development of a central hemorrhagic necrosis, which spreads both 

radially and in a rostro-caudal direction and later develops into a cystic cavity with an irregular 

margin (Bresnahan et al., 1976 and 1991; Guizar-Sahagun et al., 1994; Zhang et al., 1997). These 

weight-drop models have a number of disadvantages, an important one of which is its ability to 

produce considerable variability in clinical outcome and in the pathology at the site of injury 

(Khan et al., 1985; Khan and Griebel, 1983). Furthermore it was noticed that weight drop models 

cause primarily posterior cord compression, while in the clinical situation of human spinal cord 

trauma, more often the circumferential type of spinal cord compression occurs.  

The compression model is another model frequently employed in SCI research. In this 

model, injury is induced either by intraspinal extradural balloon compression (Tarlov, 1957) or 

by applying either a weight or an aneurysm clip to the spinal cord (Rivlin and Tator 1977; Tator 

and Fehlings, 1991). This model aims to add to that of the contusion model by replicating the 

persistence of cord compression that is commonly observed in human SCI (Tator, 1995).  
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The decision to choose one model over another is greatly influenced by the research 

objectives and the hypothesis to be tested. My studies were done on a rat compression SCI model 

(described in materials and methods chapter), which is justifiably extrapolated to the human form 

of injury. 

 

2.5 Importance of studying chronic spinal cord injury 

Until recently, even the most optimistic of doctors believed that improvement in SCI were 

possible only within 6 months after the injury. With the advent of modern research a number of 

cases of late neurologic recoveries following SCI have been reported in literature (McDonalds 

2002; Kirshblum, 2004). This has radically changed the way we view this condition and also 

given hope for new avenues for research. Our understanding of the disease as we know has been 

challenged. We are called upon to include a patient’s hierarchy of priority in our treatment 

strategies. Slight improvement could bring about dramatic changes in the patient’s way of life. 

This could be a little difference like being able to have slight awareness of bladder function or 

minimal sensation of touch, etc. For all these reasons studying therapeutic interventions in 

chronic SCI could be of good relevance. Moreover, such research would provide more insight to 

some of the mechanisms that occur not only after SCI but other neurodegenerative diseases such 

as multiple sclerosis (MS). 
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CHAPTER 3.0   

SPECIFIC AIM, HYPOTHESES, OBJECTIVES AND QUESTIONS ADDRESSED 

 

3.1 Specific Aim 

The aim of this research project is to investigate the mechanisms by which quercetin 

promotes cell survival in late spinal cord injury, particularly its influence on signaling pathways 

leading to apoptosis. The main mechanisms of action addressed include the effects of quercetin 

administration on inflammatory responses, apoptosis, tissue sparing and MAPK signaling 

pathways.  

My research deals with delayed administration of quercetin following traumatic spinal 

cord injury. Pilot studies that prompted the initiation of my thesis work had shown over 50% of 

locomotor function improvement when quercetin was administered 14 days after SCI at a dose of 

75 µmol/kg weight every 12 hr for 3 weeks. On histological examination of animals that were 

untreated at 2 weeks it was observed that a significant proportion of axons were still intact 

although there appeared to be a paucity of support cells.  Hence it was postulated that quercetin 

treatment at 2 weeks appears to allow survival of axons and supporting cells that normally would 

die somewhere between 2 and 6 weeks after injury.  

These observations prompted the development of the following hypotheses and 

objectives: 
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3.2 Hypotheses 

1. Quercetin promotes locomotor function recovery in chronic spinal cord injury and is 

associated with decreased cell damage and neural tissue sparing. 

2. The protective effect of quercetin in spinal cord injury is associated with decreased cell 

apoptosis  

3. Quercetin improves axon function and decreases excess inflammatory responses in SCI. 

4. Quercetin down regulates phosphorylation of various MAPK kinases that are known to 

be implicated in oxidative stress, inflammation and apoptosis in SCI.  

 

3.3 Objectives 

1. Determine the effect of delayed quercetin administration on locomotor function recovery 

following traumatic SCI. 

2. Determine the effect of quercetin on cell damage and neural tissue sparing. 

3. Determine whether quercetin administration is associated with decreased cell apoptosis  

4. Determine the effects of quercetin on axoplasmic transport and inflammatory responses  

5. Determine whether the protective effects of quercetin correlate with down-regulation of 

MAP kinase cascades involved in inflammation and/or apoptosis  
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3.4 Questions addressed and experimental approaches 

3.4.1 Question #1: Does delayed quercetin treatment promote locomotor functional 

recovery following traumatic SCI? 

Approach: To determine whether delayed administration of quercetin would promote 

functional recovery after SCI, behaviour testing was done by two individuals blinded to the 

study. These tests included the BBB and the incline plane test which were done twice weekly 

starting the first day post surgery until the last day of the study period. At the end of the eight 

week study period, a weekly average score was obtained for each group. This was done by 

averaging the highest weekly scores from both observers of all animals in each group. The 

postoperative performance of the quercetin treated and saline control animals were compared by 

2-way-analysis of variance to determine if there were statistically significant differences between 

treatments. A p value < 0.01 was considered statistically significant.  

 

3.4.2 Question #2: Does quercetin treatment at 2 weeks after injury decrease cell damage 

and promote tissue sparing? 

Approach: The question was addressed by comparing tissue sections from animals that 

were harvested at the eight weeks study endpoint.   Spinal cord tissue was harvested (T4-T8) and 

tissue sections processed as explained in the materials and methods chapter (section 4.7.). 

Morphological studies were done on sections from the quercetin treated, saline control and sham 

animals stained with hematoxylin and eosin (H and E), luxol fast blue (LFB) and toluidine blue 

(TB) to assess the differences in the extent of cavity formation and preservation of cellular 

architecture in all treatment groups. White matter content was assessed and quantified using 

sections stained with luxol fast blue (see section 4.9.5). ANOVA was used to determine 
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statistically significant differences between the quercetin treated and saline control groups and 

the statistical significant difference was set at p< 0.01.  

 

3.4.3 Question #3: Does quercetin treatment at 2 weeks after injury decrease cell apoptosis?   

Approach: The question was addressed by analysing tissues section and tissue 

homogenates from the 3 experimental treatment groups (3 day and 2 week treatment regimen) 

that constitute the study. Quercetin treated, saline control and sham animals from each group 

(n=6 x 3 per experimental group) were sacrificed at eight weeks post surgery and spinal cord 

tissue was harvested (T4-T8) and tissue sections processed as explained in the materials and 

methods chapter (section 4.7.). TUNEL staining was used to determine and measure DNA 

fragmentation as a marker of apoptosis. Immunocytochemical and western blot analyses using 

various markers of apoptosis (activated caspase 3, cleaved PARP) were done to compliment the 

TUNEL analysis. Western blot data and TUNEL images were quantified and analyzed as 

outlined in the next chapter (sections 4.8.3; 4.9.4; 4.10.2 and 4.10.3). ANOVA was used to 

determine statistically significant differences between the quercetin treated and saline control 

groups. A p value < 0.01 was considered statistically significant.  

 

3.4.4 Question #4: To what extent does quercetin improve axon function and reduce 

inflammatory responses in SCI? 

Approach: Tissue sections from quercetin-treated and saline control animals from all 3 

experimental treatment groups were immuno-stained for beta amyloid precursor protein (β−APP) 

accumulation as an indicator of impaired axoplasmic transport (hence axon function). Sections 

were also immuno-stained for GFAP (as a marker for astrogliosis), ED1 and OX42 (as markers 
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for activated macrophages/microglia). Tissue homogenates from the same group of animals 

transcardially perfused with saline were processed for Western blot analyses using the same 

markers mentioned above. The intensity of Western blot band signal for each antigen in each 

group were analyzed and quantified using NIH Image-J software (see section 4.8.3). Statistical 

difference between treatments groups were analyzed using ANOVA. A p value < 0.01 was 

considered statistically significant.  

 

3.4.5 Question #5: Does quercetin treatment after injury down-regulate MAP kinase 

pathways associated with neurotoxicity and apoptosis? 

Approach: Tissues from the 3 experimental treatment groups harvested at the study end 

point were used for this study. Tissue sections from the quercetin treated and saline control 

groups of animals were immunostained for various phosphorylated MAP kinases. These included 

phospho-JNK, phospho-p44/42 and phospho-p38 MAP kinase. Tissue homogenate from the 

quercetin treated, saline control and sham group of animals transcardially perfused with saline 

were processed for Western blot analyses of phosphorylated kinases. The results of intensity of 

the band from Western blots were quantified using NIH Image-J software and analyzed as 

explained in the methods chapter. The values obtained for each animal in the two treatment 

groups were analyzed with ANOVA setting a statistically significant difference at p< 0.01.  
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CHAPTER 4.0    MATERIALS AND METHODS 

 

4.1 Animal care 

All experimental protocols were approved by the University of Saskatchewan Standing 

Committee on Animal Care and Supply in accordance with the policies established in the Guide 

to the Care and Use of Experimental Animals prepared by the Canadian Council on Animal 

Care. All efforts were made to minimize the number of animals used and their suffering.  

Male Wistar rats weighing between 250 and 300 g obtained from Charles River 

Laboratories Inc (St Constant, PQ) were used for all experiments. The animals were acclimatized 

for a minimum of five days before initiation of the study. They were cared for and housed in a 

temperature regulated facility (22-24°C) with 12-hour light/dark cycles. The animals had access 

to food and drinking water ad libitum throughout the duration of the study. 

 

4.2 Experimental Design: 

A schematic representation of the experimental design for this study is shown in Fig. 4.1. 

For all experiments, the animals were acclimatized for handling and test situation for five 

minutes twice daily, for at least five days before spinal cord injury surgery. Following surgery, 

animals were subject to proper post surgical care and began weekly locomotor testing but did not 

receive any treatment regimen until two weeks after the surgery. Locomotor testing continued 

during treatment and throughout the duration of the studies. The sham animals underwent 

surgery for spinal laminectomy but no spinal cord injury was inflicted in them. As such they did 

not receive any treatment throughout the study. At the end of the study period, all animals were 

euthanized and tissue samples were collected for various histological and molecular studies. 
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Fig 4.1: Schematic representation of the experimental design. 

 

4.3 Surgery 

For all experiments we used the spinal cord compression injury model first described by 

Rivlin and Tator (Rivlin and Tator 1977; Rivlin and Tator 1978). All surgical procedures were 

performed using the same protocols previously used in our laboratory (Schültke et al., 2003; 

Kamencic et al., 2001; Schültke et al., 2010). The procedures were all done under antiseptic 

conditions. Anaesthesia was induced with 5% halothane (Halothane® MTC Pharmaceuticals, 

Cambridge, ON, Canada) in medical grade oxygen (Praxair, Saskatoon, SK) and maintained 

between 1.5-2% halothane in oxygen at a flow rate of 1.5 liters/min delivered via a face mask. 

Surgery only began after it was ascertained that the animal was anaesthetized by applying grip 
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pressure to the paw and anesthesia was indicated by no paw withdrawal. The backs of the 

animals were shaved and prepared with 70% alcohol and chlorhexidine gluconate (Hibitane® 

Ayerst Laboratories, Montreal, Quebec Canada). All animals were pre-medicated with a 

subcutaneous injection of 0.05 mg/kg of buprenorphine hydrochloride (CDMV, St. Hyacinth 

Quebec) for postoperative analgesia. Animals were later administered five more tapered doses of 

the analgesic at 12 hr intervals.  

To perform the surgery, a dorsal midline incision was made at the back of the animal 

using the spinous processes of thoracic vertebrae T4-T7 as landmarks. The underlying muscle 

was blunt dissected and expanded, permitting access to the lamina of the spinal vertebrae. A 

laminectomy was then performed to expose the spinal cord and spinal cord injury was induced 

by compression with a 50 g force aneurysm clip (Kerr Lougheed clip, Walsh Manufacturing, 

Oakville, Ontario) to the mid-thoracic cord (T5/T6) for five seconds. This clip compression force 

induces a moderate to severe type SCI (Nashmi et al., 1997; Poon et al., 2007). This injury gives 

rise to permanent paraplegia and loss of bladder function for several weeks with animals never 

attaining a BBB (Basso, Beattie and Bresnahan) locomotor rating score above 5 in the absence of 

therapeutic intervention. A BBB score of 5 represents extensive movement of one joint and 

slight movements of two of the three hind limb joints (see Table 4.2).  

The wound was then closed in anatomical layers by apposition of the underlying muscles 

followed by the subcutaneous layer and the skin. The skin was closed with mechanical staples 

(1Proximate® Plus MD, Ethicon Endo-Surgery, INC Cincinnati, OH USA). Staples were 

removed by day 5-7 post surgery. The injured animals were housed in individual cages for the 

first postoperative week and then caged in pairs until they were euthanized. 
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Surgery to the sham group of animals was limited to a laminectomy with no spinal cord 

compression. These animals all returned to preoperative performance within 24 hours after 

surgery. They all showed no loss of locomotor nor bladder functions.  

 

4.4 Post surgical care 

Scrupulous measures are taken to avoid infections and other complications related to the 

loss of sensation and immobility state (Warren, 2010: Jackson et al., 2010; Silva et al., 2010: 

Evaraert et al., 2010; Burns, 2007; Guihan et al., 2007; Deitrick et al., 2007; Ditunno and Formal 

1994; Galloway 1997; Giannantoni et al., 2001; Esclarín de ruz et al., 2000). A close urological 

follow-up is an important part of these measures and includes regular emptying of the bladder to 

avoid urinary tract infections. Accordingly, the bladders of all injured animals were expressed 

manually three times daily for the 1st week post surgery, then twice daily and gradually 

discontinued as the voiding reflex progressively returned by the end of the second week. The 

skin is constantly monitored to avoid development of pressure sores, a complication associated 

with immobility and the lack of ability of the skin to detect noxious sensations due to nerve 

impairment. The skin was inspected three times daily for the first week and twice daily 

subsequently until the surgical wound was completely healed.  

Unlike in humans where pressure sores are the predominant skin lesions, this is rarely the 

case in animals since even completely paraplegic animals display notable mobility in their cages. 

On the other hand, self inflicted lesions in the skin are more common and maybe attributable to 

impaired perception of body parts due to lack of sensation or non intentional excessive grooming 

of the body parts for the same reason. The lesions are usually treated by applying antibiotic 
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ointments or powder. In rare cases the animal may require surgical repair of the skin defect or it 

may be euthanized due to extreme self-afflicted injury. 

 

4.5 Experimental treatment groups and drug administration 

Treatment onset was delayed by two weeks from the injury time for all experiments. As 

mentioned earlier (section 2.3.3), the decision to use the 2 weeks delay period was based on 

previous pilot study findings in the lab. Our lab has already published findings from earlier 

treatment start points (as early as 1 hr post surgery) (Schulte et al., 2003). 

 

Table 4.1: Summary of various experimental groups and treatment protocols used to 
establish the therapeutic effect of delayed quercetin treatment in spinal injury.  
 

In this study the spinal cord injured and sham animals were placed into three major 

experimental groups, based on the treatment duration. The treatment regimen of 75 µmol of 

Experimental 
Treatment 

groups 

Sub-groups Surgery 
performed 

Treatment 
start time 

Treatment schedule 

Sham (n=6) Laminectomy None None 
 Quercetin treated 

(n=6) 
75μmol/kg td  i.p for 

3 days 

3 days (3 dy) 
 

Saline control (n=6)

 
SCI 

2 weeks 
post surgery 

Saline td  i.p for 3 
days 

Sham (n=6) Laminectomy None None 
Quercetin treated 

(n=6) 
75μmol/kg td i.p for 

1 week 

1 week (1 wk) 

Saline control (n=6)

 
SCI 

2 weeks 
post surgery 

Saline td i.p for 1 
week 

Sham (n=6) Laminectomy None None 
Quercetin treated 

(n=6) 
75μmol/kg td  i.p for 

2 weeks 

2 weeks (2 wk) 

Saline control (n=6)

 
SCI 

2 weeks 
post surgery 

Saline td  i.p for 2 
weeks 

Naïve n=6 Healthy animals  
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quercetin per kg weight or saline vehicle only (control) was implemented to the spinal cord 

injured animals for a period of 3 day (3 dy), 1 week (1 wk) and 2 weeks (2 wk) starting at two 

weeks post surgery. The sham animals received no treatment and served as a control for the 

surgery. Therefore each major group consisted of three sub-groups (spinal injured quercetin 

treated, spinal injured saline controls and sham surgery controls). In addition, one group of 

healthy animals served as a naïve control for all animals and served mainly to validate intact 

locomotor function in the sham group. Table 4.1 provides a summary of the various experimental 

treatment protocols used in this study. 

The drug was dissolved in 1 ml of saline solution (suspension) and was administered by 

intraperitonial injection every 12 hr with 25 GA polypropylene hub hypodermic needle (Tyco 

Healthcare Group LP Mansfield, MA). All treatment started at two weeks post injury, i.e. on the 

first day of the third week after surgery. 

 

4.6 Evaluation of locomotor function recovery 

 For all experiments, the animals were acclimatized for handling and test situation for five 

minutes twice daily for at least five days before the surgery. Usually by the third day we could 

notice good adaptation to the environment with less shyness and more willingness to explore the 

new spaces. 

Behaviour testing was done by means of the modified inclined plane scoring system 

(Rivlin and Tator 1977) and the Basso-Beattie-Bresnahan (BBB) open field locomotor rating 

scale (Basso et al., 1995). Assessment was done by two individuals who were blinded to the 

experimental settings. Locomotor function was assessed on day one post surgery and then 

weekly for a minimum period of eight weeks after surgery. 
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4.6.1 The Inclined plane scale 

For quantitative assessment of the rat’s functional ability, we used the modified incline 

plane scoring system adapted from Rivlin and Tator (Rivlin and Tator 1977). This scoring 

system, which was first described by Eidelberg and colleagues (Eidelberg et al., 1976), used an 

inclined ramp to assess locomotor activity in ferrets. The system was subsequently adapted for 

rats by Rivlin and Tator in 1977. Unlike the original Eidelberg system, where the animals were 

first trained to run up the ramp, the modified scoring system does not require any training. Rats 

are placed horizontally on a movable inclined plane and the maximum inclination at which it can 

maintain itself for at least five seconds is recorded as the rat’s functional ability. To maintain 

themselves on the plane, the animals use both forelimbs and hind limbs. These measurements 

were done on the first post-operative day and then weekly for up to eight weeks after surgery. 

Rivlin and Tator reported an average score of about 80° in normal animals compared to 

an average of 23° in the injured animals. In our experience the healthy animals had an average 

response between 45°and 55°. It is important to take into account that the angle at which healthy 

(uninjured) rats can maintain position on the plane also depends on the surface material that is 

fixed to the board of the movable plane. Differences in scores in other laboratories are most 

likely due to differences in the surface of the incline plane board used.  

A practical advantage of this inclined plane (IP) method is its rapidity and ease of use. It 

is inexpensive and offers a reliable quantitative measure of locomotor function. However, 

although the results of this testing system give us quantitative assessments of the strength of the 

hind limb, they do not provide significant information about complex somatic motor functions 

such as posture and voluntary limb positioning and coordination. To complement for these 

differences we also adopted the BBB scale described below. 
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4.6.2 The BBB locomotor rating scale   

The BBB score categorizes combinations of rat hindlimb movements, trunk position and 

stability, stepping, coordination, paw placement, toe clearance and tail position, which all 

represent sequential recovery stages that rats attain after spinal cord injury (Basso et al., 1995; 

Basso et al., 1996). This scoring system has been evaluated by the Multicenter Animal Spinal 

Cord Injury Study (MASCIS) trial (Basso et al., 1996) and is currently used extensively 

throughout the neurotrauma literature (Kamencic et al., 2001; Schültke et al., 2003; Joshi and 

Fehlings 2002; Zhang et al., 2007; Wong et al 2009; McGirt et al., 2009; Schültke et al 2010). 

The BBB scoring system is an operationally defined scale that uses a point system from 0 

to 21 to assess locomotor functional recovery of the hind limbs after thoracic spinal cord injury 

in rats. This rating is made on an ordinal scale (i.e. the scale does not have equal intervals 

between the points) and has a very wide range, with 0 denoting no observable movement in the 

hind limbs, 7 representing extensive movement of all hindlimb joints, 15 corresponds to 

consistent plantar stepping and co-ordinated limb movement with no or occasional toe clearance, 

while 21 describes a perfectly healthy, walking animal. A detailed description of the BBB 

scoring system is provided in table 4.2 below. 

Animals were pretrained to locomote in an open field consisting of a plastic pool of 

approximately 90 cm wide and 10 cm high walls. Two trained individuals blinded to the study 

then tested the animals for 5 min and rated them using the 21-point scale.  All animals were 

tested in an identical manner prior to surgery and received a BBB score of 21. After surgery, the 

animals were tested at day 1 post-surgery and twice weekly up to the 8 week end point.  The 

mean value for each animal per week was obtained by averaging the highest scores assigned by 

both individuals for each animal per week.  
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Score Verbal description of hind limb movement 
0 No observable hind limb (HL) movement 
1 Slight movement of one or two joints 
2 Extensive movement of one joint or extensive movement of one and slight movement of 

another joint 
3 Extensive movement of two joints 
4 Slight movements of all three joints of the hind limbs 
5 Slight movements of two joints and extensive movement of the third joint 
6 Extensive movements of two joints and slight movement of the third joint 
7 Extensive movement of all three joints 
8 Sweeping without weight support or plantar paw placement without weight support 
9 Plantar paw placement with weight support in stance only or occasional, frequent or 

consistent weight supported dorsal stepping and no plantar stepping 
10 Occasional weight supported plantar steps, no fore limb (FL) - hind limb (HL) 

coordination 
11 Frequent to consistent weight supported plantar steps and no FL - HL coordination 
12 Frequent to consistent weight supported plantar steps and occasional FL - HL 

coordination 
13 Frequent to consistent weight supported plantar steps and frequent FL - HL coordination 
14 Consistent weight supported plantar steps, consistent FL -HL coordination; predominant 

paw position during locomotion is rotated when it makes initial contact with surface or 
before lift up at the end of stance. 
Or frequent stepping, consistent FL –HL coordination and occasional dorsal stepping 

15 Consistent plantar stepping and FL. HL coordination; no toe clearance during forward 
limb advancement; paw position predominantly parallel to body at initial contact 

16 Consistent plantar stepping and FL. HL coordination; toe clearance occurring frequently 
during forward limb advancement; paw position predominantly parallel to body at 
contact and rotated at lift off 

17 Consistent plantar stepping and FL. HL coordination; toe clearance frequently during 
forward limb advancement; paw position predominantly parallel to body at contact and 
lift off  

18 Consistent plantar stepping and FL. HL coordination; toe clearance consistently during 
forward limb advancement; paw position predominantly parallel to body at contact and 
rotated at lift off 

19 Consistent plantar stepping and FL. HL coordination; toe clearance consistently during 
forward limb advancement; paw position predominantly parallel to body at contact and 
lift off and tail down part or all of the time 

20 Consistent plantar stepping and FL. HL coordination; consistent toe clearance; paw 
position predominantly parallel to body at initial contact and lift off; tail consistently up; 
trunk instability 

21 Healthy animal - consistent plantar stepping, and gait coordination, consistent toe 
clearance, predominant paw position is parallel throughout stance, tail up, trunk stability 

     

Table 4.2: The 21 -point Basso Baettie Breanahan (BBB) locomotor rating scale (Basso et 
al, 1995) 
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Some advantages of the BBB rating system include the simplicity of the testing apparatus 

and the use of clearly defined criteria to assess locomotor behavior. However, statistical analysis 

of the quantitative data has presented researchers with some complexity. There has been little 

agreement as to the statistical method to be employed to assess group differences. Both non-

parametric and parametric statistic tests have been employed with the BBB scoring system (Joshi 

et al 2002, Lankhorst et al, 1999, Scheff et al., 2002, Basso et al 2002). 

4.6.3 Statistical analysis 

Non-parametric tests are usually recommended for use with ordinal data. However, in the 

case of behavioral data such as the BBB scale the use of parametric statistics has been 

recommended (Scheff et al, 2002). The use of non-parametric statistics with ordinal data is based 

largely on the properties of the distribution that occur with ordinal data. When ordinal data points 

are ranked from highest to lowest the resultant distribution of scores assumes a rectangular 

shape. This is because each possible score occurs exactly once and therefore a histogram 

displaying the data shows a set of frequency bars all at the same height. Hence, the assumption 

that the distribution of data points is approximately normal (which governs parametric statistics) 

is violated. However, in the case of locomotor behavior, the data are not truly ordinal as more 

that one subject may score the same rank during the behavioral observations. In this case, the 

data collected produces a distribution that is not rectangular but for the most part approximate 

normality. Hence, parametric statistics which rely on the assumption of normality can be used for 

behavioral data. 

A normal distribution is defined by two population parameters, which are the mean and 

standard deviation. Parametric tests are based on these parameters. The most common parametric 

test used to compare multiple group differences is the analysis of variance (ANOVA). ANOVA 
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test is governed by two assumptions which include the assumption of homogeneity and 

sphericity of variance. It should also be pointed out that ANOVA is a very robust test capable of 

withstanding violations of its assumptions (Scheff et al., 2002; Howell, 2007). Violations of the 

assumption of homogeneity (i.e. variance of scores for each population is equal) are not critical 

as long as the largest variance is no more than 4 times larger than the smallest variance and the 

sample size is approximately equal. In the same way, the robustness of the ANOVA renders it 

capable of withstanding violations of the assumption of sphericity (variance of means in any 

level of the between-subject factors is equal to the variance of means in every other level of that 

factor).   

In this study we used parametric statistics to determine significance in both BBB and 

incline plane scores, because the dependent measure did not present major violation to the 

assumptions on which ANOVA is based. Two-way-ANOVAs were done followed by Bonferoni 

post hoc test to determine if there were significant differences at each observed time point 

between saline and quercetin treatment within groups. Significant differences between treatment 

duration time points for the various quercetin treatment regimens at the 8 week endpoint were 

also determined using one-way ANOVA. A p value of <0.01 was considered to be statistically 

significant. Values were expressed as mean ± standard error of means (SE).  

 

4.7 Tissue collection and preparation 

At the completion of treatment period and locomotor testing, all animals were deeply 

anaesthetized with 5% halothane in oxygen and perfused via the left ventricle with cold saline 

(Abbot Animal Health Saint Laurant Quebec). The spinal cords were harvested using the spinal 

roots as land marks (T4-T8) and all the samples collected from each animal (∼9-10mm) included 
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the segment containing the site of the lesion and two segments rostral and caudal to the injury 

site. The segments harvested were used for Western blotting, histology, TUNEL and 

immunocytochemical analyses. A representative photograph showing the spinal cord tissue 

fragment harvested containing the injury site is shown in fig. 4.2. 

 

 

 
FIGURE 4.2: Representative spinal cord tissue fragment harvested at the injury site for various experimental 
analyses  
 

4.7.1 Tissue preparation for Western blot analysis  

To obtain samples for western blot analysis the spinal cords were harvested at the site of 

injury and carefully isolated in a cold medium (ice-cold PBS) then placed into labelled freezer 

resistant storage vials (VWR international Ltd, Canada) and snap frozen in liquid nitrogen. The 

frozen pieces were stored at -80°C until further processing. The tissues were later weighed and 
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crushed with mortar and pestle making sure to keep the tissue frozen in liquid nitrogen. Tissues 

were further ground with a Dismembrator (Mikro-Dismembrators B. Braun Biotech 

International) to a powder. The powder was then immediately transferred in labelled vials 

containing an iced-chilled solution made of an anti-protease cocktail (Sigma Aldrich, Oakville, 

Ontario, Canada) in PBS pH 7.4 (0.5-1 ml per 0.3 g of tissue). The samples were then stored at 

minus 80°C (- 80°C) until further processing. At a later date, samples were allowed to gradually 

thaw by placing them on a beaker of cold ice. Tissue was then sonicated using a pulse sonicator 

(Branson Ultrasonic Corporation, USA) three times for three seconds making sure to keep the 

sample cold in a beaker of iced water.  Samples were centrifuged at 12000 g for five minutes at 

4°C.  A Bradford assay was conducted on the lysate to determine the protein concentration so 

that an equivalent quantity of protein could be loaded onto each gel. Next, a sample (loading) 

buffer solution (5x loading buffer: 0.5M Tris HCL pH 6.8, 10% SDS, 50% glycerol, 0.05% 

bromophenol blue and 20x reducing agent: 2M DTT) was prepared and the amount to be added 

to each sample was calculated based on the protein concentration. The loading mixture for each 

sample was then prepared by adding the sample and the corresponding volume of sample buffer. 

Samples were then denatured by heating at 95°C for 5 minutes and then centrifuged at 13,00 g 

for 30 seconds. The denatured protein samples were either promptly loaded on SDS-PAGE for 

electrophoretic separation and Western blotting or stored at -20°C to continue the next day.  

4.7.2 Tissue preparation for Histology, TUNEL and Immunocytochemistry  

4.7.2.1 Sample preparation: To obtain samples for histology and TUNEL staining and 

immunocytochemical studies, perfusion with saline was followed by 4% formaldehyde 

(prepared from paraformaldehyde) in phosphate buffered saline (PBS pH 7.4). The spinal 

cord was isolated at the injury site using spinal root landmarks and the samples were 
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post-fixed in 4% formaldehyde for 48 hrs at 4°C. Prior to embedding, all the spinal cord 

samples collected from each animal (∼9-10mm) were cut into three parts which included 

a piece containing the site of the lesion and the pieces rostral and caudal to the injury site. 

All samples were labelled and embedded such that sectioning would begin on the side 

closest to the lesion.  

4.7.2.2 Embedding and sectioning: Embedding of tissue samples was done either with 

paraffin or with the cryostat preserving gel O.C.T (optimal cutting temperature) (Tissue-

Tek® O.C.T™ Compound, Miles, Elkhart, IN). The two methods of embedding have 

their advantages and disadvantages. Cryopreservation is good for preserving antigen 

epitopes, therefore, ideal for studies requiring antigen antibody reaction. Processing for 

paraffin embedding may disguise the epitopes but will provide better structural 

histological details. Hence, paraffin embedding was used prevalently for samples 

destined for histology and morphology studies while O.C.T compound was used for the 

most part for tissue destined for immunocytochemical and TUNEL analysis. 

Spinal cord samples destined for cryostat sectioning were first cryoprotected by 

immersion in 30% sucrose at 4°C for 24 hrs. Each sample was then embedded with the 

embedding compound O.C.T. gel and rapidly frozen by placing in a container of dry ice 

(-70°C) to form frozen blocks for cryostat sectioning. Since spinal cords collected from 

each animal were cut into three pieces, we obtained three embedded blocks from each 

animal. Blocks were kept at -80°C until sectioned. Serial cross sections of 8 µm were cut 

at -20°C using a cryostat and mounted on Superfrost plus® (VWR international Ltd, 

Canada) slides. Mounted slides were numbered and stored at -20°C until 

immunolabelling. 
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The samples destined for paraffin embedding were first washed in PBS then 

immersed in 70% alcohol before being placed in a tissue processor (Tissue-Tek®VIP, 

Miles Scientific) to undergo serial dehydration prior to embedding into paraffin blocks. 

Similar to in cryopreservation, three embedded paraffin blocks were obtained for every 

animal. Serial sections of 5-10 µm (alternating four slides of 10 µm sections for every 

four slides of 5 µm sections) were taken transversally to the spinal cord axis and mounted 

on gelatine coated slides (VWR International Ltd, Canada). There were two sections per 

slide. Slides were stored in slide boxes at room temperature until stained with 

hematoxylin and eosin (H and E), luxol fast blue (LFB) or toluidine blue (TB). Some 

paraffin sections were also used for TUNEL labelling and Immunolabelling with DAB 

(section 4.11.2.1).  

 

4.8 Western Blotting Analysis 

4.8.1 Antibodies 

Primary antibodies used for western blotting included anti-activated caspase-3, anti 

PARP (poly (ADP-ribose) polymerase), anti-GFAP (Glial fibrillary acidic protein), anti-ED1, anti 

β-AP (beta Amyloid peptide), anti OX-42, ant-β-Actin, a variety of phosphorylated MAPK 

including anti-phospho SAPK/JNK, ERK 1/2, p38, and their corresponding total MAPK (anti-

MAPK SAPK/JNK, ERK 1/2 and p38). Anti-β-Actin was used as the internal standard for all 

antibodies except for the phosphorylated MAPK kinases were the total MAPK was probed as 

internal control. All antibodies were diluted in 50% blocking solution (2.5% skimmed milk 

powder). 
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Anti-Caspase-3 (Cell Signaling Technology, Inc; # 9664) a rabbit monoclonal antibody 

that recognizes only activated caspase-3 was used at a dilution of 1:1000 to assess the effect of 

quercetin administration on caspase-3 activation.  

Anti-PARP (Cell signalling Technology, Inc; # 9542) a rabbit polyclonal antibody that 

specifically detects endogenous levels of full length PARP1 (116 kDa), as well as the large 

fragment (89 kDa) and small fragment (24 kDa) of PARP1 resulting from caspase cleavage was 

used at a 1:600 dilution to assess the effect of quercetin on PARP cleavage in vivo. Proteolytic 

cleavage of PARP by caspases is a hallmark of apoptosis.  

Anti GFAP, (Abbiotec, San Diego California; # 250661) rabbit polyclonal antibody a 

cell-specific marker that distinguishes astrocytes from other glial cells was used at a dilution of 

1:1000 to study the effect of quercetin on astrocyte activation.  

Anti OX-42 (CD11) (mouse anti Cd11, Serotec, Inc.; # MCA275G) a mouse monoclonal 

antibody that recognizes activated microglia cells, was used at a dilution of 1:800 to determine 

the effect of quercetin on microglia activation.  

Anti-ED1 (mouse anti rat cd68, Serotec, Inc.; # MCA341R) a mouse monoclonal 

antibody that recognizes microglia activation was used at a dilution of 1:800.  

Anti-β-APP, (beta-amyloid precursor protein) (Santa Cruz Biotechnology, Inc; # sc-

9129) a mouse polyclonal antibody that recognizes beta amyloid aggregation and deposition in 

CNS was used at a dilution of 1:1000 to study the effect of quercetin on impairment of 

axoplasmic transport.  

Anti-Phospho MAPK p38, Phospho MAPK p42/42 and Phospho SAPK/JNK (Cell 

Signaling technology, Inc; sampler kit # 9910), all rabbit monoclonal antibodies that recognize 

only activated (phosphorylated) forms of MAPK p38, ERK 1/2 and SAPK/JNK, were used at a 
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dilution of 1:500, 1:1000 and 1:1000 respectively to assess the effect of quercetin on MAPK 

activation in vivo. 

Anti-MAPKs p38, ERK 1/2 (p42/42) and SAPK/JUNK rabbit monoclonal antibodies 

(Cell Signaling technology, Inc; sampler kit # 9926) that recognize endogenous levels of the total 

forms (i.e. phosphorylated and non phosphorylated) of MAPK p38, ERK 1/2 and SAPK/JNK 

were used at a 1:1000 dilution and probed as internal standard for the corresponding activated 

forms of MAPK kinases.  

Anti-β-Actin mouse monoclonal antibody (Sigma-Aldrich, Inc. Canada; # C5838) that 

recognizes the cytoskeletal protein β-actin in a wide variety of tissues was used at a dilution of 

1:5000 and probed as internal control for all antibodies except for MAPK kinases. 

4.8.2 Western blotting technique 

Spinal cord tissue was harvested and prepared for Western blotting as previously 

described (see section 4.7.1). Protein samples were separated by SDS-PAGE (Criterion XT gels 

and cell unit, Bio-Rad laboratories). Following electrophoresis, proteins were electroblotted onto 

nitrocellulose paper (Bio-Rad) using a wet transfer unit (Criterion Blotter, Bio-Rad laboratories) 

using the manufacturer’s instructions. Equivalent loading was verified by Ponceau S dye staining 

after transfer of the SDS-PAGE. To prevent non-specific association of antibodies the blots were 

blocked with 5% skim milk powder (Bio-Rad laboratories) overnight at 4°C followed by 

incubation with the primary antibody in PBS containing 2.5% skim milk powder overnight at 

4°C. Blots were then washed three times for 5 min with blocking solution (5% skimmed milk 

powder) followed by incubation with horseradish peroxidase (HRP) linked secondary antibody 

for 45 min at room temperature. Blots were again washed three times in 5% skimmed milk and 

then three times in PBS. A chemiluminescence kit was used to visualize the bound HRP-
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conjugated secondary antibody (PerkinElmer Life Sciences, Boston, MA). The membrane was 

exposed to Kodak X-Omat AR film and developed. 

4.8.3 Data collection and statistical analysis 

The films developed from Western blot analysis were scanned using a high performance 

scanner (Umax Astra 2400S) connected to a Macintosh computer equipped with software 

(Adobe Photoshop) that converts captured images into tiff format. Blots were quantified using 

the NIH Image-J software. Bands were quantified as the intensity of the investigated band 

divided by intensity of its corresponding standard keeping the same area per signal. β- actin was 

used as standard for all investigated antibodies except for the MAPK antibodies were the 

phosphorylated bands were standardized to that of the total MAPK.  

Quantitative data pertaining to protein analysis expression obtained for all treatment 

groups were analyzed with analysis of variance (ANOVA) with Bonferoni post hoc analysis to 

determine whether significant differences existed between quercetin and saline treatments. 

ANOVA also determined whether there were any significant differences between the quercetin 

treated in various treatment regimens.  Values were expressed as mean ±standard error (SE). A p 

value of <0.01 was considered statistically significant  

 

4.9 Histology 

Tissues were prepared and sectioned as previously described (see section 4.7.2). Every 

other third, fourth and fifth slide from paraffin embedded tissues was stained respectively with 

hematoxylin and eosin (H and E), luxol fast blue (LFB) and toluidine blue (TB).  
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4.9.1 Hematoxylin and Eosin (H and E) staining  

The H and E staining was adapted from Humason’s Animal tissue techniques, (1979) (see 

appendix 5). This procedure is straightforward and exploits the basic and acidic affinities of its 

component dyes to stain tissue structures. The hematoxylin dye which is a base interacts with 

acidic structures (such as nucleic acid) staining them in shades of blue while the acidic dye eosin, 

interacts with basic tissue to stain them in shades of pink. This stain gives a good picture of 

histological orientation of tissue structures and permits a good visualization of cavities formed in 

injured spinal cords.  However, it is limited by the fact that it gives only minimal information 

about the chemical makeup of a tissue or organ. We used H and E staining to observe and 

evaluate cavity formation, structure and tissue orientation in spinal cord injured rats following 

experimental treatment with quercetin or saline vehicle only.  

4.9.2 Toluidine blue (TB) staining 

The TB staining procedure was adapted from Raphael’s Lynch’s Medical laboratory 

technology (1983) (see appendix 6). Toluidine blue is basic blue dye. Similar to H and E this 

stain provides good details of orientation of tissue structures under light microscope. It also 

provides very little information about the chemical structure of the tissue.  TB is often used 

clinically as a specific stain for mast cell tumours because of its strong affinity the 

glycosaminoglycans in the mast cell granules.  In the presence of glycosaminoglycans the TB 

undergoes a metachromatic shift in colour. We used the TB stain as a complimentary staining to 

H and E to assess cavity formation, spinal cord tissue preservation and structural organization in 

quercetin treated and saline control spinal cord injured rats. 
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4.9.3 Luxol fast blue staining (LFB)/Cresyl violet (Nissl stain) 

This stain first described by Kluver and Barrera (1953), (taken from our department’s 

“Laboratory notes in Histology Techniques” –Anatomy 412B 1982; see appendix 7) is designed 

to show myelin (LFB) and Nissl substance (cresyl violet). LFB stains the myelin sheath blue 

while cresyl violet stains the Nissl substance pink to violet appearance. LFB stained sections 

were used to assess spinal cord tissue myelin organization and white matter sparing in quercetin 

treated and saline control spinal cord injured animals. In addition, sections from LFB stained 

slides containing the epicentre of the injury were used for white matter quantification. 

4.9.4 Image analysis 

Images of histology stained slides (H and E, LFB and TB) were captured using a light 

microscope (Carl Ziess Leica LEITZ DMRD) coupled with a Sony® DSV-V3 digital camera 

that converts images into tiff and jpeg formats. Images from digital camera were then transferred 

to a Macintosh computer as TIFF format.  

4.9.5 White matter quantification  

Slides to be used for white matter quantification for all animals were selected LFB slides 

(10 µm sections) taken from the middle piece of paraffin embedded spinal cord  (∼3 mm) which 

contained the injury area for each animal (n=6 per treatment regimen). In this way we could 

narrow down to slides containing the epicentre of the injury. Luxol fast blue images to be 

quantified were all captured at 5x magnification to include the entire spinal cord cross section. 

Semiquantitative assessment of LFB stained slides was done by visual assessment of slides to 

ensure that the sections contained the epicentre of the injury and six slides per animal were 

selected and analyzed for amount of LFB positive tissue. Quantification was done using the NIH 

Image-J software with a color deconvolution plug-in (Ruifrok and Johnston, 2001). The color 
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deconvolution plug-in was run using the Fast Blue, Fast Red and DAB program, subtracting the 

background to bring the image to threshold. The quantification tool was then used to calculate 

the number of stained pixels. The analysis was run in triplicate and the average of the three 

measurements was used as the value for the sample. The average number of pixels for the total 

cross sectional area of the thoracic sections from six healthy (uninjured) animals was measured. 

Calculations of white matter sparing for the injured animals were performed by dividing the 

number of LFB positive pixels over the number of pixels in the total cross sectional area of the 

healthy (uninjured) controls. Results were displayed as average percentage ± standard error. Data 

were analyzed statistically using ANOVA with Bonferoni post hoc. A P value of <0.05 was 

considered statistically significant  

4.10 TUNEL Method (terminal deoxynucleotidyl transferase mediated deoxyuridine 

triphosphate (dUTP) nick end-labeling) 

This method is used to detect and quantify apoptosis (programmed cell death) at a single 

cell level based on DNA strand breaks.  The fragmentation of genomic DNA is a typical 

biochemical hallmark of apoptosis which is an irreversible event that commits the cell to die.  In 

many systems, DNA fragmentation has been shown to result from the activation of endogenous 

Ca2+ and Mg2+ -dependent nuclei endonuclease.  This enzyme selectively cleaves DNA at sites 

located between nucleosomal unit (linker DNA) generating double stranded as well as single 

strand fragments (also called “nicks”) that can be identified by labelling free 3’-OH terminal 

with modified nucleotides in an enzymatic reaction.  In the TUNEL method, labeled terminal 

deoxyuridine triphosphate (TdT) is enzymatically added to free 3’-OH group ends of DNA 

exposed during the cleavage process.  
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4.10.1 TUNEL Labelling Technique  

Tissues were prepared and sectioned as previously described (see section 4.7.2). The 

experiments were run on tissue harvested at the 8 week study endpoint from two treatment 

regimens (3 day and 2 week treatment regimen). TUNEL labelling analyses were done on both 

cryostat sectioned and paraffin sectioned tissue. Experiments were run in triplicate (twice with 

cryostat sections and once with paraffin sections).  

Slides from paraffin sectioned tissue were incubated in DAB for light microscopy 

viewing whereas the cryostat sectioned tissues were fluorescent-labelled. Slides with paraffin 

embedded sections were dewaxed and rehydrated according to standard protocols. Frozen slides 

from the freezer were first kept to equilibrate to room temperature for 1 hr before beginning the 

analysis.  

Next, slides were immersed in freshly prepared 4% formaldehyde in phosphate buffered 

saline (PBS) for 30min at room temperature on a shaker followed by three cycles of 10 min wash 

with phosphate buffered saline plus 0.05% Tween 20 (PBST). Slides were then incubated for 20 

min in 10 ug/ml proteinase K in PBS (at room temperature) followed by three washes in PBST 

for 5 min. Slides were subsequently post-fixed for 30 min with 4% formaldehyde in PBS and 

again washed three time for 5 min in PBS. Next, slides were permeabilized in  a solution 

containing 0.1% Triton-X in 0.1% sodium citrate in 0.01M PBS at 4°C for 10 min followed by 

another three washes in PBS for 5 min.  

At this point, an additional step was required only for slides intended for DAB incubation 

(slides were immersed in a solution of 3% hydrogen peroxide (H202) in methanol for 30 min to 

block the endogenous peroxidase followed by three cycles of 5 min washes in PBST) otherwise 

the slides were ready for washing and incubation in TUNEL buffer.  All slides were thereafter 
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washed for 5 minutes in TUNEL buffer (100 mM Cacodylic acid, 2.5 mM cobalt chloride, 0.1 

mM dithiothreitol, 0.1 mg/ml of BSA, 0.01% Triton X-100) then incubated in a change of the 

same buffer for 1 hr with gentle shaking at 4°C. The TUNEL reaction mixture consisting of the 

TUNEL enzyme + TUNEL label (nucleotide labelling mixture for the TUNEL reaction) was 

prepared according to the manufacturer’s instructions (Roche Diagnotics®; # 1 684 795) and 

added to tissue on slides followed by incubation in a dark humidified chamber for 3 hrs at 37°C.  

Two positive controls and negative control slides were included in each experimemtal 

setup and were prepared as follows; positive controls: sections  were incubated with DNAse I, 

grade I (3000 U/ml in 50 mM Tris-HCl at pH 7.5 + 1 mg/ml BSA) for 10 min at 15-25°C to 

induce DNA strand breaks prior to labelling.  Negative controls: sections were incubated for 1hr 

at 37°C with TUNEL label solution only (without enzyme terminal transferase) instead of 

TUNEL reaction mixture.  All slides were then washed three times for 5 min in PBS then 

allowed to air dry. 

4.10.1.1 Labelling for fluorescence microscopy viewing: Slides destined for fluorescent 

viewing were then incubated in Hoechst stain (0.5µg/ml) (Sigma Aldrich Inc Canada; # 

H6024) for 10 min at room temperature. Hoechst stain intercalates with DNA allowing 

visualization of nuclei.  This was followed by two 5 min washes in PBS then air dried 

and cover-slipped with Citiflour mounting medium (Marivac Ltd, Halifax, NS, Canada) 

followed by viewing under the fluorescence microscope and photography. Slides were 

stored in dark to at 4°C prevent decay of fluorescent signal.       

4.10.1.2 Labelling for light microscopy viewing: To obtain a specific color reaction 

visible under the light microscope, fluorescent stained slides were immersed in TUNEL 

POD (anti-fluorescein-antibody) (Roche Diagnotics® # 1 684 817). TUNEL POD is a 
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secondary detection system that converts the fluorescent label into colorimetric signal 

and uses 3, 3’-Diaminobenzidine (DAB) as precipitating substrate. Slides were incubated 

in TUNEL POD (50 μl per slide) in a humidified chamber for 1 hr at 37°C followed by 

three washes for five minute in PBST. The DAB solution was prepared from the DAB kit 

(Vector Laboratories, CA, USA) according to the manufacturers instructions (by adding 

in an orderly manner 5 ml of distilled water, 2 drops of buffer stock pH 7.5, 4 drops of 

DAB substrate, and 2 drops of hydrogen peroxide). Next, slides were incubated in DAB 

solution (50-100 μl to each slide) for 5-10 min at RT (depending on desired intensity, 

usually at 6-8 min) and again washed three times for 5 min in PBS. Slides were then air 

dried, cover-slipped with Cytoseal mounting medium (Marivac Ltd, Halifax, NS, 

Canada) followed by visualization under light microscopy and photography. 

4.10.2 Image analysis and data collection: 

Images of DAB stained slides were captured using a light microscope and then 

transferred to a Macintosh computer as previously described (see section 4.9.4).  

Fluorescent stained slides were visualized and captured using a high performance 

fluorescence microscope (Olympus IX 70) equipped with interchangeable filters for red, blue 

and green images viewing and connected to a computer (Compaq Diskpro) that uses software 

(SPOT Basic and Image Pro-Plus) capable of converting captured images into a tiff or jpeg 

format. TUNEL Images destined for quantification were captured at 20x then 40x magnifications 

without moving the slide. The 40x images were used for quantification analyses.  Moreover, 

matching images for both TUNEL and Hoechst stain from the same section were captured by 

switching the fluorescent filter for each stain without moving the slide. The captured images 

were then saved in tiff format.  
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4.10.3 TUNEL quantification 

 TUNEL quantification was done by manual count of fluorescent images captured at the 

40x magnification. To facilitate this task of counting, Adobe Photoshop software was used to 

further magnify the captured images. Images for TUNEL positive cell counts were captured from 

fluorescent stained 8 µm tissue sections. A total of 9 slides per animal were selected such that 

they were spaced approximately 1mm apart (n=6 per treatment regimen). Slides were visually 

assessed to pick out stained sections with the strongest positive signals. Once a section was 

chosen, three areas were selected in a pre-specified manner (Fig. 4.3) for capturing the image 

used for cell counting; this included a posterior, lateral and anterior portion of the cross section.  

 

 

FIGURE 4.3: Schematic representation of areas analysed for TUNEL quantification in a positive control 
spinal cord section. Scale = 100 μm 
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The total TUNEL positive signals were expressed over the total Hoechst positive signals for each 

section counted and gave the value of the sample. The mean value of all nine samples gave the 

mean value for each animal. Values were expressed as mean ratio ± SE. Values were analyzed 

with ANOVA and Bonferoni post hoc.  

 

4.11 Immunocytochemistry 

4.11.1 Antibodies and nuclear labelling agent 

The same antibodies used for western blotting analysis (section 4.8.1) were analysed by 

immunocytochemical staining. These included antibodies against activated caspase-3 (rabbit 

polyclonal anti caspase-3, Cell Signaling Technology Inc, 1:200; # 9664); anti Cleaved PARP 

(rabbit monoclonal anti cleaved PARP, Cell Signaling Inc, 1:200; # 9548); anti-GFAP (rabbit 

polyclonal anti GFAP Abbiotec, San Diego California, 1:300; # 25661); anti ED1 (anti rat cd68, 

Serotec, Inc, 1:300; # MCA341R), anti β-APP (anti β-APP, Santa Cruz Biotechnology, Inc, 

1:200; # sc9129), anti OX-42 (mouse anti Cd11, Serotec, Canada, 1:200; # MCA275G) various 

anti phosphorylated MAPK (anti-phospho MAPK p38, phospho ERK 1/2  and phospho 

SAPK/JNK, Cell Signaling Technology Inc, 1:200; sampler kit # 9910) and anti total MAPK 

(anti-Total MAPK p38, ERK 1/2 and SAPK/JNK, Cell Signaling Technology Inc, 1:200; 

sampler kit # 9926). All were diluted in 50% blocking solution (2.5% skimmed milk powder). 

Hoechst stain (0.5 µg/ml) (Sigma Aldrich Inc Canada; # H6024) was added to all slides to permit 

fluorescent viewing of cell nuclei. 

4.11.2 Immunocytochemical technique 

Tissues were prepared and sectioned as previously described (see section 4.7.2). A total 

of 9 slides per animal spaced approximately 1 mm apart were used for each 
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immunocytochemical experiment. Some experiments were run using frozen sections and were 

immunostained for fluorescent viewing while the other experiments used paraffin sectioned 

slides that were immunolabelled and incubated with DAB for light microscopy viewing.  Slides 

with paraffin embedded sections were dewaxed and rehydrated according to standard protocols. 

Frozen slides from the freezer were first kept to equilibrate to room temperature for 1 hr before 

the experiment began. 

4.11.2.1 Immunolabelling with DAB for light microscopy viewing 

Primary antibodies used included, antibodies against phospholyted MAPKs 

(phospo MAPKp38, phospho ERK 1/2 and phospho SAPK/JNK), and activated caspase-

3. Slides were dewaxed and rehydrated according to standard protocols. Next, slides were 

washed with PBS for 5 min and then immersed in a freshly prepared solution of 4 % 

formaldehyde in 0.3M PBS overnight at 4 ºC on a shaker and then washed three times for 

10 min in PBS. Slides were then immersed in a solution of 3% hydrogen peroxide (H202) 

in methanol for 30 min to block the endogenous peroxidase. This was followed by three 

cycles of 5 min washes in PBS. Next, slides were incubated in blocking solution 

containing 1% bovine serum albumin (BSA), 10% horse serum (HS), 1% Triton X-100 in 

0.03 M PBS overnight at 4°C after which the solution was shaken off and sections were 

incubated with appropriate dilution in the primary antibody in 50% diluted blocking 

solution overnight at 4ºC. This was followed by another 3 cycles of 5 min washes in PBS 

and then incubated with appropriate dilution of biotinylated secondary antibody in PBS 

for one hour at room temperature.  Slides were again washed three times for 5 min with 

PBS. Next, slides were incubated with ABC reagent (Vector Labs) for 30 min at RT (2 

drops each of reagents A and B in 10 ml of PBS) followed by three washes for 5 min in 
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PBS. DAB solution was then prepared using the DAB kit (Vector Labs) according to the 

manufacturers instructions (by adding in an orderly manner 5 ml of distilled water, 2 

drops of stock buffer pH 7.5, 4 drops of DAB substrate, and 2 drops of hydrogen 

peroxide). After that, slides were incubated in DAB solution (50-100 μl to each slide) for 

5-10 min at RT (depending on desired intensity) and again washed three times for 5 min 

in PBS then rinsed off with running tap water for 10 min. Slides were then air dried and 

cleared for mounting with Cytoseal mounting medium (Marivac Ltd, Halifax, NS. 

Canada) and then left for 20 min to harden before being examined under the light 

microscope and photographed.  

4.11.2.2 Fluorescent-Immunolabelling for fluorescence microscopy viewing  

Primary antibodies used for this procedure included, antibodies against 

phosphorylated MAPKs (phospoMAPKp38, phospho ERK 1/2 and phospho 

SAPK/JNK), activated caspase-3, PARP (Cell signalling Technology, Inc), GFAP, ED1 

and βAPP.  

Frozen slides from the freezer were first kept to equilibrate at room temperature 

for 1 hr. Next, slides were washed with PBS for 5 min and then immersed in a freshly 

prepared solution of 4% formaldehyde in 0.3M PBS overnight at 4ºC on a shaker and 

then washed three times for 10 min in PBS. Slides were then incubated in blocking 

solution containing 1% bovine serum albumin (BSA), 10% horse serum (HS), 1% Triton 

X-100 in 0.03 M PBS overnight at 4°C after which the solution was shaken off and 

sections were incubated with appropriate dilution in the primary antibody in 50% diluted 

blocking solution overnight at 4 ºC. This was followed by another 3 cycles of 5 min 

washes in PBS and then incubated with appropriate dilution of biotinylated secondary 
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antibody in PBS for one hour at room temperature.  Slides were again washed three times 

for 5 min with PBS. To allow for fluorescent visualization of cell nuclei slides were 

incubated in Hoechst stain (1 µg/ml) for 10 min at room temperature.  This was followed 

by two 5 min washes in PBS then air dried and cleared for mounting with Citiflour 

(Marivac Ltd, Halifax, NS. Canada). Slides were then ready to be examined under  a 

fluorescence microscope and photographed. Slides were stored in the dark to prevent 

decay of florescent signal. 

4.11.3 Image analysis and data collection: 

Since the same antibodies used for immunocytochemistry were investigated and quantified 

following Western blotting analysis, data from immunohistochemistry was limited to visual 

assessment without further quantification. The image data collected were used to complement 

the Western blot data. Images of DAB stained slides were captured using a light microscope as 

previously described (see section 4.9.4). Likewise, fluorescent stained slides were visualized and 

captured using a high performance fluorescence microscope equipped with interchangeable 

filters as previously described (see section 4.10.2). Matching images for the Hoechst stained 

epitope-antibody reaction could be captured from the same section by switching the filter for 

each stain without moving the slide. Slides were visually scrutinized to look for positive signals 

and pictures were taken and visually assessed for differences in reaction intensity between 

treatment groups. 
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CHAPTER 5.0                                               RESULTS 

 

Improved locomotor functional recovery following delayed treatment with quercetin in 

spinal cord injured rats is associated with decreased cell damage and neural tissue sparing. 

 

5.1 Effect of quercetin on locomotor functional recovery following SCI 

5.1.1 Introduction  

Following surgery, all spinal cord injured animals acquired paraplegia and loss of bladder 

function while the sham operated animals showed no neurological deficits thus indicating that 

any observed deficits were attributable to the force of clip compression on the spinal cord. All 

sham animals scored the maximum BBB score of 21 and incline plane score of 50° within 24 hrs 

after surgery. Subsequent to the implementation of the treatment regimen two weeks after injury, 

we observed a significant improvement of locomotor function in the quercetin treated animals 

compared to the saline controls although severe deficits still remained in the quercetin treated. 

The three treatment regimens included a period of 3 days, 1 week and two weeks consisting of 

quercetin treated (n=6 per treatment regimen) and saline control (n=6 per treatment regimen). A 

sham group (n=6), which did not receive any treatment, was also added to each treatment 

regimen.  

 

5.1.2 BBB scores 

A plot of the average BBB scores following 3 days, 1 week and 2 weeks treatment 

regimens are shown below in figure (5.1 (a), (b), (c)). Since all sham animals attained the highest 

BBB scores achievable (21 points), their scores are only shown at the first observed time point 
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and omitted at later time points in each graph in order to display the results more clearly for the 

reader and highlight the differences between treatments (i.e. quercetin and saline). Likewise, 

sham animals were not included in the statistical analysis since the purpose was to show the 

differences between treatments.  Increases in BBB scores could be observed already at one week 

after treatment initiation and continued to improve before reaching a plateau around the third 

week after treatment (5 weeks post surgery). This trend was seen in all three treatment regimens 

(i.e. treatment duration time points of 3 day, 1 week and 2 weeks). Comparison of the 

postoperative performances of the quercetin treated and saline control animals by analysis of 

variance (2-way-ANOVA with Bonferoni’s post hoc) at each observed time point gave 

significant differences in all three treatment regimens by the first week after treatment (p< 0.01). 

This significant difference between treatments was maintained until the 8 weeks end point of the 

study.  

At the end of the eight weeks study period, the highest BBB scores attained (refer to table 4.2 

for description of neurological presentation associated with a given BBB score) within each 

treatment schedule were as follows (shown in table 5.1):  

1. Within the 3 days treatment regimen, one of the quercetin treated animal (n=6) scored a high 

of 11, one scored 10 and four scored 9 points, while in the saline control animals (n=6) one 

scored a high of 1 point, two scored a high of 3 points and three animals scored a high of 2 

points.  

2. Within the 1 week treatment schedule, four from the quercetin treated group (n=6) scored 

highest of 10 points and two scored 9 points while in the saline control group (n=6) two 

animals scored 3 points, three animals scored 2 points and 1 animal scored 1 point.  
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3. Lastly, within the two weeks treatment schedule, two animals in the quercetin group (n=6) 

reached 10 points, three reached 9 points and one animal reached 8 points while in the saline 

control group (n=6), three animals scored 5, 3 and 2 points, respectively, while the remaining 

three rats scored 1 BBB point each. 

 

 
3 days Treatment 

regimen 
3 days Treatment 

regimen 
3 days Treatment 

regimen 
 Saline Quercetin Saline Quercetin Saline Quercetin 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

1 1 2 9 1 1 2 9 1 1 1 9 
2 3 1 10 2 3 1 10 2 5 1 10 
2 3 2 9 2 3 2 9 2 3 1 8   BBB 

Scores 1 2 2 9 1 2 2 10 2 1 2 9 
3 2 1 9 3 2 2 10 1 1 2 9 

 2 2 2 10 2 2 2 10 2 2 3 10 
Mean 1.833 2.16 1.666 9.333 1.833 2.16 1.833 9.666 1.666 2.166 1.666 9.16 
std dev 0.752 0.75 0.516 0.516 0.752 0.75 0.408 0.516 0.516 1.602 0.816 0.75 
std error 0.307 0.31 0.210 0.210 0.307 0.31 0.166 0.210 0.210 0.654 0.333 0.31 

 
Table 5.1: BBB scores in saline control and quercetin treated animals in all treatment regimens before 
treatment (at 2 wks post surgery) and at the study end point (8 wks post surgery).  
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Fig. 5.1 (a)                                                                                   Fig. 5.1(b) 
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 Fig. 5.1 (c)  
FIGURE 5.1: Average weekly BBB open field locomotor scores following 3 days (a), 1 week (b) and 2 weeks (c) treatment regimen. Sham animals all 
show the highest score of 21. Significant increases were observed in quercetin treated (n=6) compared to saline control (n=6) as early as one week 
following treatment (3 weeks post surgery) and maintained throughout the study period. Values are expressed as mean ± standard error (SE). ** and 
***denotes statistical significance at p<0.001 and 0.0001. n=6 animals per group for each treatment regimen.   
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Consequently, all animals in the quercetin treatment regime (i.e. 3 days, 1 week and 2 weeks 

treatment schedule) attained a BBB score of at least 8 “sweeping without weight support or 

plantar paw placement without weight support” with the highest value attained being a BBB 

score of 11 “frequent to consistent weight supported plantar steps and no FL - HL coordination”. 

None of the saline control animals reached beyond a BBB score of 5 points. A plot of the 

average BBB scores at the end of the study is shown in figure 5.2.  
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FIGURE 5.2: Average BBB score in all experimental groups at the 8 weeks study end point following various 
treatment regimens. Sham animals all maintained the maximum score. Remarkable improvement is observed 
in quercetin treated compared to saline controls.  Values are expressed as mean ± standard error (SE).  
***denotes statistical significance at p<0.0001. n=6 animals per group for each treatment regimen  
 

Taken as a whole, slightly higher average BBB scores were observed in the quercetin 

treated animals that were on the 1 week treatment regimen compared to the 3 days and the 2 

weeks duration time points. However, comparison of the treatment regimens using two-way-
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ANOVA and Bonferoni’s post hoc showed no statistically significant difference between the 

different treatment duration time points (Fig. 5.3) indicating that the duration of treatment had no 

statistically significant effect on the treatment outcome.      
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FIGURE 5.3: BBB scores in quercetin treated (n=6) animals in the three treatment regimens throughout the 
eight weeks study period. Higher BBB scores are observed in the 1 week regimen compared to 3 days and 2 
weeks treatment regimens but ANOVA showed no statistically significant difference; indicating that the 
duration of the treatment had no statistically significant effect on the outcome of this study. Values are 
expressed as mean ± standard error (SE). n=6 animals per group for each treatment regimen. 
  
5.1.3 Incline plane scores 

Similar to BBB scores, increases in incline plane values in the quercetin treated animals 

were also observed by the first week post treatment (3 weeks post surgery) and reached a plateau 

by the third week following treatment (Fig 5.4 (a), (b), (c)). Comparison of the post-operative 

performances by two-way ANOVA of the plane scores showed a statistically significant 

difference between the quercetin treated and saline control animals. Also, as with the BBB 
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scores, the results show no statistically significant difference amongst the various quercetin 

treatment regimens (i.e. 3 days, 1 week and 2 weeks) again indicating that the duration of 

treatment had no statistically significant effect on the treatment outcome. 

The highest incline plane scores within each treatment regimen at the eight week study 

endpoint were as follows (shown in table 5.2):  

1. Within the 3 days regimen, in the quercetin treated (n=6) the highest scores were 

respectively 35° (4 animals), 40° (2 animals) while in the saline control group (n=6), the 

scores were 20° (3 animals), 25° (2 animals) and 0° (animal).  

2. Within the 1 week treatment regimen, the highest scores attained by the quercetin treated 

(n=6) were respectively 40° (3 animals), and 35° (3 animals), while in the saline control 

group (n=6) the scores were 20° (4 animals), 25° (1 animal) and 0° (1 animal).  

3. Lastly, within the 2 weeks treatment regimen, highest scores in the quercetin treated were 

35° (5 animals), and 40° (1 animal) while the saline control group (n=6) scored 0° (1 

animal), 20° (4 animals), 25° (1 animal) respectively.  

 

 
3 days Treatment 

regimen 
3 days Treatment 

regimen 
3 days Treatment 

regimen 
 Saline Quercetin Saline Quercetin Saline Quercetin 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

2 
wks 

8 
wks 

0 0 20 35 0 20 20 40 0 0 0 35 
15 25 15 40 20 20 20 40 20 25 0 35 
15 20 20 35 15 0 20 35 15 20 20 35 

Incline 
Plane  
Scores 0 20 20 35 15 20 25 35 20 20 15 35 

20 25 0 35 25 25 0 35 0 20 20 35 
 20 20 20 40 0 20 0 40 15 20 20 40 
Mean 11.66 18.33 15.83 36.66 12.5 17.5 14.16 37.5 11.66 17.5 12.5 35.83 
std dev 9.309 9.309 8.010 2.581 10.36 8.803 11.14 2.738 9.309 8.803 9.874 2.041 
std error 3.800 3.800 3.270 1.054 4.232 3.593 4.549 1.118 3.800 3.593 4.031 0.833 

 
Table 5.2: Incline plane scores in saline control and quercetin treated animals in all treatment regimens 
before treatment (at 2 wks post surgery) and at the study end point (8 wks post surgery).  



                                                                                                                        
 

                 Hortense E. Nsoh Tabien 93

 

A plot of the incline plane values at eight weeks post surgery in all three treatment regimens 

is shown in Fig. 5.5.  

Although increases in BBB were all together associated with increases in incline plane 

score no direct relation was found between BBB score point increases and the incline scale 

increases. It was observed for instance, that increase in BBB score by 1 to 3 points could bring 

about the same increase in incline plane values in some cases while they could vary in other 

cases.  This could partly be explained by the non-uniform interval between the BBB score such 

that certain portions of the scale can occur more rapidly than others and may be affecting 

different motor pathways leading to different performances in BBB and incline plane test. 
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Fig 5.4 (a)                                                                                               Fig 5.4 (b) 
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Fig 5.4 (c) 
FIGURE 5.4 (a), (b), (c): Incline plane scores over the eight weeks study period in the 3 days (a), 1 week (b) and 2 weeks (c) treatment regimens. Sham 
animals all scored maximum throughout the study. The quercetin treated animals in all treatment regimens showed statistically significant increases in 
average incline plane scores by the first week following treatment (3 weeks post surgery) and reached a plateau by the third week post treatment (5 
weeks post surgery). Values are expressed as mean ± standard error (SE). * and **denotes significant difference between quercetin treated and saline 
control p<0.01 and p<0.001. n=6 animals per group for each treatment regimen. 
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FIGURE 5.5: Incline plane score at the eight week study end point in the 3 days, 1 week and 2 weeks 
treatment regimens.  Sham animals all show the maximum score. Quercetin treated all show significant score 
increase in all treatment regimen compared to saline controls. Values are expressed as mean ± standard error 
(SE). **denotes statistically significant difference between quercetin treated and saline control at p< 0.001. 
n=6 animals per group for each treatment regimen. 
 
 

5.2 Effect of quercetin on cell damage and tissue sparing following SCI 
 

5.2.1 Indicators of damage 

Gross assessment of tissue damage assessed by means of histology studies (H and E, LFB 

and TB) showed better preservation of tissue structure with less axon loss and associated cavity 

formation in quercetin treated compared to the saline controls. Analysis of spinal cord tissue 

collected at eight weeks following injury from saline control animals demonstrated a 

considerable loss of spinal cord tissue at the epicenter of the injury (Fig. 5.6). In the quercetin 
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treated animals, we observed smaller cystic cavity with better tissue preservation and 

organization. Microcystic cavities were observed in all tissue and mainly in the posterior white 

matter. In animals treated with quercetin, spared axons were observed more often in both gray 

and white matter whereas this was seldom the case in the saline control animals. The saline 

control animals had practically very little gray matter left at 8 weeks post-injury, compared to the 

quercetin treated.  

5.2.2 Indicators of tissue sparing  

LFB stained sections (Fig. 5.6 ) revealed normal, well organized myelinated appearance 

of white matter in all sham animals compared to the injured animals (saline controls and 

quercetin treated) that showed distortion of tissue architecture compared to the sham. However, 

compared to the saline control animals, the quercetin treated animals showed a better myelinated 

tract appearance indicative of better preservation of white matter content in the quercetin 

compared to the saline controls. Quantification of white matter in the injured (explained in 

method section 4.9.5) showed more white matter content in quercetin compared to saline 

suggesting more tissue sparing in the quercetin (n=6 per treatment regimen) compared to the 

saline controls (n=6 per treatment regimen).  It should be noted that for each animal six sections 

(containing the epicentre of the injury) were analyzed for amount of LFB stained tissue. Since 

quantification of pixels captured from injured animals for each group were standardized to the 

uninjured (sham) animals, the sham animals all had the 100% score therefore their scores are 

shown only once in the graph in order to display the results more clearly for the reader and 

highlight the differences between treatments (i.e. quercetin and saline). A plot of the graph 

showing white matter quantification in various treatment regimens is shown in Fig. 5.7.  
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FIGURE 5.6 (a), (b), (c): Representative photomicrograph of spinal cord tissue from sham-operated A, saline control B, and quercetin treated C, from 
tissue harvested at eight weeks post surgery and stained with H and E, LFB and TB. Sham animals show gray and white matter with a normal 
appearance (original magnification ×10). Scale bar = 100 μm.   
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             Comparison of the results of LFB stained white matter quantification showed a 

statistically significant greater loss of white matter content in saline control compared to 

quercetin treated animals (21.81±0.93 vs. 38.19±1.5 white matter content in 3 days treatment 

regimen; 21.82±1.04 vs. 37.64±1.49 in 1 week treatment regimen; 21.82±1.83 vs. 37.91±0.72 in 

2 weeks treatment regimen). Statistical analysis showed no statistically significant difference in 

outcome when the only quercetin treatment regimens were compared indicating that the duration 

of treatment had no statistically significant effect on the treatment outcome. 
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FIGURE 5.7: Graph shows white matter content from spinal cord harvested at the eight week study endpoint 
in all three treatment regimens (3 days, 1 week and 2 weeks). LFB stained sections containing the epicenter of 
the injury were quantified from six slides per animal. Healthy (uninjured) animals showed the maximum 
content.  In injured animals (saline controls and quercetin treated), significantly more white matter content is 
observed in the quercetin treated than the saline controls indicative of more tissue sparing in quercetin 
treated regimens compared to saline controls. Values are expressed as mean ± standard error. ***denotes 
statistical significance at p<0.0001. n=6 animals per group for each treatment regimen.  
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CHAPTER 6.0            RESULTS 

 

The protective effect of delayed quercetin treatment in spinal cord injured rats is 

associated with decreased cell apoptosis. 

 

6.1 Introduction 

In the previous chapter we observed that even when administered at 2 weeks post 

surgery, quercetin promotes some functional recovery and this is associated with decreased gross 

cell structural damage and white matter sparing. The aim of this chapter is to assess tissue 

damage by measuring the extent of apoptosis using the TUNEL method complemented by 

immunocytochemistry and Western blots to detect caspase-3 activity and PARP cleavage.  

 

6.2 Indicators of apoptosis 

6.2.1 TUNEL staining: 

Cytochemistry for DNA fragmentation with TUNEL method was done on the 3 days and 

2 weeks treatment regimens. Both quercetin treated (n=6 per treatment regimen) and saline 

control (n=6 per treatment regimen) animals showed higher levels of apoptosis compared to the 

sham animals (n=6 per treatment regimen). However, more TUNEL positive signals were 

observed in tissue cross sections from saline control animals compared to quercetin treated (Fig. 

6.1) indicative of more apoptotic cells in saline control animals compared to quercetin treated. In 

all cross sections examined, the bulk of TUNEL positive cell were observed in white matter 

compared to gray matter and the lateral and dorsal white matter (lateral and dorsal funuculi) were 
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more affected.  In addition, a large number of positive cells were also observed in the tissue 

surrounding the cavity area. The average nuclei count for the total area selected for 

quantification (as evidenced with Hoechst stain) was approximately between 800-900 nuclei in 

the injured animals (i.e. injured saline control and quercetin treated) and ≥ 980 nuclei in the sham 

animals. Average TUNEL positive signals in saline control animals, ranged from between 70-90 

positive cells per total area counted while in the quercetin treated the positive signals reduced to 

approximately between 40-60 positive signals positive cells per total area counted. Very few 

positive cells were observed in sham operated animals with an average of less than 3 positive 

cells per total area selected. Moreover, on visual observation the intensity of the positive signals 

in sham animals was less intense compared to those of the injured animals; suggesting that DNA 

fragmentation in sham animals was more tightly regulated and therefore more subtle than in the 

injured animals. 

Comparison of the TUNEL positive signals from various treatment groups with ANOVA 

showed a highly significantly lower TUNEL signal expression in sham compared to the injured 

animals (i.e. both quercetin treated and saline control) in the two treatment regimens analyzed 

p<0.0001 (only the 3 days and 2 weeks treatment regimen were analyzed for TUNEL counts). 

However amongst the injured animals, there was a significantly greater number of TUNEL 

positive cells in the saline control animals (n=6 per treatment regimen) compared to the quercetin 

treated animals (n=6 per treatment regimen) in all treatment regimens p<0.01. ANOVA analyses 

showed no statistically significant differences between the quercetin treated animals in various 

regimens, indicating that the duration of treatment had no statistically significant effect on the 

treatment outcome. A graph of TUNEL positive signal counts in the 3 days and two weeks 

treatment regimens is shown in Fig. 6.2.  
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 Fig. 6.1 (c) 
FIG 6.1 (a), (b), (c): Representative photomicrographs of TUNEL staining in saline control A, quercetin treated B, and sham operated, from tissue 
harvested at the eight week study endpoint. Fluorescent stained sections (a) show a greater number of TUNEL positive cells in the saline controls A, 
compared to quercetin treated B.  Staining with Hoechst (b) allows visualization of nuclei in all cells; arrows (red) show TUNEL positive cells (green) 
with corresponding nuclei (stained blue). Sham animals showed minimal or no TUNEL positive signals. DAB stained sections (c) also show a greater 
number of TUNEL positive cells in the saline control A, compared to the quercetin-treated B and minimal signal in the sham. Scale bar = 50 μm     
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FIGURE 6.2: The graph shows TUNEL positive counts in the 3 days and two weeks treatment regimens, 
using sections from spinal cord tissues harvested at the eight week study endpoint. Positive cells within three 
pre-specified areas from tissue sections were counted from nine slides per animal (spaced ~1mm apart). Sham 
animals showed a minimal number of TUNEL positive cells. There were more TUNEL positive cells in both 
quercetin treated and saline controls animals compared to the sham animals but the number of TUNEL 
positive cells in the saline controls (n=6) was significantly higher than in the quercetin treated animals (n=6) 
indicative of more apoptotic cells in saline control animals compared to quercetin treated. Values are 
expressed as mean ratio ± standard error. ** denotes statistically significant difference between quercetin 
treated and saline control at p< 0.001. n=6 animals per group for each treatment regimen. 
 
6.2.2 Immunocytochemistry and Western blotting 

6.2.2.1 Activated caspase 3  

Apoptosis is also characterized by activation of caspase-3.  Visual examination of 

immunostained spinal cord sections and Western blot analyses of whole spinal cord tissues 

harvested at the eight weeks end point, showed increased caspase-3 activity in both quercetin 

treated (n=6 per treatment regimen) and saline control (n=6 per treatment regimen) animals 

compared to sham animals (n=6 per treatment regimen); indicating an increased activation of the 
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apoptotic process in all injured animals (i.e. quercetin treated and saline controls). However, 

observation of immuno stained slides (Fig. 6.3) and Western blot analysis of spinal cord (Fig. 

6.4) for activated caspase-3 revealed a more intense expression of this enzyme in the saline 

control compared to quercetin treated animals in all treatment regimens; indicating a more 

profound apoptosis in the saline control compared to the quercetin treated animals.  

A plot of the intensity of bands developed from Western blot analyses of the 3 days and 2 

weeks treatment regimen is shown in Fig. 6.4 (b). Analyses of the data using ANOVA 

demonstrated a significant increase in activated caspase 3 protein expression in both quercetin 

treated (n=6 per treatment regimen) and saline control (n=6 per treatment regimen) animals 

compared to the sham animals (n=6 per treatment regimen). However, there was a significantly 

higher caspase-3 activation in the saline control compared to the quercetin treated animals 

(p<0.01). These analyses showed no statistically significant difference between the quercetin 

treated groups in various regimens; indicating that the duration of treatment had no statistically 

significant effect on the treatment outcome. 
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                                                                                                                                                                                                Fig. 6.3 (b) 
FIGURE 6.3: Representative photomicrograph of spinal cord sections harvested at eight weeks post surgery and immuno-stained for activated  
caspase-3.  Fluorescent (a) and DAB (b) immuno-stained sections show more activated caspase-3 signal in saline control A, compared to quercetin 
treated B, (scale bar =50 μm). Sham animals show minimal fluorescent signal. The lower images in Fig. 6.3 (b), represent areas of intense signal (scale 
bar =20 μm) selected from the respective images above (A and B) (scale bar = 50 μm).   
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                                                                                    Fig 6.4 (a) 
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                                                                                                                                             Fig 6.4b 
FIGURE 6.4 (a) (b): Representative Western blot (a) and plot of band intensity (b) of activated caspase-3 
expression in spinal cord tissue at eight weeks post surgery from sham saline control and quercetin treated 
animals. In all three treatment regimens, injured animals (quercetin treated and saline controls) show 
increased expression of caspase-3 activation compared to the sham animals (n=6); however, significantly 
greater expression of activated Caspase-3 is observed in saline controls (n=6) compared to quercetin treated 
(n=6). * and ** denotes a statistically significant difference between quercetin treated and saline control at p< 
0.01 and p<0.001. n=6 animals per group for each treatment regimen. 
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6.2.2.2 PARP cleavage 

Proteolytic cleavage of PARP by activated caspase 3 is another hallmark of apoptosis. 

During apoptosis, endogenous full length PARP (116 kDa) is targeted by activated caspase 3 and 

cleaved to the large (89 kDa) and small (24 kDa) active fragments that further target other 

cellular element and eventually lead to the destruction of the cell.  

 The 3 days and 2 weeks treatment groups were analyzed for PARP cleavage. Similar to 

caspase-3 expression, both immunocytochemical analysis and western blot analysis showed 

increased PARP cleavage in both quercetin treated (n=6 per treatment regimen) and saline 

control (n=6 per treatment regimen) animals compared to the sham (n=6 per treatment regimen) 

animals in all treatment regimen analyzed.  Amongst the injured animals (quercetin treated and 

saline controls), the saline controls had significantly higher increases in PARP cleavage 

compared to the quercetin treated animals. Visual examination of spinal cord sections immuno-

stained for cleaved PARP revealed a stronger signal in the saline control animals compared to 

the quercetin treated (Fig. 6.5). Western blotting analysis with anti-PARP polyclonal antibody 

confirmed increased expression of cleaved-PARP fragments (89 and 24 kDa) in saline control 

animals compared to quercetin treated (Fig. 6.6a). A higher expression of the full length (116 

kDa) PARP (uncleaved) was seen in the quercetin treated compared to the saline controls. 

Quantification of the Western blot band intensity of the larger (89 kDa) PARP fragment and 

analyses of the data with ANOVA showed a significantly higher  expression of the protein in the 

saline control compared to the quercetin treated animals (p<0.01) (Fig 6.6b). Results showed no 

statistically significant difference between the quercetin treated groups in various regimens; 

indicating that the duration of treatment had no statistically significant effect on the treatment 

outcome.    
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FIGURE 6.5: Representative photomicrograph of fluorescent immunocytochemical staining for cleaved PARP another hallmark of apoptosis in the 
saline control A, quercetin treated B and sham. Sections were obtained from spinal cord tissues harvested at the eight week study endpoint. Increased 
PARP expression is observed in all the injured animals (saline control and quercetin treated) but there are more positive cells with more pronounced 
expression of cleaved PARP fragment (p89) in saline controls A, compared to the quercetin treated B. Sections from sham animals show minimal 
fluorescent signal. Scale bar = 50 μm 
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                                                                                                                                        Fig. 6.6 (b) 
FIGURE 6.6 (a) and (b): Representative Western blot (a) for PARP expression in sham, saline and quercetin 
treated animals harvested at eight weeks post surgery. In all three treatment regimens, injured animals 
(quercetin treated and saline controls) show increased expression of cleaved PARP (89 and 24kD) compared 
to the sham animals (n=6); however, more PARP cleavage is seen in the saline control (n=6) with more 
intense expression of cleaved fragment (89 and 24 kDa) compared to the quercetin treated (n=6). Graph (b) 
shows a plot of the intensity of the Western blot bands for cleaved PARP (large 89 kDa fragment) in the 
sham, saline control and quercetin treated spinal cord of animals from the 3 days and 2 weeks treatment 
regimen.  Values are expressed as mean density ratio ± standard error. * and ** denotes statistically 
significant difference between quercetin treated and saline control at p< 0.01 and 0.001. n=6 animals per 
group for each treatment regimen. 
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CHAPTER 7.0         RESULTS 

Delayed quercetin treatment in traumatic spinal cord injury improves axon function, 

inhibits excess inflammatory response and inhibits phosphorylation of various MAPKs.  

 

7.1 Indicator of improvement of axoplasmic function 

7.1.1 β-amyloid precursor protein (β-APP) accumulation:  

One protein that is transported via axoplasmic transport is the β amyloid precursor 

protein (β-APP); hence, axoplasmic transport impairment can be noted by accumulations of β-

APP. Visual analysis of the spinal cord sections that were immunocytochemically stained for β-

APP and Western blotting analyses of whole spinal cord from tissues harvested at the eight week 

study end point, showed increased accumulation of β-APP in all injured animals (i.e. saline 

controls and quercetin treated) compared to the sham animals. However, the saline control 

animals (n=6 per treatment regimen) showed more accumulation of the protein  compared to the 

quercetin treated animals (n=6 per treatment regimen)  (Fig. 7.1 and 7.2), indicating an 

improvement of axoplasmic transport in the quercetin treated compared to the saline control 

animals. These analyses were done on spinal cord tissues harvested from the 3 days and 2 weeks 

treatment regimens. Results the quantification of Western blot bands and statistical analysis of 

these data show a significant increase in β-APP accumulation in the saline control animals (n=6 

per treatment regimen) compared to the quercetin treated animals (n=6 per treatment regimen) 

p<0.01. A plot of the intensity of the bands from scanned Western blot is shown in Fig. 7.2 b. 
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FIGURE 7.1: Representative photomicrograph of β-APP fluorescent immuno-stained sections in saline control A, quercetin treated B, and sham 
operated using sections from spinal cords harvested at eight weeks post surgery. There is lesser β-APP signal in the quercetin treated compared to the 
saline controls indicative of better axon function in the quercetin treated. Sections from sham animals show minimal signal. Scale bar = 50 μm 
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                                                                                                                                   Fig.7.2 (a) 
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                                                                                                                                          Fig.7.2 (b) 
FIGURE 7.2 (a) (b): Representative Western blot (a) of β-APP accumulation at eight weeks post surgery in 
sham, saline and quercetin treated animals. A plot of the intensity of the bands  from Western blots (b) shows 
increased expression of β-APP in both saline controls and quercetin treated compared to the sham animals; 
however, this increase β-APP expression is of a significantly greater intensity in the saline controls (n=6) 
compared to the quercetin treated (n=6). Values are expressed as mean density ratio ± standard error. *** 
denotes a statistically significant difference between quercetin treated and saline control at p<0.0001. n=6 
animals per group for each treatment regimen. 
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No statistically significant difference was found when the quercetin treated animals in 

various regimens were compared; indicating that the duration of the treatment had no statistically 

significant effect on the treatment outcome.  

 
 

7.2 Indicators of Reactive gliosis and inflammation 

7.2.1 Glial Fibrillary Acidic Protein (GFAP) 

Increased GFAP is a marker for astrogliosis.  On examination of spinal cord sections 

(harvested at eight week study end point) that were immuno-stained for the GFAP epitopes, we 

observed that the sham animals visually exhibited basal levels of GFAP expression manifested 

by delicate-looking astrocytes with relatively small cell bodies and thin projections. Increased 

expression of GFAP and increased cell body size causing hypertrophy was observed in both 

injured saline control (n= 6 per treatment regimen) and quercetin treated (n= 6 per treatment 

regimen) compared to the sham controls. However, quercetin administration resulted in GFAP 

positive cells with smaller cell bodies and thinner projections compared to the control animals 

that received only saline vehicle (Fig. 7.3). In addition, Western blot analyses of the tissue 

homogenates confirmed the increased GFAP expression in all injured animals (saline controls 

and quercetin treated) with a significantly greater increase in the saline control (n= 6 per 

treatment regimen) animals compared to the quercetin treated (n= 6 per treatment regimen) (Fig. 

7.4a).  

Tissues were analyzed from two treatment regimens (i.e. 3 days and 2 weeks quercetin 

treatment). 
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FIGURE 7.3: Representative photomicrograph of GFAP immunoreactivity in saline A, quercetin treated B and sham operated, using sections from 
spinal cords harvested at eight weeks post surgery. Reactive gliosis is manifested by an increased number of glial fibrillary acidic protein (GFAP) 
positive cells and content, accompanied by cell body hypertrophy (arrow). Saline control sections show more positive cells and more intense GFAP 
signal compared to quercetin treated indicative more astrogliosis in saline as compared to quercetin treated. The sham animals show basal levels of 
GFAP expression demonstrated by astrocytes with relatively small cell bodies and thin projections. Scale bar = 50 μm   
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                                                                                                                                              Fig 7.4b 
FIGURE 7.4 (a) (b): Representative Western blot (a) of spinal cord at eight weeks post surgery from sham 
saline and quercetin treated animals.  Increased expression of GFAP is observed in both saline controls (n=6) 
and quercetin treated (n=6) compared to the sham animals (n=6) but there is significantly higher GFAP 
expression in saline controls compared to quercetin treated.  A plot (b) of the intensity of the bands from 
Western blots in two treatment regimens (i.e. 3 days and 2 weeks) showed a statistically significant increase in 
the saline control compared to the quercetin treated. Values are expressed as mean density ratio ± standard 
error. ** denotes statistically significant difference between quercetin treated and saline control at p< 0.001. 
n=6 animals per group for each treatment regimen. 
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Analysis of variance of the Western blot data demonstrated a significantly greater  

increase in GFAP expression in saline control (n=6 per treatment regimen) compared to 

quercetin treated animals (n=6 per treatment regimen) (p< 0.01). No statistically significant 

difference was found between the quercetin treated groups in various treatment regimens; 

indicating that the duration of treatment in each regimen had no statistically significant effect on 

the final outcome. A plot of the intensity of bands from scanned Western blots is shown in figure 

7.4b. 

7.2.2 ED1 expression 

ED1 is a marker for activated microglia and macrophages. Spinal cord sections immuno-

stained for ED1 (microglia) visually showed increase immunoreactivity in all injured animals 

(i.e. quercetin treated and saline controls) compared to the sham animal but the saline control 

animals showed more intense signals compared to the quercetin treated (Fig. 7.5). These 

observations were also confirmed by Western blotting analyses (Fig 7.6a). Tissues were analyzed 

from two treatment regimens (i.e. 3 days and 2 weeks quercetin treatment).  

Quantification of the intensity of bands from scanned Western blots and comparison of 

the results with ANOVA showed a significant increase of ED1 expression in the saline control 

animals (n=6 per treatment regimen) compared to quercetin treated animals (n=6 per treatment 

regimen) within each treatment regimen. However, results show no statistically significant 

difference between quercetin treated groups in various treatment regimens; indicating that the 

duration of the treatment had no effect on the final outcome.  
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FIGURE 7.5: Representative photomicrograph of ED1 immunoreactivity in saline control A, quercetin treated B, and sham operated, using sections 
from spinal cords harvested at eight weeks post surgery. Increased ED1 expression is observed in both saline controls and quercetin treated compared 
to the sham animals; however, the saline control sections show more intense ED1 signal compared to quercetin treated indicative of more activated 
microglia in the saline compared to the quercetin treated. Sham sections show minimal ED1 immunoreactivity. Micrometer bar = 50 μm.  
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                                                                                                                                              Fig 7.6b 
FIGURE 7.6 (a) (b): Representative ED1 Western blotting (a) sham, saline and quercetin treated, from spinal 
cords harvested at eight weeks post surgery.  Increased expression of ED1 is observed in all injured (saline 
controls and quercetin treated) compared to the sham animals, but is significantly greater in the saline as 
compared to quercetin treated. A plot (b) of the intensity of the bands from Western blots in two treatment 
regimens (i.e. 3 days and 2 weeks) show a statistically significant difference between saline and quercetin 
treated. Values are expressed as mean density ratio ± standard error. ** denotes statistically significant 
difference between quercetin treated and saline control at p< 0.001.  n=6 animals per group for each 
treatment regimen. 
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7.2.3 OX-42 expression 

OX-42 is a marker for microglia and macrophages.  Both saline-treated (n=6 per 

treatment regimen) and quercetin treated (n=6 per treatment regimen) animals had greater 

number of cells expressing OX-42 than the sham controls (n=6 per treatment regimen); however, 

there were fewer OX-42 positive cells in the quercetin treated animals compared to the saline 

control animals (Fig. 7.7). Western blotting analysis also showed similar findings (Fig. 7.8a). 

Tissues were analyzed from two treatment regimens (i.e. 3 days and 2 weeks quercetin 

treatment). 

Analysis of the intensity of the bands from scanned Western blots showed a statistically 

significant increase of OX-42 expression in the saline control (n=6 per treatment regimen) 

compared to the quercetin treated animals (n=6 per treatment regimen) (Fig 7.8b). No significant 

difference was found between quercetin treated animals in various treatment regimens; 

indicating that the duration of treatment had no statistically significant effect on the treatment 

outcome.   

 
  

7.3 MAPK activation (i.e. phosphorylation) 

 Phosphorylation of MAPKs usually indicates activation.  The following MAPKs were 

examined: p38, JNK and ERK. The immunocytochemistry and western blot analyses showed a 

considerable increase in the activated (phosphorylated) state of these MAP kinases in the injured 

animal (i.e. all saline controls and quercetin treated animals) compared to the sham animals; 

however, the quercetin treated animals showed a significantly reduced activation of MAPKs 

compared to the saline control animals; indicating that quercetin treatment attenuated the 

activation of these kinases. 
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FIGURE 7.7: Representative photomicrograph of OX-42 immuno-staining in saline control A, quercetin treated B, and sham operated, using sections 
from spinal cords harvested at eight weeks post surgery. Saline control sections show more intense OX-42 signal compared to quercetin treated 
indicative of more activated macrophage/microglia in saline compared to quercetin treated. Sham animals show minimal signal. Scale bar = 50 μm 
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                                                                                                                                        Fig 7.8a 
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                                                                                                                                              Fig 7.8b 
FIGURE 7.8: Representative OX-42 Western blotting (a) from spinal cord tissue harvested at eight weeks 
post surgery from sham, saline control, and quercetin treated animals.  Increased expression of OX-42 is 
observed in all injured animals (saline controls and quercetin treated) but show a significantly greater 
increase in the saline controls compared to quercetin treated. Analysis of the intensity of the bands from 
Western blots  (b) in two treatment regimens (i.e. 3 days and 2 weeks) showed statistically significant higher 
increase in OX-42 expression in saline compared to quercetin treated. Values are expressed as mean density 
ratio ± standard error. ** denotes statistically significant difference between quercetin treated and saline 
control at p<0.001. n=6 animals per group for each treatment regimen. 
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7.3.1 Phospho-MAPK p38: 

Immunocytochemical staining for phospho-MAPK p38 from tissues harvested at 8 weeks post 

surgery from all treatment regimens (i.e. 3 days, 1 week and 2 weeks treatment) visually revealed 

increased activation of MAP kinase p38 in injured animals (saline controls and quercetin treated) 

compared to the sham animals (n=6 per treatment regimen) but there was more pronounced 

activation (phosphorylation) in the saline controls (n=6 per treatment regimen) compared to the 

quercetin treated (n=6 per treatment regimen) (Fig. 7.9). Phospho-MAPK p38 was present in 

stellate cells that morphologically appear to resemble astrocytes.  An increased ratio of phospho-

MAPK p38 to total MAPK p38 was seen in the Western blot analyses from both saline controls 

(n=6 per treatment regimen) and quercetin treated (n=6 per treatment regimen) animals (Fig. 

7.10); indicating an increased activation state of this kinase in the injured animals compared to 

the sham animals. The expression of activated MAPK p38 was however more intense in the 

saline control animals compared to the quercetin treated animals. Comparison of the values 

obtained from quantification of the bands from Western blots showed a statistically significant 

higher increase in phospho-MAP kinases activity in the saline control compared to the quercetin 

treated animals in all treatment regimens; indicating that quercetin treatment attenuated the 

activation of these kinases. No statistically significant difference was found between the 

quercetin treated animals in various treatment regimens; indicating that the duration of treatment 

had no statistically significant effect on the treatment outcome. 
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FIGURE 7.9: Representative photomicrograph of phospho-MAPK p38 immuno-staining in saline control A, quercetin treated B, and sham operated, 
using spinal cord sections for from tissue harvested at eight weeks post surgery. Saline control sections display more cells with astrocytes-like 
morphology showing more intense phospho-MAKP p38 signal compared to quercetin treated; indicative of more activated MAPK p38 in the saline 
controls compared to quercetin treated. Scale bar = 50 μm. 
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                                                                                                                                          Fig 7.10b 
FIGURE 7.10 (a) (b): Representative phospho-MAPK p38 Western blotting (a) in sham, saline control and 
quercetin treated from spinal cords harvested at eight weeks post surgery.  Increased level of phospho-MAPK 
p38 is observed in both saline control (n=6) and quercetin treated (n=6) compared to the sham animals (n=6); 
nevertheless, MAPK p38 phosphorylation is significantly higher in the saline controls compared to the 
quercetin treated animals in all treatment regimens (i.e. 3days, 1 week and 2 weeks). A graph of the analysis 
of the intensity of bands (b) from Western blots in all treatment regimens shows significantly higher phospho-
p38 levels in saline controls compared to the quercetin treated. Values are expressed as mean density ratio ± 
standard error. ** denotes statistically significant difference between quercetin treated and saline control at 
p< 0.001.  n=6 animals per group for each treatment regimen. 
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7.3.3 Phospho-SAPK/JNK: 

Similar to the MAPK p38, immunocytochemistry for phospho-SAPK/JNK visually revealed 

increased activated (phosphorylated) SAPK/JNK in the spinal cord injured animal (i.e. saline 

controls and quercetin treated) compared to the sham animals (n=6 per treatment regimen). 

However, sections from the saline control animals (n=6 per treatment regimen) displayed more 

cells with activated SAPK/JNK as well as more intense signal compared to the quercetin treated 

(n=6 per treatment regimen). Similar to the phospho-MAPK p38, a lot of these positive cells for 

activated MAPK SAPK/JNK presented stellate morphology (Fig. 7.13.). Western blotting 

analysis showed an increased ratio of phospho-SAPK/JNK to total SAPK/JNK (Fig 7.14) in 

spinal injured animals (i.e. saline controls and quercetin treated) compared to the sham animals 

(n=6 per treatment regimen);  again indicating an increased activation state of SAPK/JNK in the 

injured animals compared to the sham animals. Also, expression of activated MAPK p38 was 

significantly more intense in the saline control animals (n=6 per treatment regimen) compared to 

the quercetin treated animals (n=6 per treatment regimen). A plot of the values obtained from 

bands from various scanned Western blots is shown in Fig. 7.11. Comparison of the values of 

Western blot quantification with ANOVA showed a statistically significant lower ratio of 

phospho-SAPK/JNK/total SAPK/JNK in the quercetin treated animals (n=6 per treatment 

regimen) compared to saline control animals (n=6 per treatment regimen); indicating that 

quercetin treatment attenuated the activation of the kinase. However, there was no statistically 

significant difference between the quercetin treated in various treatment schedules; indicating 

that the duration of treatment had no statistically significant effect on the treatment outcome. 

Tissues were analyzed from all three treatment regimens (i.e. 3 days, 1 week and 2 weeks 

quercetin treatment).   
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FIGURE 7.11: Representative photomicrograph phospho-SAPK/JNK immunoreactivity in saline control A, quercetin treated B, and sham operated, 
using sections from spinal cord tissue harvested at eight weeks post surgery. More positive cells (a lot of which display stellate morphology) with more 
intense signals are present in the saline control compared to the quercetin treated sections. Sections from sham animals show minimal 
immunoreactivity. Scale bar = 50 μm 
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                                                                                                                                           Fig. 7.12b 
FIGURE 7.12: (a) Representative phospho-SAPK/JNK Western blotting in sham, saline control and 
quercetin treated animals from spinal cords at harvested at eight weeks post surgery.  There is an increased 
expression of phospho-SAPK/JNK in all injured animals (i.e. saline control and quercetin treated) compared 
to the sham animals; however, phospho-SAPK/JNK expression is significantly higher in the saline control 
(n=6) compared to the quercetin treated animals (n=6) in all treatment regimens (i.e. 3 days, 1 week and 2 
weeks). A graph of the analysis of the intensity of bands (b) from Western blots in all treatment regimens, 
shows significantly increased expression of activated SAPK/JNK in the saline controls compared to the 
quercetin treated animals. Values are expressed as mean density ratio ± standard error. * and ** denotes 
statistically significant difference between quercetin treated and saline control at p< 0.01 and p< 0.001. n=6 
animals per group for each treatment regimen.   
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7.3.2 Phospho-MAPK ERK 1/2 (p 44/42):  

Visual examination of slides immuno-stained for phospho-ERK 1/2, showed increased 

positive cells  in both saline control and quercetin treated compared to the sham operated  

animals (n=6 per treatment regimen) but the quercetin treated (n=6 per treatment regimen) 

showed reduced ERK 1/2 activation compared to the saline control (n=6 per treatment regimen) 

animals (Fig. 7.13). Many the positive cells also reveal stellate morphology. Western blotting 

analysis confirmed increased activated state of phospho-ERK 1/2 in all injured spinal animals 

(saline controls and quercetin treated) compared to the sham animals with the quercetin treated 

(n=6 per treatment regimen) showing a reduced activation compared to the saline control (n=6 

per treatment regimen) animals (Fig 7.14). Comparison of the values obtained quantification of 

the bands from various scanned Western blots showed a statistically significant lower phospho-

ERK 1/2/total ERK 1/2 ratio in the quercetin treated (n=6 per treatment regimen) compared to 

the saline control (n=6 per treatment regimen) animals; indicating that quercetin treatment 

attenuated the kinase activation. There was also no statistically significant difference between the 

quercetin treated in the different treatment schedules; indicating that the duration of treatment 

had no statistically significant effect on the treatment outcome. Tissues were analyzed from all 

three treatment regimens (i.e. 3 days, 1 week and 2 weeks quercetin treatment). 
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FIGURE 7.13: Representative photomicrograph of phospho-ERK1/2 immunostaining in saline control A, quercetin treated B, and sham operated, 
using sections from spinal cord tissue harvested at eight weeks post surgery. Saline control sections show more intense signal (with a lot of the cells 
displaying stellate morphology) compared to quercetin treated; indicative of more activated ERK 1/2 in the saline controls compared to the quercetin 
treated. Sham sections show minimal signal. Scale bar = 50μm 
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                                                                                                                                         Fig. 7.14a 
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                                                                                                                                       Fig. 7.14 (b) 
FIGURE 7.14: (a): Representative phospho-ERK 1/2 (p44/42) Western blotting in sham, saline control and 
quercetin treated animals from spinal cords harvested at eight weeks post surgery.  Increased expression of 
phospho MAPK p44/42 is observed in all injured animals (i.e. saline control and quercetin treated) compared 
to the sham animals (n=6); however, the expression of activated MAPK 44/42 in significantly higher in saline 
controls (n=6) compared to quercetin treated (n=6) in all treatment regimens. A graph of the analysis of the 
intensity of bands (b) from Western blots shows significantly higher increases in the saline controls compared 
quercetin treated animals in all treatment regimens. Values are expressed as mean density ratio ± standard 
error. * denotes statistically significant difference between quercetin treated and saline control at p< 0.01. ** 
and ***denotes statistical significance at p<0.001 and 0.0001. n=6 per group per each treatment regimen.   
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CHAPTER 8.0  

GENERAL DISCUSSION, FUTURE DIRECTIONS AND CONCLUSIONS  

 

8.1 Introduction 

Quercetin, one of the most abundant flavonoids in the human diet, has been reported to 

exhibit a wide range of pharmacological properties, including anti-oxidant, anti-allergic, anti-

inflammatory and anti-apoptotic effects (Huk, 1992; Cotelle, 1996; Siaji, 1995; Ferrandiz, 1991; 

Middleton and Kandaswami, 1992; Middleton et al., 2000; 1992; Pelzer, 1998; Lamson et al., 

2000; Rahman et al., 2006; Mullen et al., 2006; Graf et al., 2006; Moon et al 2008). The 

neuroprotective actions of quercetin have been reported in various studies (Schültke et al 2003 

and 2010; Ossola et al., 2008, 2009; Bureau et al., 2008; Ansari et al., 2009). The inherent 

complexity of the biological system coupled with the many potential beneficial actions of 

quercetin make it difficult to determine with specificity each of the mechanisms by which 

quercetin produces its effects. Nevertheless, in this study, the neuroprotective effects of quercetin 

were observed already by the first week after treatment (3 weeks post SCI surgery) in all 

treatment regimens (as evidenced by the results from behaviour studies). It is known that within 

this time frame after traumatic injury to the spinal cord, glia scar formation and apoptosis are 

prominent (Beattie et al., 2000; Fawcett and Asher, 1999; Crowe et al., 1997; Emery et al., 1998) 

raising the possibility that signaling pathways that lead to these processes were important targets 

of this drug.  

Previous studies in our lab have reported that quercetin administration in acute SCI is 

associated with decreased activation of systems that promote oxidative stress and inflammatory 

responses (such as myeloperoxidase activity, reduced iron clearance) after acute SCI (Schultke et 
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al., 2003 and 2010). Since these systems are also still active during chronic insult, it is possible 

that quercetin’s actions in chronic spinal cord injury also involve attenuation of these 

mechanisms.  

The data shown in chapters 5, 6 and 7 demonstrate the ability of quercetin to act as a 

neuroprotective agent in traumatic SCI. Traumatic SCI produces tissue damage that continues to 

evolve days and weeks after the initial insult, with corresponding functional impairments. 

Modern management following mechanical trauma often requires operative treatment for 

decompression of the cord and stabilization of the spine structure. In spite of surgical treatment, 

neurodegenerative processes of the nervous tissue still progress. Reducing the extent of 

progressive tissue loss should result in a better recovery from SCI, but drug treatment options 

have thus far been limited. Methylprednisolone (MPO) is one of the very few drugs widely used 

in the management of acute traumatic SCI but its application still remains a very controversial 

topic (Botelho et al., 2009; Walsh et al., 2010; Bracken et al., 1990) as this therapy carries a 

substantial risk of adverse side effects.. Recently, numerous studies have demonstrated several 

neurodegenerative pathways that occur after the direct damage of nervous tissue including 

signaling mechanisms that are involved in the chronic stages of this condition (Lu et al., 2010; 

Duan et al., 2010).  

In this study, we demonstrated the effect of delayed quercetin treatment on locomotor 

functional recovery following chronic experimental SCI in adult male Wistar rats. We also 

demonstrated the effects of quercetin on axon function, inflammatory processes and apoptosis as 

well as its influence the regulation of MAP kinase activity. 
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8.2 The effect of delayed quercetin administration on locomotor functional recovery and 

tissue preservation following spinal cord injury 

 

8.2.1 Behaviour studies  

In this study, motor functions of the hind-limb were evaluated by the BBB locomotor 

scale (Basso et al., 1995) and by the modified incline plane scale (Rivlin and Tator 1977), 

showed better locomotor outcome in all the quercetin treated animals (n=18 i.e. 6 animals per 

each of the three treatment regimens) (Fig. 5.1 and 5.4). In the absence of quercetin intervention 

not one of the spinal cord injured saline control animals (n=18 i.e. 6 animals per each of the three 

treatment regimens) attained a BBB score beyond 5 points whereas all of the delayed quercetin 

treated animals (n=18 6 i.e. 6 animals per each of the three treatment regimens) had BBB scores 

of 8 or above with the highest scores reaching 11 points (.i.e. between 8-11 points).  

The model of spinal cord injury that we used (compression injury) is clinically relevant 

since the majority of patients with traumatic SCI have incomplete injury. After inducing SCI, 

both reflexes and voluntary motor functions below the level of the injury are initially lost; partial 

recovery may occur over time (Basso et al., 1995; Ko et al., 1999; Gale et al., 1985). The 

recovery of functions mediated by supraspinally controlled reflexes is slow and incomplete given 

that they require the function of long tracts, many of which are irreversibly damaged by the 

injury (Hiersemenzel et al., 2000; Leis et al., 1996). Recovery of locomotion and limb placement 

depends on ascending and descending spinal cord tracts, including cortico-, rubro-, reticulo-, 

vestibulo-, and raphe-spinal tracts (Basso, 2000). The anterolateral and posterior funiculi are 

known to contain tracts responsible for hind-limb function (Iizuka et al., 1997). The functional 

loss after SCI in rats involves interruption of descending serotonergic, reticulospinal, and other 
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descending spinal tracts that facilitate segmental reflexes (Saruhashi et al., 1994; Gruner et al., 

1996). The ascending spinothalamic tracts mediate the perception of pain and temperature below 

the level of the lesion (not explored in this study). Since locomotor functional recovery was 

better in quercetin treated animals than in the saline control animals, it appears that quercetin 

preserved the function of multiple long tracts. 

 

8.2.2 Histology studies 

Results from histology revealed that improvement of locomotor functional recovery was 

associated with increased neural tissue survival and myelin preservation. These analyses showed 

less cell damage, lesser cavitations and better preservation of tissue structure in quercetin treated 

(n=18 i.e. 6 animals per each of the three treatment regimen) compared to the saline controls (n= 

18) (Fig. 5.6). Quantification of white matter content evidenced with LFB staining (Fig. 5.7) 

showed significantly more white matter content (including the anterolateral and posterior 

funiculi) in the quercetin treated animals compared to the saline controls indicating that better 

myelination was due to quercetin application. It is also known that axonal durability after SCI 

depends on the presence of myelin. Therefore quercetin may be protecting axons through its 

ability to influence myelination. 

The current study did not analyze data on the effect of quercetin on the time of return to 

normal bladder function. This would be an interesting aspect to explore in future studies. Normal 

micturition requires coordinated activation of the bladder’s smooth muscle (detrusor) and the 

striated muscle of the external urethral sphincter, controlled by spinal and supraspinal circuitry 

(de Groat, 1990). Thus after SCI, initially bladder function is lost, but it is later partially 

recovered; the extent of recovery depending on the degree of preservation of white matter (and 
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hence the long tracts) at the injury site (Pikov and Wrathal 2001; Pikov et al., 1998). Since our 

work has shown that locomotor recovery was associated with white matter preservation it could 

be postulated that quercetin application would be associated with a reduction of the time of 

return to normal micturition in spinal cord injured animals.  

 

8.3 The effects of quercetin on axon function and inflammatory responses 

Our study also aimed to reduce the extent of inflammation and glial scar formation in 

injured spinal cord using quercetin. Results showing the effects of quercetin on axon function 

and inflammatory processes, including reactive gliosis, the putative factor in tissue scarring are 

reported in chapter 7. In both saline control and quercetin treated animals, positive 

immunoreactivity using ED1, OX42 and GFAP antibody were observed around the injured site 

indicating that inflammatory responses were still present at 8 week after the injury. It has been 

reported that inflammation after SCI diminishes by 2 weeks post injury (Li et al., 1999; Horiuchi 

et al., 2003). Even though these reports are factual, our findings suggest that the remaining 

inflammatory responses are effective enough to contribute to the negative progression of the 

disease. β-APP accumulation (indicative of axoplamic transport impairment) was much more 

pronounced in the saline control animals (n=6 per treatment regimen) compared to those that 

were treated with quercetin (n=6 per treatment regimen) (Fig. 7.1 and 7.2) indicating that 

quercetin positively influences axon function by improving axoplasmic transport. Similarly, we 

found a more pronounced ED1, OX-42 and GFAP expression (from immunocytochemistry and 

Western blot analysis) in the saline control animals (n=6 per treatment regimen) compared to the 

quercetin treated (n=6 per treatment regimen) (Fig. 7.3, 7.4.7.5, 7.6, 7.7 and 7.8) indicating that 

quercetin contributed in reducing the inflammatory response following SCI. In addition, GFAP 
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expression is typical of reactive gliosis, another component of late inflammatory and 

immunological responses that leads to the formation of glia scar. These results suggest that 

quercetin maybe useful in attenuating the formation of glial scar. Reports from various studies 

have linked the process of reactive gliosis with increased MAP kinase activity (Chiu et al., 2010; 

Zhuang et al 2007; Watts et al., 2010; Matsushita et al., 2008; Yamasaki et al., 2007; Schieven, 

G. L, 2005; Zarubin and Han, 2005; Schieven, 2005; Zarubin and Han, 2005). The central role of 

MAPKs in inflammation and cell death has been widely established (Watts et al., 2010; 

Matsushita et al., 2008). MAPKs appear to be major contributors to secondary damage in trauma 

that involves the CNS as well as in other neurodegenerative diseases (Raoul et al., 2006; 

Horiuchi et al., 2003).  

 

 8.3.1 Axon function 

Axonal pathology following SCI is profuse (Blight, 1988; Gentleman et al., 1995; 

Maxwell et al., 1997) hence the preservation of functional axonal connections after trauma is an 

essential goal of any therapeutic intervention. Diffuse axonal damage appears to be responsible 

for a considerable amount of the post-traumatic CNS dysfunction (Gentleman et al 1995; 

Maxwell et al., 1997) and evidence suggests that much of this damage is secondary to 

impairment in axoplasmic transport (Povlishock, J.T., et al., 1999). Interference with axoplasmic 

transport is known to cause diffuse accumulation of β-APP within neuronal perikaryon (Van Den 

Heuvel et al., 1998) which can be detected by examining for accumulation of β-amyloid 

precursor protein (β-APP) (Gentleman et al 1995).  

There are a number of factors involved that may result in axoplasmic transport 

impairment (see section 1.5.2) including elevated intracellular Ca2+ and production of free 
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radicals such as ROS when cells are subject to oxidative stress (Povlishock et., al 1999; Juurlink 

and Paterson, 1998; Dawson et al., 1993; Tanaka et al., 1994). The release of ROS during 

secondary insults damages cellular lipids, proteins and nucleic acids. In addition, there are 

immunological changes that result in increased production of cytotoxic inflammatory mediators 

further contributing to neuronal and glial injury (Carlos, T.M., et al., 1997; Giulian et al., 1994; 

McKeating et al., 1998; Fawcett and Asher, 1999; Mazzanti et al., 2001; Norenberg, 1994, 

1996). It can therefore be understood that these mechanisms can be ameliorated if neuronal anti-

oxidant defences are increased (Su and Murphy, 1999). Since quercetin is known to possess very 

strong anti-oxidant properties, and its administration reduced β-APP accumulation in spinal cord 

injured animals, this could be one mechanism by which it improves axon function. This could 

have implications in other neurodegenerative diseases such as Alzheimer’s disease (AD) that is 

characterized by β-APP aggregation and neuritic plaque formation. 

 

8.3.2 Inflammatory responses 

Inflammatory responses are known to play a crucial role in the series of rapid 

pathophysiological changes that are believed to be triggers for the subsequent damage that lead 

to neurodegeneration after traumatic damage to the CNS. These responses, are typically detected 

histologically as expression of cell markers such as ED1 and OX-42 (Fawcett et al., 1999; 

Westmoreland et al., 1996; Carlson et al., 1998; Chao et al., 1992; Schubert et al., 1998; Viviani 

et al., 1998). Our results show that administration of quercetin is associated with a significant 

decrease in ED1 and OX-42 (activated macrophages/microglia) positive cells present in the 

spinal cords of the quercetin treated animals (n=6 per treatment regimen) compared to the saline 

controls (n=6 per treatment regimen) confirming the anti-inflammatory properties of quercetin. 
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Increased immunoreactivity for glial fibrillary acidic protein (GFAP) is a typical 

characteristic of reactive gliosis; a combination of glia responses, which eventually lead to the 

formation of a glial scar and inhibit axonal regeneration (Fawcett and Asher, 1999). The 

mechanism of the scar formation is complicated, since many glial cells such as microglia, 

oligodendrocyte precursors, meningeal cells, and astrocytes proliferate and/or migrate to the 

injured site to form the glial scar (Ridet et al., 1997; Fawcett and Asher, 1999). Moreover, 

numerous related cytokines and growth factors participate in glial cell proliferation and/or 

differentiation (Ridet et al., 1997). The evidence also implicates MAP kinase (including p38 and 

ERK 1/2 and JNK) signaling pathways (Zhang et al., 1998; Bhat et al., 1998) in these responses. 

Therefore, a combination of two or three methods may be necessary to attenuate glial scar 

formation. Quercetin could be affecting one or more of these pathways. 

 

8.4 The effects of quercetin on apoptosis and MAP kinase activity  

in chronic spinal cord injury 

TUNEL analyses done on spinal cord tissue harvested at 8 weeks post injury showed a 

significant reduction of positive cells in the quercetin treated (n=6) compared to the saline 

control animals (n=6 per treatment regimen) in all three treatment schedules (results reported in 

chapter 6, Fig. 6.1 and 6.2). These results were endorsed by results from immunocytochemistry 

and Western blot analysis for activated caspase 3 and cleaved PARP (Fig. 6.3, 6.4, 6.5 and 6.6). 

Amongst the intracellular pathways that have been identified to mediate delayed 

neuroinflammatory responses (such as reactive gliosis) and apoptosis are the mitogen-activated 

protein kinase (MAPK) families. Activation of MAPK p38, JNK and ERK has been widely 

implicated in neuronal and glia apoptosis. We found that the activation of these three kinases 
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(detected by immunocytochemistry and western blot analysis) was significantly more 

pronounced in the saline control animals (n=6 per treatment regimen) compared to the quercetin 

treated animals (n=6 per treatment regimen) (Fig. 7.9, 7.10, 7.11, 7.12 7.13 and 7.14). These 

results indicate that the protective effects of quercetin on reactive gliosis and apoptosis could be 

linked to its suppressive effect on MAP kinase activation.  

 

8.4.1 Apoptosis 

The anti-apoptotic effects of quercetin have been documented in various studies 

(Ishikawa et al., 2000; Borska et al., 2003; Chao et al., 2009) and this is another potential means 

through which quercetin might exert beneficial effects after spinal cord injury. The apoptotic 

process and its cellular responses are mediated through the expression of different sets of 

proteins and various cellular products involved in the execution of apoptotic and anti-apoptotic 

events (Kerr et al., 1972; Wyllie et al., 1980; Schuler and Green, 2001; Freidlander et al., 2003; 

Beattie et al., 2002b). Important key players in apoptosis are the cysteine dependent aspartate 

specific protease (caspases), and PARP (poly ADP-ribose polymerase). Caspases are expressed 

as latent zymogens and are activated by an autoproteolytic mechanism or by processing by other 

proteases (frequently other caspases). The executioner caspase, caspase-3 is said to be the merger 

of the two major biochemical pathways (extrinsic and intrinsic) of apoptosis. This caspase is 

characterized by a short N-terminal pro-domain and in the presence of various stress signals it is 

activated by an upstream caspase leading to transactivation of a number of downstream elements 

including phosphorylation of histones (such as H2AX at serine 149 and H2B at serine 14), 

cleavage of PARP, inter-nucleosomal degradation of DNA, and packaging of the cell into small 

units that are easily taken up by neighbouring cells (section 1.5.4.2). Hence, increased expression 
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of activated caspase 3 and proteolytic cleavage of PARP as well as degradation of DNA are 

important hallmarks of apoptosis that were exploited in this study.  

It is recommended that discrimination of apoptosis be analyzed by more than one method 

since a single apoptosis assay may not work in all cell conditions. In the beginning of necrosis 

for example, nuclei may be TUNEL-positive since the DNA is being degraded by DNAses. 

Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-

ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. 

However, cleavage of PARP by caspase prevents induction of necrosis during apoptosis and 

ensures appropriate execution of caspase-mediated programmed cell death (Zdenko Herceg and 

Zhao-Qi Wang, 1999). Hence to ensure that possible errors of TUNEL method are minimized we 

complemented this method with immunocytochemical staining and Western blot analyses for 

activated Caspase 3 and cleaved PARP.  

Apoptosis after SCI has been described by many investigators (Beattie et al., 2000; 

Beattie et al., 2002; Casha et al., 2002; McDonald and Belegu, 2006; Crowe et al., 1997). In 

these reports, early apoptosis of neural cells, including neurons, is followed by a delayed wave of 

predominantly apoptotic cell death in degenerating white matter tracts. Studies of apoptosis in 

white matter after injury raise the possibility that glial apoptosis occurs, at least in part, as a 

consequence of axonal degeneration (Abe et a., 1999; Warden et al., 2001). However, the 

presence of activated microglia in contact with apoptotic oligodendrocytes after SCI indicates 

that this interaction may also activate cell death programs in the oligodendrocyte (Shuman et al., 

1997) which may then be followed by secondary axonal degeneration (Bjartmar et al., 1999; Yin 

et al., 1998). I this study, we found that quercetin significantly suppressed reactive gliosis as well 

as apoptosis in the injured spinal cords and this was associated with improved neurological 
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outcome. By indications from these studies, it seems reasonable to postulate that quercetin could 

be improving axon survival by inhibiting glia cell apoptosis. Therefore quercetin treatment at 2 

weeks appear rescue glia cells thereby allowing survival of axons and supporting cells that 

normally would die somewhere between 2 and 6 weeks after injury. 

 

8.4.2 MAP kinase activity  

The effects of quercetin on activation (phosphorylation) of various mitogen-activated 

protein kinases (MAPK) that are known to be implicated in neurodegeneration (including 

inflammation, oxidative stress and apoptosis) after SCI are also shown in chapter 7. Our results 

show that quercetin afforded considerable neuroprotection against SCI induced cell death in 

parallel to its inhibition of p38, SAPK/JNK and p44/42 kinase activation. The mechanism of 

quercetin’s inhibition of these kinase activation is not clear but it may some how interfere with 

inflammatory and apoptotic responses, that induce potential signals for MAP kinase activation. It 

is also known that quercetin is a non-specific inhibitor of MAP kinases (Graziani et al., 1981; 

Rubio et al., 2007; Chiu et al., 2010). 

The MAPK families such as p38, SAPK/JNK and p44/42, have provided topics for 

discussion with reference to their roles in delayed neuronal damage as well as reactive gliosis 

and apoptosis (Chiu et al., 2010; Zhuang et al 2007; Schieven, 2005; Zarubin and Han, 2005; 

Widmann et al., 1999; Kyriakis and Avruch, 2001; Ip and Davis 1998; Christman et al., 2000; 

Baeuerle and Henkel, 1994; Wolf and Seger, 2002 Mattson et al., 2001; Takman et al., 2004; 

Nakahara et al., 1999; Guo et al., 2007; Nozaki et al., 2001; Namgung and Xia, 2001; Nath et al., 

2001; Harper et al., 2001; Zou et al., 2002; Irving and Bamford, 2002; Barone et al., 2001). The 

roles of some of these kinases in neurodegeneration have been confirmed through the use of 
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specific kinase/pathway inhibitors (Raoul et al., 2006; Horiuchi et al., 2003). These kinases can 

be induced by various stimuli that lead to neurodegeneration. For example, release of ROS 

during secondary insults not only damage cellular lipids, proteins and nucleic acids, but also 

initiate redox-dependent MAP kinase signaling pathways that play key roles in mediating distinct 

cellular responses, including glial cell activation and neural cell apoptosis. Amongst such redox-

dependent MAPKs are the p44/42, JNK, and p38, the latter two being particularly studied for 

their pro-apoptotic characteristics (Emerling et al., 2005; Karin and Gallagher, 2005; Shen et al., 

2006; Sumbayev et al., 2005). It should be noted that although the ERK 1/2 is a pathway 

commonly associated with cell survival, in some systems including the CNS, it can also signal 

stress-mediated cell injury (Chiu et al., 2010; Zhuang et al 2007; Kyriakis and Avruch, 2001).   

MAPKs are critically involved in the activation of microglia which plays an important 

role as immune cells in CNS (Watts et al., 2010; Matsushita et al., 2008; Yamasaki et al., 2007; 

Schieven, G. L, 2005; Zarubin and Han, 2005). Activation of MAP kinases have been reported to 

promote apoptosis and inflammatory responses in a variety of neurodegenerative diseases such 

as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) (Kim, 2010; Ferrer et al., 

2005; Ekshyyan and Aw, 2004; Barone et al., 2001; Park et al., 2002; Zhu et al., 2002). Studies 

with the mouse model of ALS expressing mutant SOD1 suggest that MAPKs may play a role in 

the development and progression of this condition (Bendotti et al 2005). The kinases are 

activated in both glia and motor neurons in this disease hence suggesting an involvement in glial 

activation/inflammation and neurotoxicity (Xu et al., 2009; Holasek et al., 2005; Bendotti et al 

2005; Tortarolo et al., 2003). In neurons, p38 MAPKs are widely implicated in apoptosis of 

neurons (Guo and Bhat, 2007; Wada and Penninger, 2004). MAPK activation has been described 

in several disease models that induce apoptosis such as sciatic nerve injury (Murashov et al., 
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2001), cobalt chloride-induced (Zou et al., 2002), nitric oxide-induced (Atzori et al., 2001, 

Cheng et al., 2001 and Ghatan et al., 2000), superoxide-induced (Oh-hashi et al., 1999), and 

NMDA receptor agonist-induced apoptosis models (Tikka and Koistinaho, 2001). These findings 

suggest that MAPK kinases may represent a target of neuroprotective action not only in SCI but 

other disease models of neurodegeneration wherein inflammation an apoptosis are part of the 

disease pathogenesis (such as ALS, MS, Parkinson’s and Alzheimer’s disease).  

Since MAPK pathways play both pro-apoptotic and pro-inflammatory roles in both 

neurons and glia cells, an important implication of the findings of our present study is that 

targeting of MAPK kinases may have dual benefit. Therefore quercetin’s ability to inhibit 

MAPK activation may contribute to its ability to attenuate both neuroinflammatory responses 

and apoptosis in SCI. Moreover, the anti-apoptotic effect of quercetin coupled with its known 

anti-inflammatory role may be exploited to extrapolate the use of this drug in other models of 

neurodegeneration such as MS and ALS. 

 

8.5 Other possible mechanisms of quercetin’s actions and future directions of studies 

In the previous paragraphs we demonstrated in more detail, possible mechanisms 

responsible for the therapeutic effects of quercetin on SCI. A considerable amount of work 

looked at the effects of quercetin on signaling mechanisms involved in apoptosis and delayed 

inflammatory reactions (including reactive gliosis) in traumatic SCI.  

Quercetin showed neuroprotective effects by regulating the expression of apoptosis-

related proteins such as caspase and cleaved PARP that resulted in the suppression of cell death 

during the pathologic process after SCI. On the other hand, it is also possible that quercetin 
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suppress neuronal and glial cytochrome C release from the mitochondria. This could be another 

aspect to explore in future studies. 

There is some controversy on the identity of cell types undergoing apoptosis after SCI. 

This appears to depend on the severity of injuries, time points of analysis and specific area of 

spinal cord examined. Although in this study we did not examine each of the individual cell 

types undergoing apoptosis, it has been reported that macroglia (such as oligodendrocytes) form 

an import component of cell types that undergo delayed apoptotic process after SCI (Casha et al., 

2001; Beattie et al, 2002). It is thought that apoptotic cell death of oligodendrocytes (which 

usually occurs weeks after SCI) is responsible for the induction of myelin degeneration and 

hence causing additional disturbances of axonal function of neurons that survived the injury. 

This delayed appearance of apoptosis in oligodendrocytes is believed to provide a therapeutic 

window for intervention that is way beyond the acute phase of injury (Li et al., 1999a). 

Furthermore, is has been shown that the application of p38 MAPK inhibitor prevents delayed 

progressive degeneration of oligodendrocytes following traumatic SCI (Horiuchi et al., 2003). 

Therefore, by inhibiting MAPK p38 in chronic SCI, quercetin may be inhibiting oligodendrocyte 

apoptosis. By inhibiting oligodendrocyte apoptosis the drug would consequently inhibit 

demyelination. The presence of oligodendrocyte could then promote myelination of denuded 

axons. In this case, it can be postulated that quercetin maybe promoting axon survival by 

inhibiting oligodendrocyte apoptosis. In this study we examined dual immunocytochemical 

staining for p38 activation with GFAP (astrocyte marker) following SCI and found strong co-

localization of p38 within the GFAP positive cells (Appendix 1). Since MAP kinases may play 

both pro-inflammatory and pro-apoptotic roles it can be deduced from this finding that p38 may 

be influencing both the process of reactive gliosis and apoptosis of glia cells (in this case 
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astrocyte). We did not examine dual staining involving oligodendrocyte but we think that this 

same process could be happening in oligodendrocytes and therefore this is an important aspect to 

explore in further studies. Another future direction would be dual staining with TUNEL (or other 

apoptosis markers) and various cell type markers. 

It is known that oxidative stress resulting from secondary injury can trigger JNK and 

NFκB pathways by inactivating protein phosphatases (Morita K et al., 2001; Xu D et al., 2002). 

Phosphatases inactivate kinases by enzymatic removal of the phosphate groups 

(dephosphorylation). Therefore inactivation of phosphatases will prevent dephosphorylation of 

MAP kinases thereby indirectly promoting kinase activation. Although we did not investigate 

dual staining for activated MAPK JNK and nuclearly localized NFκB p65 it is possible that one 

of the mechanisms of quercetin’s action maybe through this indirect promotion of protein 

phosphatase activity (hence MAPK inactivation). By inhibiting c-jun and NFκB activation, 

quercetin may be inhibiting protein phosphatase inactivation that would otherwise allow 

retention of phosphate groups on proteins. This is another possible mechanism for future 

exploration. 

We do not completely exclude other possible roles of quercetin than the regulation of 

apoptosis and inflammation in the functional recovery from SCI. The systemic actions of 

quercetin may results in other possible effects. Quercetin might exert systemic neuroprotective 

effects by stimulating cells to release and increase synthesis of various trophic factors, such as 

basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) 

(Spencer J.P, 2008, 2009; In Koo Hwang et al., 2009; Wu et al., 2000). Such trophic factors can 

contribute to tissue preservation after trauma (McDonald and Belegu, 2006). The ability of 

quercetin to stimulate production and release of trophic factors may have relevance not only in 
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the early wave of neural apoptosis, but also may contribute to the reduced number of apoptotic 

cells observed in the delayed wave of apoptosis after spinal cord injury. The expression of these 

factors can be explored in future studies. We believe that the intraperitoneal injection of 

quercetin used in this study could exert these systemic effects because (1) quercetin can pass 

through the blood-spinal cord barrier, (2) administration by this route could bypass the portal 

circulation hence reducing extensive metabolization of the drug, (3) the blood-spinal cord barrier 

is commonly broken after SCI. 

The question remains whether quercetin treatment at 2 weeks after injury promote 

activation of pathways associated with trophic support or decrease activation of pathways 

associated with apoptosis. While this study looked at signaling mechanisms involved in 

neurotoxicity and apoptosis, it is very possible that quercetin could be influencing pathways that 

are associated with trophic support. Further studies need to be done in this direction.  

My work has shown that there is also better white matter preservation in the treated 

animals.  We observed that in animals treated at 2 weeks after injury, the ability to attain a BBB 

score of 8 or higher are associated with significant retention of white matter at the site of injury.  

Therefore, quercetin must either decrease pathways that cause cell damage or promote pathways 

that are trophic (i.e. could be preventing glia (e.g. oligodendrocyte) apoptosis, or promoting glia 

growth from precursor cells). Our results suggest the inhibition of apoptosis but the later 

possibility is also highly likely and therefore still needs to be addressed by further studies.  

 

8.6 Summary and Conclusions 

The recent progress of neuroscience has enabled various pathophysiological mechanisms 

of several neurodegenerative processes to be clarified and many potential candidates for 
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therapeutic targets have emerged. However, in the case of traumatic SCI when possible 

therapeutic interventions are designed, much of the focus is geared toward intervention at the 

acute stage of the disease. Hence, despite the fact that most patients with SCI are living with the 

condition in a chronic state, not many studies have looked at late intervention following 

traumatic SCI. Therefore, novel therapeutic methods based on modern basic neuroscience should 

be developed for chronic SCI. 

The major aim of this study was to investigate the signaling mechanisms behind 

quercetin’s actions in chronic SCI particularly its effect on various signaling pathways known to 

promote secondary insults. In the course of this study, we were able to investigate some of the 

mechanisms that underlie the biological actions of quercetin in spinal cord injury, with particular 

focus on the effect of quercetin administration on axonal transport, tissue sparing, reactive 

gliosis, and apoptosis, and on the effects of quercetin on the activated MAP kinases associated 

with neurotoxicity. The hypotheses and each of the objectives addressed in this study were 

upheld throughout the course of these experiments.  

The first hypothesis stated that quercetin promotes locomotor functional recovery in 

chronic SCI which is associated with decreased cell damage and neural tissue sparing. This 

hypothesis was supported by both behaviour studies and histology studies (H and E, LFB and 

TB) and white matter quantification in spinal cord tissue sections. By means of behaviour 

analyses (BBB and incline plane scores), we were able to show that quercetin administration 

improved locomotor recovery. Histology studies showed better preservation of tissue structure 

with less cavity formation and better myelination and preservation of white matter content 

following quercetin treatment after SCI. 
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The second hypothesis states that the protective effect of quercetin in spinal cord injury is 

associated with decreased cell apoptosis. We investigated the molecular basis for the anti-

apoptotic activity of quercetin in rat chronic SCI model by examining DNA fragmentation in 

apoptosis with the use of TUNEL method as well as the expression of apoptosis-related proteins 

(activated caspase 3 and cleaved PARP) by means of immunocytochemistry and Western 

blotting. We demonstrated that quercetin inhibited caspase 3 activation as well as PARP 

cleavage and DNA fragmentation, in rat SCI model, thereby providing the molecular evidence 

for its neuroprotective activity.  

The third hypothesis states that quercetin improves axon function and decreases excess 

inflammatory responses in SCI and was also sustained by immunocytochemistry and Western 

blot analysis. Axon function, analyzed by examining accumulation of β-APP, showed better 

outcome in quercetin treated compared to the saline control. Moreover, by analyzing the 

expression of cellular markers ED1, OX-42 and GFAP, we were able to show that administration 

of quercetin significantly attenuated inflammatory processes including reactive gliosis in treated 

animals compared to saline control animals after SCI. 

 Lastly, the fourth hypothesis states that quercetin down regulates the phosphorylation of 

various MAPK kinases that are known to be implicated in inflammation, oxidative stress and 

apoptosis. This hypothesis was also validated by immunocytochemical and Western blot 

analysis. We were able to show that quercetin administration was associated with down 

regulation of MAP kinases that have been reported to promote tissue damage and apoptosis in 

the CNS. Our findings raise the possibility that delayed treatment could be rescuing neurons that 

had survived over the first two weeks following injury by inhibiting reactive gliosis and 
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apoptosis of glia cells. If this is the case, then quercetin may be acting via selective inhibition of 

kinase pathways that have been shown to be involved in neural cell injury and apoptosis. 

In summary, my results indicate that the therapeutic actions of quercetin probably occurs 

by multiple mechanisms including reducing inflammation, reactive gliosis and inhibiting 

apoptotic cell death of neural tissue (including neurons, astrocytes oligodendrocytes, and 

microglia) all leading to an improvement of locomotor functional recovery. These data raise the 

exciting possibility that quercetin may also be able to reduce secondary pathological events and 

thus improve functional outcome after traumatic spinal cord injury in humans.  

 

8.7 Significance 

This study is important not only because it demonstrates the neuroprotective effect of 

quercetin administration in chronic spinal cord injury, but also because it indicates some of the 

potential mechanisms whereby quercetin may exert its neuroprotective effects in vivo. These 

findings provide a basis for further exploration of the mechanisms underlying the 

neuroprotective effects of quercetin. Furthermore, and of potential clinical importance, is that 

quercetin was effective when it was administered 2 weeks after the injury raising the possibility 

of some positive outcome even when treatment initiation is delayed. 
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APPENDIX 1: Photomicrograph of double immuno-staining for phospho-MAPK p38 (green) and GFAP (red) using spinal 
cord sections harvested at eight weeks post surgery in a saline control animal. Most GFAP positive cells are co-localized with 
phospho-MAPK p38 indicating increased MAPK p38 activity during gliosis (activated astrocytes). Scale bar = 50 μm 
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APPENDIX 2: Photomicrograph of double immuno-staining for activated caspase 3 (green) and ED1 (red) using spinal cord sections harvested at eight 
weeks post surgery in a saline control animal. There is a strong activated caspase3 and ED1 positive cell co-localization indicating increase caspase 
activity during gliosis (activated microglia). Scale bar = 50 μm 
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                  App. 3 (a) 
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        App. 3 (b) 

 
 
 
APPENDIX 3 (a) (b):  Photomicrographs of H and E (a) in saline control A and quercetin treated B, sham operated, using 
sections from spinal cord tissue harvested at eight weeks post surgery (scale bar = 100 μm). LFB (b) staining in saline control 
A, and quercetin treated B, using sections from spinal cord tissue harvested at eight weeks post surgery. Scale bar = 80 μm.  
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APPENDIX 4A: Western blots for phospho-MAPK p38, p44/42 and the entire original blot 
of phospho-SAPK (shown in fig. 7. 12a) which shows activated SAPK/JNK expression in 
naïve animals. Experiments were done using spinal cord tissues harvested at eight weeks 
post surgery. 
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APPENDIX 4B: Western blots showing entire original blot of phospho ED1 (shown in fig. 
7. 6a) and other representations of OX-42 and GFAP. Analyses were done from spinal cord 
tissues harvested at 8 weeks post surgery. 
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APPENDIX 5 

Hematoxylin and Eosin Staining Protocol (Harris Hematoxylin) 

 

Preparation of Solutions: 

Harris Hematoxylin  

100 g   Aluminum Potassium Sulfate ( Al K(SO4)2.12H2O ) OR Aluminum Ammonium 

Sulfate (Al NH4(SO4)2.12H2O ) 

1000 ml  Distilled Water 

5 g  Hematoxylin (C.I. No. 75290) 

50 ml  Absolute Alcohol (i.e. 100% Ethanol) 

0.5 g  Sodium Iodate  

30 ml  Glacial Acetic Acid 

Dissolve the aluminum sulfate in distilled water and then dissolve hematoxylin in absolute 

alcohol and add to the aluminum potassium sulfate solution. 

Add sodium iodate and leave solution to sit overnight. Next day, add acetic acid and it’s ready to 

use. 

 

Eosin 

Stock Solution:  1.25% Eosin Y (C.I. No. 45380) in 70% Ethanol.  

Add 1 ml of Glacial Acetic Acid to every 100 ml. 

 

Working Solution: 1 part Stock Solution to 4 parts 70% Ethanol 
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H and E Staining: 

NB: Steps 1 to 6 involves deparaffinising and hydrating parraffin embedded sections. For frozen 

sections, leave to equilibrate at room temperature for 1 hr then begin staining at step 6. 

 

1. 3 minutes each:  2 changes of Xylene 

2. 1 minute:   Xylene / Absolute Alcohol 

3. 1 minute each:  2 changes of Absolute Alcohol 

4. 1 minute:   95 % Ethanol  

5. 1 minute:   70% Ethanol 

6. 1 minute:   Tap Water 

7. Rinse:   Distilled Water 

8. 3 - 5 minutes:  Harris Hematoxylin  

9. Wash:   Tap Water (several changes) 

10. 2 dips:   Acid Alcohol (0.5% HCl in 95% Ethanol) 

11. Wash:   Tap Water (several changes) 

12. 5 seconds:   Saturated Aqueous Lithium Carbonate 

13. 3 minutes:   Running Tap Water 

14. Rinse:   Distilled Water 

15. 1 minute:   Eosin  

16. 1 minute:   70 % Ethanol  

17. 1 minute:   95 % Ethanol 

18. 1 minute:   Absolute Alcohol 1 

19. 1 minute:   Absolute Alcohol 2 

20. 1 minute:   Absolute Alcohol / Xylene 

21. 1 minute each:  3 changes of Xylene 

22. Leave slides in xylene until ready to coverslip then coverslip slides in a permanent mounting 

medium. 
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APPENDIX 6 

Toluidine Blue (pH 3.0) Staining Protocol  

Preparation of Solution (1% Toluidine Blue in 1% Sodium Borate): 

1 g.  Sodium Borate Decahydrate (Borax)  Na2B4O7⋅10H2O 

1 g.  Toluidine Blue (C.I. 52040) 

100 ml  Distilled Water 

Adjust the toluidine blue stain to a pH of 3.0 in order to amplify metachromatic staining. 

 

Staining: 

1. Paraffin sections were deparaffinised as outlined in steps 1 to 6 of appendix 5.  

2. Frozen sections from the freezer were left to equilibrate at room temperature for 1 hr.  

3. The sections were then fixed in room temperature methanol for thirty minutes. 

4. The slides were stained for about 1 minute, after which the stain was washed off with tap 

water. 

5. The slides were placed then left to completely dry, then coverslipped with a permanent 

mounting medium. 
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APPENDIX 7   

Luxol Fast Blue plus Nissl Counterstain (with Cresyl Violet Acetate) Protocol  
(Taken from “Laboratory Notes in Histological Technique”-Anatomy 412B 1982) 

 

Preparation of Solution (Electron Microscopy Sciences Inc Hatfield, PA; #: 26681): 

Luxol Fast Blue Solution:  

0.1 g   Solvent Blue 38-practical grade (Sigma S-3382) 

100 ml  90% ethanol  

0.5 ml   concentrated glacial acetic acid  

Filter before use. Keep used stain in separate container and replace after one week or sooner if 

stain if frequently used. 

 

Lithium Carbonate Solution:     

0.5 g   Lithium carbonate  

100 ml  distilled water 

 

Cresyl Violet Solution: 

0.2 g   Cresyl Violet Acetate (Sigma C-1791) 

150 ml  distilled water  

Filter before use. 

 

Buffer Solution (0.1M, pH 3.5): 

94 ml   0.1 M acetic acid (6 ml glacial acetic acid /1000 ml distilled water) 

6 ml   0.1 M Sodium acetate (C2H3O2 Na) (13.6 g sodium acetate/1000 ml distilled 

water) 
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Working Solution: 

150 ml  Buffer solution 

18 ml   Cresyl violet solution 

Use fresh lithium carbonate and working cresyl violet solutions daily. Replace any that appear 

cloudy or yellow.  

 

Staining:   

1. Deparaffinize and hydrate to 70% alcohol (see steps 1 to 6 of appendix 5). 

2. Leave in slides in Luxol Fast Blue Solution and place the staining dish in 37°C warm bath or 

oven overnight. 

3. Rinse off excess stain with distilled water. 

4. Place slides in fresh distilled water. 

5. Begin differentiation by immersion of the slides singly in Lithium Carbonate Solution for 30 

seconds. 

6. Continue differentiation in 70% alcohol until the gray matter is clear and white matter is 

sharply defined. 

7. Rinse in distilled water for 1 minute 

8. Check microscopically for desires stain intensity.  Repeat the differentiation if necessary 

starting at step 5. 

9. When differentiation is complete, place in distilled water. 

10. When all slides have been collected in distilled water, add fresh distilled water. 

11. Counterstain in Cresyl Violet Acetate working solution for 12 minutes.  

12. Rinse for 1 minute in 70% alcohol in 95% alcohol. 
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13. Continue the dehydration through two changes each of absolute ethyl alcohol first time 3 

minutes then 2 minutes. 

14. Wash 1 minute in Xylene/absolute then 2 changes in xylene, for 2 minutes. 

15. Mount and coverslip with a permanent mounting medium. 

 
 


