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ABSTRACT 

 Ubiquitination is an important biochemical reaction found in all eukaryotic 

organisms and is involved in a wide range of cellular processes. Conventional 

ubiquitination requires the formation of polyubiquitin chains linked through Lys48 of the 

ubiquitin, which targets proteins for degradation, while the noncanonical Lys63-linked 

polyubiquitination of the proliferating cell nuclear antigen is required for error-free DNA 

damage tolerance (DDT or postreplication repair) in yeast. The ubiquitin-conjugating 

enzyme Ubc13 and a cognate Ubc enzyme variant (Uev or Mms2) are involved in this 

process. Because there is less information available on either Lys63-linked ubiquitination 

or error-free DDT in plants, the goal of my research was to study the functions of Ubc13 

and Uev in plants using Arabidopsis thaliana as the model organism. 

Four UEV1 genes from Arabidopsis thaliana were isolated and characterized. All 

four Uev1 proteins can form a stable complex with AtUbc13 and can promote Ubc13 

mediated Lys63 polyubiquitination. All four UEV1 genes can replace yeast MMS2 in 

DDT function in vivo. Although these genes are ubiquitously expressed in most tissues, 

UEV1D appears to be expressed at a much higher level in germinating seeds and pollen. 

We obtained and characterized two uev1d null mutant T-DNA insertion lines. Compared 

with wild-type plants, seeds from uev1d null plants germinated poorly when treated with 

a DNA-damaging agent. Seeds that germinated grew slow and the majority ceased growth 

within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant 

decrease in germination in the presence of DNA damage agent. These results indicate that 

Ubc13-Uev complex functions in DNA damage response in Arabidopsis thaliana. 
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 Arabidopsis thaliana contains two UBC13 genes, AtUBC13A and AtUBC13B, that 

are highly conserved with respect to DNA sequence, protein sequence and genomic 

organization, suggesting that they are derived from a recent gene duplication event. Both 

AtUbc13 proteins are able to physically interact with human and yeast Mms2, implying 

that plants also employ a Lys63-linked polyubiquitination reaction. Furthermore, Both 

AtUBC13 genes were able to functionally complement the yeast ubc13 null mutants, 

suggesting the existence of an error-free DNA damage tolerance pathway in plants. The 

AtUBC13 genes appear to be expressed ubiquitously and were not induced by various 

conditions tested. 

 The ubc13a/b double mutant lines were created and displayed strong phenotypic 

changes. The double mutant plants were delayed in seed germination as well as cotyledon 

and true leaf development. When seedlings were grown vertically on plates, the roots of 

the double mutant were shorter and grew in a zig-zag manner, compared to the straight 

growth of wild type roots. Root length and number of lateral roots on wild type and 

ubc13a and ubc13b single mutant plants were about 3 times longer than those of double 

mutant plants after 9 and 12 days of growth. When double mutant seeds were sown 

directly into soil, many did not germinate and those that germinated grew much slower 

than wild type. At 35 days, double mutant plants were smaller with thinner, flatter, and 

lighter coloured rosette leaves compared to wild type plants. These phenotypes indicate 

that AtUbc13 not only plays a role in DDT to protect genome integrity but also is 

involved in plant development. Hence, this study set a cornerstone for future 

investigations into the roles of Ubc13 and Uev1 in plant development.  
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CHAPTER ONE – INTRODUCTION 

1.1 Ubiquitin and ubiquitination 

Ubiquitin (Ub) is a small protein consisting of 76 amino acids (a.a.) and a 

molecular mass of about 8.5 kilodalton (kDa) (Figure 1-1). It is ubiquitously expressed in 

eukaryotic cells and highly conserved from yeast to human. Sequence alignment reveals 

only three amino acid differences between yeast and human and two amino acid 

differences between yeast and the plant Arabidopsis thaliana. The 76 amino acid Ub 

polypeptide is critical for many cellular processes such as stress response, cell cycle 

progression, oncogenesis and antigen presentation (Hofmann and Pickart, 1999). Ub has 

two key features. One is that the carboxyl group of the last C-terminal glycine residue 

(Gly76) can form an isopeptide bond with a substrate lysine residue. Another is that seven 

lysine residues in Ub, i.e. Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63 can be 

potentially used to form distinct types of poly-Ub chains, at least five of which have been 

observed in vitro or in vivo (Volk, Wang et al. 2005).  

Ubiquitin is encoded by a multigene family which includes monomeric and 

multimeric Ub genes. The former is that the ubiquitin gene is fused to a ribosomal protein 

gene giving rise to a translation product of Ub-ribosomal fusion protein (Callis et al, 1995). The 

latter encodes several repeats of Ub moieties within a protein (or polypeptide) (Ozkaynak 

et al., 1987). Ub can exist as a free cellular monomer or covalently attach to other 



proteins. Ub proteins are generated either from newly-synthesized polyproteins by 

proteolysis or by recycling Ub molecules linked to other proteins (Kalderon, 1996).  

 

Figure 1-1 The structure of ubiquitin protein. Alpha-helices are coloured in blue and β-

strands in green. The orange sticks indicate seven lysine residues. The two best-

characterized lysine residues lysine 48 and 63 in polyubiquitin chain formation are 

marked. The image was taken from http://en.wikipedia.org/wiki/Ubiquitin. 

Ubiquitination, the attachment of Ub to a protein, is an essential process found in 

all eukaryotic cells from unicellular yeast to human. Ub conjugated in the target protein 

can alter the protein stability, localization or activity (Dorval and Fraser 2007). 

Ubiquitination is involved in many cellular processes including ribosomal biogenesis 

(Finley, Bartel et al. 1989), cell cycle progression (Harper 2002), apoptosis (Zhang, Wang 

et al. 2004), mitochondrial inheritance (Fisk and Yaffe 1999), transcriptional regulation 
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(Kao, Chen et al. 2004) and DNA repair (Jentsch, McGrath et al. 1987; Pastushok and 

Xiao 2004). Ubiquitination requires the formation of an isopeptide bond between the C-

terminal Gly76 on a Ub and a Lys residue on the target protein via a series of steps 

(Jentsch 1992; Hochstrasser 1996). In this process, Ub is first activated by a Ub-activating 

enzyme (Uba or E1) in the presence of ATP, forming a high-energy E1-Ub thiolester 

bond. The activated Ub is then transferred from E1 to a specific thiol group of a Ub-

conjugating enzyme (Ubc or E2) to form an E2-Ub thiolester. The Ub of E2-Ub is further 

donated to the target protein either alone or in conjunction with a Ub ligase (E3). 

Substrate specificity of ubiquitination is mainly determined by the interaction of E2 and 

E3. Formation of poly-Ub chains is thought to be essential for targeting the Ub-tagged 

protein to the 26S proteasome (Eytan, Ganoth et al. 1989). 

 Most organisms have only one E1 enzyme and deletion of E1 in yeast is lethal 

(McGrath, Jentsch et al. 1991). In human E1 has two isoforms resulting from alternative 

translation initiation sites (Cook and Chock 1992; Handley-Gearhart, Stephen et al. 

1994). However, there are multiple E2s and even more E3s in all organisms. All the 

known E2s belong to a single family and share a conserved catalytic core domain of 150 

amino acids which possess the active site cysteine residue for forming a thiolester bond 

with Ub (Pickart 2001). Eleven different E2s in yeast, fifty in human and thirty-eight in 

Arabidopsis thaliana were identified. Individual E2s can interact with different E3s, and a 

single E3 might interact with more than one E2. The diversity of relationship between E2s 

and E3s may increase the opportunity for the target protein to be recognized by the 

ubiquitination system. E3s are important for substrate recognition and therefore, there are 

diverse classes of E3s that differ in size and functional domains. All known E3s belong to 
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two main subfamilies, namely the HECT (homologous to the E6-AP carboxyl terminus) 

domain and RING (really interesting new gene) domain families (Pickart 2001). For 

HECT E3s, Ub is transferred from E2 to a highly conserved cysteine residue in the HECT 

domain, and then the Ub is conjugated to a lysine of the substrate bound to an E3. E3s of 

the RING domain subfamily do not appear to form the thioester intermediate with Ub. 

They directly transfer Ub from the E2 to the target protein.   

The C-terminal domain of HECT E3s, about 150 amino acid long, contains the 

conserved cysteine residue that is the Ub receptor and N-terminal domain-of the HECT 

E3s that is substrate recognition (Scheffner, Huibregtse et al. 1993). The RING finger 

domain is about 50 amino acids long and characterized by a conserved Zn+2 chelating 

His/Cys-rich motif which mediates E3-E2 binding.  

A family of proteins called U-box domain is also involved in poly-Ub chain 

formation. The U-box domain is a modified version of the RING finger motif which lacks 

the important Zn+2 chelating residue (Hatakeyama and Nakayama 2003). The best 

characterized U-box domain protein is yeast Ub fusion degradation protein 2 (Ufd2) and 

C-terminus of the Hsc70 interacting protein (Chip). These E3 proteins play a role in Ub 

chain elongation (Kuhlbrodt, Mouysset et al. 2005). 
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1.2 Multiple functions of ubiquitin and ubiquitin chains 

Ubiquitination is an ATP dependent reversible process in which a Ub molecule or 

a chain of Ub molecules is attached to a substrate protein. Ubiquitination can be divided 

into three types: mono-ubiquitination, multiple mono-ubiquitination, and poly-

ubiquitination. The attachment of a single Ub to a substrate is called mono-ubiquitination 

(Hicke 2001). When two or more lysine residues in a substrate are appended with single 

Ub molecules, it is called multiple mono-ubiquitination (Haglund, Sigismund et al. 2003; 

Mosesson, Shtiegman et al. 2003), while poly-ubiquitination means that a substrate is 

attached to a chain of Ub, formed by a repeat process (Pickart 2001). Ubiquitin has seven 

lysine residues. In theory, each residue can be potentially poly-ubiquitinated to form poly-

ubiquitin chain.  Indeed, all seven ubiquitin–ubiquitin linkages have been observed in 

budding yeast (Peng, Schwartz et al. 2003). 

Different Ub modifications can play different roles in the regulation of cellular 

processes (Weissman 2001). Histone H2B mono-ubiquitination regulates chromatin 

structure and transcription leading to methylations on another core histone H3 (Briggs, 

Xiao et al. 2002). Membrane receptor mono-ubiquitination promotes receptor endocytosis 

and degradation in vacuole of yeast (Bonifacino and Traub 2003). In addition, protein 

mono-ubiquitination is also involved in endocytosis of plasma membrane proteins, sorting 

of proteins to multivesicular bodies (MVB), DNA repair, histone activity, and 

transcriptional regulation (Gupta-Rossi et al., 2004).  Recently, it has been shown that the 

epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor 

(PDGFR) are modified by Casitas b-lineage lymphoma (Cbl)-mediated mono-

ubiquitination at several sites (multi-ubiquitinated), this multiple mono-ubiquitination 
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appears to be necessary and sufficient for endocytosis and degradation of the receptors 

(Bakowska, Jupille et al. 2007). Similarly, different poly-Ub chains can have different 

functions. Polyubiquitin chains formed via the C-terminal glycine and Lys48 of ubiquitins 

play a role in targeting proteins for degradation by the 26S proteasom. Lys6-linked 

polyubiquitin chain on E3 enzyme Brca1 is implicated in nuclear focus formation during 

DNA repair (Morris and Solomon 2004). Lys27 linked polyubiquitin chain is involved in 

protein kinase activation and lysosomal localization of ubiquitinated Jun (Ikeda and 

Kerppola, 2008; Okumura et al., 2004),  Lys11-linked chains have been implicated in 

proteasomal targeting and protein turnover (Johnson, Ma et al. 1995; Baboshina and Haas 

1996); and Lys63-linked chains are involved in DNA repair and NF-κB activation 

(Zhang, Johnston et al. 2001). 

It is unclear how the ubiquitination machinery decides if the substrate should be 

mono-ubiquitinated or poly-ubiquitinated. There are several possible explanations. 

Firstly, E3 ubiquitin ligase has specificities in terms of the type of ubiquitination. For 

example, the E3 Rad18 mediates PCNA mono-ubiquitinaton at the Lys164 residue, 

whereas the E3 Rad5 promotes PCNA poly-ubiquitination at the same site (Hoege, 

Pfander et al. 2002). As another example, p53 is mono-ubquitinated by the E3 Mdms2 

and poly-ubiquitinated by p300 (Grossman, Deato et al. 2003). Secondly, Ub-binding 

proteins may specify the type of Ub modifications. For instance, Ub-interacting motif 

(UIM) and the Cue1-homologous (CUE) domain in the endocytic proteins control their 

mono-ubiquitination (Di Fiore, Polo et al. 2003). Thirdly, Ub conjugationg enzymes may 

play a role in deciding if a substrate should be monoubiquitinated or polyubiquitinated. 

Up to now, Ubc13 is the only known E2 enzyme capable of catalyzing Lys63-linked 



polyubiquitin chains, which is believed to play an important role in cell signalling. Other 

E2 enzymes such as Ubc4 and Ubc5 in yeast and Ubc8, Ubc9 and Ubc10 in Arabidopsis 

thaliana function in Lys48-linked poly-ubiquitination for protein degradation (Kraft, 

Stone et al. 2005). In addition, ubiquitination is a dynamic and reversible process, and  

de-ubiquitinating enzymes mediate rapid removal of ubiquitin from substrates (Wilkinson 

2000). It is possible that a balance between activity and subcellular localization of de-

ubiquitinating enzymes and Ub ligases determines whether a specific protein becomes 

mono- or poly-ubiquitinated (Haglund, Di Fiore et al. 2003). Various ubiquitin 

modifications and their function are shown in Figure 1-2. 

 

 

 

Figure 1-2 Various ubiquitin modifications and their functions. (a) Monoubiquitination 

(b) Multiubiquitination (MultiUb), (c) Polyubiquitination (PolyUb). Pink circle: ubiquitin; 

K: lysine residue (Dikic 2003). 
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1.3   Functions of Lys48-linked polyubiquitination in plants 

It is well known that polyubiquitin chains with different linkages transmit distinct 

structural and functional information. A well accepted concept in the field of 

ubiquitination is that ubiquitin chains were linked by Lys48 to target proteins for 

degradation. Protein degradation through ubiquitination was discovered by Aaron 

Ciechanover, Avram Hershko, and Irwin Rose who were awarded the Nobel Prize in 

chemistry in 2004 (Li and Ye 2008). Since this discovery, remarkable advances have been 

made on the mechanisms for protein turnover. Nowadays, it is known that protein 

degradation mediated by Lys48-linked polyubiquitination plays a pivotal role in almost 

every cellular process. For example, proteins with synthetic errors and free-radical-

induced damage must be removed (Hershko and Ciechanover 1998). Almost 30% of 

initial translation products are non-functional and  need rapid degradation (Schubert, 

Anton et al. 2000). In addition, protein degradation through Lys48 polyubiquitination also 

functions in responses to hormones (Hellmann and Estelle 2002; Vierstra 2003),  abiotic 

and biotic  stresses (Schrammeijer, Risseeuw et al. 2001; Hardtke, Okamoto et al. 2002) 

and in plant development (Zhao, Yu et al. 2001). Below, I will focus on some of the 

functions mediated by Lys48 poly-Ub in plants. 

1.3.1 Preventing self-pollination in plants 

Most flowering plants produce perfect flowers containing both male and female 

reproductive organs, therefore self pollination will occur (Kao and Tsukamoto 2004). 

Because self pollination leads to a gradual decline in genetic diversity, plants have 
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evolved reproductive strategies, called self-incompatibility by which plants prevent self-

pollination and promote outcrossing (Gaudeul and Till-Bottraud 2004). Plants use the 

Lys48 poly-Ub chain mediated protein degradation pathway to reject self pollen and 

promote cross fertilization. It has been shown that in plant Antirrhinum majus, one protein 

encoded by a self-incompatibility gene interacts with another protein, a S-RNases that 

would be polyubiquitinated through the Lys48 poly-Ub chain and degradated by the 26S 

proteasome in compatible pollination rather than incompatible pollination. Growth of 

pollen from the same plant is inhibited in this self-incompatible response in Antirrhinum 

majus (Qiao, Wang et al. 2004).   

1.3.2 Regulation of the cell cycle    

A typical eukaryotic cell cycle consists of five distinct phases: G0, G1, S, G2, and 

M. In the S phase, DNA replication occurs, while in the M phase, mitosis occurs and one 

cell  divides into two daughter cells (Bicknell and Brooks 2008). Transitions from one 

cell cycle phase to the next are tightly regulated by a set of protein kinases called cyclin-

dependent kinases (CDKs). The activity of CDKs in turn is regulated positively by 

cyclins and negatively by CDK inihibitors, as well as other factors (Hochegger, Takeda 

et al. 2008). Cyclins and CDK inhibitors are ubiquitinated through the Lys48 poly-Ub 

chain and degraded by protesomes to ensure the unidirectional and irreversible 

progression of the cell cycle (Santopietro, Shabalova et al. 2006). Two ubiquitin E3 

ligases important for the cell cycle are SCF whose name comes from three central 

components (Skip1, Culin, and F-box) of the E3 enzyme complex and APC (Anaphase 

Promoting Complex). In general, the SCF complex mediates G1/S transition  SCF-Skp2 
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mainly ubiquitinates and degrades cyclin-dependent-kinase inhibitors (CKIs) such as 

p27 and p21 as well as G1/S cyclin and CyclinE to promote cell cycle progression and 

cell growth  (Nakayama and Nakayama 2005). APC controls metaphase-anaphase 

transition with the activator Cdc 20 to boost sister chromatid separation. APC with 

another activator, Cdh1, is also active in the G1 phase and controls levels of mitosis 

regulating proteins (Vodermaier 2004). In addition, many other important cell cycle 

regulators, such as Cyclin B or Plk1, are degraded through Lys48 poly-Ub chain 

mediated protein degradation pathway (Stegmeier, Sowa et al. 2007) 

1.3.3 Involvement in auxin-mediated lateral root formation 

Lys48 poly-Ub chain mediated protein degradation also plays an important role in 

auxin-mediated lateral root formation. The first piece of evidence for the involvement of 

protein ubiquitination came from the studies of Arabidopsis thaliana E3, SCFTIR1 protein 

complex. TRANSPORT INHIBITOR RESPONSE 1 (TIR1) is a key component of SCF 

and encodes a protein containing leucine-rich repeats and an F-box motif. Auxin signals 

captured by TIR1 promote degradation of the Aux/IAA (Auxin/Indole-3-Acetic Acid) 

proteins, the repressors of auxin-responsive transcription, through Lys48 poly-Ub chain 

mediated protesome pathway (Gray, Kepinski et al. 2001; Dharmasiri and Estelle 2004). 

The Aux/IAA degradation allows ARF (Auxin Response Factor) proteins to bind to the 

promoters of the many auxin responsive genes, activating transcription of these target 

genes leading to lateral root development (Guilfoyle, Hagen et al. 1998; Tiwari, Hagen et 

al. 2003). 
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1.4 Functions of Lys63-linked polyubiquitination 

The most common type of polyubiquitin chain link is to link through Lys48 of Ub. 

Lys48-linked polyubiquitination is known to target specific proteins for degradation and 

functions in cell division, hormone responses, and responses to the abiotic/biotic 

environments. In contrast, polyubiquitin chains linked through the Lys63 of Ub is 

believed to play signalling roles. So far, Ubc13 is the only known Ub conjugating enzyme 

capable of catalyzing Lys63-linked polyubiquitination reaction and this function requires 

an interaction with a Ubc variant Mms2 or Uev1 (Hofmann and Pickart 1999). Ubc13-

Uev1 (or Ubc13-Mms2) mediated Lys63 poly-Ub chains have been found to be important 

for error-free DNA damage tolerance (Hofmann and Pickart 1999) and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) (Deng et al., 2000) pathways. 

Since little is known about the Ubc13-mediated pathway in plants, the following results 

from yeast and mammalian systems will be reviewed.  

1.4.1 Role of Ubc13-Mms2 mediated Lys63 poly-Ubiquitination in DNA repair 

The RAD6 pathway is central to DNA postreplication repair (PRR) in yeast and 

mammalian cells (Saffran, Ahmed et al. 2004). Two Ubcs, Rad6 and the heteromeric 

Ubc13-Mms2 complex, have been implicated in PRR in yeast (Broomfield, Chow et al. 

1998; Xiao, Chow et al. 2000).  Mms2 is a Uev initially discovered in yeast (Broomfield, 

Chow et al. 1998). Two RING-finger type E3s, Rad18 and Rad5, play a central role in 

mediating physical contacts between the members of the RAD6 pathway. Rad5 recruits 

the Ubc13–Mms2 complex to DNA through its RING finger domain. Moreover, Rad5 

associated with Rad18 brings Ubc13-Mms2 into contact with the Rad6–Rad18 complex 
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(Ulrich and Jentsch 2000). Interaction between the two RING-finger proteins thus 

promotes the formation of a heteromeric complex in which the two E2 enzymes, Rad6 

and Ubc13–Mms2, can be closely coordinated to enhance the Lys63 poly-Ub chain 

formation. Interestingly, Ubc13 and Mms2 are largely cytosolic proteins, and  DNA 

damage triggers their redistribution to the nucleus (Ulrich and Jentsch 2000). 

The RAD6 pathway has been divided into three sub-pathways: one error-prone 

sub-pathway represented by REV3 and two error-free sub-pathways represented by RAD5 

and POL30 (Xiao, Chow et al. 2000). The two independent error-free PRR pathways are 

both under the control of RAD6/RAD18 (Xiao, Chow et al. 2000). Ubc13-Mms2 promotes 

one (Ulrich and Jentsch 2000) or both (Xiao, Chow et al. 2000) of the error-free 

pathways. 

   In the RAD6 pathway, PCNA (proliferating cell nuclear antigen) is a component 

of PRR.  A critical residue Lys164 in PCNA can be modified in three ways: 

monoubiquitination by the E2 and E3 enzyme of Rad6 and Rad18, Lys63-linked 

polyubiquitination by Ubc13-Mms2 in complex with Rad5, and conjugation of SUMO 

(small ubiquitin-related modifier) by Ubc9 (Hoege, Pfander et al. 2002).  It has been 

demonstrated that these modifications have different implications in DNA damage 

tolerance and repair. The same lysine residue can also be modified by E2 Ubc9 and E3 

Siz1 through conjugation of SUMO (S) (small ubiquitin-related modifier), which 

functions antagonistically with Ubc13-mediated polyliuquitination since ubiquitination 

and sumolation compete for the same residue. The roles of Ubc13-Uev mediated Lys63 

poly-Ub chain in DNA repair are shown in Figure 1-3. 

   



 

 

 

 

Figure 1-3 The roles of yeast Ubc13-Uev mediated Lys63 poly-Ub chain in PRR. The 

Lys164 residue of PCNA is firstly mono-ubiquitinated by Rad6 and Rad18, and further 

poly-ubquitinated by Ubc13-Mms2 complex with Rad5. The poly-ubiquitinated PCNA 

then functions in the error-free post replication DNA repair pathway (Pickart 2002). The 

same lysine residue of PCNA can also be modified through conjugation of SUMO (S) 

(small ubiquitin-related modifier), SUMO-modified PCNA recruits Srs2 to prevent 

recombination. 
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1.4.2 Role of Ubc13-Mms2 mediated Lys63-linked polyubiquitination in the NF-κB 

pathway 

In mammals, the transcription factor Nuclear Factor kappa-lighter-chain-enhancer 

of activated B cells (NF-κB) consists of homo- or hetero-dimers of different subunits 

which are members of a family related protein called Rel/NF-kB proteins. Five different 

Rel/NF-κB proteins (also called Rel proteins) p50, p52, p65, RelB, and c-Rel have been 

identified, and they all contain a conserved N-terminal region called the Rel Homology 

Domain (RHD). The RHD contains the DNA-binding and dimerization domains as well 

as the nuclear localization signal (Muller and Harrison, 1995; Sullivan et al., 2007).  

The NF-κB family of transcription factors is involved in a number of processes, 

mainly stress-induced immunity, cell cycle progression, inflammatory response, 

oncogenesis, viral replication, and various autoimmune diseases (Zhang, Johnston et al. 

2001). 

In normal cells, NF-κB proteins in the form of dimers are sequestered in the 

cytosol via non-covalent interactions with a class of inhibitor proteins, called IκBs. 

Various stimuli that activate NF-κB cause phosphorylation of IκBs, which is followed by 

ubiquitination of the IκBs and subsequent degradation through the ubiquitin–proteasome 

pathway (Wegener and Krappmann 2008) (Figure 1-4). IκB proteins are phosphorylated 

by an IκB kinase (IKK) complex consisting of IKKα, IKKß, and IKKγ/NEMO (NF-κB 

essential modulator). NEMO is not a kinase, but considered as a regulatory subunit of 

IKK essential for NF-κB activation. The phosphorylation of IκB by IKK and the 

degradation of IκB result in the exposure of the nuclear localization  



 

 

Figure 1-4 The Ubc13-Uev1A mediated Lys63-linked polyubiquitination promotes 

activation of the NF-κB transcription factor (Adhikari, Xu et al. 2007). Ubc 13 and 

Uev1A complex together with TRAF 2/5 or TRAF6 catalyzes the formation of a Lys63-

linked polyubiquitin chain on substrate NEMO which leads to phosphorylation and 

degradation of IκBs, then freed NF-κB subunits enter to the nucleus and activate the 

transcription of the corresponding genes. 
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signals (NLS) on the NF-κB subunits and the subsequent translocation of NF-κB to the 

nucleus. In the nucleus, NF-κB binds with a consensus sequence (5’-GGGACTTTCC-3’) 

in various promoters, activating the transcription of corresponding genes.  

     TRAF6 (Tumor-necrosis factor (TNF)-receptor associated factor 6) is a signal 

transducer that activates IKK and the Jun amino-terminal kinase (JNK). TRAF6 is a 

RING-finger protein and physically interacts with Ubc13 through its RING-finger domain 

(Wooff, Pastushok et al. 2004). This Ubc 13 and Uev1A complex together with TRAF6 

catalyzes the formation of a Lys63-linked polyubiquitin chain that mediates IKK 

activation through a unique proteasome-independent mechanism (Deng, Wang et al. 2000; 

Wang, Deng et al. 2001). Subsequently, it was reported that NF-κB activation by TRAF2, 

another RING-finger protein, also requires Ubc13-Uev for Lys63-linked poly-Ub (Shi 

and Kehrl 2003). It appears that the cellular target of the above Lys63 poly-Ub is NEMO 

in T- and B-cells and possibly in other cells as well (Zhou, Wertz et al. 2004).  
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1.5 The structure of Lys48 and Lys63-linked polyubiquitin chain 

  Lys48-linked polyubiquitin mainly functions in protein degradation by the 26S 

proteasome. In contrast, Lys63-linked polyubiquitin is involved in a variety of cellular 

events that are independent of degradative signalling (Weissman 2001). Obviously the 

linkage-specificity of polyubiquitin chains is crucial for different cellular functions. Why 

do Lys63-linked and Lys48-linked polyubiquitin chains have very different functions?  

 Structural and modeling analyses reveal that these two polyubiquitin chains have 

very different conformations, which are probably responsible for their distinct functions. 

The crystal structure of Lys48-linked di- and tetra-ubiquitin shows that there is a 

hydrophobic patch, which is composed of Leu8, Ile44, and Val70 in each ubiquitin 

molecule at the  interface between two subunits (Cook, Jeffrey et al. 1992). Studies with 

NMR also indicate that the Lys48-linked diubiquitin forms a closed conformation in 

which the hydrophobic patch is stacked at the interface at neutral pH,  but the 

conformation is open at lower pH (Varadan, Walker et al. 2002). The topology of the 

Lys48 poly-Ub chain likes zigzag. 

 Lys63-linked di- and tetra-ubiquitin chains however lack the covalent 

hydrophobic interface. The conformation of Lys63-linked chain is likean array of beads 

on a string (Tenno, Fujiwara et al. 2004). The hydrophobic patch of ubiquitin is not 

present at the inter subunit interface of Lys63-linked chains and this patch is a major 

contact surface for the proteasome to contact with ubiquitin (Tenno, Fujiwara et al. 2004). 

The topology of the poly-Ub chain is shown in Figure 1-5. 

 



 

 

 

 

Figure 1-5 Ubiquitin structure and its topology. The sites of Lys48 and Lys63 are shown 

in red colour, and the c-terminus of ubiquitin shown in blue. The topology of the Lys48 

likes zigzag, while Lys63 likes a string. 
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1.6 DNA damage and repair 

Cellular DNA is subject to alterations caused by exogenous environmental factors 

and the factors inside the cell. The alteration of genetic information encoded in the DNA 

can lead to cell death or tumorigenesis. To maintain the cellular DNA integrity, DNA 

repair must be carried out to correct damaged DNA molecules in the genome of an 

organism. 

1.6.1 Sources of DNA damage 

The sources of DNA damage can be divided into two main types: endogenous and 

exogenous. Endogenous DNA damage includes that caused by reactive oxygen species 

resulting from normal metabolic processes as well as replication errors (Sekiguchi and 

Tsuzuki 2002). Exogenous DNA damage is caused by external agents including: 

   Ultraviolet (UV) radiation:  UV is an electromagnetic radiation and with a wave 

length of UVA at 400 nm–315 nm, UVB 320 nm – 280 nm, and UVC 280 nm –100 nm. 

UV from sun light is the external of  DNA damage agent (Wester, Boldemann et al. 

1999). 

X rays and gamma rays: Both X rays and gamma rays are electromagnetic 

radiation and their wavelengths are 10 to 0.01 nm and less than 10 picometers, separately 

(Phillips, Gebow et al. 1997). 

Mutagenic chemicals: Mutagenic chemicals thatcan damage DNA and cause 

mutations include MMS and Cisplatin (Myung and Kolodner 2003). 
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Viruses: Some viruses can infect all kinds of organisms from plants and animals 

to bacteria and archaea (Koonin, Senkevich et al. 2006). The infected cells of the 

organism will die because of cell lysis or suppression of virus-specific proteins (Kim, Liu 

et al. 2003). 

The majority of DNA damage caused by above the external agents affects the 

primary structure of the double helix. The bases of the double helix are chemically 

modified by induced non-native chemical bonds or bulky adducts, and these 

modifications disrupt the DNA regular structure.  

1.6.2 Types of DNA damage 

DNA is composed of two long polymers of four nucleotides adenine (A), thymine 

(T), guanine (G) and cytosine (C). The backbone of the DNA molecule is comprised of 

phosphate and sugar residues joined by ester bonds. The types of DNA damage can be 

divided into two classes: spontaneous and environmental DNA damage. 

Spontaneous DNA damage is caused by endogenous cellular processes such as 

oxidation of bases by the reactive oxygen species, alkylation of bases caused by 

methylation, and hydrolysis of bases by deamination and mismatch of bases due to errors 

in DNA replication. Environmental DNA damage comes in different ways. For example, 

the main type of DNA damage caused by the UV-B is formation of the 

cyclobutylpyrimidine dimer (CPD) and the pyrimidine pyrimidone (6-4) dimers. In 

addition, UV light can also cause base damage and DNA strand breaks (Britt 1996). The 

DNA damage caused by ionizing radiation (IR) directly induces strand breaks, and 100 
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Rads of IR can trigger 600-1000 single strand and 16-40 double strand breaks (Ward 

1988). DNA alkylating agents covalently bind the nucleophilic sites of DNA such as N7 

of Guanine and result in DNA-alkyl adducts. Alkylating reagents can be divided into SN1 

and SN2 subgroups based on the mechanism of the alkylation attack. The SN1 reagents 

quickly transfer the alkyl group to attack the DNA, while the SN2 alkylating agents react 

to produce intermediates to attack the DNA. N-methyl-N-nitrosourea (MNU) and N-

methyl-N’-nitro-N-nitrosoguanidine (MNNG) are SN1 reagents, that use a monomolecular 

mechanism, while methyl methanesulfonate (MMS) and methyliodide (MeI) are SN2 

reagents using a bimolecular mechanism (Nieminuszczy and Grzesiuk 2007). 

1.6.3 DNA repair pathways  

To maintain genome integrity, all living organisms have evolved a variety of DNA 

repair mechanisms to protect cells from DNA damage. Up to now, five major multi-step 

DNA repair mechanisms are known, i.e. nucleotide base excision repair (NER) and base 

excision repairs (BER), mismatch repair (MMR), recombination repair and post 

replication repair (PRR). Some of these are specific for a particular type of damage, while 

others can handle more than one DNA damage type. 

1.6.3.1 Direct reversal of damage 

The Direct reversal mechanism is the simplest way to repair special types of DNA 

damage that do not involve breakage of the DNA backbone. This mechanism does not 

need any template and often only one single step enzyme catalysed reaction is needed For 

example, thymidine dimers caused by UV light and methylation of an O6-guanine base by 
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alkylating agents are all repaired by the direct reversal mechanism (Friedberg, Aguilera et 

al. 2006). The photolyase enzyme recognizes and directly binds to the damaged DNA 

site, absorbs a photon of sun light, separates the pyrimidine dimers and restores them to 

their monomeric forms. After the damaged site is repaired, the photolyase is dissociated 

from the substrate. This repair mechanism is found in bacterium, yeast and plants. The 

strategy used by O6-alkylguanine-DNA alkyltransferase (AGT or MGMT) to directly 

repair alkylation damage of O6-alkylguanine and O4-alkylthymine is to irreversibly 

transfer the alkyl groups to nucleophilic Cys residues in the repair protein. A nucleophilic 

Cys residue is utilized to receive the alkyl lesion in a SN2 manner and the alkylated 

protein is degraded after the repair (Goosen and Moolenaar 2008).   

1.6.3.2 Base excision repair (BER)        

BER removes damaged bases caused by both endogenous and exogenous factors 

such as oxidative and alkylating agents from the DNA and replaces them with pristine 

bases. The molecular mechanism of the BER pathway consists of five sequential steps: 

removing the incorrect base to create an apurinic/apyrimidinic (AP) site, the most 

common form of DNA damage; nicking the damaged DNA strand upstream of the AP 

site by AP endonuclease to create a 3'-OH terminus adjacent to the AP site; excising the 

incised AP site; extending the 3'-OH terminus by a DNA polymerase and ligating. 

The initiation of the base excision repair is the recognition and removal of 

damaged bases by DNA glycosylases. A large number of DNA N-glycosylases such as 

uracil DNA N-glycosylase (UNG), thymine DNA glycosylase (TDG) and methyl purine 

DNA glycosylase (MPG) have been identified in human and other organisms.  The crystal 
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structures of different DNA glycosylases have been determined. They are similar to each 

other, indicating that a common mode of action is employed by a variety of DNA 

glycosylases. So far, 11 DNA glycosylases are known for human and eight for 

Escherichia coli (Sidorenko and Zharkov 2008). DNA glycosylases remove a variety of 

damaged bases by cleavage of the N-glycosylic bonds between the bases and the 

deoxyribose moieties of the nucleotide residues (Krokan, Standal et al. 1997).  After 

glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision 

step and an excision step. DNA polymerase B independent of PCNA or a DNA 

polymerase dependent on PCNA can efficiently fill the short gap in DNA (Randahl, 

Elliott et al. 1988). DNA synthesis and ligation are through two alternative pathways, i.e. 

short-patch BER (1-nucleotide patch size) and long-patch BER (2-6-nucleotide patch 

size), which need AP endonuclease to generate a 3’-hydroxyl group (Klungland and 

Lindahl 1997; Wilson and Thompson 1997; Fortini, Parlanti et al. 1999). 

BER is an important pathway for the repair of DNA base damage such as 

oxidized, alkylated, deaminated or absent bases that causes only minor disturbance to the 

helical structure of DNA. It differs from the NER which is required for the removal of a 

large variety of long DNA lesions. 

1.6.3.3 Nucleotide excision repair (NER) 

 NER is one of the DNA repair mechanisms employed by cells to repair the 

distorted DNA helix damaged by UV light, bulky adducts and DNA intra- and inter-

strand crosslink. NER is characterized by the incision of the damaged DNA strand on 

both sides of the lesion. NER is initiated with the recognition of helical distortion lesions, 
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followed by the removal of 24-32 oligonucleotides from the DNA strand containing the 

lesion.  The resulting single stranded DNA gap is filled by DNA polymerase and followed 

by ligation. NER can be divided into two classes: globe genome NER (GG-NER) and 

transcription coupled NER (TC-NER). Different sets of proteins are involved in the two 

classes of NER. 

GG-NER repairs the damage including both transcribed and untranscribed DNA 

strands in active and inactive genes throughout the genome. The proteins involved in this 

pathway are the DNA-damage binding (DDB) and components of XPC-Rad23B 

complexes. These proteins continuously scan the entire genome to find helix distortions. 

Once the damaged site is detected, corresponding repair proteins are recruited to the 

damaged DNA to confirm the presence of DNA damage. Once the damage is verified, 

incision of the damaged DNA strand will occur on both sides of the lesion and the gap is 

filled. GG-NERR is a random process that occurs slowly (Balajee and Bohr 2000). 

TC-NER repairs lesions occurring in transcriptionally silent and transcriptionally 

active regions of the genome. However, the repair efficiency is different between these 

two regions. Studies carried out with mammalian cells demonstrate that the 

transcriptionally active genes of the transcribed strands are repaired faster by TC-NER 

than the genes on the nontranscribed strands as well as the genes that are transcriptionally 

silent (Bohr et al., 1985; Madhani et al., 1986). A similar phenomenon has been 

demonstrated in E. coli (Mellon and Hanawalt 1989) and S. cerevisiae (Smerdon and 

Thoma 1990; Sweder and Hanawalt 1992). TC-NER and GG-NERR are two subpathways 

of NER which differ only in the initial steps of DNA damage recognition. TC-NER is 

initiated by RNA polymerase which stalls at a lesion in DNA and the following steps such 
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as remove the lesion need NER factors XPA, TFIIH and RPA as well as the nucleases 

ECC1-XPF and XPG for dual incisions at a lesion.  

1.6.3.4 DNA mismatch repair (MMR) 

 MMR repairs the insertions, deletions and mismatched bases that arise during 

DNA replication and recombination (Iyer, Pluciennik et al. 2006). The major pathway for 

cells to repair the mismatches is the MutHLS pathway which comes from the work 

performed on the methyl directed MMR system on E. coli (Modrich and Lahue 1996). 

Proteins including MutS, MutL, MutH, UvrD and Dam (Marinus and Morris 1975; 

Robson, Hall et al. 1988; Grilley, Welsh et al. 1989) are essential in detecting mismatch 

repair machinery. MutS forms a dimer (MutS2) which recognizes the mismatched base on 

the daughter strand and can bind to a variety of mispaired bases and short base-paired 

loops (Marinus and Morris 1975; Parker and Marinus 1992). MutL also forms a dimer 

(MutL2) to bind the MutS-DNA complex and act as a mediator to activate MutH. Once 

activated by the MutS-DNA complex, MutH nicks the daughter strand at the GATC 

methylation site closest to the mismatch and recruits a UvrD helicase (DNA Helicase II) 

to separate the two strands with a specific 3' to 5' polarity (Grilley, Holmes et al. 1990). 

UvrD is a DNA helicase responsible for unwinding DNA in an ATP-dependent manner 

(Hickson, Arthur et al. 1983). The entire MutSHL complex then slides along the DNA in 

the direction of the mismatch and MutH, and both the mismatched site and its 

surrounding nucleotides are excised by the exonuclease ExoVII and RecJ.  The resulting 

single-stranded gap is repaired by DNA polymerase III and sealed by DNA ligase. 
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Homologs of the bacterial MutS have been identified in eukaryotes. They form 

two major heterodimers: Msh2/Msh6 (MutSα) and Msh2/Msh3 (MutSβ). The former is 

involved in base substitution and small loop mismatch repair, and the latter is implicated 

in both small loop repair and large loop (~10 nucleotides) repair. However, MutSβ does 

not repair base substitutions (Tian, Gu et al. 2009). 

MutL homologs PMS1 and MLH in eukaryotes are involved in post meiotic 

segregation (Prolla, Pang et al. 1994). In yeast, mutations in either MLH1 or PMS1 lead to 

an increased mutation rate, and the mlh1 pms1 double mutant showed identical 

phenotypes as their corresponding single mutants, suggesting that MLH1 and PMS1 

function in the same MMR pathway (Prolla, Pang et al. 1994). The mutant, yeast mutS 

homolog 2 (MSH2) gene,  showed similar phenotypes to disruption of PMS1 and MLH1 

(Reenan and Kolodner 1992). Two additional S. cerevisiae MMR homologs, MSH3 and 

MSH6, displayed a weak mutantr phenotype, but strains deleted for both MSH3 and 

MSH6 had a mutation rate similar to that observed in msh2 strains, indicating that S. 

cerevisiae has different independent mismatch repair pathways. No MutH homologs have 

been identified in eukaryotes, suggesting that strand discrimination in eukaryotes is 

different from that of E. coli (Kolodner and Marsischky 1999). 

Except for the above proteins, there are some additional factors with a possible 

function in eukaryotic MMR.  For example, PCNA, EXO1 and DNA polymerases δ and ε 

are implicated in the MutSL pathway (Kadyrov, Genschel et al. 2009). There also appears 

to be a pathway identified in both S. cerevisiae and human that corrects loops with about 

16 to several hundred of unpaired nucleotides; such large loops cannot be processed by 

MMR (Marti, Kunz et al. 2002) 
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1.6.3.5 Recombination repair 

Both single and double-strand DNA can be broken by endogenous or 

environmental factors. Double-strand breaks (DSBs) and single-strand break (SSBs) are 

the most deleterious lesions in damaged DNA. Unrepaired DSBs can result in cell cycle 

arrest and cell death (Bonura and Smith 1975). If the DSB is not repaired correctly, 

mutation will accumulate and genome integrity will be impaired. DSBs cannot be 

repaired by DNA repair pathways such as BER, MMR and NER. To protect genome 

integrity, cells utilize recombination repair mechanism to repair this type of DNA 

damage.  There are two different pathways including homologous recombination (HR) 

and non-homologous end joining (NHEJ) to accomplish the DSB repair task. 

1.6.3.5.1 DSB repair by homologous recombination (HR) 

Homologous recombination is genetic recombination in which two similar or 

identical strands of DNA are exchanged. HR occurs not only in chromosomal crossover 

during meiosis to adapt to a changed environment (Alberts 2002) but also mostly in 

repairing double-strand DNA breaks. HR is highly conserved among archaea, bacteria 

and eukaryotes and most of the knowledge regarding the HR repair pathway has been 

obtained from bacteriophage, bacteria and yeast.  

There are two types of HR: conservative and non-conservative; both types of HR 

are dependent on Rad52 and Rad51 (Shinohara and Ogawa 1995; Paques and Haber 

1999). Conservative HR rebuilds the broken chromosomes by copying sequence 

information from the sister chromatid during mitosis or the homologous chromosome 
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during meiosis to achieve its accuracy. Both reciprocal and nonreciprocal genetic 

information can be exchanged during HR, and are defined as crossing over and gene 

conversion, respectively. Crossing over does not change the content of the genome, but 

alters the rearrangement of genetic linkage patterns. On the other hand, gene conversion 

transfers the genetic information from a donor locus to a recipient locus, resulting in a set 

of genes gained or lost (Paques and Haber 1999). Conservative HR can be divided into 

three pathways including the DSB repair model of Szostak, synthesis dependent strand 

annealing (SDSA) and break induced replication (BIR) (Pfeiffer, Goedecke et al. 2000). 

Non-conservative HR is performed by the single stranded annealing (SSA) pathway, in 

which single stranded regions that extend to the repeated sequences are created adjacent 

to the break so that complementary strands can anneal to each other (Haber and Heyer 

2001). 

1.6.3.5.2. Non-homologous end joining 

Non-homologous end joining (NHEJ) is one of the mechanisms to repair DSBs in 

DNA. "Non-homologous" means no homologous template being used in repairing the 

damage. By NHEJ the DSB ends can directly ligate without the homologous template but 

does not mean that homology is never involved (Pfeiffer 1998). NHEJ was first observed 

in mammalian cells (Pellicer, Robins et al. 1980; Perucho, Hanahan et al. 1980) and later 

also found in yeast (Orr-Weaver and Szostak 1983). NHEJ not only ligates the compatible 

ends, but also rejoins non-complementary ends irrespective of their sequence and 

structure (Pfeiffer, Goedecke et al. 2000). In budding yeast, the NHEJ pathway is 

dependent on a Ku70-Ku80 heterodimer (Doherty and Jackson 2001; Jones, Gellert et al. 



2001). Ku70 and Ku80 bind the ends of broken DNA protecting them from degradation, 

stabilizing them for processing and re-ligation (Liang and Jasin 1996; Feldmann, 

Schmiemann et al. 2000).  

1.6.3.6 DNA damage tolerance 

           DNA damage-tolerance (DDT), also named DNA postreplication repair (PRR), is a 

damage tolerance process that permits DNA synthesis over a damaged template. The PRR 

pathway is highly conserved from yeast to human, and the proteins involved in PRR are 

biochemically diverse. The DDT pathway includes two sub-pathways: the error-prone and 

the error-free.  

1.6.3.6.1 Error-prone translesion synthesis  

           The mechanism of translesion synthesis (TLS) is to use specialized damage-

tolerant DNA polymerases to bypass the DNA lesion. As a consequence, TLS result in 

damage-induced mutations (Friedberg 2005; Andersen, Xu et al. 2008). In eukaryotes, 

TLS is initiated by monoubiquitination of PCNA, with this modification of the PCNA 

resulting in the recruitment of damage-tolerant polymerases including Pol  (Rev3 and 

Rev7), Polδ, and Rev1, which are required for TLS to be recruited to stall replication 

forks (Kannouche, Wing et al. 2004; Bienko, Green et al. 2005) and stimulate their ability 

to polymerize across lesions (Garg and Burgers 2005). It is now clear that yeast TLS is 

accomplished by stepwise covalent modifications of the PCNA encoded by POL30. In 

response to DNA damage, the E2 and E3 complex, Rad6-Rad18, monoubiquitinate 

PCNA at the Lys164 residue to promote TLS. 
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1.6.3.6.2 Error free lesion bypass 

            Error-free lesion bypass is one branch of PR mediated by the Ubc13-Mms2 

complex in yeast, which acts to prevent spontaneous and DNA damage–induced 

mutagenesis (Barbour and Xiao, 2003; Broomfield et al., 2001). The mechanism of error-

free lesion bypass is that Rad6-Rad18 ubiquitination complex monoubiquitinates PCNA 

at the Lys164 residue, and Mms2-Ubc13-Rad5 complex further polyubiquitinates PCNA 

through Lys63–linked chains (Hoege, Pfander et al. 2002). It is thus assumed that 

monoubiquitinated PCNA promotes error-prone TLS, whereas polyubiquitinated PCNA 

promotes error-free bypass of damaged templates (Pastushok and Xiao, 2004; Stelter and 

Ulrich, 2003). During normal replication, the same Lys164 residue could also be 

covalently modified by SUMO (for small ubiquitin-related modifier), which requires the 

Siz1-Ubc9 complex; sumoylated PCNA recruites the DNA helicase Srs2 to stalled 

replication forks to prevent inappropriate recombination (Papouli et al., 2005; Pfander et 

al., 2005).  

1.7 DNA repair in plants 

Plants, being sessile, have to tolerate and sometimes thrive in a wide range of 

environmentally harmful conditions such as excessive sunlight radiation, chemical 

mutagens, fungal toxins, high and low temperatures, and water stress. Under such 

conditions, it is essential for plant survival that an efficient system exists to maintain 

genome stability. This system may consist of different mechanisms to prevent damage to 

DNAand when damage to DNA occurs, to remove or repair the damage. Although 
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pathways involved in DNA repair have been extensively investigated in yeast and animal, 

much less is known in plants.    

Sunlight, which is used by plants for photosynthesis, is stressful under different 

conditions. Strong sunlight can damage the photosystems in the chloroplasts by 

overproduction of reactive oxygen species (Asada 1999). UV light, a subcomponent of 

the sunlight, exerts serious effects on plants. UV light not only damages various cellular 

compounds, membranes, and phytohormones, but also induces various DNA lesions. The 

major lesions are cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) 

pyrimidinone dimers [(6-4) photoproducts], and the minor lesion includes oxidized or 

hydrated bases, single-strand breaks, and others (Ballare et al., 2001; Rousseaux et al., 

1999). Through evolution, plants have acquired two main protective strategies to avoid 

the adverse effects of UV light. One is the shielding by flavonoids and phenolic 

compounds (Schmitz-Hoerner and Weissenbock 2003) and the other is DNA repair 

mechnisms such as photoreactivation and dark repair (Britt, 1999; Hays, 2002; Tuteja et 

al., 2001). Photoreactivation, which is mediated by a photolyase, is thought to be the 

major DNA repair pathway for CPDs in higher plants (Dany, Douki et al. 2001). 

Photolyases absorb light in the 300-600 nm range (Pang and Hays 1991) to monomerize 

UV-induced CPD. 

 The dark repair mechanism includes NER, BER, MMR and other DNA repair 

pathways. Dark repair has been observed in several plant species. The completed plant 

genome full sequences of Arabidopsis thaliana and rice revealed that most of the genes 

involved in NER and BER are present in higher plants (Kimura, Tahira et al. 2004), 
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suggesting that these DNA repair mechanisms are highly conserved in yeast, human and 

plants. 

 Arabidopsis thaliana contains homologs of RAD6 genes (Sullivan et al., 1994; 

Zwirn et al., 1997), indicating the existence of a plant DNA damage tolerance pathway. 

Plant genes involved in the error-prone damage tolerance pathway have been reported. 

For example, AtPOLH (Santiago et al., 2006), AtPOLK (Rodriguez-Rojas, Garcia-Cruz et 

al. 2004), AtREV3 (Sakamoto et al., 2003), AtREV1 and AtREV7 (Takahashi, Sakamoto et 

al. 2005) have been isolated and characterized; while error-free damage tolerance have 

not been reported in plants.  

Despite a constant threat of oxidative damage, the DNA genome sequence of 

mitochondria and chloroplasts in plants usually has a very low rate of changes compared 

to the DNA in nucleus, indicating there are efficient DNA repair mechanisms existing in 

these organelles. Recent work demonstrates that plant mitochondria possess BER 

pathway. The mitochondrial DNA is replicated, proofread, and repaired in inner 

membrane-associated nucleoids, and DNA repair occurs through single nucleotide 

insertion, indicating the short-patch BER mechanism is involved (Boesch, Ibrahim et al. 

2009). 

The expression patterns of DNA repair genes encoding CPD photolyase, UV-

DDB1, CSB, PCNA, RPA32, and FEN-1 were investigated using Northern and in situ 

hybridization in rice (Oryza sativa L. cv. Nipponbare) (Kimura, Tahira et al. 2004). The 

results showed that all of the genes tested were expressed in tissues rich in proliferating 

cells, but only CPD photolyase was expressed in non-proliferating tissue such as the 

mature leaves and elongation zone of the root. These results imply that photoreactivation 



might be a major DNA repair pathway for UV-induced damage in non-proliferating cells, 

while both photoreactivation and excision repair are active in proliferating cells. 

Interestingly, most of the MMR genes were expressed more in mature leaves than the 

shoot apical meristem (SAM), indicating that MMR has important roles in DNA repair in 

mature leaves (Kimura, Tahira et al. 2004). The overview of DNA repair in plants is 

shown in Figure 1-6. 

 

 

 

Figure 1-6 The overview of DNA repair in plants. Photoreactivation and mismatch repair 

are major DNA repair pathways in non-proliferating cells such as leaves, while both 

photoreactivation and excision repair are active in meristematic tissues (Kimura, Tahira et 

al. 2004). 
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1.8 Arabidopsis thaliana is an ideal model to study DNA repair and mutagenesis 

Arabidopsis thaliana is a small flowering plant that has been widely used as a 

model organism in plant biology. Arabidopsis thaliana is a member of the mustard 

(Brassicaceae) family, which includes cultivated species such as cabbage and radish. it 

has important advantages for basic research in genetics and molecular biology, such as 

small size, rapid generation time (5-6 weeks under optimum growth conditions), ease of 

cross and self-fertilization, and a small genome (125 megabases) (Bowman, 1993). 

The genome of Arabidopsis thaliana has been sequenced (Initiative, 2000). It is 

predicted that the genome contains 25,498 genes encoding 11,000 families of proteins. 

Most of the gene families are similar to those found in other eukaryotes, but several 

hundred gene families are unique to the plant kingdom. These include over 800 genes 

primarily involved in photosynthetic activities (Initiative, 2000). The genomic sequence 

provides valuable information and raw materials for comprehensive analyses of gene 

function in plants. It also provides opportunities for comparison with the genetic 

complements of animals, fungi, prokaryotes, and other plant species (Bennetzen, 2001). 

Arabidopsis thaliana is a good model organism to study cellular and molecular 

processes because of the following features: 1) Extensive genetic and physical maps of all 

5 chromosomes are available; 2) Transgenic plants can be obtained easily by using 

Agrobacterium tumefaciens as the vector to introduce foreign genes; 3) A large number of 

mutant lines and genomic resources are available from stock centers. In addition, 

Arabidopsis thaliana is an excellent multicellular model organism to study genes 

involved in genome maintenance. Firstly, the genome of Arabidopsis thaliana encodes 

orthologs of human genome-maintenance proteins (Hays, 2002). Secondly, plant genes 
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involved in DNA repair and mutation-prevention functions resemble more closely 

mammalian counterparts than counterparts of the microbial models. Thirdly, the plant 

genome is more tolerant to genome instability than mammalian models such as mice. In 

mice, embryonic lethality has been reported in many cases when DNA repair genes are 

deleted, including Rev3 (Bemark et al., 2000; Esposito et al., 2000; Wittschieben et al., 

2000), the function of which parallels the Ubc13-mediated error-free damage tolerance in 

yeast. In contrast, Arabidopsis thaliana rev3 null mutants have been recently isolated and 

characterized (Sakamoto et al., 2003; Takahashi et al., 2005) with phenotypes similar to 

the yeast rev3 mutant. Given the strong synergistic interactions between the Ubc13-

Mms2-mediated error-free damage tolerance and Rev3/Rev7-mediated error-prone TLS 

in yeast (Broomfield et al., 2001; Xiao et al., 1999a), it would be of great interest to 

determine genetic interactions between plant REV3 and UBC13 genes. 

1.9 Objective of this project 

            Among ubiquitin conjugating enzymes, Ubc13 is unique and can promote Lys63-

linked polyubiquitination, unlike the conventional Lys48-linked polyubiquitination that 

leads to the target protein degradation, is thought to serve as a signal. In yeast and 

mammalian cells, Ubc13 has shown to function in DNA damage tolerance and NF-κB 

activation as well as some other less defined pathways. The essential role of Ubc13 in 

mammals is implied by the mouse embryonic lethality from Ubc13 deletion, which 

hampers its further genetic analysis.  

            Arabidopsis thaliana genome sequence analysis showed the existence of genes 

similar to Ubc13 and Uev1A.  However, there is no published information regarding 
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whether they play similar or different roles in plant cells, in comparison to mammalian 

cells. This project aims to understand the functions of AtUbc13, AtUev1, and AtUbc13-

AtUev1 complexes in plants using Arabidopsis thaliana as a model organism. 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Plant materials and techniques involved in plant work 

2.1.1 Plant materials 

           Arabidopsis thaliana ecotype ‘‘Columbia’’ was used in this study. Plants were 

grown in pots, in growth chambers (20 ºC constant, 16/8 h day/night photoperiod with a 

daylight fluence rate of 140 μmoles/m2/min). The Arabidopsis thaliana cell suspension 

culture was from Dr. Gordon Gray, Department of Plant Sciences, University of 

Saskatchewan. The suspension was derived from a callus induced from a ‘‘Columbia’’ 

seedling. The cell suspension was grown in liquid MS (Murashige and Skoog) medium 

with minimal organics (Sigma M6899, 4.4 g/l), 20 g/l sucrose, 1 mg/l naphthalene acetic 

acid, 0.05 mg/l kinetin, 200–300 mg/l Timentin (filter-sterilized and added after 

autoclaving), and 0.5 g/l MES hydrate, pH 5.8. The flasks with the cell suspension were 

kept shaking at 22 ºC under moderate light (fluence rate of 5 μmoles/m2/min).  To 

maintain the cell culture, 3 ml cultured cells were taken from the existing culture and used 

to inoculate 30 ml of fresh medium in a 125-ml flask every week. 

           T-DNA insertion AtUEV1D lines SALK_064912, SALK_052144, AtUBC13A and 

AtUBC13 lines WISCDSLOX323H12 and SALK_043781 were obtained from the 

Arabidopsis Biological Resource Center (ABRC) (www.arabidopsis.org); while the 

AtUEV1A T-DNA insertion mutant line is not available from the (ABRC); instead, a line 

http://www.arabidopsis.org/
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(FLAG_128G02) with a T-DNA insertion at the fourth exon was obtained from the 

Institut Jean-Pierre Bourgin collection., 

2.1.2 Genomic DNA isolation  

Genomic DNA was prepared as described (Edwards et al., 1991). A disc of 

Arabidopsis thaliana leave was pinched out by a lid of a sterile eppendorf tube into the 

tube. The tissue was macerated in the original eppendorf tube at room temperature 

without buffer for 15 second. Then 400 µl of extraction buffer (200 mM tris-HCI, pH7.5; 

250 mM NaCI; 25 mM EDTA; 0.5% SDS) was added to the sample and votexed for 5 

seconds. The mixture was left at room temperature until all samples were extracted. The 

tubes were centrifuged at 13000 rpm for 1 min and 300 µl of supernatant was transferred 

to a fresh eppendorf tube. This supernatant was mixed with 300 µl isopropanol and left at 

room temperature for 2 ml, followed by centrifugation at 13000 rpm for 5 min. The 

supernatant was discarded and the pellet dried for about 10 min at room temperature. The 

pellet was dissolved in 100 µl TE buffer or water. Two and a half microliters of the 

sample were used for a standard 50 µl PCR. 

2.1.3 Total RNA extraction and RNA concentration 

Total RNA was isolated from tissues such as leaves, floral, seedlings or cell 

culture using the TRIzol reagent (Invitrogen). The Arabidopsis thaliana tissues were 

homogenized with a motar and pestle in the presence of liquid nitrogen. The 

homogenized tissue (the mount of the tissue should be less than 100 mg per ml Trizol) 

were added to in 1 ml Trizol, incubated for 5 min at 15-30 ºC and spun down at 12000g 
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for 10 min at 4 ºC to remove proteins and polysaccharides. The aqueous phase was taken 

and 200 µl chloroform was added to the samples. After shaking vigorously by hand for 15 

sec, the sample was incubated at 15-30 ºC for 2-3 min and centrifuged at no more than 

12000g for 15 min at 4 ºC. The aqueous phase was transferred to a fresh tube and 0.5 ml 

isopropanol was added. The sample was incubated at RT for 10 min and centrifuged at 

12000g for 10 min at 4 ºC to precipitate RNA. The supernatant was discarded and the 

pellet washed with 1 ml 70% ethanol. The RNA sample was centrifuged again at 7500 g 

for 5 min at 4 ºC, the pellet briefly dried (air dry for 5-10 min) and stored at -80 ºC. RNA 

concentration was measured with a spectrophotometer (Pharmacia Biotech, Ultrospec 

3000) following the manufacturer’s instructions. 

2.1.4 Northern hybridization and RT-PCR 

To study tissue distribution of AtUBC13 and AtUEV1, tissue samples were taken 

from Arabidopsis thaliana plants, snap-frozen in liquid nitrogen and stored at 80 ºC until 

use. To determine the expression of AtUBC13 and AtUEV1 under different stress 

conditions, the cell suspension was maintained for 5 days following subculture, and then 

subjected to various treatments as specified. After a 24-h treatment, total RNA was 

isolated and the concentration of the RNA determined. For Northern hybridization, 15 mg 

of total RNA was loaded for each sample, transferred to a nitrocellulose membrane and 

hybridized as described (Wang et al., 1998). DNA fragments containing AtUBC13A, 

AtUEV1C or UBQ11 ORF were isolated from an agarose gel after restriction enzyme 

digestion and electrophoresis, and used as templates for probes labeled with 32P-dCTP 
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using a random primer labeling kit from Invitrogen. The membrane was hybridized with 

AtUBC13A or AtUEV1C, stripped and then hybridized with the UBQ11 probe.  

For RT-PCR analysis, total RNA from various tissues was isolated using TRIzol 

and treated with DNaseI (Promega). Total RNA from mature pollen was extracted as 

described (Fei et al., 2004), and total RNA from germinating seeds was extracted as 

described (Vicient and Delseny, 1999). Synthesis of  first-strand cDNA by reverse 

transcriptase was performed using a SuperScript RT-PCR III system (Invitrogen) 

following the protocol as described (Karsai et al., 2002). Briefly, 2 mg of total RNA from 

each sample was treated with DNase I (Roche Diagnostics) and reverse-transcribed with 

Moloney murine leukemia virus reverse transcriptase (Invitrogen) and d(T)18. The final 

input amount of cDNA used for RT-PCR was adjusted by analyzing the expression of the 

At4g33380 control gene (Czechowski et al., 2005). Experiments were performed using 

AtUEV1 gene-specific primer pairs with different cycle conditions (22, 28, and 35 cycles) 

to make sure that the amount of PCR product was not excessive and that the difference 

among different tissue samples was not a result of saturation of PCR amplification. Eight 

microliters of each reaction was used for agarose gel electrophoresis. All RT-PCR series 

were assayed at least twice  

2.1.5 Protein extraction 

           Fourteen-day-old seedlings of wild type, single mutants and double mutants of 

Atubc13 were homogenized with a motar and pestle in the presence of liquid nitrogen. 

The homogenized tissues were transferred into a tube with protein extraction buffer [50 

mM Tris-HCl (pH8.0); 200 mM NaCI; 5 mM EDTA; 10 mM DTT; Sigma protease 
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inhibitor cocktail (Sigma # P9599)] as described (Wang et al., 1998). Cell extracts were 

centrifuged at 14000g for 15 min at 4 ºC and the supernatant transferred into fresh tubes 

and centrifuged again for 5 min. The protein samples were aliquoted into small volume 

(1.0, 0.5 and 0.1 ml) and stored at -80 ºC for further use. 

2.1.5.1 Protein concentration 

Bradford protein assay were used to measure the concentration of protein 

(Bradford, 1976). The steps of the Bradford protein assay are: dilute proteins and obtain 

between 1 and 20 µg protein to a final volume 800 µl in one assay tube; prepare standards 

containing a range of 2, 4, 6, 8, 10 µg proteins (albumin or gamma globulin are 

recommended) in 800 µl volume; add 200 µl dye reagent and incubate 20 min at RT; 

measure the absorbance at 595 nm; prepare a standard curve of absorbance versus the 

amount of protein in microgram and determine protein concentrations of original samples 

from the standard curve. 

2.1.5.2 SDS-PAGE  

Proteins were visualized using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) in a Mini-Protean 3 gel apparatus. In general, samples for 

SDS-PAGE were made by the addition of 2X protein sample buffer (125 mM Tris pH 6.8, 

4% SDS, 10% glycerol, 0.006% bromophenol blue, 1.8% β-mercaptoethanol) to the 

protein solution. The protein samples were placed in boiling water for 5 min, cooled, and 

then loaded onto the protein gel. Usually 12% discontinuous (5% stacking, 12% 

separating) Tris-glycine polyacrylamide (37:1 acrylamide:bisacrylamide) gels were used 
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(Maniatis et. al, 1989) and the gels were run at 180 V for 45 min. Gels were stained with 

Coomassie Blue staining solution (0.025% Coomassie Brilliant Blue R250, 40% 

methanol, 7% acetic acid) for at least 30 minutes, followed by incubation in a de-stain 

solution (40% methanol, 10% acetic acid) until appropriate protein bands could be 

visualized (after 30-60 min). 

2.1.5.3 Western blotting analysis  

Following SDS-PAGE, the resolving gel was equilibrated for 20 min in a transfer 

buffer along with equal-sized polyvinylidene difluoride (PVDF) membrane and 3M filter 

papers. The components were assembled as described in the manual for the Bio-Rad 

trans-blot semi-dry transfer cell, which was used for the transfer of proteins onto the 

PVDF membrane. Transfers were performed at a constant current of 1 mA/cm2 for 2 hr.  

The membrane was then incubated in a blocking solution overnight at 4°C.  The primary 

monoclonal antibody against the hUbc13 protein raised in Dr, Xiao’s laboratory was 

diluted at 1:4000 in 10 ml phosphate buffered saline (PBS) with 0.1% Tween 20 (PBST) 

and incubated with the membrane at room temperature (RT) for 1 hr with gentle rocking.  

The membrane was washed 3 times for 5 min each with PBST.  Subsequently, the 

horseradish peroxidase-conjugated secondary antibody was diluted at 1:10000 in 10 ml 

PBST and incubated with the membrane same as with the primary antibody. The 

membrane was then washed 3 times for 5 minutes each with PBST followed by 2 rinses 

each with PBS to prepare for the detection. The Western Lightening Chemiluminescence 

Reagent (Perkin-Elmer, #NEL101) was used as the substrate for the visualization of 
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horseradish peroxidase-conjugated secondary antibody. and the membrane were 

developed by using the  

2.1.6 Seed germination assays 

           The homozygous UEV1D T-DNA insertion lines SALK_064912 (uev1d-1) and 

SALK_052144 (uev1d-2) were used in the sensitivity assay to the DNA-damaging agent 

MMS. To exclude any possible non-specific effect, we used three controls, the wild-type 

Arabidopsis Columbia, a T-DNA insertion line not related to UEV1 genes 

(SALK_042050), and a homozygous wild-type segregant line (1d-1WT or 1d-2WT) 

derived from the initial mutant seeds received. For the uev1a-1 mutant, the parental wild-

type line Ws-4 and a homozygous wild-type (1a-1WT) segregant from FLAG_128G02 

were used as controls. The identity of the wild-type and mutant segregants was 

determined by genomic PCR and RT-PCR. In addition, to minimize the effect of 

individual plants, seeds of three homozygous mutant plants were pooled and used for the 

assay. Seeds were surface-sterilized with 20% bleach and 0.1% Triton X-100 for 20 min, 

followed by three rinses in sterile water. After sterilization, seeds were suspended in 0.1% 

agarose and stored at 4 ºC in the dark for 3 d to synchronize germination. Three days 

later, the seeds were removed from the dark and sown on half-strength Murashige and 

Skoog agar plates supplemented with different concentrations of MMS. Each plate was 

planted with 50 seeds, and at least three plates (150 seeds) were used for each treatment. 

After 5-d incubation in a growth chamber, germination of the seeds was surveyed. After 

13-d incubation, the color of cotyledons was rated (green versus non-green) while the first 

pair of true leaves was still small. Since seedlings with non-green cotyledons at this stage 
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were dead or dying, the percentage of seedlings with green cotyledons was an indicator of 

seedling viability. The fresh weight of seedlings was also determined and was used as an 

indicator of seedling growth.  

2.1.7 In vitro pollen germination assay 

           To quantitatively measure pollen germination efficiency in the presence of MMS, 

2 ml of the germination medium (Fan et al., 2001) containing 1% agar with or without 

0.005% MMS was poured into a 35-mm Petri dish to form a thin layer. Freshly anther-

dehisced flowers at stage 13 or 14 (Smyth et al., 1990) were randomly picked and used to 

carefully touch the central area of the agar plate in order to spread pollen grains. The Petri 

dishes were incubated in a humid chamber at 26 ºC for 8 h without light before counting 

pollen germination and photographing. For each plate more than 400 pollen grains were 

counted using a phase-contrast microscope for each plate, and three plates were used for 

each treatment. 

2.2 Molecular biology techniques 

2.2.1 Plasmids preparation 

Cloning of the Arabidopsis thaliana UBC13 and UEV genes was accomplished prior 

to my involvement with the project. Human Mms2 and Ubc13 protein sequences were 

used to search the Arabidopsis thaliana protein database available from the Arabidopsis 

Genome Initiative.  For Ubc13, two Arabidopsis thaliana putative proteins with an E 

value better (lower) than 10-55 were found.  For Mms2, four Arabidopsis thaliana putative 

proteins with an E value better (lower) than 10-38 were found. To clone the full-length 
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coding cDNAs of these genes, RNA was isolated from Arabidopsis thaliana seedlings 

using TRIzol reagent (Invitrogen). The total RNA was used to perform RT-PCR with the 

ThermoScript RT-PCR kit (Invitrogen) according to manufacturer’s instructions. Gene-

specific primers were designed and used to obtain amplicants of the putative Arabidopsis 

thaliana UBC13 and UEV1 homologs. All primers used in this study were listed in Table 

2.1. Pfu DNA polymerase was used to reduce the frequency of errors in PCR. AtUBC13 

homologs were initially cloned in-frame into the yeast two hybrid  pGBT9E vector, while 

AtUEV1 homologs were cloned in-frame into the yeast two hybrid pGAD424E vector for 

determining interactions in the yeast two-hybrid system. Sequences of all the clones were 

verified by sequencing in the Plant Biotechnology Institute, National Research Council of 

Canada, Saskatoon.  In consideration of the sequence relatedness, they are named: 

AtUBC13A, AtUBC13B, AtUEV1A, AtUEV1B, AtUEV1C, and AtUEV1D. 

            In order to over express these genes in E. coli, the ORFs of each DNA were 

isolated from pGBT9 or pGAD424 vector and cloned into pGEX6p-2 (Amersham 

Biosciences, Piscataway, NJ, USA) to form N-terminal gene fusions to GST. 
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Table 2-1 Oligonucleotide sequences 

     Primer                   Sequence 

AtUBC13A-1 5’cccgtcgacAATGGCCAACAGTAATTTGCCG-3’ 

AtUBC13A-2 5’cccgtcgacTCATGCGCCGCTTGCATAAAG-3’ 

AtUBC13A-3 TCA GCC TTT GGT AGC TTC GT 

AtUBC13B-1 5’cccgtcgacAATGGCCAATAGTAATCATCCC-3’ 

AtUBC13B-2 5’cccgtcgac TTAAGCACCACTTGCGTAAAG-3’ 

AtUEV1A-1 5’-cccgtcgacaATGAGTTCGGAGGAAGCCAAG-3’ 

AtUEV1A-2 5’-cccgtcgacTCACATCACACAACATTTAGC-3’ 

AtUEV1B-1 5’-cccgtcgacaATGGGTTCGGAAGAAGAGAAG-3’ 

AtUEV1B-2 5’-cccgtcgacTCACATCACGCAACATTTCACCAC-3’ 

AtUEV1C-1 5’-cccgtcgacaATGACTCTTGGCTCAGGATCG-3’ 

AtUEV1C-2 5’-cccgtcgacTTAGAAGAAAGTTCCTTCGGG-3’ 

AtUEV1D-1 5’-cccgtcgacaATGACTCTTGGCTCAGGAGG-3’ 

AtUEV1D-2 5’-cccgtcgacCTAGAAGCAAGTACCTTCCGG-3’ 

UBQ11-1 5’-CAGATTTTTGTTAAAACCCTA-3’ 

UBQ11-2 5’-CTTCTGAATGTTGTAATCC-3’ 

LB1 5’-GCGTGGACCGCTTGCTGCAACT-3’ 

4g33380-F 5’-ATGAGAAGCTGGAGGAAGC-3’ 

4g33380-R 5’-TCAAGCCGTTACAACACC-3’ 
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2.2.2 Bacterial strains, culture and storage  

The bacterial strain used in this study for protein expression was BL21-CodonPlus 

(DE3)-RIL. This strain carries extra copies of the argU, ileY and leuW tRNA genes to 

help overcome codon bias, and was purchased from Stratagene (#230245). For typical 

DNA plasmid propagation and isolation, Escherichia coli DH10B (GibcoBRL, Grand 

Island, NY, USA) was used.  Because all of the plasmids in this study contains the 

ampicillin- resistance gene β-lactamase (bla) as a selectable marker, transformed cells 

were cultured in LB liquid or agar media (1% Bacto-tryptone, 0.5% Bacto-yeast extract, 

0.5% NaCl and 1.2% agar for plates) containing 50 μg/ml of ampicillin (Amp). For short-

term storage (2 or 3 months), clones were stored on corresponding plates. For long-term 

storage, clones were grown overnight in 900 μl of LB plus Amp liquid medium, mixed 

with 100 μl of DMSO and immediately placed in a –70 ºC freezer.   

2.2.3. Preparation of competent cells  

    E. coli competent cells for electroporation were prepared as recommended in the 

Bio-Rad E. coli Pulser manual. One liter of culture was incubated until an OD600nm 

reached 0.6. The culture was centrifuged at 3500 rpm for 15 min in a Beckman GSA rotor 

and the pellet was resuspended in 500 ml of 10% ice-colded sterile glycerol. The 

centrifugation was repeated 4 times, with each pellet resuspended in a reduced volume; 

the last pellet was resuspended in 4 ml of ice-colded, sterile 10% glycerol. The cells were 

aliquoted into 1.5 ml eppendorf tubes to a volume of 25 μl, and were quickly placed in the 

–70 ºC freezer for storage.  
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2.2.4. Bacterial transformation  

   All bacterial transformations in this study were carried out by the electroporation 

method. The plasmids were added to E. coli competent cells and the cell mixture was 

transferred to a pre-chilled electroporation cuvette (BioRad). After a brief incubation on 

ice, the cells were exposed to a voltage of 1.8 kV (for cuvettes with 0.1 mm width) using 

the E. coli Pulser (BioRad). 500 μl of SOC medium was added to the cuvette after 

electroporation. The cells were transferred to a 1.5 ml eppendorf tube, incubated at 37 ºC 

for 45 min and spread on LB + Amp plates and incubated at 37 ºC overnight for single 

colonies.  

2.2.5 Rapid preparation of plasmid DNA  

             Plasmid amplification and isolation was performed following the methods 

described in by (Maniatis, 1982). Single colonies were used to inoculate 2 ml LB + Amp 

liquid medium and grown overnight at 37 ºC. Cells were collected by centrifugation and 

the pellet was resuspended in 350 μl of STET (8% sucrose, 0.5% Triton X-100, 50 mM 

EDTA pH 8.0, 10 mM Tris-HCl pH 8.0). After mixing with 20 μl of lysozyme (10 

mg/ml; Sigma, St Louis MI), the mixture was quickly placed in a boiling water-bath for 

40 sec, followed by centrifugation for 10 min. The pellet was removed with a toothpick, 

and 8 μl of 5 M NaCl and 2 volumes of 95% ethanol were added to precipitate the DNA. 

After centrifugation, the pellet was resuspended in 30 µl double-distilled water (ddH2O). 
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2.2.6 DNA gel electrophoresis 

 Plasmid DNA and DNA fragments were separated by agarose gel electrophoresis. 

The proper amount of agarose was added to the appropriate 1 x TAE buffer (40 mM Tris-

acetate, 2 mM Na2EDTA) to make a gel of 0.6-1% agarose. The gel was loaded into an 

electrophoresis apparatus filled with 1X TAE buffer and a current of <100 mA was 

allowed until the proper migration distance was attained. Gels were stained in 0.5 µg/ml 

ethidium bromide for 5-10 min and the DNA was viewed using a UV trans-illuminator. 

2.2.7 DNA fragment isolation 

DNA fragment isolation from an agarose gel was adapted from the Wang and 

Rossman method (Wang and Rossman,1994). After enzyme digestion, the sample was 

electrophoresed through 0.6% agarose gel and stained with EtBr. The band of interest was 

identified using an UV-illuminator and cut out of the gel. A 0.5 ml microcentrifuge tube 

was pierced at the bottom, and packed with chopped cheesecloth. The gel slice containing 

the DNA fragment was placed into the prepared tube, which was inserted into 1.5 ml 

tube, left it at –70 ºC for a minimum of 20 min and spun for 10 min at top speed. The flow 

through was extracted with an equal volume of phenol/chloroform (1:1) and then with 

chloroform. The DNA in the upper aqueous phase was precipitated by ethanol and 

resuspended in 50 ul ddH2O.  

2.2.8 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used to amplify DNA fragments for the 

purposes of cloning and other analyses. PCR mixtures were created using the recipe 
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guidelines in the instruction manual for Pfu Turbo DNA polymerase (Strategene, 

#600250), which was used in all reactions. A PTC-100 programmable thermocycle (MJ 

Research, Inc., Watertown, MA) was used to carry out the various amplifications. As a 

program guideline, a denaturing temperature of 94°C for one min was followed by an 

annealing temperature of 55°C for 45 sec, and primer extension was carried out at 72°C 

for 1 min per kilobase of DNA to be amplified. These three steps were repeated 29 times 

for a total of 30 cycles.   

2.2.9 DNA sequencing  

DNA sequencing was performed by the DNA sequencing laboratory in the Plant 

Biotechnology Institute, National Research Council of Canada, Saskatoon. 

2.2.10 Recombinant protein over expression and purification 

2.2.10.1 Induction of gene expression 

pGEX6-AtUBC13A, pGEX-AtUEV1A, pGEX-AtUEV1B, pGEX-AtUEV1C and 

pGEX-AtUEV1D as well as pGEX-hMms2 were used to transform in to the protein 

expressing BL21(DE3)-RIL cells and grown overnight at 37 °C in the LB + Amp medium, 

then sub-cultured 1:50 into pre-warmed LB + Amp the following day. Cells were allowed 

to grow continuously to OD 600 nm between 0.6 and 0.8, induced with 0.5 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) for 2 h, harvested by centrifugation at 8,000 

rpm in an Avanti Beckman JA10.5 rotor and stored at -70 ºC. 
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2.2.10.2 Preparation of cell extract 

The harvested cells were resuspended in phosphate-buffered saline (PBS, 140 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3). Crude extracts were 

generated by passing the cells through a French Press at 10,000 psi. The soluble fraction 

was retained after centrifugation at 17,000 rpm in an Avanti Beckman JA17 rotor for 30 

min. The soluble fraction was then run through a chromatography system for purification. 

2.2.10.3 Chromatography 

All following steps were carried out at 4 °C. Soluble extracts were passed through 

a pre-packed 5 ml GSTrap column (GE Healthcare, #17-5131-01), which was then 

washed with at least 5 column volumes of 1X PBS. GST-fusion proteins were eluted with 

reduced glutathione elution buffer (10 mM glutathione in 50 mM Tris-HCl, pH 8.0) and 

dialyzed extensively against cleavage buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM 

EDTA, 1 mM dithiothreitol, pH 7.0). If protein purity was not sufficient, the above 

purification steps were repeated. When needed, cleavage was performed by the addition 

of 2 units of Prescission Protease (GE Healthcare, #27-0843-01) per mg of fusion protein, 

followed by a16-h incubation at 4°C with gentle rocking. Cleaved proteins were applied 

to a GSTrap column in order to remove the GST component from the cleaved protein of 

interest. When necessary, proteins were concentrated in Amicon Ultra centrifugal 54 filter 

devices. Protein concentrations were determined using the BCA Protein Assay Kit 

(Pierce, #23227) according to the instruction manual. Purified proteins were kept at 4°C 

for short-term use, or placed into <500 μl aliquots, frozen quickly and kept at -70°C for 

long-term storage.  
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2.2.11 GST pull-down assays  

GST pull-downs were performed using MicroSpin GST Purification Modules (GE 

Healthcare, #27-4570-03). The purpose of this assay was to test the interaction between 

AtUbc13 and AtUev1A, AtUev1B, AtUev1C, AtUev1D as well as human Mms2. Fifty 

microliters of purified GST and GST fusion proteins in 1X PBS were loaded and 

incubated in the purification module for 1 h at 4°C with gentle rocking. The module was 

then washed three times with 500 μl PBS. Subsequently, 50 μg of purified, non-fused 

AtUbc13 in 1X PBS was added to the module separately and the incubation was 

continued for another hour at 4°C. The module was washed again three times with 500 μl 

PBS and 80 μl of reduced glutathione elution buffer was then added to elute the affinity-

purified proteins. Eluted samples were subjected to SDS-PAGE and visualized by 

Coomassie Blue staining.  

2.2.12 Ub Conjugation Reaction 

           In vitro Ub conjugation reactions were performed using the purified Ubc13A and 

GST-Uev1 proteins as described above, and Ub thioester/conjugation initiation reagents 

were purchased from Boston Biochem. Unless noted otherwise, the 20-ml reaction 

mixture contained 225 nM E1 enzyme, 450 mM Ub, 1 mM MgATP, 1 mM Ubc13, and 1 

mM Uev1 in the supplied reaction buffer. The K63R and K48R mutant Ub proteins were 

purchased from Boston Biochem (UM-K63R and UM-K48R). The conjugation reactions 

were performed at 37°C for 2 h. Samples were subjected to SDS-PAGE (12%), and Ub 

and poly-Ub were detected through protein gel blots using polyclonal rabbit anti-Ub 

antibodies (Sigma-Aldrich). 
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2.3 Yeast genetic analyses 

2.3.1 Yeast strains and cell culture  

The haploid yeast strains used in this study are listed in Table 2.2. Yeast cells 

were grown at 30 ºC in either rich YPD (1% Bacto-yeast extract, 2% Bacto-peptone and 

2% glucose) or in a synthetic dextrose (SD) medium (0.67% Bacto-yeast nitrogen base 

without amino acids, 2% glucose) supplemented with necessary nutrients including 30 

mg/L L-isoleucine, 150 mg/L L-valine, 20 mg/L adenine hemisulfate salt, 20 mg/L 

arginine HCl, 20 mg/L L-histidine HCl monohydrate, 100 mg/L L-leucine, 30 mg/L 

lysine HCl, 20 mg/L L-methionine, 50 mg/L L-phenylalanine, 200 mg/L L-threonine, 20 

mg/L L-tryptophan, 30 mg/L L-tyrosine, 20 mg/L L-uracil as recommended (Sherman, 

1983). Any of the above auxotrophic supplements can be omitted to provide a selection 

medium for yeast transformation. The auxotrophic supplements were made in 100 × 

stocks and added into culture media prior to autoclaving. To make plates, 2% agar was 

added to either YPD or SD medium prior to autoclaving. Yeast cells can be stored up to 

four months on plates sealed with parafilm at 4 ºC. For long-term storage, yeast cells were 

grown in an appropriate liquid medium (rich or minimal selective) at 30 ºC overnight. For 

storage, 0.7 ml of the culture was added into 0.3 ml of 50% sterile glycerol, mixed and 

stored at -70 ºC. For preparing MMS (Methyl methanesulfonate) special media, MMS 

(Aldrich, Milwaukee, USA) was added immediately before pouring the plates. In order to 

avoid MMS degradation, MMS plates were usually freshly made and never stored for 

more than one day before using.  
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Table 2-2 Saccharomyces cerevisiae strains 

Strain Genotype   Source 

PJ69-4A MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ  gal80Δ 
Met2::GAL7-lacZ LYS2::GAL1-HIS3 GAL2-ADE2 

  P. James 
University of 
Wisconsin 

HK580-10D MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1   H. Klein 
New York 
University  

WXY942 HK580-10D with mms2 Δ::HIS3   Lab stock 

WXY955 HK580-10D with mms2 Δ::HIS3 ubc13 Δ::hisG-URA3-hisG   This study 

DBY747 MATa his3-1 leu2-3,112 trp1-289 ura3-52  D. Botstein 
 Preston  
University 

WXY642 DBY747 with mms2 Δ ::HIS3  Lab stock 

WXY904 HK578-10D with ubc13 Δ::HIS3  This study 

WXY1233 HK578-10D with rev3 Δ ::hisG-URA3-hisG  This study 

WXY921 HK578-10D with ubc13 Δ::HIS3 rev3 Δ::hisG-URA3-hisG  This study 

WXY849 DBY747 with ubc13 Δ::HIS3  This study 
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2.3.2. Yeast transformation  

Yeast cells were transformed using a dimethyl sulfoxide (DMSO)-enhanced 

method as described (Hill et al., 1991). A 2 ml culture of yeast cells was grown overnight 

at 30 ºC in a rich YPD medium (or appropriate minimal media), and sub-cultured into 3 

ml of fresh YPD and grown for 3-4 hs, yeast cells would reach a mid-logarithmic phase of 

growth. Yeast cells were precipitated by centrifugation, washed in 400 μl LiOAc solution 

(0.1 M lithium acetate, 10 mM Tris-HCl (PH 8.0), 1 mM EDTA), and resuspended in 100 

μl of the same solution. 5 μl of denatured carrier DNA (single-stranded salmon sperm 

DNA) and 1-5 μl of transforming DNA were added and mixed well. After incubation at 

room temperature for 5 minutes, 280 μl of 50% PEG4000 (50% polyethylene glycol 4000 

in LiOAc solution) was added and mixed by inverting the tube 4-6 times. After the 

transformation mixture was incubated for 30 minutes at 30 ºC, 40 μl of DMSO was added, 

followed by a 5-minute heat shock in a 42 ºC water bath. Yeast cells were then washed 

with sterile ddH2O and resuspended in 100 μl of ddH2O. The resuspended cells were 

plated on an appropriate minimal medium and the plates were incubated at 30°C for 3 

days to allow colony formation. 

2.3.3 Yeast two-hybrid analysis 

The yeast two-hybrid strain PJ69-4A (James et al., 1996), received from Dr. P. 

James (University of Wisconsin, Madison, USA), was co-transformed with different 

combinations of Gal4BD and Gal4AD constructs. The co-transformed colonies were 

initially selected on SD-Leu-Trp plates. For each transformation, at least five independent 

colonies were grown in SD-Leu-Trp plates and then replica plated onto either SD-Leu-
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Trp-His alone or SD-Leu-Trp-His with various concentrations of 1,2,4-amino triazole (3-

AT) to test the activation of the PGAL1-HIS3 reporter gene, or SD-Ade to test the activation 

of the PGAL1-ADE reporter gene. Plates were incubated for 48 hours at 30°C unless 

otherwise indicated. 

2.3.4 Functional complementation assays  

Gradient plate assays were performed for the semi-quantitative measurement of 

yeast cell sensitivity to MMS. At least three independent colonies from different 

transformants for each strain were individually inoculated into 1 ml of SD minimal 

media. Following an overnight incubation, cell density was determined and equal 

numbers of cells from the transformants as well as untransformed controls were imprinted 

onto YPD alone or YPD gradient plates containing 0.025% MMS. An MMS gradient was 

formed by pouring 30 ml of YPD + MMS medium in a tilted square petri dish. The petri 

dish was placed flat after solidification and a top layer of 30 ml YPD was poured. 0.1 ml 

of overnight culture, mixed with 0.4 ml sterile water and 0.5 ml of molten YPD agar was 

printed onto the plates using a sterile microscope slide. Plates were incubated at 30 °C for 

the given time before taking photograph. 

2.3.5 Spontaneous mutagenesis assay 

Spontaneous Trp+ reversion rates of DBY747 derivatives were measured by a 

modified Luria and Delbruck fluctuation test as described (Von Borstel, 1978). The trp1-

289 amber mutant can be reverted to Trp+ by several different mutation events (Xiao and 

Samson, 1993). WXY849 was transformed with pGAD-AtUBC13A, pGAD-AtUBC13B or 
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the vector pGAD424E, and WXY642 was transformed with pGAD-AtUEV1A, pGAD-

AtUEV1B, pGAD-AtUEV1C, pGAD-AtUEV1D or pGAD424E. Transformants were 

selected on SD-Leu plates. Each set of experiments contained five independent cultures of 

each strain. Overnight yeast cultures were counted using a hemocytometer and 5 ml of 

YPD liquid medium was inoculated to a final concentration of 20 cells/ml and incubated 

at 30 °C until the cell titer reached 2x107 cells/ml. Cells were spun down at 4000 rpm, 

resuspended in sterile ddH2O and plated onto YPD in duplicate to score total survivors 

and onto SD-Trp plates to score Trp+ revertants. Spontaneous mutation rates (number of 

revertants per cell per generation) were calculated as previously described (Williamson et 

al., 1985). The following formula was used to calculate the frequency of spontaneous 

mutagenesis: 

          Frequency (F) = total cell number of TRP+ cells / total number of viable cells 

To calculate the rate of spontaneous mutagenesis, the following formula was used: 

          Rate = 0.4343 x Frequency / log (total cell number) – log (initial cell number) 

The formula was derived to determine mutation rate for a replication system, where 

0.4343 is approximately log10 e. 
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CHAPTER THREE 

ARABIDOPSIS THALIANA UEV1D PROMOTES LYS63–LINKED 

POLYUBIQUITINATION AND IS INVOVLED IN DNA DAMAGE RESPONSE 

3.1 Introduction 

Cellular DNA is subject to assaults by environmental factors and endogenous 

metabolites. The alteration of DNA can lead to mutations, genome rearrangements, and 

cell death (Friedberg et al., 2006a). To maintain genome integrity, all living organisms 

have evolved a variety of DNA repair mechanisms to protect cells from DNA damage. 

However, despite great advances made during the last decade in the field of DNA repair 

and mutagenesis, the molecular mechanisms of DNA damage tolerance (DDT) in 

eukaryotes, especially in multicellular eukaryotes, have not yet been well characterized. 

In the lower eukaryote Saccharomyces cerevisiae, a DDT process known as DNA 

postreplication repair (PRR) facilitates DNA synthesis in the presence of replication 

blocking lesions in the template. PRR consists of two branches: an error-prone 

(mutagenesis) branch and an error-free branch. The error-prone branch is mediated by 

specialized DNA polymerases, including Polz (Rev3 þ Rev7), Polh, and Rev1, which are 

required for translesion DNA synthesis (TLS). By contrast, the error-free branch is 

mediated by the ubiquitin (Ub)-conjugating enzyme (Ubc or E2)–Ubc variant (Uev) 

complex Ubc13-Mms2 (for methyl methanesulfonate2), which acts to prevent 

spontaneous and DNA damage–induced mutagenesis (Barbour and Xiao, 2003; 
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Broomfield et al., 2001). It is now clear that yeast PRR is accomplished by Mms2-Ubc13-

Rad5 complex polyubiquitinates Pol30 through Lys63–linked chains (Hoege et al., 2002). 

Ubc13 and Uev homologs are found in all eukaryotes examined to date (Pastushok and 

Xiao, 2004; Villalobo et al., 2002), However, the functions of these proteins remain 

uncharacterized in a multicellular organism. It is reported that Arabidopsis thaliana genes 

such as REV3 (Sakamoto et al., 2003), REV1, REV7 (Takahashi et al., 2005), POLK 

(Garcia-Ortiz et al., 2004), and POLH (Curtis and Hays, 2007) are involved in TLS and 

TLS appears to play an important role in the tolerance of DNA damage in plants. In this 

chapter, we describe the molecular cloning and functional characterization of four 

Arabidopsis thaliana UEV1 genes and report a case of mutant phenotypes in DNA 

damage response when one of the UEV1 genes is inactivated. 

3.2 Results 

3.2.1 Isolation of Arabidopsis thaliana UEV1 genes  

To identify Arabidopsis thaliana UEV1 genes, a human Mms2 sequence (Xiao et 

al., 1998) was used to search for homologs in the Arabidopsis thaliana protein database 

(through The Arabidopsis Information Resource [TAIR]: www.arabidopsis.org). Four 

hypothetical proteins with a high degree of similarity (E-values < 2e-38) were found and 

named AtUEV1A (At1g23260), AtUEV1B (At1g70660), AtUEV1C (At2g36060), and 

AtUEV1D (At3g52560). The genomic structures of these four corresponding UEV1 genes 

are shown in Figure 3-1A. AtUEV1A and AtUEV1B have the same number of exons and 

introns, and their exon–intron junctions are identical. AtUEV1B has shorter intron 

sequences than AtUEV1A. Similarly, AtUEV1C and AtUEV1D have the same numbers of 
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exons and introns, the same exon–intron junctions, and all introns in AtUEV1D are longer 

than those in AtUEV1C. Nucleotide sequence alignment of AtUEV1 open reading frames 

(ORFs) reveals 86% identity between AtUEV1A and AtUEV1B and 88% identity between 

AtUEV1C and AtUEV1D. Based on the above analyses, we predicted that the four UEV1 

genes resulted from two separate gene duplication events. This agrees with a duplication 

mapping analysis (http://wolfe.gen.tcd.ie.athal/dup)(Blanc et al., 2003). Further 

nucleotide sequence analysis of four AtUEV1 promoter and downstream sequences do not 

reveal significant similarity between the two pairs of duplicated genes, indicating that 

they were derived from segmental duplications. This is consistent with database analysis 

(http://www.tigr.org/tdb/e2k1/athl/athl.shtml), suggesting that their expression profiles 

may be different. All four AtUEV1 ORFs were cloned from Arabidopsis thaliana by RT-

PCR using gene-specific primers (the work was done by Dr. Genyi Li in Dr. Wang’s 

Lab). The nucleotide sequences were identical to the annotated complete coding 

sequences in the Arabidopsis thaliana database. The predicted AtUev1A, AtUev1B, 

AtUev1C, and AtUev1D proteins contain 158, 159, 145, and 146 amino acids, 

respectively, with differences in length primarily at the C terminus. AtUev1A and 

AtUev1B contain C-terminal tails not found in other Uevs (Figure 3-1B). Amino acid 

sequence alignment (Figure 3-1B) shows 86% identity between AtUev1A and AtUev1B 

and 92% identity between AtUev1C and AtUev1D, whereas amino acid sequence identity 

between AtUev1A and AtUev1C is 75%. The sequences of AtUev1 proteins were also 

aligned with those of Uev proteins from six other eukaryotic organisms, including human. 

As shown in Figure 3-1B, amino acid sequence identity between AtUev1s and those from 

other six species ranges from 47% to 56%, and similarity ranges from 65% to 75%. 
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Furthermore, several critical residues implicated in Uev activity are also conserved in 

AtUev1s. These residues include Phe-13 of HsMms2 required for physical interaction 

with Ubc13 (Pastushok et al., 2005) and Ser-32 and Ile-62 of HsMms2 (Pastushok et al., 

2007) and the corresponding Ser-27 (Eddins et al., 2006) and Ile-57 (Tsui et al., 2005) of 

ScMms2 required for noncovalent interaction with Ub and polyubiquitin chain assembly. 

It is noted that mammals also contain two Uev proteins, Mms2 and Uev1A, with >91% 

amino acid sequence identity in their core domains (Franko et al., 2001; Xiao et al., 

1998). Amino acid sequence comparison could not assign lineage between the two pairs 

of AtUev1 proteins and the mammalian Uevs, indicating that plant and animal Uevs 

evolved independently within their own kingdoms. 
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Figure 3-1 Sequence analysis of AtUEV1 genes and their products.  

(A) Genomic organization of UEV1. Open boxes, untranslated region; closed boxes, 

coding regions; solid lines, introns; dotted lines, identical intron–exon alignment between 

different UEV1 genes.  

(B) Amino acid sequence alignment of AtUev1 and Uevs from six other organisms.  The 

sequences were aligned and edited using a BioEdit program version 5.0.9 (Hall, 1999).  

Residues are highlighted when 50% of them are identical. Critical residues for Mms2/Uev 

functions are indicated with asterisks underneath the residue. The GenBank accession 

numbers for different organisms are: Sc, S. cerevisiae (NP_011428.1); Sp, 

Schizosaccharomyces pombe (NP_588162.1); Dm, Drosophila melanogaster 

(NP_647959.1); Mm, Mus musculus (NP_076074.2); At, Arabidopsis thaliana, 

AtUev1A=NP_565834.1, AtUev1B=NP_564994.1, AtUev1C=NP_850259.1, 

AtUev1D=NP_566968.1; Ce, Caenorhabditis elegans (NP_493578.1); Hs, Homo 

sapiens, hMms2=NP_003341.1, hUev1A= NP_068823.2.  

 

 

 

 

 

 



In addition, phylogenetic analysis was performed on AtUev1s in relation to 

Uevs from model organisms (Figure 3-2) as well as with known genomic sequence from 

other plant species. This analysis revealed that plant UEV1 genes evolved from a common 

UEV1/MMS2 ancestor, which were duplicated and further evolved within each species. 

Hence, it would be of great interest to examine whether or how functions have evolved in 

the UEV family of genes. 
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Figure 3-2 Phylogenetic analyses of hypothetical Uev family proteins from different 

organisms. The similarity clustering was conducted by using MEGA version 3 (Tamura et 

al., 2007). High similarity is indicated by the short branch length between any two 

sequences. Source of sequences: O. sativa Uev1A: NP_001054312.1; Uev1B:  

NP_001062804.1; Uev1C: NP_001051063.1 and Uev1D: NP_001067224.1. Poplar 

(Populus trichocarpa) Uev1A: CX655441; Uev1B: AJ767274, Uev1C: DT525203 and 

Uev4: BU894366. The above gene names are arbitrary for the purpose of comparison 

only. 
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3.2.2   Physical interaction of AtUev1 with Ubc13 from different species 

Both yeast and human Uevs play an essential role in Ubc13-mediated Lys63–

linked polyubiquitination, and the prerequisite of this activity is that the Uev has to form a 

stable complex with Ubc13 (Hofmann and Pickart, 1999, 2001; McKenna et al., 2001). In 

order to detect this interaction, a yeast two hybrid assay (Fields and Song, 1989) between 

the cloned AtUEV1s and UBC13 genes from different species was carried out. This work 

was done by Dr. Xiaoqin Lai in Dr. Xiao’s Lab. All four AtUev1 proteins were able to 

interact with either AtUbc13A or AtUbc13B; however, the strength of interaction appears 

to be different. AtUev1A and AtUev1B gave positive results with AtUbc13s under high 

stringency (SD-Ade for 3 d), but AtUev1C and AtUev1D gave weak and no interaction, 

respectively, under the same conditions (Figure 3-3A). Nevertheless, all of the above 

interactions are robust and deemed strong, as none of the negative controls reveals 

positive interactions under low stringency and many bona fide positive interactions may 

not survive as low as 1 mM 1, 2, 4-aminotriazole concentration under the same 

experimental conditions. The AtUEV1D-4 clone was identified among initial AtUEV1D 

clones; its ORF contains a three-nucleotide (GTA) insertion at position 175 that would 

encode the additional amino acid Val. This has been predicted to be a splicing variant of 

AtUEV1D (At3g52560.2) in the Arabidopsis genome database. AtUev1D-4 appears to be 

able to interact with Ubc13, albeit at a reduced affinity compared with Uev1D (Figure 3-

3A). The physiological significance of this variant has yet to be investigated. In addition, 

the yeast two-hybrid analyses showed that all four AtUev1 proteins are able to physically 

interact with Ubc13 from yeast or human, and the strength of interaction follows the trend 

AtUev1A >AtUev1B > AtUev1C > AtUev1D (Figure 3-3B and Figure 3-3C).  
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Figure 3-3 Physical interactions between Ubc13 and Uev1 in a yeast two-hybrid assay.  

(A) The PJ69-4A transformants carrying one Gal4AD (from pGAD424) and one Gal4BD 

(from pGBT9) were replicated onto various plates as indicated and incubated for 3 d or as 

specified before being photographed. The result is representative of at least five 

independent transformants from each treatment.  

(B) Physical interactions between AtUev1A/D, and Ubc13 from yeast or human in a yeast 

two-hybrid assay. Experimental conditions were the same as in (A). (C) Physical 

interactions between AtUev1B/C and Ubc13 from yeast or human in a yeast two-hybrid 

assay. Experimental conditions were the same as in (A). 
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To further confirm the physical interaction between AtUev1 and AtUbc13 in vitro, a 

glutathione S-transferase (GST)–affinity pull-down assay was conducted. As shown in 

Figure 3-4A, purified GST-Uev1A (lane 6) and GST-Uev1D (lane 7) are able to 

specifically interact with AtUbc13A. As a negative control, GST alone (lane 5) did not 

bind to AtUbc13A under the same experimental conditions. Similar results were also 

obtained with AtUev1B and AtUev1C (Figure 3-4B). Hence, all four AtUev1 proteins are 

able to form stable heterodimers with AtUbc13.  
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Figure 3-4 Protein interactions between Uev1A/D, Uev1B/C and Ubc13 by an affinity 

pulldown assay. Purified GST (lane 2 in A and B), GST-Uev1A, GST-Uev1B (lane 3 in 

A and B), or GST-Uev1D, GST-Uev1C (lane 4 in A and B) were added to GST microspin 

columns. Following incubation, the columns were spun and washed, and purified Ubc13A 

was added to the column. After reincubation and washing, the column contents were 

eluted with reduced glutathione, followed by SDS-PAGE gel analysis. Lanes 1 to 4 

contain purified input proteins as indicated at top. Lanes 5, 6 and 7 show the eluent from 

the column preloaded with GST (lane 5) and GST-Uev1A/B (lane 6) and GST-Uev1D/C 

(lane 7). Note that spontaneous cleavage occurred in the four GST-Uev1 protein samples 

(lanes 3 and 4 in A and B). 
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3.2.3 Uev1 is required for Ubc13-mediated Lys63–linked polyubiquitination in vitro 

It has been reported that yeast and human Ubc13s are bona fide E2 enzymes 

capable of forming active-site thioesters with Ub, and a Uev is absolutely required for Ub 

chain assembly. Furthermore, these chains are linked through Lys63 instead of the 

conventional Lys48 linkages (Hofmann and Pickart, 1999, 2001; McKenna et al., 2001)  

That the cloning and characterization of the AtUBC13 genes was previously reported 

(Wen et al., 2006). With the cloning of the UEV1 genes in this study, we were able to ask 

whether Ubc13 requires Uev1 for the assembly of Lys63– linked poly-Ub chains and this 

work was done by Dr. Landon Pastushok in Dr. Xiao’s Lab. As shown in Figures 3-5A 

and 3-5B, Uev1A/1B and Uev1D/1C alone cannot generate free poly-Ub chains (lanes 2 

and 6 in Figures 3-5A and 3-5B, respectively). Ubc13A with Uev1A/B (lane 3 in Figure 

3-5A and 3-5B) and Uev1D/C (lane 7 in Figures 3-5A and 3-5B) can generate di- and tri-

Ub chains. Furthermore, the poly-Ub chains generated are linked through Lys63, since 

poly-Ub conjugates were not detected when using a Ub-K63R mutant that lacks Lys63 

(lanes 4 and 8 in Figure 3-5A and 3-5B), but were detected when using the Ub-K48R 

mutant that lacks the predominant Lys48 residue for conjugation but retains Lys63 (lanes 

5 and 9 in Figure 3-5A and  3-5B).  

 

 

 

 

 



 

 

Figure 3-5 Ub conjugation by Arabidopsis thaliana Ubc13, Uev1A, Uev1D, Uev1B and 

Uev1C. An in vitro Ub conjugation assay was performed using purified proteins as 

indicated. Assay samples were subjected to SDS-PAGE, and a protein gel blot using an 

anti-Ub antibody was assayed to monitor poly-Ub formation. The low background of 

spontaneously formed di-Ub in the absence of E2 or Uev (lanes 1, 2, and 6 in A and B) is 

commonly observed in these reactions (McKenna et al., 2001). 
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3.2.4 AtUEV1 genes functionally complement yeast mms2 null mutants 

Yeast MMS2 is a member of the error-free DDT pathway and plays an important 

role in protecting yeast cells from mutagenesis and cell death caused by DNA-damaging 

agents (Broomfield et al., 1998). Therefore a yeast killing (work done by Lindsay Pelzer 

in Dr. Xiao’s Lab) and spontaneous mutagenesis assays were performed to determine 

whether AtUEV1 could functionally complement the error-free PRR defect in the yeast. 

Any one of the AtUEV1 genes from the yeast two-hybrid plasmid rescued the mms2 

mutant from killing by MMS to a level comparable to that in wild type cells, whereas 

mms2 mutant cells transformed with the vector alone did not acquire any MMS 

resistance. It is interesting that the AtUEV1D-4 clone also provides protection to mms2 

cells, albeit at a slightly reduced level (Figure 3-6A). The complementation of yeast mms2 

relies on heterodimer formation between AtUev1 and yeast Ubc13. In order to assess in 

vivo complex formation and functions between Arabidopsis thaliana Uev1 and Ubc13, 

yeast mms2ubc13 double mutant was created and co-transformed with AtUEV1 and 

AtUBC13. When the double mutant cells were transformed with only AtUBC13 or 

AtUEV1, the transformed cells did not display enhanced resistance to MMS (Figures 3-6B 

and 3-6C), indicating that both Ubc13 and a Uev are required for the DDT function. 

Interestingly, when combined with AtUBC13, AtUEV1C and AtUEV1D completely 

restored the MMS resistance to the wild type level, whereas AtUEV1A and AtUEV1B 

barely rescued the host cells (Figures 3-6B and 3-6C). This result is in sharp contrast with 

the observations that all AtUEV1s functioned equally well in the complementation of 

yeast mms2 single mutant (Figure 3-6A) and that Uev1A/B displayed higher binding 
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capacity to Ubc13A/Ubc13B than those of Uev1C/D in yeast two-hybrid assays (Figure 

3-3A). One of the most astonishing phenotypes of a yeast mms2 (Broomfield et al., 1998) 

or ubc13 (Brusky et al., 2000) mutant is its massive increase in spontaneous mutagenesis, 

indicating that these genes play an important role in protecting cells from genome 

instability. Indeed, in this experiment, the mms2 mutant strain showed an increase of >20-

fold in spontaneous mutagenesis compared with wild type cells (Table 3-1). When the 

same mms2 mutant was transformed with a plasmid expressing an AtUEV1, the 

spontaneous mutation rate was reduced to a level similar to that of the wild type cells. 

Again, AtUEV1C and AtUEV1D appear to be more effective than AtUEV1A and 

AtUEV1B in limiting mutagenesis. Collectively, the results obtained from the yeast 

complementation experiments suggest that AtUEV1 genes are able to replace the PRR 

function of yeast MMS2 and that AtUEV1C and AtUEV1D are more efficient than 

AtUEV1A and AtUEV1B in such a function in Arabidopsis thaliana. 
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Figure 3-6 Complementations of yeast mms2 mutants by AtUEV1 

(A) Complementation of the mms2 single mutant by AtUEV1. WXY942 (mms2∆) 

transformants were grown overnight and printed onto YPD and YPD+0.025% MMS 

gradient plates. The plates were incubated at 30
 
ºC for 2 d before being photographed. The 

arrow indicates higher MMS concentrations. Several transformants of each treatment 

were tested with the same result, and only one is shown here.  

(B, C) Complementations of the mms2 ubc13 double mutant (WXY955) by AtUEV1A, 

AtUEV1D, AtUEV1B, AtUEV1C and AtUBC13. Experimental conditions were the same 

as in (A). 
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Table 3-1    Effects of AtUEV1 on the Spontaneous Mutation Rate of the 

S. cerevisiae mms2 Mutant 

       Straina   Key Alleles Rate (X10-8)b     Foldc 

      DBY747    Wild type     3.2 ± 0.18     1.00 

WXY642/pGAD424     mms2 Δ   70.2 ± 7.96     22.10 

WXY642/AtUEV1A mms2 Δ AtUEV1A     8.1 ± 0.16      2.53 

WXY642/AtUEV1B mms2 Δ AtUEV1B     7.1 ± 0.13      2.22 

WXY642/AtUEV1C mms2 Δ AtUEV1C     5.3 ± 0.98      1.66 

WXY642/AtUEV1D mms2 Δ AtUEV1D     4.9 ± 0.56      1.53 

 

a All strains are isogenic derivatives of DBY747. 

    b The spontaneous mutation rates are the average of three independent experiments with 

standard deviations. 

c Relative to the wild-type mutation rate. 



79 

 

3.2.5 AtUEV1 expression in different tissues and under stresses 

Since UEV1 is presumed to be involved in DDT and the ubiquitination process is 

often involved in stress responses, the UEV1 expression under various stress conditions 

have been analyzed. Arabidopsis thaliana cell suspension culture was subjected to 

treatments as indicated and total RNA was isolated for RNA gel blot hybridization. The 

results from samples of 24-h treatments are presented in Figure 3-7A. It appears that 

UEV1 expression is decreased after treatment with MMS or H2O2 and increased after 

treatment with abscisic acid or mannitol, although for the latter two treatments, the 

transcript level of the control UBQ11 was also higher. Since all four UEV1 genes share 

>72% nucleotide sequence identity in their core coding region and all four predicted 

transcripts are similar in size,  it is suspected that the UEV1C probe used for RNA gel blot 

hybridization actually detected all four UEV1 transcripts. Given the fact that the two 

human Uev homologs (UEV1A and hMMS2) play distinct roles in cellular metabolism 

(Andersen et al., 2005) and the observation in this study that the two pairs of UEV1 genes 

may function differently, it is important to assess the expression of individual UEV1 

genes, to fulfill this objective, the existing microarray data (available from www. 

Arabidopsis.org) for individual UEV1 gene expression profiles have been analyzed and 

found no evidence of strong stress responses after treatment of Arabidopsis thaliana 

plants (Figure 3-7B). This analysis suggests that various environmental stresses used in 

this study have little effect on the expression of UEV1 genes at the transcriptional level. 

The expression of UEV1 genes in different tissues was also determined by RNA gel blot 

hybridization (Figure 3-7C) and by analyzing the microarray data (Figure 3-8A, this work 
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done by Dr. J. Antonio Torres-Acosta in Dr. Wang’s Lab). While most tissues express 

variable levels of each UEV1 transcript, UEV1D appears to show a higher level of 

expression than the other three UEV1 genes in most tissues examined (Figure 3-8A). 

Greater differences in transcript levels of the UEV1 genes were found in samples from 

pollen and geminating seeds. The microarray data indicated that 3 h after seed 

germination, the expression of UEV1C and UEV1D was much higher than that of UEV1A 

and UEV1B and that UEV1D was essentially the only UEV1 transcript detected from 

pollen. To validate the microarray data, Dr. J. Antonio Torres-Acosta and I performed 

RT-PCR with various tissues, including germinating seeds and pollen. Under the 

conditions used, the amount of PCR product was not excessive and was deemed to reflect 

the amount of cDNA template. Representative results were shown in Figure 3-8B and 

summarized as follows. Firstly, all four UEV1 genes were indeed expressed in most 

common tissues, such as root, shoot, leaf and stem. Secondly, only UEV1D transcript was 

detectable in pollen under our experimental conditions, consistent with the microarray 

data. Thirdly, 6 h after seed germination, all transcripts except for UEV1B were detected, 

while after 2 d of seed germination, only UEV1A and UEV1D transcripts were found, 

with UEV1D at a clearly higher level than UEV1A. Microarray data show little expression 

of UEV1A in 3-h germinating seeds, but we consistently observed UEV1A transcript by 

PT-PCR in the sample used. These differences may result from the conditions used in the 

microarray experiments and in this study. 
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Figure 3-7 AtUEV1 expression profiles 

(A) Northern hybridization measuring AtUEV1 transcript levels from cell suspension 

culture under 24-h stress. Each lane contains 15 µg of total RNA from different samples. 

The treatments were: CK, control; NaCl, 300 mM; ABA, 20uM (+)-abscisic acid; 

mannitol, 400 mM; H2O2, 20 mM; 5 ºC, low temperature; and MMS, 0.01%. Abnormal 

rRNA profile after H2O2 treatment was repeatedly observed. 

(B) Graphic presentation of data extracted from microarray analyses in 

www.arabidopsis.org and expressed as relative levels to the untreated control. Tissue 

sources (except ABA): open bars, shoots; solid bars, roots. The conditions for the 

treatments and source of information (TAIR accession No.) were: NaCl, 150 mM 

(1007966888); ABA, 10 µM (1007964750); mannitol, 300 mM (1007966835) for 

osmotic stress; methyl viologen, 10 µM (1007966941) for oxidative stress; 5 ºC 

(1007966553) for cold stress; and bleomycin (1.5 µg/ml) plus mitomycin (22 µg/ml) 

(1007966782) for genotoxic treatment. All treatments were for 24 h except for ABA 

treatments, which were seedlings treated for 1 h (open bars) and 3 h (solid bars).  

(C) Measuring UEV1 transcript levels from different tissues by Northern hybridization. 

Each lane contains 20 µg of total RNA from different tissues: C, cell suspension culture; 

S, shoot of 13-day seedlings; R, root of 13-day seedlings; L3, leaves of 3-week plants; L5, 

leaves of 5-week plants; S5, stems of 5-week plants; and F5, floral tissues of 5-week 

plants. 
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Figure 3-8 Tissue distribution of UEV1 expression 

(A) Relative expression of UEV1 transcripts in different tissues was determined using 

data from the Arabidopsis NASCArrays microarray database 

(http://affymetrix.Arabidopsis.info/narrays/experimentbrowse.pl) (Craigon et al., 2004). R, 

roots of 17-d plants; S, shoots of 8-d seedlings; L, rosette leaf 2 of 17-d plants; RL, 

mature rosette leaves of 23-d plants; St, second internode of 21-d plants; F, stage 12 

flowers of 21-d plants; P, mature pollen; G3h, seed germinating for 3 h. The original 

microarray data are from AtGenExpress: Expression Atlas of Arabidopsis Development 

(TAIR accession number 1006710873: ATGE_9, ATGE_12, ATGE_24, ATGE_27, 

ATGE_33, ATGE_73, and ATGE_96 samples) (Schmid et al., 2005), except for G3h data, 

which are from AtGenExpress: Expression Profiling of Early Germinating Seeds (TAIR 

accession number 1007966994: RIKEN-PRESTON2 sample).  

(B) Expression of UEV1 transcripts in different tissues analyzed by RT-PCR. The 

At4g33380 gene was assayed as an input control (Czechowski et al., 2005). The exposure 

time of the gels is shown at left (BioDoc-It System; UVP). C, cell suspension; R, roots of 

13-d seedlings; S, shoots of 13-d seedlings; L3, leaves of 3-week plants; L5, leaves of 5-

week plants; St, stems of 5-week plants; F, floral tissues of 5-week plants; G6h and G2d, 

seeds germinating on Petri dishes for 6 h and 2 d, respectively; P, pollen. 

http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl


85 

 

3.2.6 Atuev1d mutant plants are sensitive to the DNA damaging agent MMS 

The analysis of UEV1 expression as well as the observation that in combination 

with UBC13, UEV1D but not UEV1A or UEV1B could completely rescue the yeast ubc13 

mms2 double mutant, prompted us to focus our attention on UEV1D. We reasoned that 

uev1d mutant plants may display compromised tolerance to DNA damage in pollen and 

during seed germination. The UEV1D T-DNA insertion line SALK_064912 was obtained 

from the ABRC (www.arabidopsis.org), and the allele was named uev1d-1. Sequence 

analysis revealed that the T-DNA was inserted in the first intron of UEV1D, with the left 

border oriented toward the 3’ end of the gene (Figure 3-9A). The gene-specific primers 

(SP1 and SP2) and a primer specific to the left border sequence (LB1) were used to 

confirm the insertion of T-DNA (Figure 3-9B). To further confirm that UEV1D 

expression was abolished by this T-DNA insertion, total RNA was extracted from 

seedlings of wild type and homozygous uev1d-1 plants and analyzed by RT-PCR for the 

expression of four UEV1 genes. As shown in Figure 3-9D, a fragment corresponding to 

the UEV1D ORF could be amplified from wild type plants but not from the uev1d-1 line, 

while the expression of the other three AtUEV1 genes remained unaltered. The 

homozygous uev1d-1 plants did not display apparent morphological variations. In order to 

investigate the possible role of UEV1D in protecting cells from DNA damage, the effect 

of MMS on seed germination was analyzed, considering that UEV1D is strongly 

expressed during seed germination. Three control:  wild type Arabidopsis thaliana 

ecotype Columbia, a T-DNA insertion line (SALK_042050) not affecting UEV1 genes, 

and a wild type segregant line derived from the initial SALK_064912 seeds (1d-1WT) - 
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along with the homozygous uev1d-1 T-DNA insertion line were examined. Three 

parameters related to seed germination were surveyed. Firstly, the percentage of seeds 

that germinated in the presence of various concentrations of MMS was scored after a 5-d 

incubation. Seeds from uev1d-1 plants were much more sensitive to MMS treatment than 

any of the three control plants, and this response was dose-dependent (Figure 3-10A). By 

contrast, in the absence of MMS, the uev1d-1 seeds did not show a noticeable difference 

from controls in the percentage of seed germination. Secondly, it was observed that the 

homozygous uev1d-1 seedlings were dying relatively quickly in the presence of MMS 

and displayed bleached pale cotyledons rather than the normal green cotyledons. Thus, 

the percentage of germinated seeds with green cotyledons was scored after 13 d. The data 

clearly indicated that the uev1d-1 line had reduced numbers of viable seedlings in the 

presence of MMS. In particular, in the presence of 0.01% MMS, 75 to 90% of control 

seedlings were viable, as judged by green seedlings, compared with <15% viable uev1d-1 

seedlings under the same growth condition (Figures 3-10B and 3-10C). Finally, the 

average fresh weight of 13-d uev1d-1 mutant seedlings was reduced compared with that 

in control seedlings after MMS treatments. More specifically, with 0.005% MMS 

treatment, even though almost all uev1d-1 seedlings remained green, they only had half 

the fresh weight of the wild type seedlings (Figure 3-10D).  

To ensure that the above observations were specific to the T-DNA insertion at 

UEV1D, the second UEV1D T-DNA insertion line SALK_052144 was obtained from the 

ABRC, in which the T-DNA was inserted in the third exon of UEV1D (Figure 3-9A). The 

T-DNA insertion was confirmed by genomic PCR (Figure 3-9C). RT-PCR analysis 

demonstrated that the UEV1D mRNA was absent in the homozygous T-DNA line (Figure 
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3-9D) and thus the mutant is named uev1d-2. Phenotypic analyses showed that, like 

uev1d-1, the uev1d-2 mutant is hypersensitive to MMS treatment during seed germination 

(Figures 3-10E and 3-10F). From these results, we conclude that UEV1D is required for 

tolerance to DNA damage during seed germination.  
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Figure 3-9 Confirmation of two uev1d T-DNA insertion mutants 

(A) Genomic structure showing the positions of two T-DNA insertions in UEV1D. Open 

boxes, exons; closed boxes, UEV1D ORF; lines, introns. SP1, 5’ gene-specific primer 

AtUEV1D-1; SP2, 3’ gene-specific primer AtUEV1D-2; LB1, T-DNA left border primer.  

(B) and (C) Genomic DNA PCR to confirm uev1d-1 (1d-1) (B) and uev1d-2 (1d-2) (C). 

The fragment was amplified using three primers (SP1, SP2, and LB1) in each reaction 

and genomic DNA from Columbia (WT), 1d-1 (B), or 1d-2 (C) as a template.  

(D) RT-PCR detection of the UEV1 transcripts. UEV1 gene-specific primers were used 

for RT-PCR against total RNA extracted from Columbia (WT), uev1d-1, and uev1d-2 

lines. Total RNA was extracted from flowers. 
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Figure 3-10 Phenotypic analysis of DNA damage response during seed germination 

(A) to (D) The homozygous uev1d-1 mutant (open triangles) is compared with three 

controls: Columbia (open squares), an unrelated T-DNA insertion line, SALK_042051 

(closed diamonds), and a wild type segregant line from the same SALK_064912 seeds 

(1d-1WT; closed circles). Synchronized seeds were sown on half-strength Murashige and 

Skoog agar plates with or without MMS as indicated and incubated for the given period, 

and phenotypes were quantitatively assessed.  

(A) Percentage of seed germination after 5 d seeding  

(B) Representative photographs after 13 d seeding  

(C) Percentage of seedlings with green cotyledons after 13 d seeding.  

(D) Relative fresh weight of seedlings with green cotyledons after 13 d.  

(E) and (F) The homozygous uev1d-2 mutant (open triangles) is compared with 1d-2WT, 

a wild type segregant from the same T-DNA insertion line SALK_052144 (closed 

circles).  

(E) Percentage of seed germination after 5 d seeding.  

(F) Percentage of seedlings with green cotyledons after 13 d seeding.  

All data are averages of three independent experiments with SD. 
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              We also attempted to assess the role of UEV1D in pollen germination by 

measuring the percentage of pollen germination in the presence of MMS. As shown in 

Figure 3-11, inactivation of UEV1D resulted in a moderate but significant decrease in 

pollen germination. In the presence of 0.005% MMS, 33% of wild type pollens 

germinated, while only 20% of uev1d-1 pollen germinated after 8 h of incubation, 

indicating that UEV1D also plays a critical role in protecting pollen from environmental 

DNA damage. 
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Figure 3-11 Phenotypic analysis of DNA damage response during in vitro pollen 

germination 

(A) Representative in vitro pollen germination images of 1d-1WT and uev1d-1 with or 

without MMS treatment as indicated.  

(B) Summary of the pollen germination results. Data presented are averages of three 

independent experiments with SD. Open bars, 1d-1WT; closed bars, uev1d-1. 
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3.2.7 Atuev1a mutant plants do not display MMS sensitivity  

Since UEV1A is the only other UEV1 gene expressed during seed germination, we 

were interested in the phenotypes of this mutant plant. Unfortunately, a uev1a T-DNA 

insertion mutant line is not available from the ABRC; instead, we found a line 

(FLAG_128G02) with a T-DNA insertion at the fourth exon (Figure 3-12A) from the 

Institut Jean-Pierre Bourgin collection. We obtained this line, screened the segregants, 

and confirmed the homozygous uev1a mutant (uev1a-1) by both genomic PCR (Figure 3-

12B) and RT-PCR (Figure 3-12C). Seed germination assays were performed under the 

same experimental conditions described above. uev1a-1 mutant plants did not display 

enhanced MMS sensitivity in seed germination, percentage of cotyledon and fresh weight 

compared with its wild type segregants or with the parental strain Ws-4 (Figure 3-13). 

This result indicated that inactivation of UEV1A does not alter DDT during Arabidopsis 

thaliana seed germination. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3-12 Confirmation of the uev1a-1 T-DNA insertion mutant 

(A) Genomic structure showing the positions of T-DNA insertions in UEV1A. Boxes 

represent exons, solid boxes represent AtUEV1A ORF and lines represents introns. SP1, 

5’ gene-specific primer AtUEV1A-1; SP2: 3’ gene-specific primer AtUEV1A-2; LB1, T-

DNA left border primer.  

(B) Genomic DNA PCR to confirm uev1a-1. The fragment was amplified by using three 

primers (SP1, SP2 and LB1) in each reaction and genomic DNA from WS-4 (WT) or 

uev1a-1 (1a-1) as a template. (C) RT-PCR detecting each of the UEV1 transcripts. 

AtUEV1 gene specific primers were used for an RT-PCR reaction against total RNA 

extracted from WS-4 (WT) and uev1a-1 (1a-1) lines. 
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Figure 3-13 Phenotypic analysis of DNA damage response during seed germination 

Synchronized seeds of the homozygous Atuev1a mutant (closed triangle), a wild type 

(WT, closed square) parental line, an unrelated T-DNA insertion line (1a-50, closed 

diamond) were sown on 1/2 MS agar plates with or without MMS as indicated, incubated 

for the given period and phenotypes were quantitatively assessed.  

(A) Representative photographs after 13 d seeding.  

(B) Percentage of seed germination after 5 d seeding. 

(C) Percentage of seedlings with green cotyledons after 13 d seeding. 

(D) Relative fresh weight of seedlings after 13 d seeding. 
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3.3 Discussion 

3.3.1 Arabidopsis thaliana Uev1 promotes Lys63-linked polyubiquitination 

 Lys63-linked polyubiquitination of target proteins is considered to be a 

fundamentally different process from conventional Lys48-linked polyubiquitination that 

targets proteins for degradation via the 26S proteasome (Hochstrasser, 1996b; Pickart, 

2001a). Instead, it is deemed analogous to other post-translational regulatory processes 

such as phosphorylation and sumoylation that alter the target protein activities. Lys63-

linked polyubiquitination has been reported to be involved in several cellular processes 

including stress response (Arnason and Ellison, 1994), mitochondrial inheritance (Fisk 

and Yaffe, 1999), plasma membrane protein endocytosis (Galan and Haguenauer-Tsapis, 

1997), ribosome function (Spence et al., 2000), innate immunity (Deng et al., 2000; Wang 

et al., 2001; Zhou et al., 2004), mitotic cell cycle checkpoint (Bothos et al., 2003), and 

DNA repair (Hoege et al., 2002; Hofmann and Pickart, 1999).  The unique feature of 

Ubc13 compared to other Ubcs is its ability to form a stable complex with a Uev, which is 

homologous to other Ubcs but lacks the active Cys residue (Broomfield et al., 1998; 

Sancho et al., 1998). This family of Uevs engages a non-covalent interaction with Ub 

(McKenna et al., 2001) and orients this acceptor Ub to allow its Lys63 residue to be 

exposed to the C-terminus of donor Ub covalently bound to Ubc13 (McKenna et al., 

2003; McKenna et al., 2001). It appears that in mammals, Uevs not only facilitate 

polyubiquitination but also serve as a regulatory subunit to promote ubiquitination of 

different targets (Andersen et al., 2005). In this study, we identified four Arabidopsis 

thaliana genes UEV1A, UEV1B, UEV1C, and UEV1D. Amino acid sequence alignments 
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with those of Uev proteins from six other eukaryotic organisms including human 

indicated 47 to 56% sequence identity and 65 to 75% sequence similarity between At 

Uev1s and those from other species. In addition, several critical residues such as Phe-13 

and Ser-32 of hMms2 which are required for physical interaction with Ubc13 (Pastushok 

et al., 2005; Pastushok et al., 2007)  and non-covalent interaction with Ub are all 

conserved in AtUev1s (Figure 3-1). In this study, we also demonstrated that all four Uev1 

proteins can replace yeast MMS2 DDT functions in vivo (Figure 3-6), form a stable 

complex with AtUbc13 or with Ubc13 from yeast or human (Figures 3-3 and 3-4), and 

promote Ubc13-mediated Lys-63 polyubiquitination (Figure 3-5). The only known other 

Arabidopsis thaliana Uev so far is Cop10, which was identified as a negative regulator of 

photomorphogenesis and functioned in promoting target protein degradation (Suzuki et 

al., 2002). 

3.3.2   AtUev1D is involved in DNA damage tolerance  

 AtUEV1 is able to functionally complement the corresponding yeast mutant 

defective in DDT. However, we do not know whether AtUev1 plays the same role in 

Arabidopsis thaliana. Although four AtUevs have high nucleotide and amino acid 

sequence identities, we do not know whether all four AtUevs have the same function. A 

good example is human UEV1A which confers a similar DDT function in yeast but is 

exclusively involved in NF-κB activation instead of DNA repair in human (Andersen et 

al., 2005).  In this study, we took advantage of the fact that AtUEV1D is the predominant 

AtUEV1 gene expressed in germinating seeds and in pollen (Figure 3-8) characterized by 

the sensitivity of Atuev1d mutant plants to a DNA damaging agent in these tissues. Our 
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results clearly showed that in the presence of DNA damage agent, lack of AtUev1D 

activity compromised seed germination, seedling survival, and growth. To our 

knowledge, this is the first report of putative error-free DDT mutant phenotypes in a 

multicellular tissue of any organism, and the assays developed in this study can also be 

applied to other similar studies. Hence, this study, along with previous studies in yeast 

and mammalian cells, supports a notion that error-free DDT promoted by 

polyubiquitination via Ubc13-Uev is an evolutionarily conserved function throughout 

eukaryotes. 

 Despite its predominant expression among the four AtUEV1 genes, inactivation of 

AtUEV1D caused only a very moderate but nevertheless significant compromise in pollen 

tube growth in the presence of DNA damage agent. This probably reflects the lack of cell 

division during pollen germination whereas DDT is expected to only operate on 

replicating DNA (Barbour and Xiao, 2003).  It is of great interest to note that in contrast 

to many other plant species, it has been observed that DNA synthesis in the Arabidopsis 

thaliana sperm nuclei is initiated prior to anthesis and continues as the pollen tube 

develops (Friedman, 1999). Thus, the Arabidopsis thaliana sperm nuclei are essential in a 

“prolonged” S phase at the time of anthesis, in preparation for eventual double 

fertilization. Our observation that in the presence of replication-blocking lesions induced 

by MMS, pollen tubes from the Atuev1d mutant plants did not develop equally well as 

those from wild-type segregant lines is consistent with a notion that AtUEV1D plays a 

more active role than other AtUEV1 genes when DNA synthesis occurs in the presence of 

DNA damage, which is essentially a DDT activity. We wish to stress that our analysis 

does not rule out the possibility that MMS-induced DNA lesions may inhibit 



102 

 

transcription, and MMS can also directly methylate and damage RNA (Friedberg et al., 

2006b), which could contribute to the observed phenotypes, although Lys63 

ubiquitination has not been linked to these processes. 

         In our opinion, this study provides an important major step towards understanding 

Ubc13-Uev mediated Lys63-polyubiquitination in general and mechanisms of DDT in 

particular in plants. Several questions remain to be addressed. Firstly, is AtUEV1D the 

only AtUEV1 gene involved in error-free DDT? Secondly, is AtUEV1D also involved in 

other cellular processes?  Thirdly, what are the other cellular processes that also require 

Ubc13-Uev mediated polyubiquitination? We feel that given the near identity in amino 

acid sequence and similar complementation phenotypes in yeast, AtUev1C is likely 

involved in the same cellular process (es) as AtUev1D. Indeed, the phenotypes of Atuev1d 

mutant plants may be considered to be moderate, which is due to either the backup or 

residual expression of other AtUEV1 genes, or the nature of the error-free DDT defect in 

plants. One important aspect of future work will be to identify an Atuev1c null mutant, 

combine this mutation with Atuev1d, examine various tissues for a DDT, defect and relate 

the results to the AtUEV1 expression profile. It is also interesting to note that the yeast 

mms2-ubc13 or rev1/rev3/rev7 single mutants are moderately sensitive to killing by DNA 

damaging agents, but the combination of any two mutations from different pathways 

results in strong synergistic interactions (Broomfield et al., 1998; Xiao et al., 1999b). It 

would be of great interest to see if the combination of Atuev1d and Atrev mutations also 

results in a synergistic sensitivity to DNA damage. 

 Although it remains possible that AtUev1A and AtUev1B are involved in DDT as 

well, we favour the argument that the AtUev1A/B pair is probably involved in other 
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cellular processes unrelated to DNA damage response. Indeed, although AtUEV1A is 

expressed during seed germination, inactivation of this gene does not result in 

compromised seed germination in the presence of MMS (Figure 3-13), which is in sharp 

contrast to the Atuev1d mutant lines. In this regard, it is interesting to note that in the 

presence of AtUBC13, the DDT activities of AtUEV1A/B are much lower than 

AtUEV1C/D in yeast cells, despite the fact that AtUev1A/B interacts with AtUbc13 and 

Ubc13 from other species very well and is able to fully complement the yeast mms2 

mutant when yeast Ubc13 is present. The above result also effectively rules out the 

possibility that partial complementation by AtUEV1A/B was due to their poor expression 

in yeast cells. Another interesting observation is that human Uev1A contains an additional 

N-terminal 25 amino acid residues and plays a distinct role from hMms2; it may be 

reverted to play a role in DDT when its N-terminal sequence is experimentally deleted 

(Andersen et al., 2005). Similarly, AtUev1A and AtUev1B contain a unique C-terminal 

tail that may be critical for their functions other than DDT. It is difficult at this stage to 

predict what type of activity it may be, given the fact that AtUev1 appears to have 

evolved independently of vertebrate Uev paralogs, that Drosophila ubc13/bendless 

confers a more different function than its mammalian counterpart, and that other reports 

have claimed additional Lys63-mediated cellular processes and some of them have also 

been linked to Ubc13-Uev (Bothos et al., 2003; Doss-Pepe et al., 2005; Laine et al., 

2006). What we can predict though is that additional Arabidopsis thaliana Ubc13-Uev1 

functions should be mediated by its Lys63-linked poly-Ub chains, and that different 

AtUev1 proteins may serve as cofactor and critical regulator in these processes. In this 

regard, future research may focus on the search for AtUbc13-Uev ubiquitination targets 
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through bioinformatics and proteomic approaches, as well as genomic approaches such as 

microarray analysis of Atuev mutants reported in this study. 
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CHAPTER FOUR 

ANALYSIS AND FUNCTION CHARACTERIZATION OF 

ARABIDOPSIS THALIANA UBC13 GENES 

4.1 Introduction 

Ubiquitynation is an essential process found in all eukaryotic cells, from 

unicellular yeast to human. It is involved in many cellular processes including ribosomal 

biogenesis (Finley et al., 1989), cell cycle progression (Wei et al., 2004), apoptosis 

(Zhang et al., 2004), mitochondrial inheritance (Fisk and Yaffe, 1999), transcriptional 

regulation (Kao et al., 2004a) and DNA repair. The conventional post-translational 

modification of target proteins with poly-Ub chains is via the Gly76-Lys48 linkage, 

which targets these proteins to 26S proteasomes for degradation. Proteins ubiquitylated 

through the non-conventional Gly76-Lys63 linkage regulates the functions of diverse 

proteins in a nonproteolytic manner (Pickart, 2001b). So far, Ubc13 is the only known E2 

enzyme capable of catalyzing the Lys63-linked polyubiquitylation reaction, which also 

requires a Ubc/E2 variant (Uev) as a co-factor (Hofmann and Pickart, 1999; McKenna et 

al., 2001). In the budding yeast Saccharomyces cerevisiae, Ubc13 physically interacts 

with a Uev called Mms2 (Hofmann and Pickart, 1999), and promotes error-free DNA 

damage tolerance (also known as postreplication repair) (Broomfield et al., 1998) by 

polyubiquitylation of the proliferating cell nuclear antigen (PCNA) via Lys63-linked 

chains (Hoege et al., 2002). Ubc13 homologs have been found in many eukaryotic 
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organisms; however, functional analysis is limited due to the lack of an efficient means of 

targeted gene disruption in most multicellular eukaryotes and the intolerance of mammals 

to genomic instability. In this chapter, we report the isolation and initial functional 

characterization of Arabidopsis thaliana UBC13 genes  

4.2 Results 

4.2.1 Arabidopsis thaliana UBC13 genes  

          To identify Arabidopsis thaliana UBC13 genes, the human Ubc13 protein 

(hUbc13) was used to search the Arabidopsis protein database (through TAIR). Two 

highly similar proteins (E-values at 10-56 or better) were found. The cDNAs containing 

the open reading frame for the two genes were cloned by RT-PCR (done by Dr. Genyi Li 

in Dr. Wang’ Lab). The two putative proteins were named AtUbc13A and AtUbc13B. 

The sequences of the putative AtUbc13 proteins, both with 153 amino acids, were aligned 

with Ubc13s from other organisms (Figure 4-1A). The AtUbc13 proteins differ in only 

two amino acids and both differences are conserved variations from AtUbc13A Asp to 

AtUbc13B Glu). Compared with Ubc13s from six other organisms, AtUbc13A has 78.6% 

amino acid sequence identity with hUbc13 and mUbc13, 65.5% identity with ScUbc13, 

66% identity with SpUbc13, 78.4% identity with CeUbc13, 73.2% identity with 

DmUbc13a (Bendless) and 71% identity with DmUbc13b. Furthermore, critical residues 

for three functions as defined in hUbc13, namely the Cys87 in the active site for Ub 

thioester formation, the Met64 required for the interaction with a E3 (TRAF6) (Wooff et 

al., 2004), and three ‘‘pocket’’ residues (Glu55, Phe57 and Arg70) that determine binding 

specificity for Mms2 (Pastushok et al., 2005) are all conserved in AtUbc13s (Figure 4-
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1A). Both Arabidopsis thaliana UBC13 genes are located on chromosome 1 and our 

cDNA sequences agree completely with the predicted genomic structures and sequences 

for both genes on the ATIR database (the genomic locus ID numbers are AT1g78870 for 

AtUBC13A and AT1g16890 for AtUBC13B). The two ORFs share 90.5% nucleotide 

sequence identity with each other, and the genomic structures of AtUBC13A and 

AtUBC13B are highly conserved, with the same number of introns located at the same 

position relative to coding exons (Figure 4-1B), suggesting that AtUBC13A and 

AtUBC13B are derived from recent duplication. However, the lengths of the seven introns 

all differ between the two AtUBC13 genes, with the first three introns differing by more 

than 50 nucleotides in length. The AtUBC13 gene duplication is not unusual, since the 

analysis of the Arabidopsis thaliana genome indicated that more than 50% of its DNA 

sequences are duplicated. Interestingly, the promoter and downstream regions (2 kb each) 

of AtUBC13A and AtUBC13B do not share noticeable sequence similarity, and their 

flanking genes are not duplicated, indicating that AtUBC13A and AtUBC13B are derived 

from a segmental duplication instead of block duplication. We also compared the 

genomic structure of AtUBC13 with UBC13 genes from the fission yeast and human. As 

illustrated in Figure 4-1B, hUBC13 contains three introns, two of which have identical 

intron/exon borders as AtUBC13. Spubc13 shares one intron–exon border with both 

hUBC13 and AtUBC13, and one only with hUBC13. These results further indicated that 

UBC13 has evolved early in the eukaryotic kingdom and that at least some of its introns 

predate speciation among yeast, plant and mammal. Phylogenetic analysis (Figure 4-2) 

was also performed on AtUbc13s in relation to Ubc13s from above model organisms as 

well as with other plant species of known genomic sequence. This analysis revealed that 



plant UBC13 genes evolved from a common ancestor, which was duplicated and evolved 

further within each species, and UBC13 genes among plant species are closer in evolution 

history than between plants and other species such as human and yeast. 

A 

 

B 
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Figure 4-1 Analysis of Ubc13 from different organisms 

(A) Amino acid sequence alignment of AtUBC13 gene products with Ubc13s from six 

other organisms. Identical residues shared by the majority of Ubc13s are highlighted. 

Critical residues for Ubc13 functions are indicated with asterisks underneath the residue.  

(B) Genomic organization of S. pombe, human and Arabidopsis thaliana UBC13. Filled 

boxes, exons; open boxes, untranslated region; solid lines, introns. Identical intron-exon 

locations between different UBC13 orthologs relative to their coding sequences are 

indicated by a connection line. All intron–exon border locations between AtUBC13A and 

AtUBC13B are identical but the lengths and nucleotide sequences of the introns are 

different. 
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Figure 4-2 Phylogenetic analyses of hypothetical Ubc 13 family proteins from 

different organisms 

The similarity clustering was conducted by using MEGA version 3 (Tamura et al., 2007) 

High similarity is indicated by the short branch length between any two sequences.  

The prefixes for different species and the source of sequences (Gen- 

Bank accession No) are: Sc, S. cerevisiae (X99443); Sp, Schizosaccharomyces pombe 

(AF470232); Dm, Drosophila melanogaster; (DmUbc13a – Bendless=NP-511150; 

DmUbc13b=NP-609715); Mm, Mus musculus (AY039837); At, Arabidopsis thaliana 

(AtUbc13A=NP-565192; AtUbc13B=NP-564011); Ce, Caenorhabditis elegans (NP-

500272), Hs, Homo sapiens (D83004), Os, Oryza sativa (NP-001043834);  

Pt, Populus trichocarpa (PtUbc13A =A9PA76, Pt Ubc13B = A9PBY5). 
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4.2.2 Physical interaction of AtUbc13 with yeast and human Mms2 

            Since the function of Ubc13 in Lys63-linked ubiquitylation requires a Uev as a 

cofactor. The protein-protein interaction between AtUbc13 with a Uev, in this case a Uev 

from yeast (yMms2) or human (hMms2), was analyzed in a yeast two-hybrid system 

(Fields and Song, 1989) ( This work was done by Lindsay Newton in Dr. Xiao’s Lab).  

The AtUBC13A and AtUBC13B ORFs were cloned in-frame into either a Gal4 DNA-

binding domain vector pGBT9E or a Gal4 DNA-activation domain vector pGAD424E. 

As shown in Figure 4-3, co-expression of Gal4AD-AtUbc13 with Gal4BD-yMms2 or 

Gal4BD-hMms2 in yeast cells led to strong expression of the endogenous PGAL1-HIS3 

reporter gene, indicating that AtUbc13 interacts with yeast or human Mms2. This 

interaction is deemed to be specific between AtUbc13 and human Mms2, as neither 

protein alone expressed in the same yeast cell was able to activate the reporter gene. The 

interaction is also independent of the fusion orientation, as switching fusion partners 

resulted in the same AtUbc13 and Mms2-dependent interaction. Taken together, the 

above results indicate that both of the AtUbc13 proteins are capable of interacting with 

yeast or human Mms2 in the yeast two-hybrid system. 

            The physical interaction between AtUbc13 and heterologous Mms2 was further 

confirmed independently by a GST-affinity pull-down assay, as shown in Figure 4-4. In 

this experiment, AtUbc13A produced in bacterial cells was purified and the GST tag was 

cleaved. The purified AtUbc13A was added to a column bound with either GST or GST-

hMms2. After incubation, washing and elution, AtUbc13A was found to be co-eluted 



only with GST-hMms2, but not with GST alone.  Hence, AtUbc13A is able to form a 

stable heterodimer with hMms2. 
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Figure 4-3 Interactions between AtUbc13 and Mms2 in a yeast two-hybrid assay 

The PJ69-4A transformants (five independent colonies from each transformation) 

carrying one Gal4AD (from pGAD424E) and one Gal4BD (from pGBT9E) construct were 

replica on plated on SD-Trp-Leu (control) and SD-Trp-Leu-His plus various 

concentrations of 3-AT, and were incubated for 3 days at 30oC. The first column shows 

constructs in the Gal4AD vector, the second column constructs in the Gal4BD vector, the 

third column cell growth on the control SD-Trp-Leu plates and the fourth column 

cell growth on the selective SD-Trp-Leu-His plus 3-AT plates. Two colonies from each 

treatment are shown. Other plates and colonies had the same results. 

 

  



 

 

Figure 4-4 AtUbc13A Binds hMms2 in a GST Pull-down Assay 

Purified GST or GST-hMms2 was added to microspin columns. Following incubation, 

columns were spun and washed, and the purified AtUbc13A was added. After further 

incubation and washing, the columns were eluted with reduced glutathione and subjected 

to SDS-PAGE gel analysis. Lanes 1 to 3 show the purified GST, GST-hMms2 and 

AtUbc13A used, respectively. Lanes 4 and 5 show the eluent from the column preloaded 

with GST (lane 4) and GST-hMms2 (lane 5). Note that the GST-hMms2 (lane 2) and 

AtUbc13A (lane 3) samples contain trace amount of free GST, which is also revealed 

after elution (lane 5). 
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4.2.3 AtUBC13 functionally complements yeast ubc13 null mutants 

Yeast UBC13 is a member of the error-free damage tolerance pathway (Brusky et 

al., 2000) and its product is able to promote Lys63-linked polyubiquitylation in vitro 

(Hofmann and Pickart, 2001) or in vivo (Hoege et al., 2002). In order to investigate 

whether AtUbc13s have the same function as yeast Ubc13, two types of experiments were 

carried out to determine whether AtUbc13 could functionally complement the error-free 

damage tolerance defect in the yeast ubc13 null mutant. The yeast ubc13 mutant displays 

an increased sensitivity to a variety of DNA-damaging agents including MMS (Brusky et 

al., 2000), which can be assessed by a gradient plate assay. Expression of either 

AtUBC13A or AtUBC13B from the yeast two-hybrid plasmid rescued the ubc13 mutant to 

a level comparable to wild type cells; in contrast, the pGAD424E vector alone did not 

confer any MMS resistance to the ubc13 mutant (Figure 4-5). Furthermore, the ubc13 and 

rev3 mutations are synergistic with respect to killing by DNA-damaging agents (Brusky 

et al., 2000). Indeed, the ubc13 rev3 double mutant did not grow at all on a gradient plate 

containing 0.025% MMS, whereas expression of either AtUBC13 gene was able to rescue 

its growth to a level comparable to the rev3 single mutant (Figure 4-5). 

            One of the most astonishing phenotypes of an mms2 (Broomfield et al., 1998) or 

ubc13 (Brusky et al., 2000) mutant is its massive increase in spontaneous mutagenesis, 

indicating that these genes play an important role in protecting cells from genome 

instability. Indeed, in this experiment the ubc13 mutant strain showed a nearly 30-fold 

increase in spontaneous mutagenesis when compared to wild type cells. When the ubc13 

mutant was transformed with a plasmid expressing AtUBC13A or AtUBC13B, the 
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spontaneous mutation rate was reduced to levels similar to that of the wild type cells 

(Table 4-1). The results from these two types of experiments showed clearly that 

AtUBC13 genes are able to replace the DNA damage tolerance functions of yeast UBC13. 

Furthermore, since it is known that the ubc13 mutation is defective in PCNA 

polyubiquitylation (Hoege et al., 2002), which is absolutely required for its error-free 

damage tolerance function, we can also infer that AtUbc13 is able to work with the yeast 

Mms2 in vivo to promote Lys63 polyubiquitylation of PCNA. 

  



 

 

 

Figure 4-5 Functional complementation of the yeast ubc13 mutant and ubc13 rev3 double 

mutant by AtUBC13. The YPD control (left) and YPD+0.025% MMS gradient (right) 

plates were incubated at 30oC for 3 days. Arrow points to gradually increasing MMS 

concentrations. Yeast strains used: HK578-10D (wild type), WXY904 (ubc13Δ), 

WXY1233 (rev3Δ) and WXY921 (ubc13Δ rev3Δ). 
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Table 4-1   Effects of AtUBC13 on the Spontaneous mutation rates of S. cerevisiae 

ubc13 mutants 

 

       Straina   Key Alleles  Rate (X10-8)b     Foldc 

      DBY747    Wild type     4.95  ± 0.24     1.00 

    WXY849      ubc13∆     132.3±  18.9      26.73 

WXY849/AtUBC3A  ubc13∆ AtUBC13A     9.81 ±  2.88     1.98 

WXY849/AtUBC13B ubc13∆ AtUBC13B     12.89 ± 2.96       2.6 

 

a All strains are isogenic derivatives of DBY747. 

b The spontaneous mutation rates are the average of three independent experiments with 

standard deviations. 

c Relative to the wild type mutation rate. 
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4.2.4 AtUBC13 expression in different tissues and under stresses 

To determine AtUBC13 expression in Arabidopsis thaliana plants, tissue samples 

were taken from 2-, 5- and 9-week-old Arabidopsis thaliana plants, and total RNA was 

isolated (RNAs isolated and the blotted membrane provided by Dr. Hong Wang). Results 

from Northern analysis showed that AtUBC13 transcripts were detected in all tissues 

analyzed, although at a relatively low level (Figure 4-6A). This observation indicated a 

relatively uniform expression of AtUBC13. The observation on the relatively low level of 

AtUBC13 transcript is also supported by an analysis of microarray data available from 

TAIR www.arabidopsis.org.  

Yeast UBC13 expression is induced when cells are treated with different DNA-

damaging agents. To determine whether AtUBC13 responds to various abiotic stresses, 

we analyzed AtUBC13 expression in cell suspension following treatments with NaCl, 

abscisic acid (ABA), mannitol, H2O2, low temperature or MMS. The Northern results 

from samples of 12-h treatments were presented in Figure 4-6B. The data indicated that 

none of the above treatments induced overall AtUBC13 transcript level. The treatment of 

low temperature appeared to decrease the AtUBC13 transcript level. As a comparison, the 

transcript of UBQ11 showed a moderate level of increase. We searched the microarray 

expression data from www.arabidopsis.org. The microarray data from similar treatments 

of Arabidopsis thaliana plants (Figure 4-6C) indicated a persistent level of AtUBC13 

transcripts under various conditions. Hence, AtUBC13 expression appears to be constant 

under those conditions examined. We also used Expression Browser through the Botany 

ArrayResource (Toufighi et al., 2005) to perform ‘‘electronic Northerns’’, and the results 

suggested that under stress conditions, the expression level of AtUBC13 did not show 

http://www.arabidopsis.org/
http://www.arabidopsis.org/
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obvious variation following treatments with different conditions. Due to the high degree 

of sequence similarity between the two AtUBC13 genes, neither Northern hybridization 

nor microarray analysis is able to distinguish individual AtUBC13 gene expression. Since 

AtUBC13A and AtUBC13B do not share noticeable promoter sequence similarity, one 

cannot rule out the possibility that under certain stress conditions, one of the AtUBC13 

genes is induced whereas the other is decreased accordingly. Thus, we performed semi-

quantitative RT-PCR using a pair of primers specific for AtUBC13A or AtUBC13B, and 

another pair of primers for UBQ11 as an internal control (Figure 4-6D). This result was in 

agreement with Northern and microarray data and indicated that the two AtUBC13 genes 

are not differentially regulated under the conditions tested. 
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Figure 4-6 Expression of AtUBC13 Genes 

(A) Expression of AtUBC13 transcripts by Northern hybridization. Each lane contains 5 

ug of total RNA from different tissues. L2, leaves of 2-week -old seedlings; L5, leaves of 

5-week-old plants; L9, leaves of 9-week-old plants; S5, stems of 5-week-old plants; F5, 

floral tissues of 5-week-old plants. 

(B) Expression of AtUBC13 transcripts in cell suspension treated with different stress 

conditions for 12 h and analyzed by Northern hybridization. Each lane contains 10 ug of 

total RNA from different samples. The conditions used were: control, 300 mM NaCl, 20 

M (+)-abscisic acid (ABA), 400 mM mannitol, 20 mM H2O2, low temperature (5°C), and 

100 ppm MMS.  

(C) Graphic presentation of data extracted from microarray analyses in 

www.arabidopsis.org and expressed as relative levels to the untreated control. Tissue 

source: open bars, shoots; solid bars, roots; striped bars, seedling.  

(D) Expression of AtUBC13 transcripts in cell suspension treated with different stress 

conditions for 6 h and assessed by quantitative RT-PCR. 
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4.2.5 Roles of Arabidopsis thaliana UBC13 in plant development 

4.2.5.1 Confirmation of the Atubc13a T-DNA insertion mutant  

By searching the website www.arabidopsis.org, one T-DNA insertion line of 

Atubc13a, WISCDSLOX323H12, which would truncate C-terminal 12 amino acids, was 

found. The Genomic structure displaying the position of the T-DNA insertion is shown in 

Figure 4-7A with the putative T-DNA insertion site indicated. In order to determine 

whether deletion of 12 amino acids of AtUbc13A affects its function, two experiments, 

yeast two hybrid assay and functional complementation, were carried out. The results 

showed that the truncated AtUbc13A protein was still able to interact with AtUev1A to 

the same extent as full length AtUbc13A (Figure 4-8A). However, unlike the AtUbc13A, 

the truncated AtUbc13A-∆12aa (named Atubc13a-1) was unable to functionally 

complement the yeast ubc13 null mutant for resistance to DNA damage induced by 

MMS; the level of resistance provided by Atubc13a-1is no better than that of vector alone 

(Figures 4-8B). Thus we ordered seeds of this line  and performed the genomic DNA 

PCR using gene specific primers SP1 and SP2 as well as another pair of gene specific 

primers SP1 and SP3 (Figure 4-7A).  Genomic PCR confirmed the expected location of 

T-DNA insertion (Figure 4-7B). Furthermore, to ask whether the truncated Atubc13a-

1allele still produces mRNA, we performed RT-PCR using total RNA from wild type and 

homozygous mutant plants.  The results showed that only wild type plants can produce 

the full length AtUBC13A mRNA. However, when SP1 and SP3 primers were used for 

RT-PCR, the transcript of expected size was detected from both wild type and the mutant 

http://www.arabidopsis.org/


plants (Figure 4-7C), suggesting that truncated Atubc13a-1allele is capable of producing a 

truncated transcript. Hence, we named this T-DNA insertion mutation Atubc13a-1. 

 

 

Figure 4-7 Confirmation of the Atubc13a T-DNA insertion mutant 

(A) Genomic structure showing the positions of the T-DNA insertion.  Filled boxes 

represent exons, while connecting lines represent introns.  T-DNA is inserted in the last 

exon.  SP1, 5’ gene specific primer; SP2, SP3: 3’ gene specific primers; LB, T-DNA left 

border primer.  

(B) Genomic DNA PCR results. The fragment in WT line was amplified by using primers 

SP1 and SP2. The Atubc13a-1 was amplified by primers SP1 and LB, while a truncated 

fragment of AtUBC13A could be amplified from both wild type and the mutant line by 

using primers SP1 and SP3.  

(C) RT-PCR. In wild type plant, two AtUBC13 genes were amplified by using gene 

specific primers of AtUBC13A; while in the mutant Atubc13a-1 plant, AtUBC13A gene 
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was disrupted, and the other gene AtUBC13B was amplified by using gene specific 

primers of AtUBC13B. 
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Figure 4-8 Characterization of the Atubc13a-1 mutant in yeast cells 

(A) Physical interactions between truncated Atubc13a-1and AtUev1A in a yeast two-

hybrid assay. AD: constructs in the Gal4 activation domain vector pDAD424. BD: 

constructs in the Gal4 DNA-binding domain vector pGBT9. The transformants carrying 

one AD construct and one BD construct were plated on: non-selective SD-Leu-Trp (first 

panel), SD-His-Leu-Trp (second panel), SD-His-Leu-Trp+3 mM 3-AT (third panel) or 

SD-Ade-Leu-Trp (forth panel).  All plates were incubated for three days before taking 

photograph. 

(B) Functional complementation analysis of the yeast ubc13 mutant by AtUBC13A and 

Atubc13a-1 (∆12aa).  The YPD control (left) and YPD + 0.025% MMS gradient (right) 

plates were incubated at 30°C for 3 days.  All strains grow well on the YPD plate without 

MMS; on YPD + 0.025% MMS plate. AtUBC13A rescues the corresponding mutants to 

the wild type level while Atubc13a-1 did not rescue the yeast ubc13 mutant.  The arrow 

points towards the higher MMS concentration. 
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4.2.5.2. Confirmation of the Atubc13b T-DNA insertion mutant  

The T-DNA insertion line of AtUBC13B, SALK_043781 was obtained. Genomic 

DNA PCR result showed that the T-DNA insertion was located in the first intron. This 

result is different from that published in the website www.arabidopsis.org. The T-DNA 

insertion position and orientation are shown in Figure 4-9A.  In order to obtain the 

homozygous T-DNA insertion mutant,  primers LB and SP1 were used to amplify mutant 

Atubc13b genomic DNA by PCR, the fragment was much smaller than that amplified 

from wild type genomic DNA by using gene specific primers SP1 and SP2 (4-9B).  To 

further confirm this mutant, RT-PCR was also performed, which indicated that the mutant 

line was unable to produce the full-length coding transcript while AtUBC13A expression 

remains unaffected (Figure 4-9C). We herein name this AtUBC13B T-DNA insertion 

mutation Atubc13b-1. 
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Figure 4-9 Confirmation of the Atubc13b-1 T-DNA insertion mutant 

(A) Genomic structure of the AtUBC13B gene showing the position of T-DNA insertion.  

Filled boxes represent exons, and lines represent introns. T-DNA is inserted in the first 

intron.  SP1: 5’ gene specific primer; SP2: 3’ gene specific primer. LB: T-DNA left 

border primer.  

(B) Genomic DNA PCR results. Three primers (SP1, SP2 and LB) were mixed to amplify 

the full length and truncated AtUBC13B genes.  

(C) RT-PCR results. In wild type plant, both AtUBC13 genes were amplified; while in the 

homolozygous mutant Atubc13b-1 plant, AtUBC13B gene was disrupted, and another 

AtUBC13 gene (AtUBC13A) was amplified as an internal control. 
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4.2.5.3   Cross Atubc13a and Atubc13b mutants 

The position of AtUBC13A (At1g78870) in the physical map is 29655349 - 

29657410 bp, while AtUBC13B (At1g16890) is 5776339 - 5778448 bp.  These two genes 

are located in the same chromosome but in different arms.  The physical distance of these 

two genes is about 23.9 Mbp, and the genetic distance is more than 25 cM.  Hence 

recombinant progenies are expected to be readily obtained. 

The cross between mutant Atubc13a-1 and Atubc13b-1 was performed and the 

first generation (F1) was obtained.  The F1 seeds were planted into the soil. Four weeks 

later, genomic DNA was isolated from the F1 plants and the genomic DNA PCR was 

carried out. Because the genotype of all F1 plants is heterozygous (AaBb), PCR bands 

representing both wild type and the mutant alleles are expected when two gene specific 

primers and the left border primer of T-DNA were mixed together to amplify the genomic 

DNA, with one band amplified by the gene specific primer, and another by LB and one of 

the gene-specific primers depending on the orientation of the T-DNA.  When primes SP1, 

SP2 of AtUBC13B and LB were used, the PCR results were as predicted (Figures 4-10A).  

SP1 and SP2 of AtUBC13B amplified the full-length AtUBC13B gene, and LB with SP1 

amplified the Atubc13b-1 allele.  However, when primers SP1, SP2 of AtUBC13A and 

LB were used, only one band came out and the size of the band was the same as that of 

AtUBC13A (Figure 4-10B). Careful analysis of the insertion site revealed that the size of 

the amplified Atubc13a-1 is 1582 bp (1560 bp Atubc13a-1 plus 22 bp LB Primer), while 

the size of the full length AtUBC13A is 1595 bp, with only 13 bp difference between the 

two bands, which is very difficult to distinguish. Therefore, I carried out two separate 
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PCR by using different pairs of primers, and the results were as expected, and shown in 

Figures 4-10C and 4-10D.  The seeds of the F1 plants were obtained, and planted to get 

F2 double mutant plants. 

   



 

 

Figure 4-10 Confirmation of F1 heterozygote from the Atubc13a-1 and Atubc13b-1 cross 

(A)Three primers were mixed to amplify AtUBC13B and Atubc13b-1.  

(B) Three primers were mixed to amplify AtUBC13A and Atubc13a-1.  

(C) Gene specific primers of AtUBC13A were used to amplify AtUBC13A.  

(D) Left border primer LB and one of the gene specific primers SP1 were used to amplify 

the Atubc13a-1 allele.  
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4.2.5.4 Screening F2 generation plants to obtain Atubc13a Atubc13b double mutants 

Six hundred F2 generation seeds were sterilized and plated onto the 1/2 MS media 

plates. Each plate contained about 50 seeds. After five days, seed germination was 

investigated. According to Mendel's Law of Independent Segregation, the F2 generation 

will have 9:3:3:1 ratio, or 1/16 homozygous double mutants. In theory, six hundred seeds 

will produce 38 double mutant plants. Because the Ubc13 knockout mice are embryonic 

lethal (Yamamoto et al., 2006a; Yamamoto et al., 2006b), the ratio may not follow the 

anticipated segregation if the double mutant seeds do not develop or germinate well.  

Hence, I paid special attention to poorly growing seedlings. Our results showed that 

among the 600 seeds, 11 seeds did not germinate and another 11 seedlings died after 

germination. For further characterization, 15 large-size, 30 mid-size and 30 small-size F2 

plants were transferred into soil in pots. After two weeks, genomic DNA PCR was carried 

out to screen the double mutant plants. Total 75 plants (15 large-size, 30 mid-size and 30 

small-size) were screened by genomic DNA PCR using different primer pairs. As 

described previously, when AtUBC13B primers SP1, SP2 and LB were used, SP1 and 

SP2 of AtUBC13B amplified the wild type AtUBC13B gene, and LB and SP1 amplified 

the Atubc13b-1 allele. Similarly, AtUBC13A primers SP1 and SP2 amplified the full 

length wild type AtUBC13A gene while LB primer 499 and SP1 amplified the Atubc13a-1 

allele. The F2 generation had total nine genotypes. The genomic PCR and some RT-PCR 

results of nine genotypes are shown in Figure 4-11. Among 75 screened F2 generation 

plants, 6 plants were AABB, 7 were AABb, 6 were AAbb, 5 were AaBB, 20 were AaBb, 

11 were Aabb, 4 were aaBB, 11 were aaBb and 5 were aabb. This result was not exactly 
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comparable with the Mendel's Law of Independent Segregation, because plants were 

selected based on their size rather than randomly. Among the five homozygous double 

mutant plants, four of them were small in size and one was medium in size.  
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Figure 4-11 Genomic PCR and selected RT-PCR for all nine F2 genotypes from the 

Atubc13a-1 and Atubc13b-1 cross 

Top legend indicates genotypes of F2 diploid plants. AtUBC13: A, AtUBC13A; a, 

Atubc13a-1; B ,  AtUBC13B; and b, Atubc13b-1. The top three panels are from genomic 

DNA PCRs using various primers as indicated to detect the wild type and mutant alleles 

from each AtUBC13 gene. The bottom three panels are from RT-PCRs, with the first two 

showing the detection of full-length coding transcripts of AtUBC13A and AtUBC13B, and 

the bottom panel showing the detection of a truncated AtUBC13A transcript common to 

both wild type and the Atubc13a-1 allele. X: Not determined because we will not focus 

on these genotypes.  
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4.2.5.5 Expression of AtUBC13 in double mutant plants 

Our previous RT-PCR results showed that although the full length AtUBC13A is 

disrupted in the Atubc13a-1 allele, it is still able to transcribe a truncated mRNA (Figure 

4-7C). To determine whether this transcript is capable of producing a stable protein and 

whether there is another homologous Ubc13 in Arabidopsis thaliana, a 4E11 monoclonal 

antibody against human Ubc13 raised in the Xiao laboratory (Andersen et al., 2008) was 

used in Western blot (WB) analysis. A previous experiment had shown that this antibody 

detected purified AtUbc13A protein and the endogenous AtUbc13 in wild type plants 

(data not shown). This is not surprising given the high degree of Ubc13 protein sequence 

conservation among different eukaryotic kingdoms (Figure 4-1). Indeed, as shown in 

Figure 4-12, 4E11 detected a predominant 17 kDa band of expected size (lane 1).  In 

contrast, this band is completely absent in the two Atubc13 double mutant lines (lanes 4 

and 5).  This observation allows us to conclude that the Atubc13a-1 is a null allele and 

that Arabidopsis thaliana contains only two UBC13 genes. Thus, the phenotypes of the 

Atubc13 double mutant (see subsequent sections) are likely due to the absence of 

AtUbc13 proteins. Interestingly, each Atubc13a and Atubc13b homozygous single mutant 

line displayed reduced total Ubc13 level (lanes 2 and 3). This result demonstrated that: 1) 

The truncated AtUbc13 gene can be transcribed to mRNA and can not further be 

translated into protein; 2) This truncated protein can interact with AtUev1 in the yeast two 

hybrid assay but lose its function (Figure 4-2A and B); 3) It supports a notion that 

AtUBC13 are housekeeping genes and that their expression is ubiquitous and is not 

regulated by exogenous stimulation. 



 

 

WT   aaBB AAbb aabb-40/65

Tubulin

AtUbc13

55KD
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Figure 4-12 Western blot analysis of plant Ubc13 proteins 

Protein levels of the wild type, Atubc13 single and the Atubc13a-1 Atubc13b-1 double 

mutant plants. Proteins were extracted from 13-day old seedlings and used in Western 

blot analysis with an antibody against hUbc13. An anti-tubulin antibody was used as an 

internal control. 
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4.2.5.6 Phenotypic characterization of Atubc13 double mutant plants 

 We obtained five double mutant plants among 75 F2 plants examined. The 

common feature of these double mutant plants was that their leaves displayed yellow 

spots. The yellow spots started on the bottom leaves and gradually spread to the newer 

ones. After several weeks, the yellow spots expanded in size, joined each other and 

eventually caused the entire leaves yellow.   

4.2.5.6.1 Phenotypes of plants growing in plates 

 To further investigate the phenotype of the double mutant plants, seedlings of wild 

type, two single mutants (aaBB and AAbb) and two double mutant lines (aabb-40 and 

aabb-65) were confirmed by genomic PCR and their phenotypes characterized. Seeds 

from the above lines were sterilized and plated onto the ½ MS media plates. After three-

day incubation at 4 oC in the dark, the plates were placed in a 20 oC growth chamber. The 

differences displayed by the double mutant plants were observed. Generally speaking, the 

double mutant plants were greatly delayed in seed germination, as well as cotyledon and 

true leaf development. The phenotypes of the seedlings were shown in Figure 4-13. The 

detailed observations are as follows: 

          1) The radicals of wild type and single mutant plants appeared on the second day 

after seeding, while double mutant occurred on the third day.  

          2) Cotyledons of most wild type and single mutant seeds appeared on the third day 

while only a few cotyledons of double mutant seeds appeared on the fourth day. 

         3) The true leaves of wild type and single mutant seedlings appeared on the eighth 



day, while the true leaves of a few double mutant seedlings appeared on the tenth day. 

4) The phenotypes of wild type, single and double mutant seedlings of 5-day-old, 

10-day-old, 15 -day-old, 21-day-old and 28-day-old are shown on Figure 4-13. 

5‐day 

10‐day 

15‐day 

28‐day 

WT  aaBB AAbb aabb‐65

21‐day  
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Figure 4-13 Growth and morphology of wild type, Atubc13 single mutant and double 

mutant plants at different times after seeding 

WT: wild type; aaBB: Atubc13a mutant; AAbb: Atubc13b mutant; aabb-65: the Atubc13 

double mutant. The double mutant plants did not develop evenly: most of them were 

small and had light-colored leaves and delayed seed germination as well as cotyledon and 

true leaf development. 
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4.2.5.6.2 Phenotype of roots on plates 

 We observed that the Atubc13 double mutant displayed a mutant root phenotype 

(e.g. shorter root). However, the effect was difficult to measure with the normal plates 

when roots grew into the agar. Thus, the root phenotype was analyzed using seedlings 

growing vertically on plates. Seeds were sterilized and incubated at 4 oC in the dark for 

three days. Thirteen seeds were placed on each of the square plates containing 50 ml of ½ 

MS. The plates were placed vertically in a growth chamber. 

 Compared to the roots of wild type and single mutants, roots of the double mutant 

were shorter and grew in a zig-zag manner. The root lengths were measured at 5th day 

after incubation; the appearance of 5-day-old seedlings is shown in Figure 4-14A and the 

data on root length are shown in Figure 4-14B. Furthermore, lateral roots began to appear 

in most wild type and single mutant plants on the 8th day, while lateral roots were visible 

in few double mutant seedlings (Figure 4-15A). The number of lateral roots for the wild 

type and single mutants was about 3 times that of the ubc13 double mutant (Figure 4-

15B). 

   



 

 

Figure 4-14 Root growth of the wild type, two single mutants and double mutant 

seedlings under the light condition 

(A)  Representative images on 5-day-old roots of wild type and mutant plants. 

(B) Root length of 5-day seedlings growing on plates. Each result is from three 

independent plates and in each plate there were about 11-14 seedlings. Error bars indicate 

standard deviations. 
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Figure 4-15 Effects of Ubc13 mutation on lateral root development 

(A) Representative root images of 12-day-old seedlings. 

(B) Number of lateral roots of 12-day-old wild type and mutant seedlings. Each result is 

from three independent plates and in each plate there were about 11-14 seedlings. Error 

bars indicate standard deviations.  
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4.2.5.6.3 Phenotype of double mutant in pots  

To further study the phenotype of the double mutant, seeds from the wild type, single 

mutants and double mutant were directly sown into soil in pots. Seed germination and 

plant growth were monitored. For seed germination, most of the double mutant seeds did 

not germinate very well and it took about 2 or 3 days longer) to germinate compared to 

wild type. At 35 days after seeding, the double mutant plants displayed a small size with 

rosette leaves bearing a thinner and flatter leaf blade, as well as lighter color compared to 

the wild type plants. Leaf serrations were more prominent in the double mutant plants 

than in wild type and single mutant plants (Figure 4-16). 
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WT  WT aabbaabb

Figure 4-16 Wild type and double mutant plants 35 days after seeding 

Compared to wild type, the double mutant plant has overall smaller size. The leaves are 

thinner and flatter as well as lighter in color. 
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4.3 Discussion 

4.3.1 Arabidopsis thaliana Ubc13-mediated Lys63-linked polyubiquitination is 

involved in DNA damage tolerance 

           Lys63-linked polyubiquitylation of target proteins is involved in signal 

transduction other than proteins degradation (Pickart, 2001a).. The ultimate goal of our 

investigation is to uncover cellular activities of Ubc13-mediated Lys63-linked 

polyubiquitylation in plants. Although Ubc13 alone is able to form a thiol-ester bond with 

Ub, the formation of Lys63-linked Ub chain requires Uev as a binding partner (Hofmann 

and Pickart, 1999; McKenna et al., 2001). In this study, we examined the physical 

interaction between AtUbc13s and Uevs from other species by two different assays and 

demonstrated that AtUbc13s are able to form a stable complex with Uevs from 

Arabidopsis thaliana as well as yeast and human Mms2. Although neither assay 

employed was quantitative, our data indicate that the cross-species Ubc13-Uev interaction 

is as strong as yeast and human intra-species Ubc13-Uev interactions. It is inferred that 

plants also utilize Ubc13-mediated Lys63-linked polyubiquitination as a means of gene 

regulation in one or more cellular pathways. It appears that Ubc13-mediated DNA 

damage tolerance function is conserved from yeast to mammals (Andersen et al., 2005). 

Thus, in this study it was determined whether AtUBC13 genes were able to functionally 

replace the corresponding yeast gene’s cellular activity. Indeed, expression of AtUbc13 in 

the null yeast ubc13 mutant fully restored the wild type UBC13 activity, including 

resistance to DNA damaging agents and suppression of spontaneous mutagenesis. Since 

these are characteristic DNA damage tolerance phenotypes, these results suggest that 
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AtUBC13 may play the same role in its own host cells. Future functional analyses may 

prove that AtUBC13 genes play crucial roles in maintaining genome stability in plants 

like their counterparts in other eukaryotes.  

 Data presented in this thesis indicate that Arabidopsis thaliana contains two 

highly conserved and likely duplicated UBC13 genes encoding nearly identical proteins. 

AtUbc13 is evolutionarily conserved with Ubc13 from all other eukaryotic organisms, 

from yeast to human, with a minimum of 66% sequence identity and the conservation of 

all known functional sequence motifs. Furthermore, even certain intron–exon borders for 

UBC13s from distant organisms are also conserved, indicating that UBC13 is likely an 

ancient gene with housekeeping functions. Indeed, AtUBC13 appears to be expressed at a 

relatively equal level in all tissues examined. In comparison, the UBC13 transcript level 

in human tissues fluctuates dramatically; for example, it is extremely high in heart, 

skeletal muscle, and testis and relatively low in other tissues examined (Yamaguchi et al., 

1996). The difference of AtUBC13 and hUBC13 in tissue distribution suggests that Ubc13 

may have different functions in different organisms. It should be noted that the Northern 

hybridization using AtUBC13A ORF as a probe is unable to distinguish between 

AtUBC13A and AtUBC13B transcripts; hence, in this experiment, total AtUBC13 

transcripts were measured and we cannot rule out the possibility that AtUBC13A and 

AtUBC13B have differential expression patterns, given that their promoter sequences 

appear to be rather different. Ubiquitination in general and Ubc13-mediated 

polyubiquitination in particular appear to be primarily involved in environmental stress 

responses. In yeast, UBC13 expression is DNA damage-inducible (Brusky et al., 2000). In  

mammalian cells, the Ubc13-Uev complex functions in TRAF6-mediated stress response 
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pathways following activation by proinflammatory cytokines (Deng et al., 2000; Wang et 

al., 2001), as well as bacterial and viral infections (Zhou et al., 2004; Andersen et al., 

2005). It was found that both AtUBC13 transcript levels remain relatively constant under 

stresses such as high salt, osmotic pressure, cold temperature, hormone, and DNA 

damage. This result can be interpreted in several ways. Firstly, AtUBC13 may be induced 

by reagents not included in my experiments, or by treatment conditions different from 

those described in this study. Secondly, AtUBC13 transcripts may be constant while the 

gene product is subjected to post-translational regulation. Thirdly, AtUBC13 may be 

adapted to housekeeping functions because its expression is very stable in different 

tissues and stress conditions tested. Lastly, the AtUbc13 protein level may be unaffected, 

but its activity is altered by its binding partners such as Uev, which is absolutely required 

for Ubc13-mediated Lys63-linked polyubiquitination (Hofmann and Pickart, 1999; 

McKenna et al., 2001) and may direct Ubc13 to different cellular functions (Andersen et 

al., 2005). 

4.3.2 Functions of Lys63-linked polyubiquitination in plants  

           Among ubiquitin conjugating enzymes (E2s or Ubcs), Ubc13 is unique because it 

can promote Lys63-linked polyubiquitination, which is believed to serve in cellular 

signalling. In yeast and mammalian cells, Ubc13-mediated Lys63-linked 

polyubiquitination  has been shown to function in DNA damage tolerance and NF-κB 

activation as well as some other less defined pathways including stress response (Arnason 

and Ellison, 1994), mitochondrial inheritance (Fisk and Yaffe, 1999), plasma membrane 

protein endocytosis (Galan and Haguenauer-Tsapis, 1997), ribosome function (Spence et 
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al., 2000), innate immunity (Deng et al., 2000; Wang et al., 2001; Zhou et al., 2004), and 

mitotic cell cycle checkpoint (Bothos et al., 2003). In Arabidopsis thaliana, Ubc13 and 

E3 RGLG-mediated Lys63-linked polyubiquitination plays a role in regulating apical 

dominance (Yin et al., 2007). The present  studies showed that Arabidopsis thaliana 

Ubc13 forms a complex with Uev1D, promotes Lys63-linked polyubiquitination and is 

involved in DNA damage response Wen et al., 2008). To date these are the only two 

known reports concerning the Lys63-linked polyubiquitination in plants. The essential 

role of Ubc13 in mammals is implied by the mouse embryonic lethality from Ubc13 

deletion, which hampers its further genetic analysis. Arabidopsis thaliana contains two 

highly conserved UBC13 genes. We created and surprisingly found that mutant plants 

with both UBC13 genes inactivated are still viable and fertile. Nevertheless the 

homozygous double mutant plants display a number of altered phenotypes compared with 

wild-type or single mutants. The double mutant plants were delayed in seed germination, 

as well as cotyledon and true leaf development. In particular, the ubc13 null mutant 

developed shorter and distorted roots. In addition, the number of lateral roots is also 

reduced significantly. It is well known that auxin plays an important role in root hair and 

lateral root formation. In plants, lateral root (LR) formation is essential for the root 

architecture. LRs originate from the pericycle which is located in the parent roots. When 

there is no auxin signal in the pericycle cells, the ARF:Aux/IAA dimer transcription is 

repressed, and auxin-inducible genes can be expressed (Leyser, 2006). When auxin signal 

is present in the pericycle cells, it is captured and lateral root can be initiated (Leyser, 

2006). The phenotypes Arabidopsis thaliana ubc13 displayed implicate that Ubc13 

mediated Lys63-linked polyubquitination plays pleiotropic roles in plants. Based on our 
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data, we propose that the specific E2-E3 interaction between Ubc13 and unknown E3s 

promotes Lys63-linked polyubiquitination of a number of yet unidentified target proteins 

that is required to mediate different cellular processes in plants. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE DIRECTIONS 

 5.1 Summary and conclusions  

            In this study, we cloned and functionally characterized two Arabidopsis thaliana 

UBC13 genes AtUBC13A and AtUBC13B and four UEV1 genes AtUEV1A, AtUEV1B, 

AtUEV1C, and AtUEV1D. These genes appear to express ubiquitously in most tissues and 

are not induced by various conditions tested.  Biochemical, biological, and genetic studies 

of these genes indicate that certain AtUbc13-AtUev1 complexes promote Lys63 linked 

polyubiquitination and play important roles in plant development and DNA damage 

tolerance. Several conclusions are drawn from this study: 1) Ubc13 and Uev1 are highly 

evolutionarily conserved from yeast, human to plants; 2) AtUbc13 and AtUev1 form a 

stable complex and mediate Lys63–linked polyubiquitination; 3) AtUbc13 and AtUev1 

can functionally complement yeast ubc13 and mms2 null mutants, respectively, in the 

error-free pathway of PRR; 4) AtUbc13-AtUev1D mediated polyubiquitination is 

involved in error-free DNA tolerance pathway in plants; 5) AtUbc13 double mutants are 

viable  and fertile but display altered phenotypes, indicating that Ubc13-mediated Lys63-

linked polyubquitination is involved in other development pathway. 
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5.2 Future directions 

5.2.1 Functional studies of AtUbc13 using RNA interference 

RNA interference (RNAi) is a phenomenon of gene silencing at the mRNA 

level. It offers a quick and easy way to down-regulate the expression of a gene or a group 

of highly related genes. In order to provide independent evidence that the phenotype of 

the double mutant plants is the result of AtUBC13 down-regulation and to understand the 

relationship between the phenotype and the level of AtUbc13 protein, AtUbc13 RNAi 

construct was prepared, and a set of lines with different levels of AtUbc13 protein (WT, 

single mutants, and RNAi lines) have been obtained. The RNAi plants with AtUbc13 

protein levels between single mutants and the double mutant will be used to examine the 

relationship between the level of AtUbc13 and tolerance to DNA damage in plants. One 

of criteria for selecting the lines is that they are similar to the wild type plant in seed 

germination and seedling growth when the analysis is conducted. These lines will be used 

to determine the tolerance to DNA damage induced by MMS and UV. Detection of 

mono- and poly-ubiquitinated PCNA in wild type and the above mutant plants through an 

immuno-precipitation method will be conducted. 

5.2.2 Characterization and functional studies of Atubc13 double mutant plants  

Atubc13 double mutant plants will be analyzed to fully characterize their 

phenotypes. Previous observations were conducted at various stages of plant growth and 

development. Further analyses will include the responses of the double mutant to biotic or 

abiotic stresses and particularly to hormonal treatments. The altered phenotypes will be 
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carefully examined and the underlying molecular mechanisms will be further 

investigated. 

5.3 Identification of possible E3 ligases 

Ubiquitination is accomplished via a cascade of enzymatic steps which include 

Ub, E1, E2, and E3 (Hochstrasser 1996). Ubc13 is the only known E2 enzyme and has the 

capability to catalyze Lys63-linked poly-Ub in yeast and mammalian cells, acting as a 

novel signal in DNA repair (Hofmann and Pickart 1999) and NF-kB activation (Deng, 

Wang et al. 2000). 

In yeast and human, the known E3s that interact with Ubc13 are Rad5, Rad18, 

Shprh, Traf6, Traf2, Chfr, Chip, Rnf8, Brca1, Bard1, and Parkin. The common feature of 

these E3s proteins is that they all have a ring finger domain, a specialized type of Zn-

finger of 40-60 residues that binds two atoms of zinc, and this domain mediates protein- 

protein interaction. From this study, it is known that AtUbc13 with AtUev forms a 

complex promoting Lys63 poly-Ub chain, functioning DNA repair pathway. But we do 

not know what the E3s in Arabidopsis interact with AtUbc13 or AtUev1s, therefore, 

identifying the E3 in Arabidopsis thaliana will help us to better understand the functions 

of Ubc13–Uev complex. 
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